
Monochrome OLED Breakouts
Created by lady ada

Last updated on 2021-03-18 12:39:43 PM EDT

2
4
7
7
7
7
9
9
9

11
14
14
14
15
15
15
16
18
18
20
20
22
22
25
25
25
25
26
26
28
29
29
29
30
30
30
30
31
31
37
38
38
38
38
39
39
40
41
42

Guide Contents

Guide Contents
Overview
Power Requirements

OLED Power Requirements
5V- ready 128x64 and 128x32 OLEDs
0.96" 128x64 OLED

Arduino Library & Examples
Install Arduino Libraries
Run Demo!

Create Bitmaps
Wiring 128x64 OLEDs

Solder Header
I2C or SPI

Using with I2C
Converting From I2C to SPI Mode
Wiring It Up!
Using with SPI

Wiring 128x32 SPI OLED display
128x32 SPI OLED

Wiring 128x32 I2C Display
128x32 I2C OLED

Wiring OLD 0.96" 128x64 OLED
128x64 Version 1.0 OLED

CircuitPython Wiring
Adafruit OLED FeatherWing
Adafruit 128x32 I2C OLED Display
Adafruit 128x32 SPI OLED Display
Adafruit 0.96" 128x64 OLED Display STEMMA QT Version - I2C Wiring
Adafruit 0.96" or 1.3" 128x64 OLED Display Original Version - I2C Wiring
Adafruit 0.96" or 1.3" 128x64 OLED Display - SPI Wiring

CircuitPython Setup
CircuitPython Installation of DisplayIO SSD1306 Library

Code Example Additional Libraries
CircuitPython Usage
I2C Initialization

128 x 64 size OLEDs (or changing the I2C address)
Adding hardware reset pin

SPI Initialization
Example Code

Where to go from here
Python Wiring

Adafruit PIOLED
Adafruit 128x64 OLED Bonnet for Raspberry Pi
Adafruit 128x32 I2C OLED Display
Adafruit 0.96" 128x64 OLED Display STEMMA QT Version - I2C Wiring
Adafruit 0.96" or 1.3" 128x64 OLED Display Original Version - I2C Wiring
Adafruit 128x32 SPI OLED Display
Adafruit 0.96" or 1.3" 128x64 OLED Display - SPI Wiring

Python Setup

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 2 of 60

42
42
42
44
44
44
44
45
45
51
51
51
52
52
52
52
52
53
54
55
56
57
58

Python Installation of SSD1306 Library
Pillow Library
Speeding up the Display on Raspberry Pi

Python Usage
I2C Initialization

128 x 64 size OLEDs (or changing the I2C address)
Adding hardware reset pin

SPI Initialization
Example Code
Troubleshooting

Display does not work on initial power but does work after a reset.
Display is showing burn in on some pixels.

Downloads
Software
Datasheets
Files
Schematic & Fabrication Print for 0.96" OLED - STEMMA QT version
Schematic & Fabrication Print for 0.96" OLED - Original version
Schematic & Fabrication Print for 1.3" OLED
Schematic & Fabrication Print for 1.3" OLED STEMMA QT
Schematic & Fabrication Print for 0.91" 128x32 I2C
Schematic & Fabrication Print for 0.91" 128x32 I2C STEMMA QT
Schematic & Fabrication Print for 0.91" 128x32 SPI

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 3 of 60

Overview

This is a quick tutorial for our 128x64 and 128x32 pixel monochrome OLED displays. These displays are

small, only about 1" diagonal, but very readable due to the high contrast of an OLED display. Each OLED

display is made of 128x64 or 128x32 individual white OLEDs, each one is turned on or off by the controller

chip. Because the display makes its own light, no backlight is required. This reduces the power required to

run the OLED and is why the display has such high contrast; we really like this miniature display for its

crispness!

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 4 of 60

The driver chip, SSD1306 can communicate in multiple ways including I2C, SPI and 8-bit parallel.

However, only the 128x64 display has all these interfaces available. For the 128x32 OLED, only SPI is

available. Frankly, we prefer SPI since its the most flexible and uses a small number of I/O pins so our

example code and wiring diagram will use that.

For the 0.96" STEMMA QT version, we've updated the design to add auto-reset circuitry so that the reset

pin is optional, since it speaks I2C you can easily connect it up with just two wires (plus power and

ground!). We've even included SparkFun qwiic (https://adafru.it/Fpw) compatible STEMMA

QT (https://adafru.it/Ft4) connectors for the I2C bus so you don't even need to solder!

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 5 of 60

https://www.sparkfun.com/qwiic
https://learn.adafruit.com/introducing-adafruit-stemma-qt

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 6 of 60

Power Requirements
OLED Power Requirements
The OLED and driver require a 3.3V power supply and 3.3V logic levels for communication. The power

requirements depend a little on how much of the display is lit but on average the display uses about

20mA from the 3.3V supply. Built into the OLED driver is a simple switch-cap charge pump that turns 3.3v-

5v into a high voltage drive for the OLEDs. You can run the entire display off of one 3.3V supply or use

3.3V for the chip power and up to 4.5V for the OLED charge pump or 3.3V for the chip power and a 7-9V

supply directly into the OLED high voltage pin.

5V- ready 128x64 and 128x32 OLEDs
Unless you have the older v1 128x64 OLED, you can rest assured that your OLED is 5V ready. All 1.3"

128x64 and the small 128x32 SPI and I2C are 5V ready, if you have a v2 0.96" 128x64 OLED with the 5V

ready mark on the front, it's also 5V safe. If you have an older 0.96" OLED (see below) you'll need to take

extra care when wiring it to a 5V micontroller. The OLED is designed to be 5V compatible so you can

power it with 3-5V and the onboard regulator will take care of the rest.

All OLEDs are safe to use with 3.3V logic and power.

Simply connect GND to ground, and Vin to a 3 to 5V power supply. There will be a 3.3V output on

the 3Vo pin in case you want a regulated 3.3V supply for something else.

0.96" 128x64 OLED
The older 0.96" 128x64 OLED is a little more complex to get running as it is not 5V compatible by default,

so you have to provide it with 3.3V power.

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 7 of 60

VDD is the 3.3V logic power. This must be 3 or 3.3V

VBAT is the input to the charge pump. If you use the charge pump, this must be 3.3V to 4.2V

VCC is the high voltage OLED pin. If you're using the internal charge pump, this must be left

unconnected. If you're not using the charge pump, connect this to a 7-9V DC power supply.

For most users, we suggest connecting VDD and VBAT together to 3.3V and then

leaving VCC unconnected.

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 8 of 60

Arduino Library & Examples
For all of the different kinds of small OLED monochrome displays, you'll need to install the Arduino

libraries. The code we have is for any kind of Arduino, if you're using a different microcontroller, the code

is pretty simple to adapt, the interface we use is basic bit-twiddling SPI or I2C

Install Arduino Libraries
Using these OLEDs with Arduino sketches requires that two libraries be installed: Adafruit_SSD1306,

which handles the low-level communication with the hardware, and Adafruit_GFX, which builds atop this

to add graphics functions like lines, circles and text.

In recent versions of the Arduino IDE software (1.6.2 and later), this is most easily done through the

Arduino Library Manager.

Open up the Arduino library manager:

Search for the Adafruit SSD1306 library and install it

Search for the Adafruit GFX library and install it

If using an earlier version of the Arduino IDE (prior to 1.8.10), also locate and install Adafruit_BusIO (newer

versions will install this dependency automatically).

We also have a great tutorial on Arduino library installation here:

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://adafru.it/aYM)

Run Demo!
After installing the Adafruit_SSD1306 and Adafruit_GFX library, restart the Arduino IDE. You should now

be able to access the sample code by navigating through menus in this order:

File→Sketchbook→Libraries→Adafruit_SSD1306→SSD1306...

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 9 of 60

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

After you've finished wiring the display as indicated on the following pages, load the example sketch to

demonstrate the capabilities of the library and display.

The OLED SSD1306 driver is based on the Adafruit GFX library which provides all the underlying graphics

functions such as drawing pixels, lines, circles, etc. For more details about what you can do with the OLED

check out the GFX library tutorial (https://adafru.it/aPx)

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 10 of 60

http://learn.adafruit.com/adafruit-gfx-graphics-library

Create Bitmaps
You can create bitmaps to display easily with the LCD assistant software (https://adafru.it/aPs). First make

your image using any kind of graphics software such as photoshop or Paint and save as a Monochrome

Bitmap (bmp)

Select the following options (You might also want to try Horizontal if Vertical is not coming out right)

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 11 of 60

http://en.radzio.dxp.pl/bitmap_converter/

and import your monochrome bitmap image. Save the output to a cpp file

You can use the output directly with our example code

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 12 of 60

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 13 of 60

Wiring 128x64 OLEDs
Solder Header

Before you start wiring, a strip of header must be soldered onto the OLED. It is not possible to "press-fit"

the header, it must be attached!

Start by placing an 8-pin piece of header with the long ends

down into a breadboard for stability

Place the OLED on top so all the short ends of the header

stick thru the header pads

Finish by soldering each of the 8 pins to the 8 pads!

I2C or SPI
The nice thing about the 128x64 OLEDs is that they can be used with I2C (+ an optional reset line) or SPI.

SPI is generally faster than I2C but uses more pins. It's also easier for some microcontrollers to use SPI.

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 14 of 60

https://learn.adafruit.com//assets/2616
https://learn.adafruit.com//assets/2617
https://learn.adafruit.com//assets/2618

Anyways, you can use either one with this display

Using with I2C
The display can be used with any I2C microcontroller. Because the I2C interface is for 'writing' to the

display only, you'll still have to buffer the entire 512 byte frame in the microcontroller RAM - you can't read

data from the OLED (even though I2C is a bidirectional protocol).

If you have the older non-STEMMA version of the OLED, you'll

need to solder the two jumpers on the back of the OLED.

Both must be soldered 'closed' for I2C to work!

For the new STEMMA-capable version, the J1 and J2 jumpers

are closed so that the display is by default in I2C mode!

There's a typo on the board, to put it into SPI, open the two

jumpers (as they're closed by default)

Converting From I2C to SPI Mode
The original version of this display was SPI by default, and you could convert to I2C with some light

soldering. Many folks using these displays did not know how to solder, didn't own an iron or were not

comfortable with soldering, so we converted the board to STEMMA QT 'plug and play' I2C so no soldering

is required to use in I2C mode.

To convert it back to SPI is very easy, and requires a thin screwdriver or other sharp-tipped item be

careful not to cut towards you as always so you do not accidentally cut yourself!

Wiring It Up!

� For the STEMMA QT version of this board, you do not need to connect RST - this revision added

auto-reset circuitry so the RESET pin is not required.

Finally, connect the pins to your Arduino

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 15 of 60

https://learn.adafruit.com//assets/93883
https://learn.adafruit.com//assets/86658

GND goes to ground (black wire on STEMMA QT version)

Vin goes to 5V (red wire on STEMMA QT version)

Data to I2C SDA (on the Uno, this is A4 on the Mega it is 20 and on the Leonardo digital 2) (blue

wire on STEMMA QT version)

Clk to I2C SCL (on the Uno, this is A5 on the Mega it is 21 and on the Leonardo digital 3) (yellow wire

on STEMMA QT version)

RST to digital 4 (you can change this pin in the code, later) (Not necessary on 0.96" STEMMA QT

version)

This matches the example code we have written. Once you get this working, you can try a different Reset

pin (you can't change the SDA and SCL pins).

Finally you can run the File→Sketchbook→Libraries→Adafruit_SSD1306→SSD1306_128x64_i2c example

Using with SPI
The breakouts are ready for SPI by default, but if you used them for I2C at some point, you'll need to

remove the solder jumpers. Use wick or a solder sucker to make sure both are clear!

If you have the older non-STEMMA version of the OLED, the

breakouts are ready for SPI by default.

If you used them for I2C at some point, you'll need to remove

the solder jumpers. Use wick or a solder sucker to make sure

both are clear!

If you have the newer STEMMA QT version cut the two

jumpers instead!

Finally, connect the pins to your Arduino -

GND goes to ground

Vin goes to 5V

DATA to digital 9

CLK to digital 10

D/C to digital 11

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 16 of 60

https://learn.adafruit.com//assets/2619
https://learn.adafruit.com//assets/86687

RST to digital 13

CS to digital 12

(Note: If using the display with other SPI devices, D/C, CLK and DAT may be shared, but CS must be
unique for each device.)

This matches the example code we have written. Once you get this working, you can try another set of

pins.

Finally you can run the File→Sketchbook→Libraries→Adafruit_SSD1306→SSD1306_128x64_spi example

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 17 of 60

Wiring 128x32 SPI OLED display
128x32 SPI OLED
The 128x32 SPI OLED is very easy to get up and running because it has built in level shifting. First up, take

a piece of 0.1" header 8 pins long.

Plug the header long end down into a breadboard and place the OLED on top. Solder the short pins into

the OLED PCB.

Finally, connect the pins to your Arduino - GND goes to ground, Vin goes to 5V, DATA to digital 9, CLK to

digital 10, D/C to digital 11, RST to digital 13 and finally CS to digital 12.

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 18 of 60

(Note: If using the display with other SPI devices, D/C, CLK and DAT may be shared, but CS must be
unique for each device.)

This matches the example code we have written. Once you get this working, you can try another set of

pins.

Finally you can run

the File→Sketchbook→Libraries→Adafruit_SSD1306→SSD1306_128x32_SPI example

� If you're using the 128x32 OLED, be sure to uncomment the "#define SSD1306_128_32" in the top of

Adafruit_SSD1306.h to change the buffer size

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 19 of 60

Wiring 128x32 I2C Display
128x32 I2C OLED
The 128x32 I2C OLED is very easy to get up and running because it has built in level shifting and

regulator. First up, take a piece of 0.1" header 6 pins long.

Plug the header long end down into a

breadboard

Place the OLED on top

Solder the short pins into the OLED PCB.

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 20 of 60

https://learn.adafruit.com//assets/1157
https://learn.adafruit.com//assets/1158
https://learn.adafruit.com//assets/1159

Finally, connect the pins to your Arduino

GND goes to ground

Vin goes to 5V

SDA to I2C Data SDA pin (on the Uno, this is A4 on the Mega it is 20 and on the Leonardo digital 2)

SCL to I2C Clock SCL pin (on the Uno, this is A5 on the Mega it is 21 and on the Leonardo digital 3)

RST to digital 4 (you can change this pin in the code, later)

This matches the example code we have written. Once you get this working, you can change the RST pin.

You cannot change the I2C pins, those are 'fixed' in hardware

Finally you can run the File→Sketchbook→Libraries→Adafruit_SSD1306→SSD1306_128x32_i2c example

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 21 of 60

Wiring OLD 0.96" 128x64 OLED
� This wiring diagram is only for the older 0.96" OLED that comes with a level shifter chip. If you did

not get a level shifter chip, you have a V2.0 so please check out the other wiring tutorial!

128x64 Version 1.0 OLED
The version 1 128x64 OLED runs at 3.3V and does not have a built in level shifter so you'll need to use a

level shifting chip to use with a 5V microcontroller. The following will assume that is the case. If you're

running a 3.3V microcontroller system, you can skip the level shifter.

We'll assume you want to use this in a breadboard, take a

piece of 0.1" header 10 pins long.

Place the header in a breadboard and then place the left

hand side of the OLED on top.

And solder the pins

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 22 of 60

https://learn.adafruit.com//assets/692
https://learn.adafruit.com//assets/694
https://learn.adafruit.com//assets/697

We'll be using the internal charge pump so

connect VDD and VBAT together (they will connect to

3.3V). GND goes to ground.

Place a CD4050 level shifter chip so pin one is at the top.

Connect pin 10 to D/C pin 12 to CLK (SPI clock) and pin 15

to DAT (SPI data).

Connect pin 2 to RES (reset) and pin 4 to CS (chip select). Pin

1 goes to 3.3V and pin 8 to ground.

(Note: If using the display with other SPI devices, D/C, CLK

and DAT may be shared, but CS must be unique for each

device.)

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 23 of 60

https://learn.adafruit.com//assets/700
https://learn.adafruit.com//assets/701
https://learn.adafruit.com//assets/702
https://learn.adafruit.com//assets/703

You can connect the inputs of the level shifter to any pins you

want but in this case we connected digital I/O 13 to pin 3 of

the level shifter, 12 to pin 5, 11 to pin 9, 10 to pin 11 and 9 to

pin 14. This matches the example code we have written. Once

you get this working, you can try another set of pins.

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 24 of 60

https://learn.adafruit.com//assets/704

CircuitPython Wiring
It's easy to use OLEDs with CircuitPython and the Adafruit CircuitPython DisplayIO

SSD1306 (https://adafru.it/FRA) module. This module allows you to easily write CircuitPython code to

control the display.

You can use this sensor with any CircuitPython microcontroller board.

We'll cover how to wire the OLED to your CircuitPython microcontroller board. First assemble your OLED.

Connect the OLED to your microcontroller board as shown below.

Adafruit OLED FeatherWing

Solder the Feather with female headers on top or

stacking headers.

Attach the OLED FeatherWing using the stacking

method.

Adafruit 128x32 I2C OLED Display

Microcontroller 3V to OLED VIN

Microcontroller GND to OLED GND

Microcontroller SCL to OLED SCL

Microcontroller SDA to OLED SDA

Microcontroller D9 to OLED RST

Adafruit 128x32 SPI OLED Display

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 25 of 60

https://github.com/adafruit/Adafruit_CircuitPython_DisplayIO_SSD1306
https://learn.adafruit.com//assets/68585
https://learn.adafruit.com//assets/68726

Microcontroller 3V to OLED VIN

Microcontroller GND to OLED GND

Microcontroller SCK to OLED CLK

Microcontroller MOSI to OLED Data

Microcontroller D5 to OLED CS

Microcontroller D6 to OLED D/C

Microcontroller D9 to OLED RST

Adafruit 0.96" 128x64 OLED Display STEMMA QT Version - I2C Wiring
You do not need to alter the jumpers on the back - I2C is the

default configuration on this display!

Microcontroller 3V to OLED Vin

Microcontroller GND to OLED Gnd

Microcontroller SCL to OLED Clk

Microcontroller SDA to OLED Data

Note: Connecting the OLED RST is not necessary as this

revision added auto-reset circuitry so the RESET pin is not

required.

Adafruit 0.96" or 1.3" 128x64 OLED Display Original Version - I2C
Wiring

� Check that the two jumpers are CLOSED on the back of the display to use with I2C

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 26 of 60

https://learn.adafruit.com//assets/68727
https://learn.adafruit.com//assets/93882

Microcontroller 3V to OLED Vin

Microcontroller GND to OLED Gnd

Microcontroller SCL to OLED Clk

Microcontroller SDA to OLED Data

Microcontroller D9 to OLED Rst

Adafruit 0.96" or 1.3" 128x64 OLED Display - SPI Wiring

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 27 of 60

https://learn.adafruit.com//assets/68737
https://learn.adafruit.com//assets/68738
https://learn.adafruit.com//assets/68755
https://learn.adafruit.com//assets/68756

� Check that the two jumpers are OPEN on the back of the display to use with SPI

Microcontroller 3V to OLED Vin

Microcontroller GND to OLED Gnd

Microcontroller SCK to OLED Clk

Microcontroller MOSI to OLED Data

Microcontroller D5 to OLED CS

Microcontroller D6 to OLED DC

Microcontroller D9 to OLED Rst

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 28 of 60

https://learn.adafruit.com//assets/68740
https://learn.adafruit.com//assets/68754

CircuitPython Setup
CircuitPython Installation of DisplayIO SSD1306
Library
To use the SSD1306 OLED with your Adafruit CircuitPython board you'll need to install the Adafruit

CircuitPython DisplayIO SSD1306 (https://adafru.it/FRA) module on your board.

First make sure you are running the latest version 5.0 or later of Adafruit

CircuitPython (https://adafru.it/Amd) for your board.

� You must be using CircuitPython 5 or later for this to work!

Next you'll need to install the necessary libraries to use the hardware--carefully follow the steps to find

and install these libraries from Adafruit's CircuitPython library bundle (https://adafru.it/uap). Our

CircuitPython starter guide has a great page on how to install the library bundle (https://adafru.it/ABU).

If you choose, you can manually install the libraries individually on your board:

adafruit_displayio_ssd1306

adafruit_bus_device

Before continuing make sure your board's lib folder or root filesystem has the

adafruit_displayio_ssd1306.mpy and adafruit_bus_device files and folders copied over.

Next connect to the board's serial REPL (https://adafru.it/Awz) so you are at the CircuitPython >>> prompt.

Code Example Additional Libraries
For the Code Example, you will need an additional library. We decided to make use of a library so the

code didn't get overly complicated.

https://adafru.it/FRB

Go ahead and install this in the same manner as the driver library by copying the adafruit_display_text

folder over to the lib folder on your CircuitPython device.

https://adafru.it/FRB

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 29 of 60

https://github.com/adafruit/Adafruit_CircuitPython_DisplayIO_SSD1306
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/the-repl
https://github.com/adafruit/Adafruit_CircuitPython_Display_Text/releases

CircuitPython Usage
� Displayio is only available on express board due to the smaller memory size on non-express boards.

It's easy to use OLEDs with Python and the Adafruit CircuitPython DisplayIO

SSD1306 (https://adafru.it/FRA) module. This module allows you to easily write Python code to control the

display.

To demonstrate the usage, we'll initialize the library and use Python code to control the OLED from the

board's Python REPL.

I2C Initialization
If your display is connected to the board using I2C (like if using a Feather and the FeatherWing OLED)

you'll first need to initialize the I2C bus. First import the necessary modules:

import board

Now for either board run this command to create the I2C instance using the default SCL and SDA pins

(which will be marked on the boards pins if using a Feather or similar Adafruit board):

i2c = board.I2C()

After initializing the I2C interface for your firmware as described above, you can create an instance of the

I2CDisplay bus:

import displayio
import adafruit_displayio_ssd1306
display_bus = displayio.I2CDisplay(i2c, device_address=0x3c)

Finally, you can pass the display_bus in and create an instance of the SSD1306 I2C driver by running:

display = adafruit_displayio_ssd1306.SSD1306(display_bus, width=128, height=32)

Now you should be seeing an image of the REPL. Note that the last two parameters to the SSD1306 class

initializer are the width and height of the display in pixels. Be sure to use the right values for the display

you're using!

128 x 64 size OLEDs (or changing the I2C address)
If you are using a 128x64 display, the I2C address is probably different (0x3d), unless you've changed it

by soldering some jumpers:

display_bus = displayio.I2CDisplay(i2c, device_address=0x3d)
display = adafruit_displayio_ssd1306.SSD1306(display_bus, width=128, height=64)

Adding hardware reset pin
If you have a reset pin (which may be required if your OLED does not have an auto-reset chip like the

FeatherWing) also pass in a reset pin like so:

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 30 of 60

https://github.com/adafruit/Adafruit_CircuitPython_DisplayIO_SSD1306

display_bus = displayio.I2CDisplay(i2c, device_address=0x3c, reset=board.D9)

At this point the I2C bus and display are initialized. Skip down to the example code section.

SPI Initialization
If your display is connected to the board using SPI you'll first need to initialize the SPI bus.

If you're using a microcontroller board, run the following commands:

import board
import displayio
import adafruit_displayio_ssd1306

displayio.release_displays()

spi = board.SPI()
tft_cs = board.D5
tft_dc = board.D6
tft_reset = board.D9

display_bus = displayio.FourWire(spi, command=tft_dc, chip_select=tft_cs,
 reset=tft_reset, baudrate=1000000)
display = adafruit_displayio_ssd1306.SSD1306(display_bus, width=128, height=64)

The parameters to the FourWire initializer are the pins connected to the display's DC, CS, and reset.

Because we are using keyword arguments, they can be in any position. Again make sure to use the right

pin names as you have wired up to your board!

Note that the last two parameters to the SSD1306 class initializer are the width and height of the display

in pixels. Be sure to use the right values for the display you're using!

Example Code
SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

"""
This test will initialize the display using displayio and draw a solid white
background, a smaller black rectangle, and some white text.
"""

import board
import displayio
import terminalio
from adafruit_display_text import label
import adafruit_displayio_ssd1306

displayio.release_displays()

oled_reset = board.D9

Use for I2C
i2c = board.I2C()
display_bus = displayio.I2CDisplay(i2c, device_address=0x3C, reset=oled_reset)

Use for SPI
spi = board.SPI()
oled_cs = board.D5
oled_dc = board.D6

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 31 of 60

oled_dc = board.D6
display_bus = displayio.FourWire(spi, command=oled_dc, chip_select=oled_cs,
reset=oled_reset, baudrate=1000000)

WIDTH = 128
HEIGHT = 32 # Change to 64 if needed
BORDER = 5

display = adafruit_displayio_ssd1306.SSD1306(display_bus, width=WIDTH, height=HEIGHT)

Make the display context
splash = displayio.Group(max_size=10)
display.show(splash)

color_bitmap = displayio.Bitmap(WIDTH, HEIGHT, 1)
color_palette = displayio.Palette(1)
color_palette[0] = 0xFFFFFF # White

bg_sprite = displayio.TileGrid(color_bitmap, pixel_shader=color_palette, x=0, y=0)
splash.append(bg_sprite)

Draw a smaller inner rectangle
inner_bitmap = displayio.Bitmap(WIDTH - BORDER * 2, HEIGHT - BORDER * 2, 1)
inner_palette = displayio.Palette(1)
inner_palette[0] = 0x000000 # Black
inner_sprite = displayio.TileGrid(
 inner_bitmap, pixel_shader=inner_palette, x=BORDER, y=BORDER
)
splash.append(inner_sprite)

Draw a label
text = "Hello World!"
text_area = label.Label(
 terminalio.FONT, text=text, color=0xFFFFFF, x=28, y=HEIGHT // 2 - 1
)
splash.append(text_area)

while True:
 pass

Let's take a look at the sections of code one by one. We start by importing the board so that we can

initialize SPI, displayio , terminalio for the font, a label , and the adafruit_displayio_ssd1306 driver.

import board
import displayio
import terminalio
from adafruit_display_text import label
import adafruit_displayio_ssd1306

Next we release any previously used displays. This is important because if the microprocessor is reset,

the display pins are not automatically released and this makes them available for use again.

displayio.release_displays()

Next we define the reset line, which will be used for either SPI or I2C.

oled_reset = board.D9

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 32 of 60

If you're using I2C, you would use this section of code. We set the I2C object to the board's I2C with the

easy shortcut function board.I2C() . By using this function, it finds the SPI module and initializes using the

default SPI parameters. We also set the display bus to I2CDisplay which makes use of the I2C bus.

Use for I2C
i2c = board.I2C()
display_bus = displayio.I2CDisplay(i2c, device_address=0x3c, reset=oled_reset)

If you're using SPI, you would use this section of code. We set the SPI object to the board's SPI with the

easy shortcut function board.SPI() . By using this function, it finds the SPI module and initializes using the

default SPI parameters. We set the OLED's CS (Chip Select), and DC (Data/Command) pins. We also set

the display bus to FourWire which makes use of the SPI bus. The SSD1306 needs to be slowed down to

1MHz, so we pass in the additional baudrate parameter.

spi = board.SPI()
oled_cs = board.D5
oled_dc = board.D6
display_bus = displayio.FourWire(spi, command=oled_dc, chip_select=oled_cs,
 reset=oled_reset, baudrate=1000000)

In order to make it easy to change display sizes, we'll define a few variables in one spot here. We have the

display width, the display height and the border size, which we will explain a little further below. If your

display is something different than these numbers, change them to the correct setting.

WIDTH = 128
HEIGHT = 32 # Change to 64 if needed
BORDER = 5

Finally, we initialize the driver with a width of the WIDTH variable and a height of the HEIGHT variable. If

we stopped at this point and ran the code, we would have a terminal that we could type at and have the

screen update.

display = adafruit_displayio_ssd1306.SSD1306(display_bus, width=WIDTH, height=HEIGHT)

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 33 of 60

Next we create a background splash image. We do this by creating a group that we can add elements to

and adding that group to the display. In this example, we are limiting the maximum number of elements to

10, but this can be increased if you would like. The display will automatically handle updating the group.

splash = displayio.Group(max_size=10)
display.show(splash)

Next we create a Bitmap that is the full width and height of the display. The Bitmap is like a canvas that we

can draw on. In this case we are creating the Bitmap to be the same size as the screen, but only have one

color. Although the Bitmaps can handle up to 256 different colors, the display is monochrome so we only

need one. We create a Palette with one color and set that color to 0xFFFFFF which happens to be white.

If were to place a different color here, displayio handles color conversion automatically, so it may end up

black or white depending on the calculation.

color_bitmap = displayio.Bitmap(WIDTH, HEIGHT, 1)
color_palette = displayio.Palette(1)
color_palette[0] = 0xFFFFFF # White

With all those pieces in place, we create a TileGrid by passing the bitmap and palette and draw it at (0,
0) which represents the display's upper left.

bg_sprite = displayio.TileGrid(color_bitmap,
 pixel_shader=color_palette,
 x=0, y=0)
splash.append(bg_sprite)

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 34 of 60

Next we will create a smaller black rectangle. The easiest way to do this is to create a new bitmap that is a

little smaller than the full screen with a single color of 0x000000 , which is black, and place it in a specific

location. In this case, we will create a bitmap that is 5 pixels smaller on each side. This is where the

BORDER variable comes into use. It makes calculating the size of the second rectangle much easier. The

screen we're using here is 128x64 and we have the BORDER set to 5 , so we'll want to subtract 10 from

each of those numbers.

We'll also want to place it at the position (5, 5) so that it ends up centered.

Draw a smaller inner rectangle
inner_bitmap = displayio.Bitmap(WIDTH-BORDER*2, HEIGHT-BORDER*2, 1)
inner_palette = displayio.Palette(1)
inner_palette[0] = 0x000000 # Black
inner_sprite = displayio.TileGrid(inner_bitmap,
 pixel_shader=inner_palette,
 x=BORDER, y=BORDER)
splash.append(inner_sprite)

Since we are adding this after the first square, it's automatically drawn on top. Here's what it looks like

now.

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 35 of 60

Next add a label that says "Hello World!" on top of that. We're going to use the built-in Terminal Font. In

this example, we won't be doing any scaling because of the small resolution, so we'll add the label

directly the main group. If we were scaling, we would have used a subgroup.

Labels are centered vertically, so we'll place it at half the HEIGHT for the Y coordinate and subtract one so

it looks good. We use the // operator to divide because we want a whole number returned and it's an

easy way to round it. We'll set the width to around 28 pixels make it appear to be centered horizontally,

but if you want to change the text, change this to whatever looks good to you. Let's go with some white

text, so we'll pass it a value of 0xFFFFFF .

Draw a label
text = "Hello World!"
text_area = label.Label(terminalio.FONT, text=text, color=0xFFFFFF, x=28, y=HEIGHT//2-1)
splash.append(text_area)

Finally, we place an infinite loop at the end so that the graphics screen remains in place and isn't replaced

by a terminal.

while True:
 pass

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 36 of 60

If you've been following along with a FeatherWing or 128x32 OLED, this is what it should look like:

Where to go from here
Be sure to check out this excellent guide to CircuitPython Display Support Using

displayio (https://adafru.it/EGh)

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 37 of 60

https://learn.adafruit.com/circuitpython-display-support-using-displayio

Python Wiring
It's easy to use OLEDs with Python and the Adafruit CircuitPython SSD1306 (https://adafru.it/u1f) module.

This module allows you to easily write Python code to control the display.

We'll cover how to wire the OLED to your Raspberry Pi. First assemble your OLED.

Since there's dozens of Linux computers/boards you can use we will show wiring for Raspberry Pi. For

other platforms, please visit the guide for CircuitPython on Linux to see whether your platform is

supported (https://adafru.it/BSN).

Connect the OLED as shown below to your Raspberry Pi.

Adafruit PIOLED

The PiOLED comes fully assembled. Simply plug into

any Raspberry Pi as shown.

Adafruit 128x64 OLED Bonnet for Raspberry Pi

The OLED Bonnet comes fully assembled. Simply plug

into the Raspberry Pi as shown.

Adafruit 128x32 I2C OLED Display

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 38 of 60

https://github.com/adafruit/Adafruit_CircuitPython_SSD1306
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com//assets/68735
https://learn.adafruit.com//assets/68736

Pi 3.3V to OLED VIN

Pi GND to OLED GND

Pi SCL to OLED SCL

Pi SDA to OLED SDA

Pi GPIO4 to OLED RST (or any available GPIO pin)

Adafruit 0.96" 128x64 OLED Display STEMMA QT Version - I2C Wiring
You do not need to alter the jumpers on the back - I2C is the

default configuration on this display!

Pi 3.3V to OLED Vin (red wire)

Pi GND to OLED Gnd (black wire)

Pi SCL to OLED Clk (yellow wire)

Pi SDA to OLED Data (blue wire)

Note: Connecting the OLED RST is not necessary as this

revision added auto-reset circuitry so the RESET pin is not

required.

Adafruit 0.96" or 1.3" 128x64 OLED Display Original Version - I2C
Wiring

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 39 of 60

https://learn.adafruit.com//assets/68728
https://learn.adafruit.com//assets/93880

You must solder two jumpers closed on the back of the

display to use with I2C!

Pi 3.3V to OLED Vin

Pi GND to OLED Gnd

Pi SCL to OLED Clk

Pi SDA to OLED Data

Pi GPIO4 to OLED Rst (or any available GPIO pin)

Adafruit 128x32 SPI OLED Display

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 40 of 60

https://learn.adafruit.com//assets/68744
https://learn.adafruit.com//assets/68745
https://learn.adafruit.com//assets/68752
https://learn.adafruit.com//assets/68753

Pi 3.3V to OLED VIN

Pi GND to OLED GND

Pi MOSI to OLED DATA

Pi SCLK to OLED CLK

Pi GPIO4 to OLED RST (or any available GPIO pin)

Pi GPIO5 to OLED CS (or any available GPIO pin)

Pi GPIO6 to OLED DC (or any available GPIO pin)

Adafruit 0.96" or 1.3" 128x64 OLED Display - SPI Wiring

Pi 3.3V to OLED VIN

Pi GND to OLED GND

Pi MOSI to OLED DATA

Pi SCLK to OLED CLK

Pi GPIO4 to OLED RST (or any available GPIO pin)

Pi GPIO5 to OLED CS (or any available GPIO pin)

Pi GPIO6 to OLED DC (or any available GPIO pin)

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 41 of 60

https://learn.adafruit.com//assets/81400
https://learn.adafruit.com//assets/81401

Python Setup
You'll need to install the Adafruit_Blinka library that provides the CircuitPython support in Python. This

may also require enabling I2C on your platform and verifying you are running Python 3. Since each

platform is a little different, and Linux changes often, please visit the CircuitPython on Linux guide to get

your computer ready (https://adafru.it/BSN)!

Python Installation of SSD1306 Library
Once that's done, from your command line run the following command:

pip3 install adafruit-circuitpython-ssd1306

If your default Python is version 3 you may need to run 'pip' instead. Just make sure you aren't trying to

use CircuitPython on Python 2.x, it isn't supported!

If that complains about pip3 not being installed, then run this first to install it:

sudo apt-get install python3-pip

Pillow Library
We also need PIL, the Python Imaging Library, to allow using text with custom fonts. There are several

system libraries that PIL relies on, so installing via a package manager is the easiest way to bring in

everything:

sudo apt-get install python3-pil

That's it. You should be ready to go.

Speeding up the Display on Raspberry Pi
For the best performance, especially if you are doing fast animations, you'll want to tweak the I2C core to

run at 1MHz. By default it may be 100KHz or 400KHz

To do this edit the config with sudo nano /boot/config.txt

and add to the end of the file

dtparam=i2c_baudrate=1000000

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 42 of 60

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

reboot to 'set' the change.

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 43 of 60

Python Usage
It's easy to use OLEDs with Python and the Adafruit CircuitPython SSD1306 (https://adafru.it/u1f) module.

This module allows you to easily write Python code to control the display.

You can use this sensor with any computer that has GPIO and Python thanks to Adafruit_Blinka, our

CircuitPython-for-Python compatibility library (https://adafru.it/BSN).

To demonstrate the usage, we'll initialize the library and use Python code to control the OLED from the

board's Python REPL.

Since we are running full CPython on our Linux/computer, we can take advantage of the powerful Pillow

image drawing library to handle text, shapes, graphics, etc. Pillow is a gold standard in image and graphics

handling, you can read about all it can do here (https://adafru.it/FU7).

I2C Initialization
If your display is connected to the board using I2C (like if using a PiOLED or Bonnet) you'll first need to

initialize the I2C bus. First import the necessary modules:

import board
import busio

Now for either board run this command to create the I2C instance using the default SCL and SDA pins of

your I2C host:

i2c = busio.I2C(board.SCL, board.SDA)

After initializing the I2C interface for your firmware as described above you can create an instance of the

SSD1306 I2C driver by running:

import adafruit_ssd1306
oled = adafruit_ssd1306.SSD1306_I2C(128, 32, i2c)

Note that the first two parameters to the SSD1306_I2C class initializer are the width and height of the

display in pixels. Be sure to use the right values for the display you're using!

128 x 64 size OLEDs (or changing the I2C address)
If you are using a 128x64 display, the I2C address is probably different (0x3d), unless you've changed it

by soldering some jumpers:

oled = adafruit_ssd1306.SSD1306_I2C(128, 64, i2c, addr=0x3d)

Adding hardware reset pin
If you have a reset pin (which may be required if your OLED does not have an auto-reset chip like the

FeatherWing) also pass in a reset pin like so:

import digitalio

reset_pin = digitalio.DigitalInOut(board.D4) # any pin!
oled = adafruit_ssd1306.SSD1306_I2C(128, 32, i2c, reset=reset_pin)

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 44 of 60

https://github.com/adafruit/Adafruit_CircuitPython_SSD1306
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://pillow.readthedocs.io/en/stable/

At this point the I2C bus and display are initialized. Skip down to the example code section.

SPI Initialization
If your display is connected to the board using SPI you'll first need to initialize the SPI bus:

import adafruit_ssd1306
import board
import busio
import digitalio

spi = busio.SPI(board.SCK, MOSI=board.MOSI)
reset_pin = digitalio.DigitalInOut(board.D4) # any pin!
cs_pin = digitalio.DigitalInOut(board.D5) # any pin!
dc_pin = digitalio.DigitalInOut(board.D6) # any pin!

oled = adafruit_ssd1306.SSD1306_SPI(128, 32, spi, dc_pin, reset_pin, cs_pin)

Note the first two parameters to the SSD1306_SPI class initializer are the width and height of the display

in pixels. Be sure to use the right values for the display you're using!

The next parameters to the initializer are the pins connected to the display's DC, reset, and CS lines in

that order. Again make sure to use the right pin names as you have wired up to your board!

Example Code
SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

"""
This demo will fill the screen with white, draw a black box on top
and then print Hello World! in the center of the display

This example is for use on (Linux) computers that are using CPython with
Adafruit Blinka to support CircuitPython libraries. CircuitPython does
not support PIL/pillow (python imaging library)!
"""

import board
import digitalio
from PIL import Image, ImageDraw, ImageFont
import adafruit_ssd1306

Define the Reset Pin
oled_reset = digitalio.DigitalInOut(board.D4)

Change these
to the right size for your display!
WIDTH = 128
HEIGHT = 32 # Change to 64 if needed
BORDER = 5

Use for I2C.
i2c = board.I2C()
oled = adafruit_ssd1306.SSD1306_I2C(WIDTH, HEIGHT, i2c, addr=0x3C, reset=oled_reset)

Use for SPI
spi = board.SPI()
oled_cs = digitalio.DigitalInOut(board.D5)
oled_dc = digitalio.DigitalInOut(board.D6)
oled = adafruit_ssd1306.SSD1306_SPI(WIDTH, HEIGHT, spi, oled_dc, oled_reset, oled_cs)

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 45 of 60

oled = adafruit_ssd1306.SSD1306_SPI(WIDTH, HEIGHT, spi, oled_dc, oled_reset, oled_cs)

Clear display.
oled.fill(0)
oled.show()

Create blank image for drawing.
Make sure to create image with mode '1' for 1-bit color.
image = Image.new("1", (oled.width, oled.height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Draw a white background
draw.rectangle((0, 0, oled.width, oled.height), outline=255, fill=255)

Draw a smaller inner rectangle
draw.rectangle(
 (BORDER, BORDER, oled.width - BORDER - 1, oled.height - BORDER - 1),
 outline=0,
 fill=0,
)

Load default font.
font = ImageFont.load_default()

Draw Some Text
text = "Hello World!"
(font_width, font_height) = font.getsize(text)
draw.text(
 (oled.width // 2 - font_width // 2, oled.height // 2 - font_height // 2),
 text,
 font=font,
 fill=255,
)

Display image
oled.image(image)
oled.show()

Let's take a look at the sections of code one by one. We start by importing the board so that we can

initialize SPI, digitalio , several PIL modules for Image Drawing, and the adafruit_ssd1306 driver.

import board
import digitalio
from PIL import Image, ImageDraw, ImageFont
import adafruit_ssd1306

Next we define the reset line, which will be used for either SPI or I2C. If your OLED has auto-reset circuitry,

you can set the oled_reset line to None

oled_reset = digitalio.DigitalInOut(board.D4)

In order to make it easy to change display sizes, we'll define a few variables in one spot here. We have the

display width, the display height and the border size, which we will explain a little further below. If your

display is something different than these numbers, change them to the correct setting.

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 46 of 60

WIDTH = 128
HEIGHT = 32 # Change to 64 if needed
BORDER = 5

If you're using I2C, you would use this section of code. We set the I2C object to the board's I2C with the

easy shortcut function board.I2C() . By using this function, it finds the SPI module and initializes using the

default SPI parameters. We also set up the oled with SSD1306_I2C which makes use of the I2C bus.

Use for I2C.
i2c = board.I2C()
oled = adafruit_ssd1306.SSD1306_I2C(WIDTH, HEIGHT, i2c, addr=0x3c, reset=oled_reset)

If you're using SPI, you would use this section of code. We set the SPI object to the board's SPI with the

easy shortcut function board.SPI() . By using this function, it finds the SPI module and initializes using the

default SPI parameters. We set the OLED's CS (Chip Select), and DC (Data/Command) pins. We also set up

the OLED with SSD1306_SPI which makes use of the SPI bus.

Use for SPI
spi = board.SPI()
oled_cs = digitalio.DigitalInOut(board.D5)
oled_dc = digitalio.DigitalInOut(board.D6)
oled = adafruit_ssd1306.SSD1306_SPI(WIDTH, HEIGHT, spi, oled_dc, oled_reset, oled_cs)

Next we clear the display in case it was initialized with any random artifact data.

Clear display.
oled.fill(0)
oled.show()

Next, we need to initialize PIL to create a blank image to draw on. Think of it as a virtual canvas. Since this

is a monochrome display, we set it up for 1-bit color, meaning a pixel is either white or black. We can make

use of the OLED's width and height properties as well. Optionally, we could have used our WIDTH and

HEIGHT variables.

Create blank image for drawing.
Make sure to create image with mode '1' for 1-bit color.
image = Image.new('1', (oled.width, oled.height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Now we start the actual drawing. Here we are telling it we want to draw a rectangle from (0,0) , which is

the upper left, to the full width and height of the display. We want it both filled in and having an outline of

white, so we pass 255 for both numbers.

Draw a white background
draw.rectangle((0, 0, oled.width, oled.height), outline=255, fill=255)

If we ran the code now, it would still show a blank display because we haven't told python to use our

virtual canvas yet. You can skip to the end if you would like to see how to do that. This is what our canvas

currently looks like in memory.

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 47 of 60

Next we will create a smaller black rectangle. The easiest way to do this is to draw another rectangle a

little smaller than the full screen with no fill or outline and place it in a specific location. In this case, we will

create a rectangle that is 5 pixels smaller on each side. This is where the BORDER variable comes into

use. It makes calculating the size of the second rectangle much easier. We want the starting coordinate,

which consists of the first two parameters, to be our BORDER value. Then for the next two parameters,

which are our ending coordinates, we want to subtract our border value from the width and height. Also,

because this is a zero-based coordinate system, we also need to subtract 1 from each number.

Draw a smaller inner rectangle
draw.rectangle((BORDER, BORDER, oled.width - BORDER - 1, oled.height - BORDER - 1),
 outline=0, fill=0)

Here's what our virtual canvas looks like in memory.

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 48 of 60

Now drawing text with PIL is pretty straightforward. First we start by setting the font to the default system

text. After that we define our text and get the size of the text. We're grabbing the size that it would render

at so that we can calculate the center position. Finally, we take the font size and screen size to calculate

the position we want to draw the text at and it appears in the center of the screen.

Load default font.
font = ImageFont.load_default()

Draw Some Text
text = "Hello World!"
(font_width, font_height) = font.getsize(text)
draw.text((oled.width//2 - font_width//2, oled.height//2 - font_height//2),
 text, font=font, fill=255)

Finally, we need to display our virtual canvas to the OLED and we do that with 2 commands. First we set

the image to the screen, then we tell it to show the image.

Display image
oled.image(image)
oled.show()

� Don't forget you MUST call oled.image(image) and oled.show() to actually display the graphics. The

OLED takes a while to draw so cluster all your drawing functions into the buffer (fast) and then display

them once to the oled (slow)

Here's what the final output should look like.

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 49 of 60

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 50 of 60

Troubleshooting
�
�
Display does not work on initial power but does work after a reset.
The OLED driver circuit needs a small amount of time to be ready after initial power. If your code tries to

write to the display too soon, it may not be ready. It will work on reset since that typically does not cycle

power. If you are having this issue, try adding a small amount of delay before trying to write to the OLED.

In Arduino, use delay() to add a few milliseconds before calling oled.begin(). Adjust the amount of delay as

needed to see how little you can get away with for your specific setup.

�
�
Display is showing burn in on some pixels.
The display can have image burn in for any pixels left on over a long period of time - many days. Try to

avoid having the display on constantly for that length of time.

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 51 of 60

Downloads
Software
You can download our SSD1306 OLED display Arduino library from github (https://adafru.it/aHq) which

comes with example code. The library can print text, bitmaps, pixels, rectangles, circles and lines. It uses

1K of RAM since it needs to buffer the entire display but its very fast! The code is simple to adapt to any

other microcontroller. You'll also have to install the Adafruit GFX graphics core library at this github

repo (https://adafru.it/aJa) and install it after you've gotten the OLED driver library.

You can check out a simulator for these OLEDs at

https://wokwi.com/arduino/libraries/Adafruit_SSD1306 (https://adafru.it/Ncf)

Datasheets
UG-2864HSWEG01 (https://adafru.it/aJI) Datasheet

UG-2832HSWEG02 (https://adafru.it/qrf) Datasheet

UG-2864HSWEG01 (https://adafru.it/wWD) User Guide

UG-2832HSWEG04 (https://adafru.it/qVA) Datasheet

UG-2864KSWLG01 (https://adafru.it/Re8) Datasheet

SSD1306 (https://adafru.it/aJK) Datasheet

Files
EagleCAD PCB files for 128x32 0.91" SPI display PCB (https://adafru.it/aJL)

EagleCAD PCB files for 128x32 0.91" I2C display on GitHub (https://adafru.it/rPF)

EagleCAD PCB files for 128x64 0.96" display on GitHub (https://adafru.it/aJM)

EagleCAD PCB files for 128x64 1.3" display on GitHub (https://adafru.it/rJe)

Fritzing objects available in the Adafruit Fritzing Library (https://adafru.it/aP3)

Schematic & Fabrication Print for 0.96" OLED -
STEMMA QT version

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 52 of 60

https://github.com/adafruit/Adafruit_SSD1306
https://github.com/adafruit/Adafruit-GFX-Library
https://wokwi.com/arduino/libraries/Adafruit_SSD1306
http://www.adafruit.com/datasheets/UG-2864HSWEG01.pdf
https://cdn-shop.adafruit.com/datasheets/UG-2832HSWEG02.pdf
http://www.adafruit.com/datasheets/UG-2864HSWEG01%20user%20guide.pdf
https://cdn-shop.adafruit.com/datasheets/UG-2832HSWEG04.pdf
https://cdn-learn.adafruit.com/assets/assets/000/100/779/original/2011241005_UG-Univision-Semicon-UG-2864KSWLG01_C113322.pdf?1616084674
http://www.adafruit.com/datasheets/SSD1306.pdf
https://github.com/adafruit/Adafruit-128x32-SPI-OLED-breakout-board-PCB
https://github.com/adafruit/Adafruit-128x32-I2C-OLED-Breakout-PCB
https://github.com/adafruit/Adafruit-128x64-Monochrome-OLED-PCB
https://github.com/adafruit/Adafruit-1.3inch-128x64-Mono-OLED-PCB
https://github.com/adafruit/Fritzing-Library

Schematic & Fabrication Print for 0.96" OLED -
Original version

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 53 of 60

Schematic & Fabrication Print for 1.3" OLED

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 54 of 60

Schematic & Fabrication Print for 1.3" OLED STEMMA
QT
As of Nov 20, 2019 we've done a re-design to make the display more plug and play. There is now an

auto-reset circuit so that it will reset the display on power up. We've also changed the default protocol to

be I2C instead of SPI. To convert to SPI mode you will need to cut two jumpers (there's a typo on the

PCB). We have also added two STEMMA QT / Qwiic connectors for plug and play usage! The board size,

mounting holes and layout has changed slightly to accommodate these changes.

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 55 of 60

Schematic & Fabrication Print for 0.91" 128x32 I2C

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 56 of 60

Schematic & Fabrication Print for 0.91" 128x32 I2C
STEMMA QT
As of Nov 20, 2019 we've done a re-design to make the display more plug and play. There is now an

auto-reset circuit so that it will reset the display on power up. We've also changed the default protocol to

be I2C instead of SPI. To convert to SPI mode you will need to cut two jumpers (there's a typo on the

PCB). We have also added two STEMMA QT / Qwiic connectors for plug and play usage! The board size,

mounting holes and layout has changed slightly to accommodate these changes.

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 57 of 60

Schematic & Fabrication Print for 0.91" 128x32 SPI

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 58 of 60

© Adafruit Industries https://learn.adafruit.com/monochrome-oled-breakouts Page 59 of 60

© Adafruit Industries Last Updated: 2021-03-18 12:39:43 PM EDT Page 60 of 60

	Guide Contents
	Overview
	Power Requirements
	OLED Power Requirements
	5V- ready 128x64 and 128x32 OLEDs
	0.96" 128x64 OLED

	Arduino Library & Examples
	Install Arduino Libraries
	Run Demo!
	Create Bitmaps

	Wiring 128x64 OLEDs
	Solder Header

	I2C or SPI
	Using with I2C
	Converting From I2C to SPI Mode
	Wiring It Up!
	Using with SPI

	Wiring 128x32 SPI OLED display
	128x32 SPI OLED

	Wiring 128x32 I2C Display
	128x32 I2C OLED

	Wiring OLD 0.96" 128x64 OLED
	128x64 Version 1.0 OLED

	CircuitPython Wiring
	Adafruit OLED FeatherWing
	Adafruit 128x32 I2C OLED Display
	Adafruit 128x32 SPI OLED Display
	Adafruit 0.96" 128x64 OLED Display STEMMA QT Version - I2C Wiring
	Adafruit 0.96" or 1.3" 128x64 OLED Display Original Version - I2C Wiring
	Adafruit 0.96" or 1.3" 128x64 OLED Display - SPI Wiring

	CircuitPython Setup
	CircuitPython Installation of DisplayIO SSD1306 Library
	Code Example Additional Libraries

	CircuitPython Usage
	I2C Initialization
	128 x 64 size OLEDs (or changing the I2C address)
	Adding hardware reset pin

	SPI Initialization
	Example Code
	Where to go from here

	Python Wiring
	Adafruit PIOLED
	Adafruit 128x64 OLED Bonnet for Raspberry Pi
	Adafruit 128x32 I2C OLED Display
	Adafruit 0.96" 128x64 OLED Display STEMMA QT Version - I2C Wiring
	Adafruit 0.96" or 1.3" 128x64 OLED Display Original Version - I2C Wiring
	Adafruit 128x32 SPI OLED Display
	Adafruit 0.96" or 1.3" 128x64 OLED Display - SPI Wiring

	Python Setup
	Python Installation of SSD1306 Library
	Pillow Library
	Speeding up the Display on Raspberry Pi

	Python Usage
	I2C Initialization
	128 x 64 size OLEDs (or changing the I2C address)
	Adding hardware reset pin

	SPI Initialization
	Example Code
	Troubleshooting
	Display does not work on initial power but does work after a reset.
	Display is showing burn in on some pixels.

	Downloads
	Software
	Datasheets
	Files
	Schematic & Fabrication Print for 0.96" OLED - STEMMA QT version
	Schematic & Fabrication Print for 0.96" OLED - Original version
	Schematic & Fabrication Print for 1.3" OLED
	Schematic & Fabrication Print for 1.3" OLED STEMMA QT
	Schematic & Fabrication Print for 0.91" 128x32 I2C
	Schematic & Fabrication Print for 0.91" 128x32 I2C STEMMA QT
	Schematic & Fabrication Print for 0.91" 128x32 SPI

