
Adafruit PCF8523 Real Time Clock
Created by lady ada

Last updated on 2021-08-04 12:10:08 PM EDT

2
3
7
8
8
9

10
11
11
12
13
15
15
15
17
17
18
19
20
21
23
23
23
24
25
27
28
28
28
29

Guide Contents

Guide Contents
Overview
Pinouts

Power Pins:
I2C Logic pins:
STEMMA QT Connectors:

Other Pins:
Assembly

Prepare the header strip:
Add the breakout board:
And Solder!

Real Time Clock
What is a Real Time Clock?

Battery Backup
RTC with Arduino
Wiring
Talking to the RTC
First RTC test
Setting the time
Reading the time
RTC with CircuitPython
Wiring
Adafruit CircuitPython Library Install
Usage
Setting the time
Python Docs
Downloads
Datasheets and Files
Schematic and Fab Print for STEMMA QT Version
Schematic and Fab Print for Original Version

© Adafruit Industries https://learn.adafruit.com/adafruit-pcf8523-real-time-clock Page 2 of 31

Overview

This is a great battery-backed real time clock (RTC) that allows your microcontroller project to keep track

of time even if it is reprogrammed, or if the power is lost. Perfect for datalogging, clock-building, time

stamping, timers and alarms, etc. Equipped with PCF8523 RTC - it can run from 3.3V or 5V power & logic!

We've had a breakout board version of this RTC for a while (https://adafru.it/sd5), but we want to make it

even easier for folks to use, so now it comes with STEMMA QT connectors for plug-and-play simplicity.

© Adafruit Industries https://learn.adafruit.com/adafruit-pcf8523-real-time-clock Page 3 of 31

https://www.adafruit.com/product/3295

Works great with an Arduino using our RTC library (https://adafru.it/c7r) or with a Raspberry Pi (or similar

single board linux computer) (https://adafru.it/C5q)

PCB & header are included

Plugs into any breadboard, or you can use wires

Two mounting holes

Will keep time for 5 years or more

© Adafruit Industries https://learn.adafruit.com/adafruit-pcf8523-real-time-clock Page 4 of 31

https://github.com/adafruit/RTClib
file:///adding-a-real-time-clock-to-raspberry-pi

To make life easier so you can focus on your important work, we've taken the sensor and put it onto a

breakout PCB along with support circuitry to let you use it with 3.3V (Feather/Raspberry Pi) or 5V

(Arduino/ Metro328) logic levels. Additionally, since it speaks I2C you can easily connect it up with two

wires (plus power and ground!). We've even included SparkFun

qwiic (https://adafru.it/Fpw) compatible STEMMA QT (https://adafru.it/Ft4) connectors for the I2C bus

so you don't even need to solder! QT Cable is not included , but we have a variety in the

shop (https://adafru.it/JnB). Just wire up to your favorite micro and you can use our CircuitPython/Python

or Arduino drivers (https://adafru.it/IFR) to easily interface with the PCF8523.

The PCF8523 is simple and inexpensive but not a high precision device. It may lose or gain up to 2

seconds a day. For a high-precision, temperature compensated alternative, please check out the DS3231

precision RTC (http://adafru.it/3013). If you need a DS1307 for compatibility reasons, check out our DS1307

RTC breakout (http://adafru.it/3296)

There are two versions of this board - the STEMMA QT version shown below (the black PCB), and

the original header-only version shown above (the blue PCB). Code works the same on both!
�

© Adafruit Industries https://learn.adafruit.com/adafruit-pcf8523-real-time-clock Page 5 of 31

https://www.sparkfun.com/qwiic
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/?q=stemma+qt+cable&sort=BestMatch
https://github.com/adafruit/Adafruit_DPS310
https://www.adafruit.com/products/3013
http://www.adafruit.com/products/3296

© Adafruit Industries https://learn.adafruit.com/adafruit-pcf8523-real-time-clock Page 6 of 31

Pinouts

The PCF8523 is a I2C device. That means it uses the two I2C data/clock wires available on most

microcontrollers, and can share those pins with other sensors as long as they don't have an address

collision.

© Adafruit Industries https://learn.adafruit.com/adafruit-pcf8523-real-time-clock Page 7 of 31

For future reference, the default I2C address is 0x68. You cannot change it.

Power Pins:

VCC - this is the power pin. This chip can be powered by

3-5VDC so there is now on-board regulator. To power the

board, give it the same power as the logic level of your

microcontroller - e.g. for a 5V micro like Arduino, use 5V

GND - common ground for power and logic

I2C Logic pins:

© Adafruit Industries https://learn.adafruit.com/adafruit-pcf8523-real-time-clock Page 8 of 31

https://learn.adafruit.com//assets/47719
https://learn.adafruit.com//assets/103709

SCL - I2C clock pin, connect to your microcontrollers I2C

clock line.

SDA - I2C data pin, connect to your microcontrollers I2C

data line.

STEMMA QT Connectors:

STEMMA QT (https://adafru.it/Ft4) - These

connectors allow you to connect to dev boards with

STEMMA QT connectors or to other things

with various associated

accessories (https://adafru.it/Ft6)

On the STEMMA QT version of the breakout only!�

© Adafruit Industries https://learn.adafruit.com/adafruit-pcf8523-real-time-clock Page 9 of 31

https://learn.adafruit.com//assets/47721
https://learn.adafruit.com//assets/103712
https://learn.adafruit.com//assets/103713
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/?q=JST%20SH%204

Other Pins:

The SQW pin is for square-wave output if you enable it

© Adafruit Industries https://learn.adafruit.com/adafruit-pcf8523-real-time-clock Page 10 of 31

https://learn.adafruit.com//assets/47722
https://learn.adafruit.com//assets/103714

Assembly

Assembly is really easy, you can use straight or 'right-angle' style headers to attach to the PCB. We'll be

using the plain straight headers included

The board comes with all surface-mount components pre-soldered. The included header strip can be

soldered on for convenient use on a breadboard or with 0.1" connectors. You can also skip this step and

solder on wires.

Prepare the header strip:
Cut the strip to length if necessary. It will be easier to

solder if you insert it into a breadboard - long pins down

© Adafruit Industries https://learn.adafruit.com/adafruit-pcf8523-real-time-clock Page 11 of 31

https://learn.adafruit.com//assets/48408

Add the breakout board:
Place the breakout board over the pins so that the short

pins poke through the breakout pads

© Adafruit Industries https://learn.adafruit.com/adafruit-pcf8523-real-time-clock Page 12 of 31

https://learn.adafruit.com//assets/48409

And Solder!
Be sure to solder all 5 pins for reliable electrical contact.

(For tips on soldering, be sure to check out our Guide to

Excellent Soldering (https://adafru.it/aTk)).

© Adafruit Industries https://learn.adafruit.com/adafruit-pcf8523-real-time-clock Page 13 of 31

https://learn.adafruit.com//assets/48410
https://learn.adafruit.com//assets/48411
https://learn.adafruit.com//assets/48412
http://learn.adafruit.com/adafruit-guide-excellent-soldering

You're done! Check your solder joints visually and

continue onto the next steps.

© Adafruit Industries https://learn.adafruit.com/adafruit-pcf8523-real-time-clock Page 14 of 31

https://learn.adafruit.com//assets/48413

Real Time Clock

What is a Real Time Clock?

When logging data, it's often really really useful to have timestamps! That way you can take data one

minute apart (by checking the clock) or noting at what time of day the data was logged.

The Arduino IDE does have a built-in timekeeper called millis() (CircuitPython has time) and theres' also

timers built into the chip that can keep track of longer time periods like minutes or days. So why would

you want to have a separate RTC chip? Well, the biggest reason is that millis()/time only keeps track of

time since the board was last powered - that means that when the power is turned on, the millisecond

timer is set back to 0. The board doesn't know its 'Tuesday' or 'March 8th' all it can tell is 'Its been 14,000

milliseconds since I was last turned on'.

OK so what if you wanted to set the time? You'd have to program in the date and time and you could have

it count from that point on. But if it lost power, you'd have to reset the time. Much like very cheap alarm

clocks: every time they lose power they blink 12:00

While this sort of basic timekeeping is OK for some projects, a data-logger will need to have consistent

timekeeping that doesnt reset when the power goes out or is reprogrammed. Thus, we include a

separate RTC! The RTC chip is a specialized chip that just keeps track of time. It can count leap-years and

knows how many days are in a month, but it doesn't take care of Daylight Savings Time (because it

changes from place to place)

This image shows a computer motherboard with a Real Time Clock called the
DS1387 (https://adafru.it/aX0). Theres a lithium battery in there which is why it's so big.

The RTC we'll be using is the PCF8523 (https://adafru.it/reb)

Battery Backup
As long as it has a coin cell to run it, the RTC will merrily tick along for a long time, even when the Feather

© Adafruit Industries https://learn.adafruit.com/adafruit-pcf8523-real-time-clock Page 15 of 31

http://www.maxim-ic.com/app-notes/index.mvp/id/503
http://www.nxp.com/products/interface-and-connectivity/interface-and-system-management/i2c-bus-portfolio/i2c-real-time-clocks-rtc/real-time-clock-rtc-and-calendar:PCF8523

loses power, or is reprogrammed.

Use any CR1220 3V lithium metal coin cell battery:

CR1220 12mm Diameter - 3V Lithium Coin Cell Battery
These are the highest quality & capacity batteries, the same as shipped with the iCufflinks, iNecklace, Datalogging and GPS Shields,

GPS HAT, etc. One battery per order...

$0.95
In Stock

Add to Cart

You MUST have a coin cell installed for the RTC to work, if there is no coin cell, it will act

strangely and possibly hang the Arduino when you try to use it, so ALWAYS make SURE there's a

battery installed, even if it's a dead battery.
�

© Adafruit Industries https://learn.adafruit.com/adafruit-pcf8523-real-time-clock Page 16 of 31

https://www.adafruit.com/product/380
https://www.adafruit.com/product/380

RTC with Arduino

Wiring
Wiring it up is easy, connect it up as shown below.

GND to GND (black wire on STEMMA QT version)

on your board

VCC (red wire on STEMMA QT version) to the logic

level power of your board (on classic Arduinos &

Metros use 5V, on 3.3V devices use 3.3V)

SDA to the SDA (blue wire on STEMMA QT version)

i2c data pin

SCL to the SCL (yellow wire on STEMMA QT

version) i2c clock pin

There are internal 10K pull-ups on the PCF8523 on SDA

and SCL to the VCC voltage

https://adafru.it/A1F

https://adafru.it/A1F

© Adafruit Industries https://learn.adafruit.com/adafruit-pcf8523-real-time-clock Page 17 of 31

https://learn.adafruit.com//assets/103717
https://learn.adafruit.com//assets/103718
https://learn.adafruit.com//assets/103719
https://cdn-learn.adafruit.com/assets/assets/000/047/734/original/pcfmetro.fzz?1509306338

Talking to the RTC
The RTC is an i2c device, which means it uses 2 wires to to communicate. These two wires are used to set

the time and retrieve it.

For the RTC library, we'll be using a fork of JeeLab's excellent RTC library , which is available on

GitHub (https://adafru.it/c7r). You can do that by visiting the github repo and manually downloading or,

easier go to the Arduino Library Manager

Type in RTClib - and find the one that is by Adafruit and click Install

We also have a great tutorial on Arduino library installation at:

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

Once done, restart the IDE

There are a few different 'forks' of RTClib, make sure you are using the ADAFRUIT one!�

© Adafruit Industries https://learn.adafruit.com/adafruit-pcf8523-real-time-clock Page 18 of 31

https://github.com/adafruit/RTClib

First RTC test
The first thing we'll demonstrate is a test sketch that will read the time from the RTC once a second. We'll

also show what happens if you remove the battery and replace it since that causes the RTC to halt. So to

start, remove the battery from the holder while the Feather is not powered or plugged into USB. Wait 3

seconds and then replace the battery. This resets the RTC chip. Now load up the matching sketch for your

RTC

Open up Examples->RTClib->pcf8523

Upload it to your board with the PCF8523 breakout board or FeatherWing connected

Now open up the Serial Console and make sure the baud rate is set correctly at 57600 baud you should

see the following:

© Adafruit Industries https://learn.adafruit.com/adafruit-pcf8523-real-time-clock Page 19 of 31

Whenever the RTC chip loses all power (including the backup battery) it will reset to an earlier date and

report the time as 0:0:0 or similar. Whenever you set the time, this will kickstart the clock ticking.

So, basically, the upshot here is that you should never ever remove the battery once you've set the time.

You shouldn't have to and the battery holder is very snug so unless the board is crushed, the battery won't

'fall out'

Setting the time
With the same sketch loaded, uncomment the line that starts with RTC.adjust like so:

 if (! rtc.initialized()) {
 Serial.println("RTC is NOT running!");
 // following line sets the RTC to the date & time this sketch was compiled
 rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));

This line is very cute, what it does is take the Date and Time according the computer you're using (right

when you compile the code) and uses that to program the RTC. If your computer time is not set right you

should fix that first. Then you must press the Upload button to compile and then immediately upload. If

you compile and then upload later, the clock will be off by that amount of time.

Then open up the Serial monitor window to show that the time has been set

© Adafruit Industries https://learn.adafruit.com/adafruit-pcf8523-real-time-clock Page 20 of 31

From now on, you won't have to ever set the time again: the battery will last 5 or more years

Reading the time
Now that the RTC is merrily ticking away, we'll want to query it for the time. Let's look at the sketch again

to see how this is done

void loop () {
 DateTime now = rtc.now();

 Serial.print(now.year(), DEC);
 Serial.print('/');
 Serial.print(now.month(), DEC);
 Serial.print('/');
 Serial.print(now.day(), DEC);
 Serial.print(" (");
 Serial.print(daysOfTheWeek[now.dayOfTheWeek()]);
 Serial.print(") ");
 Serial.print(now.hour(), DEC);
 Serial.print(':');
 Serial.print(now.minute(), DEC);
 Serial.print(':');
 Serial.print(now.second(), DEC);
 Serial.println();

There's pretty much only one way to get the time using the RTClib, which is to call now(), a function that

returns a DateTime object that describes the year, month, day, hour, minute and second when you called

now().

© Adafruit Industries https://learn.adafruit.com/adafruit-pcf8523-real-time-clock Page 21 of 31

There are some RTC libraries that instead have you call something like RTC.year() and RTC.hour() to get

the current year and hour. However, there's one problem where if you happen to ask for the minute right

at 3:14:59 just before the next minute rolls over, and then the second right after the minute rolls over (so

at 3:15:00) you'll see the time as 3:14:00 which is a minute off. If you did it the other way around you could

get 3:15:59 - so one minute off in the other direction.

Because this is not an especially unlikely occurance - particularly if you're querying the time pretty often -

we take a 'snapshot' of the time from the RTC all at once and then we can pull it apart into day() or

second() as seen above. It's a tiny bit more effort but we think its worth it to avoid mistakes!

We can also get a 'timestamp' out of the DateTime object by calling unixtime which counts the number of

seconds (not counting leapseconds) since midnight, January 1st 1970

 Serial.print(" since 2000 = ");
 Serial.print(now.unixtime());
 Serial.print("s = ");
 Serial.print(now.unixtime() / 86400L);
 Serial.println("d");

Since there are 60*60*24 = 86400 seconds in a day, we can easily count days since then as well. This

might be useful when you want to keep track of how much time has passed since the last query, making

some math a lot easier (like checking if it's been 5 minutes later, just see if unixtime() has increased by

300, you dont have to worry about hour changes)

© Adafruit Industries https://learn.adafruit.com/adafruit-pcf8523-real-time-clock Page 22 of 31

RTC with CircuitPython

Wiring
Wiring it up is easy, connect it up as shown below.

GND to GND on your board

VCC to the logic level power of your board - every

CircuitPython board uses 3.3V

SDA to the SDA i2c data pin

SCL to the SCL i2c clock pin

There are internal 10K pull-ups on the PCF8523 on SDA

and SCL to the VCC voltage

Adafruit CircuitPython Library Install

© Adafruit Industries https://learn.adafruit.com/adafruit-pcf8523-real-time-clock Page 23 of 31

https://learn.adafruit.com//assets/103720
https://learn.adafruit.com//assets/103721
https://learn.adafruit.com//assets/103722

To use the RTC sensor with your Adafruit CircuitPython (https://adafru.it/AlP) board you'll need to install

the Adafruit_CircuitPython_PCF8523 (https://adafru.it/Bvh) module on your board.

First make sure you are running the latest version of Adafruit CircuitPython (https://adafru.it/Amd) for your

board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow the steps to find

and install these libraries from Adafruit's CircuitPython library bundle (https://adafru.it/zdx). Our

introduction guide has a great page on how to install the library bundle (https://adafru.it/ABU) for both

express and non-express boards.

Remember for non-express boards like the, you'll need to manually install the necessary libraries from the

bundle:

adafruit_bus_device folder

adafruit_register folder

adafruit_pcf8523.mpy

Before continuing make sure your board's lib folder or root filesystem has the adafruit_pcf8523.mpy

module, the adafruit_register folder, and the adafruit_bus_device folder copied over.

Usage
To demonstrate the usage of the PCF8523 module you can connect to your board's serial REPL to see

the output while saving our example sketch to main.py

Next connect to the board's serial REPL (https://adafru.it/Awz)so you are at the CircuitPython >>> prompt.

Then save this script to main.py (back up or remove whatever was there before)

© Adafruit Industries https://learn.adafruit.com/adafruit-pcf8523-real-time-clock Page 24 of 31

file:///welcome-to-circuitpython/
https://github.com/adafruit/Adafruit_CircuitPython_PCF8523
file:///welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
file:///welcome-to-circuitpython/circuitpython-libraries
file:///welcome-to-circuitpython/the-repl

import busio
import adafruit_pcf8523
import time
import board

myI2C = busio.I2C(board.SCL, board.SDA)
rtc = adafruit_pcf8523.PCF8523(myI2C)

days = ("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday")

if False: # change to True if you want to write the time!
 # year, mon, date, hour, min, sec, wday, yday, isdst
 t = time.struct_time((2017, 10, 29, 15, 14, 15, 0, -1, -1))
 # you must set year, mon, date, hour, min, sec and weekday
 # yearday is not supported, isdst can be set but we don't do anything with it at this time

 print("Setting time to:", t) # uncomment for debugging
 rtc.datetime = t
 print()

while True:
 t = rtc.datetime
 #print(t) # uncomment for debugging

 print("The date is %s %d/%d/%d" % (days[t.tm_wday], t.tm_mday, t.tm_mon, t.tm_year))
 print("The time is %d:%02d:%02d" % (t.tm_hour, t.tm_min, t.tm_sec))

 time.sleep(1) # wait a second

Setting the time
The first time you run the program, you'll need to set the time

find these lines:

if False: # change to True if you want to write the time!
 # year, mon, date, hour, min, sec, wday, yday, isdst
 t = time.struct_time((2017, 10, 29, 15, 14, 15, 0, -1, -1))
 # you must set year, mon, date, hour, min, sec and weekday
 # yearday is not supported, isdst can be set but we don't do anything with it at this time

Change the False to True in the first line, and update the time.struct_time to have the current time starting

from year to weekday . The last two entries can stay at -1

Re-run the sketch by saving and you'll see this out of the REPL:

© Adafruit Industries https://learn.adafruit.com/adafruit-pcf8523-real-time-clock Page 25 of 31

Note the part where the program says it is Setting time to:

Now you can go back and change the if True to if False and save, so you don't re-set the RTC again.

The script will now output the time and date

© Adafruit Industries https://learn.adafruit.com/adafruit-pcf8523-real-time-clock Page 26 of 31

Python Docs
Python Docs (https://adafru.it/C5r)

© Adafruit Industries https://learn.adafruit.com/adafruit-pcf8523-real-time-clock Page 27 of 31

https://circuitpython.readthedocs.io/projects/pcf8523/en/latest/

Downloads

Datasheets and Files
EagleCAD PCB files on GitHub (https://adafru.it/C5s)

Fritzing object in Adafruit Fritzing library (https://adafru.it/c7M)

PCF8523 product page (https://adafru.it/reb)

Schematic and Fab Print for STEMMA QT Version

© Adafruit Industries https://learn.adafruit.com/adafruit-pcf8523-real-time-clock Page 28 of 31

https://github.com/adafruit/Adafruit-PCF8523-RTC-Breakout-PCB
https://github.com/adafruit/Fritzing-Library/
http://www.nxp.com/products/interface-and-connectivity/interface-and-system-management/i2c-bus-portfolio/i2c-real-time-clocks-rtc/real-time-clock-rtc-and-calendar:PCF8523

Schematic and Fab Print for Original Version

© Adafruit Industries https://learn.adafruit.com/adafruit-pcf8523-real-time-clock Page 29 of 31

© Adafruit Industries https://learn.adafruit.com/adafruit-pcf8523-real-time-clock Page 30 of 31

© Adafruit Industries Last Updated: 2021-08-04 12:10:08 PM EDT Page 31 of 31

	Guide Contents
	Overview
	Pinouts
	Power Pins:
	I2C Logic pins:
	STEMMA QT Connectors:

	Other Pins:
	Assembly
	Prepare the header strip:
	Add the breakout board:
	And Solder!

	Real Time Clock
	What is a Real Time Clock?

	Battery Backup
	RTC with Arduino
	Wiring
	Talking to the RTC
	First RTC test
	Setting the time
	Reading the time
	RTC with CircuitPython
	Wiring
	Adafruit CircuitPython Library Install
	Usage
	Setting the time
	Python Docs
	Downloads
	Datasheets and Files
	Schematic and Fab Print for STEMMA QT Version
	Schematic and Fab Print for Original Version

