

HAN Pilot Platform

Demonstration Manual
 1 www.terasic.com

October 8, 2019

TABLE OF CONTENTS

Chapter 1 Introduction ... 3

Chapter 2 Examples for FPGA ... 4

2.1 Factory Default Code ... 4

2.2 Nios II Control for Programmable PLL/ Temperature/ Power/ 9-axis ... 6

2.3 Nios DDR4 SDRAM Test .. 12

2.4 RTL DDR4 SDRAM Test ... 14

2.5 USB Type-C DisplayPort Alternate Mode ... 15

2.6 USB Type-C FX3 Loopback .. 17

2.7 HDMI TX and RX in 4K Resolution .. 21

2.8 HDMI TX in 4K Resolution ... 26

2.9 Low Latency Ethernet 10G MAC Demo .. 29

2.10 Socket Server .. 33

2.11 Auto Fan Speed Control .. 40

Chapter 3 Examples for HPS SoC .. 44

3.1 User LED and KEY .. 44

3.2 Setup USB Wi-Fi Dongle ... 48

3.3 HPS GPIO Header .. 51

3.4 Network Socket .. 55

Chapter 4 Examples for Using both HPS SoC and FPGA 61

4.1 Required Background ... 61

4.2 System Requirements ... 61

4.3 AXI bridges in Intel SoC FPGA ... 62

4.4 GHRD Project .. 63

4.5 Compile and Programming ... 64

4.6 Develop the C Code .. 64

Chapter 5 PCI Express Design for Windows ... 69

HAN Pilot Platform

Demonstration Manual
 2 www.terasic.com

October 8, 2019

5.1 PCI Express System Infrastructure ... 69

5.2 PC PCI Express Software SDK .. 70

5.3 PCI Express Software Stack ... 70

5.4 PCI Express Library API .. 75

5.5 PCIe Reference Design – Fundamental .. 79

5.6 PCIe Reference Design - DDR4 ... 85

Chapter 6 PCI Express Design for Linux .. 92

6.1 PCI Express System Infrastructure ... 92

6.2 PC PCI Express Software SDK .. 93

6.3 PCI Express Software Stack ... 93

6.4 PCI Express Library API .. 96

6.5 PCIe Reference Design – Fundamental .. 100

6.6 PCIe Reference Design - DDR4 ... 105

Chapter 7 Linux BSP ... 112

7.1 Introduction .. 112

7.2 Use Linux BSP ... 112

7.3 Linux LXDE VNC Desktop BSP ... 113

7.4 Linux LXDE HDMI Desktop BSP ... 113

7.5 VNC Desktop OpenCL BSP ... 114

HAN Pilot Platform

Demonstration Manual
 3 www.terasic.com

October 8, 2019

Chapter 1

Introduction

This manual will introduce the various application demonstrations on HAN Pilot Platform. These

demonstrations cover most of the interfaces on HAN Pilot Platform. Let users familiarize using

these interfaces of the HAN Pilot Platform. Demonstration according to FPGA and HPS Fabrics are

divided into three categories:

 Pure use of FPGA fabric resources (Chapter 2)

 Pure use of HPS fabric resources (Chapter 3)

 Use both FPGA and HPS fabric resources (Chapter 4)

In addition, the PCIe example of HAN Pilot Platform will be described separately in one chapter

(Chapter 5) because of its high content.

Finally, to complete the following demonstration, user needs to install the following software in the

computer:

 Intel Quartus® Prime Design Software Version 18.1 or later.

 Intel SoC Embedded Design Suite (EDS)

HAN Pilot Platform

Demonstration Manual
 4 www.terasic.com

October 8, 2019

Chapter 2

Examples for FPGA

This chapter provides examples of advance designs implemented by RTL or Qsys on the HAN Pilot

Platform. These reference designs cover the features of peripherals connected to the FPGA, such as

DDR4, PCIe, HDMI and USB Controller. All the associated files can be found in the directory

\Demonstrations\FPGA of HAN Pilot Platform system CD.

22..11 FFaaccttoorryy DDeeffaauulltt CCooddee

The HAN Pilot Platform has a default configuration bit-stream pre-programmed, which

demonstrates some of the basic features on board. This demo used LED,7-Segments, Switch, HDMI

transmitter display and fan control.

 Function Block Diagram

Figure 2-1 shows the function block diagram of this demonstration. This demo used fan controller

to control fan and used frame buffer read board picture from ON-CHIP-MEMORY and used scaler

scale the picture to 1920x1080 size, display the picture by HDMI TX.

Figure 2-1 Block Diagram of Default Demonstration

HAN Pilot Platform

Demonstration Manual
 5 www.terasic.com

October 8, 2019

 Design Tools

 Quartus Prime 18.1.0 Standard Edition

 Demonstration Source Code:

 Project Directory: Demonstration\default_code

 Bit Stream: default_code.sof or default_code.jic

 Demonstration Batch File: default_code\demo_batch or default_code\demo_run_batch

NOTE: because the demo included software, and run on on-chip-memory, so use mem_init can

package elf to sof, so user can only program .sof or .sof and .elf to run demo.

The demo batch file includes following files:

 Batch File: test.bat

 FPGA Configuration File: default_code.sof or default_code.jic

 Demonstration Setup

1. Make sure Quartus Prime is installed on the host PC.

2. Connect HAN Pilot Platform to the host PC via USB cable. Install the USB-Blaster II driver if

necessary.

3. Connect the HDMI TX to displayer via HDMI cable.

4. Set MSEL[2:0] to 010, set SW0 to 0, SW1 to 0.

5. Power on the HAN Pilot Platform.

6. Execute the demo batch file “test.bat” under the batch file folder \ default_code\demo_batch.

You will see the menu as shown in Figure 2-2.

7. Select your choice, and program FPGA or program flash.

8. When the demo is running, you can see the LED is blinking and flowing, and the displayer will

display the board picture as shown in Figure 2-3.

Figure 2-2 Menu of Default Demonstration

HAN Pilot Platform

Demonstration Manual
 6 www.terasic.com

October 8, 2019

Figure 2-3 Board Picture of Default Demonstration

22..22 NNiiooss IIII CCoonnttrrooll ffoorr PPrrooggrraammmmaabbllee PPLLLL// TTeemmppeerraattuurree//

 PPoowweerr// 99--aaxxiiss

This demonstration shows how to use the Nios II processor to program two programmable

oscillators (CDCM6208 and TXC) on the FPGA board, how to measure the power consumption

based on the built-in power measure circuit. The demonstration also includes a function of

monitoring system temperature with the on-board temperature sensor, and 3-axis gyroscope, 3-axis

accelerometer, and 3-axis magnetometer output with the on-board MPU-9250 Motion Tracking

device.

 System Block Diagram

Figure 2-4 shows the system block diagram of this demonstration. The system requires a 50 MHz

clock provided from the board. The five peripherals (including temperature sensor, power monitor,

CDCM6208, TXC, and MPU-9250) are all controlled by Nios II through the PIO controller, and all

of them are programmed through I2C protocol which is implemented in the C code. The I2C pins

from chip are connected to Qsys System Interconnect Fabric through PIO controllers. The Nios II

program toggles the PIO controller to implement the I2C protocol. The Nios II program is running

in the on-chip memory.

HAN Pilot Platform

Demonstration Manual
 7 www.terasic.com

October 8, 2019

Figure 2-4 Block Diagram of the Nios II Basic Demonstration

The program provides a menu in nios-terminal, as shown in Figure 2-5 to provide an interactive

interface. With the menu, users can perform the test for the temperature sensor, power monitor,

external programmable PLL and 9-axis outputs. Note, pressing ‘ENTER’ should be followed with

the choice number.

Figure 2-5 Menu of Demo Program

HAN Pilot Platform

Demonstration Manual
 8 www.terasic.com

October 8, 2019

In temperature test, the program will display local temperature and remote temperature. The remote

temperature is the FPGA temperature, and the local temperature is the board temperature where the

temperature sensor located.

A power monitor IC (LTC2945) embedded on the board can monitor Arria10 real-time current and

power. This IC can work out current/power value as multiplier and divider are embedded in it.

There is a sense resistor R176 (0.006 Ω) for LTC2945 in the circuit, when power on the HAN Pilot

Platform, there will be a voltage drop (named ∆SENSE Voltage) on R176. Based on sense resistors,

the program of power monitor can calculate the associated voltage, current and power consumption

from the LTC2945 through the I2C interface. Please note the device I2C address is 0xD4.

The MPU-9250 consists of two dies, one die houses the 3-axis gyroscope and 3-axis accelerometer,

and the other die houses the a-axis magnetometer. Similarly, the MPU-9250 provides complete

9-axis output through the I2C interface.

In the external PLL programming test, the program will program the PLL first, and subsequently

will use TERASIC QSYS custom CLOCK_COUNTER IP to count the clock count in a specified

period to check whether the output frequency is changed as configured. For CDCM6208

programming, the program can control the CDCM6208 to configure the output frequency of

SATA/PCIE/DDR4A/DDR4B/DDR4H REFCLK according to your choice. Please note the device

I2C address is 0xA8. For TXC programming, the program can control the TXC to configure the

output frequency of HDMI/SFP+/FMC/DP/USB REFCLK according to your choice. There are five

TXC’s ICs for clock generator, divided into two group, TXCA and TXCB. The HDMI and SFP+

reference clock generators share the same I2C bus, REFCLK0_SCL/REFCLK0_SDA, and are

grouped into TXCA. The FMC, DP, and USB reference clock generators also share the same I2C

bus, REFCLK1_SCL/REFCLK1_SDA, and are grouped into TXCB.

 Demonstration File Location

 Hardware project directory: Basic_Demo

 Bitstream used: Basic_Demo.sof

 Software project directory: Basic_Demo \software

 Demo batch file: Basic_Demo\demo_batch\test.bat, test.sh

 Demonstration Setup and Instructions

1. Make sure Quartus Prime is installed on the host PC.

2. Set MSEL[2:0] to 010

3. Power on the FPGA board.

4. Use the USB Cable to connect your PC and the FPGA board and install USB Blaster II driver if

necessary.

5. Execute the demo batch file “test.bat” under the batch file folder: Basic_Demo\demo_batch.

6. After the Nios II program is downloaded and executed successfully, a prompt message will be

displayed in nios2-terminal.

HAN Pilot Platform

Demonstration Manual
 9 www.terasic.com

October 8, 2019

7. For temperature test, please input key ‘0’ and press ‘Enter’ in the nios-terminal, as shown in

Figure 2-6.

Figure 2-6 Temperature Demo

8. For power monitor test, please input key ‘1’ and press ‘Enter’ in the nios-terminal, the Nios II

console will display the values of voltage, current and power as shown in Figure 2-7.

Figure 2-7 Power Monitor Demo

9. For 9-axis test, please input key ‘2’ and press ‘Enter’ in the nios-terminal, the Nios II console

will display the values of 9-axis as shown in Figure 2-8.

HAN Pilot Platform

Demonstration Manual
 10 www.terasic.com

October 8, 2019

Figure 2-8 MPU-9250 Demo

10. For programmable PLL TXCA test, please input key ‘3’ and press ‘Enter’ in the nios-terminal

first, then select the desired output frequency of HDMI/SFP+ REFCLK, as shown in Figure

2-9.

Figure 2-9 TXCA Demo

11. For programmable PLL TXCB test, please input key ‘4’ and press ‘Enter’ in the nios-terminal

first, then select the desired output frequency of DP/USB/FMC REFCLK, as shown in Figure

2-10.

HAN Pilot Platform

Demonstration Manual
 11 www.terasic.com

October 8, 2019

Figure 2-10 TXCB Demo

12. For programmable PLL CDCM6208 test, please input key ‘5’ and press ‘Enter’ in the

nios-terminal first, then select the desired output frequency of SATA/ PCIE/ DDR4A/ DDR4B/

DDR4H REFCLK, as shown in Figure 2-11.

Figure 2-11 CDCM6208 Demo

HAN Pilot Platform

Demonstration Manual
 12 www.terasic.com

October 8, 2019

2.3 Nios DDR4 SDRAM Test

Many applications use a high performance RAM, such as a DDR4 SDRAM, to provide temporary

storage. In this demonstration hardware and software designs are provided to illustrate how to

perform DDR4 memory access in QSYS. We describe how the Altera’s “Arria 10 External Memory

Interfaces” IP is used to access the two DDR4-Sodimm on the FPGA board, and how the Nios II

processor is used to read and write the SDRAM for hardware verification. The DDR4 SDRAM

controller handles the complex aspects of using DDR4 SDRAM by initializing the memory devices,

managing SDRAM banks, and keeping the devices refreshed at appropriate intervals.

 System Block Diagram

Figure 2-12 shows the system block diagram of this demonstration. The QSYS system requires one

50 MHz and two 266.667MHz clock source. The two 266.667 MHz clock source is provided by

CDCM6208 clock generator on the board. The 50MHz is used by IO PLL to generate 200MHz for

Nios Processor and On-chip Memory. The two 266.667MHz clock are used as reference clocks for

the DDR4 controllers. There are two DDR4 Controllers are used in the demonstrations. Each

controller is responsible for one DDR4 SDRAM. Each DDR4 controller is configured as a 1 GB

DDR4-1066MHz controller. The DDR4A controllers are designed as 1GB rather 4GB is due to

address space limitation of Nios II processor. Nios II processor is used to perform memory test. The

Nios II program is running in the On-Chip Memory. A PIO Controller is used to monitor buttons

status which is used to trigger starting memory testing.

Figure 2-12 Block Diagram of the DDR4 Basic Demonstration

The system flow is controlled by a Nios II program. First, the Nios II program writes test patterns

into the whole 1 GB of SDRAM. Then, it calls Nios II system function (alt_dache_flush_all) to

make sure all data has been written to SDRAM. Finally, it reads data from SDRAM for data

HAN Pilot Platform

Demonstration Manual
 13 www.terasic.com

October 8, 2019

verification. The program will show progress in JTAG-Terminal when writing/reading data to/from

the SDRAM. When verification process is completed, the result is displayed in the JTAG-Terminal.

 Design Tools

 Quartus Prime 18.1.0 Standard Edition

 Nios II Software Build Tools for Eclipse 18.1

 Demonstration Source Code

 Quartus Project directory: NIOS_DDR4

 Nios II Eclipse: NIOS_DDR4 \software

 Nios II Project Compilation

 Nios II Project Compilation

Before you attempt to compile the reference design under Nios II Eclipse, make sure the project is

cleaned first by clicking ‘Clean’ from the ‘Project’ menu of Nios II Eclipse.

 Demonstration Batch File

Demo Batch File Folder: NIOS_DDR4 \demo_batch

The demo batch file includes following files:

 Batch File for USB-Blaster II: test.bat, test.sh

 FPGA Configure File: NIOS_DDR4.sof

 Nios II Program: DDR4_Test.elf

 Demonstration Setup

Please follow below procedures to setup the demonstration.

1. Make sure Quartus Prime and Nios II are installed on your PC.

2. Make sure DDR4 SODIMM are installed on the FPGA board.

3. Set MSEL[2:0] to 010。

4. Power on the FPGA board.

5. Use USB Cable to connect PC and the FPGA board and install USB Blaster II driver if

necessary.

6. Execute the demo batch file “test.bat” under the folder “NIOS_DDR4\demo_batch”.

7. After Nios II program is downloaded and executed successfully, a prompt message will be

displayed in nios2-terminal.

8. Press Key0~Key1 of the FPGA board to start SDRAM verify process. Press Key0 for continued

test.

9. The program will display progressing and result information, as shown in Figure 2-13.

HAN Pilot Platform

Demonstration Manual
 14 www.terasic.com

October 8, 2019

Figure 2-13 Progress and Result Information for the DDR4 Demonstration

2.4 RTL DDR4 SDRAM Test

This demonstration performs a memory test function on the one DDR4 SO-DIMM (DDR4A) and

one DDR4 Component (DDR4B) on the HAN Pilot Platform. The memory size of DDR4

SO-DIMM is 4GB and DDR4 Component is 1GB.

 Function Block Diagram

Figure 2-14 shows the function block diagram of this demonstration. There are two DDR4 SDRAM

controllers. The controller uses 266.667 MHz as a reference clock. It generates one 1066MHz clock

as memory clock from the FPGA to the memory and the controller itself runs at quarter-rate in the

FPGA i.e. 266.667 MHz.

Figure 2-14 Block Diagram of DDR4 x2 Demonstration

 Design Tools

 Quartus Prime 18.1.0 Standard Edition

 Demonstration Source Code:

HAN Pilot Platform

Demonstration Manual
 15 www.terasic.com

October 8, 2019

 Project Directory: Demonstration\RTL_DDR4

 Bit Stream: RTL_DDR4.sof

 Demonstration Batch File

Demo Batch File Folder: RTL_DDR4 \demo_batch

The demo batch file includes following files:

 Batch File: test.bat

 FPGA Configuration File: RTL_DDR4.sof

 Demonstration Setup

1. Make sure Quartus Prime is installed on the host PC.

2. Connect HAN Pilot Platform to the host PC via USB cable. Install the USB-Blaster II driver if

necessary.

3. Set MSEL[2:0] to 010。

4. Power on the HAN Pilot Platform.

5. Execute the demo batch file “test.bat” under the batch file folder \ RTL_DDR4\demo_batch.

6. Press KEY0 on HAN Pilot Platform to start the verification process. When KEY0 is released,

LED0, LED1 should start blinking. After approximately 2 seconds, LED1 and LED2 should

stop blinking and stay on to indicate the DDR4 (A) and DDR4 (B) have passed the test,

respectively. Table 2-1 lists the LED indicators.

7. If LED0 or LED1 does not start blinking upon releasing KEY0, it indicates local_cal_success of

the corresponding DDR4 fails.

8. If LED0 or LED1 fail to remain on after 2 seconds, the corresponding DDR4 test has failed.

9. Press KEY0 again to regenerate the test control signals for a repeat test.

Table 2-1 LED Indicators

Name Description

LED0 DDR4 (A) test result

LED1 DDR4 (B) test result

2.5 USB Type-C DisplayPort Alternate Mode

This section introduces how to implement a DisplayPort Source based on USB Type-C DisplayPort

Alternate Mode. The demo includes two major parts: DisplayPort and USB Type-C.

For DisplayPort design, DisplayPort Intel FPGA IP is used to generate DisplayPort TX video. The

DisplayPort design is refer to the document :Arria 10 DisplayPort Design Example using on board

connector (TX Only).

For USB Type-C, system need to monitor the information sent from the USB Type-C Port

Controller CYPD3125 (EZ-PD CCG3). From the sent information, system can know whether the

plug-in device is a DisplayPort monitor and the DP lane number is 4 or 2, and system have to

configure the DisplayPort crossbar switch so the FPGA transceiver signals can be routed to the

https://fpgawiki.intel.com/wiki/Arria_10_DisplayPort_Design_Example_using_on_board_connector_(TX_Only)
https://fpgawiki.intel.com/wiki/Arria_10_DisplayPort_Design_Example_using_on_board_connector_(TX_Only)

HAN Pilot Platform

Demonstration Manual
 16 www.terasic.com

October 8, 2019

type-c port correctly.

The Quartus Project USBC_DP_4K is designed for 4K monitor, and USBC_DP_FullHD is design

for Full HD Monitor. If your Type-C monitor only supports Full HD, please use the

USB_DP_FullHD for the demo setup.

 System Block Diagram

Figure 2-15 shows the system block diagram for the DisplayPort Demo. When a Type-C monitor is

plugged into the Type-C Connector, the Type-C Port Controller (EZ-PD CCG3) will enable 5V

power for the monitor. When a Type-C device is plug-in or removed from the Type-C connector, the

CCG3 will notify FPGA through the IC2 interface. CCG3 will sends one byte data to 0 offset

address in the I2C Slave Port. The meaning of the data is shown in Table 2-2. If attached device is a

DisplayPort monitor, then DisplayPort crossbar switch is configured so the transceivers signals are

routed to the type-c connector correctly.

For DisplayPort design, the Hot Plug Detect (HPD) causes the DisplayPort source to initialize the

link via AUX channel. The DisplayPort IP generates parallel Video data and FPGA transceivers are

used to serial the video data. For 4K video data, 4 TX transceivers are used with reference clock

270 MHz. For Full HD video data, 4 or 2 TX transceivers are used. The input video data for

DisplayPort IP is generated by VIP Test Pattern Generator II IP and VIP Clocked Video Output II IP.

In the system, a Nios II processor is used to control the DisplayPort IP. The Nios II Processor is

running on on-chip memory with 100Mhz.

Figure 2-15 Block Diagram of DisplayPort Demo

Table 2-2 Information sent by CCG3

Data[6:5] Description

0 No Device is attached

1 Only USB 3.1 Device is attached

2 4 Lane DisplayPort monitor is attached

3 USB and 2 Lane DisplayPort monitor is attached

HAN Pilot Platform

Demonstration Manual
 17 www.terasic.com

October 8, 2019

Data[4] Description

0 Cable is normal

1 Cable is flip

 Demonstration File Locations

 For 4K Video Output:

 Hardware project directory: USBC_DP_4K

 Bitstream used: USBC_DP_golden_top.sof

 Nios II Program: dp_demo_test.elf

 Demo batch file: USBC_DP_4K\demo_batch\test.bat

 For Full-HD Video Output:

 Hardware project directory: USBC_DP_FullHD

 Bitstream used: USBC_DP.sof.sof

 Nios II Program: dp_demo_test.elf

 Demo batch file: USBC_DP_FullHD\demo_batch\test.bat

 Demonstration Setup and Instructions

1. Make sure Quartus Prime is installed on your PC.

2. Set MSEL[2:0] to 010。

3. Power on the FPGA board.

4. Use the Mini USB Cable to connect your PC and the FPGA board and install USB Blaster II

driver if necessary.

5. Execute test.bat under the demo_batch folder.

6. Connect USB Type-C Connector (J2) to a 4K Type-C Monitor (or Full HD Type-C Monitor) via

a Type-C Cable.

7. You will see a color bar pattern on the Type-C Monitor.

2.6 USB Type-C FX3 Loopback

This demonstration illustrates how the FX3 is working with the FPGA for USB3.0/USB2.0 data

bulk in/out (data loop transmission). There is a USB type-C connector onto HAN Pilot Platform, a

type-C cable is reversible for plugging in the USB type-C connector. This demonstration also

implements the auto-switching mechanism for a type-C cable plugging in on either side.

 Function Block Diagram

Figure 2-16 shows the function block diagram of the USBC_FX3 demonstration. This design

comprises two parts, USB3.0/USB2.0 TX&RX crossbar switch controlling and FX3 data

transferring. As the Type-C connector is reversible, a Type-C port Controller (CYPD3125) is

required for USB3.0/USB2.0 TX&RX crossbar switch controlling. When the Type-C cable is

HAN Pilot Platform

Demonstration Manual
 18 www.terasic.com

October 8, 2019

plugged in, the CC (Configuration Channel) signal is communicating with the controller. The

controller then transfers the data to the Slave IC (FPGA) by I2C in Master mode, and There will be

a salve I2C module in the FPGA to decode the signal and send the control signal to control the

RX/TX direction of the PI3USB31532 USB3.0 signal. Here is a LED0 on the board to indicate the

cable plugging direction, and LED1 indicates whether there is a USB connection signal or not. For

the data transmission of FX3 module, FIFO and controller (implemented in the FPGA) combine

FX3 module to perform the data bulk in/out loop. (For details, please refer to CYPRESS AN65974

Designing with the EZ-USB® FX3™ Slave FIFO Interface Chapter 11). All modules functions are

described below:

USB_AUTO_DETECT: This module can decode the I2C signal from the Type-C Port Controller

(CYPD3125 IC), then timely switch the RX/TX direction of Type-C port (by controlling the

PI3USB31532 IC) and control the USB 3.0 Mux/Demux9 (HD3SS3212) switching to transfer the

USB 3.0 signal to FX3 module. As shown in Figure 4-1, the LED0 indicates the Type-C connector

RX/TX direction, the LED1 indicates the USB 3.0 signal input.

LOOPBACK: This module is designed as FX3 Slave FIFO Interface, the module combines the

CYPRESS application(bulkloop.exe) to implement data bulk in/out loop demo.

KEY0: It is used to reset FX3 module.

PMODE[2:0]: The HAN Pilot Platform has a 4Mbits Flash ROM, which can be used to program

the FX3 firmware. This ROM is connected to FX3 through SPI interface. PMODE[2:0] is used to

set the FX3 in program or boot status. The setting details is described in below steps.

Figure 2-16 Block diagram of the USBC FX3 design

 Demonstration Setup

 Hardware Setting Up, as shown in Figure 2-17.

HAN Pilot Platform

Demonstration Manual
 19 www.terasic.com

October 8, 2019

Figure 2-17 USBC FX3 Demo Hardware Setting Up

 Design Tools

 Quartus Prime 18.1 Standard Edition

 Demonstration Source Code

 Quartus project directory: USBC_FX3

 Bitstream used: USBC_FX3.sof

 Demonstration Batch File

 Demo batch file folder: demonstrations\USBC_FX3\demo_batch

 Demonstration Setup

 Connect the HAN Pilot Platform USB Blaster II connector (J20) to the host PC with a USB

cable and install the USB-Blaster II driver if necessary.

 Use a Type-C cable to connect the HAN Pilot Platform and a PC (with a Type-C connector).

As shown in Figure 2-17.

 Plug the 12V adapter to HAN Pilot Platform DC 12V power connector (J28).

 Set MSEL[2:0] to 010.

 Power on the HAN Pilot Platform.

 Execute the demo batch file “test.bat” from the directory \FPGA\USBC_FX3\demo_batch.

 Install the FX3 driver: the driver for Windows 7 is in the \ FPGA\ USBC_FX3\

demo_batch\ Driver\ win7 folder, and the driver for Windows 10 is in the \ FPGA\

USBC_FX3\ demo_batch\ Driver\ win10 folder.

 Use JP6, JP5, JP4 to set the PMODE[2:0] as “0F1” (F indicates floating).

 Press KEY0 (RESET FX3).

 Re-plug the Type-C cable one time, Cypress Control Center will show Cypress FX3 USB

Streamer Example Device and BOS (SuperSpeed Device capability), it indicates the

USB3.0 Has completed the setup. When LED1 lights up, it indicates USB signal is

detected. LED0 lights off indicates Type-C Cable two sides plugged with same directions,

HAN Pilot Platform

Demonstration Manual
 20 www.terasic.com

October 8, 2019

LED0 lights up indicates Type-C Cable two sides plugged with reverse directions.

 Execute the .exe application: \demo_batch\Host_app\loopback\bulkloop.exe, see Figure

2-18 below, press Start, you will see the Bytes Transferred IN/Out value increasing rapidly.

For more information of bulkloop.exe, please refer to Cypress EZ-USB FX3 SDK Getting

Started with FX3 SDK.

Figure 2-18 FX3 bulk in out bulkloop

Table 2-3 summarizes the functional keys and details of each LED status.

Table 2-3 The functional keys of the HAN Pilot Platform USBC_FX3 demonstration

Name Description

LED0

LED0 lights off indicates Type-C Cable two sides plugged with same

directions.

LED0 lights up indicates Type-C Cable two sides plugged with reverse

directions.

LED1 It lights up when the USB signal is detected.

 Program the FX3 firmware:(Optional)

 Execute the demo batch file “test.bat” from the directory \FPGA\USBC_FX3\demo_batch

 Execute Cypress Control:

FPGA\USBC_FX3\demo_batch\Host_app\ download_firmware\CyControl.exe

 Use JP6, JP5, JP4 to set the PMODE[2:0] as “F11”(F indicates floating).

 Press KEY0 (RESET FX3), Cypress Control center will show Cypress FX3 USB

Bootloader Device.

 Program software, In Control Center. Click Program FX3 SPI FLASH, as shown in Figure

2-19. Select file FPGA\USBC_FX3\demo_batch\FX3_Firmware\SF_loopback.img. Wait

until It reports “Programming of SPI FLASH Succeeded”.

HAN Pilot Platform

Demonstration Manual
 21 www.terasic.com

October 8, 2019

Figure 2-19 Cypress Control Center

2.7 HDMI TX and RX in 4K Resolution

This demonstration uses the Intel® FPGA HDMI IP core to implement the HDMI Retransmit

function in the FPGA of the HAN Pilot Platform. As shown in Figure 2-20, user can connect an

HDMI video player to the input video and audio data to HDMI RX port of the HAN Pilot Platform.

After the HDMI video data is received in the FPGA, it will be instantly transferred to the HDMI TX

port. The user only needs to connect an HDMI screen to the HAN Pilot Platform. User only needs

to connect an HDMI screen to the HAN Pilot Platform, then you can watch the images output by

the HDMI Player. This demonstration supports image resolution up to 4K@60YUV mode. User

who need resolution with 4K@60RGB mode, please use the project in the folder

“HDMI_RX_TX_192” and use Quartus 19.2 version to open and edit it. If you want to learn HDMI

high-performance related image processing, this demo can help you learn quickly.

HAN Pilot Platform

Demonstration Manual
 22 www.terasic.com

October 8, 2019

Figure 2-20 The Architecture of the demonstration

 System Block Diagram

Figure 2-21 shows the system block diagram of this example. It shows that the Intel® FPGA HDMI

IP core is used in the FPGA. It is divided into two parts: Transmitter and Receiver. These two IPs

can be directly used by Transition-minimized differential signaling (TMDS) interface connection,

only need HDMI repeater or redrive IC as an intermediary to connect HDMI devices, no need to use

special HDMI Transmitter and Receiver IC. For details about HDMI IP, please refer to HDMI

Intel® FPGA IP User Guide and Intel FPGA HDMI Design Example User Guide for Intel Arria 10

Devices.

https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_hdmi.pdf
https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_hdmi.pdf
https://www.intel.com/content/www/us/en/programmable/documentation/aky1476080261496.html#dtb1476836047579
https://www.intel.com/content/www/us/en/programmable/documentation/aky1476080261496.html#dtb1476836047579

HAN Pilot Platform

Demonstration Manual
 23 www.terasic.com

October 8, 2019

Figure 2-21 The system block of the demonstration

This demonstration first needs to connect the HAN Pilot Platform to the HDMI interface screen.

Because this demo can support various screen resolutions. When the HAN Pilot Platform connect to

the monitor, the HDMI RX block in the FPGA will first read the supporting resolution of the

monitor from the it's EDID and stored in the EDID RAM in the HDMI RX block. The NIOS

handles the control signals between the EDID and the HDMI IP in this demo.

The HDMI Video player is then connected to the HDMI RX port of the HAN Pilot Platform. When

the RX instance in the FPGA receives a video source from the external video generator, the video

and audio data then go through a loopback FIFO before it is transmitted to the TX instance. The

final image and sound data will be displayed on the monitor connected to the TX end. For a more

detailed IP block diagram in the example, refer to Figure 2-22.

HAN Pilot Platform

Demonstration Manual
 24 www.terasic.com

October 8, 2019

Figure 2-22 The HDMI IP block of the demonstration

 Demonstration Source Code for 4K@60YUV

Project Location: System CD\Demonstration\FPGA\HDMI_RX_TX\

 Quartus Project directory: HDMI_RX_TX\quartus\

 Nios II Eclipse: HDMI_RX_TX\software\

 Demonstration Batch File:

Demo Batch File Folder: HDMI_RX_TX\demo_batch\

The demo batch file includes following files:

 Batch File for USB-Blaster II: test.bat, test.sh

 FPGA Configure File: a10_hdmi2_demo.sof

 Nios II Program: HDMI_RX_TX.elf

 Demonstration Source Code for 4K@60RGB

Project Location: System CD\Demonstration\FPGA\HDMI_RX_TX_192

 Quartus Project directory: HDMI_RX_TX_192\quartus\

 Nios II Eclipse: HDMI_RX_TX_192\software\

HAN Pilot Platform

Demonstration Manual
 25 www.terasic.com

October 8, 2019

 Demonstration Batch File:

Demo Batch File Folder: HDMI_RX_TX_192\demo_batch\

The demo batch file includes following files:

 Batch File for USB-Blaster II: test.bat, test.sh

 FPGA Configure File: a10_hdmi2_demo.sof

 Nios II Program: HDMI_RX_TX.elf

 Hardware Requirement

 A PC

 An HDMI monitor capable of displaying 4K/60P

 An HDMI video player capable of outputting 4K/60P resolution

 Demonstration Setup

1. Make sure Quartus Prime and Nios II are installed on your PC.

2. Set MSEL[2:0] to 010, Set SW0 to 1, SW1 to 0.

3. Connect a HDMI monitor to the HAN Pilot Platform as shown in Figure 2-23.

HAN Pilot Platform

Demonstration Manual
 26 www.terasic.com

October 8, 2019

Figure 2-23 Connection setup of the HDMI TX monitor and HAN Pilot Platform

4. Connect the USB Blaster II port on the HAN Pilot Platform to the computer using the USB

cable (Do not connect the HDMI video player at this time).

5. Open HAN Pilot Platform power and execute demo batch file: test.bat

6. Waiting for FPGA code download completed.

7. First set the output resolution of the HDMI video player to 4K@60Hz and connect to the HDMI

RX port of HAN Pilot Platform as shown in Figure 2-20.

8. Observe the Nios command shell window (See Figure 2-24), whether the Pixel rate is around

297000 (the value when the resolution is 4K).

9. Check if the resolution of the HDMI monitor is 4K/60P. If the monitor cannot support 4K

resolution, some HDMI video players will automatically switch to full HD or lower resolution.

If the HDMI video player cannot automatically switch, please manually switch to the resolution

that monitor can support.

Figure 2-24 Verify the pixel rate of the demonstration

2.8 HDMI TX in 4K Resolution

Compared with the section 2.7 HDMI TX and RX in 4K Resolution, the difference of this

demonstration is that only the TX of the Intel® FPGA HDMI IP cores is used in the FPGA. This

demo also has a video test pattern generator built into the FPGA. The highest resolution 4K image

is sent to the HDMI TX IP. It is displayed via an external HDMI monitor.

 System Block Diagram

http://www.terasic.com.tw/wiki/DE10_Advance_revC_demo:_HDMI_TX_and_RX_in_4K_Resolution

HAN Pilot Platform

Demonstration Manual
 27 www.terasic.com

October 8, 2019

Figure 2-25 shows the system block diagram of the demo. First, Nios is used to generate the test

pattern output to the HDMI TX IP. The resolution of the generated pattern can be 4K or Full HD

(1080). User can switch the output resolution instantly through the Switch on the HAN Pilot

Platform. The HDMI TX IP is identical to section 2.7.

Figure 2-25 The System Block Diagram of the demonstration

 Design Tools

 Quartus Prime 18.1.0 Standard Edition

 Nios II Software Build Tools for Eclipse 18.1

 Demonstration Source Code

Project Location: System CD\Demonstration\FPGA\HDMI_TX_4K\

 Quartus Project directory: HDMI_TX_4K

 Nios II Eclipse: HDMI_TX_4K\software\

 Demonstration Batch File:

Demo Batch File Folder: HDMI_TX_4K\demo_batch\

The demo batch file includes following files:

 Batch File for USB-Blaster II: test.bat, test.sh

 FPGA Configure File: HDMI_TX_4K.sof

 Nios II Program: vip_control.elf

 Hardware Requirement

 A PC

 An HDMI monitor capable of displaying 4K/60P

 Demonstration Setup

1. Make sure Quartus Prime and Nios II are installed on your PC.

2. Connect a HDMI monitor to the HAN Pilot Platform as shown in Figure 2-23.

HAN Pilot Platform

Demonstration Manual
 28 www.terasic.com

October 8, 2019

3. Connect the USB Blaster II port on the HAN Pilot Platform to the computer using the USB

cable (do not connect the HDMI video player at this time).

4. Set MSEL[2:0] to 010.

5. Open HAN Pilot Platform power and execute demo batch file: test.bat

6. Waiting for FPGA code download completed

7. Check if the test color pattern is shown on the HDMI monitor (See Figure 2-26).

Figure 2-26 Test color pattern is shown on the HDMI monitor

8. User can switch SW[1:0] to change the resolution of the test patter output. The relationship

between the detailed screen resolution and the switch is shown in Table 2-4.

Table 2-4 Switch setting for the resolution of the test pattern

SW[1:0] Resolution Setting

00 1080@60P

01 4K@60P

10 1080@60P (Same with the SW[1:0] = 00)

11 4K@30P

HAN Pilot Platform

Demonstration Manual
 29 www.terasic.com

October 8, 2019

2.9 Low Latency Ethernet 10G MAC Demo

This 10GBASE-R Ethernet design example is generated according to the documents : Low Latency

Ethernet 10G MAC Intel Arria 10 FPGA IP Design Example User Guide. The LL (Low Latency)

10GbE IP is used in the example design. This example executes the external loopback test through

one of the SFP+ ports on the FPGA main board. A SFP+ loopback fixture is required to perform this

demonstration. Figure 2-27 shows the block diagram of this demonstration.

Figure 2-27 Block diagram of 10GBASE-R demo

 Project Information

The Project information is shown in the Table 2-5.

Table 2-5 Project Information

Item Description

Project

Location
CDROM/Demonstration/FPGA/alt_eth

FPGA Bit

Stream
CDROM/Demonstration/FPGA/alt_eth/output_files/altera_eth_top.sof

Test Scrip

File

CDROM/Demonstration/FPGA/alt_eth/hwtesting/system_console/

gen_conf.tcl

monitor_conf.tcl

show_stats.tcl

https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug-20016.pdf
https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug-20016.pdf

HAN Pilot Platform

Demonstration Manual
 30 www.terasic.com

October 8, 2019

Quartus

Version
Quartus Prime 18.1.0 Build 614 Standard Edition

 Demonstration Setup

Here is the procedure to setup the demonstration. A SFP+ loopback fixture is required for this

demonstration.

1. Insert a SFP+ loopback fixture into the SFP+-A port on the HAN Pilot Platform as shown in

Figure 2-28.

Figure 2-28 SFP+-A loopback on the HAN Pilot Platform

2. Connect the host PC to the FPGA board using a Mini-USB cable. Please make sure the

USB-Blaster II driver is installed on the host PC.

3. Set MSEL[2:0] to 010.

4. Power on the FPGA Board.

5. Using Quartus to open the quartus project “altera_eth_top.qpf”.

6. Execute the demo batch file “test.bat” under the batch file folder, alt_eth\demo_batch.

7. Launch the System Console by selecting the menu item “Tools=>System Debugging

HAN Pilot Platform

Demonstration Manual
 31 www.terasic.com

October 8, 2019

Tools=>System Console” in Quartus.

8. In the Tcl Console pane, type “cd hwtesting/system_console” to change directory to the

folder: ./alt_eth/hwtesting/system_console as shown in Figure 2-29.

9. Type “source gen_conf.tcl” to generates and sends about 4 billion packets as shown in Figure

2-30.

10. Type “source monitor_conf.tcl” to checks the number of good and bad packets received. as

shown in Figure 2-31.

11. Type “source show_stats.tcl” to checks the number of good and bad packets received. as shown

in Figure 2-32.

12. Wait 6 minutes to complete loopback task, then re-type “source monitor_conf.tcl” to see

“0xffff2000” good packets.

Figure 2-29 Launch the System Console for Ethernet 10GBASE-R Demo

HAN Pilot Platform

Demonstration Manual
 32 www.terasic.com

October 8, 2019

Figure 2-30 Ethernet 10BASE-R test message for gen_conf.tcl

Figure 2-31 Ethernet 10BASE-R test message for monitor_conf.tcl

HAN Pilot Platform

Demonstration Manual
 33 www.terasic.com

October 8, 2019

Figure 2-32 Ethernet 10BASE-R test message for show_stats.tcl

2.10 Socket Server

The Arria 10 device on the HAN Pilot Platform consists of built-in serializer/reserialize (SERDES)

circuitry for high-speed LVDS interfaces to support Gigabit Ethernet. Ethernet has been the

dominant networking protocol providing a simple, cost-effective option for backbone and server

connectivity. Gigabit Ethernet builds on top of the Ethernet protocol with speed up to 1000 Mbps,

or 1 gigabit per second (Gbps). In this demonstration, we will illustrate how to create a simple

socket server generated in Nios II using the Gigabit Ethernet devices equipped on the HAN Pilot

Platform.

 System Block Diagram

As indicated in the block diagram in Figure 2-33, the Nios II processor is used to communicate

with the client via Marvell 88E1111 Ethernet Transceiver.

HAN Pilot Platform

Demonstration Manual
 34 www.terasic.com

October 8, 2019

Figure 2-33 Block diagram of the Socket Server Demonstration

Part of Nios II, NicheStack TCP/IP Network Stack is a software suite of networking protocols

designed to provide an optimal solution for designing network-connected embedded devices with

the Nios II processor. A telnet client application is used to communicate with the Simple Socket

Server issuing commands over a TCP/IP socket to the Ethernet-connected NicheStack TCP/IP Stack

running on the HAN Pilot Platform with a Simple Socket Server. The Simple Socket Server

continues to listen for commands on a TCP/IP port and operates the HAN Pilot Platform according

to the commands from the telnet client. NicheStack TCP/IP stack uses the MicroC/OS-II RTOS

multithreaded environment to provide immediate access to a stack for Ethernet connectivity for the

Nios II processor. The Nios II processor system contains an Ethernet interface, or media access

control (MAC)

 How the Ethernet demonstration is built

In this following section we describe how to build the demonstration through the QSYS. The QSYS

system includes the CPU processor, On-Chip memory, JTAG UART, system ID, timer, Triple-Speed

Ethernet, Scatter-Gather DMA Controllers and peripherals which are linked together contained in

the Nios II hardware system that are used when building a project. Figure 2-34 presents the overall

setup of the QSYS from the Ethernet Simple Socket Server project.

HAN Pilot Platform

Demonstration Manual
 35 www.terasic.com

October 8, 2019

Figure 2-34 QSYS for Ethernet Simple Socket Server

In the Triple-Speed Ethernet IP Core configuration, the interface is set to SGMII as well as using

the internal FIFO shown in Figure 2-35.

Figure 2-35 Triple-Speed Ethernet core configurations

In the MAC options section, the MDIO module is included that controls the PHY Management

Module associated with the MAC block. The host clock divisor is to divide the MAC control

register interface clock to produce the MDC clock output on the MDIO interface. The MAC control

register interface clock frequency is 100 MHz and the desired MDC clock frequency is 2.5 MHz, a

host clock divisor of 40 should be used. Once the Triple-Speed Ethernet IP configuration has been

set and necessary hardware connections has been made click on ‘Generate’ to build the interconnect

HAN Pilot Platform

Demonstration Manual
 36 www.terasic.com

October 8, 2019

logic automatically. In this following section we will describe the steps to create the Simple Socket

Server using Nios II. We create a new project in Nios II using the project template, Simple Socket

Server shown in Figure 2-36. The PTF file created using the SOPC builder in Quartus II is used in

the Select Target Hardware section.

Figure 2-36 Nios II project simple socket server

 Overview

The Simple Socket Server uses the industry standard sockets interface to TCP/IP. It uses DHCP

protocol to requests a valid IP from the Gateway. During the device initialization process, the

NichStack TCP/IP Stack system code calls get_mac_add() and get_ip_add() to get the MAC and IP

addresses for the network interface. Once the MAC address is generated, auto-negotiation is

initiated where both connected devices, the Ethernet (Marvel 88E1111) and Gateway devices

broadcasts its transmission parameters, speed and duplex mode. By default, the MAC interface for

the Ethernet device is set to SGMII. In this demonstration, we are using SGMII MAC interface

which can be configured through the management interface of the 88E1111 Ethernet device. Once

the link is established an IP address is assigned to the Ethernet device along with the port number.

Through TCP and port number, the demonstration uses Telnet client to establish connection with the

Simple Socket Server, where it is continuously listening on the port. Once the connection is

established between the Telnet client and Simple Socket Server, the Telnet client is able to send

packets which are received by the Nios II processor and through the Simple Socket Server it will

send server command to the HAN Pilot Platform. The packet sent contains LED command which is

extracted and dispatched to the LED command queue for processing by the LED management tasks.

Figure 2-37 shows the software architecture of the Nios program for the Simple Socket Server. The

top block containing the Nios II processor and the necessary hardware to be implemented into the

HAN Pilot Platform. The software device drivers contain the necessary device drivers needed for

Ethernet and other hardware components to functions. The HAL API block provides the interface

HAN Pilot Platform

Demonstration Manual
 37 www.terasic.com

October 8, 2019

for the software device drivers, while the MicroC/OS-II provides communication services to the

NichStack and the Simple Socket Server. The NicheStack TCP/IP stack software block provides

networking services to the application where it contains tasks for Simple Socket Server and LED

management.

Figure 2-37 Nios program software architecture

 Running the demonstration

 Design Tools

 Quartus Prime 18.1 Standard Edition

 Nios II Software Build Tools for Eclipse 18.1

 Demonstration Source Code

 Quartus Project directory: Socket_Server

 Nios II Eclipse: Socket_Server \software

 Nios II Project Compilation

Before you attempt to compile the reference design under Nios II Eclipse, make sure the project is

cleaned first by clicking ‘Clean’ from the ‘Project’ menu of Nios II Eclipse.

 Demonstration Batch File

Demo Batch File Folder: Socket_Server \demo_batch

The demo batch file includes following files:

 Batch File for USB-Blaster II: test.bat, test.sh

 FPGA Configure File: Socket_Server.sof

 Nios II Program: Socket_Server.elf

 Demonstration Setup

Please follow below procedures to setup the demonstration.

1. Make sure Quartus Prime and Nios II are installed on your PC.

2. Use USB Cable to connect PC and the FPGA board and install USB Blaster II driver if

necessary.

3. Connect the ethernet to Router or network switch with DHCP.

4. Set MSEL[2:0] to 010.

HAN Pilot Platform

Demonstration Manual
 38 www.terasic.com

October 8, 2019

5. Power on the FPGA board.

6. Execute the demo batch file “test.bat” under the folder “Socket_Server\demo_batch”.

7. After Nios II program is downloaded and executed successfully, a prompt message will be

displayed in nios2-terminal. Where the IP address and port numbers are assigned as shown

below in Figure 2-38.

Figure 2-38 Simple socket server

8. To establish connection, start the telnet client session by executing open_telnet.bat file and

include the IP address assigned by the DHCP server-provided IP along with the port number as

shown below in Figure 2-39.

Note: If you can’t open the open_telnet.bat file, please try to set the Telnet Client feature as shown

in Figure 2-40.

HAN Pilot Platform

Demonstration Manual
 39 www.terasic.com

October 8, 2019

Figure 2-39 Telnet Client

Figure 2-40 set the Telnet Client feature

9. From the Simple Socket Server Menu, enter the commands in the telnet session. Entering a

number from zero through one followed by a return causes the corresponding the LEDs

(LED0-LED1) to toggle on or off on the HAN Pilot Platform.

HAN Pilot Platform

Demonstration Manual
 40 www.terasic.com

October 8, 2019

2.11 Auto Fan Speed Control

This demonstration shows you how to adjust the fan rotation speed according to the FPGA chip

temperature value. The fan rotation speed is adjusted according to the process shown in Figure

2-41.

Figure 2-41 Fan rotation speed determination process

 Function Block Diagram

Figure 2-42 Shows the Function block diagram of the AutoFan demonstration. This design has two

main parts. The one is an I2C controller (FAN_TEMP_I2C), which can be used to read the

temperature value of the HAN Pilot Platform Temperature Sensor IC (TMP441) and to set the Fan

Controller IC (MAX6650) register for controlling the fan rotation speed. Both the Temperature

Sensor and the Fan Controller use the same I2C bus. The Temperature Sensor I2C Slave-Address is

0x38, the Fan Controller I2C Slave-Address is 0x90. The other one is a judgment controller

(FAN_ONOFF), which can determine the fan rotation speed value according to the process in

Figure 2-41. In this demonstration, you can use the two seven segments to display the FPGA

temperature value and the fan rotation speed value(rpm). All module functions are described as

below:

HAN Pilot Platform

Demonstration Manual
 41 www.terasic.com

October 8, 2019

Figure 2-42 Block diagram of the AutoFan design

FAN_TEMP_I2C: This module can read the temperature value converted by the HAN Pilot

Platform Temperature Sensor IC (TMP441) and to set the Fan Controller IC (MAX6650) register

for controlling the fan rotation speed.

FAN_ONOFF: According to the FPGA temperature value (which output from FAN_TEMP_I2C

module) and the process in Figure 2-41, this module can determine the fan rotation speed

value(rpm) and output it to the FAN_TEMP_I2C module.

KEY0: Which is used as system RESET function. When pressing KEY0, the two modules

(FAN_TEMP_I2C and FAN_ONOFF) will reset.

SW1: Set the two seven segments to display the fan rotation speed or the FPGA temperature.

SW1=1, display the current fan rotation speed value (display the thousands and the hundreds, in

decimal), SW1=0, display FPGA temperature value.

The following are the descriptions of the platforms’ set up, as well as the test steps.

 AutoFan RTL Demonstration Setup

 Hardware Setting Up

As shown in Figure 2-43:

HAN Pilot Platform

Demonstration Manual
 42 www.terasic.com

October 8, 2019

Figure 2-43 AutoFan demo hardware setting up

 Design Tools

 Quartus Prime 18.1 Standard Edition

 Demonstration Source Code

 Quartus project directory: AutoFan

 Bitstream used: AutoFan.sof

 Demonstration Batch File

 Demo batch file folder: demonstrations\AutoFan\demo_batch

 Demonstration Setup

 Connect the HAN Pilot Platform USB Blaster II port (J20) to the host PC with a USB cable

and install the USB-Blaster II driver if necessary.

 Plug the 12V adapter to HAN Pilot Platform Board.

 Set MSEL[2:0] to 010.

 Power on the HAN Pilot Platform.

 Execute the demo batch file “test.bat” from the directory \FPGA\AutoFan\demo_batch.The

fan rotation speed value is finally stabilized at RPM=3000. set SW1=1, the two seven

segments will display the current fan rotation speed value (display the thousands and the

hundreds, in decimal), set SW1=0, the two seven segments will display the FPGA

temperature value (display the tens and the ones, in decimal). LED[1:0] functions in this

demonstration are: when the Fan rotation speed is abnormal (ex, fan doesn’t rotate). LED0

lights up, when the FPGA temperature value is greater than 50ºC, LED1 lights up.

Table 2-6 Summarizes the functional keys and details of each LED status.

HAN Pilot Platform

Demonstration Manual
 43 www.terasic.com

October 8, 2019

Table 2-6 The functional keys of the AutoFan demonstration

Name Description

KEY0 System reset, press the KEY0 to reset the system

SW1 Control the two seven segments HEX[1:0]

SW1=1, display the current fan rotation speed value(display the thousands and the

hundreds, in decimal)

SW1=0, display the FPGA temperature value(display the tens and the ones, in decimal)

HEX[1:0] Display two decimal numbers

LED0 When the Fan rotation speed is abnormal (ex, fan doesn’t rotate), LED0 lights up

LED1 When the FPGA temperature value is greater than 50ºC, LED1 lights up

HAN Pilot Platform

Demonstration Manual
 44 www.terasic.com

October 8, 2019

Chapter 3

Examples for HPS SoC

This chapter provides several C-code examples based on the Intel SoC Linux built by Yocto project.

These examples demonstrate major features connected to HPS interface on HAN Pilot Platform

such as users LED/KEY, Network Communication. All the associated files can be found in the

directory Demonstrations/SOC of the HAN Pilot Platform System CD. Please refer to Chapter 5

"Running Linux on the HAN Pilot Platform" from the HAN Pilot Platform Getting Start Guide.

To install the demonstrations on the host computer: Copy the directory Demonstrations into a local

directory of your choice. Intel SoC EDS v18.1 is required for users to compile the c-code project.

33..11 UUsseerr LLEEDD aanndd KKEEYY

 Function Block Diagram

Figure 3-1 shows the function block diagram of this demonstration. The users LED and KEY are

connected to the GPIO1 controller in HPS. The behavior of GPIO controller is controlled by the

register in GPIO controller. The registers can be accessed by application software through the

memory-mapped device driver, which is built into Intel SoC Linux.

Figure 3-1 Block diagram of GPIO demonstration

 Block Diagram of GPIO Interface

The HPS provides three general-purpose I/O (GPIO) interface modules. Figure 3-2 shows the block

diagram of GPIO Interface. GPIO[28..0] is controlled by the GPIO0 controller and GPIO[57..29] is

controlled by the GPIO1 controller. GPIO[70..58] and input-only GPI[13..0] are controlled by the

http://www.terasic.com.tw/wiki/DE10-Advance_Getting_Start_Guide_revC

HAN Pilot Platform

Demonstration Manual
 45 www.terasic.com

October 8, 2019

GPIO2 controller.

Figure 3-2 Block diagram of GPIO Interface

 GPIO Register Block

The behavior of I/O pin is controlled by the registers in the register block. There are three 32-bit

registers in the GPIO controller used in this demonstration. The registers are:

 gpio_swporta_dr: write output data to output I/O pin

 gpio_swporta_ddr: configure the direction of I/O pin

 gpio_ext_porta: read input data of I/O input pin

The gpio_swporta_ddr configures the LED pin as output pin and drives it high or low by writing

data to the gpio_swporta_dr register. The first bit (least significant bit) of gpio_swporta_ddr

controls the direction of first IO pin in the associated GPIO controller and the second bit controls

the direction of second IO pin in the associated GPIO controller and so on. The value "1" in the

register bit indicates the I/O direction is output, and the value "0" in the register bit indicates the I/O

direction is input.

The first bit of gpio_swporta_dr register controls the output value of first I/O pin in the associated

GPIO controller, and the second bit controls the output value of second I/O pin in the associated

GPIO controller and so on. The value "1" in the register bit indicates the output value is high, and

the value "0" indicates the output value is low.

The status of KEY can be queried by reading the value of gpio_ext_porta register. The first bit

represents the input status of first IO pin in the associated GPIO controller, and the second bit

represents the input status of second IO pin in the associated GPIO controller and so on. The value

"1" in the register bit indicates the input state is high, and the value "0" indicates the input state is

low.

HAN Pilot Platform

Demonstration Manual
 46 www.terasic.com

October 8, 2019

 GPIO Register Address Mapping

The registers of HPS peripherals are mapped to HPS base address space 0xFC000000 with 64MB

size. The registers of the GPIO1 controller are mapped to the base address 0xFFC02A00 with 256B

size, and the registers of the GPIO2 controller are mapped to the base address 0xFFC02B00 with

256B size, as shown in Figure 3-3.

Figure 3-3 GPIO address map

 Software API

Developers can use the following software API to access the register of GPIO controller.

 open: open memory mapped device driver

 mmap: map physical memory to user space

 alt_read_word: read a value from a specified register

 alt_write_word: write a value into a specified register

 munmap: clean up memory mapping

 close: close device driver

Developers can also use the following MACRO to access the register.

 alt_setbits_word: set specified bit value to one for a specified register

 alt_clrbits_word: set specified bit value to zero for a specified register

The program must include the following header files to use the above API to access the registers of

GPIO controller.

include <stdio.h>

include <unistd.h>

include <fcntl.h>

include <sys/mman.h>

include "hwlib.h"

include "socal/socal.h"

include "socal/hps.h"

include "socal/alt_gpio.h"

 LED and KEY Control

Figure 3-4 shows the HPS users LED and KEY pin assignment for the HAN Pilot Platform. The

LED is connected to GPIO1_IO1 and the KEY is connected to GPIO1_IO4.

HAN Pilot Platform

Demonstration Manual
 47 www.terasic.com

October 8, 2019

Figure 3-4 Pin assignment of LED and KEY

Figure 3-5 shows the gpio_swporta_ddr register of the GPIO1 controller. The bit-0 controls the

pin direction of GPIO1_IO0. The bit-1 controls the pin direction of GPIO1_IO1, which connects to

HPS_LED, the bit-4 controls the pin direction of GPIO1_IO4, which connects to HPS_KEY and so

on. The pin direction of HPS_LED and HPS_KEY are controlled by the bit-1 and bit-4 in the

gpio_swporta_ddr register of the GPIO1 controller, respectively. Similarly, the output status of

HPS_LED is controlled by the bit-1 in the gpio_swporta_dr register of the GPIO1 controller. The

status of KEY can be queried by reading the value of the bit-4 in the gpio_ext_porta register of the

GPIO1 controller.

Figure 3-5 Gpio swporta ddr register in the GPIO1 controller

The following mask is defined in the demo code to control LED and KEY direction and LED’s

output value.

define USER_IO_DIR (0x00000002)

define BIT_LED (0x00000002)

define BUTTON_MASK (0x00000010)

The following statement is used to configure the LED associated pins as output pins.

alt_setbits_word((virtual_base + ALT_GPIO_SWPORTA_DDR_OFST), USER_IO_DIR);

The following statement is used to turn on the LED.

alt_clrbits_word((virtual_base + ALT_GPIO_SWPORTA_DR_OFST), BIT_LED);

The following statement is used to read the content of gpio_ext_porta register. The bit mask is used

to check the status of the key.

alt_read_word(virtual_base + ALT_GPIO_EXT_PORTA_OFST);

HAN Pilot Platform

Demonstration Manual
 48 www.terasic.com

October 8, 2019

 Demonstration Source Code

 Build tool: SoC EDS V18.1

 Project directory: \Demonstration\SoC\hps_gpio

 Binary file: hps_gpio

 Build command: make ('make clean' to remove all temporal files)

 Execute command: ./hps_gpio

 Demonstration Setup

1. Connect a USB cable to the USB-to-UART connector (J27) on the HAN Pilot Platform and the

host PC.

2. Copy the executable file "hps_gpio" into the microSD card under the "/home/root" folder in

Linux.

3. Insert the booting micro SD card into the HAN Pilot Platform.

4. Power on the HAN Pilot Platform.

5. Launch Putty and establish connection to the UART port of Putty. Type "root" to login into

Linux.

6. Type "./hps_gpio " in the UART terminal of Putty to start the program, as shown in Figure 3-6.

Figure 3-6 Start the Program

7. HPS_LED will flash twice and users can control the user LED with push-button.

8. Press HPS_KEY to light on and off the HPS_LED.

9. Press "CTRL + C" to terminate the application.

33..22 SSeettuupp UUSSBB WWii--FFii DDoonnggllee

This section describes how to setup the Wi-Fi USB dongle under Linux, so Linux user can

wirelessly connect to the Wi-Fi AP (Access Point) through the Wi-Fi USB Dongle and finally

connect to the internet. The Wi-Fi AP is assumed to have the DHCP server capability and is

connected to the internet. You should also make sure you know the SSID and Password of the Wi-Fi

AP.

HAN Pilot Platform

Demonstration Manual
 49 www.terasic.com

October 8, 2019

 System Diagram

Figure 3-7 shows the block diagram of this demonstration. The Wi-Fi AP assumes you have the

DHCP server capability and is connected to the LAN (Local Area Network) or the internet. The

USB Wi-Fi Dongle connects to the Wi-Fi AP and gets an address IP from the Wi-Fi AP. Through the

Wi-Fi AP, the USB-Dongle will be able to communicate with the devices connected to the LAN or

the internet.

Figure 3-7 System diagram of USB Wi-Fi dongle

 Wi-Fi Setup Procedure

1. Connect a USB cable to the USB-to-UART connector (J27) on the HAN Pilot Platform and the

host PC.

2. Connect the USB Wi-Fi Dongle into the USB port on the HAN Pilot Platform with USB

Transfer Cable.

3. Power on the HAN Pilot Platform.

4. Launch Putty to establish the connection between the UART port of the HAN Pilot Platform and

the host PC. Type "root" and then press "Enter." By pressing "Enter," you can login to Linux

without password.

5. Type "ifconfig wlan0 up" in the UART terminal of Putty to start wlan0 network interface.

6. Type "iwlist wlan0 scan | grep ESSID" in the UART terminal to search nearby Wi-Fi AP. Make

sure your Wi-Fi AP is found, as shown in Figure 3-8.

HAN Pilot Platform

Demonstration Manual
 50 www.terasic.com

October 8, 2019

Figure 3-8 Wi-Fi AP information

7. Type "vim /etc/wpa_supplicant/wpa_supplicant.conf" in the UART terminal to edit Wi-Fi

configuration file, as shown in Figure 3-9.

Figure 3-9 Edit Wi-Fi configuration File

8. In the configuration file, replace "Your_SSID" and "Your_WPA-Key_ASCII" with the SSID

and password for your Wi-Fi AP, in respectively, as shown in Figure 3-10.

Figure 3-10 Replace ssid and psk

9. Type "ifup wlan0" in the UART terminal to connect to the Wi-Fi AP, as shown in Figure 3-11.

10. Type "ifconfig wlan0" in the UART terminal to confirm an IP Address is assigned to wlan0

interface, as shown in Figure 3-12.

11. Make sure Wi-Fi AP is connected to the internet. Type "ping -c 4 www.terasic.com" in the

UART terminal to check internet connection status. If 0% packet loss is reported, it means the

connection is good, as shown in Figure 3-13.

HAN Pilot Platform

Demonstration Manual
 51 www.terasic.com

October 8, 2019

Figure 3-11 Type "ifup wlan0"

Figure 3-12 Type "ifconfig wlan0"

Figure 3-13 Type "ping -c 4 www.terasic.com"

33..33 HHPPSS GGPPIIOO HHeeaaddeerr

This demonstration shows how to use the system call with built-in GPIO driver to implement HPS

GPIO Header’s loopback. The built-in GPIO driver is included the HAN Pilot Platform LXDE

VNC Desktop BSP.

 Function Block Diagram

Figure 3-14 shows the function block diagram of the HPS GPIO Header loopback demonstration.

The built-in GPIO driver offers interfaces, to which the application can use system call such as open,

read, write to access. We can export the gpio port that we want to control, and when we export the

http://www.terasic.com/

HAN Pilot Platform

Demonstration Manual
 52 www.terasic.com

October 8, 2019

gpio port, the linux system will create attribute files of the gpio port in the location

“/sys/class/gpio/gpioN/” (N is the gpio port’ number). There are two attribute files we need to know:

value and direction. The value file is used to read and write value to the gpio port (the value can

only be “0” or “1”); the direction file is used to set the gpio port’s data direction.

Figure 3-14 Function block diagram of HPS GPIO Header demonstration

 Function Implement

In the c code project, we need to implement five functions, described as following:

int gpio_export(unsigned int gpio);

The gpio_export function is used to export the gpio port with the specified port number as

parameter.

int gpio_unexport(unsigned int gpio);

The gpio_unexport function is used to disable the exported gpio port with the specified port number

as parameter.

int gpio_set_dir(unsigned int gpio, unsigned int out_flag);

The gpio_set_dir function is used to set the gpio port’s data direction, the parameter “gpio” is the

port number you want to configure and the parameter “out_flag” is value to set. Number “1” for

data out, and “0” for data in. when you use this api, it will wirte “in” or “out” to the gpio port’s

direction file. The default value of direction file is “in”.

int gpio_set_value(unsigned int gpio, unsigned int value);

The gpio_set_value function is used to write data to the gpio port. The parameter “gpio” is the port

number you want to configure and then parameter “value” is the data you want to write. The value

can only be “0” or “1”. When you use the api, it will write data to the gpio port’s value file.

int gpio_get_value(unsigned int gpio, unsigned int *value);

The gpio_get_value function is used to read the gpio port’s data, and the parameter “value” is used

to store the value that you read. The parameter “gpio” is the gpio port that you want to read.

All the functions are implemented in the c code file, you can get more details from the c code file.

HAN Pilot Platform

Demonstration Manual
 53 www.terasic.com

October 8, 2019

 Loopback Implement

There are four gpio ports used to loopback. They are IO8, IO9, IO10, IO11. The Loopback includes

two test patterns, the differences between them are data direction and test data value. In test one, we

set IO 8 up to 11 as “out”, “in”, “out”, “in” respectively, and the test data is a 32-bit value

“0x1234f0f0”.

Described below are the loopback’s implementation procedure:

 Export gpios

 Set gpios’s data direction

 Data write and read back

 Verify the received data

Figure 3-15 shows the procedure in c code, you can find it’s very clear.

Figure 3-15 loopback implemented in c code

 Demonstration Source Code

 Build tool: SoC EDS V18.1

 Project directory: \Demonstration\SoC\hps_gpio_loopback

 Binary file: hps_gpio_loopback

 Build command: make ('make clean' to remove all temporal files)

HAN Pilot Platform

Demonstration Manual
 54 www.terasic.com

October 8, 2019

 Execute command: ./hps_gpio_loopback

 Demonstration Setup

1. Use jumper cap connect IO8 to IO9 and IO10 to IO11 in hps gpio header(J36) on the HAN Pilot

Platform. Figure 3-16 shows the pin location below.

Figure 3-16 GPIO Header Pin location

2. Connect a USB cable to the USB-to-UART connector (J27) on the HAN Pilot Platform and the

host PC.

3. Copy the executable file "hps_gpo_loopback" into the microSD card under the "/home/root"

folder in Linux. (HAN Pilot Platform LXDE has pre-installed this code, so users can skip this

copy action.)

4. Insert the LXDE booting micro SD card into the HAN Pilot Platform.

5. Power on the HAN Pilot Platform.

6. Launch Putty to establish the connection between the UART port of HAN Pilot Platform and the

host PC.

7. In the Putty UART terminal, type "root" to login LXDE Linux with pressing Enter as password.

8. Type "cd hps_gpio_loopback” to into the folder and type “./hps_gpio_loopback” in the UART

terminal to start the program.

9. You will see the loopback test successfully in the Putty UART terminal as shown in Figure

3-17.

HAN Pilot Platform

Demonstration Manual
 55 www.terasic.com

October 8, 2019

Figure 3-17 Loopback test successfully

33..44 NNeettwwoorrkk SSoocckkeett

This demonstration shows how two remote application processes communication via socket in

client-server model. Based on this design example, developers can make their Linux Application

Software, run on SoC FPGA boards and easily communicate with other hosts via a network socket.

 Sockets

Sockets are the fundamental technology for programming software to communicate on the transport

layer of networks shown in Figure 3-18. A socket provides a bidirectional communication endpoint

for sending and receiving data with another socket. Socket connections normally run between two

different computers on a LAN, or across the Internet, but they can also be used for interposes

communication on a single computer.

Figure 3-18 Communicate on a network via a socket

HAN Pilot Platform

Demonstration Manual
 56 www.terasic.com

October 8, 2019

 Client Server Model

Most intercrosses’ communication uses the client server model. These terms refer to the two

processes which will be communicating with each other. One of the two processes, the client,

connects to the other process, the server typically to makes a request for information. A good

analogy is a person who makes a phone call to another person.

Notice that the client needs to know of the existence of and the address of the server, but the server

does not need to know the address of (or even the existence of) the client prior to the connection

being established.

Notice also that once a connection is established, both sides can send and receive information.

The system calls for establishing a connection which is somewhat different for the client and the

server, but both involve the basic construct of a socket. A socket is one end of an intercross’s

communication channel. The two processes each establish their own socket. Figure 3-19 shows the

communication diagram between the client and server.

Figure 3-19 Client and Server communication

The steps involved in establishing a socket on the client side are as follows:

 Create a socket with the socket() system call

 Connect the socket to the address of the server using the connect() system call

 Send and receive data. There are a number of ways to do this, but the simplest is to use the

read() and write() system calls.

The steps involved in establishing a socket on the server side are as follows:

 Create a socket with the socket() system call

 Bind the socket to an address using the bind() system call. For a server socket on the

HAN Pilot Platform

Demonstration Manual
 57 www.terasic.com

October 8, 2019

Internet, an address consists of a port number on the host machine.

 Listen for connections with the listen() system call

 Accept a connection with the accept() system call. This call typically blocks until a client

connects with the server.

 Send and receive data. There are a number of ways to do this, but the simplest is to use the

read() and write() system calls.

 Example Code Explanation

The example design contains two projects. One is socket server project, and one is socket client

project. The SOCK_STREAM socket type is used in the design. The Linux Socket Library is used

to provide socket functions, so remember to include the socket API header file – socket.h.

The major function of socket server program is to create a socket server based on the given port

number and waiting a client to request to establish a connection. When a connection is established,

the server is waiting for an incoming text message. When a message is received, it will show the

receiver message on the console terminal, then send the message “I got your message” to the client

socket, and then close the server program. Figure 3-20 shows the socket relative code statement. In

the program, socket API is used to create a SOCK_STREAM socket, bind API is used to bind the

socket to any incoming address and a specified port number. For connection, listen API is used to

make the socket as a passive socket that is, as a socket that will be used to accept the incoming

connection, and accept API is used to accept the incoming connection. The accept blocks until a

client connects with the server. Data receiving and sending is implemented by the read and write

API, and close is used to close the socket.

Figure 3-20 Socket Server Code

The major function of the socket client program is to create a connection based on given hostname

(or IP address) and host port. When a connection is established, it will show “Please enter the

message:” message on console terminal to ask users to input a message. After get user’s input

HAN Pilot Platform

Demonstration Manual
 58 www.terasic.com

October 8, 2019

message, the message is sent to a remote socket server via the socket. If the remote server socket

received the message, it will return a message “I got the message”. The client program will show

the received message on the console terminal and exit the program. Figure 3-21 shows the socket

relative code statement. In the program, socket API is used to create a SOCK_STREAM socket,

connect API is used to connect the remove socket sever based on the given hostname (or IP4v

Address) and port number. Data receiving and sending is implemented by read and write API, and

close is used to close the socket.

Figure 3-21 Socket Client Code

 Demonstration Source Code

The source code of the design example is located in the Demonstration folder as shown in Figure

3-22. The Demonstration folder contains three platform subfolders: arm, linux and windows. The

project under the arm folder is designed for SoC FPGA board. The project under linux folder is

designed for Linux running on Linux PC. The project under windows folder is designed for SoC

EDS Shell running on Windows PC. Each platform subfolder contains socket_client and

socket_server project folders.

HAN Pilot Platform

Demonstration Manual
 59 www.terasic.com

October 8, 2019

Figure 3-22 Source Code Folder Tree

The socket_client project includes a Makefile and a source file main.c. For different platforms, the

Makefile content is different, but the main.c content is the same. The socket_server project has the

file project architecture.

 Demonstration Setup

Here we show the procedure to execute the socket client-server communication demonstration. In

this setup procedure, the server program is running to Intel SoC FPGA board and the Socket Client

is running on Windows PC.

1. Connect the HAN Pilot Platform to Network via Ethernet port (J25).

2. Connect a USB cable to the USB-to-UART connector (J27) on the HAN Pilot Platform and the

host Windows PC.

3. Copy the executable file “socket_server” into the microSD card under the "/home/root" folder

in Linux. (HAN Pilot Platform LXDE has pre-installed this code, so users can skip this copy

action.)

4. Insert the LXDE booting micro SD card into the HAN Pilot Platform.

5. Power on the HAN Pilot Platform.

6. In Windows, launch the Putty to connect HAN Pilot Platform via the UART-to-USB port.

7. In the Putty, type "root" to login LXDE Linux.

8. Type " ./socket_server 2020" to launch the server program with port number 2020 as shown in

Figure 3-23. The port number can be any value between 2000 and 63500.

Figure 3-23 Start Socket Server

HAN Pilot Platform

Demonstration Manual
 60 www.terasic.com

October 8, 2019

Here is the procedure to start the socket client program and communicate with the client server

program:

1. Make sure the SoC EDS is installed on your Windows and the Windows is connected to a

network.

2. Copy the client program (windows/socket_client/socket_client.exe) in the example kit to your

Windows.

3. Launch the SoC EDS Command Shell.

4. In the command shell, change the current directory to the directory where socket_client.exe is

located.

5. Then, type “./socket_client <ip address> 2020” to launch the client program to connect to the

host server with port number 2020 as shown in Figure 3-24.

Figure 3-24 Start Client Program

6. If connection is established successfully, a prompt message “Please enter the message.” will

appear. Type “hello”, then an echo message “I got your message” will be sent from the client

server and shown on terminal as shown in Figure 3-25. At the same time, the socket server

program will dump the received message at which point it is terminated as shown in Figure

3-26.

Figure 3-25 Send Message in Client Program

Figure 3-26 Server dumps received message

HAN Pilot Platform

Demonstration Manual
 61 www.terasic.com

October 8, 2019

Chapter 4

Examples for Using both

HPS SoC and FPGA

This Chapter demonstrates how to use the HPS/ARM to communicate with FPGA. We will

introduce the GHRD project for HAN Pilot Platform development board. And we develop one

ARM C Project which demonstrates how HPS/ARM program controls the two LEDs connected to

FPGA. We will show how HPS controls the FPGA LED through Lightweight HPS-to-FPGA Bridge.

The FPGA is configured by HPS through FPGA manager in HPS.

44..11 RReeqquuiirreedd BBaacckkggrroouunndd

This section pre-assumed the developers have the following background knowledge:

 FPGA RTL Design

 Basic Quartus Prime operation skill

 Basic RTL coding skill

 Basic Qsys operation skill

 Knowledge about Memory-Mapped Interface

 C Program Design

 Basic SoC EDS (Embedded Design Suite) operation skill

 Basic C coding and compiling skill

 Skill to Create a Linux Boot SD-Card for HAN Pilot Platform with a given image file

 Skill to boot Linux from SD-Card on HAN Pilot Platform Skill to copy files into Linux file

system on HAN Pilot Platform Basic Linux command operation skill

44..22 SSyysstteemm RReeqquuiirreemmeennttss

Before starting this tutorial, please note that the following items are required to complete the

demonstration project:

 Terasic HAN Pilot Platform, includes

 Mini USB Cable for UART terminal

 Micros SD-Card, at 4GB minimum

 Micros SD-Card Card Reader

HAN Pilot Platform

Demonstration Manual
 62 www.terasic.com

October 8, 2019

 A x86 PC

 Windows 10 64bit operation system Installed

 One USB Port

 Quartus Prime 18.1 or Later Installed

 SoC EDS 18.1 or Later Installed

 Win32 Disk Imager Installed

44..33 AAXXII bbrriiddggeess iinn IInntteell SSooCC FFPPGGAA

In Intel SoC FPGA, the HPS logic and FPGA fabric are connected through the AXI (Advanced

extensible Interface) bridge. For HPS logic to communicate with FPGA fabric, Intel system

integration tool Platform Designer should be used for the system design to add HPS component.

From the AXI master port of the HPS component, HPS can access those Qsys components whose

memory-mapped slave ports are connected to the master port.

The HPS contains the following HPS-FPGA AXI bridges.

 FPGA-to-HPS Bridge

 HPS-to-FPGA Bridge

 Lightweight HPS-to-FPGA Bridge

Figure 4-1 shows a block diagram of the AXI bridges in the context of the FPGA fabric and the L3

interconnect to the HPS. Each master (M) and slave (S) interface is shown with its data width(s).

The clock domain for each interconnect is noted in parentheses.

Figure 4-1 AXI Bridge Block Diagram

The HPS-to-FPGA bridge is mastered by the level 3 (L3) main switch and the lightweight

HAN Pilot Platform

Demonstration Manual
 63 www.terasic.com

October 8, 2019

HPS-to-FPGA bridge is mastered by the L3 slave peripheral switch.

The FPGA-to-HPS bridge masters the L3 main switch, allowing any master implemented in the

FPGA fabric to access most slaves in the HPS. For example, the FPGA-to-HPS bridge can access

the accelerator coherency.

All three bridges contain global programmer view GPV register. The GPV register control the

behavior of the bridge. It is able to access to the GPV registers of all three bridges through the

lightweight HPS-to-FPGA bridge.

This Demo introduces to users how to use the HPS/ARM to communicate with FPGA. This project

includes GHRD project for the HAN Pilot Platform one ARM C Project which demonstrates how

HPS/ARM program controls the LEDs connected to FPGA.

44..44 GGHHRRDD PPrroojjeecctt

The term GHRD is short for Golden Hardware Reference Design. The GRD project provide by

Terasic for the HAN Pilot Platform is located in the CD folder: CD-ROM\ Demonstration\

SOC_FPGA\ a10s_ghrd.

The project consists of the following components:

 ARM Cortex™-A9 MP Core HPS

 Two user push-button inputs

 Two user DIP switch inputs

 Two user I/O for LED outputs

 256 KB of on-chip memory

 JTAG to Avalon master bridges

 Interrupt capturer for use with System Console

 System ID

The memory map of system peripherals in the FPGA portion of the SoC as viewed by the MPU

starts at the lightweight HPS-to-FPGA base address 0xFF20_0000. The MPU can access these

peripherals through the Address offset setting in the Qsys. User can open the GHRD project with

Quartus Software. Then open the a10s_ghrd.qsys file with the Qsys tool. Figure 4-2 lists the

address map of the peripherals which are connected to the lightweight HPS-to-FPGA.

Figure 4-2 FPGA peripherals address map

All the Avalon Conduit signals of these peripherals are connected to the I/O pins of the SoC FPGA

on HAN Pilot Platform as shown in the Figure 4-3.

HAN Pilot Platform

Demonstration Manual
 64 www.terasic.com

October 8, 2019

Figure 4-3 Connection in the top design

44..55 CCoommppiillee aanndd PPrrooggrraammmmiinngg

In the Platform Design tool, click the menu item “Generate Generate…” to generate source code for

the system and then close the Qsys tool. Now, users can start the compile process by clicking the

menu item “Processing Start Compilation”.

When the compilation process is completed successfully, a10s.sof is generated in the

a10s_ghrd\output_files folder. Users can use this file to configure FPGA by Quartus Programming

through the HAN Pilot Platform on-board USB-Blaster II.

44..66 DDeevveelloopp tthhee CC CCooddee

This section introduces how to design an ARM C program to control the led_pio PIO controller.

SoC EDS is used to compile the C project. For ARM program to control the led_pio PIO

component, led_pio address is required. The Linux built-in driver ‘/dev/mem’ and mmap

system-call are used to map the physical base address of led_pio component to a virtual address

which can be directly accessed by Linux application software.

 LED_PIO Address

The led_pio component information is required for ARM C program as the program will attempt to

control the component. This section describes how to get led_pio’s address.

You can get led_pio’s address from qsys’s Address Map dialog box. Figure 4-4 shows led_pio’s

address in Address Map. You can define a macro for the address when you use it.

HAN Pilot Platform

Demonstration Manual
 65 www.terasic.com

October 8, 2019

Figure 4-4 PIO led address in Qsys’s Address Map

 Map LED_PIO Address

This section will describe how to map the led_pio physical address into a virtual address which is

accessible by an application software. Figure 4-5 shows the C program to derive the virtual address

of led_pio base address. First, open system-call is used to open memory device driver “/dev/mem”,

and then the mmap system-call is used to map HPS physical address into a virtual address

represented by the void pointer variable virtual_base. The demo code maps the physical base

address (HW_REGS_BASE = 0xfc000000) of the peripheral region into a based virtual address

virtual_base. For any controller in the peripheral region, users can calculate their virtual address by

adding their offset relative to the peripheral region to the based virtual address virtual_base. Based

on the rule, the virtual address of led_pio can be calculated by adding the below two offset

addresses to virtual_base.

 Offset address of Lightweight HPS-to-FPGA AXI bus relative to HPS base address

 Offset address of Pio_led relative to Lightweight HPS-to-FPGA AXI bus

The first offset address is 0xff200000 which is defined as a constant

ALT_FPGA_BRIDGE_LWH2F_OFST in the header hps.h. The hps.h is a header of SoC EDS. It is

located in the Quartus installation folder: D:\ IntelFPGA\ 18.1\ embedded\ ip\ altera\ hps\

altera_hps\ hwlib\ include\ soc_a10\socal.

The second offset address is 0x120 which is led_pio’s address defined as LED_PIO_BASE in the C

code file.

The virtual address of led_pio is represented by a void pointer variable h2p_lw_led_addr.

Application program can directly use the pointer variable to access the registers in the controller of

LED_PIO.

HAN Pilot Platform

Demonstration Manual
 66 www.terasic.com

October 8, 2019

Figure 4-5 LED PIO memory map code

 LED Control

C programmers need to understand the Register Map of the PIO core for LED_PIO before they can

control it. Figure 4-6 shows the Register Map for the PIO Core. Each register is 32-bit width. For

detail information, please refer to the datasheet of PIO Core. For led control, we just need to write

output value to the offset 0 register. Because the led on HAN Pilot Platform is low active, writing a

value 0x00000003 to the offset 0 register will turn off the two LEDs. Writing a value 0x00000000

to the offset 0 register will turn on the two LEDs. In C program, writing a value 0x00000000 to the

offset 0 register of led_pio can be implemented as:

*(uint32_t *) h2p_lw_led_addr= 0x00000000;

The state will assign the void pointer to a uint32_t pointer, so C compiler knows write a 32-bit value

0x00000000 to the virtual address h2p_lw_led_addr.

Figure 4-6 Register Map of PIO Core

HAN Pilot Platform

Demonstration Manual
 67 www.terasic.com

October 8, 2019

 Main Program

In the main program, the LED is controlled to perform LED light shifting operation as shown in

Figure 4-7. When finishing 60 times of shift cycle, the program will be terminated.

Figure 4-7 C Program for LED Shift Operation

 Makefile and compile

Figure 4-8 shows the content of Makefile for this C project. The program includes the head files

provided by SoC EDS. In the Makefile, ARM-linux cross-compile also be specified.

Figure 4-8 Makefile content

To compile the project, type “make” in the command shell as shown in Figure 4-9. Then, type “ls”

to check the generated ARM execution file “hps_fpga_led”.

HAN Pilot Platform

Demonstration Manual
 68 www.terasic.com

October 8, 2019

Figure 4-9 ARM C Project Compilation

 Execute the Demo

To execute the demo, please boot the Linux from the SD-card in HAN Pilot Platform. Copy the

execution file “hps_fpga_led” to the Linux directory, and type “chmod +x hps_fpga_led” to add

execution attribute to the execute file. Then, type “./ hps_fpga_led” to launch the ARM program.

The LED[1:0] on HAN Pilot Platform will be expected to perform 60 times of LED light shift

operation, and then the program is terminated.

For details about booting the Linux from SD-card, please refer to the document:

Getting_Started_Guide.pdf

HAN Pilot Platform

Demonstration Manual
 69 www.terasic.com

October 8, 2019

Chapter 5

PCI Express Design for

Windows

PCI Express is commonly used in consumer, server, and industrial applications, to link

motherboard-mounted peripherals. From this demonstration, it will show how the PC Windows and

FPGA communicate with each other through the PCI Express interface. Arria 10 Hard IP for PCI

Express with Avalon-MM DMA IP is used in this demonstration. For detail about this IP, please

refer to Altera document ug_a10_pcie_avmm_dma.pdf.

55..11 PPCCII EExxpprreessss SSyysstteemm IInnffrraassttrruuccttuurree

Figure 5-1 shows the infrastructure of the PCI Express System in this demonstration. It consists of

two primary components: FPGA System and PC System. The FPGA System is developed based on

Arria 10 Hard IP for PCI Express with Avalon-MM DMA. The application software on the PC side

is developed by Terasic based on Intel’s PCIe kernel mode driver.

Figure 5-1 Infrastructure of PCI Express System

https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_a10_pcie_avmm_dma.pdf

HAN Pilot Platform

Demonstration Manual
 70 www.terasic.com

October 8, 2019

55..22 PPCCII EExxpprreessss SSooffttwwaarree SSDDKK

The FPGA System CD contains a PC Windows based SDK to allow users to develop their 64-bit

software application on 64-bits Windows XP/7/10. The SDK is located in the

"CDROM\Demonstrations\PCIe_SW_KIT\Windows" folder which includes:

 PCI Express Driver

 PCI Express Library

 PCI Express Examples

The kernel mode driver assumes the PCIe vendor ID (VID) is 0x1172 and the device ID (DID) is

0xE003. If different VID and DID are used in the design, users need to modify the PCIe vendor ID

(VID) and device ID (DID) in the driver INF file accordingly.

The PCI Express Library is implemented as a single DLL named TERASIC_PCIE_AVMM.DLL.

This file is a 64-bit DLL. With the DLL is exported to the software API, users can easily

communicate with the FPGA. The library provides the following functions:

 Basic data read and write

 Data read and write by DMA

For high performance data transmission, Altera AVMM DMA is required as the read and write

operations are specified under the hardware design on the FPGA.

55..33 PPCCII EExxpprreessss SSooffttwwaarree SSttaacckk

Figure 5-2 shows the software stack for the PCI Express application software on 64-bit Windows.

The PCIe library module TERASIC_PCIE_AVMM.dll provides DMA and direct I/O access for user

application program to communicate with FPGA. Users can develop their applications based on this

DLL. The altera_pcie_win_driver.sys kernel driver is provided by Altera.

Figure 5-2 PCI Express Software Stack

HAN Pilot Platform

Demonstration Manual
 71 www.terasic.com

October 8, 2019

 Install PCI Express Driver on Windows

The PCIe driver is locate in the folder:

CDROM\Demonstrations\PCIe_SW_KIT\Windows\PCIe_Driver

The folder includes the following four files:

 Altera_pcie_win_driver.cat

 Altera_pcie_win_driver.inf

 Altera_pcie_win_driver.sys

 WdfCoinstaller01011.dll

To install the PCI Express driver, please execute the steps below:

1. Make sure the HAN Pilot Platform and the PC are both powered off.

2. Set MSEL[2:0] to 010.

3. Plug the PCIe adapter card into the PCIe slot on the PC motherboard. Use the PCIe cable to

connect to the HAN Pilot Platform PCIE connector and the PCIe adapter card (See Figure 5-3)

Figure 5-3 FPGA board connect to PC

4. Power on your HAN Pilot Platform and the host PC.

5. Make sure Altera Programmer and USB-Blaster II driver are installed

6. Execute test.bat in "CDROM\Demonstrations\PCIe_Fundamental\demo_batch" to configure the

FPGA

7. Restart windows operation system

8. Click Control Panel menu from Windows Start menu. Click Hardware and Sound item before

clicking the Device Manager to launch the Device Manager dialog. There will be a PCI Device

item in the dialog, as shown in Figure 5-4. Move the mouse cursor to the PCI Device item and

right click it to select the Update Driver Software... item.

HAN Pilot Platform

Demonstration Manual
 72 www.terasic.com

October 8, 2019

Figure 5-4 Screenshot of launching Update Driver Software… dialog

9. In the How do you want to search for driver software dialog, click Browse my computer for

driver software item, as shown in Figure 5-5.

Figure 5-5 Dialog of Browse my computer for driver software

HAN Pilot Platform

Demonstration Manual
 73 www.terasic.com

October 8, 2019

10. In the Browse for driver software on your computer dialog, click the Browse button to specify

the folder where altera_pcie_win_driver.inf is located, as shown in Figure 5-6. Click the Next

button

Figure 5-6 Browse for driver software on your computer

11. When the Windows Security dialog appears, as shown Figure 5-7, click the Install button.

Figure 5-7 Click Install in the dialog of Windows Security

HAN Pilot Platform

Demonstration Manual
 74 www.terasic.com

October 8, 2019

12. When the driver is installed successfully, the successfully dialog will appear, as shown in

Figure 5-8. Click the Close button.

Figure 5-8 Click Close when the installation of Altera PCI API Driver is complete

13. Once the driver is successfully installed, users can see the Altera PCI API Driver under the

device manager window, as shown in Figure 5-9.

Figure 5-9 Altera PCI API Driver in Device Manager

HAN Pilot Platform

Demonstration Manual
 75 www.terasic.com

October 8, 2019

 Create a Software Application

All the files needed to create a PCIe software application are located in the directory

CDROM\demonstration\PCIe_SW_KIT\Windows\PCIe_Library. It includes the following files:

 TERASIC_PCIE_AVMM.h

 TERASIC_PCIE_AVMM.dll (64-bit dll)

Below list the procedures to use the SDK files in users’ C/C++ project:

1. Create a 64-bit C/C++ project.

2. Include TERASIC_PCIE_AVMM.h in the C/C++ project.

3. Copy TERASIC_PCIE_AVMM.dll to the folder where the project.exe is located.

4. Dynamically load TERASIC_PCIE_AVMM.dll in C/C++ program. To load the dll, please refer

to the PCIe fundamental example below.

5. Call the SDK API to implement the desired application.

Users can easily communicate with the FPGA through the PCIe bus through the

TERASIC_PCIE_AVMM.dll API. The details of API are described below.

55..44 PPCCII EExxpprreessss LLiibbrraarryy AAPPII

Below shows the exported API in the TERASIC_PCIE_AVMM.dll. The API prototype is defined in

the TERASIC_PCIE_AVMM.h.

Note: the Linux library terasic_pcie_qsys.so also use the same API and header file.

 PCIE_Open

Function:

Open a specified PCIe card with vendor ID, device ID, and matched card number.

Prototype:

PCIE_HANDLE PCIE_Open(

uint16_t wVendorID,

uint16_t wDeviceID,

uint16_t wCardNum);

Parameters:

wVendorID:

Specify the desired vendor ID. A zero value means to ignore the vendor ID.

wDeviceID:

Specify the desired device ID. A zero value means to ignore the device ID.

wCardNum:

Specify the matched card number, a zero based index, based on the matched vendor ID and device

ID.

Return Value:

HAN Pilot Platform

Demonstration Manual
 76 www.terasic.com

October 8, 2019

Return a handle to presents specified PCIe card. A positive value is return if the PCIe card is opened

successfully. A value zero means failed to connect the target PCIe card.

This handle value is used as a parameter for other functions, e.g. PCIE_Read32.

Users need to call PCIE_Close to release handle once the handle is no longer used.

 PCIE_Close

Function:

Close a handle associated to the PCIe card.

Prototype:

void PCIE_Close(

PCIE_HANDLE hFPGA);

Parameters:

hFPGA:

A PCIe handle return by PCIE_Open function.

Return Value:

None.

 PCIE_Read32

Function:

Read a 32-bit data from the FPGA board.

Prototype:

bool PCIE_Read32(

PCIE_HANDLE hFPGA,

PCIE_BAR PciBar,

PCIE_ADDRESS PciAddress,

uint32_t *pdwData);

Parameters:

hFPGA:

A PCIe handle return by PCIE_Open function.

PciBar:

Specify the target BAR.

PciAddress:

Specify the target address in FPGA.

pdwData:

A buffer to retrieve the 32-bit data.

Return Value:

Return true if read data is successful; otherwise false is returned.

 PCIE_Write32

Function:

Write a 32-bit data to the FPGA Board.

Prototype:

bool PCIE_Write32(

HAN Pilot Platform

Demonstration Manual
 77 www.terasic.com

October 8, 2019

PCIE_HANDLE hFPGA,

PCIE_BAR PciBar,

PCIE_ADDRESS PciAddress,

uint32_t dwData);

Parameters:

hFPGA:

A PCIe handle return by PCIE_Open function.

PciBar:

Specify the target BAR.

PciAddress:

Specify the target address in FPGA.

dwData:

Specify a 32-bit data which will be written to FPGA board.

Return Value:

Return true if write data is successful; otherwise false is returned.

 PCIE_Read8

Function:

Read an 8-bit data from the FPGA board.

Prototype:

bool PCIE_Read8(

PCIE_HANDLE hFPGA,

PCIE_BAR PciBar,

PCIE_ADDRESS PciAddress,

uint8_t *pByte);

Parameters:

hFPGA:

A PCIe handle return by PCIE_Open function.

PciBar:

Specify the target BAR.

PciAddress:

Specify the target address in FPGA.

pByte:

A buffer to retrieve the 8-bit data.

Return Value:

Return true if read data is successful; otherwise false is returned.

 PCIE_Write8

Function:

Write an 8-bit data to the FPGA Board.

Prototype:

bool PCIE_Write8(

PCIE_HANDLE hFPGA,

HAN Pilot Platform

Demonstration Manual
 78 www.terasic.com

October 8, 2019

PCIE_BAR PciBar,

PCIE_ADDRESS PciAddress,

uint8_t Byte);

Parameters:

hFPGA:

A PCIe handle return by PCIE_Open function.

PciBar:

Specify the target BAR.

PciAddress:

Specify the target address in FPGA.

Byte:

Specify an 8-bit data which will be written to FPGA board.

Return Value:

Return true if write data is successful; otherwise false is returned.

 PCIE_DmaRead

Function:

Read data from the memory-mapped memory of FPGA board in DMA.

Maximal read size is (4GB-1) bytes.

Prototype:

bool PCIE_DmaRead(

PCIE_HANDLE hFPGA,

PCIE_LOCAL_ADDRESS LocalAddress,

void *pBuffer,

uint32_t dwBufSize

);

Parameters:

hFPGA:

A PCIe handle return by PCIE_Open function.

LocalAddress:

Specify the target memory-mapped address in FPGA.

pBuffer:

A pointer to a memory buffer to retrieved the data from FPGA. The size of buffer should be equal or

larger the dwBufSize.

dwBufSize:

Specify the byte number of data retrieved from FPGA.

Return Value:

Return true if read data is successful; otherwise false is returned.

 PCIE_DmaWrite

Function:

Write data to the memory-mapped memory of FPGA board in DMA.

Prototype:

HAN Pilot Platform

Demonstration Manual
 79 www.terasic.com

October 8, 2019

bool PCIE_DmaWrite(

PCIE_HANDLE hFPGA,

PCIE_LOCAL_ADDRESS LocalAddress,

void *pData,

uint32_t dwDataSize

);

Parameters:

hFPGA:

A PCIe handle return by PCIE_Open function.

LocalAddress:

Specify the target memory mapped address in FPGA.

pData:

A pointer to a memory buffer to store the data which will be written to FPGA.

dwDataSize:

Specify the byte number of data which will be written to FPGA.

Return Value:

Return true if write data is successful; otherwise false is returned.

 PCIE_ConfigRead32

Function:

Read PCIe Configuration Table. Read a 32-bit data by given a byte offset.

Prototype:

bool PCIE_ConfigRead32 (

PCIE_HANDLE hFPGA,

uint32_t Offset,

uint32_t *pData32

);

Parameters:

hFPGA:

A PCIe handle return by PCIE_Open function.

Offset:

Specify the target byte of offset in PCIe configuration table.

pData32:

A 4-bytes buffer to retrieve the 32-bit data.

Return Value:

Return true if read data is successful; otherwise false is returned.

55..55 PPCCIIee RReeffeerreennccee DDeessiiggnn –– FFuunnddaammeennttaall

The application reference design shows how to implement fundamental control and data transfer in

DMA. In the design, basic I/O is used to control the BUTTON and LED on the FPGA board.

High-speed data transfer is performed by DMA.

HAN Pilot Platform

Demonstration Manual
 80 www.terasic.com

October 8, 2019

 Demonstration Files Location

The demo file is located in the batch folder:

CDROM\Demonstrations\ PCIe_Fundamental\demo_batch

The folder includes following files:

 FPGA Configuration File: PCIe_Fundamental.sof

 Download Batch file: test.bat

 Windows Application Software folder: windows_app, includes

 PCIE_FUNDAMENTAL.exe

 TERASIC_PCIE_AVMM.DLL

 Demonstration Setup

1. Set MSEL[2:0] to 010.

2. Install the FPGA board on your PC as shown in Figure 5-10.

Figure 5-10 FPGA board connect to PC

3. Configure FPGA with PCIe_Fundamental.sof by executing the test.bat.

4. Install PCIe driver if necessary. The driver is located in the folder:

CDROM\Demonstration\PCIe_SW_KIT\Windows\PCIe_Driver.

5. Restart Windows

6. Make sure the Windows has detected the FPGA Board by checking the Windows Control panel

as shown in Figure 5-11.

HAN Pilot Platform

Demonstration Manual
 81 www.terasic.com

October 8, 2019

Figure 5-11 Screenshot for PCIe Driver

7. Goto windows_app folder, execute PCIE_FUNDAMENTAL.exe. A menu will appear as shown

in Figure 5-12.

Figure 5-12 Screenshot of Program Menu

8. Type 0 followed by a ENTER key to select Led Control item, then input 15 (hex 0x0f) will

make all led on as shown in Figure 5-13. If input 0 (hex 0x00), all led will be turn off.

HAN Pilot Platform

Demonstration Manual
 82 www.terasic.com

October 8, 2019

Figure 5-13 Screenshot of LED Control

9. Type 1 followed by an ENTER key to select Button Status Read item. The button status will be

report as shown in Figure 5-14.

Figure 5-14 Screenshot of Button Status Report

10. Type 2 followed by an ENTER key to select DMA Testing item. The DMA test result will be

report as shown in Figure 5-15.

HAN Pilot Platform

Demonstration Manual
 83 www.terasic.com

October 8, 2019

Figure 5-15 Screenshot of DMA Memory Test Result

11. Type 99 followed by an ENTER key to exit this test program

 Development Tools

 Quartus Prime 18.1 Standard Edition

 Visual C++ 2012

 Demonstration Source Code Location

 Quartus Project: Demonstrations\PCIe_Fundamental

 C++ Project: Demonstrations\PCIe_SW_KIT\Windows\PCIE_FUNDAMENTAL

 FPGA Application Design

Figure 5-16 shows the system block diagram in the FPGA system. In the Qsys, Altera PIO

controller is used to control the LED and monitor the Button Status, and the On-Chip memory is

used for performing DMA testing. The PIO controllers and the On-Chip memory are connected to

the PCI Express Hard IP controller through the Memory-Mapped Interface.

HAN Pilot Platform

Demonstration Manual
 84 www.terasic.com

October 8, 2019

Figure 5-16 Hardware block diagram of the PCIe reference design

 Windows Based Application Software Design

The application software project is built by Visual C++ 2012. The project includes the following

major files as listed in Table 5-1.

Table 5-1 Project major files

NAME Description

PCIE_FUNDAMENTAL.cpp Main program

PCIE.c Implement dynamically load for

TERAISC_PCIE_AVMM.DLL PCIE.h

TERASIC_PCIE_AVMM.h
SDK library file, defines constant and

data structure

The main program PCIE_FUNDAMENTAL.cpp includes the header file "PCIE.h" and defines the

controller address according to the FPGA design, as shown in Figure 5-17.

Figure 5-17 Header file "PCIE.h"

HAN Pilot Platform

Demonstration Manual
 85 www.terasic.com

October 8, 2019

The base address of BUTTON and LED controllers are 0x4000010 and 0x4000020 based on

PCIE_BAR4, in respectively. The on-chip memory base address is 0x00000000 relative to the

DMA controller.

Before accessing the FPGA through PCI Express, the application first calls PCIE_Load to

dynamically load the TERASIC_PCIE_AVMM.dll. Then, it calls PCIE_Open to open the PCI

Express driver. The constant DEFAULT_PCIE_VID and DEFAULT_PCIE_DID used in

PCIE_Open are defined in TERASIC_PCIE_AVMM.h. If developer change the Vendor ID and

Device ID and PCI Express IP, they also need to change the ID value define in

TERASIC_PCIE_AVMM.h. If the return value of PCIE_Open is zero, it means the driver cannot be

accessed successfully. In this case, please make sure:

 The FPGA is configured with the associated bit-stream file and the host is rebooted.

 The PCI express driver is loaded successfully.

The LED control is implemented by calling PCIE_Write32 API, as shown below:

The button status query is implemented by calling the PCIE_Read32 API, as shown below:

The memory-mapped memory read and write test is implemented by PCIE_DmaWrite and

PCIE_DmaRead API, as shown below:

55..66 PPCCIIee RReeffeerreennccee DDeessiiggnn -- DDDDRR44

The application reference design shows how to add DDR4 Memory Controllers for DDR4-A

SODIMM and on board DDR4-B into the PCIe Quartus project based on the PCIe_Fundamental

Quartus project and perform 4GB data DMA for both SODIMM. Also, this demo shows how to call

“PCIE_ConfigRead32” API to check PCIe link status.

 Demonstration Files Location

The demo file is located in the batch folder:

CDROM\ Demonstrations\PCIe_DDR4\demo_batch

The folder includes following files:

 FPGA Configuration File: PCIe_DDR4.sof

 Download Batch file: test.bat

 Windows Application Software folder: windows_app, includes

 PCIE_DDR4.exe

HAN Pilot Platform

Demonstration Manual
 86 www.terasic.com

October 8, 2019

 TERASIC_PCIE_AVMM.dll

 Demonstration Setup

1. Install DDR4 2400 4GB SODIMM on the FPGA board.

2. Set MSEL[2:0] to 010.

3. Install the FPGA board on your PC as shown in Figure 5-18.

Figure 5-18 FPGA board connect to PC

4. Configure FPGA with PCIe_DDR4.sof by executing the test.bat.

5. Install PCIe driver if necessary.

6. Restart Windows

7. Make sure the Windows has detected the FPGA Board by checking the Windows Control panel.

8. Goto windows_app folder, execute PCIE_DDR4.exe. A menu will appear as shown in Figure

5-19.

9. Type 2 followed by a ENTER key to select Link Info item. The PCIe link information will be

shown as in Figure 5-20. Gen3 link speed and x8 link width are expected.

10. Type 3 followed by an ENTER key to select DMA On-Chip Memory Test item. The DMA write

and read test result will be report as shown in Figure 5-21.

HAN Pilot Platform

Demonstration Manual
 87 www.terasic.com

October 8, 2019

Figure 5-19 Screenshot of Program Menu

Figure 5-20 Screenshot of Link Info

Figure 5-21 Screenshot of On-Chip Memory DMA Test Result

HAN Pilot Platform

Demonstration Manual
 88 www.terasic.com

October 8, 2019

11. Type 4 followed by an ENTER key to select DMA DDR4-A SODIMM Memory Test item. The

DMA write and read test result will be report as shown in Figure 5-22.

Figure 5-22 Screenshot of DDR4-A SOSIMM Memory DAM Test Result

12. Type 5 followed by an ENTER key to select DMA DDR4-B Memory Test item. The DMA write

and read test result will be report as shown in Figure 5-23.

Figure 5-23 Screenshot of DDR4-B SOSIMM Memory DAM Test Result

HAN Pilot Platform

Demonstration Manual
 89 www.terasic.com

October 8, 2019

13. Type 99 followed by an ENTER key to exit this test program.

 Development Tools

 Quartus Prime 18.1 Standard Edition

 Visual C++ 2012

 Demonstration Source Code Location

 Quartus Project: Demonstrations\PCIE_DDR4

 Visual C++ Project: Demonstrations\PCIe_SW_KIT\Windows\PCIe_DDR4

 FPGA Application Design

Figure 5-24 shows the system block diagram in the FPGA system. In the Qsys, Altera PIO

controller is used to control the LED and monitor the Button Status, and the On-Chip memory is

used for performing DMA testing. The PIO controllers and the On-Chip memory are connected to

the PCI Express Hard IP controller through the Memory-Mapped Interface.

Figure 5-24 Hardware block diagram of the PCIe_DDR4 reference design

 Windows Based Application Software Design

The application software project is built by Visual C++ 2012. The project includes the following

major files:

NAME Description

PCIE_FUNDAMENTAL.cpp Main program

PCIE.c Implement dynamically load for TERAISC_PCIE_AVMM.DLL

HAN Pilot Platform

Demonstration Manual
 90 www.terasic.com

October 8, 2019

PCIE.h

TERASIC_PCIE_AVMM.h SDK library file, defines constant and data structure

The main program PCIE_DDR4.cpp includes the header file "PCIE.h" and defines the controller

address according to the FPGA design.

The base address of BUTTON and LED controllers are 0x4000010 and 0x4000020 based on

PCIE_BAR4, in respectively. The on-chip memory base address is 0x00000000 relative to the

DMA controller. The above definition is the same as those in PCIe Fundamental demo.

Before accessing the FPGA through PCI Express, the application first calls PCIE_Load to

dynamically load the TERASIC_PCIE_AVMM.DLL. Then, it call PCIE_Open to open the PCI

Express driver. The constant DEFAULT_PCIE_VID and DEFAULT_PCIE_DID used in

PCIE_Open are defined in TERASIC_PCIE_AVMM.h. If developer change the Vendor ID and

Device ID and PCI Express IP, they also need to change the ID value define in

TERASIC_PCIE_AVMM.h. If the return value of PCIE_Open is zero, it means the driver cannot be

accessed successfully. In this case, please make sure:

 The FPGA is configured with the associated bit-stream file and the host is rebooted.

 The PCI express driver is loaded successfully.

The LED control is implemented by calling PCIE_Write32 API, as shown below:

The button status query is implemented by calling the PCIE_Read32 API, as shown below:

The memory-mapped memory read and write test is implemented by PCIE_DmaWrite and

PCIE_DmaRead API, as shown below:

The PCIe link information is implemented by PCIE_ConfigRead32 API, as shown below:

HAN Pilot Platform

Demonstration Manual
 91 www.terasic.com

October 8, 2019

HAN Pilot Platform

Demonstration Manual
 92 www.terasic.com

October 8, 2019

Chapter 6

PCI Express Design for

Linux

PCI Express is commonly used in consumer, server, and industrial applications, to link

motherboard-mounted peripherals. From this demonstration, it will show how the PC Linux and

FPGA communicate with each other through the PCI Express interface. Arria 10 Hard IP for PCI

Express with Avalon-MM DMA IP is used in this demonstration. For detail about this IP, please

refer to Altera document ug_a10_pcie_avmm_dma.pdf

66..11 PPCCII EExxpprreessss SSyysstteemm IInnffrraassttrruuccttuurree

Figure 6-1 shows the infrastructure of the PCI Express System in this demonstration. It consists of

two primary components: FPGA System and PC System. The FPGA System is developed based on

Arria 10 Hard IP for PCI Express with Avalon-MM DMA. The application software on the PC side

is developed by Terasic based on Intel’s PCIe kernel mode driver.

Figure 6-1 Infrastructure of PCI Express System

https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_a10_pcie_avmm_dma.pdf

HAN Pilot Platform

Demonstration Manual
 93 www.terasic.com

October 8, 2019

66..22 PPCCII EExxpprreessss SSooffttwwaarree SSDDKK

The FPGA System CD contains a PC Windows based SDK to allow users to develop their 64-bit

software application on 64-bits Linux. CentOS 7.2 is recommended. The SDK is located in the

“CDROM/Demonstrations/PCIe_SW_KIT/Linux” folder which includes:

 PCI Express Driver

 PCI Express Library

 PCI Express Examples

The kernel mode driver assumes the PCIe vendor ID (VID) is 0x1172 and the device ID (DID) is

0xE003. If different VID and DID are used in the design, users need to modify the PCIe vendor ID

(VID) and device ID (DID) in the driver project and rebuild the driver. The ID is defined in the file

PCIe_SW_KIT/Linux/PCIe_Driver/altera_pcie_cmd.h.

The PCI Express Library is implemented as a single .so file named terasic_pcie_qsys.so. This file is

a 64-bit library file. With the library exported software API, users can easily communicate with the

FPGA. The library provides the following functions:

 Basic data read and write

 Data read and write by DMA

For high performance data transmission, Altera AVMM DMA is required as the read and write

operations are specified under the hardware design on the FPGA.

66..33 PPCCII EExxpprreessss SSooffttwwaarree SSttaacckk

Figure 6-2 shows the software stack for the PCI Express application software on 64-bit Linux. The

PCIe library module terasic_pcie_qys.so provides DMA and direct I/O access for user application

program to communicate with FPGA. Users can develop their applications based on this .so library

file. The altera_pcie.ko kernel driver is provided by Altera.

Figure 6-2 PCI Express Software Stack

HAN Pilot Platform

Demonstration Manual
 94 www.terasic.com

October 8, 2019

 Install PCI Express Driver on Linux

To make sure the PCIe driver can meet your kernel of Linux distribution, the driver altera_pcie.ko

should be recompile before use it. The PCIe driver project is locate in the folder:

CDROM/Demonstrations/PCIe_SW_KIT/Linux/PCIe_Driver

The folder includes the following files:

 altera_pcie.c

 altera_pcie.h

 altera_pcie_cmd.h

 Makefile

 load_driver

 unload

 config_file

To compile and install the PCI Express driver, please execute the steps below:

1. Make sure the HAN Pilot Platform and the PC are both powered off.

2. Set MSEL[2:0] to 010.

3. Plug the PCIe adapter card into the PCIe slot on the PC motherboard. Use the PCIe cable to

connect to the HAN Pilot Platform PCIE connector and the PCIe adapter card (See Figure 6-3)

Figure 6-3 FPGA board connect to PC

4. Power on your HAN Pilot Platform and the host PC.

5. Open a terminal and use "cd" command to goto the folder "CDROM/ Demonstrations/

PCIe_Fundamental/demo_batch".

6. Set QUARTUS_ROOTDIR variable pointing to the Quartus installation path. Set

QUARTUS_ROOTDIR variable by tying the following commands in terminal. Replace

“/home/centos/intelFPGA/18.1/quartus” to your quartus installation path.

HAN Pilot Platform

Demonstration Manual
 95 www.terasic.com

October 8, 2019

export QUARTUS_ROOTDIR=/home/centos/intelFPGA/18.1/quartus

7. Execute "sudo -E sh test.sh" command to configure the FPGA

8. Restart Linux operation system. In Linux, open a terminal and use “cd” command to goto the

PCIe_Driver folder.

9. Type the following commands to compile and install the driver altera_pcie.ko, and make sure

driver is loaded successfully and FPGA is detected by the driver as shown in Figure 6-4.

make

sudo sh load_driver

dmesg | tail -n 15

Figure 6-4 Screenshot of install PCIe driver

 Create a Software Application

All the files needed to create a PCIe software application are located in the directory

CDROM/Demonstrations/PCIe_SW_KIT/Linux/PCIe_Library. It includes the following files:

 TERASIC_PCIE_AVMM.h

 terasic_pcie_qsys.so (64-bit library)

Below list the procedures to use the library in users’ C/C++ project:

1. Create a 64-bit C/C++ project.

2. Include TERASIC_PCIE_AVMM.h in the C/C++ project.

3. Copy terasic_pcie_qsys.so to the folder where project execution file is located.

4. Dynamically load terasic_pcie_qsys.so in C/C++ program. To load the terasic_pcie_qsys.so,

please refer to the PCIe fundamental example below.

5. Call the library API to implement the desired application.

Users can easily communicate with the FPGA through the PCIe bus through the

terasic_pcie_qsys.so API. The details of API are described below.

HAN Pilot Platform

Demonstration Manual
 96 www.terasic.com

October 8, 2019

66..44 PPCCII EExxpprreessss LLiibbrraarryy AAPPII

Below shows the exported API in the TERASIC_PCIE_AVMM.dll. The API prototype is defined in

the TERASIC_PCIE_AVMM.h.

Note: the Linux library terasic_pcie_qsys.so also use the same API and header file.

 PCIE_Open

Function:

Open a specified PCIe card with vendor ID, device ID, and matched card number.

Prototype:

PCIE_HANDLE PCIE_Open(

uint16_t wVendorID,

uint16_t wDeviceID,

uint16_t wCardNum);

Parameters:

wVendorID:

Specify the desired vendor ID. A zero value means to ignore the vendor ID.

wDeviceID:

Specify the desired device ID. A zero value means to ignore the device ID.

wCardNum:

Specify the matched card number, a zero based index, based on the matched vendor ID and device

ID.

Return Value:

Return a handle to presents specified PCIe card. A positive value is return if the PCIe card is opened

successfully. A value zero means failed to connect the target PCIe card.

This handle value is used as a parameter for other functions, e.g. PCIE_Read32.

Users need to call PCIE_Close to release handle once the handle is no longer used.

 PCIE_Close

Function:

Close a handle associated to the PCIe card.

Prototype:

void PCIE_Close(

PCIE_HANDLE hFPGA);

Parameters:

hFPGA:

A PCIe handle return by PCIE_Open function.

Return Value:

None.

 PCIE_Read32

Function:

HAN Pilot Platform

Demonstration Manual
 97 www.terasic.com

October 8, 2019

Read a 32-bit data from the FPGA board.

Prototype:

bool PCIE_Read32(

PCIE_HANDLE hFPGA,

PCIE_BAR PciBar,

PCIE_ADDRESS PciAddress,

uint32_t *pdwData);

Parameters:

hFPGA:

A PCIe handle return by PCIE_Open function.

PciBar:

Specify the target BAR.

PciAddress:

Specify the target address in FPGA.

pdwData:

A buffer to retrieve the 32-bit data.

Return Value:

Return true if read data is successful; otherwise false is returned.

 PCIE_Write32

Function:

Write a 32-bit data to the FPGA Board.

Prototype:

bool PCIE_Write32(

PCIE_HANDLE hFPGA,

PCIE_BAR PciBar,

PCIE_ADDRESS PciAddress,

uint32_t dwData);

Parameters:

hFPGA:

A PCIe handle return by PCIE_Open function.

PciBar:

Specify the target BAR.

PciAddress:

Specify the target address in FPGA.

dwData:

Specify a 32-bit data which will be written to FPGA board.

Return Value:

Return true if write data is successful; otherwise false is returned.

 PCIE_Read8

Function:

Read an 8-bit data from the FPGA board.

HAN Pilot Platform

Demonstration Manual
 98 www.terasic.com

October 8, 2019

Prototype:

bool PCIE_Read8(

PCIE_HANDLE hFPGA,

PCIE_BAR PciBar,

PCIE_ADDRESS PciAddress,

uint8_t *pByte);

Parameters:

hFPGA:

A PCIe handle return by PCIE_Open function.

PciBar:

Specify the target BAR.

PciAddress:

Specify the target address in FPGA.

pByte:

A buffer to retrieve the 8-bit data.

Return Value:

Return true if read data is successful; otherwise false is returned.

 PCIE_Write8

Function:

Write an 8-bit data to the FPGA Board.

Prototype:

bool PCIE_Write8(

PCIE_HANDLE hFPGA,

PCIE_BAR PciBar,

PCIE_ADDRESS PciAddress,

uint8_t Byte);

Parameters:

hFPGA:

A PCIe handle return by PCIE_Open function.

PciBar:

Specify the target BAR.

PciAddress:

Specify the target address in FPGA.

Byte:

Specify an 8-bit data which will be written to FPGA board.

Return Value:

Return true if write data is successful; otherwise false is returned.

 PCIE_DmaRead

Function:

Read data from the memory-mapped memory of FPGA board in DMA.

Maximal read size is (4GB-1) bytes.

HAN Pilot Platform

Demonstration Manual
 99 www.terasic.com

October 8, 2019

Prototype:

bool PCIE_DmaRead(

PCIE_HANDLE hFPGA,

PCIE_LOCAL_ADDRESS LocalAddress,

void *pBuffer,

uint32_t dwBufSize

);

Parameters:

hFPGA:

A PCIe handle return by PCIE_Open function.

LocalAddress:

Specify the target memory-mapped address in FPGA.

pBuffer:

A pointer to a memory buffer to retrieved the data from FPGA. The size of buffer should be equal or

larger the dwBufSize.

dwBufSize:

Specify the byte number of data retrieved from FPGA.

Return Value:

Return true if read data is successful; otherwise false is returned.

 PCIE_DmaWrite

Function:

Write data to the memory-mapped memory of FPGA board in DMA.

Prototype:

bool PCIE_DmaWrite(

PCIE_HANDLE hFPGA,

PCIE_LOCAL_ADDRESS LocalAddress,

void *pData,

uint32_t dwDataSize

);

Parameters:

hFPGA:

A PCIe handle return by PCIE_Open function.

LocalAddress:

Specify the target memory mapped address in FPGA.

pData:

A pointer to a memory buffer to store the data which will be written to FPGA.

dwDataSize:

Specify the byte number of data which will be written to FPGA.

Return Value:

Return true if write data is successful; otherwise false is returned.

 PCIE_ConfigRead32

HAN Pilot Platform

Demonstration Manual
 100 www.terasic.com

October 8, 2019

Function:

Read PCIe Configuration Table. Read a 32-bit data by given a byte offset.

Prototype:

bool PCIE_ConfigRead32 (

PCIE_HANDLE hFPGA,

uint32_t Offset,

uint32_t *pData32

);

Parameters:

hFPGA:

A PCIe handle return by PCIE_Open function.

Offset:

Specify the target byte of offset in PCIe configuration table.

pdwData:

A 4-bytes buffer to retrieve the 32-bit data.

Return Value:

Return true if read data is successful; otherwise false is returned.

66..55 PPCCIIee RReeffeerreennccee DDeessiiggnn –– FFuunnddaammeennttaall

The application reference design shows how to implement fundamental control and data transfer in

DMA. In the design, basic I/O is used to control the BUTTON and LED on the FPGA board.

High-speed data transfer is performed by DMA.

 Demonstration Files Location

The demo file is located in the batch folder:

CDROM\Demonstrations\ PCIe_Fundamental\demo_batch

The folder includes following files:

 FPGA Configuration File: PCIe_Fundamental.sof

 Download Batch file: test.sh

 Linux Application Software folder: linux_app, includes

 PCIE_FUNDAMENTAL

 terasic_pcie_qsys.so

 Demonstration Setup

1. Set MSEL[2:0] to 010.

2. Install the FPGA board on your PC as shown in Figure 6-5.

HAN Pilot Platform

Demonstration Manual
 101 www.terasic.com

October 8, 2019

Figure 6-5 FPGA board connect to PC

3. Open a terminal and use "cd" command to go to:

CDROM/ Demonstrations/ PCIe_Fundamental/demo_batch".

4. Set QUARTUS_ROOTDIR variable pointing to the Quartus installation path. Set

QUARTUS_ROOTDIR variable by tying the following commands in terminal. Replace

/home/centos/intelFPGA/18.1/quartus to your quartus installation path.

export QUARTUS_ROOTDIR=/home/centos/intelFPGA/18.1/quartus

5. Execute "sudo -E sh test.sh" command to configure the FPGA.

6. Restart Linux.

7. Install PCIe driver. The driver is located in the folder:

CDROM/Demonstration/PCIe_SW_KIT/Linux/PCIe_Driver.

8. Type “ls –l /dev/altera_pcie*” to make sure the Linux has detected the FPGA Board. If the

FPGA board is detected, developers can find the /dev/altera_pcieX(where X is 0~255) in Linux

file system as shown in Figure 6-6.

Figure 6-6 Linux has detected the FPGA Board

9. Go to linux_app folder, execute PCIE_FUNDAMENTAL. A menu will appear as shown in

Figure 6-7.

HAN Pilot Platform

Demonstration Manual
 102 www.terasic.com

October 8, 2019

Figure 6-7 Screenshot of Program Menu

10. Type 0 followed by a ENTER key to select Led Control item, then input 3 (hex 0x03) will make

all led on as shown in Figure 6-8. If input 0 (hex 0x00), all led will be turn off.

Figure 6-8 Screenshot of LED Control

11. Type 1 followed by an ENTER key to select Button Status Read item. The button status will be

report as shown in Figure 6-9.

Figure 6-9 Screenshot of Button Status Report

HAN Pilot Platform

Demonstration Manual
 103 www.terasic.com

October 8, 2019

12. Type 2 followed by an ENTER key to select DMA Testing item. The DMA test result will be

report as shown in Figure 6-10.

Figure 6-10 Screenshot of DMA Memory Test Result

13. Type 99 followed by an ENTER key to exit this test program

 Development Tools

 Quartus Prime 18.1 Standard Edition

 GNU Compiler Collection, Version 4.8 is recommended

 Demonstration Source Code Location

 Quartus Project: Demonstrations/PCIe_Fundamental

 C++ Project: Demonstrations/PCIe_SW_KIT/Linux/PCIE_FUNDAMENTAL

 FPGA Application Design

Figure 6-11 shows the system block diagram in the FPGA system. In the Qsys, Altera PIO

controller is used to control the LED and monitor the Button Status, and the On-Chip memory is

used for performing DMA testing. The PIO controllers and the On-Chip memory are connected to

the PCI Express Hard IP controller through the Memory-Mapped Interface.

HAN Pilot Platform

Demonstration Manual
 104 www.terasic.com

October 8, 2019

Figure 6-11 Hardware block diagram of the PCIe reference design

 Linux Based Application Software Design

The application software project is built by GNU Toolchain. The project includes the following

major files as shown in Table 6-1.

Table 6-1 Project major files

NAME Description

PCIE_FUNDAMENTAL.cpp Main program

PCIE.c Implement dynamically load for

TERAISC_PCIE_AVMM.DLL PCIE.h

TERASIC_PCIE_AVMM.h
SDK library file, defines constant and

data structure

The main program PCIE_FUNDAMENTAL.cpp includes the header file "PCIE.h" and defines the

controller address according to the FPGA design, as shown in Figure 6-12.

Figure 6-12 Header file "PCIE.h"

The base address of BUTTON and LED controllers are 0x4000010 and 0x4000020 based on

HAN Pilot Platform

Demonstration Manual
 105 www.terasic.com

October 8, 2019

PCIE_BAR4, in respectively. The on-chip memory base address is 0x00000000 relative to the

DMA controller.

Before accessing the FPGA through PCI Express, the application first calls PCIE_Load to

dynamically load the TERASIC_PCIE_AVMM.dll. Then, it calls PCIE_Open to open the PCI

Express driver. The constant DEFAULT_PCIE_VID and DEFAULT_PCIE_DID used in

PCIE_Open are defined in TERASIC_PCIE_AVMM.h. If developer change the Vendor ID and

Device ID and PCI Express IP, they also need to change the ID value define in

TERASIC_PCIE_AVMM.h. If the return value of PCIE_Open is zero, it means the driver cannot be

accessed successfully. In this case, please make sure:

 The FPGA is configured with the associated bit-stream file and the host is rebooted.

 The PCI express driver is loaded successfully.

The LED control is implemented by calling PCIE_Write32 API, as shown below:

The button status query is implemented by calling the PCIE_Read32 API, as shown below:

The memory-mapped memory read and write test is implemented by PCIE_DmaWrite and

PCIE_DmaRead API, as shown below:

66..66 PPCCIIee RReeffeerreennccee DDeessiiggnn -- DDDDRR44

The application reference design shows how to add DDR4 Memory Controllers for DDR4-A

SODIMM and on board DDR4-B into the PCIe Quartus project based on the PCIe_Fundamental

Quartus project and perform 4GB data DMA for both SODIMM. Also, this demo shows how to call

“PCIE_ConfigRead32” API to check PCIe link status.

 Demonstration Files Location

The demo file is located in the batch folder:

CDROM\ Demonstrations\PCIe_DDR4\demo_batch

The folder includes following files:

 FPGA Configuration File: PCIe_DDR4.sof

 Download Batch file: test.sh

 Linux Application Software folder: linux_app, includes

 PCIE_DDR4

HAN Pilot Platform

Demonstration Manual
 106 www.terasic.com

October 8, 2019

 terasic_pcie_qsys.so

 Demonstration Setup

1. Install DDR4 2400 4GB SODIMM on the FPGA board.

2. Set MSEL[2:0] to 010.

3. Install the FPGA board on your PC as shown in Figure 6-13.

Figure 6-13 FPGA board connect to PC

4. Open a terminal and use "cd" command to go to

"CDROM/Demonstrations/PCIe_Fundamental/demo_batch".

5. Set QUARTUS_ROOTDIR variable pointing to the Quartus installation path. Set

QUARTUS_ROOTDIR variable by tying the following commands in terminal. Replace

/home/centos/intelFPGA/18.1/quartus to your quartus installation path.

export QUARTUS_ROOTDIR=/home/centos/intelFPGA/18.1/quartus

6. Execute "sudo -E sh test.sh" command to configure the FPGA

7. Restart Linux.

8. Install PCIe driver.

9. Make sure the Linux has detected the FPGA Board.

10. Go to linux_app folder, execute PCIE_DDR4. A menu will appear as shown in Figure 6-14.

HAN Pilot Platform

Demonstration Manual
 107 www.terasic.com

October 8, 2019

Figure 6-14 Screenshot of Program Menu

11. Type 2 followed by an ENTER key to select Link Info item. The PCIe link information will be

shown as in Figure 6-15. Gen3 link speed and x8 link width are expected.

Figure 6-15 Screenshot of Link Info

12. Type 3 followed by an ENTER key to select DMA On-Chip Memory Test item. The DMA write

and read test result will be report as shown in Figure 6-16.

HAN Pilot Platform

Demonstration Manual
 108 www.terasic.com

October 8, 2019

Figure 6-16 Screenshot of On-Chip Memory DMA Test Result

13. Type 4 followed by an ENTER key to select DMA DDR4-A SODIMM Memory Test item. The

DMA write and read test result will be report as shown in Figure 6-17.

Figure 6-17 Screenshot of DDR4-A SOSIMM Memory DAM Test Result

HAN Pilot Platform

Demonstration Manual
 109 www.terasic.com

October 8, 2019

14. Type 5 followed by an ENTER key to select DMA DDR4-B Memory Test item. The DMA write

and read test result will be report as shown in Figure 6-18.

Figure 6-18 Screenshot of DDR4-B SODIMM Memory DAM Test Result

15. Type 99 followed by an ENTER key to exit this test program.

 Development Tools

 Quartus Prime 18.1 Standard Edition

 GNU Compiler Collection, Version 4.8 is recommended

 Demonstration Source Code Location

 Quartus Project: Demonstrations\PCIE_DDR4

 Visual C++ Project: Demonstrations\PCIe_SW_KIT\Windows\PCIe_DDR4

 FPGA Application Design

Figure 6-19 shows the system block diagram in the FPGA system. In the Qsys, Altera PIO

controller is used to control the LED and monitor the Button Status, and the On-Chip memory is

used for performing DMA testing. The PIO controllers and the On-Chip memory are connected to

the PCI Express Hard IP controller through the Memory-Mapped Interface.

HAN Pilot Platform

Demonstration Manual
 110 www.terasic.com

October 8, 2019

Figure 6-19 Hardware block diagram of the PCIe_DDR4 reference design

 Linux Based Application Software Design

The application software project is built by Visual C++ 2012. The project includes the following

major files:

NAME Description

PCIE_FUNDAMENTAL.cpp Main program

PCIE.c
Implement dynamically load for terasic_pcie_qsys.so library file

PCIE.h

TERASIC_PCIE_AVMM.h SDK library file, defines constant and data structure

The main program PCIE_DDR4.cpp includes the header file "PCIE.h" and defines the controller

address according to the FPGA design.

The base address of BUTTON and LED controllers are 0x4000010 and 0x4000020 based on

PCIE_BAR4, in respectively. The on-chip memory base address is 0x00000000 relative to the

DMA controller. The above definition is the same as those in PCIe Fundamental demo.

Before accessing the FPGA through PCI Express, the application first calls PCIE_Load to

dynamically load the TERASIC_PCIE_AVMM.DLL. Then, it call PCIE_Open to open the PCI

HAN Pilot Platform

Demonstration Manual
 111 www.terasic.com

October 8, 2019

Express driver. The constant DEFAULT_PCIE_VID and DEFAULT_PCIE_DID used in

PCIE_Open are defined in TERASIC_PCIE_AVMM.h. If developer change the Vendor ID and

Device ID and PCI Express IP, they also need to change the ID value define in

TERASIC_PCIE_AVMM.h. If the return value of PCIE_Open is zero, it means the driver cannot be

accessed successfully. In this case, please make sure:

 The FPGA is configured with the associated bit-stream file and the host is rebooted.

 The PCI express driver is loaded successfully.

The LED control is implemented by calling PCIE_Write32 API, as shown below:

The button status query is implemented by calling the PCIE_Read32 API, as shown below:

The memory-mapped memory read and write test is implemented by PCIE_DmaWrite and

PCIE_DmaRead API, as shown below:

The PCIe link information is implemented by PCIE_ConfigRead32 API, as shown below:

HAN Pilot Platform

Demonstration Manual
 112 www.terasic.com

October 8, 2019

Chapter 7

Linux BSP

77..11 IInnttrroodduuccttiioonn

The HAN Pilot Platform Kit includes Linux BSP (Board Support Package) with which users can

develop their software application on the Linux. The Kit contains the three Linux BSP listed below.

Users can select the proper BSP for their applications.

 Linux LXDE VNC Desktop BSP

 Linux LXDE HDMI Desktop BSP

 VNC Desktop OpenCL BSP

Please be aware that not all WiFi/Camera/Audio USB dongles are compatible with this BSP. Here

are some compatible USB dongles that have been tested, by us, and proven to work. The following

suggested WiFi USB dongles can be purchased from the Terasic Website.

 WiFi USB Dongle

 Mi WiFi (Terasic PN: FXX-3061-MIX)

 Camera USB Dongle

 Logitech C310

 ET USB 2760 Camera

 Genius WideCam F100

 Audio USB Dongle

 Ugreen US205

These Linux BSP can be downloaded for free from the Terasic Website:

http:// HAN Pilot Platform.terasic.com/cd

77..22 UUssee LLiinnuuxx BBSSPP

This section describes the procedure to boot Linux on HAN Pilot Platform. For more details, refer

to chapter 5 of HAN Pilot Platform_Getting_Started_Guide.pdf in the System CD.

 Download the BSP image file from http:// HAN Pilot Platform.terasic.com/cd

 Create a Linux booting microSD card by using Win32 Disk Imager utility to write the image

file into a microSD card

 Insert the microSD to microSD socket on the HAN Pilot Platform

 Make sure MSEL[2:0] switch on HAN Pilot Platform is set to proper position

 For VNC mode:

 Connect your host PC to USB-to-Serial port(J27) on HAN Pilot Platform via a USB cable

 Launch the Putty software in your PC

 The booting message will appear on the Putty terminal

 In host PC, use vnc client to connect to HAN Pilot Platform

http://de10-advanced.terasic.com/cd
http://de10-advanced.terasic.com/cd

HAN Pilot Platform

Demonstration Manual
 113 www.terasic.com

October 8, 2019

 For HDMI mode:

 Connect a HDMI monitor, an USB keyboard, and a USB mouse to the HAN Pilot Platform

with USB Hub

 Power on HAN Pilot Platform

 The LXDE Desktop will appear on the HDMI monitor

77..33 LLiinnuuxx LLXXDDEE VVNNCC DDeesskkttoopp BBSSPP

This is a VNC mode Linux BSP. The console content is displayed on the UART Terminal in your

Host PC and the Desktop is displayed on VNC Client. Refer to Table 7-1 for Linux LXDE VNC

Desktop BSP information.

Table 7-1 Linux LXDE VNC Desktop BSP Information

Item Description

BSP Location
HAN Pilot Platform_VNC_Desktop.zip

Download link: http:// HAN Pilot Platform.terasic.com/cd

MicroSD Card 4GB at minimal

MSEL[2:0] 000

Account User name: root, password is not required (press Enter)

UART

Terminal

Baud rate: 115200

Data bits: 8

Parity: None

Stop Bits: 1

Flow Control: no

Quartus Project a10s_ghrd

BSP Feature

USB Audio Dongle driver

USB WiFi Dongle driver

Example Codes

Linux Kernel

Source

Source: https://github.com/terasic/linux-socfpga

Branch: socfpga-4.5

Under above location:

Configure File: HAN Pilot Platform_vnc.config

DTS File: arch/arm/boot/dts/ HAN Pilot Platform_vnc.dts

77..44 LLiinnuuxx LLXXDDEE HHDDMMII DDeesskkttoopp BBSSPP

This is a Linux BSP with HDMI LXDE Desktop. The LXDE Desktop is displayed on the HDMI

monitor attached to HAN Pilot Platform. Table 7-2 describes the LXDE Desktop BSP items and

lists the corresponding information. The BSP provides frame buffer for desktop display. The frame

buffer function is implemented in FPGA site. The HPS ddr4 is used as video buffer in the frame

buffer function.

Table 7-2 Linux LXDE HDMI Desktop BSP Information

Item Description

BSP Location HAN Pilot Platform_HDMI_Desktop.zip

http://de10-advanced.terasic.com/cd
https://github.com/terasic/linux-socfpga

HAN Pilot Platform

Demonstration Manual
 114 www.terasic.com

October 8, 2019

Download link: http:// HAN Pilot Platform.terasic.com/cd

MicroSD Card 4GB at minimal

MSEL[2:0] 000

Account User name: root, password is not required (press Enter)

UART Terminal

Baud rate: 115200

Data bits: 8

Parity: None

Stop Bits: 1

Flow Control: no

Quartus Project Reserved

BSP Feature

LXDE Desktop

Frame Buffer

ALSA (Advanced Linux Sound Architecture)

OpenCV Library

GNU Toolchain

USB WiFi Dongle driver and application example code

USB Camera Dongle driver and OpenCV example code

Example codes for accessing peripherals connected to FPGA and HPS.

Linux Kernel Source

Source: https://github.com/terasic/linux-socfpga

Branch: socfpga-4.5

Configure File: Reserved

DTS File: Reserved

77..55 VVNNCC DDeesskkttoopp OOppeennCCLL BBSSPP

This is a Linux BSP with VNC mode which supports Intel SDK OpenCL. The Intel® FPGA SDK

for Open Computing Language (OpenCL™) allows a user to abstract away the traditional hardware

FPGA development flow for a much faster and higher level software development flow. For more

details, please refer to HAN Pilot Platform_OpenCL.pdf in the HAN Pilot Platform System CD.

Table 7-3 lists the OpenCL BSP component reference and the related information.

Table 7-3 OpenCL BSP Information

Item Description

BSP Location
HAN Pilot Platform_OpenCL_BSP.zip

Download link: http:// HAN Pilot Platform.terasic.com/cd

MicroSD Card 4GB at minimal

MSEL[2:0] 000

Account User name: root, password is not required (press Enter)

UART Terminal

Baud rate: 115200

Data bits: 8

Parity: None

Stop Bits: 1

Flow Control: no

Quartus Project Reserved

BSP Feature Frame Buffer

http://de10-advanced.terasic.com/cd
https://github.com/terasic/linux-socfpga
http://de10-advanced.terasic.com/cd

HAN Pilot Platform

Demonstration Manual
 115 www.terasic.com

October 8, 2019

OpenCL

Example Codes

Linux Kernel Source

Source: https://github.com/terasic/linux-socfpga/tree/socfpga-3.10

Branch: socfpga-3.10

Under above location:

Configure File: Reserved

https://github.com/terasic/linux-socfpga/tree/socfpga-3.10

HAN Pilot Platform

Demonstration Manual
 116 www.terasic.com

October 8, 2019

Additional Information

GGeettttiinngg HHeellpp

Contact us via the following methods for further technical assistance:

Terasic Inc.

9F, No.176, Sec.2, Gongdao 5th Rd, East Dist, Hsinchu City, Taiwan 300-70

Email : support@terasic.com

Web : www.terasic.com

RReevviissiioonn HHiissttoorryy

Date Version Changes

2018.14.16 First publication

2019.09.06 V1.0.1 Modify Default code section

2019.09.12 V1.0.2 Modify section 5.4&6.4

2019.10.07 V1.0.3 Modify section 2.7 for add

4k@60RGB mode

mailto:support@terasic.com
http://www.terasic.com/

	Chapter 1 Introduction
	Chapter 2 Examples for FPGA
	2.1 Factory Default Code
	2.2 Nios II Control for Programmable PLL/ Temperature/ Power/ 9-axis
	2.3 Nios DDR4 SDRAM Test
	2.4 RTL DDR4 SDRAM Test
	2.5 USB Type-C DisplayPort Alternate Mode
	2.6 USB Type-C FX3 Loopback
	2.7 HDMI TX and RX in 4K Resolution
	2.8 HDMI TX in 4K Resolution
	2.9 Low Latency Ethernet 10G MAC Demo
	2.10 Socket Server
	2.11 Auto Fan Speed Control

	Chapter 3 Examples for HPS SoC
	3.1 User LED and KEY
	3.2 Setup USB Wi-Fi Dongle
	3.3 HPS GPIO Header
	3.4 Network Socket

	Chapter 4 Examples for Using both HPS SoC and FPGA
	4.1 Required Background
	4.2 System Requirements
	4.3 AXI bridges in Intel SoC FPGA
	4.4 GHRD Project
	4.5 Compile and Programming
	4.6 Develop the C Code

	Chapter 5 PCI Express Design for Windows
	5.1 PCI Express System Infrastructure
	5.2 PCI Express Software SDK
	5.3 PCI Express Software Stack
	5.4 PCI Express Library API
	5.5 PCIe Reference Design – Fundamental
	5.6 PCIe Reference Design - DDR4

	Chapter 6 PCI Express Design for Linux
	6.1 PCI Express System Infrastructure
	6.2 PCI Express Software SDK
	6.3 PCI Express Software Stack
	6.4 PCI Express Library API
	6.5 PCIe Reference Design – Fundamental
	6.6 PCIe Reference Design - DDR4

	Chapter 7 Linux BSP
	7.1 Introduction
	7.2 Use Linux BSP
	7.3 Linux LXDE VNC Desktop BSP
	7.4 Linux LXDE HDMI Desktop BSP
	7.5 VNC Desktop OpenCL BSP

