
Adafruit Mini PiTFT - Color TFT Add-ons for Raspberry Pi
Created by lady ada

Last updated on 2021-09-23 01:52:00 PM EDT



2
3
6
8
9

12
12
16
17
17
18
18
19
20
20
20
20
21
23
25
26
27
28
28
28
34
37
43
43
43
43
44

Guide Contents

Guide Contents
Overview
Pinouts
1.14" 240x135 Kernel Module Install
Prepare the Pi!
1.3" 240x240 Kernel Module Install
Prepare the Pi!
Kernel Module Troubleshooting

BrainCraft Audio Driver Reinstall
Unpinning the Kernel

Python Setup
Attaching
Setup

Python Installation of RGB Display Library
DejaVu TTF Font
Pillow Library
NumPy Library

Quickstart Button Test
Python Stats Example

Modifications for the 1.3" Display
Running Stats on Boot
Troubleshooting Stats on Boot

Python Usage
Turning on the Backlight
Displaying an Image
Drawing Shapes and Text
Displaying System Information

Downloads
Files
Datasheets
Schematic
Schematic and Fab print for 1.3" MiniTFT

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 2 of 46



Overview

If you're looking for the most compact li'l color display for a Raspberry Pi (https://adafru.it/wF8) (most likely

a Pi Zero (https://adafru.it/vIa)) project, this might be just the thing you need!

The Adafruit Mini PiTFT - 135x240 Color TFT Add-on for Raspberry Pi  is your little TFT pal, ready to snap

onto any and all Raspberry Pi computers, to give you a little display. The Mini PiTFT comes with a full color

240x135 pixel IPS display with great visibility at all angles. The TFT uses only the SPI port so its very fast,

and we leave plenty of pins remaining available for buttons, LEDs, sensors, etc. It's also nice and compact

so it will fit into any case.

The Adafruit Mini PiTFT - 240x240 Color TFT Add-on for Raspberry Pi  is a bit larger, 1.3" diagonal and

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 3 of 46

https://www.adafruit.com/category/361
https://www.adafruit.com/category/813


has 240x240 pixels instead of 240x135

These display are super small, only about 1.14" or 1.3" diagonal, but since they are IPS displays, both are

very readable with high contrast and visibility. We had a little space on the PCB so we give you two tactile

buttons on GPIO pins so you can create a simple user interface. On the bottom we have a Qwiic/STEMMA

QT connector for I2C sensors and device so you can plug and play any of our STEMMA QT

devices (https://adafru.it/GfR).

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 4 of 46

https://www.adafruit.com/?q=stemma%20qt


Using the display is very easy, we have a kernel driver and Python library for the ST7789 chipset. You can

set it up as a console output so you can have text and user interface through the Raspberry Pi OS or you

draw images, text, whatever you like, using the Python imaging library. Our tests showed ~15 FPS update

rates so you can do animations or simple video.

Comes completely pre-assembled and tested so you don't need to do anything but plug it in and install

our Python code! Works with any Raspberry Pi computer.

 

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 5 of 46



Pinouts
Both the 1.3" and 1.14" versions of the Mini PiTFT have the

same 2x12 connector and pinouts.

The mini PiTFT connects to the 'top' 2x12 headers on the Pi's 2x20 header connection. It uses the

following pins:

5.0V - Connected to the display backlight

3.3V - Connected to the display power and also the STEMMA QT / Qwiic connector

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 6 of 46

https://learn.adafruit.com//assets/87539
https://learn.adafruit.com//assets/87540


GND - Ground for everything

SDA & SCL - I2C data for the STEMMA QT / Qwiic connector. Not used by buttons or display

GPIO22 - Used to turn the backlight on and off. If you never want to turn the backlight off, cut the

small jumper on the bottom of the PiTFT to free up GPIO22

GPIO23 & GPIO24 - Connected to the two front buttons. These pins have 10K pullups to 3.3V so

when the button is pressed, you will read a LOW voltage on these pins

SCK, MOSI, CE0 & GPIO25 - These are the display control pins. Note that MISO is not connected

even though it is a SPI pin because you cannot read back from the display.

Not used: GPIO4, GPIO17, GPIO18, GPIO27

If you are using the 240x135 1.14" (small rectangular) Mini PiTFT , you can attach other hardware to the Pi

on those pins if you use a stacking header - it will go through the 2x12 connector on the Mini PiTFT. This

wont work on the 1.3" because the holes don't go through the PCB

GPIO Stacking Header for Pi A+/B+/Pi 2/Pi 3
Connect your own PCB to a Raspberry Pi B+ and stack on top with this normal-height female header with extra long pins.  The female

header part is about 8.5mm tall, good for small...

$2.50
In Stock

 

Add to Cart

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 7 of 46

https://www.adafruit.com/product/2223
https://www.adafruit.com/product/2223


1.14" 240x135 Kernel Module Install

There's two ways you can use the 240x135 display.

The easy way is to use 'pure Python 3' and Pillow library to draw to the display from within Python. This is

great for showing text, stats, images etc that you design yourself. If you want to do that, skip this page

and go to the Python install/usage page

The hard way is to install a kernel module to add support for the TFT display that will make the console

appear on the display. This is cute because you can have any program print text or draw to the

framebuffer (or, say, with pygame) and Linux will take care of displaying it for you. If you don't need the

console or direct framebuffer access, please consider using the 'pure Python' technique instead as it is

not as delicate.

The 240x135 Mini PiTFT is so small, its not a default-supported resolution for small TFTs. This 

technique will update your kernel to the latest, and if you upgrade your Raspberry Pi which 

replaces the kernel you'll need to re-run the instructions! You'll also need to re-run if you change 

from a Pi Zero / Pi 2 / Pi 3 / Pi 4 as these all use different kernel types.

�

Be aware that you can only choose to do one way at a time. If you choose the hard way, it will 

install the kernel driver, which will prevent you from doing it the easy way.
�

You will not get a GUI/LXDE display, this is only for text console usage. The display is waaay too 

small for LXDE
�

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 8 of 46



Prepare the Pi!
Before you begin, its a good idea to get your Pi completely updated and upgraded. We assume you have

burned an SD card and can log into the console to install stuff.

Run

sudo apt update -y
sudo apt-get update -y
sudo apt-get upgrade -y

To fully update and upgrade your Pi!

After that is complete run

sudo shutdown -h now

to shutdown the Pi safely. Remove power and attach the miniPiTFT. Watch that the pins plug into the first

2x12 headers! The rounded corner and mounting hole should line up.

Attach power to the Pi and re-log in. The PiTFT should be lit but nothing on the screen.

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 9 of 46



Run the following at the terminal

cd ~
sudo pip3 install --upgrade adafruit-python-shell click
sudo apt-get install -y git
git clone https://github.com/adafruit/Raspberry-Pi-Installer-Scripts.git
cd Raspberry-Pi-Installer-Scripts
sudo python3 adafruit-pitft.py --display=st7789_240x135 --rotation=270 --install-type=console

When you get asked to reboot, reboot!

Zat's it! You will now have the miniPiTFT with a console display on it

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 10 of 46



If you ever get a display like this, it means your kernel

changed - either due to an upgrade/update or because

you switched Pi boards. The solution is to simply re-run

the scripts above!

 

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 11 of 46

https://learn.adafruit.com//assets/82855


1.3" 240x240 Kernel Module Install

There's two ways you can use the 1.3" 240x240 display.

The easy way is to use 'pure Python 3' and Pillow library to draw to the display from within Python. This is

great for showing text, stats, images etc that you design yourself. If you want to do that, skip this page

and go to the Python install/usage page

The hard way is to install a kernel module to add support for the TFT display that will make the console

appear on the display. This is cute because you can have any program print text or draw to the

framebuffer (or, say, with pygame) and Linux will take care of displaying it for you. If you don't need the

console or direct framebuffer access, please consider using the 'pure Python' technique instead as it is

not as delicate.

Prepare the Pi!

Be aware that you can only choose to do one way at a time. If you choose the hard way, it will 

install the kernel driver, which will prevent you from doing it the easy way.
�

We don't recommend using the 240x240 display for GUI/PIXEL desktop, this is only for text 

console usage. The display is waaay too small for a desktop
�

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 12 of 46



Before you begin, its a good idea to get your Pi completely updated and upgraded. We assume you have

burned an SD card and can log into the console to install stuff.

Run

sudo apt update -y
sudo apt-get update -y
sudo apt-get upgrade -y

To fully update and upgrade your Pi!

After that is complete run

sudo shutdown -h now

to shutdown the Pi safely. Remove power and attach the miniPiTFT. Watch that the pins plug into the first

2x12 headers! The rounded corner and mounting hole should line up.

Attach power to the Pi and re-log in. The PiTFT should be lit but nothing on the screen.

Run the following at the terminal

cd ~
sudo pip3 install --upgrade adafruit-python-shell click
sudo apt-get install -y git
git clone https://github.com/adafruit/Raspberry-Pi-Installer-Scripts.git
cd Raspberry-Pi-Installer-Scripts
sudo python3 adafruit-pitft.py --display=st7789_240x240 --rotation=0 --install-type=console

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 13 of 46



When you get asked to reboot, reboot!

Zat's it! You will now have the miniPiTFT with a console display on it

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 14 of 46



 

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 15 of 46



Kernel Module Troubleshooting

The Raspberry Pi Kernel  sometimes updates firmware, which can which can break the Frame Buffer Copy

mechanism. In this particular case, it only seems to affect the Raspberry Pi 4. The issue appears as a

garbled screen that looks like static.

To check your kernel version, run the following command:

dpkg -l raspberrypi-kernel

You should see output similar to the following. If the kernel version is later than 1: 1.20210527, then the

following fix should work.

We have a script that is able to set the kernel version to the kernel version prior to it breaking. To "pin" the

kernel version to an older version prior to it breaking, you'll need to run a few commands. You can either

SSH into the Pi or hook up an HDMI cable, though the display may appear small.

Once you'd at a command prompt, run the following commands. Note that the 1:  prefix in the version

number is on purpose because of the way that pinning was recently changed.

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 16 of 46



cd ~
wget https://raw.githubusercontent.com/adafruit/Raspberry-Pi-Installer-Scripts/master/rpi-pin-
kernel-firmware.sh
sudo sh rpi-pin-kernel-firmware.sh 1:1.20210527-1

After it finishes, reboot the Pi.

Once the Pi is back up, the display may appear inverted. To fix this, just run the Adafruit PiTFT script again

and reboot a second time.

You can check the new kernel version by running the dpkg  command again:

dpkg -l raspberrypi-kernel

This time, your version should be 1:1.20210527-1.

BrainCraft Audio Driver Reinstall

If your display is a BrainCraft HAT and you have pinned your kernel, you should be running a kernel

version of around 5.10. You can check this by typing uname -r .

If you pinned to an older version that uses a kernel of 5.4, you may need to reinstall the audio drivers at

this point to get sound working. Be sure to follow the BrainCraft HAT Audio Setup

instructions (https://adafru.it/Pf8) for a kernel version around 5.4 when reinstalling.

Unpinning the Kernel

To unpin the kernel, just delete the file /etc/apt/preferences.d/99-adafruit-pin-kernel  and update the Pi with

the following commands:

sudo apt update
sudo apt upgrade

 

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 17 of 46

https://learn.adafruit.com/adafruit-braincraft-hat-easy-machine-learning-for-raspberry-pi/audio-setup


Python Setup

Attaching

It's easy to use display breakouts with Python and the  Adafruit CircuitPython RGB

Display (https://adafru.it/u1C) module.  This module allows you to easily write Python code to control the

display.

Since the PiTFT comes preassembled, all you need to do is place it onto the GPIO pins.

Since there's dozens of Linux computers/boards you can use we will show wiring for Raspberry Pi. For

other platforms, please visit the guide for CircuitPython on Linux to see whether your platform is

supported (https://adafru.it/BSN). 

Connect the display as shown below to your Raspberry Pi.

For the 1.14":

You can use this technique with any PiTFT, from the 240x135 mini PiTFT up to the 320x480. It 

isn't as fast as the kernel module support version but it'll work no matter what 

kernel/OS/version/etc and so is a lot less painful
�

Note this is not a kernel driver that will let you have the console appear on the TFT. However, this 

is handy when you can't install an fbtft driver, and want to use the TFT purely from 'user Python' 

code!
�

You can only use this technique with Linux/computer devices that have hardware SPI support, 

and not all single board computers have an SPI device so check before continuing
�

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 18 of 46

https://github.com/adafruit/Adafruit_CircuitPython_RGB_Display
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux


For the 1.3":

Setup
You'll need to install the Adafruit_Blinka library that provides the CircuitPython support in Python. This

may also require enabling SPI on your platform and verifying you are running Python 3. Since each

platform is a little different, and Linux changes often, please visit the CircuitPython on Linux guide to get

your computer ready (https://adafru.it/BSN)!

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 19 of 46

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux


Python Installation of RGB Display Library

Once that's done, from your command line run the following commands:

pip3 install adafruit-circuitpython-rgb-display
pip3 install --upgrade --force-reinstall spidev

If your default Python is version 3 you may need to run 'pip' instead. Just make sure you aren't trying to

use CircuitPython on Python 2.x, it isn't supported!

If that complains about pip3 not being installed, then run this first to install it:

sudo apt-get install python3-pip

DejaVu TTF Font

Raspberry Pi usually comes with the DejaVu font already installed, but in case it didn't, you can run the

following to install it:

sudo apt-get install ttf-dejavu

Pillow Library

We also need PIL, the Python Imaging Library, to allow graphics and using text with custom fonts. There

are several system libraries that PIL relies on, so installing via a package manager is the easiest way to

bring in everything:

sudo apt-get install python3-pil

NumPy Library

A recent improvement of the RGB_Display library makes use of NumPy for some additional speed. This

can be installed with the following command:

sudo apt-get install python3-numpy

That's it. You should be ready to go.

If you have already installed the kernel module, you will need to remove it by editing your 

/boot/config.txt file before proceeding.
�

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 20 of 46



Quickstart Button Test

This button test demo will test to make sure you have everything setup correctly. Go ahead and save the

file to your Raspberry Pi in your home directory as rgb_display_minipitfttest.py.

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
# SPDX-License-Identifier: MIT

import digitalio
import board

from adafruit_rgb_display.rgb import color565
import adafruit_rgb_display.st7789 as st7789

# Configuration for CS and DC pins for Raspberry Pi
cs_pin = digitalio.DigitalInOut(board.CE0)
dc_pin = digitalio.DigitalInOut(board.D25)
reset_pin = None
BAUDRATE = 64000000  # The pi can be very fast!
# Create the ST7789 display:
display = st7789.ST7789(
    board.SPI(),
    cs=cs_pin,
    dc=dc_pin,
    rst=reset_pin,
    baudrate=BAUDRATE,
    width=135,
    height=240,
    x_offset=53,
    y_offset=40,
)

backlight = digitalio.DigitalInOut(board.D22)
backlight.switch_to_output()
backlight.value = True
buttonA = digitalio.DigitalInOut(board.D23)
buttonB = digitalio.DigitalInOut(board.D24)
buttonA.switch_to_input()
buttonB.switch_to_input()

# Main loop:
while True:
    if buttonA.value and buttonB.value:
        backlight.value = False  # turn off backlight
    else:
        backlight.value = True  # turn on backlight
    if buttonB.value and not buttonA.value:  # just button A pressed
        display.fill(color565(255, 0, 0))  # red
    if buttonA.value and not buttonB.value:  # just button B pressed
        display.fill(color565(0, 0, 255))  # blue
    if not buttonA.value and not buttonB.value:  # none pressed
        display.fill(color565(0, 255, 0))  # green

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 21 of 46



Go ahead and run it with this command:

python3 rgb_display_minipitfttest.py

Once it is running, push the buttons. The top button should make the display light up Red, the bottom

Blue, and pressing both at the same time should make it Green.

 

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 22 of 46



Python Stats Example

We can also display some stats about your Pi such as the IP address, resource usage, and even the CPU

Temperature. Start by saving the code below as stats.py in your home directory on your Raspberry Pi.

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
# SPDX-License-Identifier: MIT

# -*- coding: utf-8 -*-

import time
import subprocess
import digitalio
import board
from PIL import Image, ImageDraw, ImageFont
import adafruit_rgb_display.st7789 as st7789

# Configuration for CS and DC pins (these are FeatherWing defaults on M0/M4):
cs_pin = digitalio.DigitalInOut(board.CE0)
dc_pin = digitalio.DigitalInOut(board.D25)
reset_pin = None

# Config for display baudrate (default max is 24mhz):
BAUDRATE = 64000000

# Setup SPI bus using hardware SPI:
spi = board.SPI()

# Create the ST7789 display:
disp = st7789.ST7789(
    spi,
    cs=cs_pin,
    dc=dc_pin,
    rst=reset_pin,
    baudrate=BAUDRATE,
    width=135,
    height=240,
    x_offset=53,
    y_offset=40,
)

# Create blank image for drawing.
# Make sure to create image with mode 'RGB' for full color.
height = disp.width  # we swap height/width to rotate it to landscape!
width = disp.height
image = Image.new("RGB", (width, height))
rotation = 90

If you have previously installed the Kernel Driver with the PiTFT Easy Setup, you will need to 

remove it first in order to run this example.
�

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 23 of 46



# Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

# Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))
disp.image(image, rotation)
# Draw some shapes.
# First define some constants to allow easy resizing of shapes.
padding = -2
top = padding
bottom = height - padding
# Move left to right keeping track of the current x position for drawing shapes.
x = 0

# Alternatively load a TTF font.  Make sure the .ttf font file is in the
# same directory as the python script!
# Some other nice fonts to try: http://www.dafont.com/bitmap.php
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 24)

# Turn on the backlight
backlight = digitalio.DigitalInOut(board.D22)
backlight.switch_to_output()
backlight.value = True

while True:
    # Draw a black filled box to clear the image.
    draw.rectangle((0, 0, width, height), outline=0, fill=0)

    # Shell scripts for system monitoring from here:
    # https://unix.stackexchange.com/questions/119126/command-to-display-memory-usage-disk-
usage-and-cpu-load
    cmd = "hostname -I | cut -d' ' -f1"
    IP = "IP: " + subprocess.check_output(cmd, shell=True).decode("utf-8")
    cmd = "top -bn1 | grep load | awk '{printf \"CPU Load: %.2f\", $(NF-2)}'"
    CPU = subprocess.check_output(cmd, shell=True).decode("utf-8")
    cmd = "free -m | awk 'NR==2{printf \"Mem: %s/%s MB  %.2f%%\", $3,$2,$3*100/$2 }'"
    MemUsage = subprocess.check_output(cmd, shell=True).decode("utf-8")
    cmd = 'df -h | awk \'$NF=="/"{printf "Disk: %d/%d GB  %s", $3,$2,$5}\''
    Disk = subprocess.check_output(cmd, shell=True).decode("utf-8")
    cmd = "cat /sys/class/thermal/thermal_zone0/temp |  awk '{printf \"CPU Temp: %.1f C\", $(NF-
0) / 1000}'"  # pylint: disable=line-too-long
    Temp = subprocess.check_output(cmd, shell=True).decode("utf-8")

    # Write four lines of text.
    y = top
    draw.text((x, y), IP, font=font, fill="#FFFFFF")
    y += font.getsize(IP)[1]
    draw.text((x, y), CPU, font=font, fill="#FFFF00")
    y += font.getsize(CPU)[1]
    draw.text((x, y), MemUsage, font=font, fill="#00FF00")
    y += font.getsize(MemUsage)[1]
    draw.text((x, y), Disk, font=font, fill="#0000FF")
    y += font.getsize(Disk)[1]
    draw.text((x, y), Temp, font=font, fill="#FF00FF")

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 24 of 46



    # Display image.
    disp.image(image, rotation)
    time.sleep(0.1)

Go ahead and run the script by typing:

python3 stats.py

It should display some system information.

Modifications for the 1.3" Display

To get the stats.py example to display properly on the 1.3" TFT Display, you will need to make some

changes due to the different geometry of the display. The parameters you will need to adjust are the

height, x_offset, y_offset, and rotation.

The new values should be:

height = 240
x_offset = 0
y_offset = 80
rotation = 180

The easiest way to replace them may be to copy the following code block and replace it in the above

code.

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 25 of 46



# Create the ST7789 display:
disp = st7789.ST7789(
    spi,
    cs=cs_pin,
    dc=dc_pin,
    rst=reset_pin,
    baudrate=BAUDRATE,
    width=240,
    height=240,
    x_offset=0,
    y_offset=80,
)

# Create blank image for drawing.
# Make sure to create image with mode 'RGB' for full color.
height = disp.width  # we swap height/width to rotate it to landscape!
width = disp.height
image = Image.new("RGB", (width, height))
rotation = 180

Running Stats on Boot

You can pretty easily make it so this handy program runs every time you boot your Pi.

The fastest/easiest way is to put it in /etc/rc.local

Run sudo nano /etc/rc.local and add the line

sudo python3 /home/pi/stats.py &

on its own line right before exit 0

Then save and exit. Reboot to verify that the screen comes up on boot!

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 26 of 46



For more advanced usage, check out our linux system services guide  (https://adafru.it/wFR)

Troubleshooting Stats on Boot

For the normal installation of Blinka on Raspberry Pi, we have you install stuff without the sudo keyword,

which will install the libraries locally. However, to have the script run at boot, you will need to have the

libraries available on a more system wide level. You can test this out by running the following command

and see if the the stats come up:

sudo python3 /home/pi/stats.py

If you have any errors, most can be fixed by running the following command:

sudo pip3 install --upgrade adafruit-blinka adafruit-circuitpython-rgb-display spidev

Once you can get it to come up, go ahead and press Control+C and reboot the system. It should come up

now.

Sometimes the Pi can boot too fast, so you may also need to add sleep 10  on the line before the

command you added in /etc/rc.local.

 

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 27 of 46

https://learn.adafruit.com/running-programs-automatically-on-your-tiny-computer/


Python Usage

Now that you have everything setup, we're going to look over three different examples. For the first, we'll

take a look at automatically scaling and cropping an image and then centering it on the display.

Turning on the Backlight

On some displays, the backlight is controlled by a separate pin such as the 1.3" TFT Bonnet with Joystick.

On such displays, running the below code will likely result in the display remaining black. To turn on the

backlight, you will need to add a small snippet of code. If your backlight pin number differs, be sure to

change it in the code:

# Turn on the Backlight
backlight = DigitalInOut(board.D26)
backlight.switch_to_output()
backlight.value = True

Displaying an Image

Here's the full code to the example. We will go through it section by section to help you better understand

what is going on. Let's start by downloading an image of Blinka. This image has enough border to allow

resizing and cropping with a variety of display sizes and rations to still look good.

If you have previously installed the Kernel Driver with the PiTFT Easy Setup, you will need to 

remove it first in order to run this example.
�

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 28 of 46



Make sure you save it as blinka.jpg and place it in the same folder as your script. Here's the code we'll be

loading onto the Raspberry Pi. We'll go over the interesting parts.

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
# SPDX-License-Identifier: MIT

"""
Be sure to check the learn guides for more usage information.

This example is for use on (Linux) computers that are using CPython with
Adafruit Blinka to support CircuitPython libraries. CircuitPython does
not support PIL/pillow (python imaging library)!

Author(s): Melissa LeBlanc-Williams for Adafruit Industries
"""

import digitalio
import board
from PIL import Image, ImageDraw
import adafruit_rgb_display.ili9341 as ili9341
import adafruit_rgb_display.st7789 as st7789  # pylint: disable=unused-import
import adafruit_rgb_display.hx8357 as hx8357  # pylint: disable=unused-import
import adafruit_rgb_display.st7735 as st7735  # pylint: disable=unused-import
import adafruit_rgb_display.ssd1351 as ssd1351  # pylint: disable=unused-import
import adafruit_rgb_display.ssd1331 as ssd1331  # pylint: disable=unused-import

# Configuration for CS and DC pins (these are PiTFT defaults):
cs_pin = digitalio.DigitalInOut(board.CE0)
dc_pin = digitalio.DigitalInOut(board.D25)
reset_pin = digitalio.DigitalInOut(board.D24)

# Config for display baudrate (default max is 24mhz):
BAUDRATE = 24000000

# Setup SPI bus using hardware SPI:
spi = board.SPI()

# pylint: disable=line-too-long
# Create the display:
# disp = st7789.ST7789(spi, rotation=90,                            # 2.0" ST7789
# disp = st7789.ST7789(spi, height=240, y_offset=80, rotation=180,  # 1.3", 1.54" ST7789
# disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x_offset=53, y_offset=40, # 
1.14" ST7789
# disp = hx8357.HX8357(spi, rotation=180,                           # 3.5" HX8357
# disp = st7735.ST7735R(spi, rotation=90,                           # 1.8" ST7735R
# disp = st7735.ST7735R(spi, rotation=270, height=128, x_offset=2, y_offset=3,   # 1.44" ST7735R
# disp = st7735.ST7735R(spi, rotation=90, bgr=True,                 # 0.96" MiniTFT ST7735R
# disp = ssd1351.SSD1351(spi, rotation=180,                         # 1.5" SSD1351
# disp = ssd1351.SSD1351(spi, height=96, y_offset=32, rotation=180, # 1.27" SSD1351
# disp = ssd1331.SSD1331(spi, rotation=180,                         # 0.96" SSD1331
disp = ili9341.ILI9341(
    spi,
    rotation=90,  # 2.2", 2.4", 2.8", 3.2" ILI9341
    cs=cs_pin,
    dc=dc_pin,
    rst=reset_pin,

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 29 of 46



    rst=reset_pin,
    baudrate=BAUDRATE,
)
# pylint: enable=line-too-long

# Create blank image for drawing.
# Make sure to create image with mode 'RGB' for full color.
if disp.rotation % 180 == 90:
    height = disp.width  # we swap height/width to rotate it to landscape!
    width = disp.height
else:
    width = disp.width  # we swap height/width to rotate it to landscape!
    height = disp.height
image = Image.new("RGB", (width, height))

# Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

# Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))
disp.image(image)

image = Image.open("blinka.jpg")

# Scale the image to the smaller screen dimension
image_ratio = image.width / image.height
screen_ratio = width / height
if screen_ratio < image_ratio:
    scaled_width = image.width * height // image.height
    scaled_height = height
else:
    scaled_width = width
    scaled_height = image.height * width // image.width
image = image.resize((scaled_width, scaled_height), Image.BICUBIC)

# Crop and center the image
x = scaled_width // 2 - width // 2
y = scaled_height // 2 - height // 2
image = image.crop((x, y, x + width, y + height))

# Display image.
disp.image(image)

So we start with our usual imports including a couple of Pillow modules and the display drivers. That is

followed by defining a few pins here. The reason we chose these is because they allow you to use the

same code with the PiTFT if you chose to do so.

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 30 of 46



import digitalio
import board
from PIL import Image, ImageDraw
import adafruit_rgb_display.ili9341 as ili9341
import adafruit_rgb_display.st7789 as st7789
import adafruit_rgb_display.hx8357 as hx8357
import adafruit_rgb_display.st7735 as st7735
import adafruit_rgb_display.ssd1351 as ssd1351
import adafruit_rgb_display.ssd1331 as ssd1331

# Configuration for CS and DC pins
cs_pin = digitalio.DigitalInOut(board.CE0)
dc_pin = digitalio.DigitalInOut(board.D25)
reset_pin = digitalio.DigitalInOut(board.D24)

Next we'll set the baud rate from the default 24 MHz so that it works on a variety of displays. The

exception to this is the SSD1351 driver, which will automatically limit it to 16MHz even if you pass 24MHz.

We'll set up out SPI bus and then initialize the display.

We wanted to make these examples work on as many displays as possible with very few changes. The

ILI9341 display is selected by default. For other displays, go ahead and comment out the line that starts

with:

disp = ili9341.ILI9341(spi,

and uncomment the line appropriate for your display. The displays have a rotation property so that it can

be set in just one place.

# Config for display baudrate (default max is 24mhz):
BAUDRATE = 24000000

# Setup SPI bus using hardware SPI:
spi = board.SPI()

#disp = st7789.ST7789(spi, rotation=90,                            # 2.0" ST7789
#disp = st7789.ST7789(spi, height=240, y_offset=80, rotation=180,  # 1.3", 1.54" ST7789
#disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x_offset=53, y_offset=40, # 1.14" 
ST7789
#disp = hx8357.HX8357(spi, rotation=180,                           # 3.5" HX8357
#disp = st7735.ST7735R(spi, rotation=90,                           # 1.8" ST7735R
#disp = st7735.ST7735R(spi, rotation=270, height=128, x_offset=2, y_offset=3,   # 1.44" ST7735R
#disp = st7735.ST7735R(spi, rotation=90, bgr=True,                 # 0.96" MiniTFT ST7735R
#disp = ssd1351.SSD1351(spi, rotation=180,                         # 1.5" SSD1351
#disp = ssd1351.SSD1351(spi, height=96, y_offset=32, rotation=180, # 1.27" SSD1351
#disp = ssd1331.SSD1331(spi, rotation=180,                         # 0.96" SSD1331
disp = ili9341.ILI9341(spi, rotation=90,                           # 2.2", 2.4", 2.8", 3.2" 
ILI9341
                       cs=cs_pin, dc=dc_pin, rst=reset_pin, baudrate=BAUDRATE)

Next we read the current rotation setting of the display and if it is 90 or 270 degrees, we need to swap

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 31 of 46



the width and height for our calculations, otherwise we just grab the width and height. We will create an

image  with our dimensions and use that to create a draw  object. The draw  object will have all of our

drawing functions.

# Create blank image for drawing.
# Make sure to create image with mode 'RGB' for full color.
if disp.rotation % 180 == 90:
    height = disp.width   # we swap height/width to rotate it to landscape!
    width = disp.height
else:
    width = disp.width   # we swap height/width to rotate it to landscape!
    height = disp.height
image = Image.new('RGB', (width, height))
 
# Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Next we clear whatever is on the screen by drawing a black rectangle. This isn't strictly necessary since it

will be overwritten by the image, but it kind of sets the stage.

# Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))
disp.image(image)

Next we open the Blinka image, which we've named blinka.jpg, which assumes it is in the same directory

that you are running the script from. Feel free to change it if it doesn't match your configuration.

image = Image.open("blinka.jpg")

Here's where it starts to get interesting. We want to scale the image so that it matches either the width or

height of the display, depending on which is smaller, so that we have some of the image to chop off when

we crop it. So we start by calculating the width to height ration of both the display and the image. If the

height is the closer of the dimensions, we want to match the image height to the display height and let it

be a bit wider than the display. Otherwise, we want to do the opposite.

Once we've figured out how we're going to scale it, we pass in the new dimensions and using a Bicubic

rescaling method, we reassign the newly rescaled image back to image . Pillow has quite a few different

methods to choose from, but Bicubic does a great job and is reasonably fast.

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 32 of 46



# Scale the image to the smaller screen dimension
image_ratio = image.width / image.height
screen_ratio = width / height
if screen_ratio < image_ratio:
    scaled_width = image.width * height // image.height
    scaled_height = height
else:
    scaled_width = width
    scaled_height = image.height * width // image.width
image = image.resize((scaled_width, scaled_height), Image.BICUBIC)

Next we want to figure the starting x and y points of the image where we want to begin cropping it so that

it ends up centered. We do that by using a standard centering function, which is basically requesting the

difference of the center of the display and the center of the image. Just like with scaling, we replace the

image  variable with the newly cropped image.

# Crop and center the image
x = scaled_width // 2 - width // 2
y = scaled_height // 2 - height // 2
image = image.crop((x, y, x + width, y + height))

Finally, we take our image and display it. At this point, the image should have the exact same dimensions

at the display and fill it completely.

disp.image(image)

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 33 of 46



Drawing Shapes and Text

In the next example, we'll take a look at drawing shapes and text. This is very similar to the displayio

example, but it uses Pillow instead. Here's the code for that.

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
# SPDX-License-Identifier: MIT

"""
This demo will draw a few rectangles onto the screen along with some text
on top of that.

This example is for use on (Linux) computers that are using CPython with
Adafruit Blinka to support CircuitPython libraries. CircuitPython does
not support PIL/pillow (python imaging library)!

Author(s): Melissa LeBlanc-Williams for Adafruit Industries
"""

import digitalio
import board
from PIL import Image, ImageDraw, ImageFont
import adafruit_rgb_display.ili9341 as ili9341
import adafruit_rgb_display.st7789 as st7789  # pylint: disable=unused-import
import adafruit_rgb_display.hx8357 as hx8357  # pylint: disable=unused-import
import adafruit_rgb_display.st7735 as st7735  # pylint: disable=unused-import
import adafruit_rgb_display.ssd1351 as ssd1351  # pylint: disable=unused-import
import adafruit_rgb_display.ssd1331 as ssd1331  # pylint: disable=unused-import

# First define some constants to allow easy resizing of shapes.
BORDER = 20
FONTSIZE = 24

# Configuration for CS and DC pins (these are PiTFT defaults):
cs_pin = digitalio.DigitalInOut(board.CE0)
dc_pin = digitalio.DigitalInOut(board.D25)
reset_pin = digitalio.DigitalInOut(board.D24)

# Config for display baudrate (default max is 24mhz):
BAUDRATE = 24000000

# Setup SPI bus using hardware SPI:
spi = board.SPI()

# pylint: disable=line-too-long
# Create the display:
# disp = st7789.ST7789(spi, rotation=90,                            # 2.0" ST7789
# disp = st7789.ST7789(spi, height=240, y_offset=80, rotation=180,  # 1.3", 1.54" ST7789
# disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x_offset=53, y_offset=40, # 
1.14" ST7789
# disp = hx8357.HX8357(spi, rotation=180,                           # 3.5" HX8357
# disp = st7735.ST7735R(spi, rotation=90,                           # 1.8" ST7735R
# disp = st7735.ST7735R(spi, rotation=270, height=128, x_offset=2, y_offset=3,   # 1.44" ST7735R
# disp = st7735.ST7735R(spi, rotation=90, bgr=True,                 # 0.96" MiniTFT ST7735R
# disp = ssd1351.SSD1351(spi, rotation=180,                         # 1.5" SSD1351

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 34 of 46



# disp = ssd1351.SSD1351(spi, rotation=180,                         # 1.5" SSD1351
# disp = ssd1351.SSD1351(spi, height=96, y_offset=32, rotation=180, # 1.27" SSD1351
# disp = ssd1331.SSD1331(spi, rotation=180,                         # 0.96" SSD1331
disp = ili9341.ILI9341(
    spi,
    rotation=90,  # 2.2", 2.4", 2.8", 3.2" ILI9341
    cs=cs_pin,
    dc=dc_pin,
    rst=reset_pin,
    baudrate=BAUDRATE,
)
# pylint: enable=line-too-long

# Create blank image for drawing.
# Make sure to create image with mode 'RGB' for full color.
if disp.rotation % 180 == 90:
    height = disp.width  # we swap height/width to rotate it to landscape!
    width = disp.height
else:
    width = disp.width  # we swap height/width to rotate it to landscape!
    height = disp.height

image = Image.new("RGB", (width, height))

# Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

# Draw a green filled box as the background
draw.rectangle((0, 0, width, height), fill=(0, 255, 0))
disp.image(image)

# Draw a smaller inner purple rectangle
draw.rectangle(
    (BORDER, BORDER, width - BORDER - 1, height - BORDER - 1), fill=(170, 0, 136)
)

# Load a TTF Font
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", FONTSIZE)

# Draw Some Text
text = "Hello World!"
(font_width, font_height) = font.getsize(text)
draw.text(
    (width // 2 - font_width // 2, height // 2 - font_height // 2),
    text,
    font=font,
    fill=(255, 255, 0),
)

# Display image.
disp.image(image)

Just like in the last example, we'll do our imports, but this time we're including the ImageFont  Pillow

module because we'll be drawing some text this time.

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 35 of 46



import digitalio
import board
from PIL import Image, ImageDraw, ImageFont
import adafruit_rgb_display.ili9341 as ili9341

Next we'll define some parameters that we can tweak for various displays. The BORDER  will be the size

in pixels of the green border between the edge of the display and the inner purple rectangle. The

FONTSIZE  will be the size of the font in points so that we can adjust it easily for different displays.

BORDER = 20
FONTSIZE = 24

Next, just like in the previous example, we will set up the display, setup the rotation, and create a draw

object. If you have are using a different display than the ILI9341, go ahead and adjust your initializer as

explained in the previous example. After that, we will setup the background with a green rectangle that

takes up the full screen. To get green, we pass in a tuple that has our Red, Green, and Blue color values

in it in that order which can be any integer from 0  to 255 .

draw.rectangle((0, 0, width, height), fill=(0, 255, 0))
disp.image(image)

Next we will draw an inner purple rectangle. This is the same color value as our example in displayio

quickstart, except the hexadecimal values have been converted to decimal. We use the BORDER
parameter to calculate the size and position that we want to draw the rectangle.

draw.rectangle((BORDER, BORDER, width - BORDER - 1, height - BORDER - 1),
               fill=(170, 0, 136))

Next we'll load a TTF font. The DejaVuSans.ttf  font should come preloaded on your Pi in the location in

the code. We also make use of the FONTSIZE  parameter that we discussed earlier.

# Load a TTF Font
font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf', FONTSIZE)

Now we draw the text Hello World onto the center of the display. You may recognize the centering

calculation was the same one we used to center crop the image in the previous example. In this example

though, we get the font size values using the getsize()  function of the font object.

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 36 of 46



# Draw Some Text
text = "Hello World!"
(font_width, font_height) = font.getsize(text)
draw.text((width//2 - font_width//2, height//2 - font_height//2),
          text, font=font, fill=(255, 255, 0))

Finally, just like before, we display the image.

disp.image(image)

Displaying System Information

In this last example we'll take a look at getting the system information and displaying it. This can be very

handy for system monitoring. Here's the code for that example:

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
# SPDX-License-Identifier: MIT

"""
This will show some Linux Statistics on the attached display. Be sure to adjust
to the display you have connected. Be sure to check the learn guides for more
usage information.

This example is for use on (Linux) computers that are using CPython with
Adafruit Blinka to support CircuitPython libraries. CircuitPython does
not support PIL/pillow (python imaging library)!
"""

import time

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 37 of 46



import time
import subprocess
import digitalio
import board
from PIL import Image, ImageDraw, ImageFont
import adafruit_rgb_display.ili9341 as ili9341
import adafruit_rgb_display.st7789 as st7789  # pylint: disable=unused-import
import adafruit_rgb_display.hx8357 as hx8357  # pylint: disable=unused-import
import adafruit_rgb_display.st7735 as st7735  # pylint: disable=unused-import
import adafruit_rgb_display.ssd1351 as ssd1351  # pylint: disable=unused-import
import adafruit_rgb_display.ssd1331 as ssd1331  # pylint: disable=unused-import

# Configuration for CS and DC pins (these are PiTFT defaults):
cs_pin = digitalio.DigitalInOut(board.CE0)
dc_pin = digitalio.DigitalInOut(board.D25)
reset_pin = digitalio.DigitalInOut(board.D24)

# Config for display baudrate (default max is 24mhz):
BAUDRATE = 24000000

# Setup SPI bus using hardware SPI:
spi = board.SPI()

# pylint: disable=line-too-long
# Create the display:
# disp = st7789.ST7789(spi, rotation=90,                            # 2.0" ST7789
# disp = st7789.ST7789(spi, height=240, y_offset=80, rotation=180,  # 1.3", 1.54" ST7789
# disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x_offset=53, y_offset=40, # 
1.14" ST7789
# disp = hx8357.HX8357(spi, rotation=180,                           # 3.5" HX8357
# disp = st7735.ST7735R(spi, rotation=90,                           # 1.8" ST7735R
# disp = st7735.ST7735R(spi, rotation=270, height=128, x_offset=2, y_offset=3,   # 1.44" ST7735R
# disp = st7735.ST7735R(spi, rotation=90, bgr=True,                 # 0.96" MiniTFT ST7735R
# disp = ssd1351.SSD1351(spi, rotation=180,                         # 1.5" SSD1351
# disp = ssd1351.SSD1351(spi, height=96, y_offset=32, rotation=180, # 1.27" SSD1351
# disp = ssd1331.SSD1331(spi, rotation=180,                         # 0.96" SSD1331
disp = ili9341.ILI9341(
    spi,
    rotation=90,  # 2.2", 2.4", 2.8", 3.2" ILI9341
    cs=cs_pin,
    dc=dc_pin,
    rst=reset_pin,
    baudrate=BAUDRATE,
)
# pylint: enable=line-too-long

# Create blank image for drawing.
# Make sure to create image with mode 'RGB' for full color.
if disp.rotation % 180 == 90:
    height = disp.width  # we swap height/width to rotate it to landscape!
    width = disp.height
else:
    width = disp.width  # we swap height/width to rotate it to landscape!
    height = disp.height

image = Image.new("RGB", (width, height))

# Get drawing object to draw on image.

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 38 of 46



# Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

# Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))
disp.image(image)

# First define some constants to allow easy positioning of text.
padding = -2
x = 0

# Load a TTF font.  Make sure the .ttf font file is in the
# same directory as the python script!
# Some other nice fonts to try: http://www.dafont.com/bitmap.php
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 24)

while True:
    # Draw a black filled box to clear the image.
    draw.rectangle((0, 0, width, height), outline=0, fill=0)

    # Shell scripts for system monitoring from here:
    # https://unix.stackexchange.com/questions/119126/command-to-display-memory-usage-disk-
usage-and-cpu-load
    cmd = "hostname -I | cut -d' ' -f1"
    IP = "IP: " + subprocess.check_output(cmd, shell=True).decode("utf-8")
    cmd = "top -bn1 | grep load | awk '{printf \"CPU Load: %.2f\", $(NF-2)}'"
    CPU = subprocess.check_output(cmd, shell=True).decode("utf-8")
    cmd = "free -m | awk 'NR==2{printf \"Mem: %s/%s MB  %.2f%%\", $3,$2,$3*100/$2 }'"
    MemUsage = subprocess.check_output(cmd, shell=True).decode("utf-8")
    cmd = 'df -h | awk \'$NF=="/"{printf "Disk: %d/%d GB  %s", $3,$2,$5}\''
    Disk = subprocess.check_output(cmd, shell=True).decode("utf-8")
    cmd = "cat /sys/class/thermal/thermal_zone0/temp |  awk '{printf \"CPU Temp: %.1f C\", $(NF-
0) / 1000}'"  # pylint: disable=line-too-long
    Temp = subprocess.check_output(cmd, shell=True).decode("utf-8")

    # Write four lines of text.
    y = padding
    draw.text((x, y), IP, font=font, fill="#FFFFFF")
    y += font.getsize(IP)[1]
    draw.text((x, y), CPU, font=font, fill="#FFFF00")
    y += font.getsize(CPU)[1]
    draw.text((x, y), MemUsage, font=font, fill="#00FF00")
    y += font.getsize(MemUsage)[1]
    draw.text((x, y), Disk, font=font, fill="#0000FF")
    y += font.getsize(Disk)[1]
    draw.text((x, y), Temp, font=font, fill="#FF00FF")

    # Display image.
    disp.image(image)
    time.sleep(0.1)

Just like the last example, we'll start by importing everything we imported, but we're adding two more

imports. The first one is time  so that we can add a small delay and the other is subprocess  so we can

gather some system information.

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 39 of 46



import time
import subprocess
import digitalio
import board
from PIL import Image, ImageDraw, ImageFont
import adafruit_rgb_display.ili9341 as ili9341

Next, just like in the first two examples, we will set up the display, setup the rotation, and create a draw

object. If you have are using a different display than the ILI9341, go ahead and adjust your initializer as

explained in the previous example.

Just like in the first example, we're going to draw a black rectangle to fill up the screen. After that, we're

going to set up a couple of constants to help with positioning text. The first is the padding  and that will be

the Y-position of the top-most text and the other is x  which is the X-Position and represents the left side

of the text.

# First define some constants to allow easy positioning of text.
padding = -2
x = 0

Next, we load a font just like in the second example.

font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf', 24)

Now we get to the main loop and by using while True: , it will loop until Control+C is pressed on the

keyboard. The first item inside here, we clear the screen, but notice that instead of giving it a tuple like

before, we can just pass 0  and it will draw black.

draw.rectangle((0, 0, width, height), outline=0, fill=0)

Next, we run a few scripts using the subprocess  function that get called to the Operating System to get

information. The in each command is passed through awk in order to be formatted better for the display.

By having the OS do the work, we don't have to. These little scripts came from
https://unix.stackexchange.com/questions/119126/command-to-display-memory-usage-disk-usage-and-cpu-load

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 40 of 46



cmd = "hostname -I | cut -d\' \' -f1"
IP = "IP: "+subprocess.check_output(cmd, shell=True).decode("utf-8")
cmd = "top -bn1 | grep load | awk '{printf \"CPU Load: %.2f\", $(NF-2)}'"
CPU = subprocess.check_output(cmd, shell=True).decode("utf-8")
cmd = "free -m | awk 'NR==2{printf \"Mem: %s/%s MB  %.2f%%\", $3,$2,$3*100/$2 }'"
MemUsage = subprocess.check_output(cmd, shell=True).decode("utf-8")
cmd = "df -h | awk '$NF==\"/\"{printf \"Disk: %d/%d GB  %s\", $3,$2,$5}'"
Disk = subprocess.check_output(cmd, shell=True).decode("utf-8")
cmd = "cat /sys/class/thermal/thermal_zone0/temp |  awk \'{printf \"CPU Temp: %.1f C\", $(NF-0) 
/ 1000}\'" # pylint: disable=line-too-long
Temp = subprocess.check_output(cmd, shell=True).decode("utf-8")

Now we display the information for the user. Here we use yet another way to pass color information. We

can pass it as a color string using the pound symbol, just like we would with HTML. With each line, we take

the height of the line using getsize()  and move the pointer down by that much.

y = padding
draw.text((x, y), IP, font=font, fill="#FFFFFF")
y += font.getsize(IP)[1]
draw.text((x, y), CPU, font=font, fill="#FFFF00")
y += font.getsize(CPU)[1]
draw.text((x, y), MemUsage, font=font, fill="#00FF00")
y += font.getsize(MemUsage)[1]
draw.text((x, y), Disk, font=font, fill="#0000FF")
y += font.getsize(Disk)[1]
draw.text((x, y), Temp, font=font, fill="#FF00FF")

Finally, we write all the information out to the display using disp.image() . Since we are looping, we tell

Python to sleep for 0.1  seconds so that the CPU never gets too busy.

disp.image(image)
time.sleep(.1)

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 41 of 46



 

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 42 of 46



Downloads

Files
Mini PiTFT display EagleCAD files on GitHub  (https://adafru.it/GfZ)

Datasheets

https://adafru.it/GfV

https://adafru.it/GfW

Schematic

https://adafru.it/GfV

https://adafru.it/GfW

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 43 of 46

https://github.com/adafruit/Adafruit-Mini-PiTFT-240x135-TFT-PCB
https://cdn-learn.adafruit.com/assets/assets/000/082/881/original/C13930-001_1.14__ZJY114IPS_datasheet.pdf?1571860941
https://cdn-learn.adafruit.com/assets/assets/000/082/882/original/ST7789VW_SPEC_V1.0.pdf?1571860977


Schematic and Fab print for 1.3" MiniTFT

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 44 of 46



 

© Adafruit Industries https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi Page 45 of 46



© Adafruit Industries Last Updated: 2021-09-23 01:52:00 PM EDT Page 46 of 46


	Guide Contents
	Overview
	Pinouts
	1.14" 240x135 Kernel Module Install
	Prepare the Pi!
	1.3" 240x240 Kernel Module Install
	Prepare the Pi!
	Kernel Module Troubleshooting
	BrainCraft Audio Driver Reinstall
	Unpinning the Kernel

	Python Setup
	Attaching
	Setup
	Python Installation of RGB Display Library
	DejaVu TTF Font
	Pillow Library
	NumPy Library

	Quickstart Button Test
	Python Stats Example
	Modifications for the 1.3" Display
	Running Stats on Boot
	Troubleshooting Stats on Boot

	Python Usage
	Turning on the Backlight
	Displaying an Image
	Drawing Shapes and Text
	Displaying System Information

	Downloads
	Files
	Datasheets
	Schematic
	Schematic and Fab print for 1.3" MiniTFT

