RP2040 A microcontroller by Raspberry Pi

Pico C/C++ SDK
Libraries and tools for
C/C++ development on
RP2040 microcontrollers

Raspberry Pi Trading Ltd

Pico C/C++ SDK

Colophon

Copyright © 2020 Raspberry Pi (Trading) Ltd.

The documentation of the RP2040 microcontroller is licensed under a Creative Commons Attribution-NoDerivatives 4.0
International (CC BY-ND).

build-date: 2021-01-21
build-version: fcd04ef-clean

Legal Disclaimer Notice

TECHNICAL AND RELIABILITY DATA FOR RASPBERRY PI PRODUCTS (INCLUDING DATASHEETS) AS MODIFIED FROM
TIME TO TIME (“RESOURCES") ARE PROVIDED BY RASPBERRY PI (TRADING) LTD ("RPTL) "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW IN NO EVENT SHALL RPTL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THE RESOURCES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

RPTL reserves the right to make any enhancements, improvements, corrections or any other modifications to the
RESOURCES or any products described in them at any time and without further notice.

The RESOURCES are intended for skilled users with suitable levels of design knowledge. Users are solely responsible for
their selection and use of the RESOURCES and any application of the products described in them. User agrees to
indemnify and hold RPTL harmless against all liabilities, costs, damages or other losses arising out of their use of the
RESOURCES.

RPTL grants users permission to use the RESOURCES solely in conjunction with the Raspberry Pi products. All other use
of the RESOURCES is prohibited. No licence is granted to any other RPTL or other third party intellectual property right.

HIGH RISK ACTIVITIES. Raspberry Pi products are not designed, manufactured or intended for use in hazardous
environments requiring fail safe performance, such as in the operation of nuclear facilities, aircraft navigation or
communication systems, air traffic control, weapons systems or safety-critical applications (including life support
systems and other medical devices), in which the failure of the products could lead directly to death, personal injury or
severe physical or environmental damage (“High Risk Activities”). RPTL specifically disclaims any express or implied
warranty of fitness for High Risk Activities and accepts no liability for use or inclusions of Raspberry Pi products in High
Risk Activities.

Raspberry Pi products are provided subject to RPTL's Standard Terms. RPTL's provision of the RESOURCES does not
expand or otherwise modify RPTL's Standard Terms including but not limited to the disclaimers and warranties expressed
in them.

Legal Disclaimer Notice 1

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://www.raspberrypi.org/terms-conditions-sale/
https://www.raspberrypi.org/terms-conditions-sale/

Pico C/C++ SDK

Table of Contents

Colophon. 1
Legal Disclaimer Notice 1
T.Aboutthe Pico SDK. 5
1.1, Introduction 5
1.2. Anatomy of a Pico SDK Application. . 5
2.Pico SDK Architecture - 8
2.1. The Build System 8
2.2 Every Libraryisan INTERFACE . 9
2.3.Pico SDK Library Structure10
2.3.1. Higher-level Libraries. ... 10
2.3.2. Runtime Support (pico_runtime, pico_standard_link) ... 10
2.3.3. Hardware Support Libraries. ... B
2.3.4. Hardware Structs Library ... 12
2.3.5. Hardware Registers Library 13
2.3.6. TINYUSB POrt. . 14
2.4, Directory Structure ... 14
2.4.7. Locations of Files 15
2.5. Conventions for Library Functions. .. 16
2.5.1. Function Naming Conventions16
2.52 Return Codes and Error Handling 17
2.5.3.Useof Inline FUNCtions 17
2.5.4. Builder Pattern for Hardware Configuration APIs18
2.6. Customisation and Configuration Using Preprocessor variables 19
2.6.1. Preprocessor Variables via Board Configuration File 19
2.6.2. Preprocessor Variables Per Binary or Library via CMake ... 19
2.7.Pico SDKRUNtIME . 20
2.7.7. Standard Input/Output (stdio) Support 20
2.7.2.Floating-point SUPPOIt. . 21
2.7.3. Hardware Divider 24
2.8, MUlti-core SUPPOIt. .. 25
2.0.UsINg CHt 26
270.NeXtSIEPS 26
3.Using Programmable I/0 (PIO). .. 27
3.1. What is Programmable 1/0 (PIO)? 27
311 Background. 27
3.1.2.1/0 Using dedicated hardware onyour PC 27
3.1.3.1/0 Using dedicated hardware on your Raspberry Pi or microcontroller 27
3.1.4.1/0 Using software control of GPIOs (‘bit-banging”) 28
3.1.5. Programmable I/0 Hardware using FPGAs and CPLDs.29
3.1.6. Programmable I/0 Hardware using PIO ... 29
3.2.Getting started with PIO 30
321 AFirst PIO Application 30
3.2.2. AReal Example: WS2812 LEDS . .. 34
3.2.3. PIO and DMA (A Logic Analyser) 41
324 Furtherexamples. .. 46
3.3.Using PIOASM, the PIO Assembler 46
3.3.1. Usage 46
3.3.2. DIreCtiVES . - 47
3.33.Values. ... 48
334 EXPresSIONS. 48
3.3.5. COMMENTS. - o 48
336 Labels. ... 48
337 INStruCtionS . 49
3.3.8. Output pass through 49
3.3.9. Language generators 50

Table of Contents 2

Pico C/C++ SDK

3.4.PIO Instruction Set Reference. . 55
AT SUMMANY . 55
A2 . IMP 56
B4 B WAL 57
3.4.4.IN . . . 58
A5 OUT . 59
3A4.6.PUSH 60
A7 PULL . 61
348 MOV 61
349 IRQ - 63
A0 SET 64

4. Library Documentation = .. 65

470 Hardware APIs 65
470 hardware_ade . . 65
4.1.2. hardware_base 70
4713 hardware_claim . 71
4.7.4. hardware_clocks .. 73
4.71.5 hardware_divider ... 79
47.6.hardware_dma .. 87
4.7.7.channel_config. ... 94
4.1.8 hardware_flash. ... 98
471.9. hardware_gpio . .. 100
47170 hardware_i2C 109
4707 hardware_interp. . 116
4.1.12. interp_config)) 121
A3 hardware_irg. 124
4704 hardware_pio .. 129
AT05.sm_coNnfig. . 143
471706, hardware_pll. 149
4707 hardware_pWim .. 150
4718 hardware_resets 159
47709, hardware_rtC - 161
4.7.20. hardware_spi . .. 163
4727, hardware_SyNC. 168
4.1.22. hardware_timer 173
47123 hardware_uart .. 177
4724, hardware_Vreg 183
4.1.25. hardware_watchdog 183
471.26.hardware_XOSC. ... 185

42 . High Level APIs 186
427, pico_multicore .. 187
422 00 189
42 3. pico_stdlib. 190
424.DICOLSYNC oo 192
4.2.5. critical_section)) 192
A2.6.MUEEX. 194
A2.7. SEM. 196
4.2.8.pICOIME. 198
4290 timesStamp. . 198
4270, 8leep. 201
42.070.alarm 202
4212, repeating_timer ... 208
42.03.pico_Util. 211
4214 datetime 211
4.2.15. pheap)) 212
A2.00.QUEUE . - 212

4.3. Third-party Libraries ... 216
4370 tinyusb_device ... 216
432 tinyusb_host 216

4.4, Runtime Infrastructure. ... 216

Table of Contents

Pico C/C++ SDK

447 . boot_stage? ...

4.4.2. pico_base
4.4.3. pico_bit_ops
4.4.4 pico_bootrom
4.4.5. pico_cxx_options

4.4.6. pico_divider. ...
4.4.7. pico_double
4.4.8. pico_float.

449, pICo_INtOA_OPS . - .-

4.4.10. pico_malloc

4477, PICOLMEM_OPS. . -

4.4.12. pico_platform .
4.4.13. pico_printf
4414 pico_runtime. ...
4.415. pico_stdio

4.416. pico_stdio_semihosting
4.417. pico_stdio_uart.
4.4.18. pico_stdio_usb . .

4.419. pico_standard_link. ...

4.5 External APl Headers

4.51. boot_picoboot ...

4.5.2. boot_uf2 .
Appendix A: App Notes
Attachinga 7 segment LED viaGPIO
Wiring information

List of Files. .

Bill of Materials
DHT-11, DHT-22, and AM2302 Sensors

Wiring information ...

List of Files. ..
Bill of Materials .
Attaching a BME280 temperature/humidity/pressure sensor via SPI
Wiring information
List of Files.
Bill of Materials

Attaching a MPU9250 accelerometer/gyroscope viaSPI.

Wiring information
Listof Files.
Bill of Materials .
Attaching a MPU6050 accelerometer/gyroscope via 12C

Wiring information ...

Listof Files.
Bill of Materials
Attachinga 16x2 LCDvial2C.
Wiring information

List of Files. .

Bill of Materials
Appendix B: SDK Configuration . ..

Configuration Parameters. ...

Appendix C: CMake Build Configuration.

Configuration Parameters.

Control of binary type produced (advanced)
Appendix D: Board Configuration.
Board Configuration
The Configuration files

Building applications with a custom board configuration

Available configuration parameters
Appendix E: Building the Pico SDK APl documentation.

217

217
218
219
219
227

..227

228
228
228

..228

228
228
228
230
230

.. 232

232
232
232

.. 232

233
233
233
233
235

.. 236

236
237
239

..239

239
240
244
244
245

.. 245

248
248
249

.. 249

251
252
252
252
255

.. 256

256
260
260

.. 261

262
262
262
263
263

.. 264

Table of Contents

Pico C/C++ SDK

Chapter 1. About the Pico SDK

1.1. Introduction

The Pico SDK (Software Development Kit) provides the headers, libraries and build system necessary to write programs
for RP2040-based devices such as Raspberry Pi Pico in C, C++ or Arm assembly language.

The Pico SDK is designed to provide an APl and programming environment that is familiar both to non-embedded C
developers and embedded C developers alike. A single program runs on the device at a time with a conventional main()
method. Standard C/C++ libraries are supported along with APIs for accessing RP2040's hardware, including DMA, IRQs,
and the wide variety fixed function peripherals and PIO (Programmable 10).

Additionally the Pico SDK provides higher level libraries for dealing with timers, USB, synchronization and multi-core
programming, along with additional high level functionality built using PIO such as audio. These libraries should be
comprehensive enough that your application code rarely, if at all, needs to access hardware registers directly. However, if
you do need or prefer to access the raw hardware, you will also find complete and fully-commented register definition
headers in the SDK. There's no need to look up addresses in the datasheet.

The Pico SDK can be used to build anything from simple applications, full fledged runtime environments such as
MicroPython, to low level software such as RP2040’s on-chip bootrom itself.

Looking to get started?

This book documents the Pico SDK APIs, explains the internals and overall design of the SDK, and
explores some deeper topics like using the PIO assembler to build new interfaces to external hardware.
For a quick start with setting up the SDK and writing Pico SDK programs, Getting started with Raspberry
Pi Pico is the best place to start.

1.2. Anatomy of a Pico SDK Application

Before going completely depth-first in our traversal of the SDK, it's worth getting a little breadth by looking at one of the
SDK examples covered in Getting started with Raspberry Pi Pico, in more detail.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/blink/blink.c Lines 1- 19

1 /**

2 * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
3 *

4 * SPDX-License-Identifier: BSD-3-Clause
SR/

6

7 #include "pico/stdlib.h"

8

9 int main() {

10 const uint LED_PIN = 25;

11 gpio_init(LED_PIN);

12 gpio_set_dir(LED_PIN, GPIO_OUT);

13 while (true) {

14 gpio_put(LED_PIN, 1);

15 sleep_ms(250);

16 gpio_put(LED_PIN, ©);

17 sleep_ms(250) ;

18 }

1.1. Introduction 5

https://datasheets.raspberrypi.org/pico/getting_started_with_pico.pdf
https://datasheets.raspberrypi.org/pico/getting_started_with_pico.pdf
https://datasheets.raspberrypi.org/pico/getting_started_with_pico.pdf
https://github.com/raspberrypi/pico-examples/tree/master/blink/blink.c#L1-L19

Pico C/C++ SDK

19 }

This program consists only of a single C file, with a single function. As with almost any C programming environment, the
function called main() is special, and is the point where the language runtime first hands over control to your program,
after doing things like initialising static variables with their values. In the Pico SDK the main() function does not take any
arguments. It's quite common for the main() function not to return, as is shown here.

O NoOTE

The return code of main() is ignored by the SDK runtime.

At the top of the C file, we include a header called pico/stdlib.h. This is an umbrella header that pulls in some other
commonly used headers. In particular, the ones needed here are hardware/gpio.h, which is used for accessing the general
purpose 10s on RP2040 (the gpio_xxx functions here), and pico/time.h which contains, among other things, the sleep_ms
function. Broadly speaking, a library whose name starts with pico provides high level APIs and concepts, or aggregates
smaller interfaces; a name beginning with hardware indicates a thinner abstraction between your code and RP2040 on-chip
hardware.

So, using mainly the hardware_gpio and pico_time libraries, this C program will blink an LED connected to GPI025 on and
off, twice per second, forever (or at least until unplugged). In the directory containing the C file (you can click the link
above the source listing to go there), there is one other file which lives alongside it.

Directory listing of pico-examples/blink

blink
—— blink.c

—— CMakelists.txt

0 directories, 2 files

The second file is a CMake file, which tells the Pico SDK how to turn the C file into a binary application for an RP2040-
based microcontroller board. Later sections will detail exactly what CMake is, and why it is used, but we can look at the
contents of this file without getting mired in those details.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/blink/CMakeLists.txt Lines 1- 12

add_executable(blink
blink.c

)

1
2
8
4
5 # Pull in our pico_stdlib which pulls in commonly used features
6 target_link_libraries(blink pico_stdlib)

7

8

create map/bin/hex file etc.
9 pico_add_extra_outputs(blink)

11 # add url via pico_set_program_url
12 example_auto_set_url(blink)

The add_executable function in this file declares that a program called blink should be built from the C file shown earlier.
This is also the target name used to build the program: in the pico-examples repository you can say make blink in your build
directory, and that name comes from this line. You can have multiple executables in a single project, and the pico-examples
repository is one such project.

The target_link_libraries is pulling in the SDK functionality that our program needs. If you don't ask for a library, it doesn’t
appear in your program binary. Just like pico/stdlib.h is an umbrella header that includes things like pico/time.h and
hardware/gpio.h, pico_stdlib is an umbrella library that makes libraries like pico_time and hardware_gpio available to your

1.2. Anatomy of

a Pico SDK Application 6

https://github.com/raspberrypi/pico-examples/tree/master/blink/CMakeLists.txt#L1-L12

Pico C/C++ SDK

build, so that those headers can be included in the first place, and the extra C source files are compiled and linked. If you
need less common functionality, like accessing the DMA hardware, you can call those libraries out here (e.g. listing
hardware_dma before or after pico_stdlib).

We could end the CMake file here, and that would be enough to build the blink program. By default, the build will produce
an ELF file (executable linkable format), containing all of your code and the SDK libraries it uses. You can load an ELF onto
RP2040's RAM or external flash through the Serial Wire Debug port, with a debugger setup like gdb and openocd. It's often
easier to program your Raspberry Pi Pico or other RP2040 board directly over USB with BOOTSEL mode, and this requires
a different type of file, called UF2, which serves the same purpose here as an ELF file, but is constructed to survive the
rigours of USB mass storage transfer more easily. The pico_add_extra_outputs function declares that you want a UF2 file to
be created, as well as some useful extra build output like disassembly and map files.

O NoOTE

The ELF file is converted to a UF2 with an internal Pico SDK tool called e1f2uf2, which is bootstrapped automatically as
part of the build process.

The example_auto_set_url function is to do with how you are able to read this source file in this document you are reading
right now, and click links to take you to the listing on Github. You'll see this on the pico-examples applications, but it's not
necessary on your own programs. You are seeing how the sausage is made.

Finally, a brief note on the pico_stdlib library. Besides common hardware and high-level libraries like hardware_gpio and
pico_time, it also pulls in components like pico_standard_link —which contains linker scripts and crt@ for Pico SDK —and
pico_runtime, which contains code running between crté and main(), getting the system into a state ready to run code by
putting things like clocks and resets in a safe initial state. These are incredibly low-level components that most users will
not need to worry about. The reason they are mentioned is to point out that they are ultimately explicit dependencies of
your program, and you can choose not to use them, whilst still building against the Pico SDK and using things like the
hardware libraries.

]
1.2. Anatomy of a Pico SDK Application 7

Pico C/C++ SDK

Chapter 2. Pico SDK Architecture

RP2040 is a powerful chip, and in particular was designed with a disproportionate amount of system RAM for its point in
the microcontroller design space. However it is an embedded environment, so RAM, CPU cycles and program space are
still at a premium. As a result the tradeoffs between performance and other factors (e.g. edge case error handling,
runtime vs compile time configuration) are necessarily much more visible to the developer than they might be on other
higher level platforms.

The intention within the SDK has been for features to just work out of the box, with sensible defaults, but also to give the
developer as much control and power as possible (if they want it) to fine tune every aspect of the application they are
building and the libraries used.

The next few sections try to highlight some of the design decisions behind the Pico SDK: the how and the why, as much
as the what.

O NoOTE

Some parts of this overview are quite technical or deal with very low-level parts of the SDK and build system. You
might prefer to skim this section at first and then read it thoroughly at a later time, after writing a few Pico SDK
applications.

2.1. The Build System

The Pico SDK uses CMake to manage the build. CMake is widely supported by IDEs (Integrated Development
Environments), which can use a CMakelists.txt file to discover source files and generate code autocomplete suggestions.
The same CMakelists.txt file provides a terse specification of how your application (or your project with many distinct
applications) should be built, which CMake uses to generate a robust build system used by make, ninja or other build tools.
The build system produced is customised for the platform (e.g. Windows, or a Linux distribution) and by any configuration
variables the developer chooses.

Section 2.6 shows how CMake can set configuration defines for a particular program, or based on which RP2040 board
you are building for, to configure things like default pin mappings and features of Pico SDK libraries. These defines are
listed in Appendix B, and Board Configuration files are covered in more detail in Appendix D. Additionally Appendix C
describes CMake variables you can use to control the functionality of the build itself.

Apart from being a widely used build system for C/C++ development, CMake is fundamental to the way the Pico SDK is
structured, and how applications are configured and built.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/blink/CMakeLists.txt Lines 1- 12

add_executable(blink
blink.c

)

1
2
8
4
5 # Pull in our pico_stdlib which pulls in commonly used features
6 target_link_libraries(blink pico_stdlib)

7

8 # create map/bin/hex file etc.

9 pico_add_extra_outputs(blink)

10

11 # add url via pico_set_program_url

12 example_auto_set_url(blink)

Looking here at the blink example, we are defining a new executable blink with a single source file blink.c, with a single

]
2.1. The Build System 8

https://cmake.org
https://github.com/raspberrypi/pico-examples/tree/master/blink/CMakeLists.txt#L1-L12

Pico C/C++ SDK
]

dependency pico_stdlib. We also are using a Pico SDK provided function pico_add_extra_outputs to ask additional files to
be produced beyond the executable itself (.uf2, .hex, .bin, .map, .dis).

The Pico SDK builds an executable which is bare metal, i.e. it includes the entirety of the code needed to run on the device
(other than floating point and other optimized code contained in the bootrom within RP2040).

pico_stdlib is an INTERFACE library and provides all of the rest of the code and configuration needed to compile and link
the blink application. You will notice if you do a build of blink (https://github.com/raspberrypi/pico-examples/tree/master/
blink/blink.c) that in addition to the single blink.c file, the inclusion of pico_stdlib causes about 40 other source files to be
compiled to flesh out the blink application such that it can be run on RP2040.

2.2. Every Library is an INTERFACE

All libraries within the Pico SDK are INTERFACE libraries. (Note this does not include the C/C++ standard libraries provided
by the compiler). Conceptually, a CMake INTERFACE library is a collection of:

® Source files

® |nclude paths

e Compiler definitions (visible to code as #defines)
® Compile and link options

® Dependencies (on other INTERFACE libraries)

The INTERFACE libraries form a tree of dependencies, with each contributing source files, include paths, compiler definitions
and compile/link options to the build. These are collected based on the libraries you have listed in your CMakelLists.txt file,
and the libraries depended on by those libraries, and so on recursively. To build the application, each source file is
compiled with the combined include paths, compiler definitions and options and linked into an executable according to
the provided link options.

When building an executable with the Pico SDK, all of the code for one executable, including the SDK libraries, is
(re)compiled for that executable from source. Building in this way allows your build configuration to specify customised
settings for those libraries (e.g. enabling/disabling assertions, setting the sizes of static buffers), on a per-application
basis, at compile time. This allows for faster and smaller binaries, in addition of course to the ability to remove support for
unwanted features from your executable entirely.

In the example CMakeLists.txt we declare a dependency on the (INTERFACE) library pico_stdlib. This INTERFACE library itself
depends on other INTERFACE libraries (pico_runtime, hardware_gpio, hardware_uart and others). pico_stdlib provides all the
basic functionality needed to get a simple application running and toggling GPIOs and printing to a UART, and the linker
will garbage collect any functions you don't call, so this doesn’t bloat your binary. We can take a quick peek into the
directory structure of the hardware_gpio library, which our blink example uses to turn the LED on and off:

hardware_gpio
—— CMakelLists.txt
—— gpio.c
—— include
—— hardware
—— gpio.h

Depending on the hardware_gpio INTERFACE library in your application causes gpio.c to be compiled and linked into your
executable, and adds the include directory shown here to your search path, so that a #include "hardware/gpio.h" will pull in
the correct header in your code.

INTERFACE libraries also make it easy to aggregate functionality into readily consumable chunks (such as pico_stdlib),
which don't directly contribute any code, but depend on a handful of lower-level libraries that do. Like a metapackage, this
lets you pull in a group of libraries related to a particular goal without listing them all by name.

]
2.2. Every Library is an INTERFACE 9

https://github.com/raspberrypi/pico-examples/tree/master/blink/blink.c
https://github.com/raspberrypi/pico-examples/tree/master/blink/blink.c

Pico C/C++ SDK

© IMPORTANT

Pico SDK functionality is grouped into separate INTERFACE libraries, and each INTERFACE library contributes the code and
include paths for that library. Therefore you must declare a dependency on the INTERFACE library you need directly (or
indirectly through another INTERFACE library) for the header files to be found during compilation of your source file (or
for code completion in your IDE).

O NoTE

As all libraries within the SDK are INTERFACE libraries, we will simply refer to them as libraries or SDK libraries from now
on.

2.3. Pico SDK Library Structure

The full API listings are given in Chapter 4; this chapter gives an overview of how Pico SDK libraries are organised, and the
relationships between them.

There are a number of layers of libraries within the Pico SDK. This section starts with the highest-level libraries, which can
be used in C or C++ applications, and navigates all the way down to the hardware_regs library, which is a comprehensive set
of hardware definitions suitable for use in Arm assembly as well as C and C++, before concluding with a brief note on how
the TinyUSB stack can be used from within the SDK.

2.3.1. Higher-level Libraries

These libraries (pico_xxx) provide higher-level APIs, concepts and abstractions. The APIs are listed in Section 4.2. These
may be libraries that have cross-cutting concerns between multiple pieces of hardware (for example the sleep_ functions
in pico_time need to concern themselves both with RP2040’s timer hardware and with how processors enter and exit low
power states), or they may be pure software infrastructure required for your program to run smoothly. This includes
libraries for things like:

® Alarms, timers and time functions
® Multi-core support and synchronization primitives
e Utility functions and data structures

These libraries are generally built upon one or more underlying hardware_ libraries, and often depend on each other.

© NoTE

More libraries will be forthcoming in the future (e.g. - Audio support (via PIO), DPI/VGA/MIPI Video support (via PI0) file
system support, SDIO support via (PI0)), most of which are available but not yet fully supported/stable/documented in
the pico-extras GitHub repository.

2.3.2. Runtime Support (pico_runtime, pico_standard_link)

These are libraries that bundle functionality which is common to most RP2040-based applications. APIs are listed in
Section 4.4.

pico_runtime aggregates the libraries (listed in pico_runtime) that provide a familiar C environment for executing code,
including:

® Runtime startup and initialization

]
2.3. Pico SDK Library Structure 10

https://github.com/raspberrypi/pico-extras

Pico C/C++ SDK
]

® Choice of language level single/double precision floating point support (and access to the fast on-RP2040
implementations)

® Compact printf support, and mapping of stdout
® Language level / and % support for fast division using RP2040's hardware dividers.

pico_standard_link encapsulates the standard linker setup needed to configure the type of application binary layout in
memory, and link to any additional C and/or C++ runtime libraries. It also includes the default crt8, which provides the
initial entry point from the flash second stage bootloader, contains the initial vector table (later relocated to RAM), and
initialises static data and RAM-resident code if the application is running from flash.

O NoOTE

There is more high-level discussion of pico_runtime in Section 2.7

@ TP

Both pico_runtime and pico_standard_link are included with pico_stdlib

2.3.3. Hardware Support Libraries

These are individual libraries (hardware xxx) providing actual APIs for interacting with each piece of physical
hardware/peripheral. They are lightweight and provide only thin abstractions. The APIs are listed in Section 4.1.

These libraries generally provide functions for configuring or interacting with the peripheral at a functional level, rather
than accessing registers directly, e.g.

pio_sm_set_wrap(pio, sm, bottom, top);

rather than:

pio->sm[sm].execctrl =

(pio->sm[sm].execctrl & ~(PIO_SMB_EXECCTRL_WRAP_TOP_BITS |
PIO_SMO_EXECCTRL_WRAP_BOTTOM_BITS)) |

(bottom << PIO_SMO_EXECCTRL_WRAP_BOTTOM_LSB) |

(top << PIO_SM@_EXECCTRL_WRAP_TOP_LSB):

The hardware_ libraries are intended to have a very minimal runtime cost. They generally do not require any or much RAM,
and do not rely on other runtime infrastructure. In general their only dependencies are the hardware_structs and
hardware_regs libraries that contain definitions of memory-mapped register layout on RP2040. As such they can be used by
low-level or other specialized applications that doesn’t want to use the rest of the Pico SDK libraries and runtime.

]
2.3. Pico SDK Library Structure 1

Pico C/C++ SDK

O NoTE

void pio_sm_set_wrap(PIO pio, uint sm, uint bottom, uint top) {} is actually implemented as a static inline function in
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_pio/include/hardware/pio.h directly
as shown above.

Using static inline functions is common in Pico SDK header files because such methods are often called with
parameters that have fixed known values at compile time. In such cases, the compiler is often able to fold the code
down to to a single register write (or in this case a read, AND with a constant value, OR with a constant value, and a
write) with no function call overhead. This tends to produce much smaller and faster binaries.

2.3.3.1. Hardware Claiming

The hardware layer does provide one small abstraction which is the notion of claiming a piece of hardware. This minimal
system allows registration of peripherals or parts of peripherals (e.g. DMA channels) that are in use, and the ability to
atomically claim free ones at runtime. The common use of this system - in addition to allowing for safe runtime allocation
of resources - provides a better runtime experience for catching software misconfigurations or accidental use of the
same piece hardware by multiple independent libraries that would otherwise be very painful to debug.

2.3.4. Hardware Structs Library

The hardware_structs library provides a set of C structures which represent the memory mapped layout of RP2040
registers in memory. This allows you to replace something like the following (which you'd write in C with the defines from
the lower-level hardware_regs)

*(volatile uint32_t *)(PIO@_BASE + PIO_SM1_SHIFTCTRL_OFFSET) |=
PIO0_SM1_SHIFTCTRL_AUTOPULL_BITS;

with something like this (where pio8 is a pointer to type pio_hw_t at address PIO0_BASE):

pioB->sm[1].shiftctrl |= PIO_SM1_SHIFTCTRL_AUTOPULL_BITS;

The structures and associated pointers to memory mapped register blocks hide the complexity and potential error-prone-
ness of dealing with individual memory locations, pointer casts and volatile access. As a bonus, the structs tend to
produce better code with older compilers, as they encourage the reuse of a base pointer with offset load/stores, instead
of producing a 32 bit literal for every register accessed.

The struct headers are named consistently with both the hardware libraries and the hardware_regs register headers. For
example, if you access the hardware_pio library’s function through hardware/pio.h, the hardware_structs library (a dependee
of hardware_pio) contains a header you can include as hardware/structs/pio.h if you need to access a register directly, and
this itself will pull in hardware/regs/pio.h for register field definitions. The PIO header is a bit lengthy to include here.
hardware/structs/pll.his a shorter example to give a feel for what these headers actually contain:

Pico SDK: https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2040/hardware_structs/include/hardware/structs/pll.h Lines 14 - 22

14 typedef struct {

15 io_rw_32 cs;

16 io_rw_32 pwr;

17 io_rw_32 fbdiv_int;
18 io_rw_32 prim;

19 } pll_hw_t;

20

]
2.3. Pico SDK Library Structure 12

https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_pio/include/hardware/pio.h
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2040/hardware_structs/include/hardware/structs/pll.h#L14-L22

Pico C/C++ SDK
]

21 #define pll_sys_hw ((pll_hw_t *const)PLL_SYS_BASE)
22 #define pll_usb_hw ((pll_hw_t *const)PLL_USB_BASE)

The structure contains the layout of the hardware registers in a block, and some defines bind that layout to the base
addresses of the instances of that peripheral in the RP2040 global address map.

Additionally, you can easily use one of the aliases of the hardware in memory to perform atomic set, clear, or xor aliases
of a piece of hardware to set, clear or toggle respectively the spcified bits in a hardware register (as opposed to having the
CPU perform a read/modify/write); e.g:

hw_set_alias(pio®)->sm[1].shiftctrl = PIO_SM1_SHIFTCTRL_AUTOPULL_BITS;

Or, equivalently

hw_set_bits(&pioB->sm[1].shiftctrl, PIO_SM1_SHIFTCTRL_AUTOPULL_BITS);

© NoTE

The hardware atomic set/clear/XOR |0 aliases are used extensively in the SDK libraries, to avoid certain classes of
data race when two cores, or an IRQ and foreground code, are accessing registers concurrently.

2.3.5. Hardware Registers Library

The hardware_regs library is a complete set of include files for all RP2040 registers, autogenerated from the hardware itself.
This is all you need if you want to peek or poke a memory mapped register directly, however higher level libraries provide
more user friendly ways of achieving what you want in C/C++.

For example, here is a snippet from hardware/regs/sio.h:

// Description : Single-cycle IO block

// Provides core-local and inter-core hardware for the two

// processors, with single-cycle access.

/) ====== == === ===== === == == R

#ifndef HARDWARE_REGS_SIO_DEFINED
#define HARDWARE_REGS_SIO_DEFINED

// ===== == === Somes === == === =======
// Register : SIO_CPUID

// Description : Processor core identifier

// Value is @ when read from processor core 0, and 1 when read

// from processor core 1.

#define SIO_CPUID_OFFSET 0x00000000
#define SIO_CPUID_BITS Oxffffffff
#define SIO_CPUID_RESET "-"
#define SIO_CPUID_MSB 31

#define SIO_CPUID_LSB [Z]

#define SIO_CPUID_ACCESS "RO"

These header files are fairly heavily commented (the same information as is present in the datasheet register listings, or
the SVD files). They define the offset of every register, and the layout of the fields in those registers, as well as the access
type of the field, e.g. "RO" for read-only.

]
2.3. Pico SDK Library Structure 13

Pico C/C++ SDK

@ T

The headers in hardware_regs contain only comments and #define statements. This means they can be included from
assembly files (.S, so the C preprocessor can be used), as well as C and C++ files.

2.3.6. TinyUSB Port

In addition to the core SDK libraries, we provide a RP2040 port of TinyUSB as the standard device and host USB support
library within the Pico SDK, and the Pico SDK contains some build infrastructure for easily pulling this into your
application. This is done by naming either tinyusb_dev or tinyusb_host as a dependency of your application

O IMPORTANT

RP2040 USB hardware supports both Host and Device modes, but the two can not be used concurrently.

The tinyusb_dev or tinyusb_host libraries within the Pico SDK allow you to add TinyUSB device or host support to your
application by simply adding a dependency in your executable in CMakeLists.txt

2.4. Directory Structure

We have discussed libraries such as pico_stdlib and hardware_gpio above. Imagine you wanted to add some code using
RP2040's DMA controller to the hello_world example in pico-examples. To do this you need to add a dependency on another
library, hardware_dma, which is not included by default by pico_stdlib (unlike, say, hardware_uart).

You would change your CMakeLists.txt to list both pico_stdlib and hardware_dma as dependencies of the hello_world target
(executable). (Note the line breaks are not required, but are perhaps clearer)

target_link_libraries(hello_world
pico_stdlib
hardware_dma

And in your source code you would include the DMA hardware library header as such:
#include "hardware/dma.h"

Trying to include this header without listing hardware_dma as a dependency will fail, and this is due to how Pico SDK files are
organised into logical functional units on disk, to make it easier to add functionality in the future.

As an aside, this correspondence of hardware_dma — hardware/dma.h is the convention for all toplevel Pico SDK library
headers. The library is called foo_bar and the associated header is foo/bar.h. Some functions may be provided inline in the
headers, others may be compiled and linked from additional .c files belonging to the library. Both of these require the
relevant hardware_ library to be listed as a dependency, either directly or through some higher-level bundle like pico_stdlib.

2.4. Directory Structure 14

Pico C/C++ SDK

O NoTE

Some libraries have additional headers which are located in foo/bar/other.h

You may want to actually find the files in question (although most IDEs will do this for you). The on disk files are actually
split into multiple top-level directories. This is described in the next section.

2.4.1. Locations of Files
Whilst you may be focused on building a binary to run specifically on Raspberry Pi Pico, which uses a RP2040, the Pico
SDK is structured in a more general way. This is for two reasons:

1. To support other future chips in the RP2 family

2. To support testing of your code off device (this is host mode)

The latter is useful for writing and running unit tests, but also as you develop your software, for example your debugging
code or work in progress software might actually be too big or use too much RAM to fit on the device, and much of the
software complexity may be non-hardware-specific.

The code is thus split into top level directories as follows:

Table 1. Top-level

)) Path Description
directories

src/rp2040/ This contains the hardware_regs and hardware_structs libraries mentioned earlier, which are
specific to RP2040.

src/rp2_common/ This contains the hardware_ library implementations for individual hardware components,
and pico_ libraries or library implementations that are closely tied to RP2040 hardware.
This is separate from /src/rp2040 as there may be future revisions of RP2040, or other
chips in the RP2 family, which can use a common SDK and API whilst potentially having
subtly different register definitions.

src/common/ This is code that is common to all builds. This is generally headers providing hardware
abstractions for functionality which are simulated in host mode, along with a lot of the
pico_ library implementations which, to the extent they use hardware, do so only through
the hardware_ abstractions.

src/host/ This is a basic set of replacement Pico SDK library implementations sufficient to get
simple Raspberry Pi Pico applications running on your computer (Raspberry Pi OS, Linux,
macOS or Windows using Cygwin or Windows Subsystem for Linux). This is not intended
to be a fully functional simulator, however it is possible to inject additional
implementations of libraries to provide more complete functionality.

There is a CMake variable PICO_PLATFORM that controls the environment you are building for:

When doing a regular RP2040 build (PICO_PLATFORM=rp2040, the default), you get code from common, rp2_common and rp2040;
when doing a host build (PIC0_PLATFROM=host), you get code from common and host.

Within each top-level directory, the libraries have the following structure (reading foo_bar as something like hardware_uart
or pico_time)

top-level_dir/

top-level_dir/foo_bar/include/foo/bar.h # header file
top-level_dir/foo_bar/CMakelLists.txt # build configuration
top-level_dir/foo_bar/bar.c # source file(s)

As a concrete example, we can list the hardware_uart directory under pico-sdk/rp2_common (you may also recall the
hardware_gpio library we looked at earlier):

2.4. Directory Structure 15

Pico C/C++ SDK
]

hardware_uart
—— CMakelLists.txt
F—— include

| L— hardware

| L—— uvart.h
L uart.c

vart.h contains function declarations and preprocessor defines for the hardware_uart library, as well as some inline
functions that are expected to be particularly amenable to constant folding by the compiler. vart.c contains the
implementations of more complex functions, such as calculating and setting up the divisors for a given UART baud rate.

© NOTE

The directory top-level_dir/foo_bar/include is added as an include directory to the INTERFACE library foo_bar, which is
what allows you to include "foo/bar.h" in your application

2.5. Conventions for Library Functions

This section covers some common patterns you will see throughout the Pico SDK libraries, such as conventions for
function names, how errors are reported, and the approach used to efficiently configure hardware with many register
fields without having unreadable numbers of function arguments.

2.5.1. Function Naming Conventions

Pico SDK functions follow a common naming convention for consistency and to avoid name conflicts. Some names are
quite long, but that is deliberate to be as specific as possible about functionality, and of course because the Pico SDK API
is a C APl and does not support function overloading.

2.5.1.1. Name prefix

Functions are prefixed by the library/functional area they belong to; e.g. public functions in the hardware_dma library are
prefixed with dma_. Sometime the prefix refers to a sub group of library functionality (e.g. channel_config_)

2.5.1.2. Verb
A verb typically follows the prefix specifying that action performed by the function. set_and get_ (or is_ for booleans) are

probably the most common and should always be present; i.e. a hypothetical method would be oven_get_temperature() and
food_add_salt(), rather than oven_temperature() and food_salt().

2.5.1.3. Suffixes

2.5.1.3.1. Blocking/Non-Blocking Functions and Timeouts
Tab’.e 2. Pico SDK Suffix Param Description
Suffixes for (non-
)b’;’cr'_"'”g f‘:"c""’"s (none) The method is non-blocking, i.e. it does not wait on any external
and timeouts.
condition that could potentially take a long time.

]
2.5. Conventions for Library Functions 16

Pico C/C++ SDK
]

_blocking The method is blocking, and may potentially block indefinitely until
some specific condition is met.

_blocking_until absolute_time_t until The method is blocking until some specific condition is met,
however it will return early with a timeout condition (see Section
2.5.2) if the until time is reached.

_timeout_ms uint32_t timeout_ms The method is blocking until some specific condition is met,
however it will return early with a timeout condition (see Section
2.5.2) after the specified number of milliseconds

_timeout_us uint64_t timeout_us The method is blocking until some specific condition is met,
however it will return early with a timeout condition (see Section
2.5.2) after the specified number of microseconds

2.5.2. Return Codes and Error Handling

As mentioned earlier, there is a decision to be made as to whether/which functions return error codes that can be handled
by the caller, and indeed whether the caller is likely to actually do something in response in an embedded environment.
Also note that very often return codes are there to handle parameter checking, e.g. when asked to do something with the
27th DMA channel (when there are actually only 12).

In many cases checking for obviously invalid (likely program bug) parameters in (often inline) functions is prohibitively
expensive in speed and code size terms, and therefore we need to be able to configure it on/off, which precludes return
codes being returned for these exceptional cases.

The Pico SDK follows two strategies:

1. Methods that can legitimately fail at runtime due to runtime conditions e.g. timeouts, dynamically allocated resource,
can return a status which is either a bool indicating success or not, or an integer return code from the PICO_ERROR_
family; non error returns are >= 0.

2. Other items like invalid parameters, or failure to allocate resources which are deemed program bugs (e.g. two
libraries trying to use the same statically assigned piece of hardware) do not affect a return code (usually the
functions return void) and must cause some sort of exceptional event.

As of right now the exceptional event is an a C assert so these checks are always disabled in release builds by
default. Additionally most of the calls to assert are disabled by default for code/size performance (even in debug
buidls); You can set PARAMS_ASSERTIONS_ENABLE_ALL=1 or PARAMS_ASSERTIONS_DISABLE_ALL=1 in your build to change the
default across the entire SDK, or say PARAM_ASSERTIONS_ENABLED_I2C=0/1 to explicitly specify the behavior for the
hardware_i2c module

In the future we expect to support calling a custom function to throw an exception in C++ or other environments
where stack unwinding is possible.

3. Obviously sometimes the calling code whether it be user code or another higher level function, may not want the
called function to assert on bad input, in which case it is the responsibility of the caller to check the validity (there are
a good number of API functions provided that help with this) of their arguments, and the caller can then choose to
provide a more flexible runtime error experience.

2.5.3. Use of Inline Functions

Pico SDK libraries often contain a mixture of static inline functions in header files, and non-static functions in C source
files. In particular, the hardware_ libraries are likely to contain a higher proportion of