
Pololu P-Star 25K50 Micro User’s
Guide

View document on multiple pages. [https://www.pololu.com/docs/0J62]

You can also view this document as a printable PDF [https://www.pololu.com/docs/pdf/0J62/p-star_25k50.pdf].

Pololu P-Star 25K50 Micro User’s Guide © 2001–2017 Pololu Corporation

https://www.pololu.com Page 1 of 38

https://www.pololu.com/docs/0J62
https://www.pololu.com/docs/pdf/0J62/p-star_25k50.pdf

1. Overview . 3
1.1. Supported operating systems . 4

2. Contacting Pololu . 5
3. Pinout and components . 6
4. Schematic and dimensions . 10
5. Getting started . 13

5.1. Installing p-load and drivers . 13
5.2. Getting into bootloader mode . 13
5.3. Compiling a program with MPLAB X and XC8 . 15
5.4. Programming using p-load . 19

6. The P-Star 25K50 Bootloader . 21
6.1. Memory organization . 21
6.2. Startup procedure . 22
6.3. Bootloader I/O pin usage . 23
6.4. Bootloader LED behavior . 23
6.5. Configuration bits . 24

7. Programming using the PICkit 3 . 26
8. Compiling a USB application with M-Stack . 29
9. Compiling a program with MPLAB X and MPASM . 31
10. Compiling a program with PICBASIC PRO . 36

Pololu P-Star 25K50 Micro User’s Guide © 2001–2017 Pololu Corporation

Page 2 of 38

P-Star 25K50 with U.S. quarter for size
reference.

1. Overview

The Pololu P-Star 25K50 microcontroller board is a general-
purpose programmable module based on the PIC18F25K50
microcontroller from Microchip, which has 32 KB of flash
program memory, 2 KB of RAM and built-in full-speed USB
functionality. The P-Star 25K50 adds onboard components
and connectors that support the microcontroller and make it
easier to use. The board ships with a USB bootloader that
makes it easy to load new programs without using an external
programmer.

This product requires a USB A to Micro-B cable [https://www.pololu.com/product/2072] (not
included) to connect to a computer.

Features and specifications
• Dimensions: 1″ × 0.6″ (1.05″ × 0.6″ including USB Micro-B connector)

• Programmable Microchip PIC18F25K50 PIC microcontroller
◦ 32 KB flash (8 KB used by bootloader, leaving 24 KB available for user program by default)

◦ 2 KB SRAM

◦ 256 bytes of EEPROM

◦ Native full-speed USB (12 Mbps)

• 5 V logic voltage

• Internally clocked at 48 MHz, resulting in execution speeds up to 12 million instructions per second
(MIPS)

• Precision 16 MHz crystal

• Many I/O lines in a small package
◦ 16 user I/O lines along the sides of the board

◦ 3 additional I/O pins available in other locations

◦ 13 pins can be configured as analog inputs

◦ 2 PWM output signals (one of which can be sent to four different pins)

◦ 5-bit digital-to-analog converter (DAC) output

• Three user-controllable LEDs

• USB Micro-B connector

Pololu P-Star 25K50 Micro User’s Guide © 2001–2017 Pololu Corporation

1. Overview Page 3 of 38

https://a.pololu-files.com/picture/0J5687.1200.jpg?755389bc626d2eb3f9b879a1858a3553
https://a.pololu-files.com/picture/0J5687.1200.jpg?755389bc626d2eb3f9b879a1858a3553
https://www.pololu.com/product/2072

• Can be powered from USB or external source regulated to 5 V by onboard regulator

• Operating voltage: 5.5 V to 15 V
◦ Can operate down to 3.8 V with decreased logic voltage

• Reverse-voltage protection on external power input

• PTC fuse on VBUS supply

• Ships with a proprietary USB bootloader developed by Pololu for the P-Star (see Section 6)

• Bootloader is usable from Windows, Linux, and Mac OS X with open source software
[https://github.com/pololu/p-load]

• No external programmer required

• Compatible with standard Microchip compilers, development tools, and programmers

1.1. Supported operating systems
The Pololu USB Bootloader Utility (p-load), which is used to load programs onto the P-Star, works on Windows
Vista, Windows 7, Windows 8, Windows 8.1, Windows 10, Linux, and Mac OS X. The utility does not work
on Windows XP. The source code [https://github.com/pololu/p-load] is available, so it should be possible to port it to
more operating systems.

Pololu P-Star 25K50 Micro User’s Guide © 2001–2017 Pololu Corporation

1. Overview Page 4 of 38

https://github.com/pololu/p-load
https://github.com/pololu/p-load
https://github.com/pololu/p-load

2. Contacting Pololu

We would be delighted to hear from you about any of your projects and
about your experience with the Pololu P-Star 25K50 Micro. You can
contact us [https://www.pololu.com/contact] directly or post on our forum
[http://forum.pololu.com/]. Tell us what we did well, what we could
improve, what you would like to see in the future, or anything else you
would like to say!

Pololu P-Star 25K50 Micro User’s Guide © 2001–2017 Pololu Corporation

2. Contacting Pololu Page 5 of 38

https://a.pololu-files.com/picture/0J5694.1200.jpg?e981c32d13a9974588ee55fa481a4403
https://a.pololu-files.com/picture/0J5694.1200.jpg?e981c32d13a9974588ee55fa481a4403
https://www.pololu.com/contact
http://forum.pololu.com/
http://forum.pololu.com/

3. Pinout and components

P-Star 25K50 Micro pinout diagram.

This diagram identifies the I/O and power pins on the P-Star 25K50 Micro. The diagram is also available
as a printable PDF [https://www.pololu.com/file/download/p-star-25K50-micro-pinout.pdf?file_id=0J799] (161k pdf). For
more information about the PIC18F25K50 microcontroller and its peripherals, see Microchip’s PIC18F25K50
documentation [http://www.microchip.com/PIC18F25K50].

LEDs
The P-Star 25K50 Micro has three indicator LEDs.

The yellow LED is connected to RB6. Driving this pin high turns on the LED. In bootloader mode, the
bootloader drives this line high to turn on the LED (see Section 6.4) but never drives it low. If this line is high
when the microcontroller starts up, the microcontroller will go into bootloader mode. A button can be connected
to RB6 as described in Section 5.2. RB6 has an onboard pull-down resistor to ensure that its voltage goes all the
way down to 0 V when not being driven.

The green LED is connected to RB7, and lights when the pin is driven high. In bootloader mode, the bootloader
drives this line high to turn on the LED (see Section 6.4) but never drives it low.

The red LED is connected to RC6, and lights when the pin is driven low. RC6 is the microcontroller’s serial TX
line, so the red LED serves as an indicator for when the board is transmitting serial data. If you are not using
serial, the LED can be used as a normal LED. To avoid interference with connected serial devices, this LED is
not used by the bootloader.

Connectors
The P-Star 25K50 Micro includes a USB Micro-B connector that can be used to connect to a computer’s USB
port via a USB A to Micro-B cable [https://www.pololu.com/product/2072] (not included). The USB connection can
be used to transmit and receive data from the computer, and a preloaded USB bootloader makes it possible to

Pololu P-Star 25K50 Micro User’s Guide © 2001–2017 Pololu Corporation

3. Pinout and components Page 6 of 38

https://a.pololu-files.com/picture/0J5698.1200.jpg?df6caa38b9ed9dce61eacf64742c5e2d
https://a.pololu-files.com/picture/0J5698.1200.jpg?df6caa38b9ed9dce61eacf64742c5e2d
https://www.pololu.com/file/download/p-star-25K50-micro-pinout.pdf?file_id=0J799
http://www.microchip.com/PIC18F25K50
http://www.microchip.com/PIC18F25K50
https://www.pololu.com/product/2072

program the board over USB. The USB connection can also provide power to the P-Star.

The board also has five pins arranged so that they can be directly plugged into a standard In-Circuit Serial
Programming (ICSP) connector, such as the one found on the PICkit 3. More information about programming
with the PICkit 3 can be found in Section 7. The five pins are: MCLR, VDD, GND, RB7, and RB6. The MCLR
pin is pin 1.

Power
The P-Star 25K50 Micro can either be powered directly from the USB 5 V supply or from a separate source on
the VIN pin. The board features a power selection circuit that allows both USB and VIN to be connected at the
same time; if this is done, the P-Star will draw power from VIN.

USB power input: The P-Star can be powered from the USB 5 V bus voltage (VBUS) if it is connected to a
USB cable. It will draw power from USB only if VIN is disconnected. A resettable PTC fuse on VBUS makes
it less likely for the P-Star (and the connected computer or other device) to be damaged if too much current is
drawn from the USB connection.

VIN power input: The P-Star can be powered from VIN if you connect a 5.5 V to 15 V power supply (such as
a battery or wall power adapter) to the VIN and GND pins, with the positive terminal connected to VIN.

VDD: This pin provides access to the board’s 5 V supply, which comes from either the USB 5 V bus voltage or a
low-dropout (LDO) regulator on VIN, depending on which power source is connected. The regulator can supply
up to 100 mA, although some of this is used by the board itself or used to provide current for the GPIO pins.

To ensure that VDD is a stable 5 V, you must either disconnect VIN and use USB to power the board or supply
a VIN of at least 5.5 V. When VIN drops below 5.5 V, VDD will fall (even with USB connected). However, the
P-Star will continue to run with VDD below 5 V, and it can operate from VIN alone with VIN as low as 3.2 V to
3.8 V, depending on the load and temperature. With USB connected, VDD will drop at worst to about 4.5 V, and
the P-star will continue operating no matter how low VIN is.

When the P-Star 25K50 Micro is being powered through VIN, regardless of whether USB is connected, the sum
of the 5V output current, GPIO output current, and current used by the board itself (typically about 18 mA)
should not exceed the 100 mA that the regulator can provide.

Pololu P-Star 25K50 Micro User’s Guide © 2001–2017 Pololu Corporation

3. Pinout and components Page 7 of 38

P-Star 25K50 Micro, bottom
view.

USB power sensing
The VB pin, located on the interior of the board, is connected to the USB 5 V bus voltage through a 1 kΩ resistor.
By default, the VB pin is also connected to the RA0 pin through a cuttable trace on the bottom of the board
between the two pins. This means that RA0 can be used as a digital or analog input to detect the presence of
USB power. Cutting the trace between the VB and RA0 pins allows RA0 to be used for other purposes.

Crystal
The P-Star 25K50 Micro has a precision 16 MHz crystal. By default, this crystal is used to provide a clock signal
for the microcontroller and its peripherals.

Included hardware
Two 1×10-pin breakaway 0.1″ male headers [https://www.pololu.com/product/965] and one 1×6-pin breakaway 0.1″
male header are included with the P-Star 25K50 Micro. These header pins can be soldered in to use the board
with perfboards, breadboards [https://www.pololu.com/category/28/solderless-breadboards], or 0.1″ female connectors
[https://www.pololu.com/category/50/0.1-2.54-mm-female-headers].

Pololu P-Star 25K50 Micro User’s Guide © 2001–2017 Pololu Corporation

3. Pinout and components Page 8 of 38

https://a.pololu-files.com/picture/0J5685.1200.jpg?b818ed06edf5b37b42b330ccd363574f
https://a.pololu-files.com/picture/0J5685.1200.jpg?b818ed06edf5b37b42b330ccd363574f
https://www.pololu.com/product/965
https://www.pololu.com/category/28/solderless-breadboards
https://www.pololu.com/category/50/0.1-2.54-mm-female-headers
https://www.pololu.com/category/50/0.1-2.54-mm-female-headers

P-Star 25K50 Micro with included
optional headers.

The P-Star 25K50 Micro with soldered
headers and connected USB cable.

Pololu P-Star 25K50 Micro User’s Guide © 2001–2017 Pololu Corporation

3. Pinout and components Page 9 of 38

https://a.pololu-files.com/picture/0J5683.1200.jpg?c396d9ba2caad1d12060b9ae2d51ba71
https://a.pololu-files.com/picture/0J5683.1200.jpg?c396d9ba2caad1d12060b9ae2d51ba71
https://a.pololu-files.com/picture/0J5694.1200.jpg?e981c32d13a9974588ee55fa481a4403
https://a.pololu-files.com/picture/0J5694.1200.jpg?e981c32d13a9974588ee55fa481a4403

4. Schematic and dimensions
Schematic diagram

Pololu P-Star 25K50 Micro User’s Guide © 2001–2017 Pololu Corporation

4. Schematic and dimensions Page 10 of 38

P-Star 25K50 Micro schematic diagram.

This schematic is also available as a PDF: P-Star 25K50 Micro schematic diagram [https://www.pololu.com/file/

Pololu P-Star 25K50 Micro User’s Guide © 2001–2017 Pololu Corporation

4. Schematic and dimensions Page 11 of 38

https://a.pololu-files.com/picture/0J5688.1200.png?6b92f335a0723eda807873960495daa4
https://a.pololu-files.com/picture/0J5688.1200.png?6b92f335a0723eda807873960495daa4
https://www.pololu.com/file/download/p-star-25K50-micro-schematic.pdf?file_id=0J797

download/p-star-25K50-micro-schematic.pdf?file_id=0J797] (414k pdf).

Dimension diagram
A dimension diagram is available as a PDF: P-Star 25K50 Micro dimension diagram [https://www.pololu.com/file/

download/p-star-25K50-micro-dimensions.pdf?file_id=0J798] (202k pdf)

Pololu P-Star 25K50 Micro User’s Guide © 2001–2017 Pololu Corporation

4. Schematic and dimensions Page 12 of 38

https://www.pololu.com/file/download/p-star-25K50-micro-schematic.pdf?file_id=0J797
https://www.pololu.com/file/download/p-star-25K50-micro-dimensions.pdf?file_id=0J798
https://www.pololu.com/file/download/p-star-25K50-micro-dimensions.pdf?file_id=0J798

5. Getting started
5.1. Installing p-load and drivers
To use the P-Star 25K50 Micro’s USB bootloader, you will need to install a command-line utility called the
Pololu USB Bootloader Utility. This program is also known as “p-load” because that is the command used to run
it from a command prompt.

Windows
If you are using Microsoft Windows, you should download and install the Pololu USB Bootloader Utility (p-
load) for Windows [https://www.pololu.com/file/download/p-load-2.0.0-win.msi?file_id=0J1125] (2MB msi). This includes
the p-load executable and the drivers necessary for the P-Star bootloader. During the installation, Windows will
ask you if you want to install the drivers. Click “Install”.

After the installation has finished, your computer will automatically detect any P-Star 25K50 Micro that is in
bootloader mode and use the proper drivers for it. You should see an entry for the P-Star bootloader in the
“Universal Serial Bus devices” category or the “Pololu USB Devices” category in your Device Manager. The
latest drivers use the “Universal Serial Bus devices” category, but if your P-Star was set up with an older driver,
then it might still be in “Pololu USB Devices”.

Mac OS X
If you are using Mac OS X, you should download and install the Pololu USB Bootloader Utility (p-load)
for Mac OS X [https://www.pololu.com/file/download/p-load-2.0.1-mac.pkg?file_id=0J1126] (112k pkg). The latest version
of the utility software requires Mac OS X 10.11 or later. For older versions of Mac OS X, use p-load 1.0.0
[https://www.pololu.com/file/download/p-load-1.0.0.dmg?file_id=0J802] (33k dmg) instead (which only supports the P-Star
25K50).

Linux
If you are using Linux, you should download the Pololu USB Bootloader Utility source code [https://github.com/

pololu/p-load]. Follow the instructions in BUILDING.md to configure, compile, and install the utility.

5.2. Getting into bootloader mode
The P-Star comes with a USB bootloader that allows you to load new programs onto the P-Star over USB
without using an external programmer. To use the bootloader, you will first need to get the P-Star into bootloader
mode.

When the P-Star is in bootloader mode, the yellow LED should be on and the green LED should be blinking.
If the P-Star has never been programmed, or if the user application has been erased, then the P-Star will
automatically go into bootloader mode when it is powered on. Otherwise, you will have to use one of the
procedures below to get it into bootloader mode.

Starting the bootloader with a wire or button
The P-Star will go into bootloader mode if the RB6 line is high immediately after a reset. This will work no
matter what type of application is loaded on the P-Star.

For example, if your P-Star is only powered from USB, you could hold a wire between VDD and RB6 while you
are plugging the P-Star into USB in order to get it into bootloader mode.

Pololu P-Star 25K50 Micro User’s Guide © 2001–2017 Pololu Corporation

5. Getting started Page 13 of 38

https://www.pololu.com/file/download/p-load-2.0.0-win.msi?file_id=0J1125
https://www.pololu.com/file/download/p-load-2.0.0-win.msi?file_id=0J1125
https://www.pololu.com/file/download/p-load-2.0.1-mac.pkg?file_id=0J1126
https://www.pololu.com/file/download/p-load-2.0.1-mac.pkg?file_id=0J1126
https://www.pololu.com/file/download/p-load-1.0.0.dmg?file_id=0J802
https://www.pololu.com/file/download/p-load-1.0.0.dmg?file_id=0J802
https://github.com/pololu/p-load
https://github.com/pololu/p-load

Another option is to connect a bootloader button between VDD and RB6 and a reset button between GND and
MCLR as shown in the picture below, and reset the P-Star while you are holding down the bootloader button.
The buttons shown in the picture below are Pololu item #1400 [https://www.pololu.com/product/1400].

P-Star 25K50 Micro on a breadboard with a reset button (left) and a bootloader
button (onboard).

The bootloader button can be used for other purposes while your application is running. However, be careful to
never drive the RB6 line low, or else pressing the button could cause a short circuit.

Starting the bootloader from your application
The bootloader can also be started by the application without requiring a reset. To do this, the application can
simply jump to address 4 using the assembly instruction goto 4. If the application uses USB, it should disable
the USB module by clearing USBEN and then wait for at least 100 ms before starting the bootloader, in order to
give the computer time to detect that the application has disconnected.

For convenience, we recommend that any P-Star applications with a USB interface implement a USB command
that for starting the bootloader. This would allow you to get into bootloader mode, upload the new firmware, and
run it, entirely using USB and not needing any physical interaction with the board. For example, an application

Pololu P-Star 25K50 Micro User’s Guide © 2001–2017 Pololu Corporation

5. Getting started Page 14 of 38

https://www.pololu.com/product/1400
https://a.pololu-files.com/picture/0J5689.1200.jpg?11196d9af7e1414b1967faa9640d4c65
https://a.pololu-files.com/picture/0J5689.1200.jpg?11196d9af7e1414b1967faa9640d4c65

with a USB virtual COM port could listen for a special baud rate to be set by the computer (we used 333 Baud
on the Wixel).

5.3. Compiling a program with MPLAB X and XC8
The P-Star can be programmed using standard development tools from Microchip. This section explains
how to get started programming the P-Star in the C language using MPLAB X and XC8. MPLAB X
[http://www.microchip.com/mplabx] a free integrated development (IDE) from Microchip for programming their PIC
microcontrollers. XC8 [http://www.microchip.com/compilers] is a C compiler from Microchip for 8-bit PICs. Both
programs run on Windows, Max OS X, and Linux.

1. Download and install the latest versions of MPLAB X [http://www.microchip.com/mplabx] and XC8
[http://www.microchip.com/compilers] .

2. Find “MPLAB X IDE” in your Start Menu and run it.

3. From the File menu, select “New Project”.

4. On the first screen of the New Project wizard, select the “Microchip Embedded” category and then
select “Standalone Project”. Click “Next”.

5. For the Device, type “PIC18F25K50”. Click “Next”.

Pololu P-Star 25K50 Micro User’s Guide © 2001–2017 Pololu Corporation

5. Getting started Page 15 of 38

http://www.microchip.com/mplabx
http://www.microchip.com/mplabx
http://www.microchip.com/compilers
http://www.microchip.com/mplabx
http://www.microchip.com/compilers
http://www.microchip.com/compilers
https://a.pololu-files.com/picture/0J5127.1200.png?9823a8806a78a77b2c826d84b2979564
https://a.pololu-files.com/picture/0J5127.1200.png?9823a8806a78a77b2c826d84b2979564

6. On the “Select Tool” screen, you can select “PICkit 3” but this choice does not matter because we will
not use MPLAB X to the load the program onto the board.

7. For the compiler, select XC8.

8. For the Project Name, choose something like “p-star1”, and choose the folder you want it to be in.
Click “Finish” to create the project.

Pololu P-Star 25K50 Micro User’s Guide © 2001–2017 Pololu Corporation

5. Getting started Page 16 of 38

https://a.pololu-files.com/picture/0J5690.1200.png?33b60f2a8c0f9773d35e4612acd28204
https://a.pololu-files.com/picture/0J5690.1200.png?33b60f2a8c0f9773d35e4612acd28204
https://a.pololu-files.com/picture/0J5691.1200.png?054ad937d28c2aac4be4912c6555d97b
https://a.pololu-files.com/picture/0J5691.1200.png?054ad937d28c2aac4be4912c6555d97b

9. We need to configure the project’s linker setting to properly account for the P-Star’s bootloader, which
takes up the first 8 KB of flash memory. In the “File” menu, select “Project Properties”. In the “XC8
linker” category, select the “Additional options” sub-category. In the “Codeoffset” box enter 0x2000,
which is 8*1024 in hex. Click “OK.”

Pololu P-Star 25K50 Micro User’s Guide © 2001–2017 Pololu Corporation

5. Getting started Page 17 of 38

https://a.pololu-files.com/picture/0J5692.1200.png?61668c43bf66d0af4ea7c7d98aa7712d
https://a.pololu-files.com/picture/0J5692.1200.png?61668c43bf66d0af4ea7c7d98aa7712d
https://a.pololu-files.com/picture/0J5696.1200.png?3eb66346404ce2437909e77669c798ce
https://a.pololu-files.com/picture/0J5696.1200.png?3eb66346404ce2437909e77669c798ce

10. Now we need to create the C source file. Locate the “Projects” pane. If the “Projects” pane is not
visible, you can open it by opening the “Window” menu and selecting “Projects”. Left-click the “+”
sign next to “Source Files” to expand it and verify that your project has no source files yet. Then right-
click on “Source Files”, select “New”, and then select “C Source File…”.

11. Choose a file name like “main” and then click Finish.This should create a new file named “main.c”
and open it for editing.

12. Copy and paste the following code into main.c:

#include <xc.h>
#define _XTAL_FREQ 48000000

#define LED_GREEN(v) { TRISB7 = !(v); }
#define LED_YELLOW(v) { TRISB6 = !(v); }
#define LED_RED(v) { TRISC6 = !(v); }

void main()
{

// Set up the LEDs
LATB7 = 1;
LATB6 = 1;

Pololu P-Star 25K50 Micro User’s Guide © 2001–2017 Pololu Corporation

5. Getting started Page 18 of 38

https://a.pololu-files.com/picture/0J5695.1200.png?7ac23424ea1d34274d23141c719b7739
https://a.pololu-files.com/picture/0J5695.1200.png?7ac23424ea1d34274d23141c719b7739

LATC6 = 0;

/* Enable Timer 0 as a 16-bit timer with 1:256 prescaler: since
the instruction speed is 12 MHz, this overflows about every 1.4
seconds. */

T0CON = 0b10000111;

while(1)
{

TMR0L; // trigger an update of TMR0H

// Blink the green LED with a period of 1.4 s
LED_GREEN(TMR0H >> 7 & 1);

// Blink the yellow LED with a period of 0.7 s
LED_YELLOW(TMR0H >> 6 & 1);

// Blink the red LED with a period of 0.35 s
LED_RED(TMR0H >> 5 & 1);

}
}

13. To compile the code, open the “Run” menu and select “Build Main Project”.

14. The “Output” pane should now show the build output from MPLAB X. This includes all the command-
line arguments passed to XC8 to compile the program, and all the output from the compiler. You
should see several instances of warnings similar to “warning: (1311) missing configuration setting for
config word 0x300000, using default”. This is OK, since the P-Star’s configuration bits are set during
manufacturing and they cannot be changed using the bootloader.

15. One of the last lines of the output should say “Loading code from” and have the full path to the HEX
file produced during compilation. This path and filename will be important later when you load the
program onto the P-Star.

Where to find more information
For information about the hardware peripherals and registers on the PIC18F25K50, see the PIC18F25K50
datasheet [http://www.microchip.com/PIC18F25K50].

For information about MPLAB X, you can find useful resources under the “Help” menu and in the “docs”
directory inside your MPLAB X installation.

For information about XC8, look in the “docs” directory inside your XC8 installation to find its user’s guide.

If you have questions, you can post in Microchip’s XC8 forum [http://www.microchip.com/forums/f249.aspx] or the
Pololu Robotics Forum [http://forum.pololu.com/].

5.4. Programming using p-load
The previous sections cover how to install Pololu USB Bootloader Utility (p-load) and the drivers for the P-Star
(Section 5.1), how to get the P-Star into bootloader mode (Section 5.2), and how to compile a simple program
for the P-Star (Section 5.3). Once all these steps are complete, you are ready to use p-load to write the program
to your P-Star.

To do so, open a command prompt and run a command of the form:

p-load -w HEXFILE

Pololu P-Star 25K50 Micro User’s Guide © 2001–2017 Pololu Corporation

5. Getting started Page 19 of 38

http://www.microchip.com/PIC18F25K50
http://www.microchip.com/PIC18F25K50
http://www.microchip.com/forums/f249.aspx
http://forum.pololu.com/

where HEXFILE is the full or relative path to the HEX file you compiled. When you run this command, the
output should look something like:

Bootloader: Pololu P-Star 25K50 Bootloader
Serial number: 00108214
Erasing flash...
Progress: |##| Done.
Writing flash...
Progress: |##| Done.
Erasing EEPROM...
Progress: |##| Done.

The -w option tells p-load to write the flash and EEPROM memories with the values specified in the HEX file,
and then restart the device so that the application can run. The Pololu USB Bootloader Utility has many other
options available, and you can see them by running p-load with no arguments.

The p-load utility automatically looks for a supported bootloader connected to the computer via USB and will
operate on that bootloader. If you have multiple P-Stars in bootloader mode connected to your computer, you
must use the -d option followed by the serial number of the device to specify which bootloader you want to
write to.

To write to EEPROM, data should be placed in the HEX file starting at address 0xF00000 (0xF00000
corresponds to the first byte of EEPROM). This is compatible with the way XC8 treats EEPROM.

Pololu P-Star 25K50 Micro User’s Guide © 2001–2017 Pololu Corporation

5. Getting started Page 20 of 38

6. The P-Star 25K50 Bootloader
The P-Star comes with a proprietary bootloader developed by Pololu that uses a native USB protocol. The
bootloader allows you to read and write the flash and EEPROM memories of the chip without using an external
programmer.

6.1. Memory organization

Flash memory sections
The bootloader occupies the first 8 KB (8192 bytes) of the PIC microcontroller’s flash memory. The remaining
24 KB of flash is available for the application. The bootloader places no restrictions on what data can be written
to the application section. However, the bootloader will consider the application to be invalid and not allow any
code in the application section to run if the first word of the application section (at address 0x2000) is 0xFFFF,
which would correspond to a NOP.

Entry and interrupt vectors
The entry vector and interrupt vectors are remapped by the bootloader to the beginning of the application section:

• The application’s entry vector should be placed at 0x2000. This is the location where code will start
executing when the application is started.

• The high-priority interrupt vector should be at 0x2008.

• The low-priority interrupt vector should be at 0x2018.

The interrupt vectors can be ignored and those locations can hold normal code if interrupts are not enabled in the
application.

The application can start the bootloader by jumping to address 0x0004 using a goto instruction. This method
of starting the bootloader does not involve a reset, so the state of the microcontroller matters and certain
configurations could cause problems for the bootloader. For example, an application that changes the
configuration of the system oscillators will most likely have to revert its changes before starting the bootloader.
Also, an application that uses USB should disable the USB module by clearing USBEN and then wait for at
least 100 ms before starting the bootloader, in order to give the computer time to detect that the application has
disconnected.

The code below is PIC assembly code that shows how these vectors are defined in the bootloader. The two CPU
interrupt vectors (0x0008 and 0x0018) each have a goto instruction that jumps directly to the user application.
The two entry vectors (0x0000 and 0x0004) each have goto instructions that jump to the appropriate part of the
bootloader code.

org 0x0000 ; CPU reset vector
goto powerup ; Start app or bootloader

org 0x0004 ; Bootloader launch vector
goto powerupBootloader ; Start bootloader

org 0x0008 ; CPU high-priority interrupt vector
goto 0x2008 ; Jump to the application's ISR

org 0x0018 ; CPU low-priority interrupt vector
goto 0x2018 ; Jump to the application's ISR

Pololu P-Star 25K50 Micro User’s Guide © 2001–2017 Pololu Corporation

6. The P-Star 25K50 Bootloader Page 21 of 38

Serial number
The bootloader comes with a unique serial number that is assigned during manufacturing. This serial number is
typically an 8-digit decimal number, but in the future we might expand it to have other characters or make it be
up to 16 characters long. The serial number is accessible from the application, and applications using USB can
expose the serial number as a string descriptor.

Read-only data
Part of the bootloader’s flash memory is used to store some information that can be read by the application:

• Addresses 0x40–0x51 contain the USB device descriptor of the bootloader, as defined in the USB 2.0
Specification.

• Addresses 0x60–0x70 contain the serial number as an ASCII string with a null terminator byte. The
extra bytes after the null terminator are all set to zero.

• Addresses 0x80–0xA1 contain the serial number in USB string descriptor format. The extra bytes after
the end of the string are all set to zero.

6.2. Startup procedure
Every time the microcontroller powers on or is reset for any reason, the bootloader’s startup code runs. First, the
code sets all of the bytes in RAM to 0, which can help make the behavior of the bootloader and the application
more predictable. Second, it reads the first word of the application’s flash section. If that word is 0xFFFF, it
considers the application to be missing and it runs the bootloader. Third, it reads pin RB6 and runs the bootloader
if RB6 is high. Finally, if none of these tests have caused it to go into bootloader mode, it runs the application.

Going through this startup procedure is the only way that the application can run.

Pololu P-Star 25K50 Micro User’s Guide © 2001–2017 Pololu Corporation

6. The P-Star 25K50 Bootloader Page 22 of 38

The startup logic for the P-Star USB bootloader.

6.3. Bootloader I/O pin usage
The bootloader uses the following I/O pins of the microcontroller:

• D- and D+ are used to communicate with the USB host.

• RB6 is driven high to turn on the yellow LED, but never driven low.

• RB7 is driven high to turn on the green LED, but never driven low.

The bootloader does not use RA0 to detect VBUS, so you can use RA0 for something else without interfering
with the bootloader. The bootloader does not use the red LED.

6.4. Bootloader LED behavior
This section documents the behavior of the P-Star’s LEDs while it is in bootloader mode.

If an active USB connection is present, the green LED will blink to indicate whether the device has reached the

Pololu P-Star 25K50 Micro User’s Guide © 2001–2017 Pololu Corporation

6. The P-Star 25K50 Bootloader Page 23 of 38

https://a.pololu-files.com/picture/0J5678.1200.png?bc754a7c0df2859f9b0e9f58ca249be5
https://a.pololu-files.com/picture/0J5678.1200.png?bc754a7c0df2859f9b0e9f58ca249be5

USB Configured state. If the device has not reached the Configured state, the green LED will blink on and off
with a 50% duty cycle and a period of about 1.4 seconds. If the device has reached the Configured state, then it
will do a double-blink every 1.4 seconds.

The yellow LED is usually on solid, but it will blink quickly whenever a USB command is received.

If USB is not connected or the USB connection is in suspend mode, the bootloader will briefly blink the green
LED about once per second, and the yellow LED will be off.

6.5. Configuration bits
The PIC18F25K50 has several configuration bits in flash memory. For the P-Star, the values of those
configuration bits are shown in the table below. These configuration bits cannot be changed by the bootloader or
an application loaded by the bootloader; you will need to use an external programmer and erase the bootloader
if you want to change any of them.

Register name Hex value Binary value

CONFIG1L 0x23 00100011

CONFIG1H 0x02 00000010

CONFIG2L 0x02 00000010

CONFIG2H 0x22 00100010

CONFIG3H 0xD3 11010011

CONFIG4L 0x85 10000101

CONFIG5L 0x0E 00001110

CONFIG5H 0xC0 11000000

CONFIG6L 0x0E 00001110

CONFIG6H 0x80 10000000

CONFIG7L 0x0E 00001110

CONFIG7H 0x40 01000000

Full documentation of these settings can be found in the PIC18F25K50 datasheet, and some of the settings are
discussed below.

Instruction set
The PIC18 extended instruction set is disabled, so the microcontroller uses the legacy instruction set. The legacy
instruction set is the only instruction set supported by the XC8 compiler, but if you use a different compiler then
you should make sure it supports the legacy instruction set and is configured to use it.

I/O pin configuration
The MCLRE bit is set to 1, so the MCLR pin is used as a reset pin and not a generic digital input.

Pololu P-Star 25K50 Micro User’s Guide © 2001–2017 Pololu Corporation

6. The P-Star 25K50 Bootloader Page 24 of 38

The SDOMX bit is set to 1, so the SDO (SPI data output) pin is assigned to RB3.

The T3CMX bit is set to 1, so the T3CKI (Timer3 clock input) pin is assigned to RC0.

The CCP2MX bit is set to 1, so the CCP2 input/output pin is assigned to RC1.

Clock selection
The P-Star is configured to automatically use the onboard 16 MHz crystal, which is also known as the primary
oscillator. The signal from the crystal goes to a PLL, which uses it to generate a 48 MHz signal for the CPU and
the peripherals. The CPU takes at least 4 cycles to execute a single instruction, so it can execute up to 12 million
instructions per second (12 MIPS).

The PCLKEN configuration bit is set to 0, so it is possible to shut down the primary oscillator and switch over to
the internal oscillator of the PIC microcontroller. However, without changing the FOSC<3:0> configuration bits,
it is not possible to clock the USB module from the internal oscillator. Also, without changing the FOSC<3:0>
configuration bits, it is not possible to send the signal from the internal oscillator through the PLL, so the
maximum CPU clock speed would be 16 Mhz (4 million instructions per second), which is three times slower
than the default.

Brown-out reset
The brown-out reset threshold on the P-Star is set to a nominal value of 2.85 V. The brown-out reset is enabled
by default, but it can be disabled in software by clearing the SBOREN bit in the RCON register. The low-power
brown-out reset circuit is also enabled, and will cause the microcontroller to reset at some point between 1.8 V
and 2.1 V.

Clearing the SBOREN bit will reduce the power consumption of the microcontroller and will allow it to continue
operating if VDD falls below 2.85 V. However, it will not be able to power up successfully from a voltage below
2.85 V, because SBOREN is set to 1 on power-up. Also, the microcontroller is not guaranteed to operate correctly
below 2.7 V without switching to a slower clock source.

Watchdog timer
The watchdog timer is disabled by default, but it can be enabled by setting the SWDTEN bit in the WDTCON
register. The watchdog postscaler is set to 1:256, so the watchdog timer’s period is about 1048 ms.

Read/write protection
The region of flash memory occupied by the bootloader is write-protected to prevent accidental corruption of
the bootloader. The lower 2 KB of the bootloader’s flash memory are readable and contain some useful data (as
described in Section 6.1), but the rest of the bootloader is read-protected.

Pololu P-Star 25K50 Micro User’s Guide © 2001–2017 Pololu Corporation

6. The P-Star 25K50 Bootloader Page 25 of 38

7. Programming using the PICkit 3

Warning: Using a PICkit to program the P-Star will permanently erase its USB bootloader, so you
will not be able to program it over USB using the Pololu USB Bootloader Utility. It will also erase
the serial number of the device.

The PICkit 3 [http://www.microchip.com/pickit3] from Microchip is a hardware debugger and programmer for PIC
microcontrollers that can be used to program the P-Star.

The PICkit 3 has a female header with six pins. Five of these pins need to be connected to the P-Star in order to
program it:

• Pin 1 of the PICkit 3, which is indicated with a triangle on the PICkit’s case, connects to the P-Star’s
MCLR pin.

• Pin 2 connects to VDD.

• Pin 3 connects to GND.

• Pin 4 connects to RB7 (also known as PGD).

• Pin 5 connects to RB6 (also known as PGC).

• Pin 6 should be left unconnected.

In addition to making these connections, the P-Star must also be powered (the PICkit 3 does not supply power).

The picture below shows one way to connect a P-Star 25K50 Micro to a PICkit 3. An upwards-pointing 1×4
male header is soldered to VDD, GND, RB7, and RB6. These pins are connected to the PICkit 3 with male-
female premium jumper wires [https://www.pololu.com/category/67/male-female-premium-jumper-wires]. The MCLR
pin is connected to the PICkit 3 through the breadboard and a male-male premium jumper wire
[https://www.pololu.com/category/68/male-male-premium-jumper-wires]. The PICkit 3 must be connected via USB to a
computer, and the P-Star needs to be powered either from its USB port or from the VIN pin.

Pololu P-Star 25K50 Micro User’s Guide © 2001–2017 Pololu Corporation

7. Programming using the PICkit 3 Page 26 of 38

http://www.microchip.com/pickit3
https://www.pololu.com/category/67/male-female-premium-jumper-wires
https://www.pololu.com/category/67/male-female-premium-jumper-wires
https://www.pololu.com/category/68/male-male-premium-jumper-wires
https://www.pololu.com/category/68/male-male-premium-jumper-wires

The P-Star 25K50 Micro connected to a PICkit 3 programmer and a reset button.

Another option for connecting a P-Star 25K50 Micro to a PICkit is to solder upwards-pointing header pins on all
five programming pins, as shown below. The PICkit 3 can then be directly connected to this five-pin header, or it
could be connected through a set of male-female premium jumper wires [https://www.pololu.com/category/67/male-

female-premium-jumper-wires]. This configuration of header pins prevents the MCLR pin from plugging directly
into a breadboard, but it could still be connected via a jumper wire.

Pololu P-Star 25K50 Micro User’s Guide © 2001–2017 Pololu Corporation

7. Programming using the PICkit 3 Page 27 of 38

https://a.pololu-files.com/picture/0J5699.1200.jpg?1bc577dd818ea0bb1d465715408d5092
https://a.pololu-files.com/picture/0J5699.1200.jpg?1bc577dd818ea0bb1d465715408d5092
https://www.pololu.com/category/67/male-female-premium-jumper-wires
https://www.pololu.com/category/67/male-female-premium-jumper-wires

The P-Star 25K50 Micro with a vertical 5-pin programming header
installed.

Pololu P-Star 25K50 Micro User’s Guide © 2001–2017 Pololu Corporation

7. Programming using the PICkit 3 Page 28 of 38

8. Compiling a USB application with M-Stack
This section explains how to compile a USB application using M-Stack [http://www.signal11.us/oss/m-stack/], a USB
device stack developed by Signal 11 Software [http://www.signal11.us/].

On the PIC18F25K50, the hardware USB module only implements the lowest levels of the USB protocol,
and many other parts of the protocol need to be implemented in firmware. Therefore, it is usually easier to
incorporate a USB stack into your firmware instead of writing the USB code from scratch. With M-Stack, you
can write C code that uses USB without having to worry about many of the details of how USB works or how
the PIC18F25K50 USB module works.

This tutorial will explain how to use MPLAB X and XC8 to compile the demo apps that come with M-Stack and
run them on the P-Star 25K50 Micro. These apps can be used as a starting point for your own app. You can see
what demo apps are available by looking in the M-Stack apps folder on github [https://github.com/pololu/m-stack/

tree/master/apps].

1. First, install MPLAB X [http://www.microchip.com/mplabx], XC8 [http://www.microchip.com/compilers], and
XC16 [http://www.microchip.com/compilers]. We will use MPLAB X and XC8 to compile the example
code. We will not use XC16, but the MPLAB X projects we will open have configurations that use
XC16 and installing it will avoid some issues when opening those projects.

2. Next, download the Pololu fork of M-Stack [https://github.com/pololu/m-stack]. This version of M-Stack
has a few changes that we made to add support for the PIC18F25K50 and the P-Star 25K50 Micro.
(We are working with the developer of M-Stack to get these changes merged in.) If you download it as
a ZIP archive, be sure to extract the files from the ZIP archive before continuing.

3. Run the MPLAB X IDE.

4. In the “File” menu, select “Open Project…”, and navigate to apps\hid_mouse\MPLAB.X. Select the
MPLAB.X folder and click “Open Project”.

5. In the “Run” menu, under “Set Project Configuration”, select “P-Star_25K50_Micro”. This configures
the project so that it will be built for the PIC18F25K50 and use the --codeoffset 0x2000 option so
that it can be loaded with the P-Star’s bootloader.

6. In the “Run” menu, select “Build Project”.

7. The “Output” pane should now show the build output from MPLAB X. One of the last lines of the
output should say “Loading code from” and have the full path to the HEX file produced during
compilation.

8. Use p-load to load this HEX file onto the P-Star using its USB bootloader, as described in Section 5.4.

9. If the app runs successfully, it should connect to the computer as a standard USB mouse and you
should see your mouse cursor moving back and forth horizontally. To regain normal use of your cursor,
you can disconnect the P-Star from USB or put it back into bootloader mode as described in Section
5.2.

These instructions will also work for any other app in M-Stack, except for the bootloader app. These apps can
be used as a starting point for your own app.

Where to find more information
We recommend reading the README.txt file that comes with M-Stack.

Pololu P-Star 25K50 Micro User’s Guide © 2001–2017 Pololu Corporation

8. Compiling a USB application with M-Stack Page 29 of 38

http://www.signal11.us/oss/m-stack/
http://www.signal11.us/
https://github.com/pololu/m-stack/tree/master/apps
https://github.com/pololu/m-stack/tree/master/apps
http://www.microchip.com/mplabx
http://www.microchip.com/compilers
http://www.microchip.com/compilers
https://github.com/pololu/m-stack

For information about USB, see the USB 2.0 Specification [http://www.usb.org/developers/docs/usb20_docs/].

For information about the USB module on the PIC18F25K50, see the PIC18F25K50 datasheet
[http://www.microchip.com/PIC18F25K50].

To write PC software to communicate with the P-Star over USB using a generic USB interface, see libusb
[http://libusb.info/].

Pololu P-Star 25K50 Micro User’s Guide © 2001–2017 Pololu Corporation

8. Compiling a USB application with M-Stack Page 30 of 38

http://www.usb.org/developers/docs/usb20_docs/
http://www.microchip.com/PIC18F25K50
http://www.microchip.com/PIC18F25K50
http://libusb.info/
http://libusb.info/

9. Compiling a program with MPLAB X and MPASM
This section explains how to get started programming the P-Star in assembly using MPLAB X and XC8.
MPLAB X [http://www.microchip.com/mplabx] a free integrated development (IDE) from Microchip for
programming their PIC microcontrollers. MPASM is an assembler that comes with MPLAB X.

For most people, we recommend developing P-Star apps with XC8 [https://www.pololu.com/docs/

0J62/5.3], which allows a mixture of C and assembly code. This section is for advanced users who
only want to use assembly.

MPASM supports two types of code: absolute and relocatable. These instructions will show how to write
absolute code, where the location of every instruction and variable is known ahead of time. The alternative is
relocatable code, which allows multiple assembly files to be combined into one program using a linker.

1. Download and install the latest version of MPLAB X [http://www.microchip.com/mplabx].

2. Find “MPLAB X IDE” in your Start Menu and run it.

3. From the File menu, select “New Project”.

4. On the first screen of the New Project wizard, select the “Microchip Embedded” category and then
select “Standalone Project”. Click “Next”.

5. For the Device, type “PIC18F25K50”. Click “Next”.

Pololu P-Star 25K50 Micro User’s Guide © 2001–2017 Pololu Corporation

9. Compiling a program with MPLAB X and MPASM Page 31 of 38

http://www.microchip.com/mplabx
https://www.pololu.com/docs/0J62/5.3
https://www.pololu.com/docs/0J62/5.3
http://www.microchip.com/mplabx
https://a.pololu-files.com/picture/0J5127.1200.png?9823a8806a78a77b2c826d84b2979564
https://a.pololu-files.com/picture/0J5127.1200.png?9823a8806a78a77b2c826d84b2979564

6. On the “Select Tool” screen, you can select “PICkit 3” but this choice does not matter because we will
not use MPLAB X to the load the program onto the board.

7. For the compiler, select MPASM.

8. For the Project Name, choose something like “p-star1”, and choose the folder you want it to be in.
Click “Finish” to create the project.

Pololu P-Star 25K50 Micro User’s Guide © 2001–2017 Pololu Corporation

9. Compiling a program with MPLAB X and MPASM Page 32 of 38

https://a.pololu-files.com/picture/0J5690.1200.png?33b60f2a8c0f9773d35e4612acd28204
https://a.pololu-files.com/picture/0J5690.1200.png?33b60f2a8c0f9773d35e4612acd28204
https://a.pololu-files.com/picture/0J5738.1200.png?3a698b4d394b267882d3d9a6ab6e5414
https://a.pololu-files.com/picture/0J5738.1200.png?3a698b4d394b267882d3d9a6ab6e5414

9. In the “File” menu, select “Project Properties”. In the “MPASM (global options)” category, check the
“Build in absolute mode” check box, then click “OK”.

10. Now we need to create the assembly source file. Locate the “Projects” pane. If the “Projects” pane
is not visible, you can open it by opening the “Window” menu and selecting “Projects”. Left-click

Pololu P-Star 25K50 Micro User’s Guide © 2001–2017 Pololu Corporation

9. Compiling a program with MPLAB X and MPASM Page 33 of 38

https://a.pololu-files.com/picture/0J5692.1200.png?61668c43bf66d0af4ea7c7d98aa7712d
https://a.pololu-files.com/picture/0J5692.1200.png?61668c43bf66d0af4ea7c7d98aa7712d
https://a.pololu-files.com/picture/0J5725.1200.png?6612269f9b46d19ee8d5a72a9b3a93a1
https://a.pololu-files.com/picture/0J5725.1200.png?6612269f9b46d19ee8d5a72a9b3a93a1

the “+” sign next to “Source Files” to expand it and verify that your project has no source files
yet. Then right-click on “Source Files”, select “New”, and then select “pic_8b_simple.asm…”. If
“pic_8b_simple.asm” is not visible in the menu, you can find it by selecting “Other…”, “Microchip
Embedded”, and then “MPASM assembler”.

11. Choose a file name such as “main” and then click “Finish”. This should create a new file named
“main.asm” and open it for editing.

12. Copy and paste the following code into main.asm, replacing all the code that was there by default:

#include <p18f25k50.inc>

org 0x2000
goto start

org 0x2020
ledRedOn:

Pololu P-Star 25K50 Micro User’s Guide © 2001–2017 Pololu Corporation

9. Compiling a program with MPLAB X and MPASM Page 34 of 38

https://a.pololu-files.com/picture/0J5726.1200.png?9ff7ef28978c81e4bc444dbfabe0e68f
https://a.pololu-files.com/picture/0J5726.1200.png?9ff7ef28978c81e4bc444dbfabe0e68f

bcf TRISC, 6
return

ledRedOff:
bsf TRISC, 6
return

start:
bcf LATC, 6 ; Set up the red LED

; Enable Timer 0 as a 16-bit timer with 1:256 prescaler:
; since the instruction speed is 12 MHz, this overflows about
; every 1.4 seconds.
movlw b'10000111'
movwf T0CON

mainLoop:
movf TMR0L, W ; Trigger an update of TMR0H

; Blink the red LED with a period of 1.4 s.
btfss TMR0H, 7
rcall ledRedOff
btfsc TMR0H, 7
rcall ledRedOn

goto mainLoop

end

12. To compile the code, open the “Run” menu and select “Build Main Project”.

13. The “Output” pane should show the build output from MPLAB X. One of the last lines of the output
should say “Loading code from” and have the full path to the HEX file produced during compilation.

Where to find more information
For information about the instruction set, hardware peripherals, and registers on the PIC18F25K50, see the
PIC18F25K50 datasheet [http://www.microchip.com/PIC18F25K50].

For information about MPLAB X, you can find useful resources under the “Help” menu and in the “docs”
directory inside your MPLAB X installation.

For information about MPASM, see its user’s guide, which is in the “mpasmx/docs” directory inside your
MPLAB X installation.

If you have questions, you can post in Microchip’s MPASM forum [http://www.microchip.com/forums/f16.aspx] or
the Pololu Robotics Forum [http://forum.pololu.com/].

Pololu P-Star 25K50 Micro User’s Guide © 2001–2017 Pololu Corporation

9. Compiling a program with MPLAB X and MPASM Page 35 of 38

http://www.microchip.com/PIC18F25K50
http://www.microchip.com/forums/f16.aspx
http://forum.pololu.com/

10. Compiling a program with PICBASIC PRO
The P-Star is compatible with PICBASIC PRO, a BASIC language compiler from microEngineering Labs that
runs on Microsoft Windows and targets PIC microcontrollers. This section explains how to compile a program
and load it onto the P-Star using MicroCode Studio, the IDE that comes with PICBASIC PRO. PICBASIC PRO
is not free, but there is a trial version that you can try for a limited number of days before deciding whether to
purchase PICBASIC PRO [http://store.melabs.com/cat/PBP.html].

MicroCode Studio with a simple program for the P-Star 25K50 Micro.

1. Download and install PICBASIC PRO from the PICBASIC PRO Compiler 3.0 Downloads page
[http://pbp3.com/download.html].

2. Find “MicroCode Studio (MCSX)” in your Start Menu and run it.

3. If you were using MicroCode Studio earlier, there might be another program already open. In that case,
you should open the “File” menu and click “New” to start writing a new program.

4. Locate the “Microcontroller” dropdown in the upper-left corner, and select “18F25K50”.

5. Copy and paste this code into your program:

Define RESET_ORG 0x2000
Define OSC 48

LED_RED VAR PORTC.6
mainloop:

Input LED_RED
Pause 500
Low LED_RED
Pause 500
Goto mainloop

Pololu P-Star 25K50 Micro User’s Guide © 2001–2017 Pololu Corporation

10. Compiling a program with PICBASIC PRO Page 36 of 38

http://store.melabs.com/cat/PBP.html
https://a.pololu-files.com/picture/0J5748.1200.png?ece8e912e106c4827fea1eee11948868
https://a.pololu-files.com/picture/0J5748.1200.png?ece8e912e106c4827fea1eee11948868
http://pbp3.com/download.html
http://pbp3.com/download.html

6. Click the “Compile” button to compile the program. If you have not saved yet, you will be prompted
to choose a location to save the program. After the compilation succeeds, you will have a valid HEX
file and you could load it onto the P-Star using the Pololu USB Bootloader Utility (p-load) from
the command line. However, we recommend following the instructions below which explain how to
integrate p-load with MicroCode Studio so you can load your program onto the P-Star without leaving
the IDE.

7. Locate the “Compile Program” toolbar button and open its menu by clicking the triangle to its right. If
you see p-load as an option in this list, then you have probably done these steps before and can skip to
step 14.

8. Select “Create a custom programmer entry”. Click “Next”.

9. For the “Display Name”, enter “p-load”. Click “Next”.

10. For the “Programmer Filename”, enter “p-load.exe”. Click “Next”.

11. Click the “Find Manually…” button and select the p-load “bin” folder. If you installed p-load in
the default location, the bin folder can be found at “C:\Program Files (x86)\Pololu\USB Bootloader
Utility\bin”. Click “Next”.

12. For the “Parameters”, enter the following line:

-w $hex-filename$ --pause-on-error

13. Click “Finished” to finish adding the new programmer, and click “OK” to exit the parent dialog box.

14. Open the menu for the “Compile Program” toolbar button again to make sure that “p-load” is checked.

15. Make sure that the P-Star is in bootloader mode as described in Section 5.2. The yellow LED should
be on and the green LED should be showing a double-blink pattern.

16. Click the “Compile Program” button. This compiles the program and runs p-load to load it onto the
P-Star.

You should briefly see a window that shows the output from p-load. If everything worked, then the P-Star’s red
LED should now be blinking with a period of one second.

Pololu P-Star 25K50 Micro User’s Guide © 2001–2017 Pololu Corporation

10. Compiling a program with PICBASIC PRO Page 37 of 38

Related products

P-Star 25K50 Micro

Pololu P-Star 25K50 Micro User’s Guide © 2001–2017 Pololu Corporation

10. Compiling a program with PICBASIC PRO Page 38 of 38

https://www.pololu.com/product/3150
https://www.pololu.com/product/3150
https://www.pololu.com/product/3150

	Pololu P-Star 25K50 Micro User’s Guide
	1. Overview
	Features and specifications
	1.1. Supported operating systems

	2. Contacting Pololu
	3. Pinout and components
	LEDs
	Connectors
	Power
	USB power sensing
	Crystal
	Included hardware

	4. Schematic and dimensions
	Schematic diagram
	Dimension diagram

	5. Getting started
	5.1. Installing p-load and drivers
	Windows
	Mac OS X
	Linux

	5.2. Getting into bootloader mode
	Starting the bootloader with a wire or button
	Starting the bootloader from your application
	5.3. Compiling a program with MPLAB X and XC8
	Where to find more information

	5.4. Programming using p-load

	6. The P-Star 25K50 Bootloader
	6.1. Memory organization
	Flash memory sections
	Entry and interrupt vectors
	Serial number
	Read-only data
	6.2. Startup procedure
	6.3. Bootloader I/O pin usage
	6.4. Bootloader LED behavior
	6.5. Configuration bits
	Instruction set
	I/O pin configuration
	Clock selection
	Brown-out reset
	Watchdog timer
	Read/write protection

	7. Programming using the PICkit 3
	8. Compiling a USB application with M-Stack
	Where to find more information

	9. Compiling a program with MPLAB X and MPASM
	Where to find more information

	10. Compiling a program with PICBASIC PRO
	Related products

