

Mini SMD Digital Pyroelectric Infrared Sensors Type: S16-L221D

The product is a digital intelligent PIR sensor. It interfaces directly with up to two conventional PIR sensors via a high impedance different input. The PIR Signal is converted to a 15 bit digital value on chip. A LED output indicates whenever the PIR signal is above the selected threshold. The parameters for sensitivity and timing are set by connecting the corresponding inputs to DC voltages. The voltage levels on the inputs are converted to digital values with 7 bit resolution. All signal processing is performed digitally.

Features

- Mini SMD with reflowed SMT
- Digital signal processing (DSP)
- Power adjustable, save more energy
- Built-in filter, high immunity to RFI
- Output time, sensitivity and light control adjustable, Schmitt REL Output
- Low voltage, low power consumption

Applications

- PIR motion detection
- Intruder detection
- Occupancy detection
- Motion sensor lights
- Computer monitor
- Security system
- Automatic control,etc.

Dimension

Unit: mm

Right: The chart of recommended welding plate

Technical Parameter

Maximum Ratings

Characteristics	Symbol	Min.Vale	Max. Value	Unit	Remarks
Supply Voltage	VDD	-0.3	3.3	V	
Working Temperature	тот	-30	70	°C	
Max.current for pin	INTO	-100	100	mA	
Viewing angle		X=110°	Y=90°	o	Theoretical value
Storage Temperature	TST	-40	80	°C	
Detection spectral response	λ	5	14	μm	
Interior Block Diagram	SEL Compt Comp				

■ Working Conditions (T=25°C, Vdd=3V, Except other requirements)

Characteristics	Symbol	Min.	Туре	Max.	Unit	Remarks
Supply Voltage	V_{DD}	2.7	3	3.3	V	IR=0.5mA
Working Current	I _{DD}	12	15	20	μA	
Sensitivity	V_{SENS}	120		530	μV	Adjustable
Output REL				1	I	
Output Low Current	I _{OL}	10			mA	V _{OL} <1V
Output High Current	I _{OH}			-10	mA	V _{OH} >(V _{DD-} 1V)
Lock time	T _{OL}		2.3		S	
On-time	Т _{ОН}	2.3		4793	S	
SENS/ONTIME				1	1	
Input voltage		0		V _{DD}	V	0V to ¼ V _{DD}
Input Bias Current		-1		1	μA	
OEN		•		1	I	
Input Low Voltage	V _{IL}			0.2	Vdd	
Input High Voltage	V _{IH}	0.4			Vdd	
Input Current	I _I	-1		1	μA	V _{SS} <v<sub>IN<v<sub>DD</v<sub></v<sub>
Oscillator & Filter						
Low pass filter cut-off				7	Hz	
frequency						
High pass filter cut-off				0.44	Hz	
frequency						
Oscillator frequency or	ו F _{CLK}			64	kHz	
Chip						

■ The output trigger mode

When PIR signal is above the triggered threshold inside the PIR sensor, there will be a count impulse inside. And when PIR sensor receives this impulse signal, it will think this signal as the second impulse. Once the second impulse was received within 4S, the PIR sensor will alarm, meanwhile, the REL pin will be triggered.

Besides, when the PIR signal is above 5 times of the triggered threshold, only one impulse is enough to trigger REL output as below. For multiple triggers, the delay time of REL output begins from the last valid trigger.

(multiple triggered signal) (interior set delay time of REL output.)

ONTIME Pin Setting

1. The Analog setting style for on-time

P3: 100pF

P4: 1nF

P5: 10nF

2. The Digital setting style for on-time

序号	ONTIME 脚电压范围(VDD)	ONTIME 脚电压中心值(VDD)	Time Td
0	0~1/32	1/64	1.8sec
1	1/32~2/32	3/64	3.6sec
2	2/32~3/32	5/64	5.4sec
3	3/32~4/32	7/64	7.2sec
4	4/32~5/32	9/64	14.4sec
5	5/32~6/32	11/64	29sec
6	6/32~7/32	13/64	43sec
7	7/32~8/32	15/64	58sec
8	8/32~9/32	17/64	115sec
9	9/32~10/32	19/64	230sec
10	10/32~11/32	21/64	346sec
11	11/32~12/32	23/64	461sec
12	12/32~13/32	25/64	922sec
13	13/32~14/32	27/64	1843sec
14	14/32~15/32	29/64	2765sec
15	15/32~16/32	31/64	3686sec

Sensitivity Setting

序号	SENS 脚电压		序号	号 SENS 脚电压	
	电压范围 (VDD)	中心电压 (VDD)	1	电压范围 (VDD)	中心电压 (VDD)
0	0~1/64	1/128	16	16/64~17/64	33/128
1	1/64~2/64	3/128	17	17/64~18/64	35/128
2	2/64~3/64	5/128	18	18/64~19/64	37/128
3	3/64~4/64	7/128	19	19/64~20/64	39/128
4	4/64~5/64	9/128	20	20/64~21/64	41/128
5	5/64~6/64	11/128	21	21/64~22/64	43/128
6	6/64~7/64	13/128	22	22/64~23/64	45/128
7	7/64~8/64	15/128	23	23/64~24/64	47/128
8	8/64~9/64	17/128	24	24/64~25/64	49/128
9	9/64~10/64	19/128	25	25/64~26/64	51/128
10	10/64~11/64	21/128	26	26/64~27/64	53/128
11	11/64~12/64	23/128	27	27/64~28/64	55/128
12	12/64~13/64	25/128	28	28/64~29/64	57/128
13	13/64~14/64	27/128	29	29/64~30/64	59/128
14	14/64~15/64	29/128	30	30/64~31/64	61/128

Reliable Test

Туре	Standard	ОК
Salt spray test	GB/T 10125-2012	ОК
High temperature test	100℃,500 hours	ОК
Low temperature test	-40℃,500 hours	ОК
Humidity	Relative humidity 95%,	ОК
	500 hours	
Heat resistance	250°C,10S	ОК
Vibration	Frequency: 10Hz-55H,	OK
	Time: 2 hours	
Fall	1m free fall	ОК
Air tightness	Soaking in water of	NO bubbles
	21kpa, 1 hour	

■ Typical Application Circuit—S16-L221D

MOS Tube application

Triode application

A. PLE

单位: ㎜

. 6.6±0.2

7.8

■ Field of View (with SB-F-011)

PIR

Package

单位: mm

Standard package: 1500pcs

SENSOR MANUAL

