

Adafruit Radio Bonnets with OLED

Display - RFM69 or RFM9X

Created by Kattni Rembor

https://learn.adafruit.com/adafruit-radio-bonnets

Last updated on 2021-11-15 07:30:53 PM EST

©Adafruit Industries Page 1 of 27

3

5

6

6

7

7

8

9

9

9

10

11

13

13

16

16

16

19

19

22

23

23

25

25

26

26

26

27

Table of Contents

Overview

• Radio Modules & Frequency Variants

• RFM69 Specs

• RFM9x Specs

Pinouts

• Radio Module Pins

• 128x32 OLED

• Buttons

Antenna Options

• Wire Antenna

• uFL Antenna

• SMA Edge-Mount Antenna

RFM69 Raspberry Pi Setup

• Installing CircuitPython Libraries

Sending Data with the RFM69

• RFM69 and CircuitPython

• CircuitPython Transmitter/Receiver Example

LoRa Raspberry Pi Setup

• Installing CircuitPython Libraries

Sending Data with LoRa

• RFM9x and CircuitPython

• CircuitPython Transmitter/Receiver Example

LoRaWAN Node Guide

LoRaWAN Pi Gateway Guide

Downloads

• Files

• Fab Print

• Schematic

©Adafruit Industries Page 2 of 27

Overview

The latest Raspberry Pi computers come with WiFi and Bluetooth, and now you can

add even more radio options with the Adafruit Radio Bonnets! Upgrade your

Raspberry Pi with a radio so it can communicate over very long distances. These

bonnets plug right into your Pi and give you long range wireless capabilities to

remote nodes that may be battery powered. Or, you can create Internet gateways

with ease.

You not only get a radio module, but also a 128x32 OLED display for status messages

and three buttons you can use for creating a custom user interface or sending test

messages. All of the above is supported with our Python libraries so you can send or

receive radio data with other matching modules. With the LoRa Radio Bonnet, you

send data to a LoRaWAN gateway, or even set up your own single channel LoRaWAN-

to-Internet gateways.

©Adafruit Industries Page 3 of 27

Compared to the 2.4 GHz WiFi/Bluetooth radios on the Pi already, these modules run

at 433 or 900 MHz (sub-GHz). You can't send data as fast but you can send data a lot

farther. These packet radios are simpler than WiFi or BLE, you don't have to associate,

pair, scan, or worry about connections. All you do is send data whenever you like, and

any other modules tuned to that same frequency (and, with the same encryption key)

will receive. The receiver can then send a reply back. The modules do packetization,

error correction and can also auto-retransmit so its not like you have worry about

everything but less power is wasted on maintaining a link or pairing.

These modules are great for use with other microcontrollers with matching radios (like

say our RadioFruit Feathers (https://adafru.it/DFj)), say if you want a sensor node

network or transmit data over a campus or town. The trade off is you need two or

more radios, with matching frequencies.

©Adafruit Industries Page 4 of 27

https://www.adafruit.com/?q=radiofruit%20feather

Radio Modules & Frequency Variants

These radio modules come in four variants (two modulation types and two

frequencies):

The first variant is the RFM69 Radio Bonnet. RFM69's are easiest to work with,

and are well known and understood. It is available in 433MHz or 900MHz

frequency ranges

The second variant is the LoRa Radio Bonnet - an exciting and more powerful

radio module, but also more expensive. It is available in 433MHz or 900MHz

frequency ranges

Here are the four bonnets you can choose from. All radios are sold individually and

can only talk to radios of the same part number. E.g. RFM69 900 MHz can only talk to

RFM69 900 MHz, LoRa 433 MHz can only talk to LoRa 433, etc.

RFM69 @ 433 MHz - basic packetized FSK/GFSK/MSK/GMSK/OOK radio at 433

MHz for use in Europe ITU 1 license-free ISM, or for amateur use with restrictions

(check your local amateur regulations!)

RFM69 @ 900 MHz - basic packetized FSK/GFSK/MSK/GMSK/OOK radio at 868

or 915 MHz for use in Americas ITU 2 license-free ISM, or for amateur use with

restrictions (check your amateur regulations!)

RFM9x @ 433 MHz - LoRa capable radio at 433 MHz for use in Europe ITU 1

license-free ISM, or for amateur use with restrictions (check your local amateur

regulations!)

•

•

1.

2.

3.

©Adafruit Industries Page 5 of 27

RFM9x @ 900 MHz - LoRa capable radio at 868 or 915 MHz for use in Americas

ITU 2 license-free ISM, or for amateur use with restrictions (check your local

amateur regulations!)

Please note! The 900 MHz radio version, can be used for either 868MHz or 915MHz

transmission/reception. The exact radio frequency is determined when you load the

software since it can be tuned around dynamically.

The radio modules themselves have the same pinout so the PCB is the same, but the

library usage and wiring may vary. All use SPI for interfacing, and there are

CircuitPython libraries available for both.

RFM69 Specs

SX1231 based module with SPI interface

Packet radio with ready-to-go Arduino libraries

Uses the license-free ISM bands

+13 to +20 dBm up to 100 mW Power Output Capability (power output selectable

in software)

50mA (+13 dBm) to 150mA (+20dBm) current draw for transmissions

Range of approx. 350 meters, depending on obstructions, frequency, antenna

and power output

Create multipoint networks with individual node addresses

Encrypted packet engine with AES-128

RFM9x Specs

SX127x LoRa® based module with SPI interface

Packet radio with ready-to-go Arduino libraries

Uses the license-free ISM bands

+5 to +20 dBm up to 100 mW Power Output Capability (power output selectable

in software)

~300uA during full sleep, ~120mA peak during +20dBm transmit, ~40mA during

active radio listening.

Our initial tests with default library settings: over 1.2mi/2Km line-of-sight with

wire quarter-wave antennas. (With setting tweaking and directional antennas,

20Km is possible (https://adafru.it/mGa)).

Each bonnet comes fully assembled and ready to go. You can attach an antenna via

the uFL connector, or cut and solder on a small piece of wire (any solid or stranded

core is fine) in order to create your antenna.

4.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 6 of 27

http://forum.anarduino.com/posts/list/46.page#2854
http://forum.anarduino.com/posts/list/46.page#2854

Pinouts

Radio Module Pins

There's a radio module on each bonnet, which we connect to the Raspberry Pi SPI

port plus some extra pins for controlling.

We connect the radio module to a set of default pins that match our code and

examples, you can cut the solder traces on the bottom and re-wire them but the code

/examples will need to be updated as well.

Each radio has the same pin names and connections. Its easiest to see the pin

numbering on the bottom.

The two sets of pins here are broken out from the radio module. The defaults are:

RST - Radio reset pin, connected to GPIO25 on the Pi

CS - Radio SPI Chip Select pin, connected to SPI CE1 on the Pi

CLK - Radio SPI Clock pin, connected to SPI SCLK on the Pi

DI - Radio SPI data in pin, connected to SPI MOSI on the Pi

DO - Radio SPI data out pin, connected to SPI MISO on the Pi

DIO0 - Radio digital IO #0 pin, we use this for status or IRQs. It's required for all

our examples. Connected to GPIO 22 on the Pi

There are 4 different Radio Bonnets, with RFM69 or RFM9X and with 900MHz or

433MHz - however the overall pinouts are identical for all four!

•

•

•

•

•

•

©Adafruit Industries Page 7 of 27

DIO1 - Radio digital IO #1 pin, we use this for status. This is not used for our

basic CircuitPython code, but is used by some more advanced libraries. You can

cut this trace if you want to use the Pi pin for other devices. Connected to GPIO

23 on the Pi

DIO2 - Radio digital IO #2 pin, we use this for status. This is not used for our

basic CircuitPython code, but is used by some more advanced libraries. You can

cut this trace if you want to use the Pi pin for other devices. Connected to GPIO

24 on the Pi

DIO3 - Radio digital IO #3, not connected or used at this time.

DIO4 - Radio digital IO #3, not connected or used at this time.

128x32 OLED

This bonnet comes with a 128x32 pixel OLED! The OLED is connected via I2C.

SCL is connected to SCL on the Pi.

SDA is connected to SDA on the Pi.

•

•

•

•

•

•

©Adafruit Industries Page 8 of 27

Buttons

This bonnet comes with 3 buttons below the OLED. In order from left to right:

Button 1: Connected to GPIO 5 on the Pi

Button 2: Connected to GPIO 6 on the Pi

Button 3: Connected to GPIO 12 on the PI

Antenna Options

The Radio Bonnets do not have a built-in antenna. Instead, they have three options

for attaching an antenna - for most low cost radio nodes, a wire works great. If you

need to put the radio into an enclosure. We also include a uFL connector, pre-

soldered, so you can use a uFL to SMA adapter to let you attach an external antenna.

You can also solder an SMA edge-mount connector directly

Wire Antenna

A wire antenna, aka "quarter wave whip antenna" is low cost and works very well! You

just have to cut the wire down to the right length.

•

•

•

©Adafruit Industries Page 9 of 27

Cut a stranded or solid core wire the the proper length for the module/frequency

433 MHz - 6.5 inches, or 16.5 cm

868 MHz - 3.25 inches or 8.2 cm

915 MHz - 3 inches or 7.8 cm

Strip a mm or two off the end of the wire, tin and solder into the ANT pad.

uFL Antenna

If you want an external antenna that is a few inches away from the radio, you'll want a

uFL antenna. The radio bonnets have a uFL connector soldered on already - you'll

also need a uFL to SMA adapter (http://adafru.it/851) (or whatever adapter you need

for the antenna you'll be using, SMA is the most common

Of course, you will also need an antenna of some sort, that matches your radio

frequency. We have an antenna kit available which works well with the Radio Bonnet:

•

•

•

©Adafruit Industries Page 10 of 27

https://www.adafruit.com/products/851
https://www.adafruit.com/products/851

900Mhz Antenna Kit - For LoPy, LoRa, etc

This LoRa Antenna Kit is meant for use

with the LoPy LoRa, WiFi and BLE board

or the SiPy Sigfox,...

https://www.adafruit.com/product/3340

SMA Edge-Mount Antenna

These strong edge connectors are used for many 'duck' antennas, and can also be

panel mounted

You'll need an SMA (or, if you need RP-

SMA for some reason) Edge-Mount

connector with 1.6mm spacing

The SMA connector 'slides on' the top of

the PCB

uFL connectors are rated for 30 connection cycles, but be careful when

connecting/disconnecting to not rip the pads off the PCB. Once a uFL/SMA

adapter is connected, use strain relief!

©Adafruit Industries Page 11 of 27

https://www.adafruit.com/product/3340
https://www.adafruit.com/product/3340
https://learn.adafruit.com//assets/69798
https://learn.adafruit.com//assets/69798

You'll need an SMA (or, if you need RP-

SMA for some reason) Edge-Mount

connector with 1.6mm spacing

The SMA connector 'slides on' the top of

the PCB

Use plenty of solder to make sure you

have a good strong mechanical

connection. The duck antennas are long

and make great levers, so they could pry

apart the solder joints if not soldered well

©Adafruit Industries Page 12 of 27

https://learn.adafruit.com//assets/69799
https://learn.adafruit.com//assets/69799
https://learn.adafruit.com//assets/69801
https://learn.adafruit.com//assets/69801
https://learn.adafruit.com//assets/69802
https://learn.adafruit.com//assets/69802
https://learn.adafruit.com//assets/69803
https://learn.adafruit.com//assets/69803

RFM69 Raspberry Pi Setup

This guide assumes that you've gotten your Raspberry Pi up and running, and have

CircuitPython installed.

If you have not done this yet, visit the installation guide here and come back

when you're set up. (https://adafru.it/Deo)

Installing CircuitPython Libraries

We're running CircuitPython on the Raspberry Pi, installing the libraries for radio

communication is simple.

To install the library for the display, enter the following into the terminal:

pip3 install adafruit-circuitpython-ssd1306

You'll also need to install the framebuf module in order to write to the display.

sudo pip3 install adafruit-circuitpython-framebuf

To install the library for the RFM69HCW Module, enter the following into the terminal:

sudo pip3 install adafruit-circuitpython-rfm69

RFM69 Connection Test!

The following code is for checking if the RFM69 radio is set up for transmitting and

receiving. Save the code on your Pi as rfm69_check.py .

SPDX-FileCopyrightText: 2018 Brent Rubell for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""

Wiring Check, Pi Radio w/RFM69

Learn Guide: https://learn.adafruit.com/lora-and-lorawan-for-raspberry-pi

Author: Brent Rubell for Adafruit Industries

"""

import time

•

Do not use this if you have a RFM9x Radio

©Adafruit Industries Page 13 of 27

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/installing-circuitpython-on-raspberry-pi
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/installing-circuitpython-on-raspberry-pi
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/installing-circuitpython-on-raspberry-pi

import busio
from digitalio import DigitalInOut, Direction, Pull
import board
Import the SSD1306 module.

import adafruit_ssd1306
Import the RFM69 radio module.

import adafruit_rfm69

Button A

btnA = DigitalInOut(board.D5)
btnA.direction = Direction.INPUT
btnA.pull = Pull.UP

Button B

btnB = DigitalInOut(board.D6)
btnB.direction = Direction.INPUT
btnB.pull = Pull.UP

Button C

btnC = DigitalInOut(board.D12)
btnC.direction = Direction.INPUT
btnC.pull = Pull.UP

Create the I2C interface.

i2c = busio.I2C(board.SCL, board.SDA)

128x32 OLED Display

reset_pin = DigitalInOut(board.D4)
display = adafruit_ssd1306.SSD1306_I2C(128, 32, i2c, reset=reset_pin)
Clear the display.

display.fill(0)

display.show()

width = display.width
height = display.height

RFM69 Configuration

CS = DigitalInOut(board.CE1)
RESET = DigitalInOut(board.D25)
spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)

while True:
 # Draw a black filled box to clear the image.

 display.fill(0)

 # Attempt to set up the RFM69 Module

 try:
 rfm69 = adafruit_rfm69.RFM69(spi, CS, RESET, 915.0)
 display.text('RFM69: Detected', 0, 0, 1)

 except RuntimeError as error:
 # Thrown on version mismatch

 display.text('RFM69: ERROR', 0, 0, 1)

 print('RFM69 Error: ', error)

 # Check buttons

 if not btnA.value:
 # Button A Pressed

 display.text('Ada', width-85, height-7, 1)
 display.show()

 time.sleep(0.1)

 if not btnB.value:
 # Button B Pressed

 display.text('Fruit', width-75, height-7, 1)
 display.show()

 time.sleep(0.1)

 if not btnC.value:
 # Button C Pressed

 display.text('Radio', width-65, height-7, 1)
 display.show()

©Adafruit Industries Page 14 of 27

 time.sleep(0.1)

 display.show()

 time.sleep(0.1)

To use the code, enter the following in your terminal:

python3 rfm69_check.py

You'll also want to download the font file, font5x8.bin , and copy it into the same

directory as the script:

font5x8.bin

https://adafru.it/DvA

If you want to download this file to your Raspberry Pi via the command line, enter the

following wget command into your terminal:

wget -O font5x8.bin https://github.com/adafruit/Adafruit_CircuitPython_framebuf/

blob/master/examples/font5x8.bin?raw=true

Now to check the setup:

The radio should display that a RFM69 module is detected. Pressing each of the

buttons should display different text on the screen.

If it can't detect a RFM69 module, the screen will display RFM69: ERROR

With everything working, let's move on to using the radio.

©Adafruit Industries Page 15 of 27

https://github.com/adafruit/Adafruit_CircuitPython_framebuf/blob/master/examples/font5x8.bin

Sending Data with the RFM69

To demonstrate how the RFM69 module sends packets, we'll build an example where

one radio transmits (the Pi) and the other radio connected to a Feather receives the

incoming transmission.

RFM69 and CircuitPython

It's easy to use the RFM69HCW radio with CircuitPython and the Adafruit

CircuitPython RFM69 (https://adafru.it/BjE) library. This library allows you to easily

write Python code that sends and receives packets of data with the radio.

Be careful to note this code is for the RFM69 radio only and will not work with the

RFM9X LoRa radios!

You'll also need another radio with a RFM69HCW Module to run the example below.

Make sure you have two of the same type of radio (i.e: RFM69HCW) and the same

frequency (i.e: 915MHz).

CircuitPython Transmitter/Receiver Example

Below is an example of using the RFM69HCW to transmit, or receive from, another

RFM69HCW radio. Save this as radio_rfm69.py on your Raspberry Pi.

SPDX-FileCopyrightText: 2018 Brent Rubell for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""

Example for using the RFM69HCW Radio with Raspberry Pi.

Learn Guide: https://learn.adafruit.com/lora-and-lorawan-for-raspberry-pi

Author: Brent Rubell for Adafruit Industries

"""

Import Python System Libraries

import time
Import Blinka Libraries

import busio
from digitalio import DigitalInOut, Direction, Pull
import board
Import the SSD1306 module.

import adafruit_ssd1306
Import the RFM69 radio module.

import adafruit_rfm69

Do not use this if you have a RFM9x LoRa Radio.

©Adafruit Industries Page 16 of 27

https://github.com/adafruit/Adafruit_CircuitPython_RFM69
https://github.com/adafruit/Adafruit_CircuitPython_RFM69

Button A

btnA = DigitalInOut(board.D5)
btnA.direction = Direction.INPUT
btnA.pull = Pull.UP

Button B

btnB = DigitalInOut(board.D6)
btnB.direction = Direction.INPUT
btnB.pull = Pull.UP

Button C

btnC = DigitalInOut(board.D12)
btnC.direction = Direction.INPUT
btnC.pull = Pull.UP

Create the I2C interface.

i2c = busio.I2C(board.SCL, board.SDA)

128x32 OLED Display

reset_pin = DigitalInOut(board.D4)
display = adafruit_ssd1306.SSD1306_I2C(128, 32, i2c, reset=reset_pin)
Clear the display.

display.fill(0)

display.show()

width = display.width
height = display.height

Configure Packet Radio

CS = DigitalInOut(board.CE1)
RESET = DigitalInOut(board.D25)
spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
rfm69 = adafruit_rfm69.RFM69(spi, CS, RESET, 915.0)
prev_packet = None
Optionally set an encryption key (16 byte AES key). MUST match both

on the transmitter and receiver (or be set to None to disable/the default).

rfm69.encryption_key =
b'\x01\x02\x03\x04\x05\x06\x07\x08\x01\x02\x03\x04\x05\x06\x07\x08'

while True:
 packet = None
 # draw a box to clear the image

 display.fill(0)

 display.text('RasPi Radio', 35, 0, 1)

 # check for packet rx

 packet = rfm69.receive()
 if packet is None:
 display.show()

 display.text('- Waiting for PKT -', 15, 20, 1)

 else:
 # Display the packet text and rssi

 display.fill(0)

 prev_packet = packet
 packet_text = str(prev_packet, "utf-8")
 display.text('RX: ', 0, 0, 1)

 display.text(packet_text, 25, 0, 1)

 time.sleep(1)

 if not btnA.value:
 # Send Button A

 display.fill(0)

 button_a_data = bytes("Button A!\r\n","utf-8")
 rfm69.send(button_a_data)

 display.text('Sent Button A!', 25, 15, 1)

 elif not btnB.value:
 # Send Button B

 display.fill(0)

 button_b_data = bytes("Button B!\r\n","utf-8")
 rfm69.send(button_b_data)

©Adafruit Industries Page 17 of 27

 display.text('Sent Button B!', 25, 15, 1)

 elif not btnC.value:
 # Send Button C

 display.fill(0)

 button_c_data = bytes("Button C!\r\n","utf-8")
 rfm69.send(button_c_data)

 display.text('Sent Button C!', 25, 15, 1)

 display.show()

 time.sleep(0.1)

To run the example, enter the following into the terminal:

python3 radio_rfm69.py

You'll also want to download the font file, font5x8.bin , and copy it into the same

directory as the script:

font5x8.bin

https://adafru.it/DvA

Both of the radios will listen for a new incoming packet. When they receive a new

packet, they'll print the text from the packet to the display and to the terminal.

Press any of the three buttons to send data between radios. Pressing button a will

send a packet with data 'Button A!' to the other radio, and so on!

To send a packet using the Pi, press Button A. You should see the text change to Sent

Packet!

©Adafruit Industries Page 18 of 27

https://github.com/adafruit/Adafruit_CircuitPython_framebuf/blob/master/examples/font5x8.bin

LoRa Raspberry Pi Setup

This guide assumes that you've gotten your Raspberry Pi up and running, and have

CircuitPython installed.

If you have not done this yet, visit the installation guide here and come back

when you're set up. (https://adafru.it/Deo)

Installing CircuitPython Libraries

We're running CircuitPython on the Raspberry Pi, installing the libraries for radio

communication is simple.

To install the library for the display, enter the following into the terminal:

sudo pip3 install adafruit-circuitpython-ssd1306

You'll also need to install the framebuf module in order to write to the display.

sudo pip3 install adafruit-circuitpython-framebuf

To install the library for the RFM9x Module, enter the following into the terminal:

sudo pip3 install adafruit-circuitpython-rfm9x

You'll also want to download the font file, font5x8.bin , and copy it into the same

directory as the script

wget https://github.com/adafruit/Adafruit_CircuitPython_framebuf/raw

/main/examples/font5x8.bin

Click to download font5x8.bin

https://adafru.it/DvA

Make sure the font file is 1282 bytes long, if not something went wrong with the

download

•

©Adafruit Industries Page 19 of 27

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/installing-circuitpython-on-raspberry-pi
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/installing-circuitpython-on-raspberry-pi
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/installing-circuitpython-on-raspberry-pi
https://github.com/adafruit/Adafruit_CircuitPython_framebuf/blob/master/examples/font5x8.bin

RFM9x Connection Test!

The following code is for checking if the RFM9x radio is set up for transmitting and

receiving. Save the code on your Pi as rfm9x_check.py .

SPDX-FileCopyrightText: 2018 Brent Rubell for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""

Wiring Check, Pi Radio w/RFM9x

Learn Guide: https://learn.adafruit.com/lora-and-lorawan-for-raspberry-pi

Author: Brent Rubell for Adafruit Industries

"""

import time
import busio
from digitalio import DigitalInOut, Direction, Pull
import board
Import the SSD1306 module.

import adafruit_ssd1306
Import the RFM9x radio module.

import adafruit_rfm9x

Button A

btnA = DigitalInOut(board.D5)
btnA.direction = Direction.INPUT
btnA.pull = Pull.UP

Button B

btnB = DigitalInOut(board.D6)
btnB.direction = Direction.INPUT
btnB.pull = Pull.UP

Button C

btnC = DigitalInOut(board.D12)
btnC.direction = Direction.INPUT
btnC.pull = Pull.UP

Create the I2C interface.

i2c = busio.I2C(board.SCL, board.SDA)

128x32 OLED Display

reset_pin = DigitalInOut(board.D4)
display = adafruit_ssd1306.SSD1306_I2C(128, 32, i2c, reset=reset_pin)
Clear the display.

display.fill(0)

display.show()

width = display.width
height = display.height

Configure RFM9x LoRa Radio

CS = DigitalInOut(board.CE1)
RESET = DigitalInOut(board.D25)

Do not use this if you have a RFM69 Radio

©Adafruit Industries Page 20 of 27

spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)

while True:
 # Clear the image

 display.fill(0)

 # Attempt to set up the RFM9x Module

 try:
 rfm9x = adafruit_rfm9x.RFM9x(spi, CS, RESET, 915.0)
 display.text('RFM9x: Detected', 0, 0, 1)

 except RuntimeError as error:
 # Thrown on version mismatch

 display.text('RFM9x: ERROR', 0, 0, 1)

 print('RFM9x Error: ', error)

 # Check buttons

 if not btnA.value:
 # Button A Pressed

 display.text('Ada', width-85, height-7, 1)
 display.show()

 time.sleep(0.1)

 if not btnB.value:
 # Button B Pressed

 display.text('Fruit', width-75, height-7, 1)
 display.show()

 time.sleep(0.1)

 if not btnC.value:
 # Button C Pressed

 display.text('Radio', width-65, height-7, 1)
 display.show()

 time.sleep(0.1)

 display.show()

 time.sleep(0.1)

To use the code, enter the following in your terminal:

python3 rfm9x_check.py

Now to check the setup:

If the RFM9x/RFM69 is detected, the

OLED will display Detected. You can test

the buttons by pressing them.

©Adafruit Industries Page 21 of 27

https://learn.adafruit.com//assets/69466
https://learn.adafruit.com//assets/69466

If the wiring of the radio module is

incorrect - the display will show ERROR.

Check over your wiring on the Wiring

Page and re-run the test. You may also

need to ensure the correct CircuitPython

library is installed for the module.

If the OLED does not turn on - first check

that it is wired correctly. Then, make sure

you enabled I2C from raspi-config

 and installed the required libraries

(adafruit-circuitpython-framebuf

and adafruit-circuitpython-

ssd1306).

With everything working, let's move on to using the radio.

Sending Data with LoRa

The RFM9x is a more expensive module than the RFM69, but it has a trick - LoRa.

LoRa is a spread spectrum modulation technique patented by Semtech (https://

adafru.it/DuM). It allows your packets to be sent over farther distances (a few km in a

city like New York and around 40km in a rural area).

It's also a low power protocol with batteries lasting in the year range, instead of a few

days with WiFi. This is made possible by only powering up the LoRa radio when

Do not use this if you have a RFM69 Packet Radio, its for RFM9X radio's only!

©Adafruit Industries Page 22 of 27

https://learn.adafruit.com//assets/68581
https://learn.adafruit.com//assets/68581
https://www.semtech.com/

packets are being sent, instead of keeping the radio always-on (like the WiFi radio on

your cell phone).

When building a project which uses LoRa, keep in mind that only a few hundred bytes

per-transmission can be sent, and that each transmission will cause the battery life to

decrease.

If a LoRa project involves a lot of sensors, expect to cram a lot of data into a small

packet which is transmitted infrequently.

RFM9x and CircuitPython

It's easy to use the RFM9x LoRa radio with CircuitPython and the Adafruit

CircuitPython RFM9x (https://adafru.it/BjD) module. This module allows you to easily

write Python code that sends and receives packets of data with the radio.

Be careful to note this library is for the RFM9x (RFM95/96/97/98) Radio only and will

not work with the RFM69.

To demonstrate how the RFM9x LoRa module sends packets, we'll build an example

where we send and receive data between two radios.

CircuitPython Transmitter/Receiver Example

Below is an example of using the RFM9x to transmit, or receive from, another RFM9x

radio. Save this as radio_rfm9x.py on your Raspberry Pi.

SPDX-FileCopyrightText: 2018 Brent Rubell for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""

Example for using the RFM9x Radio with Raspberry Pi.

Learn Guide: https://learn.adafruit.com/lora-and-lorawan-for-raspberry-pi

Author: Brent Rubell for Adafruit Industries

"""

Import Python System Libraries

import time
Import Blinka Libraries

import busio
from digitalio import DigitalInOut, Direction, Pull
import board
Import the SSD1306 module.

import adafruit_ssd1306
Import RFM9x

import adafruit_rfm9x

Button A

©Adafruit Industries Page 23 of 27

https://github.com/adafruit/Adafruit_CircuitPython_RFM9x
https://github.com/adafruit/Adafruit_CircuitPython_RFM9x

btnA = DigitalInOut(board.D5)
btnA.direction = Direction.INPUT
btnA.pull = Pull.UP

Button B

btnB = DigitalInOut(board.D6)
btnB.direction = Direction.INPUT
btnB.pull = Pull.UP

Button C

btnC = DigitalInOut(board.D12)
btnC.direction = Direction.INPUT
btnC.pull = Pull.UP

Create the I2C interface.

i2c = busio.I2C(board.SCL, board.SDA)

128x32 OLED Display

reset_pin = DigitalInOut(board.D4)
display = adafruit_ssd1306.SSD1306_I2C(128, 32, i2c, reset=reset_pin)
Clear the display.

display.fill(0)

display.show()

width = display.width
height = display.height

Configure LoRa Radio

CS = DigitalInOut(board.CE1)
RESET = DigitalInOut(board.D25)
spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
rfm9x = adafruit_rfm9x.RFM9x(spi, CS, RESET, 915.0)
rfm9x.tx_power = 23
prev_packet = None

while True:
 packet = None
 # draw a box to clear the image

 display.fill(0)

 display.text('RasPi LoRa', 35, 0, 1)

 # check for packet rx

 packet = rfm9x.receive()
 if packet is None:
 display.show()

 display.text('- Waiting for PKT -', 15, 20, 1)

 else:
 # Display the packet text and rssi

 display.fill(0)

 prev_packet = packet
 packet_text = str(prev_packet, "utf-8")
 display.text('RX: ', 0, 0, 1)

 display.text(packet_text, 25, 0, 1)

 time.sleep(1)

 if not btnA.value:
 # Send Button A

 display.fill(0)

 button_a_data = bytes("Button A!\r\n","utf-8")
 rfm9x.send(button_a_data)

 display.text('Sent Button A!', 25, 15, 1)

 elif not btnB.value:
 # Send Button B

 display.fill(0)

 button_b_data = bytes("Button B!\r\n","utf-8")
 rfm9x.send(button_b_data)

 display.text('Sent Button B!', 25, 15, 1)

 elif not btnC.value:
 # Send Button C

 display.fill(0)

©Adafruit Industries Page 24 of 27

 button_c_data = bytes("Button C!\r\n","utf-8")
 rfm9x.send(button_c_data)

 display.text('Sent Button C!', 25, 15, 1)

 display.show()

 time.sleep(0.1)

You'll also want to download the font file, font5x8.bin , and copy it into the same

directory as the script:

font5x8.bin

https://adafru.it/DvA

To run the example, enter the following into the terminal:

python3 radio_rfm9x.py

Both of the radios will listen for a new incoming packet. When they receive a new

packet, they'll print the text from the packet to the display (and to the terminal).

Press any of the three buttons to send data between radios. Pressing button a will

send a packet with data 'Button A!' to the other radio, and so on!

LoRaWAN Node Guide

LoRaWAN Node Guide (https://adafru.it/DHq)

LoRaWAN Pi Gateway Guide

LoRaWAN Pi Gateway Guide (https://adafru.it/DHr)

©Adafruit Industries Page 25 of 27

https://github.com/adafruit/Adafruit_CircuitPython_framebuf/blob/master/examples/font5x8.bin
https://learn.adafruit.com/lora-and-lorawan-radio-for-raspberry-pi/sending-data-over-lorawan
https://learn.adafruit.com/raspberry-pi-single-channel-lorawan-gateway

Downloads

Files

RFM9x

SX127x Datasheet (https://adafru.it/oBm)- The RFM9X LoRa radio chip itself

RFM9X (https://adafru.it/FTK) - The radio module, which contains the SX1272

chipset

FCC Test Report (https://adafru.it/q6A)

ETSI Test Report (https://adafru.it/r6a)

RoHS Report (https://adafru.it/r6b)

RFM69

SX1231 Datasheet (https://adafru.it/mCv) - The RFM69 radio chip itself

RFM69HCW datasheet (https://adafru.it/mCu)- contains the SX1231 datasheet

plus details about the module (https://adafru.it/mFX)

RoHS Test Report (https://adafru.it/oC1)

RoHS Test Report (https://adafru.it/oC2)

REACH Test Report (https://adafru.it/oC3)

ETSI Test Report (https://adafru.it/r6c)

FCC Test Report (https://adafru.it/r6d)

Radio Bonnet

Schematic and board files on GitHub (https://adafru.it/DFL) (Pinouts and layout

are the same for all four radio versions)

Fab Print

(Pinouts and layout are the same for all four radio versions)

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 26 of 27

https://cdn-shop.adafruit.com/product-files/3179/sx1276_77_78_79.pdf
https://www.hoperf.com/data/upload/portal/20190801/RFM96W-V2.0.pdf
https://cdn-shop.adafruit.com/product-files/3078/LoRa_RFM95-915S2%2813dBm%29_FCC.pdf
https://cdn-shop.adafruit.com/product-files/3078/etsireport_RFM95-868S2%2811dBm%29.pdf
https://cdn-shop.adafruit.com/product-files/3078/rohs_CAN14-015141-02_EC_15137200_F.PDF
https://cdn-shop.adafruit.com/product-files/3076/sx1231.pdf
https://cdn-shop.adafruit.com/product-files/3076/RFM69HCW-V1.1.pdf
https://cdn-learn.adafruit.com/assets/assets/000/031/659/original/RFM95_96_97_98W.pdf?1460518717
https://cdn-learn.adafruit.com/assets/assets/000/031/659/original/RFM95_96_97_98W.pdf?1460518717
https://cdn-shop.adafruit.com/product-files/3076/CAN14-015141-02_EC_15137200_F.PDF
https://cdn-shop.adafruit.com/product-files/3076/CAN15-031854-04_EC_15983075_F.PDF
https://cdn-shop.adafruit.com/product-files/3076/CAN15-031854-07_EC_15983075_F.PDF
https://cdn-shop.adafruit.com/product-files/3076/RFM69HCW-868S2-ETSI.pdf
https://cdn-shop.adafruit.com/product-files/3070/p3070p3076_RFM69HCW-915S2-FCC.pdf
https://github.com/adafruit/Adafruit-Radio-Bonnet-PCB

Schematic

(Pinouts and layout are the same for all four radio versions)

©Adafruit Industries Page 27 of 27

	Adafruit Radio Bonnets with OLED Display - RFM69 or RFM9X
	Table of Contents
	Overview
	Pinouts
	Antenna Options
	RFM69 Raspberry Pi Setup
	Sending Data with the RFM69
	LoRa Raspberry Pi Setup
	Sending Data with LoRa
	LoRaWAN Node Guide
	LoRaWAN Pi Gateway Guide
	Downloads

	Overview
	Radio Modules & Frequency Variants
	RFM69 Specs
	RFM9x Specs

	Pinouts
	Radio Module Pins
	128x32 OLED
	Buttons
	Antenna Options
	Wire Antenna
	uFL Antenna
	SMA Edge-Mount Antenna

	RFM69 Raspberry Pi Setup
	Installing CircuitPython Libraries
	RFM69 Connection Test!

	Sending Data with the RFM69
	RFM69 and CircuitPython
	CircuitPython Transmitter/Receiver Example

	LoRa Raspberry Pi Setup
	Installing CircuitPython Libraries
	RFM9x Connection Test!

	Sending Data with LoRa
	RFM9x and CircuitPython
	CircuitPython Transmitter/Receiver Example

	LoRaWAN Node Guide
	LoRaWAN Pi Gateway Guide
	Downloads
	Files
	Fab Print
	Schematic

