
Adafruit Grayscale 1.5" 128x128 OLED Display
Created by Melissa LeBlanc-Williams

Last updated on 2021-09-07 12:35:02 PM EDT

2
3
7
7
8
8
8
9

10
10
11
11
12
14
14
14
15
16
16

16
16
17
17
18
24
25
25
25
25

Guide Contents

Guide Contents
Overview
Pinouts

Power Pins
StemmaQT Ports
I2C and SPI Jumpers
I2C Pins
SPI Pins

Arduino Wiring and Test
I2C Wiring
SPI Wiring
Download Libraries
Run the Demo

CircuitPython Wiring and Usage
I2C Wiring
SPI Wiring
CircuitPython displayio Library Installation

Adafruit_CircuitPython_SSD1327
Code Example Additional Libraries

Usage
I2C Initialization

Changing the I2C address
SPI Initialization

Example Code
Where to go from here

Downloads
Files
Schematic
Fab Print

© Adafruit Industries https://learn.adafruit.com/adafruit-grayscale-1-5-128x128-oled-display Page 2 of 27

Overview

This OLED goes out to all the fans who want more pixels! Normally our 128x64 OLEDs are the biggest

ones we've stocked that can use I2C. This one is a whopping 128x128 pixels and it even has an extra

bonus - it can do grayscale pixels! Yep, you get the same crispness of a monochrome OLED but with 16

levels of gray.

© Adafruit Industries https://learn.adafruit.com/adafruit-grayscale-1-5-128x128-oled-display Page 3 of 27

This display is a petite 1.5" diagonal, but very readable due to the high contrast of an OLED display. This

display is made of 128x128 individual grayscale OLED pixels, each one is turned on or off by the controller

chip. Because the display makes its own light, no backlight is required. This reduces the power required to

run the OLED and is why the display has such high contrast; we really like these miniature displays for

their crispness!

The SSD1327 driver chip can communicate in two ways: I2C or SPI. The OLED itself require a 3.3V and 12V

power supply and 3.3V logic levels for communication. We include a 3.3V regulator and 12V boost

converter, and all pins are fully level shifted so you can use with 3V or 5V devices!

© Adafruit Industries https://learn.adafruit.com/adafruit-grayscale-1-5-128x128-oled-display Page 4 of 27

If you are using I2C, we've included SparkFun qwiic (https://adafru.it/Fpw) compatible STEMMA

QT (https://adafru.it/Ft4) connectors for the I2C bus so you don't even need to solder! Plug and play with

any board that has a Qwiic or STEMMA QT connector for effortless prototyping and development.

This display, being 16-level (4-bit) grayscale and 128x128 requires 128 * 128 * 4 bits = 8KB of SRAM to

buffer. So you can't use it with a small chip such as the Arduino UNO (ATmega328 or 32u4). Pick a

microcontroller or microcomputer with 16KB+ RAM - a SAMD21, SAMD51, ESP, nRF52, Teensy, etc will do

an excellent job. As long as you have an I2C or SPI interface available, you're good to go - SPI will be

© Adafruit Industries https://learn.adafruit.com/adafruit-grayscale-1-5-128x128-oled-display Page 5 of 27

https://www.sparkfun.com/qwiic
https://learn.adafruit.com/introducing-adafruit-stemma-qt

much faster but I2C requires fewer pins.

We have both Arduino (https://adafru.it/OvD) and CircuitPython support (https://adafru.it/OvE) for this

display.

Please note that OLED displays are made of hundreds of...OLEDs! That means each pixel is a little organic

LED, and if it's kept on for over 1000 hours, it'll start to dim. If you want to keep the display uniformly

bright, please turn off the display (set the pixels off) when it isn't needed to keep them from dimming.

© Adafruit Industries https://learn.adafruit.com/adafruit-grayscale-1-5-128x128-oled-display Page 6 of 27

https://github.com/adafruit/Adafruit_SSD1327
https://github.com/adafruit/Adafruit_CircuitPython_SSD1327

Pinouts

Power Pins

GND - this is the power and signal ground pin

Vin - this is the power pin, connect to 3-5VDC - it

has reverse polarity protection but try to wire it right!

3Vo - this is the 3.3V output from the onboard

regulator, you can 'borrow' about 100mA if you need

to power some other 3.3V logic devices

© Adafruit Industries https://learn.adafruit.com/adafruit-grayscale-1-5-128x128-oled-display Page 7 of 27

https://learn.adafruit.com//assets/96971

StemmaQT Ports

The display comes with 2 StemmaQT ports. Normally you

would use one for an input and one for an output in order

to chain multiple StemmaQT devices. Since they are

connected in parallel, either side can be used as an input

or output.

I2C and SPI Jumpers

You'll notice there are a few solderable jumpers on the

back. To use in I2C mode, you'll want to make sure the J1

and J2 are bridged. To use in SPI mode, you'll want to cut

the traces between the jumpers for both J1 and J2. The

board comes in I2C mode by default.

The A0 jumper is used for setting the I2C address. When

it is open, the I2C address is 0x3D . When it is bridged, the

I2C Address is 0x3C . Alternatively, by tying the A0 pin to

ground, you can set the I2C address to 0x3C .

I2C Pins

The Stemma QT ports will only work when the display is in I2C Mode.�

© Adafruit Industries https://learn.adafruit.com/adafruit-grayscale-1-5-128x128-oled-display Page 8 of 27

https://learn.adafruit.com//assets/96972
https://learn.adafruit.com//assets/96974

Rst - this is the Reset pin. You may be able to share

this with your microcontroller reset pin but, if you

can, connect it to a digital pin.

Clk - this is the Clock pin and is connected to I2C

SCL

Data - this is the Data pin and is connected to I2C

SDA

SPI Pins

CS - this is the Chip Select pin, it is used by SPI to

select the device.

Rst - this is the Reset pin, you may be able to share

this with your microcontroller reset pin but if you

can, connect it to a digital pin.

DC - this is the Data/Command selector pin used to

differentiate between Data and Commands that are

sent to the display.

Clk - this is the Clock pin and is connected to SPI

SCLK

Data - this is the Data pin and is connected to SPI

MOSI

© Adafruit Industries https://learn.adafruit.com/adafruit-grayscale-1-5-128x128-oled-display Page 9 of 27

https://learn.adafruit.com//assets/96975
https://learn.adafruit.com//assets/96976

Arduino Wiring and Test

You can easily wire this breakout to any microcontroller - below, an Adafruit Metro is used. For another

kind of microcontroller, as long as you have 4 available pins, it is possible to 'bit-bang SPI' or you can use

two I2C pins, but usually those pins are fixed in hardware. Just check out the library, then port the code.

I2C Wiring

Use this wiring if you want to connect via I2C interface

Connect Vin (red wire on STEMMA QT version) to the power supply, 3-5V is fine. Use the same

voltage that the microcontroller logic is based off of. For most Arduinos, that is 5V

Connect GND (black wire on STEMMA QT version) to common power/data ground

Connect the Clk (yellow wire on STEMMA QT version) pin to the I2C clock SCL pin on your Arduino.

On an UNO & '328 based Arduino, this is also known as A5, on a Mega it is also known as digital

21 and on a Leonardo/Micro, digital 3

Connect the Data (blue wire on STEMMA QT version) pin to the I2C data SDA pin on your Arduino.

On an UNO & '328 based Arduino, this is also known as A4, on a Mega it is also known as digital

20 and on a Leonardo/Micro, digital 2

© Adafruit Industries https://learn.adafruit.com/adafruit-grayscale-1-5-128x128-oled-display Page 10 of 27

https://learn.adafruit.com//assets/96733
https://learn.adafruit.com//assets/96734

SPI Wiring

Since this is a SPI-capable display, we can use hardware

or 'software' SPI. To make wiring identical on all Arduinos,

we'll begin with 'software' SPI. The following pins should

be used:

Connect Vin to the power supply, 3-5V is fine. Use the same voltage that the microcontroller logic is

based off of. For most Arduinos, that is 5V

Connect GND to common power/data ground

Connect the Clk pin to the SPI clock SCK pin on your Arduino. On an UNO & '328 based Arduino, this

is also known as 13. On boards such as the Metro M0/M4, you'll want to use the ICSP Header Pin 3.

Connect the Data pin to the SPI data MOSI pin on your Arduino. On an UNO & '328 based Arduino,

this is also known as 11. On boards such as the Metro M0/M4, you'll want to use the ICSP Header Pin

4.

Connect the DC pin to D8 on the Arduino and similar shaped boards. If you don't have this pin on

your Microcontroller, feel free to use a different one and update the example.

Connect the CS pin to D10 on the Arduino and similar shaped boards. If you don't have this pin on

your Microcontroller, feel free to use a different one and update the example.

Download Libraries

To begin reading sensor data, you will need to

download Adafruit_SSD1327 (https://adafru.it/OBj) and Adafruit_GFX (https://adafru.it/aJa) from the

Arduino library manager.

From the IDE open up the library manager...

If you want to use the board in SPI. mode, you need to cut J1 and J2 first. See Pinouts for more

details.
�

© Adafruit Industries https://learn.adafruit.com/adafruit-grayscale-1-5-128x128-oled-display Page 11 of 27

https://learn.adafruit.com//assets/96739
https://github.com/adafruit/Adafruit_SSD1327_Library
https://github.com/adafruit/Adafruit-GFX-Library

nd type in adafruit EPD to locate the library. Click Install

If you would like to draw bitmaps, do the same with adafruit SSD1327, click Install

Do the same to install the latest adafruit GFX library, click Install

If using an earlier version of the Arduino IDE (pre-1.8.10), locate and install Adafruit_BusIO (newer versions

handle this prerequisite automatically).

Run the Demo

Open up File→Examples→Adafruit_SSD1327→ssd1327_test

Make any necessary changes to the pins. If you are running in SPI mode, comment out the I2C Initializer

and then either uncomment the hardware SPI or software SPI initializer depending on how you have it

wired up and whether you want to use the hardware SPI pins or not.

Upload the sketch to your microcontroller and you should see a series of tests run concluding with some

Adafruit flakes falling at the end.

© Adafruit Industries https://learn.adafruit.com/adafruit-grayscale-1-5-128x128-oled-display Page 12 of 27

© Adafruit Industries https://learn.adafruit.com/adafruit-grayscale-1-5-128x128-oled-display Page 13 of 27

CircuitPython Wiring and Usage

We'll cover how to wire the OLED to your CircuitPython microcontroller board. First assemble your OLED.

Connect the OLED to your microcontroller board as shown below.

I2C Wiring

Use this wiring if you want to connect via I2C interface

Connect Vin (red wire on STEMMA QT version) to

the power supply, 3-5V is fine. Use the same

voltage that the microcontroller logic is based off of.

Connect GND (black wire on STEMMA QT

version) to common power/data ground

Connect the Clk (yellow wire on STEMMA QT

version) pin to the I2C clock SCL pin on your

Microcontroller.

Connect the Data (blue wire on STEMMA QT

version) pin to the I2C data SDA pin on your

Microcontroller.

SPI Wiring

Since this is a SPI-capable display, we can use SPI. The following pins should be used:

© Adafruit Industries https://learn.adafruit.com/adafruit-grayscale-1-5-128x128-oled-display Page 14 of 27

https://learn.adafruit.com//assets/96763
https://learn.adafruit.com//assets/96765

Connect Vin to the power supply, 3-5V is fine. Use

the same voltage that the microcontroller logic is

based off of.

Connect GND to common power/data ground

Connect the Clk pin to the SPI clock SCK pin on

your Microcontroller.

Connect the Data pin to the SPI data MOSI pin on

your Microcontroller.

Connect the CS pin to D5 on your Microcontroller. If

you don't have this pin on your Microcontroller, feel

free to use a different one and update the example.

Connect the DC pin to D6 on your Microcontroller. If

you don't have this pin on your Microcontroller, feel

free to use a different one and update the example.

Connect the Rst pin to D9 on your Microcontroller. If

you don't have this pin on your Microcontroller, feel

free to use a different one and update the example.

CircuitPython displayio Library Installation

To use displayio, you will need to install the adafruit_ssd1327 library for your display.

First make sure you are running the latest version of Adafruit CircuitPython (https://adafru.it/Amd) for your

board. You will need the latest version of CircuitPython.

Next you'll need to install the necessary libraries to use the hardware--carefully follow the steps to find and

install these libraries from Adafruit's CircuitPython library bundle (https://adafru.it/zdx). Our introduction

guide has a great page on how to install the library bundle (https://adafru.it/ABU) for both express and

non-express boards.

You will need to copy the appropriate displayio driver from the bundle lib folder to a lib folder on your

CIRCUITPY drive. The displayio driver contains the initialization codes specific to your display that are

needed to for it to work.

If you want to use the board in SPI. mode, you need to cut J1 and J2 first. See Pinouts for more

details.
�

To use this grayscale OLED display with displayio, you will need to use the absolute latest version

of CircuitPython and a board that can fit `displayio`. See the Support Matrix to determine if

`displayio` is available on a given board: https://circuitpython.readthedocs.io/en/latest/shared-

bindings/support_matrix.html

�

© Adafruit Industries https://learn.adafruit.com/adafruit-grayscale-1-5-128x128-oled-display Page 15 of 27

https://learn.adafruit.com//assets/96766
https://circuitpython.readthedocs.io/en/latest/shared-bindings/support_matrix.html
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries

Adafruit_CircuitPython_SSD1327

This display uses the Adafruit_CircuitPython_SSD1327 library. Copy the adafruit_ssd1327.mpy file from the

bundle to the lib folder on your CIRCUITPY drive.

Code Example Additional Libraries

For the Code Example, you will need an additional library. We decided to make use of the the Adafruit

CircuitPython Display Text library so the code didn't get overly complicated. Go ahead and install that in

the same manner as the driver library by copying the adafruit_display_text folder over to the lib folder on

your CircuitPython device.

Usage
It's easy to use OLEDs with Python and the Adafruit CircuitPython SSD1327 (https://adafru.it/OvE) module.

This module allows you to easily write Python code to control the display.

To demonstrate the usage, we'll initialize the library and use Python code to control the OLED from the

board's Python REPL.

I2C Initialization

If your display is connected to the board using I2C, you'll first need to initialize the I2C bus. First import

the necessary modules:

import board

Now for run this command to create the I2C instance using the default SCL and SDA pins (which will be

marked on the board's pins if using a Feather or similar Adafruit board):

i2c = board.I2C()

When downloading CircuitPython, for Grayscale support you will need to choose Absolute

Newest, choose your language, and then download the top-most link.
�

Displayio is only available on express boards (or other higher-memory boards, such as QT Py

RP2040) due to the smaller memory size on non-express boards. For QT Py M0, for example, use

an M0 Haxpress.
�

© Adafruit Industries https://learn.adafruit.com/adafruit-grayscale-1-5-128x128-oled-display Page 16 of 27

https://github.com/adafruit/Adafruit_CircuitPython_SSD1327

After initializing the I2C interface for your firmware as described above, you can create an instance of the

I2CDisplay bus:

import displayio
import adafruit_ssd1327
display_bus = displayio.I2CDisplay(i2c, device_address=0x3D)

Finally, you can pass the display_bus in and create an instance of the SSD1327 I2C driver by running:

display = adafruit_ssd1327.SSD1327(display_bus, width=128, height=128)

Now you should be seeing an image of the REPL. Note that the last two parameters to the SSD1327 class

initializer are the width and height of the display in pixels.

Changing the I2C address

If you connect the A0 Pin of the OLED to Ground instead of +3V or create a solder bridge on the back of

the display for the A0 jumper the I2C address will be different different (0x3c):

display_bus = displayio.I2CDisplay(i2c, device_address=0x3c)
display = adafruit_ssd1327.SSD1327(display_bus, width=128, height=128)

At this point the I2C bus and display are initialized. Skip down to the example code section.

SPI Initialization

If your display is connected to the board using SPI you'll first need to initialize the SPI bus.

If you're using a microcontroller board, run the following commands:

import board
import displayio
import adafruit_ssd1327

displayio.release_displays()

spi = board.SPI()
oled_cs = board.D5
oled_dc = board.D6
oled_reset = board.D9

display_bus = displayio.FourWire(spi, command=oled_dc, chip_select=oled_cs,
 reset=oled_reset, baudrate=1000000)
display = adafruit_ssd1327.SSD1327(display_bus, width=128, height=128)

© Adafruit Industries https://learn.adafruit.com/adafruit-grayscale-1-5-128x128-oled-display Page 17 of 27

The parameters to the FourWire initializer are the pins connected to the display's DC, CS, and reset.

Because we are using keyword arguments, they can be in any position. Again make sure to use the right

pin names as you have wired up to your board!

Note that the last two parameters to the SSD1327 class initializer are the width and height of the display

in pixels.

Example Code

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import board
import displayio
import terminalio
from adafruit_display_text import label
import adafruit_ssd1327

displayio.release_displays()

Use for I2C
i2c = board.I2C()
display_bus = displayio.I2CDisplay(i2c, device_address=0x3D)

Use for SPI
spi = board.SPI()
oled_cs = board.D5
oled_dc = board.D6
display_bus = displayio.FourWire(
spi, command=oled_dc, chip_select=oled_cs, baudrate=1000000, reset=board.D9
)

WIDTH = 128
HEIGHT = 128
BORDER = 8
FONTSCALE = 1

display = adafruit_ssd1327.SSD1327(display_bus, width=WIDTH, height=HEIGHT)

Make the display context
splash = displayio.Group()
display.show(splash)

Draw a background rectangle, but not the full display size
color_bitmap = displayio.Bitmap(
 display.width - BORDER * 2, display.height - BORDER * 2, 1
)
color_palette = displayio.Palette(1)
color_palette[0] = 0xFFFFFF # White
bg_sprite = displayio.TileGrid(
 color_bitmap, pixel_shader=color_palette, x=BORDER, y=BORDER
)
splash.append(bg_sprite)

© Adafruit Industries https://learn.adafruit.com/adafruit-grayscale-1-5-128x128-oled-display Page 18 of 27

splash.append(bg_sprite)

Draw a smaller inner rectangle
inner_bitmap = displayio.Bitmap(
 display.width - BORDER * 4, display.height - BORDER * 4, 1
)
inner_palette = displayio.Palette(1)
inner_palette[0] = 0x888888 # Gray
inner_sprite = displayio.TileGrid(
 inner_bitmap, pixel_shader=inner_palette, x=BORDER * 2, y=BORDER * 2
)
splash.append(inner_sprite)

Draw a label
text = "Hello World!"
text_area = label.Label(terminalio.FONT, text=text, color=0xFFFFFF)
text_width = text_area.bounding_box[2] * FONTSCALE
text_group = displayio.Group(
 scale=FONTSCALE,
 x=display.width // 2 - text_width // 2,
 y=display.height // 2,
)
text_group.append(text_area) # Subgroup for text scaling
splash.append(text_group)

while True:
 pass

Let's take a look at the sections of code one by one. We start by importing the board so that we can

initialize SPI, displayio , terminalio for the font, a label , and the adafruit_ssd1327 driver.

import board
import displayio
import terminalio
from adafruit_display_text import label
import adafruit_ssd1327

Next we release any previously used displays. This is important because if the microprocessor is reset, the

display pins are not automatically released and this makes them available for use again.

displayio.release_displays()

If you're using I2C, you would use this section of code. We set the I2C object to the board's I2C with the

easy shortcut function board.I2C() . By using this function, it finds the SPI module and initializes using the

default SPI parameters. We also set the display bus to I2CDisplay which makes use of the I2C bus.

Use for I2C
i2c = board.I2C()
display_bus = displayio.I2CDisplay(i2c, device_address=0x3D)

© Adafruit Industries https://learn.adafruit.com/adafruit-grayscale-1-5-128x128-oled-display Page 19 of 27

If you're using SPI, you would use this section of code. We set the SPI object to the board's SPI with the

easy shortcut function board.SPI() . By using this function, it finds the SPI module and initializes using the

default SPI parameters. We set the OLED's CS (Chip Select), and DC (Data/Command) pins. We also set

the display bus to FourWire which makes use of the SPI bus. The SSD1327 needs to be slowed down to

1MHz, so we pass in the additional baudrate parameter. We also pass board.D9 as the reset pin. If this

differs for you, you could change it here.

Use for SPI
spi = board.SPI()
oled_cs = board.D5
oled_dc = board.D6
display_bus = displayio.FourWire(
 spi, command=oled_dc, chip_select=oled_cs, baudrate=1000000, reset=board.D9
)

In order to make it easy to change display sizes, we'll define a few variables in one spot here. We have

WIDTH , which is the display width, HEIGHT , which is the display height and BORDER , which we will

explain a little further below. FONTSCALE will be the multiplier for the font size.

WIDTH = 128
HEIGHT = 128
BORDER = 8
FONTSCALE = 1

Finally, we initialize the driver with a width of the WIDTH variable and a height of the HEIGHT variable. If

we stopped at this point and ran the code, we would have a terminal that we could type at and have the

screen update. You may notice Blinka is grayscale.

display = adafruit_ssd1327.SSD1327(display_bus, width=WIDTH, height=HEIGHT)

© Adafruit Industries https://learn.adafruit.com/adafruit-grayscale-1-5-128x128-oled-display Page 20 of 27

Next we create a background splash image. We do this by creating a group that we can add elements to

and adding that group to the display. In this example, we are limiting the maximum number of elements to

10, but this can be increased if you would like. The display will automatically handle updating the group.

Make the display context
splash = displayio.Group(max_size=10)
display.show(splash)

Next we create a Bitmap that is the full width and height of the display minus the value of the BORDER

variable for each of the 2 sides. The Bitmap is like a canvas that we can draw on. In this case we are

creating the Bitmap to be the same size as the screen, but only have one color. Although the Bitmaps can

handle up to 256 different colors, we only need one. We create a Palette with one color and set that color

to 0xFFFFFF , which happens to be white. If were to place a different color here, displayio handles color

conversion automatically, so it would end up some shade of gray.

With all those pieces in place, we create a TileGrid by passing the bitmap and palette and draw it at (8, 8)
so that it ends up centered.

© Adafruit Industries https://learn.adafruit.com/adafruit-grayscale-1-5-128x128-oled-display Page 21 of 27

Draw a background rectangle, but not the full display size
color_bitmap = displayio.Bitmap(
 display.width - BORDER * 2, display.height - BORDER * 2, 1
)
color_palette = displayio.Palette(1)
color_palette[0] = 0xFFFFFF # White
bg_sprite = displayio.TileGrid(
 color_bitmap, pixel_shader=color_palette, x=BORDER, y=BORDER
)
splash.append(bg_sprite)

Next we will create a smaller gray rectangle. The easiest way to do this is to create a new bitmap that is a

little smaller than the full screen with a single color of 0x888888 , which is gray, and place it in a specific

location. This display handles grayscale and this color is about halfway between 0x000000 and

0xFFFFFF . In this case, we will create a bitmap that is 8 pixels smaller on each side than the previous

rectangle for a difference of 16 pixels on each side. We have the BORDER set to 8 , so we'll want to

subtract 32 from each of those numbers.

We'll want to place it at the position (16, 16) so that it ends up centered as well.

© Adafruit Industries https://learn.adafruit.com/adafruit-grayscale-1-5-128x128-oled-display Page 22 of 27

Draw a smaller inner rectangle
inner_bitmap = displayio.Bitmap(
 display.width - BORDER * 4, display.height - BORDER * 4, 1
)
inner_palette = displayio.Palette(1)
inner_palette[0] = 0x888888 # Gray
inner_sprite = displayio.TileGrid(
 inner_bitmap, pixel_shader=inner_palette, x=BORDER * 2, y=BORDER * 2
)
splash.append(inner_sprite)

Since we are adding this after the first square, it's automatically drawn on top. Here's what it looks like

now. Because of the way the OLED scans, you may notice the colors aren't distributed evenly.

Next let's add a label that says "Hello World!" on top of that. We're going to use the built-in Terminal Font

and scale it up by a factor of two, which is what we have FONTSCALE set to. To scale the label only, we

will make use of a subgroup, which we will then add to the main group.

We create the label first so that we can get the width of the bounding box and multiply it by

the FONTSCALE . This gives us the actual with of the text.

Labels are automatically centered vertically, so we'll place it at half the display height for the Y coordinate,

and we calculate the X coordinate to horizontally center the label. We use the // operator to divide

because we want a whole number returned and it's an easy way to round it. Let's go with some white text.

© Adafruit Industries https://learn.adafruit.com/adafruit-grayscale-1-5-128x128-oled-display Page 23 of 27

Draw a label
text = "Hello World!"
text_area = label.Label(terminalio.FONT, text=text, color=0xFFFFFF)
text_width = text_area.bounding_box[2] * FONTSCALE
text_group = displayio.Group(
 max_size=10,
 scale=FONTSCALE,
 x=display.width // 2 - text_width // 2,
 y=display.height // 2,
)
text_group.append(text_area) # Subgroup for text scaling
splash.append(text_group)

Finally, we place an infinite loop at the end so that the graphics screen remains in place and isn't replaced

by a terminal.

while True:
 pass

Where to go from here

Be sure to check out this excellent guide to CircuitPython Display Support Using

displayio (https://adafru.it/EGh)

© Adafruit Industries https://learn.adafruit.com/adafruit-grayscale-1-5-128x128-oled-display Page 24 of 27

https://learn.adafruit.com/circuitpython-display-support-using-displayio

Downloads

Files

Fritzing object in Adafruit Fritzing Library (https://adafru.it/OBn)

PCB Files on GitHub (https://adafru.it/OBo)

3D Models on GitHub (https://adafru.it/RcV)

Schematic

Fab Print

© Adafruit Industries https://learn.adafruit.com/adafruit-grayscale-1-5-128x128-oled-display Page 25 of 27

https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20Grayscale%201.5in%20128x128%20OLED%20Graphic%20Display.fzpz
https://github.com/adafruit/Adafruit-Grayscale-1.5-inch-128x128-OLED-PCB
https://github.com/adafruit/Adafruit_CAD_Parts/tree/master/4741%20OLED%201.5in

© Adafruit Industries https://learn.adafruit.com/adafruit-grayscale-1-5-128x128-oled-display Page 26 of 27

© Adafruit Industries Last Updated: 2021-09-07 12:35:02 PM EDT Page 27 of 27

	Guide Contents
	Overview
	Pinouts
	Power Pins
	StemmaQT Ports
	I2C and SPI Jumpers
	I2C Pins
	SPI Pins

	Arduino Wiring and Test
	I2C Wiring
	SPI Wiring
	Download Libraries
	Run the Demo

	CircuitPython Wiring and Usage
	I2C Wiring
	SPI Wiring
	CircuitPython displayio Library Installation
	Adafruit_CircuitPython_SSD1327
	Code Example Additional Libraries

	Usage
	I2C Initialization
	Changing the I2C address

	SPI Initialization

	Example Code
	Where to go from here

	Downloads
	Files
	Schematic
	Fab Print

