RP2040 A microcontroller by Raspberry Pi

Getting started with
Raspberry P1 Pico

C/C++ development with
Raspberry P1 Pico and
other RP2040-based
microcontroller boards

Raspberry Pi Trading Ltd

Getting started with Raspberry Pi Pico

Colophon

Copyright © 2020 Raspberry Pi (Trading) Ltd.

The documentation of the RP2040 microcontroller is licensed under a Creative CommonsAttribution-NoDerivatives 4.0
International (CC BY-ND).

build-date: 2021-01-21
build-version: fcdO4ef-clean

Legal Disclaimer Notice

TECHNICAL AND RELIABILITY DATA FOR RASPBERRY PI PRODUCTS (INCLUDING DATASHEETS) AS MODIFIED FROM
TIME TO TIME (ORESOURCESO) ARE PROVIDED BY RASPBERRY PI (TRADING) LTD (ORPTL) "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW IN NO EVENT SHALL RPTL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THE RESOURCES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

RPTL reserves the right to make any enhancements, improvements, corrections or any other modifications to the
RESOURCES or any products described in them at any time and without further notice.

The RESOURCES are intended for skilled users with suitable levels of design knowledge. Users are solely responsible for
their selection and use of the RESOURCES and any application of the products described in them. User agrees to
indemnify and hold RPTL harmless against all liabilities, costs, damages or other losses arising out of their use of the
RESOURCES.

RPTL grants users permission to use the RESOURCES solely in conjunction with the Raspberry Pi products. All other use
of the RESOURCES is prohibited. No licence is granted to any other RPTL or other third party intellectual property right.

HIGH RISK ACTIVITIES. Raspberry Pi products are not designed, manufactured or intended for use in hazardous
environments requiring fail safe performance, such as in the operation of nuclear facilities, aircraft navigation or
communication systems, air traffic control, weapons systems or safety-critical applications (including life support
systems and other medical devices), in which the failure of the products could lead directly to death, personal injury or
severe physical or environmental damage (OHigh Risk ActivitiesO). RPTL specifically disclaims any express or implied
warranty of fithess for High Risk Activities and accepts no liability for use or inclusions of Raspberry Pi products in High
Risk Activities.

Raspberry Pi products are provided subject to RPTLG%andard Terms. RPTLOs provision of the RESOURCES does not
expand or otherwise modify RPTLOStandard Terms including but not limited to the disclaimers and warranties expressed
in them.

Legal Disclaimer Notice 1

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://www.raspberrypi.org/terms-conditions-sale/
https://www.raspberrypi.org/terms-conditions-sale/

Getting started with Raspberry Pi Pico

Table of Contents

Colophon
Legal Disclaimer Notice
1. Quick Pico Setup
2. The Pico SDK
2.1. Get the Pico SDK and examples
2.2. Install the Toolchain
3. Blinking an LED in C
3.1. Building "Blink"
3.2. Load and run "Blink"
3.2.1. From the desktop
3.2.2. Using the command line
4. Saying "Hello World" in C
4.1. Serial input and output on Raspberry Pi Pico
4.2. Build "Hello World"
4.3. Flash and Run "Hello World"
4.4. See "Hello World" USB output
4.5. See "Hello World" UART output
4.6. Powering the board
5. Debugging with SWD.
5.1. Build "Hello World" debug version
5.2. Installing OpenOCD
5.3. Installing GDB
5.4. Use GDB and OpenOCD to debug Hello World
6. Using Visual Studio Code
6.1. Installing Visual Studio Code
6.2. Loading a Project
6.3. Debugging a Project
6.3.1. Running "Hello World" on the Raspberry Pi Pico
7. Creating your own Project
7.1. Debugging your project
7.2. Working in Visual Studio Code
7.3. Automating project creation
7.3.1. Project generation from the command line
8. Building on other platforms
8.1. Building on Apple macOS
8.1.1. Installing the Toolchain
8.1.2. Using Visual Studio Code
8.1.3. Building with CMake Tools
8.1.4. Saying "Hello World"
8.2. Building on MS Windows
8.2.1. Installing the Toolchain
8.2.2. Getting the Pico SDK and examples
8.2.3. Building "Hello World" from the Command Line
8.2.4. Building "Hello World" from Visual Studio Code
8.2.5. Flashing and Running "Hello World"
9. Using other Integrated Development Environments
9.1. Using Eclipse
9.1.1. Setting up Eclipse for Pico on a Linux machine
9.2. Using CLion
9.2.1. Setting up CLion
9.3. Other Environments
9.3.1. Using openocd-svd
Appendix A: Using Picoprobe
A.1. Build OpenOCD
A.1.1. Linux

Table of Contents

(o232 I &) B N S o

©© o N

11
11
12
13
a3
14
15
a7
17
17
18
19
21
21
21
23
24
26
28
29
29
31
32
32
32
32
32
33
34
34
37
37
38
39
41
41
41
45
46
49
49
52
52
52

Getting started with Raspberry Pi Pico

AL2. WINAOWS. . .. o 52 ...
AL MAC - - 54.

A.2. Build and flash picoprobe. 55..

A.3. Picoprobe WIring 55.

A.4. Install Picoprobe driver (only needed on Windows) 56... ..

A5, Using PicoprobeOs UART 57...... ..
AL L LINUX - 57..
AB.2.WINAOWS. . . o 57
AB.3.MAC - 58.

A.6. Using Picoprobe with OpenOCD. 59

Appendix B: Using Picotool 60.

B.1. Getting picotool. 60....... ..

B.2. Building picotool. 60..

B.3. USIiNg PICOtO0L 61
B.3.1. Display information. 61...... ..
B.3.2. Save the program. 63

B.4. Binary Information 64.
B.4.1. Basicinformation 64
B.4.2. PINS . . 65.
B.4.3. Including Binary information. 65..
B.A.A. Details. 66
B.4.5. Setting common fields from CMake. 67..

Table of Contents 3

Getting started with Raspberry Pi Pico

Chapter 1. Quick Pico Setup

If you are developing for Raspberry Pi Pico on the Raspberry Pi 4B, or the Raspberry Pi 400, most of the installation steps
in this Getting Started guide can be skipped by running the setup script. You can get this script by doing the following:

$ git clone https://github.com/raspberrypi/pico-setup.git !

1. You should first sudo aptinstall git if you donOt have Git already installed.

Then run,
$ pico-setup/pico_setup.sh

The script will:
¥ Create a directory calledpico
¥lnstall required dependencies
¥Download the pico-sdk , pico-examples, pico-extras , and pico-playground repositories
¥ Define PICO_SDK_PAPK.O_EXAMPLES_PRIGO_EXTRAS_P/dM PICO_PLAYGROUND_iRATCHIT ~/.bashrc
¥Bui|d theblink and hello_world examples inpico-examples/build/blink and pico-examples/build/hello_world
¥D0wn|oad and buildpicotool (see Appendix B). Copy it to/usr/local/bin
¥Download and buildpicoprobe (seeAppendix A).
¥Down|oad and compile OpenOCD (for debug support)
¥D0wn|oad and install Visual Studio Code
¥install the required Visual Studio Code extensions (se€hapter 6 for more details)
¥C0nfigure the Raspberry Pi UART for use with Raspberry Pi Pico

Once it has run, you will need to reboot your Raspberry Pi,
$ sudo reboot

for the UART reconfiguration to take effect.

Once your Raspberry Pi has rebooted you can open Visual Studio Code in the "Programming” menu and follow the
instructions from Section 6.2.

Chapter 1. Quick Pico Setup 4

https://code.visualstudio.com/Download

Getting started with Raspberry Pi Pico

Chapter 2. The Pico SDK

I IMPORTANT

The following instructions assume that you are using a Raspberry Pi Pico and some details may differ if you are using
a different RP2040-based board. They also assume you are using Raspberry Pi OS running on a Raspberry Pi 4, or[an
equivalent Debian-based Linux distribution running on another platform. Alternative instructions for those using
Microsoft Windows (see Section 8.2) or Apple macOS (seeSection 8.1) are also provided.

The Raspberry Pi Pico is built around the RP2040 microcontroller designed by Raspberry Pi. Development on the board is
fully supported with both a C/C++ SDK, and an official MicroPython port. This book talks about how to get started with the
SDK, and walks you through how to build, install, and work with the SDK toolchain.

TIP

For more information on the official MicroPython port see the Pico Python SDK book which documents the port, and
"Get started with MicroPython on Raspberry Pi Pico " by Gareth Halfacree published by Raspberry Pi Press.

TIP

For more information on the C/C++ SDK, along with API-level documentation, see théico C/C++ SDKbook.

2.1. Get the Pico SDK and examples

The pico-examples repository (https://github.com/raspberrypi/pico-examples) provides a set of example applications that
are written using the pico-sdk (https://github.com/raspberrypi/pico-sdk). To clone these repositories start by creating a
pico directory to keep all pico related checkouts in. These instructions create a pico directory athome/pi/pico .

$cd~/
$ mkdir pico
$ cd pico

Then clone thepico-sdk and pico-examples git repositories.

$ git clone -b master https://github.com/raspberrypi/pico-sdk.git
$ cd pico-sdk

$ git submodule update --init

$cd..

$ git clone -b master https://github.com/raspberrypi/pico-examples.git

2.1. Get the Pico SDK and examples

https://datasheets.raspberrypi.org/pico/sdk/pico_python_sdk.pdf
https://datasheets.raspberrypi.org/pico/sdk/pico_c_sdk.pdf
https://github.com/raspberrypi/pico-examples
https://github.com/raspberrypi/pico-sdk

Getting started with Raspberry Pi Pico

NOTE

There are additional repositories:pico-extras, and pico-playground that you may also be interested in.

2.2. Install the Toolchain

To build the applications in pico-examples, youOll need to install some extra tools. To build projects youOll negdake, a
cross-platform tool used to build the software, and the GNU Embedded Toolchain for Arm You can install both these via

apt from the command line. Anything you already have installed will be ignored bypt.

$ sudo apt update
$ sudo apt install cmake gcc-arm-none-eabi build-essential

1. Native gcc and g++ are needed to compile pioasm, elf2uf2

2.2. Install the Toolchain

https://github.com/raspberrypi/pico-extras
https://github.com/raspberrypi/pico-playground
https://cmake.org/
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads

Getting started with Raspberry Pi Pico

Chapter 3. Blinking an LED in C

When youOre writing software for hardware, turning an LED on, off, and then on again, is typically the first program that
gets run in a new programming environment. Learning how to blink an LED gets you half way to anywhere. WeOre going to
go ahead and blink the on-board LED on the Raspberry Pi Pico which is connected to pin 25 of the RP2040.

Pico Examplekttps://github.com/raspberrypi/pico-examples/tree/master/blink/bliies 9 - 19

E9 int main() {

10 const uint LED_PIN = 25;

11 gpio_init (LED_PIN);

12 gpio_set_dir (LED_PIN, GPIO_OUT;
13 while (true) {

14 gpio_put (LED_PIN, 1);

15 sleep_ms (250);

16 gpio_put (LED_PIN, 0);

17 sleep_ms (250);

18 }

19 }

3.1. Building "Blink"

From the pico directory we created earlier, cd intgpico-examples and create a build directory.

$ cd pico-examples
$ mkdir build
$ cd build

Then, assuming you cloned the pico-sdk and pico-examples repositories into the same directory side-by-side, set the
PICO_SDK_PATH

$ export PICO_SDK_PATH=../../pico-sdk
Prepare your cmake build directory by runningsmake ..

$ cmake ..
Using PICO_SDK_PATH from environment ('../../pico-sdk’)
PICO SDK is located at /home/pi/pico/pico-sdk

m [

E .
-- Build files have been written to: /home/pi/pico/pico-examples/build

3.1. Building "Blink" 7

https://github.com/raspberrypi/pico-examples/tree/master/blink/blink.c#L9-L19

Getting started with Raspberry Pi Pico

NOTE

cmakewill default to a Release build with compiler optimisations enabled and debugging information removed. To build
a debug version, runcmake -DCMAKE_BUILD_TYPE=Debiye will explore this later inSection 5.1

CMake has now prepared a build area for thepico-examples tree. From here, it is possible to typemaketo build all example
applications. However, as we are buildingolink we will only build that application for now by changing directory into the
blink directory before typing make

TIP

Invoking makewith -j4 will run four make jobs in parallel to speed it up. A Raspberry Pi 4 has 4 cores s¢4 is a
reasonable number.

$ cd blink

$ make -j4

Scanning dependencies of target ELF2UF2Build
Scanning dependencies of target boot_stage2_original
[0%] Creating directories for 'ELF2UF2Build’

m m

E.
[100%)] Linking CXX executable blink.elf
[100%] Built target blink

Amongst other targets, we have now built:
¥blink.elf , which is used by the debugger
¥blink.uf2 , which can be dragged onto the RP2040 USB Mass Storage Device

This binary will blink the on-board LED of the Raspberry Pi Pico which is connected to GPIO25 of RP2040.

3.2. Load and run "Blink"

The simplest method to load software onto a RP2040-based board is by mounting it as a USB Mass Storage Device.
Doing this allows you to drag a file onto the board to program the flash. Go ahead and connect the Raspberry Pi Pico to

your Raspberry Pi using a micro-USB cable, making sure that you hold down theOOTSEwutton (Figure 1) to force it into
USB Mass Storage Mode.

NOTE

Loading code via the USB Mass Storage method is great if you know your program is going to work first time, but i
you are developing anything new it is likely you will want to debug it. So you can also load your software onto RP2040
using the Serial Wire Debug interface, se€hapter 5. As well as loading software this allows you to; set breakpoints,
inspect variables, and inspect memory contents.

3.2. Load and run "Blink" 8

Getting started with Raspberry Pi Pico

NOTE

If you are not following these instructions on a Raspberry Pi Pico, you may not have BOOTSEutton, see Figure 1. If
this is the case, you should check if there is some other way grounding the flashCSpin, such as a jumper, to tell
RP2040 to enter the BOOTSEL mode on boot. If there is no such method, you can load code using the Serial Wire
Debug interface.

3.2.1. From the desktop
If you are running the Raspberry Pi Desktop the Raspberry Pi Pico should automatically mount as a USB Mass Storage
Device. From here, you can Drag-and-droplink.uf2 onto the Mass Storage Device.

RP2040 will reboot, unmounting itself as a Mass Storage Device, and start to run the flashed code, seegure 1

Figure 1. Blinking the
on-board LED on the
Raspberry Pi Pico.
Arrows point to the on-
board LED, and the

BOOTSHLtton.

3.2.2. Using the command line

If you are logged in viassh for example, you may have to mount the mass storage device manually:

$ dmesg | tail

[371.973555] sd 0:0:0:0: [sda] Attached SCSI removable disk
$ sudo mkdir -p /mnt/pico

$ sudo mount /dev/sdal /mnt/pico

If you can see files in/mnt/pico then the USB Mass Storage Device has been mounted correctly:

$ Is /mnt/pico/
INDEX.HTM INFO_UF2.TXT

Copy yourblink.uf2 onto RP2040:

sudo cp blink.uf2 /mnt/pico
sudo sync

3.2. Load and run "Blink" 9

