CMOSTEK

CMT2300A

Ultra Low Power Sub-1GHz RF Transceiver

Features:

- Frequency range: 127 ~1020MHz
- Modem: OOK, (G)FSK 和(G)MSK
- Data rate: 0.5 ~ 300 kbps
- Sensitivity: -121 dBm 2.0 kbps, F_{RF} = 433.92 MHz
 -111 dBm 50 kbps, F_{RF} = 433.92 MHz
- Voltage range: 1.8 ~3.6 V
- Transmit current: 23 mA @ 13 dBm, 433.92 MHz, FSK
 72 mA @ 20 dBm, 433.92 MHz, FSK,
- Rx current: 8.5 mA @ 433.92 MHz, FSK (High power mode)
 7.2 mA @ 433.92 MHz, FSK (Low power mode)
- Super Low Power receive mode
- Sleep current: 300 nA, Duty Cycle = OFF
 - 800 nA, Duty Cycle = ON
- Receiver Features:
 - Fast and stable automatic frequency control (AFC)
 - 3 types of clock data recovery system (CDR)
 - Fast and accurate signal detection (PJD)
- 4-wire SPI interface
- Direct and packet mode supported
- Configurable packet handler and 64-Byte FIFO.
- NRZ, Manchester codec, Whitening codec, Forward Error Correction (FEC)

Descriptions:

CMT2300A is an ultra-low power, high performance, OOK (G) FSK RF transceiver suitable for a variety of 140 to 1020 MHz wireless applications. It is part of the CMOSTEK NextGenRF[™] RF product line. The product line contains the complete transmitters, receivers and transceivers. The high integration of CMT2300A simplifies the peripheral materials required in the system design. Up to +20 dBmTx Power and -121 dBm sensitivity optimize the performance of the application. It supports a variety of packet formats and codec methodsto meet the needs of various different applications. In addition, CMT2300A also supports64-byte Tx/Rx FIFO, GPIO and interrupt configuration, Duty-Cycle operation mode, channel sensing, high-precision RSSI, low-voltage detection, power-on reset, low frequency clock output, manual fast frequency hopping, squelch and etc. The features make the application design more flexible and differentiated. CMT2300A operates from 1.8 V to 3.6 V. Only 8.5 mA current is consumed when the sensitivity is -121 dBm, SuperLow Power mode can further reduce the chip power consumption. Only 23mA Txcurrent is consumed when the output power is 13dBm.

Applications:

- Automatic meter reading
- Home security and building automation
- ISM band data communication
- Industrial monitoring and control
- Remote control and security system
- Remote key entry
- Wireless sensor node
- Tag reader

Ordering information

Model	Frequency	Package	MOQ				
CMT2300A-EQR	433.92 MHz	QFN16	3,000 pcs				
For more information, see Page 42 Table 23.							

Table of contents

1.	Elec	trical Characteristics	4
	1.1	Recommended Operation Condition	4
	1.2	Absolute Maximum Rating	4
	1.3	Power Consumption	5
	1.4	Receiver	6
	1.5	Transmitter	7
	1.6	Settle Time	8
	1.7	Frequency Synthesizer	8
	1.8	Crystal Oscillator	9
	1.9	Low Frequency Oscillator.	9
	1.10	Low Battery Detection	10
	1.11	Digital Interface	
	1 12	Figures of Critical Parameters	10
		1 12 1 Rx Current VS, Supply Voltage	11
		1.12.2 Rx Current VS. Voltage Temperature	11
		1.12.3 Sensitivity VS. Voltage	12
		1.12.4 Sensitivity VS. Temperature	13
		1.12.5 Tx Power VS. Supply Voltage	13
2.	Pin	Descriptions	15
•	- .		4-
3.	турі	cal Application Schematic	17
	3.1	Direct tie Schematic Diagram	17
	3.2	RF Switch Type Schematic	19
4	Fun	ction Descriptions	
	4.1	Transmitter	21
	4.2	Receiver	22
	4.3	Auxiliary Blocks	22
		4.3.1 Power-On Reset (POR)	22
		4.3.2 Crystal Oscillator	23
		4.3.3 Sleep Timer	23
		4.3.4 Low Battery Detection	24 24
		4.3.6 Phase Jump Detector (PJD)	24
		4.3.7 Automatic Frequency Control (AFC)	25
		4.3.8 Clock Data Recovery (CDR)	25
		4.3.9 Fast Frequency Hopping	26
5.	Chip	Operation	27
	5.1	SPI Interface	27
	5.2	FIFO	27
		5.2.1 FIFO Read Operation	28
		5.2.2 FIFO Associated Interrupt	28
	5.3	Operation State, Timing and Power Consumption	29

		5.3.1 Startup Timing	9
		5.3.2 Operation State	0
	5.4	GPIO and Interrupt 3	2
6.	Pacl	ket Handler3	5
	6.1	Direct Mode	5
	6.2	Packet Mode	6
7.	Low	Power Operation	8
	7.1	Duty Cycle Operation Mode 3	8
	7.2	Supper Low Power (SLP) Receive Mode	8
	7.3	Receiver "Power VS Performance" Configuration	9
8.	Use	r Register	0
9.	Orde	ering Information	2
10	. Pacl	kaging Information	3
11.	. Тор	Marking	4
12	. Doc	ument Change List4	5
13	. Con	tact Information4	6

1. Electrical Characteristics

 V_{DD} = 3.3 V, T_{OP} = 25 °C, F_{RF} = 433.92 MHz, the sensitivity is measured by receiving a PN9 coded data and matching the impedance to 50 Ω under the 0.1%BER standard.Unless otherwise stated, all results are tested on theCMT2300A-EM evaluation board.

1.1 Recommended OperationCondition

Condition Unit Parameter Symbol Min. Тур. Max. V Power voltage V_{DD} 1.8 3.6 -40 Operating temperature TOP 85 °C Power voltage slope 1 mV/us

Table 1. Recommended operation condition

1.2 Absolute Maximum Rating

Table 2. Absolute Maximum Ratings^[1]

Parameter	Symbol	Conditions	Min	Мах	Unit
Supply Voltage	V _{DD}		-0.3	3.6	V
Interface Voltage	V _{IN}		-0.3	V _{DD} +0.3	V
Junction Temperature	TJ		-40	125	°C
Storage Temperature	T _{STG}		-50	150	°C
Soldering Temperature		Lasts at least 30 seconds		255	°C
ESD Rating ^[2]		Human Body Model (HBM)	-2	2	kV
Latch-up Current		@ 85 °C	-100	100	mA

Notes:

[1]. Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

[2].

Caution! ESD sensitive device. Precaution should be used when handling the device in order to prevent permanent damage.

1.3 Power Consumption

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Sloopourront	1	Sleep mode, sleep timeris off		300		nA
Sleepcurrent	ISLEEP	Sleep mode, sleep timeris on		800		nA
Standbycurrent	I _{Standby}	Crystal oscillatoris on		1.45		mA
		433 MHz		5.7		mA
RFScurrent	I _{RFS}	868 MHz		5.8		mA
		915 MHz		5.8		mA
		433 MHz		5.6		mA
TFScurrent	I _{TFS}	868 MHz		5.9		mA
		915 MHz		5.9		mA
		FSK, 433 MHz, 10 kbps,10 kHz F _{DEV}		8.5		mA
RXcurrent(high powermode)	I _{Rx-HP}	FSK, 868 MHz, 10 kbps, 10 kHz F _{DEV}		8.6		mA
		FSK, 915 MHz, 10 kbps,10 kHz F _{DEV}		8.9		mA
		FSK, 433 MHz, 10 kbps, 10 kHz F _{DEV}		7.2		mA
RXcurrent(low power mode)	I _{Rx-LP}	FSK, 868 MHz, 10 kbps, 10 kHz F _{DEV}		7.3		mA
		FSK, 915 MHz, 10 kbps, 10 kHz F _{DEV}		7.6		mA
		FSK, 433 MHz, +20 dBm (Direct Tie)		72		mA
		FSK, 433 MHz, +20 dBm (RF switch)		77		mA
		FSK, 433 MHz, +13 dBm (Direct Tie)		23		mA
		FSK, 433 MHz, +10 dBm (Direct Tie)		18		mA
		FSK, 433 MHz, -10 dBm(Direct Tie)		8		mA
		FSK, 868 MHz, +20 dBm(Direct Tie)		87		mA
		FSK, 868 MHz, +20 dBm(RF switch)		80		mA
TXcurrent	l _{Tx}	FSK, 868 MHz, +13 dBm (Direct Tie)		27		mA
		FSK, 868 MHz, +10 dBm (Direct Tie)		19		mA
		FSK, 868 MHz, -10 dBm (Direct Tie)		8		mA
		FSK, 915 MHz, +20 dBm (Direct Tie)		70		mA
		FSK, 915 MHz, +20 dBm (RF switch)		75		mA
		FSK, 915 MHz, +13 dBm (Direct Tie)		28		mA
		FSK, 915 MHz, +10 dBm (Direct Tie)		19		mA
		FSK, 915 MHz, -10 dBm (Direct Tie)		8		mA

Table 3. Power consumption specification

1.4 Receiver

Table 4. Receiver specification

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Data rata	DD	ООК	0.5		40	kbps
Data rate	DR	FSK and GFSK	0.5		300	kbps
Deviation	FDEV	FSK and GFSK	2		200	kHz
		DR = 2.0 kbps, F_{DEV} = 10 kHz		-121		dBm
		DR = 10 kbps, F_{DEV} = 10 kHz		-116		dBm
		DR = 10 kbps, F_{DEV} = 10 kHz (Low power setting)		-115		dBm
		DR = 20 kbps, F_{DEV} = 20 kHz		-113		dBm
Sensitivity	S _{433-HP}	DR = 20 kbps, F_{DEV} = 20 kHz (Low power		440		dBm
@ 433 MHZ		$DP = 50 \text{ kpc} \text{ E}_{\text{and}} = 25 \text{ kHz}$		-112		dPm
		$DR = 100 \text{ kbps}, F_{BEV} = 50 \text{ kHz}$		108		dPm
		DR = 200 kbps, T Dev = 30 kHz		-105		dBm
		$DR = 300 \text{ kbps}, F_{DEV} = 100 \text{ kHz}$				dBm
		$DR = 2.0 \text{ kbps}, F_{DEV} = 10 \text{ kHz}$		-119		dBm
		DR = 10 kbps, F _{DEV} = 10 kHz		-113		dBm
		DR = 10 kbps, F _{DEV} = 10 kHz (Low power setting)		-111		dBm
		DR = 20 kbps, F _{DEV} = 20 kHz		-111		dBm
Sensitivity @ 868 MHz	S _{868-HP}	DR = 20 kbps, F _{DEV} = 20 kHz (Low power setting)		-109		dBm
0		DR = 50 kbps, F _{DEV} = 25 kHz		-108		dBm
		DR =100 kbps, F _{DEV} = 50 kHz		-105		dBm
		DR =200 kbps, F _{DEV} = 100 kHz		-102		dBm
		DR =300 kbps, F _{DEV} = 100 kHz		-99		dBm
	C	DR = 2.0 kbps, F_{DEV} = 10 kHz		-117		dBm
		DR = 10 kbps, F_{DEV} = 10 kHz		-113		dBm
		DR = 10 kbps, F_{DEV} = 10 kHz (Low power mode)		-111		dBm
Constitute		$DR = 20 \text{ kbps}, F_{DEV} = 20 \text{ kHz}$		-111		dBm
© 915 MHz	S _{915-HP}	DR = 20 kbps, F_{DEV} = 20 kHz (Low power mode)		-109		dBm
		DR = 50 kbps, F _{DEV} = 25 kHz		-109		dBm
		DR =100 kbps, F _{DEV} = 50 kHz		-105		dBm
		DR =200 kbps, F _{DEV} = 100 kHz		-102		dBm
		DR =300 kbps, F _{DEV} = 100 kHz		99		dBm
Saturation Input Signal Level	P _{LVL}				20	dBm
		F _{RF} =433 MHz		35		dBc
Image Rejection Ratio	IMR	F _{RF} =868 MHz		33		dBc
		F _{RF} =915 MHz		33		dBc
RX Channel Bandwidth	BW	RX channel bandwidth	50		500	kHz
Co-channel Rejection	CCR	DR = 10 kbps, F_{DEV} = 10 kHz; Interference with		-7		dBc
Ratio		the same modulation		-		
Adjacent Channel Rejection Ratio	ACR-I	kHzChannel spacing, interference with the same modulation		30		dBc

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
AlternateChannel Rejection Ratio	ACR-II	DR = 10 kbps, F _{DEV} = 10 kHz; BW=100kHz, 400 kHzChannel spacing, interference with the same modulation		45		dBc
		DR = 10 kbps, F _{DEV} = 10 kHz; ±1 MHzDeviation, continuous wave interference		70		dBc
Blocking Rejection Ratio	BI	DR = 10 kbps, F _{DEV} = 10 kHz; ± 2 MHzDeviation, continuous wave interference		72		dBc
		DR = 10 kbps, F _{DEV} = 10 kHz; ±10 MHzDeviation, continuous wave interference		75		dBc
Input 3 rd Order Intercept Point	IIP3	DR = 10 kbps, F _{DEV} = 10 kHz; 1 MHz and 2 MHz Deviation dual tone test, maximum system gain setting.		-25	N N	dBm
RSSIRange	RSSI		-120		20	dBm
		433.92 MHz, DR = 1.2kbps, F _{DEV} = 5 kHz		-122.9		dBm
		433.92 MHz, DR = 1.2kbps, F _{DEV} = 10 kHz		-121.8		dBm
		433.92 MHz, DR = 1.2kbps, F _{DEV} = 20 kHz		-119.5		dBm
		433.92 MHz, DR = 2.4kbps, F _{DEV} = 5 kHz	5	-120.6		dBm
		433.92 MHz, DR = 2.4kbps, F _{DEV} = 10 kHz		-120.3		dBm
		433.92 MHz, DR = 2.4kbps, F _{DEV} = 20 kHz		-119.7		dBm
		433.92 MHz, DR = 9.6 kbps, F _{DEV} = 9.6 kHz		-116.0		dBm
		433.92 MHz, DR = 9.6 kbps, FDEV = 19.2 kHz		-116.1		dBm
More Sensitivity (Typical Configuration)		433.92 MHz, DR = 20 kbps, FDEV = 10 kHz		-114.2		dBm
(Typical Conligatation)		433.92 MHz, DR = 20 kbps, FDEV = 20 kHz		-113.0		dBm
		433.92 MHz, DR = 50 kbps, FDEV = 25 kHz		-110.6		dBm
		433.92 MHz, DR = 50 kbps, FDEV = 50 kHz		-109.0		dBm
		433.92 MHz, DR = 100 kbps, FDEV = 50 kHz		-107.8		dBm
		433.92 MHz, DR = 200 kbps, FDEV = 50 kHz		-103.5		dBm
		433.92 MHz, DR = 200 kbps, FDEV = 100 kHz		-104.3		dBm
		433.92 MHz, DR = 300 kbps, FDEV = 50 kHz		-98.0		dBm
		433.92 MHz, DR = 300 kbps, FDEV = 150 kHz		-101.6		dBm

1.5 Transmitter

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Output power	P _{out}	Need specific peripheral materials for different frequency bands	-20		+20	dBm
Output power step	P _{STEP}			1		dB
GFSK Gaussian filter coefficient	вт		0.3	0.5	1.0	-
Output power variation	P _{OUT-TOP}	Temperature from -40 to +85 °C		1		dB
Other rediction		P _{OUT} = +13 dBm,433MHz, F _{RF} <1 GHz			-42	dBm
Stray radiation		1 GHz to 12.75 GHz, with harmonic			-36	dBm
Harmonic output for	H2 ₄₃₃	2 nd harmonic +20 dBm P _{OUT}		-46		dBm

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
F _{RF} = 433 MHz ^[1]	H3 ₄₃₃	3 nd harmonic +20 dBm P _{OUT}		-50		dBm
Harmonic output for	H2 ₈₆₈	2 nd harmonic +20 dBm P _{OUT}		-43		dBm
F _{RF} = 868 MHz ^[1]	H3 ₈₆₈	3 nd harmonic +20 dBm P _{OUT}		-52		dBm
Harmonic output for	H2 ₈₆₈	2 nd harmonic +20 dBm P _{OUT}		-48		dBm
F _{RF} = 915 MHz ^[1]	H3 ₈₆₈	3 nd harmonic +20 dBm P _{OUT}		-53		dBm
Harmonic output for	H2 ₄₃₃	2 nd harmonic +13 dBm P _{OUT}		-52		dBm
F _{RF} = 433 MHz ^[1]	H3 ₄₃₃	3 nd harmonic +13 dBm P _{OUT}		-52		dBm
Harmonic output for	H2 ₈₆₈	2 nd harmonic +13 dBm P _{OUT}		-52		dBm
F _{RF} = 868 MHz ^[1]	H3 ₈₆₈	3 nd harmonic +13 dBm P _{OUT}		-52		dBm
Harmonic output for	H2 ₈₆₈	2 nd harmonic +13 dBm P _{OUT}		-52		dBm
F _{RF} = 915 MHz ^[1]	H3 ₈₆₈	3 nd harmonic +13 dBm P _{OUT}		-52		dBm

1.6 SettleTime

Table 6. SettleTime

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit			
	T _{SLP-RX}	From Sleep to RX		1000		us			
	T _{SLP-TX}	From Sleep to TX		1000		us			
	T _{STB-RX}	From Standby to RX		350		us			
	T _{STB-TX}	From Standby to TX		350		us			
Settle time	T _{RFS-RX}	From RFS to RX		20		us			
	T _{TFS-RX}	From TFS to TX		20		us			
	T _{TX-RX}	From TX to RX (Ramp Down time needs 2T _{symbol})		2T _{symbol} +350		us			
	T _{RX-TX}	From RX to TX		350		us			
Note:									
[1]. T _{SLP-RX} is dominated by	[1]. T _{SLP-Rx} is dominated by the crystal oscillator startup time, which depends on its own characteristics.								

1.7 Frequency Synthesizer

Table 7. Frequency Synthesizer Specifications

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
			760		1020	MHz
	_		380		510	MHz
Frequency range	F _{RF}	Need different matching networks	190		340	MHz
			127		170	MHz
Frequency resolution	F _{RES}			25		Hz
Frequency tuning time	t _{TUNE}			150		us
		10 kHz frequency deviation		-94		dBc/Hz
Dhana aning @ 400		100 kHz frequency deviation		-99		dBc/Hz
Phase noise@ 433	PN433	500 kHz frequency deviation		-118		dBc/Hz
		1MHz frequency deviation		-127		dBc/Hz
		10 MHz frequency deviation		-134		dBc/Hz
Phase noise@ 868	PN ₈₆₈	10 kHz frequency deviation		-92		dBc/Hz

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
MHz		100 kHz frequency deviation		95		dBc/Hz
		500 kHz frequency deviation		-114		dBc/Hz
		1MHz frequency deviation		-121		dBc/Hz
		10 MHz frequency deviation		-130		dBc/Hz
		10 kHz frequency deviation		-89		dBc/Hz
Dhanna in O 015	PN ₉₁₅	100 kHz frequency deviation		-92		dBc/Hz
Phase holse@ 915		500 kHz frequency deviation		-111		dBc/Hz
		1MHz frequency deviation		-121		dBc/Hz
		10 MHz frequency deviation		-130		dBc/Hz

1.8 Crystal Oscillator

Table 8. Crystal Oscillator Specifications

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Crystal frequency ^[1]	F _{XTAL}			26		MHz
Frequency tolerance ^[2]	ppm			20		ppm
Load capacitance	CLOAD			15		pF
Equivalent resistance	Rm			60		Ω
Start-up time ^[3]	t _{xtal}			400		us
Pomarke:						

Remarks:

[1]. CMT2300A can use the external reference clock to drive the XIN pin through the coupling capacitor. The peak value of the external clock signal is between 0.3V and 0.7V.

[2]. The value includes (1) initial error; (2) crystal load; (3) aging; and (4) change with temperature. The acceptable crystal frequency tolerance is limited by the receiver bandwidth and the RF frequency offset between the transmitter and the receiver.

[3]. The parameter is largely related to the crystal.

1.9 Low Frequency Oscillator

Table 9. Low Frequency Oscillator Specifications

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Calibration frequency [1]	F _{LPOSC}			32		kHz
Frequency accuracy		After calibration		±1		%
Temperature coefficient [2]				-0.02		%/°C
Supply voltage coefficient [3]				+0.5		%/V
Initial calibration time	t _{LPOSC-CAL}			4		ms

Remarks:

[1]. The low frequency oscillator is automatically calibrated to the crystal oscillator frequency at the PUP stage and periodically calibrated at this stage.

[2]. After calibration, the frequency changes with temperature.

[3]. After calibration, the frequency changes with the change of the supply voltage.

1.10 Low BatteryDetection

Table 10. Low Battery detection specifications

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Detection accuracy	LBD _{RES}			50		mV

1.11 Digital Interface

Table 11. Digital interface specifications

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Digital input high level	V _{IH}		0.8			V _{DD}
Digital input low level	VIL				0.2	V _{DD}
Digital output high level	V _{OH}	@I _{OH} = -0.5mA	Vdd-0.4			V
Digital output low level	V _{OL}	@I _{OL} = 0.5mA			0.4	V
SCLKFrequency	F _{SCL}				5	MHz
SCLK high time	Т _{СН}		50			ns
SCLK low time	T _{CL}		50			ns
SCLKrise time	T _{CR}		50			ns
SCLKfall time	T _{CF}	Ş	50			ns

1.12 Figures of Critical Parameters

1.12.1 Rx Current VS. Supply Voltage

Testing Condition: Freq = 434MHz / 868MHz, Fdev = 10KHz, BR = 10Kbps

1.12.2 Rx Current VS. Voltage Temperature

Test Condition: Freq = 434MHz,Fdev = 10KHz, BR = 10Kbps

Test Condition: Freq = 868MHz, Fdev = 10KHz, BR = 10Kbps

Test Condition: FSK, DEV = 10KHz, BR = 10Kbps

Test Condition: FSK, DEV = 10KHz, BR = 10Kbps

Test Condition:Freq = 434MHz, 20dBm / 13dBmmatching network

Test Condition:Freq = 868MHz, 20dBm / 13dBmmatching network

2. Pin Descriptions

Table 12. CMT2300A pin descriptions

Pin No.	Name	I/O	Internal IO Schematic	Descriptions
1	RFIP	Ι		RF signal input P
2	RFIN	I		RF signal input N
3	PA	0		PA output
4	AVDD	10		Analog VDD
5	AGND	10		Analog GND
6	DGND	10		Digital GND
7	DVDD	10		Digital VDD
8 ^[1]	GPIO3	10	pd_dout defauit value is "0" pd_dout defauit value is "0" pd_dout pd_dout pd_din pd_din defauit value is "1"	Configured as CLKO, DOUT/DIN, INT2 and DCLK (TX/RX)
9	SCLK	I		SPI clock

CMT2300A

10	SDIO	Ю	VDD pd_dout default value is "1" SDIO Data tristate dout pd_din default value is "1" pd_din default value is "1"	SPI data input and output		
11	CSB	I		SPI chip selection bar for register access, active low		
12	FCSB	I	FCSB Buffer	SPI chip selection bar for FIFO access, active low		
13	XI	I		Crystal circuit input		
14	ХО	0		Crystal circuit output		
15 ^[1]	GPIO2	Ю	VDD pd_dout default value is "0" pd_dout pd_dout pd_dout pd_dout pd_dout pd_dout pd_dout pd_dout pd_dout pd_dout	Configured as INT1, INT2, DOUT/DIN, DCLK (TX/RX) and RF_SWT		
16 ^[1]	GPIO1	IO	PIO1 PION PION	Configured as DOUT/DIN, INT1, INT2, DCLK (TX/RX) and RF_SWT		
17	GND	I		Analog GND. It must be grounded.		
Note:		I				
[1]. INT1 a	nd INT2 a	re inter	rupts. DOUT is demodulated output. DIN is a modulation	input. DCLK is a modulation or		
demodulation data rate synchronization clock, automatic switching in TX/RX mode.						

3. Typical Application Schematic

3.1 Direct tie SchematicDiagram

Figure 2. Direct tie application schematic diagram

			Values			
No.	Descriptions	433 MHz	868 MHz	915 MHz	Unit	Supplier
		+13 dBm	+13dBm	+13dBm		
C1	±5%, 0603 NP0, 50 V	15	22	22	pF	
C2	±5%, 0603 NP0, 50 V	5.6	6.2	6.2	pF	
C3	±5%, 0603 NP0, 50 V	7.5	3.6	3.3	pF	
C4	±5%, 0603 NP0, 50 V	24	24	24	pF	
C5	±5%, 0603 NP0, 50 V	24	24	24	pF	
C6	±5%, 0603 NP0, 50 V	4.7	2.2	2.2	pF	
C7	±5%, 0603 NP0, 50 V	4.7	2.2	2.2	pF	
C8	±5%, 0603 NP0, 50 V		4.7		uF	
C9	±5%, 0603 NP0, 50 V		470		pF	
C10	±5%, 0603 NP0, 50 V		0.1		uF	
C11	±5%, 0603 NP0, 50 V		0.1		uF	
L1	±5%, 0603 Multilayer chip inductor	180	100	100	nH	Sunlord SDCL
L2	±5%, 0603 Multilayer chip inductor	56	10	8.2	nH	Sunlord SDCL
L3	±5%, 0603 Multilayer chip inductor	39	8.2	6.8	nH	Sunlord SDCL
L4	±5%, 0603 Multilayer chip inductor	18	10	8.2	nH	Sunlord SDCL
L5	±5%, 0603 Multilayer chip inductor	18	10	8.2	nH	Sunlord SDCL
L6	±5%, 0603 Multilayer chip inductor	27	15	12	nH	Sunlord SDCL
L7	±5%, 0603 Multilayer chip inductor	27	15	12	nH	Sunlord SDCL
L8	±5%, 0603 Multilayer chip inductor	68	12	12	nH	Sunlord SDCL
Y1	±10 ppm, SMD32*25 mm		26		MHz	EPSON
U1	CMT2300A, Ultra Low Power Sub-1GHz RF Transceiver				-	CMOSTEK

Table 13. 13dBm direct tie application BOM

			Values			
No.	Descriptions	433 MHz +20 dBm	868 MHz +20 dBm	915 MHz +20 dBm	Unit	Supplier
C1	±5%, 0603 NP0, 50 V	15	18	18	pF	
C2	±5%, 0603 NP0, 50 V	3.0	3.6	3.6	pF	
C3	±5%, 0603 NP0, 50 V	6.2	3.3	3.3	pF	
C4	±5%, 0603 NP0, 50 V	24	24	24	pF	
C5	±5%, 0603 NP0, 50 V	24	24	24	pF	
C6	±5%, 0603 NP0, 50 V	4.7	2	1.8	pF	
C7	±5%, 0603 NP0, 50 V	4.7	2	1.8	pF	
C8	±5%, 0603 NP0, 50 V		4.7		uF	
C9	±5%, 0603 NP0, 50 V	470			pF	
C10	±5%, 0603 NP0, 50 V		0.1		uF	
C11	±5%, 0603 NP0, 50 V		0.1		uF	
L1	±5%, 0603 Multilayer chip inductor	180	100	100	nH	Sunlord SDCL
L2	±5%, 0603 Multilayer chip inductor,	22	12	12	nH	Sunlord SDCL
L3	±5%, 0603 Multilayer chip inductor	cap 15pF	15	15	nH	Sunlord SDCL
L4	±5%, 0603 Multilayer chip inductor	33	6.2	6.2	nH	Sunlord SDCL
L5	±5%, 0603 Multilayer chip inductor	33	6.2	6.2	nH	Sunlord SDCL
L6	±5%, 0603 Multilayer chip inductor	27	15	15	nH	Sunlord SDCL
L7	±5%, 0603 Multilayer chip inductor	27	15	15	nH	Sunlord SDCL
L8	±5%, 0603 Multilayer chip inductor	68	12	12	nH	Sunlord SDCL
Y1	±10 ppm, SMD32*25 mm		26		MHz	EPSON
U1	CMT2300A, Ultra Low Power Sub-1GHz RF Transceiver				-	CMOSTEK

Table 14. 20dBm direct tie application BOM

3.2 RF Switch Type Schematic

		ies			
No.	Descriptions	434 MHz	868 /915 MHz	Unit	Supplier
		+20 dBm	+20 dBm		
C1	±5%, 0402 NP0, 50 V	15	15	pF	
C2	±5%, 0402 NP0, 50 V	10	3.9	pF	
C3	±5%, 0402 NP0, 50 V	8.2	2.7	pF	
C4	±5%, 0402 NP0, 50 V	8.2	2.7	pF	
C5	±5%, 0402 NP0, 50 V	18nH	220	pF	
C6	±5%, 0402 NP0, 50 V	4.7	2	pF	
C7	±5%, 0402 NP0, 50 V	4.7	2	pF	
C8	±5%, 0402 NP0, 50 V	220	220	uF	
C9	±5%, 0402 NP0, 50 V	220	220	pF	
C10	±5%, 0402 NP0, 50 V	0.1	1	uF	
C11	±5%, 0402 NP0, 50 V	0.1	1	uF	
C12	±5%, 0402 NP0, 50 V	47	0	pF	
C13	±5%, 0402 NP0, 50 V	220	00	pF	
C14	±5%, 0402 NP0, 50 V	4.7	7	uF	
C15	±5%, 0402 NP0, 50 V	24	24	pF	
C16	±5%, 0402 NP0, 50 V	24	24	pF	
C17	±5%, 0402 NP0, 50 V	10	10	pF	
C18	±5%, 0402 NP0, 50 V	10	10	pF	
C19	±5%, 0402 NP0, 50 V	27	7	pF	
C20	±5%, 0402 NP0, 50 V	27	7	pF	
C21	±5%, 0402 NP0, 50 V	27	7	pF	
C22	±5%, 0402 NP0, 50 V	27	7	pF	
L1	±5%, 0603 Multilayer chip inductor	180	100	nH	Sunlord SDCL

Table 15. RF switch type application BOM

CMT2300A

		Valu	ies		
No.	Descriptions	434 MHz +20 dBm	868 /915 MHz +20 dBm	Unit	Supplier
L2	±5%, 0402 Multilayer chip inductor	27	6.8	nH	Sunlord SDCL
L3	±5%, 0402 Multilayer chip inductor	18	12	nH	Sunlord SDCL
L4	±5%, 0402 Multilayer chip inductor	33	22	nH	Sunlord SDCL
L5	±5%, 0402 Multilayer chip inductor	15	10	nH	Sunlord SDCL
L6	±5%, 0402 Multilayer chip inductor	27	12	nH	Sunlord SDCL
L7	±5%, 0402 Multilayer chip inductor	27	12	nH	Sunlord SDCL
L8	±5%, 0402 Multilayer chip inductor	68	18	nH	Sunlord SDCL
Y1	±10 ppm, SMD32*25 mm	20	6	MHz	EPSON
U1	CMT2300A, Ultra Low Power Sub-1GHz RF Transceiver	-			CMOSTEK
U2	AS179, PHEMT GaAs IC SPDT Switch	-			SKYWORKS
R1	±5%, 0402	2.	2	kΩ	
R2	±5%, 0402	2.	2	kΩ	

4. Function Descriptions

CMT2300A is an ultra-low power, high performancetransceiver chip. It supports OOK, (G) FSK and (G) MSK. It is suitable for applications in the range from 140 to 1020MHz. The product belongs to CMOSTEK NextGenRFTM series. The series includes transmitters, receivers and transceivers and other complete product lines. CMT2300A block diagramis as shown in the following figure.

Figure 4. Functional Block Diagram

In the receiver part, the chip uses LNA+MIXER+IFFILTER+LIMITTER+PLL low-IF architecture to achieve the Sub-GHz wireless reception function. The chip uses PLL+PA architecture to achieve the Sub-GHz wireless transmitting function.

In the receiver system, the analog circuit mixes the RF signal to IF and converts the signal from analog to digital through the Limiter module, then outputs I/Q two single bit signals to the digital circuit for (G) FSK demodulation. At the same time, SARADC will convert the real-time RSSI signal to 8-bit digital signal, and sent them to the digital part for OOK demodulation and other processing. The digital circuit is responsible for mixing the intermediate frequency to zero frequency (Baseband) and performing a series of filtering and decision processing, while AFC and AGC control the analog circuit dynamically, finally the 1-bit original signal is demodulated. After demodulation, the signal will be sent to the decoder to decode and fill in the FIFO, or output to the PAD directly.

In the transmitter system, the digital circuitry will encode the data and then send them to the modulator (or send them to the modulator directly without encoding). The modulator will directly control the PLL and PA, modulate the data by (G) FSK or OOK and transmit them.

The chip provides the SPI communication port. The external MCU can configure the various functions by accessing to the register, control the main state machine, and access to the FIFO.

4.1 Transmitter

The transmitter is based on direct frequency synthesis technology. The carrier is generated by a low noise fractional-N frequency synthesizer.

The modulated data is transmitted by an efficient single-ended power amplifier (PA). The output power can be read and written

via registers, step by step from -20dBm to +20dBm with 1dB.

When the PA is switched fast, the varying input impedance will disturb the output frequency of the VCO instantaneously. The effect iscalled VCO pulling. It will generate the spurious and spurson the spectrumaround the desired carrier. The PA spurs can be reduced to a minimum instantaneously by thePA output power ramping. CMT2300A has a built-in PA ramping mechanism. When the PA Ramp is turned on, the PA output power can ramp the desired amplitude in a pre-configured rate, so as to reduce the spurs. In FSK mode, the signal can be filtered by a Gaussian Filter before transmitted, e.g. GFSK, which can reduce the spectral width and interference with neighboring channels.

According to different application requirements, the user can design a PA matching network to optimize the transmitting efficiency. The typical application schematic and the required BOM is shown in Chapter 3 "Typical application schematic". For more schematic details and layout guidelines, please refer to "AN141 CMT2300A Schematic and PCB Layout Design Guideline".

The transmitter can operate in direct mode and package mode. In the direct mode, the data to be transmitted can be sent to the chip by the DIN pin and transmitted directly. In the package mode, the data can be pre-loaded into the TX FIFO in STBY state, and transmitted together with other package elements.

4.2 Receiver

CMT2300A has a built-in ultra-low power, high performance low-IF OOK, FSK receiver. The RF signal induced by the antennais amplified by a low noise amplifier, and is converted to an intermediate frequency by an orthogonal mixer. The signal is filtered by the image rejection filter, and is amplified by the limiting amplifier and then sent to the digital domain for digital demodulation. During power on reset (POR) each analog block is calibrated to the internal reference voltage. This allows the chip to remain its best performance at different temperatures and voltages. Baseband filtering and demodulation isdone by the digital demodulator. The AGC loop adjust the system gain by the broadband power detector and attenuation network nearby LNA, so as to obtain the best system linearity, selectivity, sensitivity and other performance.

LeveragingCMOSTEK's low power design technology, the receiver consumes only a very low power when it is turned on. The periodic operation mode and wake up function can further reduce the average power consumption of the system in the application with strict requirements of power consumption.

Similar to the transmitter, the CMT2300A receiver can operate in direct mode and packet mode. In the direct mode, the demodulator output data can be directly output through the DOUT pin of the chip. DOUT can be assigned to GPIO1/2/3. In the packet mode, the demodulator data output is sent to the data packet handler, get decodedand is filled in the FIFO. MCU can read the FIFO by the SPI interface.

4.3 Auxiliary Blocks

4.3.1 Power-On Reset (POR)

The Power-On Reset circuit detect the change of the VDD power supply, and generate the reset signal for the entire CMT2300A system. After the POR, the MCU must go through the initialization process and re-configure the CMT2300A. There are two circumstances those will lead to the generation of POR.

The first case is a very short and sudden decrease of VDD. The POR triggering condition is, VDD dramatically decreases by 0.9V +/-20% (e.g. 0.72V - 1.08V) within less than 2 us. To be noticed, it detects a decreasing amplitude of the VDD, not the absolute value of VDD.

Figure 5. Sudden Decrease of VDD lead to Generation of POR

The second case is, a slow decrease of the VDD. The POR triggering condition is, VDD decreases to 1.45V + 20% (e.g. 1.16V - 1.74V) within a time more than or equal to 2 us. To be noticed, it detects an absolute value of VDD, not a decreasing amplitude.

Figure 6. Slow Decrease of VDD lead to Generation of POR

4.3.2 Crystal Oscillator

The crystal oscillator provides a reference clock for the phase locked loop as well as a system clock for the digital circuits. The value of load capacitance depends on the crystal specified CL parameters. The total load capacitance between XI and XO should be equal to CL, in order to make the crystal accurately oscillate at 26 MHz.

$$C_L = \frac{1}{1/C15 + 1/C16} + C_{par} + 2.5 pF$$

C15 and C16 are the load capacitancesat both ends of the crystal. Cpar is the parasitic capacitance on the PCB. Each crystal pin has 5pF internal parasitic capacitance, together is equivalent to 2.5pF. The equivalent series resistance of the crystal must be within the specifications so that the crystal can have a reliable vibration. Also, an external signal source can be connected to the XI pin to replace the conventional crystal. The recommended peak value of this clock signal is from 300mV to 700mV. The clock is coupled to XI pin via a blocking capacitor.

4.3.3 Sleep Timer

The CMT2300A integrates a sleep timer driven by 32 kHz low power oscillator (LPOSC). When this function is enabled, the timer wakes the chip from sleep periodically. When the chip operates in a duty cycle mode, the sleep time can be configured from 0.03125 ms to 41922560 ms. Due to the low power oscillator frequency will change with the temperature and voltage drift, it will

be automatically calibrated during power on and will be periodically calibrated since then. These calibrations will keep the frequency tolerance of the oscillator within + 1%.

4.3.4 Low Battery Detection

The chip sets up low voltage detection. When the chip is tuned to a certain frequency, the test is performed once. Frequency tuning occurs when the chip jumps from the SLEEP/STBY state to the RFS/TFS/TX/RX state. The result can be read by the LBD_VALUE register.

4.3.5 Received Signal Strength Indicator(RSSI)

RSSI is used to evaluate the signal strengthinside the channel. The cascaded I/Q logarithmic amplifier amplifies the signal before it is sent to the demodulator. The logarithmic amplifier of I channels and Q channel contains the received signal indicator, in which the DC voltage is generated is proportional to the input signal strength. The output of RSSI is the sum of thevalues of the two channels' signals. The output has 80dB dynamic range above the sensitivity. After the RSSI output is sampled by the ADC and filtered by a SAR FILTER and a RSSI AVG FILTER. The order of the average filter can be set by RSSI_AVG_MODE<2:0>. The code value is translated into dBm value after filtering. Users can read the register RSSI_CODE<7:0> to obtain the RSSI code value, or RSSI_DBM<7:0> to obtain the dBm value. By setting the register RSSI_DET_SEL<1:0> Users can determine whether the RSSI is output to the MCU in real time, or latched at the instance when the preamble, sync, or the whole packet is received.

Also, CMT2300A allows the user to setup a threshold by RSSI_TRIG_TH<7:0> to compare with the real-time RSSI value. If the RSSI is larger than the threshold it outputs logic 1, otherwise outputs logic 0. The output can be used as a source of the RSSI VLD interrupt, of the receive time extending condition in the super low power (SLP) mode.

Figure 7. RSSI detection and comparison circuit

CMT2300A has done a certain degree of calibration before delivery. In order to obtain more accurate RSSI measurement results, the user needs to recalibrate the RSSI circuit in their dedicated applications. For further information, please refer to the "AN144-CMT2300AW RSSI Usage Guideline".

4.3.6 Phase Jump Detector (PJD)

PJD is Phase Jump Detector. When the chip is in FSK demodulation, itcan automatically observe the phase jump characteristics of the received signal to determine whether it is awanted signal or an unwanted noise.

Figure 8. Received signal jump diagram

The PJD mechanism defines that the input signal switching from 0 to 1 or from 1 to 0 is a phase jump. Users can configure the PJD_WIN_SEL<1:0> to determine the number of detected jumps for the PJD to identify a wanted signal.As shown in the above figure, in total 8 symbols are received. But the phase jump only appeared 6 times. Therefore, the number of jumpsis not equal to the number of symbols. Only when a preamble is received theyare equal.In general, the more jumps are used to identify the signal, the more reliable they result is; the less jumps are used, the faster the result is obtained.If the RX time is set to a relatively short period, it is necessary to reduce the number of jumps to meet the timing requirements. Normally, 4 jumps allow pretty reliable result, e.g. the chip will not mistakenly treat an incoming noise as a wanted signal, and vice versa will not treat a wanted signal as noise.

Detecting the phase jump of a signal, is identical to detect whether the signal has the expecteddata rate. In fact, at the same time, the PJD will also detect the FSK deviation and see if it is legal, as well as to see if the SNR is over 7 dB. With these three parameters the PJD is able to make a very reliable judgement. If the signal is wanted it outputs logic 1, otherwise outputs logic 0. The output can be used as a source of the RSSI VLD interrupt, or the receive time extending condition in the super low power (SLP) mode. In direct data mode, by setting the DOUT_MUTE register bit to 1, the PJD can mute the FSK demodulated data output while there is not wanted signal received.

The PJD technique is similar to the traditional carrier sense technique, but more reliable. While users combine the RSSI detection and PJD technique, they can precisely identify the status of the current channel.

4.3.7 Automatic Frequency Control (AFC)

The AFC mechanism allows the receiver to minimize the frequency error between the TX and RX in a very short time once a wanted signal comes in. This helps the receiver to maintain its highest sensitivity performance. CMT2300A has the most advanced AFC technology. Compare with the other competitors, within the same bandwidth, CMT2300A can identify larger frequency error, and remove the error in a much shorter time (8-10 symbols).

Normally the frequency error between the TX and RX is caused by the crystal oscillators used in both sides. CMT2300A allows the user to fill in the value of crystal tolerance (in PPM) on RFPDK. Based on the crystal tolerance, the RFPDK will calculate the AFC range whileminimizing the receiver bandwidth (to maintain the best performance). Due to the excellent performance of the AFC, it provides a good solution to the crystal aging problem which would lead to more frequency error as time goes by. Therefore, compare to other similar transceiver chips, CMT2300A can solve more severe crystal aging problem and effectively extend the life time of the product.Please refer to "AN196-CMT2300A-CMT2219B-CMT2218B The Advantages of the Receiver AFC." for more details.

4.3.8 Clock Data Recovery (CDR)

The basic task of a CDR system is to recover the clock signal that is synchronized with the symbol rate, while receiving the data. Not only for decoding inside the chip, but also for outputting the synchronized clock to GPIO for users to sample the data.So CDR's task is simple and important. If the recovered clock frequency is in error with the actual symbol rate, it will cause data acquisition errors at the time of reception.

CMT2300AW has designed three types of CDR systems, as follows:

1. **COUNTING system**—The system is designed for the symbol rates to be more accurate. If the symbol rate is 100% aligned, the unlimited length of 0 can be received continuously without error.

- TRACING system –The system is designed to correct the symbol rate error. It has the tracking function. It can automatically
 detect the symbol rate transmitted by TX, and adjust quickly the local symbol rate of RX at the same time, so as to minimize
 the error between them.The system can withstand up to 15.6% or symbol rate error. Other similar products in the industry
 cannot reach this level.
- MANCHESTER system –This system evolves from the COUNTING system. The basic feature is the same. The only
 difference is that the system is specially designed for Manchester codec. Special processing can be done when the TX
 symbol rate has unexpected changes.

4.3.9 Fast Frequency Hopping

The mechanism of fast frequency hopping is, based on the frequency configured on the RFPDFK, for instance 433.92MHz, during applications the MCU can simply change 1 or 2 registers to quickly switch to another frequency channel. This simplify the way of change the RX or TX frequency in multiple channels application.

FREQ = BASE FREQUENCY + 2.5 kHz × **FH_OFFSET** < 7: 0 >× *FH_CHANNEL* < 7: 0 >

In general, the user can configure FH_OFFSET<7:0>during the chip initialization process. And then in the application, the user can switch the channel by changing FH_CHANNEL<7:0>.

When users need to use the fast frequency hopping in the RX mode, in some particular frequency points, one parameter of the AFC circuit must be re-configured. Please refer to "AN197-CMT2300A-CMT2119B-CMT2219B fast frequency hopping" and "CMT2300A-CMT2219B frequency hopping calculation tool" for more details.

5. Chip Operation

5.1 SPI Interface

The chip communicates with the outside through the 4-wire SPI interface. The CSB is the active-lowchip select signal for accessing to the registers. The FCSB is the active-low select signal for accessing to the FIFO. They cannot be set to low at the same time. The SCLK is the serial clock. Its highest speed is 5MHz. The chip itself and the external MCU send the data at the falling edge of SCLK and capture the data at the rising edge of SCLK. The SDA is a bidirectional pin for input and output data. The address and data are transferred starting from the MSB.

When accessing to the register, CSB is pulled low. A R/W bit is sent first, followed by a 7-bit register address. After the external MCU pulls down the CSB, it must wait for at least half a SCL cycle, and then send the R/W bit. After the MCU sends out the last falling edge of SCLK, it must wait for at least half a SCLK cycle, and then pull the CSB high.

To be noticed, when reading a register, MCU and CMT2300A will have to switch the direction of their IO (SDIO) between the address bit 0 and the data bit 7. It is required that the MCU switches the IO to input mode before send out the falling edge of the SCLK; CMT2300A should switch the IO to output mode after it has seen the falling edge of the SCLK. This avoids data contention of the SDIO (both of the MCU and CMT2300A set the SDIO to output mode at the same time), which would cause unexpected electrical problem.

Figure 10. SPI write register timing

5.2 FIFO

CMT2300A provides two separated 32-byte FIFO by default. They are used for RX and TX, respectively. Users can also set

FIFO_MARGE_EN to 1 to merge the two separated FIFO into one 64-byte FIFO. It can be used both under TX and RX. By configuring the FIFO_RX_TX_SEL to indicate whether it is currently used as TX FIFO or RX FIFO. When the two FIFO are not merged, users can fill in the TX FIFO while the RX FIFO is used to receive data in the RX mode.

The FIFO can be accessedvia the SPI interface. The user can clear the FIFO by setting FIFO_CLR_TXor FIFO_CLR_RX to 1. Also, the user can re-send the old datain the TX FIFO by setting FIFO_RESTORE to 1, without the need of re-filling the data.

5.2.1 FIFO Read Operation

When the MCU accesses to the FIFO, the user must first configure a few registers to setup the FIFO read/write mode, as well as some other working mode. The details are introduced in "AN143-CMT2219B FIFO and Data Packet Usage Guideline". Here is the read-write timing diagram. Note that there is a slight difference in the control of the FCSB for accessing to the FIFO and the control of the CSB for accessing to the register. When the MCU starts to access to the FIFO, FCSB must be pulled down 1-clock cycle at first, and then send the rising edge of SCL. After the last falling edge of SCL is sent, the MCU must wait at least 2 us to pull up the FCSB. Between the adjacent read/write operations, the FCSB must be pulled high for 4us at least. When writing the FIFO, the first bit data must be ready 0.5 clock cycles before sending the first rising edge of SCL.

5.2.2 FIFO Associated Interrupt

CMT2300A provides rich interrupt sources associated with the FIFO. The interrupt timing for Tx and Rx FIFO is shown below:

Figure 13. CMT2300ARX FIFO interrupt timing diagram

Figure 14. CMT2300A TX FIFO interrupt timing diagram

5.3 Operation State, Timing and Power Consumption

5.3.1 Startup Timing

After the chip VDD is powered up, the chip usually needs to wait about 1ms, then POR will release. After the release of the POR, the crystal will start, the start time is 200 us - 1 ms, depending on the characteristics of the crystal itself. After starting, the user need to wait for the crystal settled, then the system starts working. The default setting is 2.48ms. This time can be modified by writing XTAL_STB_TIME <2:0> afterword (it has to be longer than the crystal inherent settling time). However, if the inherent settling time of the crystal is difficult to observed by the user, the default setting of 2.48 ms is recommended and is able to cover most of the crystals.

The chip remains in the IDLE status until the crystal is settled. After the crystal is settled, the chip will leave the IDLE state and begin to do the calibration of each module. After the calibration is completed, the chip will stay in the SLEEP and wait until the user to initialize the configuration. At any time, as long as the soft reset is performed, the chip will go back to the IDLE and be powered up again.

Figure 15. Power on sequence

When the calibration is completed, the chip enters the SLEEP mode. From this time, the MCU can switch the chip to different operating states by setting the register CHIP_MODE_SWT<7:0>.

5.3.2 OperationState

CMT2300A has 7 operationstates: IDLE, SLEEP, STBY, RFS, RX, TFS and TX, as shown below.

State	Binary code	Switch command	Active Blocks	Optional Blocks
IDLE	0000	soft_rst	SPI, POR	None
SLEEP	0001	go_sleep	SPI, POR, FIFO	LFOSC, Sleep Timer
STBY	0010	go_stby	SPI, POR, XTAL, FIFO	CLKO
RFS	0011	go_rfs	SPI, POR, XTAL, PLL, FIFO	CLKO
TFS	0100	go_tfs	SPI, POR, XTAL, PLL, FIFO	CLKO
RX	0101	go_rx	SPI, POR, XTAL, PLL, LNA+MIXER+IF, FIFO	CLKO, RX Timer
ТΧ	0110	go_tx	SPI, POR, XTAL, PLL, PA, FIFO	CLKO

Table 16. CMT2300A state and module open table

Figure 16. State Switch Diagram

SLEEP State

The chip power consumption is the lowest in SLEEP state, and almost all the modules are turned off. SPI is open, the registers of the configuration bank and control bank 1 will be saved, and the contents filled in the FIFO before will remain unchanged. However, the user cannot operate the FIFO and cannot change the contents of the register. If the user opens the wake-up function, the LFOSC and the sleep counter will turn on and start working. The time required to switch from IDLE to SLEEP is the power up time. Switch from other state to SLEEP will be completed immediately.

STBY State

In STBY state, the crystal is turned on, the LDO of the digital circuit will also be turned on, the current will be slightly increased, and the FIFO can be operated. The user can choose whether to output CLKO (system clock) to PIN. Because the crystal and LDO is turned on, compared to the SLEEP, the time switching from the STBY to transmitting or receiving will be relatively short. Switching from SLEEP to STBY will be completed after the crystal is turned on and settled. Switching from other state to STBY will be completed immediately.

RFS State

RFS is a transition state before switching to RX. Except that the receiver RF module is off, the other modules are turned on, and the current will be larger than STBY. Because PLL has been locked in the RX frequency, RFS cannot switch to TX. Switching from STBY to RFS probably requires PLL calibration and stability time of 350us. Switching from SLEEP to RFS needs to add the crystal start-up and stability time. Switching from other state to RFS will be completed immediately.

TFS State

TFS is a transition state before switching to TX. Except that the transmitter RF module is off, the other modules are turned on, and the current will be larger than STBY. Because PLL has been locked in the TX frequency, TFS cannot switch to RX. Switching from STBY to TFS probably requires PLL calibration and stability time of 350us. Switching from SLEEP to TFS needs to add the

crystal start-up and settled time. Switching from other state to TFS will be completed immediately.

RX State

All modules on the receiver will be opened in RX state. Switching from RFS to RX requires only 20us. Switching from STBY to RX needs to add the PLL calibration and settled time of 350us. Switching from SLEEP to RX needs to add the crystal start-up and settled time. TX can be quickly switched to RX by sending go_switch command. Whether the TX and RX setting frequency is the same, the user need to wait for the PLL re-calibration and settled time of 350us to switch successfully.

TX State

All modules on the transmitter will be opened in TX state. Switching from TFS to TX requires only 20us. Switching from STBY to TX needs to add the PLL calibration and settled time of 350us. Switching from SLEEP to TX needs to add the crystal start-up and settled time. RX can be quickly switched to TX by sending go_switch command. Whether the RX and TX setting frequency is the same, the user need to wait for the PLL re-calibration and settled time of 350us to switch successfully.

5.4 GPIO and Interrupt

CMT2300A has 3 GPIO ports.Each GPIO can be configured as a different input or output. CMT2300A has 2 interrupt ports. They can be configured to different GPIO outputs.

Pin No.	Name	I/O	Function	
16	GPIO1	10	Configuredas:DOUT/DIN, INT1, INT2, DCLK (TX/RX), RF_SWT	
15	GPIO2	10	Configuredas:INT1, INT2, DOUT/DIN, DCLK (TX/RX), RF_SWT	
8	GPIO3	10	Configuredas:CLKO, DOUT/DIN, INT2, DCLK (TX/RX)	

Table 17. CMT2300A GPIO

Interrupt mapping table is as below. INT1 and INT2 mapping is the same. Take INT1 as an example.

Name	INT1_SEL	Descriptions		
			methods	
RX_ACTIVE	00000	Indicates the chip is entering RX and is already in RX. It is 1 in PLL		
		tuningand RX state, and it is 0 in the other states.		
TX_ACTIVE	00001	Indicates the chip is entering TX and is already in TX. It is 1 in PLL tuning	Auto	
		and TX state, and it is 0 in the other states.		
RSSI_VLD	00010	Indicates whether the RSSI is active.	Auto	
PREAM_OK	00011	Indicates that the Preamble is received successfully.	by MCU	
SYNC_OK	00100	Indicatesthat the Sync Wordis received successfully.	by MCU	
NODE_OK	00101	Indicatesthat the Node ID is received successfully.	by MCU	
CRC_OK	00110	Indicates that the CRC for the current packet is correct.	by MCU	
РКТ_ОК	00111	Indicates that a packet has been received.	by MCU	
SL_TMO	01000	Indicates that the SLEEP counter timed out.	by MCU	
RX_TMO	01001	Indicates that the RX counter timed out.	by MCU	
TX_DONE	01010	Indicates that the TX operation is completed.	by MCU	
RX_FIFO_NMTY	01011	Indicates that the RX FIFO is not empty.	Auto	
RX_FIFO_TH	01100	Indicatesthe number of unread bytes of the RX FIFO is over FIFO TH	Auto	
RX_FIFO_FULL	01101	Indicates RX FIFO is full.	Auto	
RX_FIFO_WBYTE	01110	Indicates each time a byte is written to the RX FIFO. Itis a pulse.	Auto	
RX_FIFO_OVF	01111	indicates RX FIFO is overflow	Auto	
TX_FIFO_NMTY	10000	Indicates that TX FIFO is not empty	Auto	
TX_FIFO_TH	10001	Indicates the number of unread bytes of the TX FIFO is over FIFO TH.		
TX_FIFO_FULL	10010	Indicates TX FIFO is full.		
STATE_IS_STBY	10011	Indicates that the current state is STBY.		
STATE_IS_FS	10100	Indicates that the current state is RFS or TFS.	Auto	
STATE_IS_RX	10101	Indicates that the current state is RX.	Auto	
STATE_IS_TX	10110	Indicates that the current state is TX.	Auto	
LBD	10111	Indicates that low battery is detected (VDD is lower than TH)	Auto	
TRX_ACTIVE	11000	Indicates the chip is entering TX or RX and is already in TX or RX. It is 1 in	Auto	
		PLL tuning, TX or RX state, and it is 0 in the other states.		
PKT_DONE	11001	Indicates that the current packet has been received, covering 4 possible	by MCU	
		different situations.		
		1. The packet is received completely and correctly.		
		2. Manchester decoding has error. Decoder is automatically reset.		
		3. NODE ID receiving has error. Decoderis automatically reset.		
		4. Signal collision occurred.Decoder is not reset, waiting for MCU to		
		response.		

Table 18. CMT2300A interrupt mapping table

By default, Interrupt is active high (logic 1 is valid). Users can set the INT_POLAR register bit to 1 to make all interrupts active low (logic 0 is valid). Taking INT1 as an example, the control and sources selection of all the available interrupts is shown below. The control and mapping of INT1 and INT2 are the same.

Figure 17. CMT2300A INT1 interrupt mapping diagram

6. Packet Handler

CMT2300A supports direct mode and packet mode:

- Direct Mode In Rx mode, only supports preamble and sync detection, FIFO does not work, demodulated data sent out from GPIO. In Tx mode, only supports transmitting the data input from GPIO.
- Packet Mode Supports all packet formats, demodulated data is stored in FIFO, accessed by SPI.

6.1 Direct Mode

Figure 5. Direct mode data path

Rx processing

In direct mode, the data from the demodulator is sent directly to the external MCU via the DOUT pin. DOUT can be set to GPIO1, 2 or 3. The typicalRX direct mode controlsequencefor the MCU is:

- 1. Configures GPIOsusing theCUS_IO_SEL register.
- 2. Configures DATA_MODE = 0.
- 3. Send thego_rx command.
- 4. Capture the data from DOUT continuously.
- 5. Send thego_sleep/go_stby/go_rfs command to stop receiving and save the power.

Tx processing

In the direct mode, the data to be transmitted is sent directly to the chip from the external MCU by via DIN pin. The data rate is determined by the MCU but must be less than +/- 30% of the data rate configured on the RFPDK. The typical TX direct mode control sequence for the MCU is:

- 1. Set register TX_DIN_EN to 1 to enable DIN on GPIO.
- 2. Set TX_DIN_SEL to 0 to configure GPIO1 as DIN, or 1 to configure GPIO2 as DIN.
- 3. Send thego_tx command,send in the data to the DIN pinwith the desired data rate, the data is transmitted immediately.
- 4. Send thego_sleep/go_stby/go_rfs command to stop transmission and save the power.

6.2 Packet Mode

Figure 6. Packet mode data path

The packet handler supports the classic and more flexible packet format in both TX and RX mode. It includes variable packet format (Length in front of the Node ID), variable packet format (Length in the back of the Node ID) and fixed packet format. Each element in the packet supports flexible configurations, as shown below.

图 21. Variable length packet (Length behind Node ID)

图 22.Fixed length packet

Rx processing

In the packet mode, the output data from the demodulator will be transferred to the packet handler for decoding, and then filled in the FIFO. The packet handler provides a variety of decoding mechanisms and options to determine the validity of the data. These can reduce the work load of the MCU. The typical package mode control sequence for the MCU is:

- 1. Configures GPIO using the CUS_IO_SEL register.
- 2. Setup the interruptsusingCUS_INT1_CTL, CUS_INT2_CTL and CUS_INT_EN registers.
- 3. Send thego_rx command.
- 4. Reads the RX FIFO according to the relevant interrupts.
- 5. Sends the go_sleep/go_stby/go_rfs command to stop the receiving and save the power.
- 6. Clears the packet interruptsusingCUS_INT_CLR1 and CUS_INT_CLR2 registers.

Tx processing

In the packet mode, MCU can fill the data in the FIFO in advance in the STBY and TFS state, or fill them in the FIFO while the chip sends the data, or use the combination of the above two methods. The typical Txpacket mode control sequence for the MCU is:

- 1. Configures GPIO using the CUS_IO_SEL register
- 2. Sends go_stby/go_tfs command when the data is filled in FIFO in advance.
- 3. Sends go_tx command.
- 4. Writes the data into FIFO according to the relevant interrupt status.
- 5. Sends go_sleep/go_stby/go_rfs command to save power.

CMT2300A has rich configurable hardware resources of FIFO, packet and their interrupts, which makes it compatible with most of the similar RF products in the market. For more details please refer to the interface of RFPDK and "AN143-CMT2300A FIFO and Data Packet Usage Guideline".

7. Low Power Operation

7.1 Duty CycleOperation Mode

CMT2300A makes the Tx and Rx work in duty cycle operation mode to save the power consumption. Among them, the Rx Duty Cycle can be classified into the following 5 modes.

- 1. Fully manual control
- 2. Automatic SLEEP wakeup, switch to manual control
- 3. Automatic SLEEP wakeup, automaticallyenter to RX, manually exit RX
- 4. Automatic SLEEP wakeup, manually enter RX, automatically exit RX
- 5. Fully automatic receive and sleep control

The Tx Duty Cycle can be divided into the following 3 modes.

- 1. Manually enter TX, automatically exit TX
- 2. Automatic SLEEP wakeup, manually enter TX, automatically exit TX
- 3. Fully automatic transmit and sleep control

7.2 Supper Low Power (SLP) Receive Mode

CMT2300A provides a set of options to help users achieve supper low power consumption (SLP - Supper Low Power) reception under different application requirements. These options can be used whensetting RX_TIMER_EN to 1, e.g. when the Rx timer is enabled. The principle of the SLP mechanism is to shorten the Rx time when there is no wanted signal coming in, and properly extend the Rx time when there is wanted signal detected, so that the power consumption is minimized while the stability of reception is guaranteed.

The traditional short-range wireless receiver generally uses the following basic scheme to achieve low powercommunication.CMT2300A is also compatible with this scheme, and expands it to 13 more power-saving schemes. The figure below introduces the most basic scheme, whichwill be enabled when the RX_EXTEND_MODE<3:0> is set to 0.

The traditional low-power communication scheme and the 13-extendedlow-power schemes are listed in the following table.

No.	Rx Extended Methods	Rx Extended Condition	
0	No Rx extension is supported. Exit Rx state as soon as T1 timed out.	None	
1	Once monthly Dy extended condition during T4 large	RSSI_VLD is valid.	
2	Once meet the RX extended condition during 11, leave	PREAM_OK is valid.	
3	I I and pass the control authority to MCO.	RSSI_VLD and PREAM_OK are valid simultaneously.	
4	Once detect RSSI_VLD = 1 during T1, leave T1 and stays in Rx state, exit Rx state until RSSI_VLD = 0.	RSSI_VLD is valid.	
5		RSSI_VLD is valid	
6		PREAM_OK is valid	
7	Once meet the Dy extended condition during T1 exuitable	RSSI_VLDandPREAM_OK are valid simultaneously.	
8	to T2. Exit By as seen as T2 timed out	Any one of PREAM_OK or SYNC_OK is valid.	
9		Any one of PREAM_OK or NODE_OK is valid.	
10		Any one of PREAM_OK or SYNC_OK or NODE_OK is valid.	
11	Once meet the Rx extended condition during T1, switch	RSSI_VLD is valid.	
12	to T2. Leave T2 and pass the control authority to MCU	PREAM_OK is valid.	
13	as soon as SYNC is detected, otherwise exit Rx when T2 timed out.	RSSI_VLD 与 PREAM_OK are valid simultaneously.	

Table 19	Low-power	receiver mode
----------	-----------	---------------

The T1 and T2 mentioned in the table refer to the RX T1 and the RX T2 time interval that can be set via the registers or RFPDK. The source of RSSI_VLD can be the comparison result of the RSSI or the detection result of the phase jump detector (PJD). For more details, please refer to "AN146-CMT2300AW Low Power Mode Usage Guideline".

7.3 Receiver "Power VS Performance" Configuration

CMT2300A provides a set of registers to select the power consumption and sensitivity performance of the RF frontend circuit. The below table shows how they are configured:

电流档	RF 性能档	LMT_VTR<1:0>	MIXER_BIAS<1:0>	LNA_MODE<1:0>	LNA_BIAS<1:0>
Low	Low	2	2	1	1
Medium	Medium	2	2	1	2
High	High	1	2	3	2

Table 20. Low-power receiver mode

8. User Register

CMT2300A is configured by writing in the registers. The following is the register table.

Doil RW CUS,OMT	
Dotat RW Colscient	
Odds NM Odds <td></td>	
0x07 8W CU\$CMT8 0x08 W CU\$CMT9	ne RFPDK CMT Bank
0.609 RW CUS_COTT10 004A RW CUS_COTT11	
0.06 ≅w 005,553 Add r R/W Name Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1	Bit 0 Function
Opcid RW OUS \$751 LMT VTR [10] MMXR8 MS [10] DAL MODE [10] 0x00 RW OUS \$752 LIPSC REAL_EN LIPSC RALE_EN TX_D C IN	LNA_BIAS (1:0) DC_PAUSE
OdG RW OUS_\$783 SLEP_BYPASS_EN XTAL_STB_TIME [2:0] TX_ENT_STATE [1:0] 0.067 R.W OUS_\$7934	IX_EXIT_STATE [1:0]
Op/O RW OUS_\$755 SLEP_TIMER_M [10:0] SLEP_TIMER_R [3:0] Outor RW OUS_\$756 SVEP_TIMER_M [10:0] SLEP_TIMER_R [3:0] Outor RW OUS_\$756 SVEP_TIMER_M [10:0] SLEP_TIMER_R [3:0]	System Bank
Dirth RW US_5156 Comment_1 = (1 + (1 + (1 + (1 + (1 + (1 + (1 + (
OutS RW Obj. \$753.0 COL, DT EN COL, 05 \$31. RV, AITO DUT DS DOUT MITE RV, DITO, 50, 000 E1, 01 0.46 RW Obj. \$753.0 COL, DT EN COL, 07 \$31. RV, AITO DUT DS DOUT MITE RVD DVD ADD E1, 01 0.46 RW Obj. \$753.0 COL, 07 \$51.0 RSD DUT \$51.0 RSD ADD \$50.00	[2:0]
od7 RW 005 \$7532 PID_WM_STL[:0] CLKOUT_EN CLKOUT_GV[:4:0] Addr. P_A/M. Name Rit 7 Rit 6 Rit 5 Rit 4 Rit 3 Rit 7	Bit 0 Eunction
Oth mu OUS #71 mu mu <thmu< th=""> mu mu <t< td=""><td></td></t<></thmu<>	
Data RW 005 893	
Ox16 RW C05,887 Ox17 RW C05,888	
Addr R/W Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1	Bit 0 Function
O/21 RW OUS_8750 O/22 R/W OUS_87811	
0x23 8W CUS_8412 0x24 8W CUS_5411	
0/26 RV C05380 0/27 RV C05380 0/27 RV C05580	
023 8W 015 5985 023 8W 015 5986	
028 RW 005,587	PEREPOK Data Rate Bank
0407 RV 005 A6C 040 RV 005 A6C	
0:01 8W 005.46C1 0:02 8W 035.46C4	
0033 RW CUS.0001 004 RW CUS.0002	
0x35 RW CUS.0004 0x36 RW CUS.0004	
0027 m/w 2005,0005 Addr R/W Name Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1	Bit 0 Function
Ox38 RW OUS_PVT1 RX_PREAM_SZE[6:0] PREAM_LENG_UNIT Ox39 RW OUS_PVT2 TX_PREAM_SZE[7:0] PREAM_SZE[7:0]	DATA_MODE [1:0]
DotA RW DDS PR14 CAPADATS CAPATS CAPADATS CAPATS CAPATS <thcapats< th=""> CAPATS CA</thcapats<>	SYNC MAN EN
Ox10 8/W Ox15 PHT6 3PHC VALUE [7:0] Ox10 8/W Ox15 PHT6 3PHC VALUE [7:0] Ox10 8/W Ox15 PHT7 SPHC VALUE [7:0]	
Op/E RW OUS_PRT8 SYNC_VALUE [23:6] 0x40 RW OUS_PRT9 SYNC_VALUE [31:2]	
Ow1 RW CUS PRTI0 SVMC VALE [9-3] Ow2 RW CUS PRTI1 SVMC VALE [9-40]	
	DFR PKT TYPF
Ox46 RW Ox56 PMT35 PATOAD LHN0 [7:0] Ox47 RW CUS PMT56 RESV RESV NODE [REE [1 N] NODE [SZE [1:0] N	Baseband Bank
Ox88 RW CUS_PRT17 NODC_VALUE [7:0] Ox49 RW CUS_PRT8 NODC_VALUE [7:3]	
Op/An RW OUS PRT19 NODE (NULL [23:12] Data RW OUS PRT20 FOR PRT20 Data RW OUS PRT20 FOR PRT20	CDC EN
ONC RW UDS/R121 IRE_TITE IRE_TITE IRE_TITE IRE_TITE ORE_ENTLY SWAP ORE_ENTLY SWAP	CRC_EN
Date RW Obs. PRT4 Cor. C	MANCH_EN
Op51 RW CUS PRT26 RESV RESV RESV RESV RESV RESV RESV T 0>52 RW CUS PRT27 T T T PCT T	X_PREFIX_TYPE (1:0)
DD:S HW DD:S PR728 TX_PKT_GAP [7:0] D:S:4 RW CUS_PKT29 FR0_AUTO_RES_EN FR0_AUTO_RES_EN	
Addr R/W Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Dx55 RW cus mi cus mi </td <td>Bit 0 Function</td>	Bit 0 Function
0x56 RW CUS_TX2 0x57 RW CUS_TX3	
0.63 RW CUS_TMA 0.63 RW CUS_TMA 0.63 RW CUS_TMA 0.64 RW CUS_TMA	
0.5D RW CUSTN9 D.5E RW CUSTN10	
ouse RW cus Labo Addr R/W Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1	Bit 0 Function
One One <td></td>	
Op/S2 RW ODS_FN_CTL RESV RESV LOCKING_EN RESV	RESV
Ox64 RW CUS FREQ. 0FS FH_OFFSET [7:0] Ox65 RW OUS 10 SEL RESV RESV GPI03_SEL [1:0] GPI02_SEL [1:0]	GPIO1_SEL[1:0] Control Bank 1
Dx66 RW CUS_INT1_CTL RF_SWT1_EN RF_SVT2_EN INT_POLAR INT1_SEL[4:0] Dx67 RW CUS_INT2_CTL RESV LF05C_OUT_EN TX_DIN_INV INT2_SEL[4:0] Dx67 RW CUS_INT2_CTL RESV LF05C_OUT_EN TX_DIN_INV INT2_SEL[4:0] Dx68 RW CUS_INT2_CTL RESV LF05C_OUT_EN TX_DIN_INV INT2_SEL[4:0]	
Lowing Inv Coupy mig_cm Station Inv_cm Inv	N SPI_FIFO_RD_WR_SEL RX_TMO_CIR
Addr R/W Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1	Bit 0 Function
0x68 W 0x5_NT_CU2 RESV RESV LBD_CLR PREAM_OK_CLR SVNC_OK_CLR NODE_OK_CLR CNC_OK_CLR 0x66 W CUS_NT_CU2 RESV RESV LBD_CLR PREAM_OK_CLR SVNC_OK_CLR OK_OK_CLR CNC_OK_CLR CNC_OK_CLR <td>PKT_DONE_CLR FIFO_CLR_TX</td>	PKT_DONE_CLR FIFO_CLR_TX
UNIO n COULTING LOU LTING LOU LTING PAIL TERM (H.G. PREAM UD, H.G. SYML UX, H.G. NODE (DX, H.G. ODE (DX	FLG TX_FIFO_TH_FLG Control Bank 2
0/70 R CUS_RSS_DBM RSS_DBM RSS_DBM 0/71 R CUS_LBD_RESULT LBD_RESULT LBD_RESULT	

From the above table, it can be seen that the address range is from 0x00 to 0x71, which can be divided into 3 main banks for better understanding. They are: Configuration bank (including 6 sub-banks), Control Bank1, and Control Bank 2. For the 3 banks the address is continuous. They are all accessed via the SPI bus. They have different functionalities and design purposes, which are shown in the below table:

Address	Bank Name		Bank Name in the RFPDKExport File	Functionality
0x00-0x0B		CMT Bank	CMT Bank	Users do not change them.
0x0C-0x17		System Bank	System Bank	Mainly relates to low power mode.
0x18-0x1F	Configuration Pank	Frequency Bank	Frequency Bank	To setup the TX and RX frequencies.
0x20-0x37	(RFPDKexportthe register values)	Data Rate Bank	Data Rate Bank	To setup data rate, deviation, bandwidths and other related parameters.
0x38-0x54		Baseband Bank	Baseband Bank	To setup packet format and some FIFO features.
0x55-0x5F		TX Bank	TX Bank	To setup TX deviation and power.
0x60-0x6A	Control Bank 1 (Set by MCU in application, not generated by RFPDK)		-0	To setup chip working state, frequency hopping, GPIOs and interrupts control.
0x6B-0x71	Control Bank 1 (Set by MCU in application, not generated by RFPDK)		<u> </u>	To read interrupt flags and RSSI value, control the FIFO.

Table 22. Description of Register Banks

To simplify the operation, users should firstly setup all the desired parameters on the RFPDK, export the register contents to the HEX file, and use it to initialize the CMT2300A. For the CMT Bank, Frequency Bank, Data Rate Bank, and the TX Bank, users do not need to study the details of the registers. Instead, these register configurations totally rely on the RFPDK. For System Bank and Baseband Bank, users must study the details in order to play with them in different applications. Meanwhile, for Control Bank 1 and 2, users must also understand the meaning of each register.

CMOSTEK provides a series Application Notes (AN) for the users to studyhow to play with the chip, how to configure the parameters on RFPDK, how to use each register, and other notable application skills. Users can start their learning from reading "AN142 CMT2300AW Quick Start Guide", which provides step-by-step guidance and leads the users to read other documents.

9. Ordering Information

Part Number	Descriptions	Packaging	Packing	Condition	MOQ
CMT2300A-EQR ^[1]	CMT2300A, Ultra Low Power Sub-1GHz RF Transceiver	QFN16 (3x3)	Tape& Reel	1.8 to 3.6V, -40 to 85℃	3,000
Note: [1]. "E" represents extended industrial grade. The temperature range is from -40 to +85. "Q" represents QFN16 packaging. "R" represents tape &reel packing. MOQ is 3000pcs.					

For more information about product, please visit<u>www.cmostek.com</u>. For purchasing or price requirements, please contact<u>sales@cmostek.com</u> or local sales representative.

10. Packaging Information

CMT2300A packaging is QFN16 (3x3). The packaging information is as below.

Figure 24. 16-Pin QFN 3x3 packaging

Table 24.	16-Pin	QFN 3	x3 Pac	kaging	Size

	Size (mm)				
Symbol	Min.	Max.			
А	0.7	0.8			
A1	_	0.05			
b	0.18	0.30			
С	0.18	0.25			
D	2.90	3.10			
D2	1.55	1.75			
e	0.50	BSC			
E	2.90	3.10			
E2	1.55	1.75			
L	0.35	0.45			

11. Top Marking

Figure 25. CMT2300A top marking

Table 25. CMT2300A top marking description

Marking method	Laser
Pin 1 mark	Circle diameter = 0.3 mm
Font size	0.5 mm, right aligned.
Line 1 marking	300A represents model CMT2300A
Line 2 marking ①②③④ represents the internal tracking coding	
Line 3 marking	Date code is assigned by assembly factory. Y represents the last digit of the year. WW represents working week.

12. Document Change List

Rev. No.	Chapter	Change Descriptions	Date
Preliminary	All	Preliminary version for internal verification	2015-06-09
Preliminary 0.2	5.14.1	Update 1 st paragraph	2015-06-10
	5.14.2	Update Table 34	
0.6	All	Split Chapter 5 and 6 from Chapter 4	2015-08-06
0.7	All	Initial release for production version	2017-03-22
0.8	All	Changed T&R to 3,000 pcs	
		Added AN document list	2017-08-10
		Added new RF parameters and curves	
0.9	All	Added and changed some performance numbers	2018-01-03
		Changed RSSI descriptions	
		Added POR descriptions	
		Added PJD, AFC and CDR descriptions	
		Added receiver "Power VS Performance" descriptions	
		Changed some characters and figures	
		Detected the AN document list	
1.0	All	Changed some decriptions	2018-01-15

Table 26. DocumentChange List

13. Contact Information

Wuxi CMOSTEK Microelectronics Co., Ltd. Shenzhen Branch

Room 203, Honghai Building, Qianhai Road, Nanshan District, Shenzhen, Guangdong, China

518000	
+86 - 755 - 83235017	
+86 - 755 - 82761326	
sales@cmostek.com	
support@cmostek.com	
www.cmostek.com	

Copyright. CMOSTEK Microelectronics Co., Ltd. All rights are reserved.

The information furnished by CMOSTEK is believed to be accurate and reliable. However, no responsibility is assumed for inaccuracies and specifications within this document are subject to change without notice. The material contained herein is the exclusive property of CMOSTEK and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of CMOSTEK. CMOSTEK products are not authorized for use as critical components in life support devices or systems without express written approval of CMOSTEK. The CMOSTEK logo is a registered trademark of CMOSTEK Microelectronics Co., Ltd. All other names are the property of their respective owners.