
Adafruit 2.13" Monochrome E-Ink Bonnet for Raspberry Pi
Created by Kattni Rembor

Last updated on 2021-10-22 11:42:44 AM EDT

2
3
6
6
6
7
7
7
7
9
9

15
16
21
22
23
23
23
23

Guide Contents

Guide Contents
Overview
Usage

Attaching
Install CircuitPython
Download font5x8.bin
DejaVu TTF Font
Pillow Library
EPD Library Usage
Button Usage
Image Drawing with Pillow
Adding Dithering for Monochrome displays

Drawing Shapes and Text with Pillow
Raspberry Pi E-Ink Weather Station using Python
Raspberry Pi E-Ink Event Calendar using Python
Downloads

Files
Schematic
Fab Print

© Adafruit Industries https://learn.adafruit.com/2-13-in-e-ink-bonnet Page 2 of 25

Overview

Easy e-paper finally comes to Raspberry Pi, with this bonnet that's designed to make it a breeze to add a

2.13" 250x122 crisp monochromic eInk display. Chances are you've seen one of those new-fangled 'e-

readers' like the Kindle or Nook. They have gigantic electronic paper 'static' displays - that means the

image stays on the display even when power is completely disconnected. The image is also high contrast

and very daylight readable. It really does look just like printed paper!

© Adafruit Industries https://learn.adafruit.com/2-13-in-e-ink-bonnet Page 3 of 25

The Adafruit 2.13" Monochrome E-Ink Bonnet for Raspberry Pi snaps onto any modern Raspberry Pi and

provides a Python-programmable display with two buttons that can be used to select programs or scroll

through options.

We have two fun starter guides to use with this bonnet, an Open Weather display (https://adafru.it/MMD)

and an event calendar that auto-syncs with a Google Calendar (https://adafru.it/MME) to show you what

your next meeting or event is. We also have examples in our E-Ink Python library you can use to craft your

own project (https://adafru.it/BTd).

© Adafruit Industries https://learn.adafruit.com/2-13-in-e-ink-bonnet Page 4 of 25

https://learn.adafruit.com/raspberry-pi-e-ink-weather-station-using-python
https://learn.adafruit.com/raspberry-pi-e-ink-desk-calendar-using-python
https://github.com/adafruit/Adafruit_CircuitPython_EPD

Comes completely pre-assembled and tested so you don't need to do anything but plug it in and install

our Python code! Works with any Raspberry Pi computer that has a 2x20 connector , such as the Pi B+, Pi

2, Pi 3, Pi 4, and Pi Zero (and any others that have a 2x20 connector!)

On the bottom, we have a Qwiic/STEMMA QT connector for I2C sensors and devices so you can plug and

play any of our STEMMA QT devices (https://adafru.it/GfR).

© Adafruit Industries https://learn.adafruit.com/2-13-in-e-ink-bonnet Page 5 of 25

https://www.adafruit.com/?q=stemma%20qt

Usage

Attaching

Since the eInk Bonnet comes preassembled, all you need to do is place it onto the GPIO pins.

Since there's dozens of Linux computers/boards you can use, we will show wiring for Raspberry Pi. For

other platforms, please visit the guide for CircuitPython on Linux to see whether your platform is

supported (https://adafru.it/BSN).

Connect the display as shown below to your Raspberry Pi.

Install CircuitPython

This guide assumes that you've gotten your Raspberry Pi up and running, and have Blinka installed. If not,

check out the guide:

https://adafru.it/Deo

This guide assumes you have your Raspberry Pi all set up with an operating system, network

connectivity and SSH!
�

https://adafru.it/Deo

© Adafruit Industries https://learn.adafruit.com/2-13-in-e-ink-bonnet Page 6 of 25

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/installing-circuitpython-on-raspberry-pi

To install the EPD library for the Pi (https://adafru.it/BTd), enter the following into the terminal:

sudo pip3 install adafruit-circuitpython-epd

If that complains about pip3 not being installed, then run this first to install it:

sudo apt-get install python3-pip

Download font5x8.bin

This library also requires a font file to run! You can download it below. Before continuing, make sure the

folder you are running scripts from contains the font5x8.bin file. If you don't have it, you can easily get it

by running the following command:

wget https://github.com/adafruit/Adafruit_CircuitPython_framebuf/raw/master/examples/font5x8.bin

DejaVu TTF Font

Raspberry Pi usually comes with the DejaVu font already installed, but in case it didn't, you can run the

following to install it:

sudo apt-get install ttf-dejavu

Pillow Library

Some of the examples also use PIL, the Python Imaging Library, to allow graphics and using text with

custom fonts. There are several system libraries that PIL relies on, so installing via a package manager is

the easiest way to bring in everything:

sudo apt-get install python3-pil

That's it. You should be ready to go.

EPD Library Usage

To demonstrate the usage of the display you'll initialize it and draw some lines from the Python REPL.

You'll want to refrain from updating your E-Ink display too often. Once every 3 minutes is

generally a safe wait time.
�

© Adafruit Industries https://learn.adafruit.com/2-13-in-e-ink-bonnet Page 7 of 25

https://github.com/adafruit/Adafruit_CircuitPython_EPD

Run the following code to import the necessary modules and set up the pin assignments:

import digitalio
import busio
import board
from adafruit_epd.epd import Adafruit_EPD

spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
ecs = digitalio.DigitalInOut(board.CE0)
dc = digitalio.DigitalInOut(board.D22)
rst = digitalio.DigitalInOut(board.D27)
busy = digitalio.DigitalInOut(board.D17)
srcs = None

Run only one the following code sections to initialize the display.

If you have an SSD1675-chipset display (original chipset) use this code:

from adafruit_epd.ssd1675 import Adafruit_SSD1675
display = Adafruit_SSD1675(122, 250, spi, cs_pin=ecs, dc_pin=dc, sramcs_pin=srcs,
 rst_pin=rst, busy_pin=busy)

OR if you have an SSD1680-chipset display use this code:

from adafruit_epd.ssd1680 import Adafruit_SSD1680
display = Adafruit_SSD1680(122, 250, spi, cs_pin=ecs, dc_pin=dc, sramcs_pin=srcs,
 rst_pin=rst, busy_pin=busy)

Now you can clear the screens buffer and draw some shapes. Once you're done drawing, you need to tell

the screen to update using the display() method.

display.fill(Adafruit_EPD.WHITE)

display.fill_rect(0, 0, 50, 60, Adafruit_EPD.BLACK)
display.hline(80, 30, 60, Adafruit_EPD.BLACK)
display.vline(80, 30, 60, Adafruit_EPD.BLACK)

display.display()

Your display will look something like this:

Note that the chip name is different, SSD1675 vs SSD1680. If one doesn't work to display, simply

try the other!
�

© Adafruit Industries https://learn.adafruit.com/2-13-in-e-ink-bonnet Page 8 of 25

That's all there is to drawing simple shapes with eInk displays and CircuitPython!

Button Usage

To use the buttons, you just need to use digitalio. Then it's a matter of setting up the buttons as digital

inputs:

import digitalio

up_button = digitalio.DigitalInOut(board.D5)
up_button.switch_to_input()
down_button = digitalio.DigitalInOut(board.D6)
down_button.switch_to_input()

One thing to be aware of is since the buttons are pulled low when they are pushed, they will return False
when pressed and True when they aren't:

if not up_button.value:
 print("Up Button Pushed")

if not down_button.value:
 print("Down Button Pushed")

Image Drawing with Pillow

In this image, you will use Pillow to resize and crop the image automatically and draw it the the ePaper

© Adafruit Industries https://learn.adafruit.com/2-13-in-e-ink-bonnet Page 9 of 25

Display. Pillow is really powerful and with it you can open and render additional file formats such as PNG

or JPG. Let's start with downloading a PNG of blinka. We are using PNG for this because it is a lossless

format and won't introduce unexpected colors in.

You can easily download it directly to your pi using the following command:

wget https://github.com/adafruit/Adafruit_Learning_System_Guides/raw/master/EInk_Bonnet/blinka.png

Make sure you save it as blinka.png and place it in the same folder as your script.

Here's the code you'll be loading onto the Raspberry Pi. Go ahead and copy it onto your Raspberry Pi and

save it as epd_pillow_image.py. You'll go over the interesting parts along with a couple changes that you

will need to make.

SPDX-FileCopyrightText: 2019 Melissa LeBlanc-Williams for Adafruit Industries
SPDX-License-Identifier: MIT

"""
Image resizing and drawing using the Pillow Library. For the image, check out the
associated Adafruit Learn guide at:
https://learn.adafruit.com/adafruit-eink-display-breakouts/python-code

"""

import digitalio
import busio
import board
from PIL import Image
from adafruit_epd.il0373 import Adafruit_IL0373
from adafruit_epd.il91874 import Adafruit_IL91874 # pylint: disable=unused-import
from adafruit_epd.il0398 import Adafruit_IL0398 # pylint: disable=unused-import
from adafruit_epd.ssd1608 import Adafruit_SSD1608 # pylint: disable=unused-import
from adafruit_epd.ssd1675 import Adafruit_SSD1675 # pylint: disable=unused-import
from adafruit_epd.ssd1680 import Adafruit_SSD1680 # pylint: disable=unused-import
from adafruit_epd.ssd1681 import Adafruit_SSD1681 # pylint: disable=unused-import
from adafruit_epd.uc8151d import Adafruit_UC8151D # pylint: disable=unused-import

create the spi device and pins we will need
spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
ecs = digitalio.DigitalInOut(board.CE0)
dc = digitalio.DigitalInOut(board.D22)
srcs = None
rst = digitalio.DigitalInOut(board.D27)
busy = digitalio.DigitalInOut(board.D17)

© Adafruit Industries https://learn.adafruit.com/2-13-in-e-ink-bonnet Page 10 of 25

give them all to our driver
display = Adafruit_SSD1608(200, 200, # 1.54" HD mono display
display = Adafruit_SSD1675(122, 250, # 2.13" HD mono display
display = Adafruit_SSD1680(122, 250, # 2.13" HD Tri-color or mono display
display = Adafruit_SSD1681(200, 200, # 1.54" HD Tri-color display
display = Adafruit_IL91874(176, 264, # 2.7" Tri-color display
display = Adafruit_IL0373(152, 152, # 1.54" Tri-color display
display = Adafruit_UC8151D(128, 296, # 2.9" mono flexible display
display = Adafruit_IL0373(128, 296, # 2.9" Tri-color display
display = Adafruit_IL0398(400, 300, # 4.2" Tri-color display
display = Adafruit_IL0373(
 104,
 212, # 2.13" Tri-color display
 spi,
 cs_pin=ecs,
 dc_pin=dc,
 sramcs_pin=srcs,
 rst_pin=rst,
 busy_pin=busy,
)

IF YOU HAVE A 2.13" FLEXIBLE DISPLAY uncomment these lines!
display.set_black_buffer(1, False)
display.set_color_buffer(1, False)

IF YOU HAVE A 2.9" FLEXIBLE DISPLAY uncomment these lines!
display.set_black_buffer(1, True)
display.set_color_buffer(1, True)

display.rotation = 1

image = Image.open("blinka.png")

Scale the image to the smaller screen dimension
image_ratio = image.width / image.height
screen_ratio = display.width / display.height
if screen_ratio < image_ratio:
 scaled_width = image.width * display.height // image.height
 scaled_height = display.height
else:
 scaled_width = display.width
 scaled_height = image.height * display.width // image.width
image = image.resize((scaled_width, scaled_height), Image.BICUBIC)

Crop and center the image
x = scaled_width // 2 - display.width // 2
y = scaled_height // 2 - display.height // 2
image = image.crop((x, y, x + display.width, y + display.height)).convert("RGB")

Convert to Monochrome and Add dithering
image = image.convert("1").convert("L")

Display image.
display.image(image)
display.display()

© Adafruit Industries https://learn.adafruit.com/2-13-in-e-ink-bonnet Page 11 of 25

So the script starts with the usual imports including a couple of Pillow modules and the ePaper display

drivers.

import digitalio
import busio
import board
from PIL import Image, ImageDraw
from adafruit_epd.il0373 import Adafruit_IL0373
from adafruit_epd.il91874 import Adafruit_IL91874
from adafruit_epd.il0398 import Adafruit_IL0398
from adafruit_epd.ssd1608 import Adafruit_SSD1608
from adafruit_epd.ssd1675 import Adafruit_SSD1675

That is followed by initializing the SPI bus and defining a few pins here. The reason we chose these is

because they allow you to use the same code with the EPD bonnets if you chose to do so.

spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
ecs = digitalio.DigitalInOut(board.CE0)
dc = digitalio.DigitalInOut(board.D22)
srcs = None
rst = digitalio.DigitalInOut(board.D27)
busy = digitalio.DigitalInOut(board.D17)

We wanted to make these examples work on as many displays as possible with very few changes. The

2.13" Tri-color display is selected by default. Since this is a monochrome display, you'll want to go ahead

and comment out the following lines:

display = Adafruit_IL0373(
 104,
 212, # 2.13" Tri-color display

and uncomment the line for the 2.13" HD mono display:

display = Adafruit_SSD1675(122, 250,

© Adafruit Industries https://learn.adafruit.com/2-13-in-e-ink-bonnet Page 12 of 25

#display = Adafruit_SSD1608(200, 200, # 1.54" HD mono display
#display = Adafruit_SSD1675(122, 250, # 2.13" HD mono display
#display = Adafruit_IL91874(176, 264, # 2.7" Tri-color display
#display = Adafruit_IL0373(152, 152, # 1.54" Tri-color display
#display = Adafruit_IL0373(128, 296, # 2.9" Tri-color display
#display = Adafruit_IL0398(400, 300, # 4.2" Tri-color display
display = Adafruit_IL0373(
 104,
 212, # 2.13" Tri-color display
 spi,
 cs_pin=ecs,
 dc_pin=dc,
 sramcs_pin=srcs,
 rst_pin=rst,
 busy_pin=busy
)

The next two lines are for flexible displays. This tells the library to change a couple of settings so that it is

writing the correct colors to the correct places. Since this isn't a flexible display, you can skip past these

lines.

IF YOU HAVE A FLEXIBLE DISPLAY (2.13" or 2.9") uncomment these lines!
#display.set_black_buffer(1, False)
#display.set_color_buffer(1, False)

Next the script tells the display the rotation setting you want to use. This can be a value between 0 to 3 .

For the bonnet, you'll want to stick with the default value.

display.rotation = 1

Next the script opens the Blinka image, which you've named blinka.png. The open command assumes it

is in the same directory that you are running the script from. Feel free to change it if it doesn't match your

configuration.

image = Image.open("blinka.png")

Here's where it starts to get interesting. You want to scale the image so that it matches either the width or

height of the display, depending on which is smaller, so that you have some of the image to chop off

when you crop it. So you'll start by calculating the width to height ratio of both the display and the image. If

the height is the closer of the dimensions, you'll want to match the image height to the display height and

let it be a bit wider than the display. Otherwise, you'll want to do the opposite.

Once the script figures out how it's going to scale it, it passes in the new dimensions and using

a Bicubic rescaling method, it reassigns the newly rescaled image back to image . Pillow has quite a few

different methods to choose from, but Bicubic does a great job and is reasonably fast.

© Adafruit Industries https://learn.adafruit.com/2-13-in-e-ink-bonnet Page 13 of 25

Nearest actually gives a little better result with the Tri-color eInks, but loses detail with displaying a color

image on the monochrome display, so we decided to go with the best balance.

image_ratio = image.width / image.height
screen_ratio = display.width / display.height
if screen_ratio < image_ratio:
 scaled_width = image.width * display.height // image.height
 scaled_height = display.height
else:
 scaled_width = display.width
 scaled_height = image.height * display.width // image.width
image = image.resize((scaled_width, scaled_height), Image.BICUBIC)

Next to figure the starting x and y points of the image to begin cropping it so that it ends up centered. That

is done by using a standard centering function, which is basically requesting the difference of the center

of the display and the center of the image. Just like with scaling, replace the image variable with the

newly cropped image.

x = scaled_width // 2 - display.width // 2
y = scaled_height // 2 - display.height // 2
image = image.crop((x, y, x + display.width, y + display.height))

Finally, taking the image , draw it to the frame buffer and display it. At this point, the image should have

the exact same dimensions at the display and fill it completely.

display.image(image)
display.display()

Now go to the command prompt on your Raspberry Pi and run the script with the following command:

python3 epd_pillow_image.py

After a few seconds, your display should show this image:

© Adafruit Industries https://learn.adafruit.com/2-13-in-e-ink-bonnet Page 14 of 25

Adding Dithering for Monochrome displays

One little trick which can be done to increase the image quality on monochrome displays is to use

dithering. Pillow can be forced to dither the image by converting first to 1-bit and then convert it back to

either grayscale or RGB. This works great for monochrome E-Ink displays, but removes the color

information for Tri-color displays.

To dither the image, add 1 line of code right before calling display.image(image) :

image = image.convert("1").convert("L")

display.image(image)
display.display()

When you run it with the additional code, the same image displays like this:

© Adafruit Industries https://learn.adafruit.com/2-13-in-e-ink-bonnet Page 15 of 25

Drawing Shapes and Text with Pillow
In the next example, let's take a look at drawing shapes and text. This is very similar to the displayio

example used on other displays, but it uses Pillow instead. Go ahead and copy it onto your Raspberry Pi

and save it as epd_pillow_demo.py. Here's the code for that.

SPDX-FileCopyrightText: 2019 Melissa LeBlanc-Williams for Adafruit Industries
SPDX-License-Identifier: MIT

"""
ePaper Display Shapes and Text demo using the Pillow Library.

"""

import digitalio
import busio
import board
from PIL import Image, ImageDraw, ImageFont
from adafruit_epd.il0373 import Adafruit_IL0373
from adafruit_epd.il91874 import Adafruit_IL91874 # pylint: disable=unused-import
from adafruit_epd.il0398 import Adafruit_IL0398 # pylint: disable=unused-import
from adafruit_epd.ssd1608 import Adafruit_SSD1608 # pylint: disable=unused-import
from adafruit_epd.ssd1675 import Adafruit_SSD1675 # pylint: disable=unused-import
from adafruit_epd.ssd1680 import Adafruit_SSD1680 # pylint: disable=unused-import
from adafruit_epd.ssd1681 import Adafruit_SSD1681 # pylint: disable=unused-import
from adafruit_epd.uc8151d import Adafruit_UC8151D # pylint: disable=unused-import

First define some color constants
WHITE = (0xFF, 0xFF, 0xFF)
BLACK = (0x00, 0x00, 0x00)
RED = (0xFF, 0x00, 0x00)

© Adafruit Industries https://learn.adafruit.com/2-13-in-e-ink-bonnet Page 16 of 25

RED = (0xFF, 0x00, 0x00)

Next define some constants to allow easy resizing of shapes and colors
BORDER = 20
FONTSIZE = 24
BACKGROUND_COLOR = BLACK
FOREGROUND_COLOR = WHITE
TEXT_COLOR = RED

create the spi device and pins we will need
spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
ecs = digitalio.DigitalInOut(board.CE0)
dc = digitalio.DigitalInOut(board.D22)
srcs = None
rst = digitalio.DigitalInOut(board.D27)
busy = digitalio.DigitalInOut(board.D17)

give them all to our driver
display = Adafruit_SSD1608(200, 200, # 1.54" HD mono display
display = Adafruit_SSD1675(122, 250, # 2.13" HD mono display
display = Adafruit_SSD1680(122, 250, # 2.13" HD Tri-color or mono display
display = Adafruit_SSD1681(200, 200, # 1.54" HD Tri-color display
display = Adafruit_IL91874(176, 264, # 2.7" Tri-color display
display = Adafruit_IL0373(152, 152, # 1.54" Tri-color display
display = Adafruit_UC8151D(128, 296, # 2.9" mono flexible display
display = Adafruit_IL0373(128, 296, # 2.9" Tri-color display
display = Adafruit_IL0398(400, 300, # 4.2" Tri-color display
display = Adafruit_IL0373(
 104,
 212, # 2.13" Tri-color display
 spi,
 cs_pin=ecs,
 dc_pin=dc,
 sramcs_pin=srcs,
 rst_pin=rst,
 busy_pin=busy,
)

IF YOU HAVE A 2.13" FLEXIBLE DISPLAY uncomment these lines!
display.set_black_buffer(1, False)
display.set_color_buffer(1, False)

IF YOU HAVE A 2.9" FLEXIBLE DISPLAY uncomment these lines!
display.set_black_buffer(1, True)
display.set_color_buffer(1, True)

display.rotation = 1

image = Image.new("RGB", (display.width, display.height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Draw a filled box as the background
draw.rectangle((0, 0, display.width - 1, display.height - 1), fill=BACKGROUND_COLOR)

Draw a smaller inner foreground rectangle
draw.rectangle(

© Adafruit Industries https://learn.adafruit.com/2-13-in-e-ink-bonnet Page 17 of 25

draw.rectangle(
 (BORDER, BORDER, display.width - BORDER - 1, display.height - BORDER - 1),
 fill=FOREGROUND_COLOR,
)

Load a TTF Font
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", FONTSIZE)

Draw Some Text
text = "Hello World!"
(font_width, font_height) = font.getsize(text)
draw.text(
 (display.width // 2 - font_width // 2, display.height // 2 - font_height // 2),
 text,
 font=font,
 fill=TEXT_COLOR,
)

Display image.
display.image(image)
display.display()

Just like in the last example, the imports are done, but this time include the ImageDraw and ImageFont
Pillow modules to draw some text this time.

import digitalio
import busio
import board
from PIL import Image, ImageDraw, ImageFont
from adafruit_epd.il0373 import Adafruit_IL0373
from adafruit_epd.il91874 import Adafruit_IL91874
from adafruit_epd.il0398 import Adafruit_IL0398
from adafruit_epd.ssd1608 import Adafruit_SSD1608
from adafruit_epd.ssd1675 import Adafruit_SSD1675

Next define some colors that can be used with Pillow. Since this demo can also run on a Tri-color e-Ink,

there are 3 colors defined.

WHITE = (0xFF, 0xFF, 0xFF)
BLACK = (0x00, 0x00, 0x00)
RED = (0xFF, 0x00, 0x00)

After that, the script creates some parameters that are easy to change. If you had a smaller display for

instance, you could reduce the FONTSIZE and BORDER parameters. The BORDER will be the size in

pixels of the green border between the edge of the display and the inner purple rectangle.

The FONTSIZE will be the size of the font in points so that you can adjust it easily for different displays.

You could play around with the colors as well.

One thing to note is that on monochrome displays, the RED will show up as BLACK.�
© Adafruit Industries https://learn.adafruit.com/2-13-in-e-ink-bonnet Page 18 of 25

BORDER = 20
FONTSIZE = 24
BACKGROUND_COLOR = BLACK
FOREGROUND_COLOR = WHITE
TEXT_COLOR = RED

After that, the initializer and rotation sections are exactly the same as in the previous example. Go ahead

and adjust the EPD initializer as explained in the previous example. After that, the script will create

an image with the dimensions and use that to create a draw object. The draw object will have all of the

drawing functions.

image = Image.new('RGB', (display.width, display.height))

draw = ImageDraw.Draw(image)

Next the script clears whatever is on the screen by drawing a rectangle using the

BACKGROUND_COLOR that takes up the full screen.

draw.rectangle((0, 0, display.width, display.height), fill=BACKGROUND_COLOR)

Next the script will draw an inner rectangle using the FOREGROUND_COLOR . the BORDER parameter is

used to calculate the size and position of where to draw the rectangle.

draw.rectangle((BORDER, BORDER, display.width - BORDER - 1, display.height - BORDER - 1),
fill=FOREGROUND_COLOR)

Next the script will load a TTF font. The DejaVuSans.ttf font should come preloaded on your Pi in the

location in the code. You also make use of the FONTSIZE parameter that we mentioned earlier.

font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf', FONTSIZE)

Now the script will draw the text Hello World onto the center of the display. You may recognize the

centering calculation was the same one we used to center crop the image in the previous example. In this

example though, the script will get the font size values using the getsize() function of the font object.

text = "Hello World!"
(font_width, font_height) = font.getsize(text)
draw.text((display.width//2 - font_width//2, display.height//2 - font_height//2), text,
font=font, fill=TEXT_COLOR)

Finally, just like before, the script will display the image.

© Adafruit Industries https://learn.adafruit.com/2-13-in-e-ink-bonnet Page 19 of 25

display.image(image)
display.display()

Now go to the command prompt on your Raspberry Pi and run the script with the following command:

python3 epd_pillow_demo.py

After a few seconds, your display should show this image:

© Adafruit Industries https://learn.adafruit.com/2-13-in-e-ink-bonnet Page 20 of 25

Raspberry Pi E-Ink Weather Station using Python
Raspberry Pi E-Ink Weather Station using Python (https://adafru.it/MMD)

© Adafruit Industries https://learn.adafruit.com/2-13-in-e-ink-bonnet Page 21 of 25

https://learn.adafruit.com/raspberry-pi-e-ink-weather-station-using-python

Raspberry Pi E-Ink Event Calendar using Python
Raspberry Pi E-Ink Event Calendar using Python (https://adafru.it/MME)

© Adafruit Industries https://learn.adafruit.com/2-13-in-e-ink-bonnet Page 22 of 25

https://learn.adafruit.com/raspberry-pi-e-ink-desk-calendar-using-python

Downloads

Files

SSD1675 driver datasheet (https://adafru.it/M5C)

EagleCAD files on GitHub (https://adafru.it/MPD)

Fritzing object in Adafruit Fritzing Library (https://adafru.it/c7M)

Schematic

Fab Print

© Adafruit Industries https://learn.adafruit.com/2-13-in-e-ink-bonnet Page 23 of 25

https://cdn-learn.adafruit.com/assets/assets/000/092/748/original/SSD1675_0.pdf?1593792604
https://github.com/adafruit/Adafruit-2-13in-eInk-Bonnet-PCB
https://github.com/adafruit/Fritzing-Library/

© Adafruit Industries https://learn.adafruit.com/2-13-in-e-ink-bonnet Page 24 of 25

© Adafruit Industries Last Updated: 2021-10-22 11:42:43 AM EDT Page 25 of 25

	Guide Contents
	Overview
	Usage
	Attaching
	Install CircuitPython
	Download font5x8.bin
	DejaVu TTF Font
	Pillow Library
	EPD Library Usage
	Button Usage
	Image Drawing with Pillow
	Adding Dithering for Monochrome displays

	Drawing Shapes and Text with Pillow
	Raspberry Pi E-Ink Weather Station using Python
	Raspberry Pi E-Ink Event Calendar using Python
	Downloads
	Files
	Schematic
	Fab Print

