VE E
RS485 CAN HAT m %’EGWESO?J-JGHTCIBOYS

RS485 CAN HAT

User Manual

OVERVIEW

The RS485 CAN HAT will enables your Pi to communicate with other devices stably in

long-distance via RS485/CAN functions.

FEATURES

® Raspberry Pi connectivity, compatible with Raspberry Pi Zero/Zero W/Zero

WH/2B/3B/3B+

® CAN function, onboard CAN controller MCP2515 via SPI interface, with transceiver

SN65HVD230

® RS485 function, controlled via UART, half-duplex communication, with transceiver

SP3485

® Reserved control pins, allows to work with other control boards

® Comes with development resources and manual (examples in wiringPi/python)

SPECIFICATIONS

Operating voltage 13.3V

CAN controller : MCP2515

1/ 22

RS485 CAN HAT

CAN transceiver

485 transceiver

Dimension

: SN65HVD230

: SP3485

:65mm x 30mm

Mounting hole size :3.0mm
INTERFACES
CAN:
PIN Raspberry Pi Description
3V3 3V3 3.3V Power
GND GND Ground
SCK SCK SPI Clock
MOSI MOSI SPI Data input
MISO MISO SPI Data output
CsS CEO Data/Command selection
INT PIN22 (GPIO.6) Interrupt
RS485:
PIN Raspberry Pi Description
3V3 3V3 3.3V power
GND GND Ground
RXD RXD RS485 UART receive
TXD TXD RS485 UART transmit
RSE PIN11/GPIO.1 RS485 RX/TX setting

2 /22

RS485 CAN HAT

W) WAVESHARE

share awesome hardware

CONTENT

OVEIVIBW.....oririeiicieieie ittt sttt s s bbbttt b s 1
FRATUIES ...t 1
SPECITICATIONS ettt 1
INEEITACES «..ooereeei e bbb 2

HardwWare DeSCIIPIION. ...ttt ssses s s s s s bbb sasssnesns 5
CAN BUS .ottt bbbt 5
RSABS5 BUS....omiieeicimeeieeiieeire i i s ssse s ssss e s s bbb 6

HOW 0 USE ...ttt sttt 8
LiDraries INStAlItiON ...ttt s st s s sssnsnes 8
CAN TEST ..ottt sttt 9

HAFAWATE ...ttt et 9
PrEPAratioN ...ttt aen 9
C COAR EXAMPIE..c oottt asseses 10
PYTNON @XAMPIE ..ottt s 11
RSABSE TStcuureunerurrumerinrisseeinerisesae s esae s essse s sssse e ssse s s s e sse s ssase e ssassssnessnseses 12
HAMAWAIE ...ttt 12

3/ 22

) WAVESHARE

RS485 CAN HAT share awesome hardware
PrEPATATION ..ottt st 12

PYENON COAE ..ttt 14

COAE ANQIYSIS vttt st sttt s s sasesneen 15
CAN ettt bbb 15

€ COAR...c ittt et 15

PYENON oottt sttt 18

RSABE ..ottt s e 20
WITTINGPI COUR ..ttt aeen 20

PYLNON COAE ..ttt anes 22

4/ 22

AVESHARE
RS485 CAN HAT m ls-hlajre oweso?e hardware

HARDWARE DESCRIPTION

CAN BUS

CAN module could process packets transmit/receive on CAN bus. Packets
transmit: first store packet to related buffer and control register. Use SPI interface to
set the bits on control register or enable transmit pin for transmitting. Registers could
be read for detecting communication states and errors. It will first check if there are
any errors of packets detected on CAN bus, then verify it with filter which is defined by

user. And store packet to one of buffers if it has no errors.

Raspberry Pi cannot support SPI bus, so this module use SPI interface and on

board an receiver/transmitter for CAN communication.

Microchip Technology’ s

TXCANER1 ~ 20F3voo
MCP2515 is a stand-alone Controller RXCANCH 2 19FoRESET
CLKOUT/SOFCH 3 18RaCS
TXORTSCH 4 17R3s0
Area Network (CAN) controller that RIS 5 HB? 160 g
NCH6 o 15RaNC
implements the CAN specification, TX2RTSCH7 & 14faSCK
oscz2c8 = 13mINT
. . e 0SC1cH 9 1255 RX0BF
version 2.0B. It is capable of transmitting Vss 410 ah crane

and receiving both standard and

extended data and remote frames. The MCP2515 has two acceptance masks and six
acceptance filters that are used to filter out unwanted messages, thereby reducing the
host MCUs overhead. The MCP2515 interfaces with microcontrollers (MCUs) via an

industry standard Serial Peripheral Interface (SPI), that is Raspberry Pi can

5/ 22

RS485 CAN HAT

communicate with MCP2515 via SPI interface without external driver. What we need to

do is to enable the kernel driver on devices tree.

For more details, please refer to datasheet.

SN65HVD230 from TEXAS INSTRUMENTS is a CAN transceiver, which is designed
for high communication frequency, anti-jamming and high reliability CAN bus
communication. SN65HVD230 provide three different modes of operation: high-
speed, slope control and low-power modes. The operation mode can be controlled by
Rs pin. Connect the Tx of CAN controller to SN65HVD230" s data input pin D, can
transmit the data of CAN node to CAN network; And connect the RX of CAN controller

to SN65HVD230" s data input pin R to receive data.

= e B
GNE % ; s % ziNH 1 D WEN%iA Driver input
Vec 3* &[] canL 2 GND HREIIEE Ground
R 4 5 Vet 3 Ver HiF2E Supply voltage
4 R FEUTHI Y Receiver output
SNESHVD230 5| 4 5 WVt B4 Reference output
CTRHL) & CANL {52 2650 tH Low bus output
7 CANH Fid2E%itH High bus output
8 RS T eI 75 Standby/slope control
RS485 BUS

The SP3485 is a low power half-duplex transceiver that meet the specifications of
RS485 serial protocols. RO is Receiver output pin and Dl is Driver input pin. RE is
Receiver Output Enable pin which is Active LOW and DE is Driver output Enable pin
Active HIGH. A is Driver Output/Receiver input non-inverting port and B is Driver

6 /22

W) WAVESHARE

share awesome hardware

RS485 CAN HAT

Output/Receiver input, Inverting port. When A-B >+0.2V, RO pin will output logic 1;
and when A-B<-0.2V, RO pin will output logic 0. 100Q resistor is recommended to

add between A and B ports.

J PIN FUNCTION

Pin | — RO — Receiver Output.

Pin 2 - RE — Receiver Output Enable Active LOW.
7|B Pin 3 — DE — Driver Output Enable Active HIGH.

X
o]

(=)

(el iol il il
i
b

il

Pin 4 — DI — Driver Input.
Pin 5 — GND — Ground Connection.

5] GND

Pin 6 — A — Driver Output/Receiver Input
Non-inverting.

Top View
Pin 7 — B — Driver Output/Receiver Input Inverting.
Pin 8-V .
SP3481/SP3485
Pinout (Top View)

7/ 22

VE E
RS485 CAN HAT m %&GWSSO?EI-JGQTdsCMS

HOW TO USE

LIBRARIES INSTALLTION

To use the demo codes, you should install libraries (wiringPi, bcm2835, python) first,
otherwise the codes cannot work properly. About how to install libraries, you can refer

to Wiki page:

https://www.waveshare.com/wiki/Libraries Installation for RPi

For python, you should install two more libraries as below:

sudo apt-get install python-pip

sudo pip install python-can

Visit Waveshare Wiki: https://www.waveshare.com/wiki and search with “RS485 CAN

CAPE" , download the demo code.

Resources [edi]

Documents [edii]

+« User Manual

« Schematic

Demo code [edi]

« Demo cods

Datasheet [edii]

» MCP2515
= SNe5HVD230
= 5P3481_5P3485

Decompression and copy to Raspberry Pi.

8/ 22

https://www.waveshare.com/wiki/Libraries_Installation_for_RPi
https://www.waveshare.com/wiki

RS485 CAN HAT

CAN TEST

HARDWARE

Raspberry Pi 3B x2

Waveshare RS485 CAN HAT x2

PREPARATION

1. Insert RS485 CAN HAT to Raspberry Pi, and then modify config.txt file:

sudo vi /boot/config.txt

2. Append these statements to the file:

dtparam=spi=on

dtoverlay=mcp2515-can0,oscillator=8000000,interrupt=_25,spimaxfrequency=1000000

3. Save and exit, then restart your Pi.

sudo reboot

4. After restart, check if initialize successfully:

dmesg | grep -i "\(can\|spi\)’

It will print information as below:

dmesg | grep -1 "\ (can\)
emd[1]: Cannot add depend ¢ job for unit rec 3 55 5 service, ignoring: Unit regener
i to load: No such file or directe

inot add dependency job for unit dis , ignoring: Unit display-manager.
h file or directory.

e driver inte

il n: MCP: successfully initialized.

The information will be different if RAS485 CAN HAT doesn’ t be inserted:

9/ 22

RS485 CAN HAT

pi@raspberrypi:~ $ dmesg | grep -1 "\(can\|spi\)’

[16.300731] systemd[1]: Cannot add dependency job for unit regenerate_ssh_host_keys.service, ignoring: Unit regener
ate_ssh_host_keys.service failed to load: No such file or directory.

[16.499602] systemd[1]: Cannot add dependency job for unit display-manager.service, ignoring: Unit display-manager.

service failed to load: No such file or directory.

[20.661718] CAN device driver interface

[20.680261) mcp251x spif.0: Cannot initialize MCP251S. Wrong wiring?
[20.680293] mcp251x spif.0: Probe failed, err=19

In this case, you need to check if the module is connected? If SPI interface and

CP2515 kernel driver is enable and restart Raspberry Pi.

5. Connect the H and L port of RS485 CAN HAT to another’ s.

C CODE EXAMPLE

1. List the folder of demo code you can get as below:

pi@raspberrypi:~ $ 1s RS485_CAN_HAT_code/can/c/

receive send

2. Set one HAT as receiver: Enter the directory of receiver and run the code

cd /RS485 CAN HAT code/can/c/receive
make

sudo ./can_receive

pi@raspberrypi:~/RS485_CAN_HAT_code/can/c/receive $ sudo ./can_recelve
this 1s a can receive demo

3. Set another as Sender: Enter the directory of send and run the code

cd /RS485 CAN HAT code/can/c/send
make

sudo ./can_send

10 / 22

RS485 CAN HAT

pi@raspberrypi:~/RS485 CAN_HAT code/can/c/send $ sudo ./can_send
this 1s a can send demo

can_1id 0x123

can_dlc
data[o]
data[l] =

datal2]
datal3]
datal[4]
data[5]
datal[6]
datal7]

OO Hs WN - 0

At the same time you can find the receiver receive the packet from sender:

pi@raspberrypi:~/RS485 CAN _HAT code/can/c/receive $ sudo ./can_receive
RTNETLINK answers: Device or resource busy
this 1s a can receive demo

can_id = 0x123

can_dlc = 8

data[o]

datal[l]

datal2]

datal3]

data[4] =

data[s]

datal[6]

datal7]

PYTHON EXAMPLE

1. List the folder:

pi@raspberrypi:~/RS485 CAN HAT code/can/c $ 1s
receive send
pi@raspberrypi:~/RS485_ CAN_HAT code/can/c $ cd ../python/

pi@raspberrypi:~/RS485 CAN HAT code/can/python $ 1s
README. txt receive.py send.py

2. Set the receiver first:

sudo python can_reveive.py

3. Then the sender:

sudo python can_send.py

11 / 22

WAVESHARE
RS485 CAN HAT m share awesome hardware

RS485 TEST

HARDWARE

Raspberry Pi 3B x2

RS485 CAN HAT x2

PREPARATION

The serial of Raspberry Pi is used for Linux console output by default, so we need to

disable it first:

1. Run command to open raspi-config:

sudo raspi-config

2. Choose Interfaces Options ->Serial->no

3. Open file /boot/config.txt, add the statement to the end:

enable_uart=1

4. For Raspberry Pi, the serial port is used for Bluetooth, which should be commend:

#dtoverlay=pi-minuart-bt

5. reboot Raspberry Pi

sudo reboot

6. Connect A and B port of HAT to another’ s

12 / 22

RS485 CAN HAT

WIRINGPI CODE

1. List folders:

pi@raspberrypi:~/RS485_CAN_HAT_code/485/WiringPi $ 1s

receive send

2. Set receiver:

cd /RS485 CAN HAT code/can/c/receive
make

sudo ./can_receive

pi@raspberrypi:~/RS485 CAN_HAT_code/485/WiringPi/receive $ sudo ./485_receive

set wiringPi lib success !!!

3. Set sender:

cd /RS485 CAN HAT code/can/c/send

make

sudo ./can_send

pi@raspberrypi:~/RS485 CAN_HAT_code/485/WiringPi/send $ sudo ./485_send
set wiringPi 1ib success !!!

send data 123456789

The packet received at receiver is as below:

pi@raspberrypi:~/RS485_CAN_HAT_code/485/WiringPi/receive $ sudo ./485_receive
set wiringPi 1ib success !!!

1
2
3
4
S
S
6
7
8
9

13 / 22

RS485 CAN HAT

PYTHON CODE

1. List folders:

pi@raspberrypi:~/RS485 CAN HAT code/485/python $ 1s

receive.py send.py

2. First set receiver:

sudo python reveive.py

3. Set sender:

sudo python send.py

14 / 22

AVESHARE
RS485 CAN HAT m ls-hl:ljre oweso?e hardware

CODE ANALYSIS

CAN

We provide two codes for CAN communication, one is C code and another is python.

C code use socket-can and python use similar libraries as well.

C CODE

This example uses socket skill similar to network coding skill of Linux. If you have
studied Linux network coding, you will familiar to it: Socketcan is method for CAN

protocol in Linux.

Step 1: Open socket

s = socket(PF_CAN, SOCK_RAW, CAN_RAW);

if it failed it will return -1

Step 2: Target device can0

strcpy(ifr.ifr_name, "can0");

ret = ioctl(s, SIOCGIFINDEX, &ifr);

Step 3: Bind socket to CAN interface.

addr.can_family = AF_CAN;
addr.can_ifindex = ifr.ifr_ifindex;

ret = bind(s, (struct sockaddr *)&addr, sizeof(addr));

15 / 22

RS485 CAN HAT

Step 4: Set rule that only send

setsockopt(s, SOL_ CAN_RAW, CAN_RAW FILTER, NULL, 0);

Step 5: Set the data

struct can_frame frame;
frame.can_id = 0x123;
frame.can_dlc = §;
frame.data[0] = 1;
frame.data[1] = 2;
frame.data[2] = 3;
frame.data[3] = 4;
frame.data[4] = 5;
frame.data[5] = 6;
frame.data[6] = 7;

frame.data[7] = 8;

Step 6: Transmit data

nbytes = write(s, &frame, sizeof(frame));

Calling write() function to write the data to socket, it will return-1 if failed and return
the number of byte if success. We could use the return value to check if it is

successfully sending.

if(nbytes != sizeof(frame)) {

16 / 22

RS485 CAN HAT

printf("Send Error frame[0]'\r\n");

system("sudo ifconfig can0 down");

Step 7: Close socket and CAN device

close(s);

system("sudo ifconfig can0 down");

Note: if you don’ t close CAN device, system will prompt CAN bus is busy at next

sending.

For Receiving:

1. It is different for binding socket

addr.can_family = PF_CAN;
addr.can_ifindex = ifr.ifr_ifindex;
ret = bind(s, (struct sockaddr *)&addr, sizeof(addr));
if (ret < 0) {
perror("bind failed");

return 1;

2. The receive could be defined to only receive socket which ID is 0x123

struct can_filter rfilter[1];

17 / 22

RS485 CAN HAT

rfilter[0].can_id = 0x123;
rfilter[0].can_mask = CAN_SFF_MASK;

setsockopt(s, SOL CAN_RAW, CAN_RAW FILTER, &rfilter, sizeof(rfilter));

3. Read data read()

nbytes = read(s, &frame, sizeof(frame));

Return number of bytes it read.

For more information about socket-can coding please refer:

https://www.kernel.org/doc/Documentation/networking/can.txt

PYTHON

Before use python sample, check if python-can library has been installed

Build up CAN device first:

os.system('sudo ip link set can0 type can bitrate 100000")

os.system('sudo ifconfig can0 up")

Step 1: Connect to CAN bus

can0 = can.interface.Bus(channel = 'can0Q', bustype = 'socketcan_ctypes')# socketcan_native

Step2: Create message

msg = can.Message(arbitration_id=0x123, data=[0, 1, 2, 3, 4, 5, 6, 7], extended _id=False)

Step 3: Send message

18 / 22

https://www.kernel.org/doc/Documentation/networking/can.txt

RS485 CAN HAT VI EahM

can0.send(msg)

Step 4: Finial close device as well

os.system('sudo ifconfig can0 down’)

Receive Data:

msg = can0.recv(10.0)

recv() define the timeout of receiving.

For more information please refer to:

https://python-can.readthedocs.io/en/stable/interfaces/socketcan.html

19 / 22

https://python-can.readthedocs.io/en/stable/interfaces/socketcan.html

RS485 CAN HAT

RS485

For RS485 communication, we provide two sample code, one is based on wiringPi

library and another is Python.

WIRINGPI CODE

Steps 1: Set Receiving and sending
The RE and DE pin of SP3485 are used for enable input and output (Chapter

Hardware description) .

#define EN 485 18
if(wiringPiSetupGpio() < 0) { //use BCM2835 Pin number table
printf("set wiringPi lib failed "' \r\n");
return -1;
} else {

printf("set wiringPi lib success ! \r\n");

pinMode(EN_485, OUTPUT);

digitalWrite(EN_485,HIGH);

The example code set module to sending states. the Pin18 is the ID based on
bcm2835 libraries. For wiringPi, the pin id of bcm2835 is workable as well beside
wiringpi pin id. wiringPiSetupGpio() is called for using bcm2835 pin id and

wiringPiSetup() called for using wiringPi pin id.

20 / 22

RS485 CAN HAT

Step 2: Create file descriptor, open serial /dev/ttySO and set baudrate

if(fd = serialOpen ("/dev/ttyS0",9600)) < 0) {
printf("serial err\n");

return -1;

Step 3: Send data

serialFlush(fd);

serialPrintf(fd,"\r");

serialPuts(fd, "12345");

serialFlush() #clean all data on serial and wait for sending

serialPrintf() #similar to printf function, bind the tansmit datato file desriptor
serialPuts() #Send string which end with nul to serial device marked by related file

descriptor

The serialGetchar(fd) function will return a character which is should used next of
serial device, it will cause some wrong errors, so the sender should send a character

“\r" to avoid this phenomenon. (If you have better way, kindly to contact us)

For more information about functions, please refer to:

http://wiringpi.com/reference/serial-library/

21 / 22

http://wiringpi.com/reference/serial-library/

WAVESHARE
RS485 CAN HAT m share awesome hardware

PYTHON CODE

Using Python to control RS485 will be much easy. Python could operate serial directly:

Open serial file and set the baud rate as well.

t = serial.Serial("/dev/ttyS0",115200)

strinput = raw_input('enter some words:")

You can input the data you want to send and write it to serial file, after sending , it will

return number of bytes:

n = t.write(strinput)

Reading:

str = ser.readall()

22 / 22

