

Application Note for MT9N001

Rev 1.0, Aug 2017

Table of Contents

1	Introduction	2
2	Hardware Installation	2
3	Run the Demo	3
4	Tune the Sensor Registers	4
4.1	Identify the Sensor Version	4
4.2	Adjust the Sensor Exposure	4
4.3	Adjust the Sensor Gain	6

1 Introduction

This user guide describes the detail operation of ArduCAM USB camera for MT9N001. The latest deivce driver, SDK library and examples can be downloaded from the <u>https://github.com/ArduCAM/ArduCAM_USB_Camera_Shield</u>.

2 Hardware Installation

There are two different camera interface provided on the USB camera shield, but only one camera interface can be used at a time. The MT9N001 camera header board should be connected to the secondary camera interface and should align the pin 1 of the camera breakout board to the USB camera shield camera connector pin 1.

Pin No.	PIN NAME	ТҮРЕ	DESCRIPTION		
1	GND	Ground	Power ground		
2	FLASH	Input	Flash output control		
3	Trigger	Output	Exposure synchronization input		
4	VSYNC	Input	Active High: Frame Valid; indicates active frame		
5	HREF	Input	Active High: Line/Data Valid; indicates active pixels		
6	Dout11	Input	Pixel Data Output 11 (MSB)		
7	Dout10	Input	Pixel Data Output 10		
8	Dout9	Input	Pixel Data Output 9		
9	Dout8	Input	Pixel Data Output 8		
10	Dout7	Input	Pixel Data Output 7		
11	Dout6	Input	Pixel Data Output 6		
12	Dout5	Input	Pixel Data Output 5		
13	GND	Ground	Power ground		
14	Dout4	Input	Pixel Data Output 4		
15	Dout3	Input	Pixel Data Output 3		
16	Dout2	Input	Pixel Data Output 2		
17	Dout1	Input	Pixel Data Output 1		
18	Dout0	Input	Pixel Data Output 0(LSB)		
19	XCLK	Output	Master Clock into Sensor		
20	PCLK	Input	Pixel Clock output from sensor		
21	SCL	Input	Two-Wire Serial Interface Clock		
22	Sdata	Bi-directional	Two-Wire Serial Interface Data I/O		
23	RST	Output	Sensor reset signal, active low		
24	GND	Ground	Power ground		
25	GND	Ground	Power ground		
26	STANDBY	Output	Standby-mode enable pin (active HIGH)		
27~30	VCC	POWER	3.3v Power supply		

Table 1 HDC1 Connector Pin Definition

The firmware update jumper should be left open when normal operation.

3 Run the Demo

Plug in the USB cable to the camera and the host PC USB port, and open the Windows demo software. Select the MT9N001 from the Sensor drop down list then click auto-open button.

Click play button to run the camera in video mode.

ArduCAM_USB_CAM VID: 0x52CB Index: 0	ERA_Demo		-0	
Type: ArduCan Image: Comparison of the second seco	open auto-open close play stop shot		-7 -8 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	
RegAddr: Value: Force Display	read write RAWMode (BG)		4:3 22	16:9
frame capture count: 3 frame read count: 3 fp	f fps s	C		

4 Tune the Sensor Registers

4.1 Identify the Sensor Version

Sensor register address 0x00 is read only, and always return the chip vision 0x2B01(11009) when read it.

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
R0(R0x0000)	model_id	dddd dddd dddd dddd	11009 (0x2B01)

Input the register address 0 in decimal to the RegAddr dialog box and click read button, the Value dialog box will show 11009 in decimal which is identical to 0x2B01 in hex.

RegAddr:	0	read	
Value:	11009	write	

4.2 Adjust the Sensor Exposure

The integration (exposure) time of the MT9N001 is controlled by the fine_integration_time and coarse_integration_time registers.

The limits for the fine integration time are defined by:

fine_integration_time_min \leq fine_integration_time \leq (line_length_pck - fine_integration_time_max_margin)

The limits for the coarse integration time are defined by:

coarse_integration_time_min < *coarse_integration_time*

The actual integration time is given by:

 $integration_time = \frac{((coarse_integration_time* line_length_pck) + fine_integration_time)}{(vt_pix_clk_freq_mhz*10^{6})}$

It is required that:

coarse_integration_time < = (frame_length_lines - coarse_integration_time_max_margin) If this limit is exceeded, the frame time will automatically be extended to

(coarse_integration_time + coarse_integration_time_max_margin) to accommodate the larger integration time.

Fine Integration Time Limits

The limits for the fine_integration_time can be found from fine_integration_time_min and fine_integration_time_max_margin. It is necessary to change fine_correction (R0x3010) when binning is enabled or the pixel clock divider (row_speed[2:0]) is used.

The corresponding fine_correction values are shown in following Table .

fine_integration_time Limits

Register	N	lo Row Binni	ng	Row Binning			
row_speed[2:0]	1	2	4	1	2	4	
fine_integration_time_min	0x056A	0x0C26	0x00C2	0x0B1A	0x059E	0x0178	
fine_integration_time_max_margin	0x03A6	0x01C2	0x0182	0x06E6	0x0362	0x0308	

Fine Correction

For the fine_integration_time limits, the fine_correction constant will change with the pixel clock speed and binning mode.

fine_correction Values							
Register	No Row Binning			Row Binning			
row_speed[2:0]	1	2	4	1	2	4	
fine_correction	0x0100	0x007A	0x0037	0x0238	0x0116	0x0085	

Given the pixel clock is 24MHz, line_length_pck_ register (0x300c) is 8234. In order to simplify the testing purpose, we only set the coarse_integration_time_ registe(0x3012).

Exposure = 34.3ms, RegAddr = 12306 (0x3012), Value = 100

Ardu@am

Exposure = 171.5ms, RegAddr = 12306 (0x3012), Value = 500

4.3 Adjust the Sensor Gain

Gain settings are like the ISO settings in most digital cameras. The gain is divided into analog and digital gain, and there are separate gain settings for four color-specific gains. There is also global gain setting to change all the four color-specific gains.

Here we demonstrate how to change the gain through the analogue_gain_code_global_ register (0x3028 in hex, 12328 in decimal). Given the exposure register 0x3012(12306) is 50.

ID:	0x52CB 💌	scan	Elan I. E > T I I II	
ndex:	0 •			
ype:	Ar duC am 💌	open		
nsor	MT9N001 -	auto-open		
dth:	3488	close		
ight:	2616	play		
ts:	8bit 💌	stop		
C Mode	-: 16, 16 <u>-</u>			
CAddr:	32	shot		1
- ساد اد اد	10000	read		
lue:	10	write		
Force	a Display	RAWMode (BG)		
16:21::	13]USB transfer	data length err		
16:15:0	30]USB camera i	nit success!		
(111			
ame ca	pture count: 2	fps		
	ad asset ? 2 fm			

ID:	0x52CB	•	scan	
index:	0	•		
ype:	Ar duC an	•	open	
ensor	MT9N001	-	auto-open	
idth:	3488	_	close	T 4 10 5- 5 4
eight:	2616	_	1	
its:	Sbit	Ŧ	pray	
2C Mode	: 16, 16	-	stop	
2CAddr:	32	_	shot	
				43 3:2
egAddr:	12328		read	
alue:	50		write	
			-	
Force	Display		RAWMode (BG)	
[16:21:1	3]VSB tra	nsfer (lata length err	
[16:15:3	0]USB cam	era in:	t success!	
		111		
	-			

RegAddr = 12328 (0x3028), Value = 10

RegAddr = 12328 (0x3028), Value = 50

RegAddr = 12328 (0x3028), Value = 100