
 RoboClaw Series
 Brushed DC Motor Controllers
 RoboClaw 2x5A 
 RoboClaw 2x7A
 RoboClaw 2x15A
 RoboClaw 2x30A
 RoboClaw 2x45A
 RoboClaw 2x45A ST
 RoboClaw 2x60A 
 Roboclaw 2x60HV

 User Manual
 Firmware 4.1.16 and Newer
 Hardware V3, V4 and V5
 User Manual Revision 5.1

(c) 2014, 2015 Ion Motion Control. All Rights Reserved



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 2

Contents
RoboClaw Revision History .................................................................................6

Precautions .........................................................................................................7
Motor Selection ............................................................................................. 7
Stall Current ................................................................................................. 7
Running Current ............................................................................................ 7
Wire Lengths ................................................................................................. 7
Run Away ..................................................................................................... 8
Power Sources ............................................................................................... 8
Logic Power .................................................................................................. 8
Optical Encoders ............................................................................................ 8
Easy to use Libraries ...................................................................................... 8

Header Overview ................................................................................................9
Logic Battery (LB IN) ...................................................................................... 9
BEC Source (LB-MB) ...................................................................................... 9
Encoder Power (+ -)  ...................................................................................... 9
Encoder Inputs (EN1 / EN2 - 1B / 1A / 2B / 2A) ................................................. 9
Control Inputs (S1 / S2 / S3 / S4 /S5) ............................................................ 10
Main Battery Screw Terminals ........................................................................ 10
Disconnect .................................................................................................. 10
Motor Screw Terminals ................................................................................. 10

Basic Wiring ......................................................................................................11

Status and Error LEDs .......................................................................................12
Error and Warning States .............................................................................. 12
Firmware Update LED State ........................................................................... 13
Automatic Battery Detection on Startup .......................................................... 13

RoboClaw Modes ...............................................................................................14
Configuring RoboClaw Modes ......................................................................... 15
Mode Options .............................................................................................. 16
Standard Serial and Packet Serial Mode Options ............................................... 16
Battery Cut Off Settings ................................................................................ 17
 Battery Options .......................................................................................... 17
Manual Voltage Settings................................................................................ 17

USB Connection ................................................................................................19
USB Power .................................................................................................. 19
USB Comport and Baudrate ........................................................................... 19

RC Mode ............................................................................................................21
RC Mode With Mixing .................................................................................... 21
Using RC Mode with feedback for velocity/position control ................................. 21
RC Mode Options ......................................................................................... 21
Pulse Ranges ............................................................................................... 22
RC Wiring Example ...................................................................................... 23
RC Control - Arduino Example ....................................................................... 24



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 3

Analog Mode .....................................................................................................26
Analog Mode With Mixing .............................................................................. 26
Using Analog Mode with feedback for velocity/position control ............................ 26
Analog Mode Options .................................................................................... 26
Analog Wiring Example ................................................................................. 27

Standard Serial Mode ........................................................................................29
Serial Mode Baud Rates ................................................................................ 29
Standard Serial Command Syntax .................................................................. 29
Standard Serial Wiring Example ..................................................................... 30
Standard Serial Mode With Slave Select .......................................................... 31
Standard Serial - Arduino Example ................................................................. 32

Packet Serial Mode............................................................................................34
Address ...................................................................................................... 34
Packet Modes .............................................................................................. 34
Packet Serial Baud Rate ................................................................................ 34
    

Serial Mode Options ..........................................................................................34
Packet Timeout ............................................................................................ 35
Packet Acknowledgement .............................................................................. 35
CRC16 Checksum Calculation ........................................................................ 35
Packet Serial Wiring ..................................................................................... 37
Multi-Unit Packet Serial Wiring ....................................................................... 38
Commands 0 - 7 Compatibility Commands ...................................................... 39
0 - Drive Forward M1 .................................................................................... 39
1 - Drive Backwards M1 ................................................................................ 39
2 - Set Minimum Main Voltage (Command 57 Preferred)  .................................. 39
3 - Set Maximum Main Voltage (Command 57 Preferred)  .................................. 40
4 - Drive Forward M2 .................................................................................... 40
5 - Drive Backwards M2 ................................................................................ 40
6 - Drive M1 (7 Bit)  ..................................................................................... 40
7 - Drive M2 (7 Bit)  ..................................................................................... 40
Commands 8 - 13 Mixed Mode Compatibility Commands ................................... 41
8 - Drive Forward ......................................................................................... 41
9 - Drive Backwards ..................................................................................... 41
10 - Turn right ............................................................................................. 41
11 - Turn left ............................................................................................... 41
12 - Drive Forward or Backward (7 Bit) ........................................................... 41
13 - Turn Left or Right (7 Bit) ........................................................................ 41
Arduino Example ......................................................................................... 42



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 4

Advance Packet Serial .......................................................................................45
21 - Read Firmware Version .......................................................................... 46
24 - Read Main Battery Voltage Level ............................................................. 46
25 - Read Logic Battery Voltage Level ............................................................. 46
26 - Set Minimum Logic Voltage Level ............................................................. 46
27 - Set Maximum Logic Voltage Level ............................................................ 46
48 - Read Motor PWM values ......................................................................... 47
49 - Read Motor Currents .............................................................................. 47
57 - Set Main Battery Voltages ...................................................................... 47
58 - Set Logic Battery Voltages ...................................................................... 47
59 - Read Main Battery Voltage Settings ......................................................... 47
60 - Read Logic Battery Voltage Settings ......................................................... 47
68 - Set M1 Default Duty Acceleration ............................................................ 47
69 - Set M2 Default Duty Acceleration ............................................................ 48
74 - Set S3, S4 and S5 Modes ....................................................................... 48
75 - Get S3, S4 amd S5 Modes ...................................................................... 48
76 - Set DeadBand for RC/Analog controls ...................................................... 48
77 - Read DeadBand for RC/Analog controls .................................................... 48
80 - Restore Defaults ................................................................................... 49
81 - Read Default Duty Acceleration Settings ................................................... 49
82 - Read Temperature ................................................................................. 49
83 - Read Temperature 2 .............................................................................. 49
90 - Read Status.......................................................................................... 50
91 - Read Encoder Mode ............................................................................... 50
92 - Set Motor 1 Encoder Mode ...................................................................... 50
93 - Set Motor 2 Encoder Mode ...................................................................... 50
94 - Write Settings to EEPROM ...................................................................... 51
95 - Read Settings from EEPROM ................................................................... 51
98 - Set Standard Config Settings .................................................................. 52
99 - Read Standard Config Settings ................................................................ 53
100 - Set CTRL Modes .................................................................................. 53
101 - Read CTRL Modes ................................................................................ 53
102 - Set CTRL1 .......................................................................................... 54
103 - Set CTRL2 .......................................................................................... 54
104 - Read CTRL Settings ............................................................................. 54
133 - Set M1 Max Current Limit ..................................................................... 54
134 - Set M2 Max Current Limit ..................................................................... 54
135 - Read M1 Max Current Limit ................................................................... 54
136 - Read M2 Max Current Limit ................................................................... 55
148 - Set PWM Mode .................................................................................... 55
149 - Read PWM Mode .................................................................................. 55

Quadrature Encoders ........................................................................................57

Absolute Encoder ..............................................................................................58
Velocity Calibration Procedure ........................................................................ 59
Position Calibration Procedure ........................................................................ 59
Auto Tuning ................................................................................................ 60
Encoder Commands ..................................................................................... 61
16 - Read Encoder Count/Value M1 ................................................................ 61
17 - Read Quadrature Encoder Count/Value M2 ................................................ 62
18 - Read Encoder Speed M1 ......................................................................... 62
19 - Read Encoder Speed M2 ......................................................................... 62



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 5

20 - Reset Quadrature Encoder Counters ........................................................ 62
22 - Set Quadrature Encoder 1 Value .............................................................. 63
23 - Set Quadrature Encoder 2 Value .............................................................. 63
30 - Read Raw Speed M1 .............................................................................. 63
31 - Read Raw Speed M2 .............................................................................. 63
78 - Read Encoder Counters .......................................................................... 63
79 - Read ISpeeds Counters .......................................................................... 63

Advanced Motor Control ....................................................................................64
28 - Set Velocity PID Constants M1 ................................................................ 65
29 - Set Velocity PID Constants M2 ................................................................ 65
32 - Drive M1 With Signed Duty Cycle ............................................................ 65
33 - Drive M2 With Signed Duty Cycle ............................................................ 66
34 - Drive M1 / M2 With Signed Duty Cycle ..................................................... 66
35 - Drive M1 With Signed Speed ................................................................... 67
36 - Drive M2 With Signed Speed ................................................................... 67
37 - Drive M1 / M2 With Signed Speed ........................................................... 67
38 - Drive M1 With Signed Speed And Acceleration ........................................... 67
39 - Drive M2 With Signed Speed And Acceleration ........................................... 68
40 - Drive M1 / M2 With Signed Speed And Acceleration ................................... 68
41 - Buffered M1 Drive With Signed Speed And Distance ................................... 68
42 - Buffered M2 Drive With Signed Speed And Distance ................................... 69
43 - Buffered Drive M1 / M2  With Signed Speed And Distance ........................... 69
44 - Buffered M1 Drive With Signed Speed, Accel And Distance .......................... 69
45 - Buffered M2 Drive With Signed Speed, Accel And Distance .......................... 70
46 - Buffered Drive M1 / M2 With Signed Speed, Accel And Distance................... 70
47 - Read Buffer Length ................................................................................ 70
50 - Drive M1 / M2 With Signed Speed And Individual Acceleration ..................... 71
51 - Buffered Drive M1 / M2 With Signed Speed, Individual Accel And Distance .... 71
52 - Drive M1 With Signed Duty And Acceleration ............................................. 71
53 - Drive M2 With Signed Duty And Acceleration ............................................. 72
54 - Drive M1 / M2 With Signed Duty And Acceleration ..................................... 72
55 - Read Motor 1 Velocity PID and QPPS Settings............................................ 72
56 - Read Motor 2 Velocity PID and QPPS Settings............................................ 72
61 - Set Motor 1 Position PID Constants .......................................................... 72
62 - Set Motor 2 Position PID Constants .......................................................... 73
63 - Read Motor 1 Position PID Constants ....................................................... 73
64 - Read Motor 2 Position PID Constants ....................................................... 73
65 - Buffered Drive M1 with signed Speed, Accel, Deccel and Position ................. 73
66 - Buffered Drive M2 with signed Speed, Accel, Deccel and Position ................. 73
67 - Buffered Drive M1 & M2 with signed Speed, Accel, Deccel and Position ......... 74
Arduino Example ......................................................................................... 75

RoboClaw Electrical Specifications ....................................................................80

Warranty ..........................................................................................................81
Copyrights and Trademarks ..............................................................................81
Disclaimer .........................................................................................................81
Contacts ............................................................................................................81
Discussion List ..................................................................................................81
Technical Support .............................................................................................81



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 6

RoboClaw Revision History
RoboClaw is an actively maintained product. New firmware features will be available from time 
to time. The table below outlines key revisions that could affect the version of RoboClaw you 
currently own.

Revision Description

4.1.16 • Adjusted RC/Analog controlled Velocity and Position Control functions.

• Fixed Sync Motor option in Position Settings window.

4.1.15 • Adjusted auto tuner loop.

• Changed currentpos reset to only execute when not running a position command.

• Fixed analog mode powerup calibration issue.

4.1.14 • Added Roboclaw 2x7A. 

• Fixed MixedSpeedAccel/MixedSpeedAccelDistamce accel arguments.

• S3 mode setting on power up is now loaded correctly. Wasn’t getting set until a second ReadNVM or 
manually set.

• Changed Position accel/deccel handler to take into account existing motion when a new command 
is executed.

• Added responsiveness slider to Autotuner.  After autotuning the slider can be used to easily adjust 
the tuned settingsfor responsiveness.

4.1.13 • Adjusted Roboclaw 2x60A deadtime

4.1.12 • Changed communication checksum to CRC-CCITT(CRC16 xmodem, polynomial 0x1021).

• Home signal falling edge triggers motor stop and encoder zero.

• Added manual homing option, does not automatically home on start. User must move motor until 
home signal is triggered top zero encoders.

• Fixed unsigned value underflow in Analog filter function.

• Changed E-Stop to OR instead of AND when using multiple E-Stop inputs. Note if any signal is a 
Latching E-STOP all E-STOPs are latching E-STOPs.

• Added option to swap encoder channels.

• Added Home signal states to status word(see updated manual).

• Added open drain enable for S2(multi-unit mode).

• Added adjustable +(forward) and -(backward) deadbands for RC / Analog modes.

• Fixed a hardware reset bug in xmega. USBCAL values being updated in main loop caused reset if 
USB was connected and a 5v signal was on S1.

• Added USB reset on USB suspend(caused by usbser.sys not handling IN errors properly).

• Added GETENCODERS(Reads both encoder values in one call).

• Added GETISPEEDS(Reads both ispeed values in on call).



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 7

Precautions
There are several important precautions that should be followed to avoid damage to the 
RoboClaw and connected systems. 

1. Disconnecting the negative power terminal is not the proper way to shut down a motor 
controller. If any I/O are connected to the RoboClaw a ground loop through the attached I/O pins 
will result. Which can cause damaged to the RoboClaw and any attached devices. To shut down 
a motor controller the positive power connections should be removed first after the motors have 
stopped moving.

2. A DC brushed motor will work like a generator when spun. A robot being pushed or turned off 
with forward momentum, can create enough voltage to power RoboClaws logic which will create 
an unsafe state. Always stop the motors before powering down RoboClaw.

3. Powering off in an emergency, a properly sized switch and/or contactor should be used.  Also 
because the power may be disconnected at any time there should be a path for regeneration 
energy to get back to the battery even after the power has been disconnected. Use a power 
diode with proper ratings to provide a path across the switch/contactor.

4. Depending on the model of RoboClaw there is a minimum power requirement of at least 6V. 
Under heavy loads, if the logic battery and main battery are combined, brownouts can happen. 
This can cause erratic behavior from RoboClaw. If this is the case a seperate logic battery should 
be used to power the logic.

Motor Selection
When selecting RoboClaw for a motor several factors should be considered. All brushed DC 
motors will have two amperage ratings which are maximum stall current and running current. 
The most important rating is the stall current. Choose a Roboclaw model that can support the 
stall current of the motor to insure you can drive the motor properly without damage to the 
Roboclaw.

Stall Current
A motor at rest is in a stall condition. This means during start up the motors stall current will be 
reached. The loading of the motor will determine how long maximum stall current is required. A 
motor that is required to start and stop or change directions rapidly but with light load will still 
require maximum stall current often.  

Running Current
The continuous current rating of a motor is the maximum current the motor can run without 
overheating and eventually failing. The average running current of the motor should not excede 
the continuous current rating of the motor.

Wire Lengths
Wire lengths to the motors and from the battery should be kept as short as possible. Longer 
wires will create increased inductance which will produce undesirable effects such as electrical 
noise or increased current and voltage ripple. The power supply/battery wires must be as short 
as possible. They should also be sized appropriately for the amout of current being drawn. 
Increased inductance in the power source wires will increase the ripple current/voltage at the 
RoboClaw which can damage the filter caps on the board or even causing voltage spikes over the 
rated voltage of the Roboclaw, leading to board failure.



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 8

Run Away
During development of your project caution should be taken to avoid run away conditions. The 
wheels of a robot should not be in contact with any surface until all development is complete. 
If the motor is embedded, ensure you have a safe and easy method to remove power from 
RoboClaw as a fail safe. 

Power Sources
A battery is recommended as the main power source for RoboClaw. Some linear power supplies 
can also be used without additional hardware if they have built in voltage clamps.  Most Linear 
and Switching power supplies are not capable of handling the regeneration energy generated 
by DC motors. The regeneration creates voltage spikes which most power sipplies are not 
designed to handle. Switching power supplies will momentarily reduce voltage and or shut down, 
causing brown outs which will leave RoboClaw in an unsafe state. The Roboclaws minimum and 
maximum voltage levels can be set to prevent some of these voltage spikes, however this will 
cause the motors to brake when slowing down too quickly in an attempt to reduce the over 
voltage spikes. This will also limit power output when accelerating motors or when the load 
changes to prevent undervoltage conditions.

Logic Power
When powering external devices from RoboClaw ensure the maximum BEC output rating is not 
exceeded. This can cause RoboClaw to suffer logic brown out which will cause erratic behavior. 
Some low quality encoders can cause excessive noise being put on the +5VDC rail of the 
RoboClaw. This excessive noise will cause unpredictable behavior.

Optical Encoders
RoboClaw features dual channel quadrature/absolute decoding. When wiring encoders make sure 
the direction of spin is correct to the motor direction. Incorrect encoder connections can cause a 
run away state. Refer to the encoder section of this user manual for proper setup.

Easy to use Libraries
Source code and Libraries are available on the Ion Motion Control website. Libraries are available 
for Arduino(C++), C# on Windows(.NET) or Linux(Mono) and Python(Raspberry Pi, Linux, OSX, 
etc).



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 9

Header Overview
RoboClaw share the same header and screw terminal pinouts accross the models covered in this 
user manual. The main control I/O are arranged for easy connectivity to control devices such as 
RC controllers. The headers are also arranged to provide easy access to ground and power for 
supplying power to external controllers.

          Pin Headers        Screw Terminals              Screw Terminal Encoder
   

Logic Battery (LB IN)
The logic side of RoboClaw can be powered from a secondary battery wired to LB IN. The 
positive (+) terminal is located at the board edge and ground (-) is the inside pin closest to the 
heatsink. Remove the LB-MB jumper if a secondary battery for logic will be used.

BEC Source (LB-MB)
RoboClaw logic requires 5VDC which is provided from the on board BEC circuit. The BEC source 
input is set with the LB-MB jumper. Install a jumper on the 2 pins labeled LB-MB to use the 
main battery as the BEC power source. Remove this jumper if using a separate logic battery. On 
models without this jumper the power source is selected automatically.

Encoder Power (+ -) 
The pins labeled + and - are the source power pins for encoders. The positive (+) is located at 
the board edge and supplies +5VDC. The ground (-) pin is near the heatsink. On ST models all 
power must come from the single 5v screw terminal and the single GND screw terminal

Encoder Inputs (EN1 / EN2 - 1B / 1A / 2B / 2A)
EN1 and EN2 are the inputs from the encoders on pin header versions of RoboClaw. 1B, 1A, 2B 
and 2A are the encoders inputs on screw terminal versions of RoboClaw. Channel A of both EN1 
and EN2 are located at the board edge on the pin header. Channel B pins are located near the 
heatsink on the pin header. The A and B channels are labeled appropriately on screw terminal 
versions. 

When connecting the encoder make sure the leading channel for the direction of rotation is 
connected to A. If one encoder is backwards to the other you will have one internal counter 
counting up and the other counting down. Refer to the data sheet of the encoder you are using 
for channel direction.  Which encoder is used on which motor can be swapped via a software 
setting.

S1
S2
S3

EN2
EN1
+
+

-
-

LB-MB
LB  IN

+ -

S4
S5

S1
S2

S3
S4

S5
LB

G
N

D
5+

2A
1B

1A
2B



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 10

Control Inputs (S1 / S2 / S3 / S4 /S5)
S1, S2, S3, S4 and S5 are setup for standard servo style headers I/O(except on ST models), 
+5V and GND. S1 and S2 are the control inputs for serial, analog and RC modes. S3 can be 
used as a flip switch input when in RC or Analog modes. In serial mode S3, S4 and S5 can be 
used as emergency stop inputs or as voltage clamp control outputs. When set as E-Stop inputs 
they are active when pulled low and have internal pullups so they will not accidentally trip when 
left floating. S4 and S5 can also optionally be used as home signal inputs. The pins closest to 
the board edge are the I/0s, center pin is the +5V and the inside pins are ground. Some RC 
receivers have their own supply and will conflict with the RoboClaw’s 5v logic supply. It may be 
necessary to remove the +5V pin from the RC receivers cable in those cases.

Main Battery Screw Terminals
The main power input can be from 6VDC to 34VDC on a standard RoboClaw and 10.5VDC to 
60VDC on an HV (High Voltage) RoboClaw. The connections are marked + and - on the main 
screw terminal. The plus (+) symbol marks the positive terminal and the negative (-) marks the 
negative terminal. The main battery wires should be as short as possible. 

   Do not reverse main battery wires. Roboclaw will 
   be permenantly damaged.

Disconnect
The main battery should have a disconnect in case of a run away situation and power needs 
to be cut. The switch must be rated to handle the maximum current and voltage from the 
battery. This will vary depending on the type of motors and or power source you are using. A 
typically solution would be an inexpensive contactor which can be source from sites like Ebay. A 
power diode rated for the maximum current the battery will deliver should be placed across the 
switch/contactor to provide a path back to the battery when disconnected while the motors are 
spinning. The diode will provice a path back to the battery for regenerative power even if the 
switch is opened.

Motor Screw Terminals
The motor screw terminals are marked with M1A / M1B for channel 1 and M2A / M2B for channel 
2. For both motors to turn in the same direction the wiring of one motor should be reversed from 
the other in a typical differential drive robot. The motor and battery wires should be as short 
as possible. Long wires can increase the inductance and therefore increase potentially harmful 
voltage spikes.



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 11

Basic Wiring
The wiring diagrahm below illustrates the basic battery and motor connections for RoboClaw. 
M1A and M1B is motor channel 1 with M2A and M2B as motor channel 2.  

Never disconnect the negative battery lead before disconnecting the 
positive!

Motor 1

Motor 2

M1A

M1B

M2B

M2A

Negative -

Positive +

+-

Battery

RoboClaw

D1

SW1



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 12

Status and Error LEDs
The RoboClaw has three LEDs. Two status LEDs marked STAT1 and STAT2 and an error LED 
marked ERR. When RoboClaw is first powered up all 3 LEDs should flash briefly to indicate 
all LEDs are functional. LEDs will behave differently depending on the mode RoboClaw is set 
to. During normal operation the status 1 LED will remain on continuously or blink when data 
is received in RC Mode or Serial Modes. The status 2 LED will light when either drive stage is 
active.

Error and Warning States
When an error occurs both motor channel outputs will be disabled and RoboClaw will stop any 
further actions until the unit is reset, or in the case of non-latching E-Stops, the error state 
is cleared. When warnings occur both motor channel outputs will be controlled automatically 
depending on the warning condition(s).

LED Status Condition Type Description

All three LEDs lit. E-Stop Error Motors are stopped by braking.

Error LED lit while condition 
is active.

Over 85c Temperature Warning Motor current limit is recalculated based on 
temperature.

Error LED blinks once with 
short delay. Other LEDs off.

Over 100c Temperature Error Motors freewheel while condition exist.

Error LED lit while condition 
is active.

Over Current Warning Motor power is automatically limited.

Error LED blinking twice. 
STAT1 or STAT2 indicates 
channel.

Driver Fault Error Motors freewheel. MCP has detected 
damage.

Error LED blinking three 
times.

Logic Battery High Error Motors freewheel until MCP is reset.

Error LED blinking four times. Logic Battery Low Error Motors freewheel until MCP is reset.

Error LED blinking five times. Main Battery High Error Motors are stopped by braking until MCP is 
reset.

Error LED lit while condition 
is active.

Main Battery High Warning Motors are stopped by braking while 
condition exist.

Error LED lit while condition 
is active.

Main Battery Low Warning Motors freewheel while condition exist. 

Error LED lit while condition 
is active.

M1 or M2 Home Warning Motor is stopped and encoder is reset to 0

ER
R

ST
A

T2

ST
A

T1



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 13

Firmware Update LED State
If all three LEDs begin to cycle on and off after powering on, the Roboclaw has been set to install 
new firmware. Use IonMotion on a Windows PC to install the new firmware to clear this state.

Automatic Battery Detection on Startup
If the automatic battery detection mode is enabled the Stat2 LED will blink to indicate the 
detected battery type. Each blink indicates the number of LIPO cells detected.  If automatic 
detection is used the number of cells detected should be confirmed on power up before running 
the unit. 

  Undercharged or overcharged batteries can cause invalid autodetection.



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 14

RoboClaw Modes
There are 4 main modes with variations totaling 14 modes in all. Each mode enables RoboClaw 
to be controlled in a very specific way. The following list explains each mode and the ideal 
application.

USB can be connected in any mode. When the Roboclaw is not in packet serial mode USB packet 
serial commands can be used to read status information and set configuration settings, however 
motor movement commands will not function.  When in packet serial mode if another device 
such as an Arduino is connected to S1 and S2 pins and sending commands to the RoboClaw, 
both those commands and USB packet serial commands will execute.

1. RC Mode 1 & 2 - With RC mode RoboClaw can be controlled from any hobby RC radio 
system. RC input mode also allows low powered microcontrollers such as a Basic Stamp to 
control RoboClaw. RoboClaw expects servo pulse inputs to control the direction and speed. Very 
similar to how a regular servo is controlled. RC mode can use encoders if properly setup(See 
Encoder section).

2. Analog Mode 3 & 4 - Analog mode uses an analog signal from 0V to 2V to control the speed 
and direction of each motor. RoboClaw can be controlled using a potentiometer or filtered PWM 
from a microcontroller. Analog mode is ideal for interfacing RoboClaw with joystick positioning 
systems or other non microcontroller interfacing hardware. Analog mode can use encoders if 
properly setup(See Encoder section).

3. Standard Serial Mode 5 & 6 - In standard serial mode RoboClaw expects TTL level RS-
232 serial data to control direction and speed of each motor. Standard serial is typically used to 
control RoboClaw from a microcontroller or PC. If using a PC, a MAX232 or an equivilent level 
converter circuit must be used since RoboClaw only works with TTL level inputs. Standard serial 
includes a slave select mode which allows multiple RoboClaws to be controlled from a signal RS-
232 port (PC or microcontroller). Standard serial is a one way format, RoboClaw only receives 
data. Encoders are not supported with Standard Serial mode.

4. Packet Serial Mode 7 through 14 - In packet serial mode RoboClaw expects TTL level 
RS-232 serial data to control direction and speed of each motor. Packet serial is typically used 
to control RoboClaw from a microcontroller or PC. If using a PC a MAX232 or an equivilent 
level converter circuit must be used since RoboClaw only works with TTL level input. In packet 
serial mode each RoboClaw is assigned a unique address. There are 8 addresses available. This 
means up to 8 RoboClaws can be on the same serial port. Encoders are support in Packet Serial 
mode(See Encoder section).

5. USB Control - USB can be connected in any mode. When the Roboclaw is not in packet 
serial mode USB packet serial commands can be used to read status information and/or set 
configuration settings, however motor movement commands will not function.  When in packet 
serial mode if another device, for example an Arduino, is connected to the S1 and S2 pins and 
sending commands to the Roboclaw both those commands and USB packet serial commands will 
execute.



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 15

Configuring RoboClaw Modes
The 3 buttons on RoboClaw are used to set the different configuration options. The MODE button 
sets the interface method such as Serial or RC modes. The SET button is used to configure the 
options for the mode. The LIPO button doubles as a save button and configuring the low battery 
voltage cut out function of RoboClaw. To set the desired mode follow the steps below:

1. Press and release the MODE button to enter mode setup. The STAT2 LED will begin to blink 
out the current mode. Each blink is a half second with a long pause at the end of the count. Five 
blinks with a long pause equals mode 5 and so on.

2. Press SET to increment to the next mode. Press MODE to decrement to the previous mode.

3. Press and release the LIPO button to save this mode to memory.

    Modes
Mode Description

1 RC mode

2 RC mode with mixing

3 Analog mode

4 Analog mode with mixing

5 Standard Serial

6 Standard Serial with slave pin

7 Packet Serial Mode - Address 0x80

8 Packet Serial Mode - Address 0x81

9 Packet Serial Mode - Address 0x82

10 Packet Serial Mode - Address 0x83

11 Packet Serial Mode - Address 0x84

12 Packet Serial Mode - Address 0x85

13 Packet Serial Mode - Address 0x86

14 Packet Serial Mode - Address 0x87

LIPOSETMODE



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 16

Mode Options
After the desired mode is set and saved press and release the SET button for options setup. The 
STAT2 LED will begin to blink out the current option setting. Press SET to increment to the next 
option. Press MODE to decrement to the previous option. Once the desired option is selected 
press and release the LIPO button to save the option to memory.

RC and Analog Mode Options
Option Description

1 TTL Flip Switch

2 TTL Flip and Exponential Enabled

3 TTL Flip and MCU Enabled

4 TTL Flip and Exp and MCU Enabled

5 RC Flip Switch

6 RC Flip and Exponential Enabled

7 RC Flip and MCU Enabled

8 RC Flip and Exponential and MCU Enabled

    Standard Serial and Packet Serial Mode Options
Option Description

1 2400bps

2 9600bps

3 19200bps

4 38400bps

5 57600bps

6 115200bps

7 230400bps

8 460800bps



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 17

Battery Cut Off Settings
The battery settings can be set by pressing and releasing the LIPO button. The STAT2 LED will 
begin to blink out the current setting. Press SET to increment to the next setting. Press MODE 
to decrement to the previous setting. Once the desired setting is selected press and release the 
LIPO button to save this setting to memory.

    Battery Options
Option Description

1 Disabled (6V Cuttoff)

2 Auto Detect

3 3 Cell(9V Cutoff)

4 4 Cell(12V Cutoff)

5 5 Cell(15V Cutoff)

6 6 Cell(18V Cutoff)

7 7 Cell(21V Cutoff)

8 8 Cell(24V Cutoff)

Manual Voltage Settings
The minimum and maximum voltage can be set using the IonMotion software or packet serial 
commands.  Values can be set to any value between the boards minimum and maximum voltage 
limits.  This is useful when using a power supply. A minimum voltage just below the power 
supply voltage (2 to 3v below) will prevent the power supply voltage from dipping too low under 
heavy load.  A maximum voltage set just above the power supply voltage(2 to 3v above) will 
help protect the power supply and RoboClaw from regenerative voltage spikes if an external 
voltage clamp circuit is not being used.



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 18

USB CONTROL



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 19

USB Connection
When RoboClaw is connected, it will automatically detect it has been connected to a powered 
USB master and will enable USB communications. USB can be connected in any mode. When 
the Roboclaw is not in packet serial mode USB packet serial commands can be used to read 
status information and set configuration settings, however motor movement commands will not 
function.  When in packet serial mode if another device such as an Arduino is connected to S1 
and S2 pins and sending commands to the RoboClaw, both those commands and USB packet 
serial commands will execute.

USB Power
The USB RoboClaw is self powered. This means it receives no power from the USB cable. The 
USB RoboClaw must be externally powered to function.

USB Comport and Baudrate
The RoboClaw will be detected as a CDC Virtual Comport.  When connected to a Windows PC a 
driver must be installed. The driver is available for download from our website. On Linux or OSX 
the RoboClaw will be automatically detected as a virtual comport and an appropriate driver will 
be automatically loaded.

Unlike a real comport the USB CDC Virtual Comport does not need a baud rate to be set 
correctly. It will always communicate at the fastest speed the master and slave device can reach.  
This will typically be around 1mb/s.



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 20

RC MODE



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 21

RC Mode
RC mode is typically used when controlling RoboClaw from a hobby RC radio. This mode can also 
be used to simplify driving RoboClaw from a microcontroller using servo pulses. In this mode S1 
controls the direction and speed of motor 1 and S2 controls the direction and speed of motor 2. 

RC Mode With Mixing
This mode is the same as RC mode with the exception of how S1 and S2 controls the attached 
motors. When used with a differentially steered robot, mixing mode allows S1 to control the 
speed forward and backward and S2 to control steering left and right.

Using RC Mode with feedback for velocity/position control
RC Mode can be used with encoders.  Velocity and/or Position PID constants must be calibrated 
for proper operation first. Once calibrated values have been set and saved into Roboclaws 
eeprom memory, encoder support using velocity or position PID control can be enabled. 
Use IonMotion control software or Packet Serial commands, enable encoders for RC/Analog 
modes(See General Settings in IonMotion). 

    RC Mode Options
Option Function Description

1 TTL Flip Switch Flip switch triggered by low signal.

2 TTL Flip and Exponential Enabled Softens the center control position. This mode is ideal 
with tank style robots. Making it easier to control from an 
RC radio. Flip switch triggered by low signal.

3 TTL Flip and MCU Enabled Continues to execute last pulse received until new 
pulse received. Disables Signal loss fail safe and auto 
calibration. Flip switch triggered by low signal.

4 TTL Flip and Exponential and MCU Enabled Enables both options. Flip switch triggered by low signal.

5 RC Flip Switch Enabled Same as mode 1 with flip switch triggered by RC signal. 

6 RC Flip and Exponential Enabled Same as mode 2 with flip switch triggered by RC signal. 

7 RC Flip and MCU Enabled Same as mode 3 with flip switch triggered by RC signal. 

8 RC Flip and Exponential and MCU Enabled Same as mode 4 with flip switch triggered by RC signal. 



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 22

Pulse Ranges
The RoboClaw expects RC pulses on S1 and S2 to drive the motors when the mode is set to 
RC mode. The center points are calibrated at start up(unless disabled by enabling MCU mode). 
1250us is the default for full reverse and 1750us is the default for full forward. The RoboClaw will 
auto calibrate these ranges on the fly unless auto-calibration is disabled. If a pulse smaller than 
1250us or larger than 1750us is detected the new pulse range will be set as the maximum.

Pulse MCU Mode Enabled MCU Mode Diabled

Stopped 1520μs Start Up Auto Calibration 

Full Reverse 1120μs +400μs

Full Forward 1920μs -400μs



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 23

RC Wiring Example
Connect the RoboClaw as shown below. Set mode 1 with option 1. Before powering up, center 
the control sticks on the radio transmitter, turn the radio on first, then the receiver, then 
RoboClaw. It will take RoboClaw about 1 second to calibrate the neutral positions of the RC 
controller. After RC pulses start to be received and calibration is complete the Stat1 LED will 
begin to flash indicating signals from the RC receiver are being received.

M1A

M1B

M2B

M2A

Negative -

Positive +

+-

Battery

S1 Signal

S2 Signal

5VDC

Channel 1

Channel 2

GROUND
5VDC

GROUND

Receiver

RoboClaw

Motor 1

Motor 2

D1

SW1



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 24

RC Control - Arduino Example
The example will drive a 2 motor 4 wheel robot in reverse, stop, forward, left turn and then 
right turn. The program was written and tested with a Arduino Uno and P5 connected to S1, P6 
connected to S2. Set mode 2 with option 4.

//RoboClaw RC Mode 
//Control RoboClaw with servo pulses from a microcontroller.  
//Mode settings: Mode 2(RC mixed mode) with Option 4(MCU with Exponential). 
 
#include <Servo.h>  
 
#define MIN 1250 
#define MAX 1750 
#define STOP 1500 
 
Servo myservo1;  // create servo object to control a RoboClaw channel 
Servo myservo2;  // create servo object to control a RoboClaw channel 
  
int pos = 0;    // variable to store the servo position  
  
void setup()  
{  
  myservo1.attach(5);  // attaches the RC signal on pin 5 to the servo object  
  myservo2.attach(6);  // attaches the RC signal on pin 6 to the servo object  
}  
  
void loop()  
{  
  myservo1.writeMicroseconds(STOP);  //Stop 
  myservo2.writeMicroseconds(STOP);  //Stop 
  delay(2000); 
 
  myservo1.writeMicroseconds(MIN);  //full forward 
  delay(1000); 
 
  myservo1.writeMicroseconds(STOP);  //stop 
  delay(2000); 
 
  myservo1.writeMicroseconds(MAX);  //full reverse 
  delay(1000); 
 
  myservo1.writeMicroseconds(STOP);  //Stop 
  delay(2000); 
 
  myservo2.writeMicroseconds(MIN);  //full turn left 
  delay(1000); 
 
  myservo2.writeMicroseconds(STOP);  //Stop 
  delay(2000); 
 
  myservo2.writeMicroseconds(MAX);  //full turn right 
  delay(1000); 
}  



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 25

ANALOG MODE



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 26

Analog Mode
Analog mode is used when controlling RoboClaw from a potentiometer or a filtered PWM signal. 
In this mode S1 and S2 are set as analog inputs. The voltage range is 0V = Full reverse, 1V = 
Stop and 2V = Full forward. 

Analog Mode With Mixing
This mode is the same as Analog mode with the exception of how S1 and S2 control the attached 
motors.  When used with a differentially steered robot, mixing mode allows S1 to control the 
speed forward and backward and S2 to control steering left and right.

Using Analog Mode with feedback for velocity/position control
Analog Mode can be used with encoders.  Velocity and/or Position PID constants must be 
calibrated for proper operation. Once calibrated values have been set and saved into Roboclaws 
eeprom, encoder support using velocity or position PID control can be enabled. Use IonMotion 
control software or PacketSerial commands to enable encoders for RC/Analog modes( see 
General Settings in IonMotion). 

    Analog Mode Options
Option Function Description

1 TTL Flip Switch Flip switch triggered by low signal.

2 TTL Flip and Exponential Enabled Softens the center control position. This mode is ideal 
with tank style robots. Making it easier to control from 
an RC radio. Flip switch triggered by low signal.

3 TTL FLip and MCU Enabled Continues to execute last pulse received until new 
pulse received. Disables Signal loss fail safe and auto 
calibration. Flip switch triggered by low signal.

4 TTL FLip and Exponential and MCU 
Enabled

Enables both options. Flip switch triggered by low 
signal.

5 RC Flip Switch Enabled Same as mode 1 with flip switch triggered by RC signal. 

6 RC Flip and Exponential Enabled Same as mode 2 with flip switch triggered by RC signal. 

7 RC Flip and MCU Enabled Same as mode 3 with flip switch triggered by RC signal. 

8 RC Flip and Exponential and MCU Enabled Same as mode 4 with flip switch triggered by RC signal. 



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 27

Analog Wiring Example
RoboClaw uses a high speed 12 bit analog converter. Its range is 0 to 2V. The analog pins 
are protected and 5V tolerant. The potentiometer range will be limited if 5V is utilized as the 
reference voltage. A simple resistor divider circuit can be used to reduce the on board 5V to 2V 
for use with a potentiometer(POT). See the below schematic. The POT acts as one half of the 
resistor divider. If using a 5k potentiometer R1 / R2 = 7.5k, If using a 10k potentiometer R1 / R2 
= 15k and if using a 20k potentiometer R1 / R2 = 30k.
 
Set mode 3 with option 1. Center the potentiometers before applying power. The S1 
potentiometer will control the motor 1 direction and speed. The S2 potentiometer will control the 
motor 2 direction and speed.

S2 Signal
5VDC

GROUND
Pot 2

S1 Signal
5VDC

GROUND
Pot 1 M1A

M1B

M2B

M2A

Negative -

Positive +

+-

Battery

RoboClaw

Motor 1

Motor 2

R2

R1

D1

SW1



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 28

STANDARD SERIAL



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 29

Standard Serial Mode
In this mode S1 accepts TTL level byte commands. Standard serial mode is one way serial data. 
RoboClaw can receive only. A standard 8N1 format is used. Which is 8 bits, no parity bits and 
1 stop bit. If you are using a microcontroller you can interface directly to RoboClaw. If you are 
using a PC a level shifting circuit (eg: Max232) is required. The baud rate can be changed using 
the SET button once a serial mode has been selected.

Standard Serial communications has no error correction. It is recommended 
to use Packet Serial mode instead for more reliable communications.

Serial Mode Baud Rates
Option Description

1 2400

2 9600

3 19200

4 38400

5 57600

6 115200

7 230400

8 460800

Standard Serial Command Syntax
The RoboClaw standard serial is setup to control both motors with one byte sized command 
character. Since a byte can be any value from 0 to 255(or -128 to 127) the control of each motor 
is split. 1 to 127 controls channel 1 and 128 to 255(or -1 to -127) controls channel 2. Command 
value 0 will stop both channels. Any other values will control speed and direction of the specific 
channel.  
         

Character Function

0 Shuts Down Channel 1 and 2

1 Channel 1 - Full Reverse

64 Channel 1 - Stop

127 Channel 1 - Full Forward

128 Channel 2 - Full Reverse

192 Channel 2 - Stop

255 Channel 2 - Full Forward



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 30

Standard Serial Wiring Example
In standard serial mode the RoboClaw can only receive serial data. The below wiring diagram 
illustrates a basic setup of RoboClaw for use with standard serial. The diagram below shows 
the main battery as the only power source. Make sure the LB jumper is set correctly. The 5VDC 
shown connected is only required if your MCU needs a power source. This is the BEC feature of 
RoboClaw. If the MCU has its own power source do not the 5VDC.

M1A

M1B

M2B

M2A

Negative -

Positive +

+-

Battery

S1 Signal

5VDC

UART TX

GROUND
5VDC

GROUND

MCU

RoboClaw

Motor 1

Motor 2

D1

SW1



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 31

Standard Serial Mode With Slave Select
Slave select is used when more than one RoboClaw is on the same serial bus. When slave select 
is set to ON the S2 pin becomes the select pin. Set S2 high (5V) and RoboClaw will execute the 
next set of commands sent to S1 pin. Set S2 low (0V) and RoboClaw will ignore all received 
commands.

Any RoboClaw connected to a bus must share a common signal ground (GND) shown by the 
black wire. The S1 pin of RoboClaw is the serial receive pin and should be connected to the 
transmit pin of the MCU. All RoboClaw’s S1 pins will be connected to the same MCU transmit 
pin. Each RoboClaw S2 pin should be connected to a unique I/O pin on the MCU. S2 is used as 
the control pin to activate the attached RoboClaw. To enable a RoboClaw hold its S2 pin high 
otherwise any commands sent are ignored.

The diagram below shows the main battery as the only power source. Make sure the LB jumper 
is set correctly. The 5VDC shown connected is only required if your MCU needs a power source. 
This is the BEC feature of RoboClaw. If the MCU has its own power source do not connect the 
5VDC.

M1A

M1B

M2B

M2A

Negative -

Positive +

+-

Battery

S1 Signal

S2 Signal

5VDC

UART TX

OUT 1

GROUND
5VDC

GROUND

MCU

RoboClaw

Motor 1

Motor 2

OUT 2

Connect to S2 of 
next RoboClaw

Connect to S1 of 
next RoboClaw

D1

SW1



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 32

Standard Serial - Arduino Example
The following example will start both channels in reverse, stop, forward, stop, turn left, stop turn 
right stop. The program was written and tested with a Arduino Uno and Pin 11 connected to S1 
and pin 10 connected to S2.

//Roboclaw simple serial example.  Set mode to 5.  Option to 4(38400 bps) 
#include "BMSerial.h" 
 
BMSerial mySerial(10,11); 
 
void setup() { 
  mySerial.begin(38400); 
} 
 
void loop() { 
  mySerial.write(1); 
  mySerial.write(-127); 
  delay(2000); 
  mySerial.write(64); 
  delay(1000); 
  mySerial.write(127); 
  mySerial.write(-1); 
  delay(2000); 
  mySerial.write(-64); 
  delay(1000); 
  mySerial.write(1); 
  mySerial.write(-1); 
  delay(2000); 
  mySerial.write(0); 
  delay(1000); 
  mySerial.write(127); 
  mySerial.write(-127); 
  delay(2000); 
  mySerial.write(0); 
  delay(1000); 
}



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 33

PACKET SERIAL



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 34

Packet Serial Mode
Packet serial is a buffered bidirectional serial mode. More sophisticated instructions can be sent 
to RoboClaw. The basic command structures consist of an address byte, command byte, data 
bytes and a CRC16 16bit checksum. The amount of data each command will send or receive can 
vary.

Address
Packet serial requires a unique address when used with TTL serial pins(S1 and S2). With up 
to 8 addresses available you can have up to 8 RoboClaws bussed on the same RS232 port 
when properly wired. There are 8 packet modes 7 to 14. Each mode has a unique address. The 
address is selected by setting the desired packet mode using the MODE button. 

NOTE: When using packet serial commands via the USB connection the address byte can be any 
value from 0x80 to 0x87 since each USB connection is already unique.

       
    Packet Modes

Mode Description

7 Packet Serial Mode - Address 0x80 (128)

8 Packet Serial Mode - Address 0x81 (129)

9 Packet Serial Mode - Address 0x82 (130)

10 Packet Serial Mode - Address 0x83 (131)

11 Packet Serial Mode - Address 0x84 (132)

12 Packet Serial Mode - Address 0x85 (133)

13 Packet Serial Mode - Address 0x86 (134)

14 Packet Serial Mode - Address 0x87 (135)

Packet Serial Baud Rate
When in serial mode or packet serial mode the baud rate can be changed to one of four different 
settings in the table below. These are set using the SET button as covered in Mode Options.

    Serial Mode Options
Option Description

1 2400

2 9600

3 19200

4 38400

5 57600

6 115200

7 230400

8 460800



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 35

Packet Timeout
When sending a packet to RoboClaw, if there is a delay longer than 10ms between bytes being 
received in a packet, RoboClaw will discard the entire packet. This will allow the packet buffer to 
be cleared by simply adding a minimum 10ms delay before sending a new packet command in 
the case of a communications error. This can usually be accomodated by having a 10ms timeout 
when waiting for a reply from the RoboClaw. If the reply times out the packet buffer will have 
been cleared automatically.

Packet Acknowledgement
RoboClaw will send an acknowledgment byte on write only packet commands that are valid. The 
value sent back is 0xFF. If the packet was not valid for any reason no acknowledgement will be 
sent back.

CRC16 Checksum Calculation
Roboclaw uses a CRC(Cyclic Redundancy Check) to validate each packet it receives. This is more 
complex than a simple checksum but prevents errors that could otherwise cause unexpected 
actions to execute on the Roboclaw.

The CRC can be calculated using the following code(example in C):

//Calculates CRC16 of nBytes of data in byte array message
unsigned int crc16(unsigned char *packet, int nBytes) {
    for (int byte = 0; byte < nBytes; byte++) {
        crc = crc ^ ((unsigned int)packet[byte] << 8);
        for (unsigned char bit = 0; bit < 8; bit++) {
            if (crc & 0x8000) {
                crc = (crc << 1) ^ 0x1021;
            } else {
                crc = crc << 1;
            }
        }
    }
    return crc;
}

CRC16 Checksum Calculation for Received data
The CRC16 calculation can also be used to validate received data from the Roboclaw. The CRC16 
value should be calculated using the sent Address and Command byte as well as all the data 
received back from the Roboclaw except the two CRC16 bytes. The value calculated will match 
the CRC16 sent by the Roboclaw if there are no errors in the data sent or received.

Easy to use Libraries
Source code and Libraries are available on the Ion Motion Control website that already 
handle the complexities of using packet serial with the Roboclaw.  Libraries are available for 
Arduino(C++), C# on Windows(.NET) or Linux(Mono) and Python(Raspberry Pi, Linux, OSX, etc).



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 36

Handling values larger than a byte
Many Packet Serial commands require values larger than a byte can hold.  In order to send or 
receive those values they need to be broken up into 2 or more bytes.  There are two ways this 
can be done, high byte first or low byte first.  Roboclaw expects the high byte first. All command 
arguments and values are either single bytes, words (2 bytes) or longs (4 bytes). All arguments 
and values are integers (signed or unsigned).  No floating point values (numbers with decimal 
places) are used in Packet Serial commands.

To convert a 32bit value into 4 bytes you just need to shift the bits around:

unsigned char byte3 = MyLongValue>>24; //High byte
unsigned char byte2 = MyLongValue>>16;
unsigned char byte1 = MyLongValue>>8;
unsigned char byte0 = MyLongValue;  //Low byte

The same applies to 16bit values:

unsigned char byte1 = MyWordValue>>8; //High byte
unsigned char byte0 = MyWordValue;  //Low byte

The oposite can also be done. Convert several bytes into a 16bit or 32bit value:

unsigned long MyLongValue = byte3<<24 | byte2<<16 | byte1<<8 | byte0;

unsigned int MyWordValue = byte1<<8 | byte0;

Packet Serial commands, when a value must be broken into multiple bytes or combined from 
multple bytes it will be indicated either by (2 bytes) or (4 bytes).  



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 37

Packet Serial Wiring
In packet serial mode the RoboClaw can transmit and receive serial data. A microcontroller with 
a UART is recommended. The UART will buffer the data received from RoboClaw. When a request 
for data is made to RoboClaw the return data will have at least a 1ms delay after the command 
is received if the baudrate is set at or below 38400. This will allow slower processors and 
processors without UARTs to communicate with RoboClaw.

The diagram below shows the main battery as the only power source. Make sure the LB jumper 
is set correctly. The 5VDC shown connected is only required if your MCU needs a power source. 
This is the BEC feature of RoboClaw. If the MCU has its own power source do not connect the 
5VDC.

M1A

M1B

M2B

M2A

Negative -

Positive +

+-

Battery

S1 Signal

S2 Signal

5VDC

UART TX

UART RX

GROUND
5VDC

GROUND

MCU

RoboClaw

Motor 1

Motor 2

D1

SW1



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 38

Multi-Unit Packet Serial Wiring
In packet serial mode up to eight Roboclaw units can be controlled from a single serial port. The 
wiring diaghram below illustrates how this is done. Each Roboclaw must have multi-unit mode 
enabled and have a unique packet serial address set(see General Settings in IonMotion). Wire 
the S1 and S2 pins directly to the MCU TX and RX pins.  Install a pullup resistor (R1) on the MCU 
RX pin. A 1K to 4.7K resistor value is recommended.

S1 Signal

S2 Signal

5VDC
GROUND

RoboClaw 2

S1 Signal

S2 Signal

5VDC
GROUND

RoboClaw 3

S1 Signal

S2 Signal

5VDC
GROUND

RoboClaw 1

UART TX

UART RX

5VDC
GROUND

MCU

R1



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 39

Commands 0 - 7 Compatibility Commands
The following commands are used in packet serial mode. The command syntax is the same for 
commands 0 thru 7:

 Send: Address, Command, ByteValue, CRC16
 Receive: [0xFF]

Command Description

0 Drive Forward Motor 1

1 Drive Backwards Motor 1

2 Set Main Voltage Minimum

3 Set Main Voltage Maximum

4 Drive Forward Motor 2

5 Drive Backwards Motor 2

6 Drive Motor 1 (7 Bit)

7 Drive Motor 2 (7 Bit)

8 Drive Forward Mixed Mode

9 Drive Backwards Mixed Mode

10 Turn Right Mixed Mode

11 Turn Left Mixed Mode

12 Drive Forward or Backward (7 bit)

13 Turn Left or Right (7 Bit)

0 - Drive Forward M1
Drive motor 1 forward. Valid data range is 0 - 127. A value of 127 = full speed forward, 64 = 
about half speed forward and 0 = full stop.

 Send: [Address, 0, Value, CRC(2 bytes)]
 Receive: [0xFF]

1 - Drive Backwards M1 
Drive motor 1 backwards. Valid data range is 0 - 127. A value of 127 full speed backwards, 64 = 
about half speed backward and 0 = full stop.

 Send: [Address, 1, Value, CRC(2 bytes)]
 Receive: [0xFF]

2 - Set Minimum Main Voltage (Command 57 Preferred) 

Sets main battery (B- / B+) minimum voltage level. If the battery voltages drops below the set 
voltage level RoboClaw will stop driving the motors. The voltage is set in .2 volt increments. A 
value of 0 sets the minimum value allowed which is 6V. The valid data range is 0 - 140 (6V - 
34V). The formula for calculating the voltage is: (Desired Volts - 6) x 5 = Value. Examples of 
valid values are 6V = 0, 8V = 10 and 11V = 25.

 Send: [Address, 2, Value, CRC(2 bytes)]
 Receive: [0xFF]



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 40

3 - Set Maximum Main Voltage (Command 57 Preferred) 

Sets main battery (B- / B+) maximum voltage level. The valid data range is 30 - 175 (6V - 
34V). During regenerative breaking a back voltage is applied to charge the battery. When using 
a power supply, by setting the maximum voltage level, RoboClaw will, before exceeding it, go 
into hard braking mode until the voltage drops below the maximum value set. This will prevent 
overvoltage conditions when using power supplies. The formula for calculating the voltage is: 
Desired Volts x 5.12 = Value. Examples of valid values are 12V = 62, 16V = 82 and 24V = 123.

 Send: [Address, 3, Value, CRC(2 bytes)]
 Receive: [0xFF]

4 - Drive Forward M2
Drive motor 2 forward. Valid data range is 0 - 127. A value of 127 full speed forward, 64 = about 
half speed forward and 0 = full stop.

 Send: [Address, 4, Value, CRC(2 bytes)]
 Receive: [0xFF]

5 - Drive Backwards M2 
Drive motor 2 backwards. Valid data range is 0 - 127. A value of 127 full speed backwards, 64 = 
about half speed backward and 0 = full stop.

 Send: [Address, 5, Value, CRC(2 bytes)]
 Receive: [0xFF]

6 - Drive M1 (7 Bit) 
Drive motor 1 forward or reverse. Valid data range is 0 - 127. A value of 0 =  full speed reverse, 
64 = stop and 127 = full speed forward.

 Send: [Address, 6, Value, CRC(2 bytes)]
 Receive: [0xFF]

7 - Drive M2 (7 Bit) 
Drive motor 2 forward or reverse. Valid data range is 0 - 127. A value of 0 =  full speed reverse, 
64 = stop and 127 = full speed forward.

 Send: [Address, 7, Value, CRC(2 bytes)]
 Receive: [0xFF]



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 41

Commands 8 - 13 Mixed Mode Compatibility Commands
The following commands are mix mode compatibility commands used to control speed and turn 
using differential steering. Before a command is executed valid drive and turn data is required. 
You only need to send both data packets once. After receiving both valid drive and turn data 
RoboClaw will begin to operate the motors. At this point you only need to update turn or drive 
data as needed.

8 - Drive Forward
Drive forward in mix mode. Valid data range is 0 - 127. A value of 0 = full stop and 127 = full 
forward.

 Send: [Address, 8, Value, CRC(2 bytes)]
 Receive: [0xFF]

9 - Drive Backwards
Drive backwards in mix mode. Valid data range is 0 - 127. A value of 0 = full stop and 127 = full 
reverse.

 Send: [Address, 9, Value, CRC(2 bytes)]
 Receive: [0xFF]

10 - Turn right
Turn right in mix mode. Valid data range is 0 - 127. A value of 0 = stop turn and 127 = full 
speed turn.

 Send: [Address, 10, Value, CRC(2 bytes)]
 Receive: [0xFF]

11 - Turn left
Turn left in mix mode. Valid data range is 0 - 127. A value of 0 = stop turn and 127 = full speed 
turn.

 Send: [Address, 11, Value, CRC(2 bytes)]
 Receive: [0xFF]

12 - Drive Forward or Backward (7 Bit)
Drive forward or backwards. Valid data range is 0 - 127. A value of 0 = full backward, 64 = stop 
and 127 = full forward.

 Send: [Address, 12, Value, CRC(2 bytes)]
 Receive: [0xFF]

13 - Turn Left or Right (7 Bit)
Turn left or right. Valid data range is 0 - 127. A value of 0 = full left, 0 = stop turn and 127 = full 
right.

 Send: [Address, 13, Value, CRC(2 bytes)]
 Receive: [0xFF]



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 42

Packet Serial - Arduino Example
The example will start the motor channels independently. Then start turns with mix mode 
commands. The program was written and tested with an Arduno Uno with P11 connected to 
S1 and P10 connected to S2. Set mode 7 and option 4. Additional example programs can be 
downloaded from Ionmc.com.

//Set mode to 7(packet serial address 0x80) and option to 4(38400) 
 
//Includes required to use Roboclaw library 
#include "BMSerial.h" 
#include "RoboClaw.h" 
 
//Roboclaw Address 
#define address 0x80 
 
//Setup communcaitions with roboclaw. Use pins 10 and 11 with 10ms timeout 
RoboClaw roboclaw(10,11,10000); 
 
void setup() { 
  //Communciate with roboclaw at 38400bps 
  roboclaw.begin(38400); 
  roboclaw.ForwardMixed(address, 0); 
  roboclaw.TurnRightMixed(address, 0); 
} 
 
void loop() { 
  //Using independant motor Forward and Backward commands 
  roboclaw.ForwardM1(address,64); //start Motor1 forward at half speed 
  roboclaw.BackwardM2(address,64); //start Motor2 backward at half speed 
  delay(2000); 
  roboclaw.BackwardM1(address,64); 
  roboclaw.ForwardM2(address,64); 
  delay(2000); 
  roboclaw.BackwardM1(address,0); 
  roboclaw.ForwardM2(address,0); 
  delay(2000); 
 
  //Using independant motor combined forward/backward commands  
  roboclaw.ForwardBackwardM1(address,96); //start Motor1 forward at half speed 
  roboclaw.ForwardBackwardM2(address,32); //start Motor2 backward at half speed 
  delay(2000); 
  roboclaw.ForwardBackwardM1(address,32); 
  roboclaw.ForwardBackwardM2(address,96); 
  delay(2000); 
  roboclaw.ForwardM1(address,0); //stop 
  roboclaw.BackwardM2(address,0); //stop 
  delay(2000); 
 
  //Using Mixed commands 
  roboclaw.ForwardMixed(address, 127);  //full speed forward 
  roboclaw.TurnRightMixed(address, 0);  //no turn 
  delay(2000); 
  roboclaw.TurnRightMixed(address, 64);  //half speed turn right 
  delay(2000); 
  roboclaw.TurnLeftMixed(address, 64);  //half speed turn left 
  delay(2000); 



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 43

 
  roboclaw.TurnLeftMixed(address, 0);  //stop turn 
  roboclaw.BackwardMixed(address, 127);  //half speed backward 
  delay(2000); 
  roboclaw.TurnRightMixed(address, 64);  //half speed turn right 
  delay(2000); 
  roboclaw.TurnLeftMixed(address, 64);  //half speed turn left 
  delay(2000); 
   
  roboclaw.ForwardMixed(address, 0);    //stop going backward 
  roboclaw.TurnRightMixed(address, 64);  //half speed right turn 
  delay(2000); 
  roboclaw.TurnLeftMixed(address, 64);  //half speed left turn 
  delay(2000); 
  roboclaw.TurnRightMixed(address, 0);  //stop turn(full stop) 
  delay(2000); 
}



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 44

ADVANCED 
PACKET SERIAL



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 45

Advance Packet Serial
The following commands are used to read board status, version information and set/read 
configuration values.

Command Description

21 Read Firmware Version

24 Read Main Battery Voltage

25 Read Logic Battery Voltage

26 Set Minimum Logic Voltage Level

27 Set Maximum Logic Voltage Level

48 Read Motor PWMs

49 Read Motor Currents

57 Set Main Battery Voltages

58 Set Logic Battery Voltages

59 Read Main Battery Voltage Settings

60 Read Logic Battery Voltage Settings

68 Set default duty cycle acceleration for M1

69 Set default duty cycle acceleration for M2

74 Set S3,S4 and S5 Modes

75 Read S3,S4 and S5 Modes

76 Set DeadBand for RC/Analog controls

77 Read DeadBand for RC/Analog controls

80 Restore Defaults

81 Read Default Duty Cycle Accelerations

82 Read Temperature

83 Read Temperature 2

90 Read Status

91 Read Encoder Modes

92 Set Motor 1 Encoder Mode

93 Set Motor 2 Encoder Mode

94 Write Settings to EEPROM

95 Read Settings from EEPROM

98 Set Standard Config Settings

99 Read Standard Config Settings

100 Set CTRL Modes

101 Read CTRL Modes

102 Set CTRL1

103 Set CTRL2

104 Read CTRLs

133 Set M1 Maximum Current

134 Set M2 Maximum Current

135 Read M1 Maximum Current

136 Read M2 Maximum Current

148 Set PWM Mode

149 Read PWM Mode



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 46

21 - Read Firmware Version
Read RoboClaw firmware version. Returns up to 48 bytes(depending on the Roboclaw model) and 
is terminated by a line feed character and a null character.

 Send: [Address, 21]
 Receive: [“RoboClaw 10.2A v4.1.11”,10,0, CRC(2 bytes)]

The command will return up to 48 bytes. The return string includes the product name and 
firmware version. The return string is terminated with a line feed (10) and null (0) character.

24 - Read Main Battery Voltage Level
Read the main battery voltage level connected to B+ and B- terminals. The voltage is returned in 
10ths of a volt(eg 300 = 30v).

 Send: [Address, 24]
 Receive: [Value(2 bytes), CRC(2 bytes)]

25 - Read Logic Battery Voltage Level
Read a logic battery voltage level connected to LB+ and LB- terminals. The voltage is returned in 
10ths of a volt(eg 50 = 5v).

 Send: [Address, 25]
 Receive: [Value.Byte1, Value.Byte0, CRC(2 bytes)]

26 - Set Minimum Logic Voltage Level
Note: This command is included for backwards compatibility.  We recommend you use 
command 58 instead. 

Sets logic input (LB- / LB+) minimum voltage level. RoboClaw will shut down with an error if 
the voltage is below this level. The voltage is set in .2 volt increments. A value of 0 sets the 
minimum value allowed which is 6V. The valid data range is 0 - 140 (6V - 34V). The formula for 
calculating the voltage is: (Desired Volts - 6) x 5 = Value. Examples of valid values are 6V = 0, 
8V = 10 and 11V = 25. 

 Send: [Address, 26, Value, CRC(2 bytes)]
 Receive: [0xFF]

27 - Set Maximum Logic Voltage Level
Note: This command is included for backwards compatibility.  We recommend you use 
command 58 instead. 

Sets logic input (LB- / LB+) maximum voltage level. The valid data range is 30 - 175 (6V - 
34V). RoboClaw will shutdown with an error if the voltage is above this level. The formula for 
calculating the voltage is: Desired Volts x 5.12 = Value. Examples of valid values are 12V = 62, 
16V = 82 and 24V = 123.

 Send: [Address, 27, Value, CRC(2 bytes)]
 Receive: [0xFF]



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 47

48 - Read Motor PWM values
    Read the current PWM output values for the motor channels.  The values returned are +-32767.
    The duty cycle percent is calculated by dividing the Value by 327.67.

 Send: [Address, 48]
 Receive: [M1 PWM(2 bytes), M2 PWM(2 bytes), CRC(2 bytes)]

49 - Read Motor Currents
Read the current draw from each motor in 10ma increments. The amps value is calculated by 
dividing the value by 100. 

 Send: [Address, 49]
 Receive: [M1 Current(2 bytes), M2 Currrent(2 bytes), CRC(2 bytes)]

57 - Set Main Battery Voltages
Set the Main Battery Voltage cutoffs, Min and Max. Min and Max voltages are in 10th of a volt 
increments.  Multiply the voltage to set by 10.

 Send: [Address, 57, Min(2 bytes), Max(2bytes, CRC(2 bytes)]
 Receive: [0xFF]

58 - Set Logic Battery Voltages
Set the Logic Battery Voltages cutoffs, Min and Max. Min and Max voltages are in 10th of a volt 
increments.  Multiply the voltage to set by 10.

 Send: [Address, 58, Min(2 bytes), Max(2bytes, CRC(2 bytes)]
 Receive: [0xFF]

59 - Read Main Battery Voltage Settings
Read the Main Battery Voltage Settings. The voltage is calculated by dividing the value by 10 

 Send: [Address, 59]
 Receive: [Min(2 bytes), Max(2 bytes), CRC(2 bytes)]

60 - Read Logic Battery Voltage Settings
Read the Logic Battery Voltage Settings.  The voltage is calculated by dividing the value by 10 

 Send: [Address, 60]
 Receive: [Min(2 bytes), Max(2 bytes), CRC(2 bytes)]

68 - Set M1 Default Duty Acceleration
Set the default acceleration for M1 when using duty cycle commands(Cmds 32,33 and 34) or 
when using Standard Serial, RC and Analog PWM modes.

 Send: [Address, 68, Accel(4 bytes), CRC(2 bytes)]
 Receive: [0xFF]



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 48

69 - Set M2 Default Duty Acceleration
Set the default acceleration for M2 when using duty cycle commands(Cmds 32,33 and 34) or 
when using Standard Serial, RC and Analog PWM modes.

 Send: [Address, 69, Accel(4 bytes), CRC(2 bytes)]
 Receive: [0xFF]

74 - Set S3, S4 and S5 Modes
    Set modes for S3,S4 and S5. 

 Send: [Address, 74, S3mode, S4mode, S5mode, CRC(2 bytes)]
 Receive: [0xFF]

Mode S3mode S4mode S5mode

0 Default Disabled Disabled

1 E-Stop(latching) E-Stop(latching) E-Stop(latching)

2 E-Stop E-Stop E-Stop

3 Voltage Clamp Voltage Clamp Voltage Clamp

4 M1 Home M2 Home
   

Mode Description:
Disabled: pin is inactive.
Default: Flip switch if in RC/Analog mode or E-Stop(latching) in Serial modes.
E-Stop(Latching): causes the Roboclaw to shutdown until the unit is power cycled.
E-Stop: Holds the Roboclaw in shutdown until the E-Stop signal is cleared.
Voltage Clamp: Sets the signal pin as an output to drive an external voltage clamp circuit
Home(M1 & M2): will trigger the specific motor to stop and the encoder count to reset to 0.

75 - Get S3, S4 amd S5 Modes
    Read mode settings for S3,S4 and S5. See command 74 for mode descriptions

 Send: [Address, 75]
 Receive: [S3mode, S4mode, S5mode, CRC(2 bytes)]

76 - Set DeadBand for RC/Analog controls
Set RC/Analog mode control deadband percentage in 10ths of a percent. Default value is 
25(2.5%). Minimum value is 0(no DeadBand), Maximum value is 250(25%).

 Send: [Address, 76, Reverse, Forward, CRC(2 bytes)]
 Receive: [0xFF]

77 - Read DeadBand for RC/Analog controls
    Read DeadBand settings in 10ths of a percent.

 Send: [Address, 77]
 Receive: [Reverse, SForward, CRC(2 bytes)]



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 49

80 - Restore Defaults
Reset Settings to factory defaults.

 Send: [Address, 80]
 Receive: [0xFF]

81 - Read Default Duty Acceleration Settings
Read M1 and M2 Duty Cycle Acceleration Settings.

Send: [Address, 81]
Receive: [M1Accel(4 bytes), M2Accel(4 bytes), CRC(2 bytes)]

82 - Read Temperature
Read the board temperature. Value returned is in 10ths of degrees.

 Send: [Address, 82]
 Receive: [Temperature(2 bytes), CRC(2 bytes)]

83 - Read Temperature 2
Read the second board temperature(only on supported units). Value returned is in 10ths of 
degrees.

 Send: [Address, 83]
 Receive: [Temperature(2 bytes), CRC(2 bytes)]



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 50

90 - Read Status
Read the current unit status.

 Send: [Address, 90]
 Receive: [Status, CRC(2 bytes)]

Function Status Bit Mask

Normal 0x0000

M1 OverCurrent Warning 0x0001

M2 OverCurrent Warning 0x0002

E-Stop 0x0004

Temperature Error 0x0008

Temperature2 Error 0x0010

Main Battery High Error 0x0020

Logic Battery High Error 0x0040

Logic Battery Low Error 0x0080

M1 Driver Fault 0x0100

M2 Driver Fault 0x0200

Main Battery High Warning 0x0400

Main Battery Low Warning 0x0800

Termperature Warning 0x1000

Temperature2 Warning 0x2000

M1 Home 0x4000

M2 Home 0x8000

91 - Read Encoder Mode
Read the encoder mode for both motors.

 Send: [Address, 91]
 Receive: [Enc1Mode, Enc2Mode, CRC(2 bytes)]

 Encoder Mode bits
 Bit 7   Enable RC/Analog Encoder support
 Bit 6-1  N/A
 Bit 0  Quadrature(0)/Absolute(1)

92 - Set Motor 1 Encoder Mode
Set the Encoder Mode for motor 1. See command 91.

Send: [Address, 92, Mode, CRC(2 bytes)]
Receive: [0xFF]

93 - Set Motor 2 Encoder Mode
Set the Encoder Mode for motor 2. See command 91.

Send: [Address, 93, Mode, CRC(2 bytes)]
Receive: [0xFF]



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 51

94 - Write Settings to EEPROM
Writes all settings to non-volatile memory. Values will be loaded after each power up.

Send: [Address, 94]
Receive: [0xFF]

95 - Read Settings from EEPROM
Read all settings from non-volatile memory.

Send: [Address, 95]
Receive: [Enc1Mode, Enc2Mode, CRC(2 bytes)]



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 52

98 - Set Standard Config Settings
Set config bits for standard settings.

Send: [Address, 98, Config(2 bytes), CRC(2 bytes)]
Receive: [0xFF]

Function Config Bit Mask

RC Mode 0x0000

Analog Mode 0x0001

Simple Serial Mode 0x0002

Packet Serial Mode 0x0003

Battery Mode Off 0x0000

Battery Mode Auto 0x0004

Battery Mode 2 Cell 0x0008

Battery Mode 3 Cell 0x000C

Battery Mode 4 Cell 0x0010

Battery Mode 5 Cell 0x0014

Battery Mode 6 Cell 0x0018

Battery Mode 7 Cell 0x001C

Mixing 0x0020

Exponential 0x0040

MCU 0x0080

BaudRate 2400 0x0000

BaudRate 9600 0x0020

BaudRate 19200 0x0040

BaudRate 38400 0x0060

BaudRate 57600 0x0080

BaudRate 115200 0x00A0

BaudRate 230400 0x00C0

BaudRate 460800 0x00E0

FlipSwitch 0x0100

Packet Address 0x80 0x0000

Packet Address 0x81 0x0100

Packet Address 0x82 0x0200

Packet Address 0x83 0x0300

Packet Address 0x84 0x0400

Packet Address 0x85 0x0500

Packet Address 0x86 0x0600

Packet Address 0x87 0x0700

Slave Mode 0x0800

Relay Mode 0X1000

Swap Encoders 0x2000

Swap Buttons 0x4000

Multi-Unit Mode 0x8000
 



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 53

99 - Read Standard Config Settings
Read config bits for standard settings See Command 98.

Send: [Address, 99]
Receive: [Config(2 bytes), CRC(2 bytes)]

100 - Set CTRL Modes
Set CTRL modes of CTRL1 and CTRL2 output pins(available on select models).

Send: [Address, 20, CRC(2 bytes)]
Receive: [0xFF]

On select models of Roboclaw, two Open drain, high current output drivers are available, CTRL1 
and CTRL2.

Mode Function

0 Disable

1 User

2 Voltage Clamp

3 Brake

User Mode - The output level can be controlled by setting a value from 0(0%) to 65535(100%).  
A variable frequency PWM is generated at the specified percentage.

Voltage Clamp Mode - The CTRL output will activate when an over voltage is detected and 
released when the overvoltage disipates. Adding an external load dump resistor from the CTRL 
pin to B+ will allow the Roboclaw to disipate over voltage energy automatically(up to the 3amp 
limit of the CTRL pin).

Brake Mode - The CTRL pin can be used to activate an external brake(CTRL1 for Motor 1 brake 
and CTRL2 for Motor 2 brake).  The signal will activate when the motor is stopped(eg 0 PWM).  
Note acceleration/default_acceleration settings should be set appropriately to allow the motor to 
slow down before the brake is activated.

101 - Read CTRL Modes
Read CTRL modes of CTRL1 and CTRL2 output pins(available on select models).

Send: [Address, 101]
Receive: [CTRL1Mode(1 bytes), CTRL2Mode(1 bytes), CRC(2 bytes)]

Reads CTRL1 and CTRL2 mode setting. See 100 - Set CTRL Modes for valid values.



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 54

102 - Set CTRL1
Set CTRL1 output value(available on select models)

Send: [Address, 102, Value(2 bytes), CRC(2 bytes)]
Receive: [0xFF]

Set the output state value of CTRL1. See 100 - Set CTRL Modes for valid values.

103 - Set CTRL2
Set CTRL2 output value(available on select models)

Send: [Address, 103, Value(2 bytes), CRC(2 bytes)]
Receive: [0xFF]

Set the output state value of CTRL2. See 100 - Set CTRL Modes for valid values.

104 - Read CTRL Settings
Read CTRL1 and CTRL2 output values(available on select models)

Send: [Address, 104]
Receive: [CTRL1(2 bytes), CTRL2(2 bytes), CRC(2 bytes)]

Reads currently set values for CTRL Settings. See 100 - Set CTRL Modes for valid values.

133 - Set M1 Max Current Limit
Set Motor 1 Maximum Current Limit. Current value is in 10ma units. To calculate multiply current 
limit by 100.

Send: [Address, 134, MaxCurrent(4 bytes), 0, 0, 0, 0, CRC(2 bytes)]
Receive: [0xFF]

134 - Set M2 Max Current Limit
Set Motor 2 Maximum Current Limit. Current value is in 10ma units. To calculate multiply current 
limit by 100.

 Send: [Address, 134, MaxCurrent(4 bytes), 0, 0, 0, 0, CRC(2 bytes)]
 Receive: [0xFF]

135 - Read M1 Max Current Limit
Read Motor 1 Maximum Current Limit. Current value is in 10ma units. To calculate divide value 
by 100. MinCurrent is always 0.

 Send: [Address, 135]
 Receive: [MaxCurrent(4 bytes), MinCurrent(4 bytes), CRC(2 bytes)]



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 55

136 - Read M2 Max Current Limit
Read Motor 2 Maximum Current Limit. Current value is in 10ma units. To calculate divide value 
by 100. MinCurrent is always 0.

 Send: [Address, 136]
 Receive: [MaxCurrent(4 bytes), MinCurrent(4 bytes), CRC(2 bytes)]

148 - Set PWM Mode
Set PWM Drive mode. Locked Antiphase(0) or Sign Magnitude(1).

 Send: [Address, 148, Mode, CRC(2 bytes)]
 Receive: [0xFF]

149 - Read PWM Mode
Read PWM Drive mode. See Command 148.

 Send: [Address, 149]
 Receive: [PWMMode, CRC(2 bytes)]



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 56

ENCODERS



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 57

Quadrature Encoders
RoboClaw is capable of reading two quadrature encoders, one for each motor channel. The main 
RoboClaw header provides two +5VDC connections with dual A and B input signals for each 
encoder. 

In a robot with two motor configurations one motor will spin clock wise (CW) while the other 
motor will spin counter clock wise (CCW). The A and B inputs for one of the encoders must be 
reversed as shown. If both encoder are connected with leading edge pulse to channel A one will 
count up and the other down. This will cause commands like Mix Drive Forward to not work as 
expected.

The diagram below shows the main battery as the only power source. Make sure the LB jumper 
is set correctly. The 5VDC shown connected is only required if your MCU needs a power source. 
This is the BEC feature of RoboClaw. If the MCU has its own power source do not the 5VDC.

M1A

M1B

M2B

M2A

Negative -

Positive +

+-

Battery

S1 Signal

S2 Signal

5VDC

UART TX

UART RX

GROUND
5VDC

GROUND

MCU

RoboClaw

Motor 1

Motor 2

Encoder 1

A
B

GND
+5V

EN1 A
EN1 B

5VDC
GROUND

Encoder 2

A
B

GND
+5V

EN2 B
EN2 A

5VDC
GROUND

D1

SW1



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 58

Absolute Encoder
RoboClaw is capable of reading absolute encoders that output an analog voltage. Like the Analog 
input modes for controlling the motors, the absolute encoder voltage must be between 0v and 
2v.  If using standard potentiometers as absolute encoders the 5v from the RoboClaw can be 
divided down to 2v at the potentiometer by adding a resistor from the 5v line on the RoboClaw 
to the potentiometer.  For a 5k pot R1 / R2 = 7.5k, for a 10k pot R1 / R2 = 15k and for a 20k 
pot R1 / R2 = 30k.

The diagram below shows the main battery as the only power source. Make sure the LB jumper 
is set correctly. The 5VDC shown connected is only required if your MCU needs a power source. 
This is the BEC feature of RoboClaw. If the MCU has its own power source do not connect the 
5VDC.

Encoder Calibration for Velocity and Position Control
To control motors speed and/or position with encoders correctly the Roboclaw must have its 
settings calibrated for the specific motors/encoders being used. The IonMotion software makes 
calibrating manually easy and also offers an autotune function for both velocity and position 
control modes.

Once the calibration settings for the specific mode you will be using(velocity, position or a 
cascaded velocity/position control) are set and working correctly within the IonMotion software 
the settings can be saved to the RoboClaw eeprom and will be loaded each time the unit powers 
up.

Motor 1

A
GND
+2V

M1A

M1B

Positive +

+-

Battery

S1 Signal

S2 Signal

5VDC

UART TX

UART RX

GROUND
5VDC

GROUND

RoboClaw

Motor 2

EN1 A

5VDC
GROUND

Pot 2
A

GND
+2V

EN2 A

5VDC
GROUND

Pot 1

R1

R2

M2B

M2A

Negative -
D1

SW1



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 59

Velocity Calibration Procedure
1. Determine the quadrature pulses per second(QPPS) value for your motor. The simplest 
method to do this is to run the Motor at 100% duty using IonMotion and read back the speed 
value from the encoder attached to the motor. If you are unable to run the motor like this due to 
physical constraints you will need to estimate the maximum speed in encoder counts the motor 
can produce.

2. Set the initial P,I and D values in the Velocity control window to 1,0 and 0.  Try moving the 
motor using the slider controls in IonMotion. If the motor does not move it may not be wired 
correctly or the P value needs to be increased. If the motor immediately runs at max speed 
when you change the slider position you probably have the motor or encoder wires reversed. 
The motor is trying to go at the speed specified but the encoder reading is coming back in the 
opposite direction so the motor increases power until it eventually hits 100% power. Reverse the 
encoder or motor wires(not both) and test again.

3. Once the motor has some semblance of control you can set a moderate speed. Then start 
increasing the P value until the speed reading is near the set value.  If the motor feels like it is 
vibrating at higher P values you should reduce the P value to about 2/3rds that value. Move on 
to the I setting.

4. Start increasing the I setting. You will usually want to increase this value by .1 increments. 
The I value helps the motor reach the exact speed specified.  Too high an I value will also cause 
the motor to feel rough/vibrate. This is because the motor will over shoot the set speed and then 
the controller will reduce power to get the speed back down which will also under shoot and this 
will continue oscillating back and forth form too fast to too slow, causing a vibration in the motor.

5. Once P and I are set reasonably well usually you will leave D = 0.  D is only required if you are 
unable to get reasonable speed control out of the motor using just P and I.  D will help dampen 
P and I over shoot allowing higher P and I values, but D also increases noise in the calculation 
which can cause oscillations in the speed as well.

Position Calibration Procedure
1. Position mode requires the Velocity mode QPPS value be set as described above. For simple 
Position control you can set Velocity P, I and D all to 0.

2. Set the Position I and D settings to 0. Set the P setting to 2000 as a reasonable starting 
point. To test the motor you must also set the Speed argument to some value. We recommend 
setting it to the same value as the QPPS setting(eg maximum motor speed).  Set the minimum 
and maximum position values to safe numbers. If your motor has no dead stops this can be +-2 
billion. If your motor has specific dead stops(like on a linear actuator) you will need to manually 
move the motor to its dead stops to determine these numbers. Leave some margin infront of 
each deadstop.  Note that when using quadrature encoders you will need to home your motor on 
every power up since the quadrature readings are all relative to the starting position unless you 
set/reset the encoder values.

3. At this point the motor should move in the appropriate direction and stop, not necessarily 
close to the set position when you move the slider.  Increase the P setting until the position 
is over shooting some each time you change the position slider.  Now start increasing the D 
setting(leave I at 0).  Increasing D will add dampening to the movement when getting close 
to the set position. This will help prevent the over shoot.  D will usually be anywhere from 5 to 
20 times larger than P but not always. Continue increasing P and D until the motor is working 
reasonably well. Once it is you have tuned a simple PD system.



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 60

4. Once your position control is acting relatively smoothly and coming close to the set position 
you can think about adjusting the I setting.  Adding I will help reach the exact set point specified 
but in most motor systems there is enough slop in the gears that instead you will end up causing 
an oscillation around the specified position. This is called hunting.  The I setting causes this when 
there is any slop in the motor/encoder/gear train.  You can compensate some for this by adding 
deadzone. Deadzone is the area around the specified position the controller will consider to be 
equal to the position specified.

5.  One more setting must be adjusted in order to use the I setting. The Imax value sets the 
maximum wind up allowed for the I setting calculation.  Increasing Imax will allow I to affect a 
larger amount of the movement of the motor but will also allow the system to oscillate if used 
with a badly tuned I and/or set too high.

Auto Tuning
IonMotion includes the option to autotune velocity and or position values.  To use these options 
you should first make sure your encoder and motor are running in the correct direction and that 
basic PWM control of the motor works as expected.  To do this go to the PWM Settings screen in 
IonMotion.  Slide the motor slider up to start moving the motor forward. Check the encoder is 
increasing in value. If it is not either reverse the motor wires or the encoder wires.

If you are using autotune for Position control you must first set the motors QPPS value.  Unlike 
Velocity autotune the QPPS value will not be automatically measured.  This is because most 
position control systems have a limited range of movement.  Once you have manually set the 
motors QPPS value(eg the maximum speed the motor can run at) you can continue with Position 
autotuning.

Then just click the autotune button for the motor you want to tune.  The autotune function will 
try to determine the best settings for the motor. In the Velocity settings window it will autotune 
for velocity.  In the Position Settings window you have the option to tune a simple PD position 
controller, a PID position controller or a cascaded Position/Velocity controller(PIV). The cascaded 
tune will determine both the velocity and position values for the motor but still requires the QPPS 
be manually set for the motor before starting.  Autotune functions usually return reasonable 
values but in most cases you will still need to manually adjust them for optimum performance.

If the motor or encoder are wired incorrectly, the autotune function can lock 
up and RoboClaw will become unresponsive. Correct the wiring problem and 
reset RoboClaw to continue.



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 61

Encoder Commands
The following commands are used with the encoder(quadrature and absolute) hardware.

Command Description

16 Read Encoder Count/Value for M1.

17 Read Encoder Count/Value for M2.

18 Read M1 Speed in Encoder Counts Per Second.

19 Read M2 Speed in Encoder Counts Per Second.

20 Resets Encoder Registers for M1 and M2(Quadrature only).

22 Set Encoder 1 Register(Quadrature only).

23 Set Encoder 2 Register(Quadrature only).

30 Read Current M1 Raw Speed

31 Read Current M2 Raw Speed

78 Read Encoders Counts

79 Read Motor Speeds

16 - Read Encoder Count/Value M1
Read M1 encoder count/position. 

 Send: [Address, 16]
 Receive: [Enc1(4 bytes), Status, CRC(2 bytes)]

Quadrature encoders have a range of 0 to 4,294,967,295. Absolute encoder values are converted 
from an analog voltage into a value from 0 to 2047 for the full 2v range.

The status byte tracks counter underflow, direction and overflow. The byte value represents:

 Bit0 - Counter Underflow (1= Underflow Occurred, Clear After Reading)
 Bit1 - Direction (0 = Forward, 1 = Backwards)
 Bit2 - Counter Overflow (1= Underflow Occurred, Clear After Reading)
 Bit3 - Reserved
 Bit4 - Reserved
 Bit5 - Reserved
 Bit6 - Reserved
 Bit7 - Reserved



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 62

17 - Read Quadrature Encoder Count/Value M2
Read M2 encoder count/position. 

 Send: [Address, 17]
 Receive: [EncCnt(4 bytes), Status, CRC(2 bytes)]

Quadrature encoders have a range of 0 to 4,294,967,295. Absolute encoder values are 
converted from an analog voltage into a value from 0 to 2047 for the full 2v range.

The Status byte tracks counter underflow, direction and overflow. The byte value represents:

 Bit0 - Counter Underflow (1= Underflow Occurred, Cleared After Reading)
 Bit1 - Direction (0 = Forward, 1 = Backwards)
 Bit2 - Counter Overflow (1= Underflow Occurred, Cleared After Reading)
 Bit3 - Reserved
 Bit4 - Reserved
 Bit5 - Reserved
 Bit6 - Reserved
 Bit7 - Reserved

18 - Read Encoder Speed M1
Read M1 counter speed. Returned value is in pulses per second. RoboClaw keeps track of how 
many pulses received per second for both encoder channels. 

 Send: [Address, 18]
 Receive: [Speed(4 bytes), Status, CRC(2 bytes)]

Status indicates the direction (0 – forward, 1 - backward).

19 - Read Encoder Speed M2
Read M2 counter speed. Returned value is in pulses per second. RoboClaw keeps track of how 
many pulses received per second for both encoder channels. 

 Send: [Address, 19]
 Receive: [Speed(4 bytes), Status, CRC(2 bytes)]

Status indicates the direction (0 – forward, 1 - backward).

20 - Reset Quadrature Encoder Counters
Will reset both quadrature decoder counters to zero. This command applies to quadrature 
encoders only.

 Send: [Address, 20, CRC(2 bytes)]
 Receive: [0xFF]



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 63

22 - Set Quadrature Encoder 1 Value
Set the value of the Encoder 1 register.  Useful when homing motor 1. This command applies to 
quadrature encoders only.

 Send: [Address, 22, Value(4 bytes), CRC(2 bytes)]
 Receive: [0xFF]

23 - Set Quadrature Encoder 2 Value
Set the value of the Encoder 2 register.  Useful when homing motor 2. This command applies to 
quadrature encoders only.

 Send: [Address, 23, Value(4 bytes), CRC(2 bytes)]
 Receive: [0xFF]

30 - Read Raw Speed M1
Read the pulses counted in that last 300th of a second. This is an unfiltered version of command 
18. Command 30 can be used to make a independent PID routine. Value returned is in encoder 
counts per second. 

 Send: [Address, 30]
 Receive: [Speed(4 bytes), Status, CRC(2 bytes)]

The Status byte is direction (0 – forward, 1 - backward). 

31 - Read Raw Speed M2
Read the pulses counted in that last 300th of a second. This is an unfiltered version of command 
19. Command 31 can be used to make a independent PID routine. Value returned is in encoder 
counts per second.

 Send: [Address, 31]
 Receive: [Speed(4 bytes), Status, CRC(2 bytes)]

The Status byte is direction (0 – forward, 1 - backward). 

78 - Read Encoder Counters
Read M1 and M2 encoder counters. Quadrature encoders have a range of 0 to 4,294,967,295. 
Absolute encoder values are converted from an analog voltage into a value from 0 to 2047 for 
the full 2V analog range.

Send: [Address, 78]
Receive: [Enc1(4 bytes), Enc2(4 bytes), CRC(2 bytes)]

79 - Read ISpeeds Counters
Read M1 and M2 instantaneous speeds. Returns the speed in encoder counts per second for the 
last 300th of a second for both encoder channels.

Send: [Address, 79]
Receive: [ISpeed1(4 bytes), ISpeed2(4 bytes), CRC(2 bytes)]



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 64

Advanced Motor Control
The following commands are used to control motor speeds, acceleration distance and position 
using encoders. 

 
Command Description

28 Set Velocity PID Constants for M1.

29 Set Velocity PID Constants for M2.

32 Drive M1 With Signed Duty Cycle. (Encoders not required)

33 Drive M2 With Signed Duty Cycle. (Encoders not required)

34 Drive M1 / M2 With Signed Duty Cycle. (Encoders not required)

35 Drive M1 With Signed Speed.

36 Drive M2 With Signed Speed.

37 Drive M1 / M2 With Signed Speed.

38 Drive M1 With Signed Speed And Acceleration.

39 Drive M2 With Signed Speed And Acceleration.

40 Drive M1 / M2 With Signed Speed And Acceleration.

41 Drive M1 With Signed Speed And Distance. Buffered.

42 Drive M2 With Signed Speed And Distance. Buffered.

43 Drive M1 / M2 With Signed Speed And Distance. Buffered.

44 Drive M1 With Signed Speed, Acceleration and Distance. Buffered.

45 Drive M2 With Signed Speed, Acceleration and Distance. Buffered.

46 Drive M1 / M2 With Signed Speed, Acceleration And Distance. Buffered.

47 Read Buffer Length.

50 Drive M1 / M2 With Individual Signed Speed and Acceleration

51 Drive M1 / M2 With Individual Signed Speed, Accel and Distance

52 Drive M1 With Signed Duty and Accel. (Encoders not required)

53 Drive M2 With Signed Duty and Accel. (Encoders not required)

54 Drive M1 / M2 With Signed Duty and Accel. (Encoders not required)

55 Read Motor 1 Velocity PID Constants

56 Read Motor 2 Velocity PID Constants

61 Set Position PID Constants for M1.

62 Set Position PID Constants for M2

63 Read Motor 1 Position PID Constants

64 Read Motor 2 Position PID Constants

65 Drive M1 with Speed, Accel, Deccel and Position

66 Drive M2 with Speed, Accel, Deccel and Position

67 Drive M1 / M2 with Speed, Accel, Deccel and Position

68 Set default duty cycle acceleration for M1

69 Set default duty cycle acceleration for M2



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 65

28 - Set Velocity PID Constants M1
Several motor and quadrature combinations can be used with RoboClaw. In some cases the 
default PID values will need to be tuned for the systems being driven. This gives greater 
flexibility in what motor and encoder combinations can be used. The RoboClaw PID system 
consist of four constants starting with QPPS,  P = Proportional, I= Integral and D= Derivative. 
The defaults values are:

 QPPS = 44000
 P = 0x00010000
 I = 0x00008000
 D = 0x00004000

QPPS is the speed of the encoder when the motor is at 100% power. P, I, D are the default 
values used after a reset. Command syntax:

Send: [Address, 28, D(4 bytes), P(4 bytes), I(4 bytes), QPPS(4 byte), CRC(2 bytes)]
Receive: [0xFF]

29 - Set Velocity PID Constants M2
Several motor and quadrature combinations can be used with RoboClaw. In some cases the 
default PID values will need to be tuned for the systems being driven. This gives greater 
flexibility in what motor and encoder combinations can be used. The RoboClaw PID system 
consist of four constants starting with QPPS,  P = Proportional, I= Integral and D= Derivative. 
The defaults values are:

 QPPS = 44000
 P = 0x00010000
 I = 0x00008000
 D = 0x00004000

QPPS is the speed of the encoder when the motor is at 100% power. P, I, D are the default 
values used after a reset. Command syntax:

Send: [Address, 29, D(4 bytes), P(4 bytes), I(4 bytes), QPPS(4 byte), CRC(2 bytes)]Re-
ceive: [0xFF]

32 - Drive M1 With Signed Duty Cycle
Drive M1 using a duty cycle value. The duty cycle is used to control the speed of the motor 
without a quadrature encoder.

Send: [Address, 32, Duty(2 Bytes), CRC(2 bytes)]
Receive: [0xFF]

The duty value is signed and the range is -32767 to +32767 (eg. +-100% duty). 



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 66

33 - Drive M2 With Signed Duty Cycle
Drive M2 using a duty cycle value. The duty cycle is used to control the speed of the motor 
without a quadrature encoder. The command syntax:

Send: [Address, 33, Duty(2 Bytes), CRC(2 bytes)]
Receive: [0xFF]

The duty value is signed and the range is -32768 to +32767 (eg. +-100% duty).

34 - Drive M1 / M2 With Signed Duty Cycle
Drive both M1 and M2 using a duty cycle value. The duty cycle is used to control the speed of 
the motor without a quadrature encoder. The command syntax:

Send: [Address, 34, DutyM1(2 Bytes), DutyM2(2 Bytes), CRC(2 bytes)]
Receive: [0xFF]

The duty value is signed and the range is -32768 to +32767 (eg. +-100% duty). 



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 67

35 - Drive M1 With Signed Speed
Drive M1 using a speed value. The sign indicates which direction the motor will turn. This 
command is used to drive the motor by quad pulses per second. Different quadrature encoders 
will have different rates at which they generate the incoming pulses. The values used will differ 
from one encoder to another. Once a value is sent the motor will begin to accelerate as fast as 
possible until the defined rate is reached.

Send: [Address, 35, Speed(4 Bytes), CRC(2 bytes)]
Receive: [0xFF]

36 - Drive M2 With Signed Speed
Drive M2 with a speed value. The sign indicates which direction the motor will turn. This 
command is used to drive the motor by quad pulses per second. Different quadrature encoders 
will have different rates at which they generate the incoming pulses. The values used will differ 
from one encoder to another. Once a value is sent, the motor will begin to accelerate as fast as 
possible until the rate defined is reached.

Send: [Address, 36, Speed(4 Bytes), CRC(2 bytes)]
Receive: [0xFF]

37 - Drive M1 / M2 With Signed Speed
Drive M1 and M2 in the same command using a signed speed value. The sign indicates which 
direction the motor will turn. This command is used to drive both  motors by quad pulses per 
second. Different quadrature encoders will have different rates at which they generate the 
incoming pulses. The values used will differ from one encoder to another. Once a value is sent 
the motor will begin to accelerate as fast as possible until the rate defined is reached.

Send: [Address, 37, SpeedM1(4 Bytes), SpeedM2(4 Bytes), CRC(2 bytes)]
Receive: [0xFF]

38 - Drive M1 With Signed Speed And Acceleration
Drive M1 with a signed speed and acceleration value. The sign indicates which direction the 
motor will run. The acceleration values are not signed. This command is used to drive the motor 
by quad pulses per second and using an acceleration value for ramping. Different quadrature 
encoders will have different rates at which they generate the incoming pulses. The values used 
will differ from one encoder to another. Once a value is sent the motor will begin to accelerate 
incrementally until the rate defined is reached.

Send: [Address, 38, Accel(4 Bytes), Speed(4 Bytes), CRC(2 bytes)]
Receive: [0xFF]

The acceleration is measured in speed increase per second. An acceleration value of  12,000 
QPPS with a speed of 12,000 QPPS would accelerate a motor from 0 to 12,000 QPPS in 1 
second. Another example would be an acceleration value of 24,000 QPPS and a speed value of 
12,000 QPPS would accelerate the motor to 12,000 QPPS in 0.5 seconds.



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 68

39 - Drive M2 With Signed Speed And Acceleration
Drive M2 with a signed speed and acceleration value. The sign indicates which direction the 
motor will run. The acceleration value is not signed. This command is used to drive the motor 
by quad pulses per second and using an acceleration value for ramping. Different quadrature 
encoders will have different rates at which they generate the incoming pulses. The values used 
will differ from one encoder to another. Once a value is sent the motor will begin to accelerate 
incrementally until the rate defined is reached.

Send: [Address, 39, Accel(4 Bytes), Speed(4 Bytes), CRC(2 bytes)]
 Receive: [0xFF]

The acceleration is measured in speed increase per second. An acceleration value of  12,000 
QPPS with a speed of 12,000 QPPS would accelerate a motor from 0 to 12,000 QPPS in 1 second. 
Another example would be an acceleration value of 24,000 QPPS and a speed value of 12,000 
QPPS would accelerate the motor to 12,000 QPPS in 0.5 seconds.

40 - Drive M1 / M2 With Signed Speed And Acceleration
Drive M1 and M2 in the same command using one value for acceleration and two signed speed 
values for each motor. The sign indicates which direction the motor will run. The acceleration 
value is not signed. The motors are sync during acceleration. This command is used to drive 
the motor by quad pulses per second and using an acceleration value for ramping. Different 
quadrature encoders will have different rates at which they generate the incoming pulses. The 
values used will differ from one encoder to another. Once a value is sent the motor will begin to 
accelerate incrementally until the rate defined is reached.

Send: [Address, 40, Accel(4 Bytes), SpeedM1(4 Bytes), SpeedM2(4 Bytes), CRC(2 bytes)]
Receive: [0xFF]

The acceleration is measured in speed increase per second. An acceleration value of  12,000 
QPPS with a speed of 12,000 QPPS would accelerate a motor from 0 to 12,000 QPPS in 1 second. 
Another example would be an acceleration value of 24,000 QPPS and a speed value of 12,000 
QPPS would accelerate the motor to 12,000 QPPS in 0.5 seconds.

41 - Buffered M1 Drive With Signed Speed And Distance
Drive M1 with a signed speed and distance value. The sign indicates which direction the motor 
will run. The distance value is not signed. This command is buffered. This command is used to 
control the top speed and total distance traveled by the motor. Each motor channel M1 and M2 
have separate buffers. This command will execute immediately if no other command for that 
channel is executing, otherwise the command will be buffered in the order it was sent.  Any 
buffered or executing command can be stopped when a new command is issued by setting the 
Buffer argument. All values used are in quad pulses per second.

Send: [Address, 41, Speed(4 Bytes), Distance(4 Bytes), Buffer, CRC(2 bytes)]
Receive: [0xFF]

The Buffer argument can be set to a 1 or 0. If a value of 0 is used the command will be buffered 
and executed in the order sent.  If a value of 1 is used the current running command is stopped, 
any other commands in the buffer are deleted and the new command is executed.



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 69

42 - Buffered M2 Drive With Signed Speed And Distance
Drive M2 with a speed and distance value. The sign indicates which direction the motor will run. 
The distance value is not signed. This command is buffered. Each motor channel M1 and M2 
have separate buffers. This command will execute immediately if no other command for that 
channel is executing, otherwise the command will be buffered in the order it was sent.  Any 
buffered or executing command can be stopped when a new command is issued by setting the 
Buffer argument. All values used are in quad pulses per second.

Send: [Address, 42, Speed(4 Bytes), Distance(4 Bytes), Buffer, CRC(2 bytes)]
Receive: [0xFF]

The Buffer argument can be set to a 1 or 0. If a value of 0 is used the command will be buffered 
and executed in the order sent.  If a value of 1 is used the current running command is stopped, 
any other commands in the buffer are deleted and the new command is executed.

43 - Buffered Drive M1 / M2  With Signed Speed And Distance
Drive M1 and M2 with a speed and distance value. The sign indicates which direction the motor 
will run. The distance value is not signed. This command is buffered. Each motor channel M1 
and M2 have separate buffers. This command will execute immediately if no other command for 
that channel is executing, otherwise the command will be buffered in the order it was sent.  Any 
buffered or executing command can be stopped when a new command is issued by setting the 
Buffer argument. All values used are in quad pulses per second.

Send: [Address, 43, SpeedM1(4 Bytes), DistanceM1(4 Bytes), 
  SpeedM2(4 Bytes), DistanceM2(4 Bytes), Buffer, CRC(2 bytes)]
Receive: [0xFF]

The Buffer argument can be set to a 1 or 0. If a value of 0 is used the command will be buffered 
and executed in the order sent.  If a value of 1 is used the current running command is stopped, 
any other commands in the buffer are deleted and the new command is executed.

44 - Buffered M1 Drive With Signed Speed, Accel And Distance
Drive M1 with a speed, acceleration and distance value. The sign indicates which direction the 
motor will run. The acceleration and distance values are not signed. This command is used to 
control the motors top speed, total distanced traveled and at what incremental acceleration value 
to use until the top speed is reached. Each motor channel M1 and M2 have separate buffers. This 
command will execute immediately if no other command for that channel is executing, otherwise 
the command will be buffered in the order it was sent.  Any buffered or executing command can 
be stopped when a new command is issued by setting the Buffer argument. All values used are 
in quad pulses per second.

Send: [Address, 44, Accel(4 bytes), Speed(4 Bytes), Distance(4 Bytes), 
  Buffer, CRC(2 bytes)]
Receive: [0xFF]

The Buffer argument can be set to a 1 or 0. If a value of 0 is used the command will be buffered 
and executed in the order sent.  If a value of 1 is used the current running command is stopped, 
any other commands in the buffer are deleted and the new command is executed.



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 70

45 - Buffered M2 Drive With Signed Speed, Accel And Distance
Drive M2 with a speed, acceleration and distance value. The sign indicates which direction the 
motor will run. The acceleration and distance values are not signed. This command is used to 
control the motors top speed, total distanced traveled and at what incremental acceleration 
value to use until the top speed is reached. Each motor channel M1 and M2 have separate 
buffers. This command will execute immediately if no other command for that channel is 
executing, otherwise the command will be buffered in the order it was sent.  Any buffered 
or executing command can be stopped when a new command is issued by setting the Buffer 
argument. All values used are in quad pulses per second.

Send: [Address, 45, Accel(4 bytes), Speed(4 Bytes), Distance(4 Bytes), 
  Buffer, CRC(2 bytes)]
Receive: [0xFF]

The Buffer argument can be set to a 1 or 0. If a value of 0 is used the command will be buffered 
and executed in the order sent.  If a value of 1 is used the current running command is stopped, 
any other commands in the buffer are deleted and the new command is executed.

46 - Buffered Drive M1 / M2 With Signed Speed, Accel And Distance
Drive M1 and M2 with a speed, acceleration and distance value. The sign indicates which 
direction the motor will run. The acceleration and distance values are not signed. This command 
is used to control both motors top speed, total distanced traveled and at what incremental 
acceleration value to use until the top speed is reached. Each motor channel M1 and M2 have 
separate buffers. This command will execute immediately if no other command for that channel 
is executing, otherwise the command will be buffered in the order it was sent.  Any buffered 
or executing command can be stopped when a new command is issued by setting the Buffer 
argument. All values used are in quad pulses per second.

Send: [Address, 46, Accel(4 Bytes), SpeedM1(4 Bytes), DistanceM1(4 Bytes),    
 SpeedM2(4 bytes), DistanceM2(4 Bytes), Buffer, CRC(2 bytes)]
Receive: [0xFF]

The Buffer argument can be set to a 1 or 0. If a value of 0 is used the command will be buffered 
and executed in the order sent.  If a value of 1 is used the current running command is stopped, 
any other commands in the buffer are deleted and the new command is executed.

47 - Read Buffer Length
Read both motor M1 and M2 buffer lengths. This command can be used to determine how many 
commands are waiting to execute.

Send: [Address, 47]
Receive: [BufferM1, BufferM2, CRC(2 bytes)]

The return values represent how many commands per buffer are waiting to be executed. The 
maximum buffer size per motor is 64 commands(0x3F). A return value of 0x80(128) indicates 
the buffer is empty. A return value of 0 indiciates the last command sent is executing. A value of 
0x80 indicates the last command buffered has finished.



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 71

50 - Drive M1 / M2 With Signed Speed And Individual Acceleration
Drive M1 and M2 in the same command using one value for acceleration and two signed speed 
values for each motor. The sign indicates which direction the motor will run. The acceleration 
value is not signed. The motors are sync during acceleration. This command is used to drive 
the motor by quad pulses per second and using an acceleration value for ramping. Different 
quadrature encoders will have different rates at which they generate the incoming pulses. The 
values used will differ from one encoder to another. Once a value is sent the motor will begin to 
accelerate incrementally until the rate defined is reached.

Send: [Address, 50, AccelM1(4 Bytes), SpeedM1(4 Bytes), AccelM2(4 Bytes),    
  SpeedM2(4 Bytes), CRC(2 bytes)]
Receive: [0xFF]

The acceleration is measured in speed increase per second. An acceleration value of  12,000 
QPPS with a speed of 12,000 QPPS would accelerate a motor from 0 to 12,000 QPPS in 1 second. 
Another example would be an acceleration value of 24,000 QPPS and a speed value of 12,000 
QPPS would accelerate the motor to 12,000 QPPS in 0.5 seconds.

51 - Buffered Drive M1 / M2 With Signed Speed, Individual Accel And Distance
Drive M1 and M2 with a speed, acceleration and distance value. The sign indicates which 
direction the motor will run. The acceleration and distance values are not signed. This command 
is used to control both motors top speed, total distanced traveled and at what incremental 
acceleration value to use until the top speed is reached. Each motor channel M1 and M2 have 
separate buffers. This command will execute immediately if no other command for that channel 
is executing, otherwise the command will be buffered in the order it was sent.  Any buffered 
or executing command can be stopped when a new command is issued by setting the Buffer 
argument. All values used are in quad pulses per second.

Send: [Address, 51, AccelM1(4 Bytes), SpeedM1(4 Bytes), DistanceM1(4 Bytes),     
AccelM2(4 Bytes), SpeedM2(4 bytes), DistanceM2(4 Bytes), Buffer, CRC(2 bytes)]
Receive: [0xFF]

The Buffer argument can be set to a 1 or 0. If a value of 0 is used the command will be buffered 
and executed in the order sent.  If a value of 1 is used the current running command is stopped, 
any other commands in the buffer are deleted and the new command is executed.

52 - Drive M1 With Signed Duty And Acceleration
Drive M1 with a signed duty and acceleration value. The sign indicates which direction the motor 
will run. The acceleration values are not signed. This command is used to drive the motor by 
PWM and using an acceleration value for ramping. Accel is the rate per second at which the duty 
changes from the current duty to the specified duty.

Send: [Address, 52, Duty(2 bytes), Accel(2 Bytes), CRC(2 bytes)]
Receive: [0xFF]

The duty value is signed and the range is -32768 to +32767(eg. +-100% duty). The accel value 
range is 0 to 655359(eg maximum acceleration rate is -100% to 100% in 100ms).



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 72

53 - Drive M2 With Signed Duty And Acceleration
Drive M1 with a signed duty and acceleration value. The sign indicates which direction the motor 
will run. The acceleration values are not signed. This command is used to drive the motor by 
PWM and using an acceleration value for ramping. Accel is the rate at which the duty changes 
from the current duty to the specified dury.

Send: [Address, 53, Duty(2 bytes), Accel(2 Bytes), CRC(2 bytes)]
Receive: [0xFF]

The duty value is signed and the range is -32768 to +32767 (eg. +-100% duty). The accel value 
range is 0 to 655359 (eg maximum acceleration rate is -100% to 100% in 100ms).

54 - Drive M1 / M2 With Signed Duty And Acceleration
Drive M1 and M2 in the same command using acceleration and duty values for each motor. 
The sign indicates which direction the motor will run. The acceleration value is not signed. This 
command is used to drive the motor by PWM using an acceleration value for ramping. The 
command syntax:

Send: [Address, CMD, DutyM1(2 bytes), AccelM1(4 Bytes), DutyM2(2 bytes),    
  AccelM1(4 bytes), CRC(2 bytes)]
Receive: [0xFF]

The duty value is signed and the range is -32768 to +32767 (eg. +-100% duty). The accel value 
range is 0 to 655359 (eg maximum acceleration rate is -100% to 100% in 100ms).

55 - Read Motor 1 Velocity PID and QPPS Settings
Read the PID and QPPS Settings.

Send: [Address, 55]
Receive: [P(4 bytes), I(4 bytes), D(4 bytes), QPPS(4 byte), CRC(2 bytes)]

56 - Read Motor 2 Velocity PID and QPPS Settings
Read the PID and QPPS Settings.

Send: [Address, 56]
Receive: [P(4 bytes), I(4 bytes), D(4 bytes), QPPS(4 byte), CRC(2 bytes)]

61 - Set Motor 1 Position PID Constants
The RoboClaw Position PID system consist of seven constants starting with P = Proportional, I= 
Integral and D= Derivative, MaxI = Maximum Integral windup, Deadzone in encoder counts, 
MinPos = Minimum Position and MaxPos = Maximum Position. The defaults values are all zero.

Send: [Address, 61, D(4 bytes), P(4 bytes), I(4 bytes), MaxI(4 bytes),    
  Deadzone(4 bytes), MinPos(4 bytes), MaxPos(4 bytes), CRC(2 bytes)]
Receive: [0xFF]

Position constants are used only with the Position commands, 65,66 and 67 or when encoders 
are enabled in RC/Analog modes.



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 73

62 - Set Motor 2 Position PID Constants
The RoboClaw Position PID system consist of seven constants starting with P = Proportional, I= 
Integral and D= Derivative, MaxI = Maximum Integral windup, Deadzone in encoder counts, 
MinPos = Minimum Position and MaxPos = Maximum Position. The defaults values are all zero.

Send: [Address, 62, D(4 bytes), P(4 bytes), I(4 bytes), MaxI(4 bytes),     
 Deadzone(4 bytes), MinPos(4 bytes), MaxPos(4 bytes), CRC(2 bytes)]
Receive: [0xFF]

Position constants are used only with the Position commands, 65,66 and 67 or when encoders 
are enabled in RC/Analog modes.

63 - Read Motor 1 Position PID Constants
Read the Position PID Settings.

Send: [Address, 63]
Receive: [P(4 bytes), I(4 bytes), D(4 bytes), MaxI(4 byte), Deadzone(4 byte),
  MinPos(4 byte), MaxPos(4 byte), CRC(2 bytes)]

64 - Read Motor 2 Position PID Constants
Read the Position PID Settings.

Send: [Address, 64]
Receive: [P(4 bytes), I(4 bytes), D(4 bytes), MaxI(4 byte), Deadzone(4 byte),
  MinPos(4 byte), MaxPos(4 byte), CRC(2 bytes)]

65 - Buffered Drive M1 with signed Speed, Accel, Deccel and Position
Move M1 position from the current position to the specified new position and hold the new 
position.  Accel sets the acceleration value and deccel the decceleration value. QSpeed sets the 
speed in quadrature pulses the motor will run at after acceleration and before decceleration.

Send: [Address, 65, Accel(4 bytes), Speed(4 Bytes), Deccel(4 bytes),     
  Position(4 Bytes), Buffer, CRC(2 bytes)]
Receive: [0xFF]

66 - Buffered Drive M2 with signed Speed, Accel, Deccel and Position
Move M2 position from the current position to the specified new position and hold the new 
position.  Accel sets the acceleration value and deccel the decceleration value. QSpeed sets the 
speed in quadrature pulses the motor will run at after acceleration and before decceleration.

 Send: [Address, 66, Accel(4 bytes), Speed(4 Bytes), Deccel(4 bytes),    
   Position(4 Bytes), Buffer, CRC(2 bytes)]
 Receive: [0xFF]



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 74

67 - Buffered Drive M1 & M2 with signed Speed, Accel, Deccel and Position
Move M1 & M2 positions from their current positions to the specified new positions and hold the 
new positions.  Accel sets the acceleration value and deccel the decceleration value. QSpeed sets 
the speed in quadrature pulses the motor will run at after acceleration and before decceleration. 

Send: [Address, 67, AccelM1(4 bytes), SpeedM1(4 Bytes), DeccelM1(4 bytes),     
  PositionM1(4 Bytes), AccelM2(4 bytes), SpeedM2(4 Bytes), DeccelM2(4 bytes),   
   PositionM2(4 Bytes), Buffer, CRC(2 bytes)]
Receive: [0xFF]



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 75

Reading Quadrature Encoder - Arduino Example
The example was tested with an Arduino Uno using packet serial wiring and quadrature encoder 
wiring diagrams. The example will read the speed, total ticks and direction of each encoder. 
Connect to the program using a terminal window set to 38400 baud. The program will display 
the values of each encoders current count along with each encoder status bit in binary and the 
direction bit. As the encoder is turned it will update the screen. Additional example programs can 
be downloaded from Ionmc.com.

//Set mode to 7(packet serial address 0x80) and option 4(38400) 
 
//Includes required to use Roboclaw library 
#include "BMSerial.h" 
#include "RoboClaw.h" 
 
//Roboclaw Address 
#define address 0x80 
 
//Definte terminal for display. Use hardware serial pins 0 and 1 
BMSerial terminal(0,1); 
 
//Setup communcaitions with roboclaw. Use pins 10 and 11 with 10ms timeout 
RoboClaw roboclaw(10,11,10000); 
 
void setup() { 
  //Open terminal and roboclaw at 38400bps 
  terminal.begin(57600); 
  roboclaw.begin(38400); 
} 
 
void loop() { 
  uint8_t status1,status2,status3,status4; 
  bool valid1,valid2,valid3,valid4; 
   
  //Read all the data from Roboclaw before displaying on terminal window 
  //This prevents the hardware serial interrupt from interfering with 
  //reading data using software serial. 
  int32_t enc1= roboclaw.ReadEncM1(address, &status1, &valid1); 
  int32_t enc2 = roboclaw.ReadEncM2(address, &status2, &valid2); 
  int32_t speed1 = roboclaw.ReadSpeedM1(address, &status3, &valid3); 
  int32_t speed2 = roboclaw.ReadSpeedM2(address, &status4, &valid4); 
 
  terminal.print("Encoder1:"); 
  if(valid1){ 
    terminal.print(enc1,HEX); 
    terminal.print(" "); 
    terminal.print(status1,HEX); 
    terminal.print(" "); 
  } 
  else{ 
    terminal.print("invalid "); 
  } 
  terminal.print("Encoder2:"); 
  if(valid2){ 
    terminal.print(enc2,HEX); 
    terminal.print(" "); 
    terminal.print(status2,HEX); 
    terminal.print(" "); 
  } 
  else{ 
    terminal.print("invalid "); 
  } 
  terminal.print("Speed1:"); 



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 76

  if(valid3){ 
    terminal.print(speed1,HEX); 
    terminal.print(" "); 
  } 
  else{ 
    terminal.print("invalid "); 
  } 
  terminal.print("Speed2:"); 
  if(valid4){ 
    terminal.print(speed2,HEX); 
    terminal.print(" "); 
  } 
  else{ 
    terminal.print("invalid "); 
  } 
  terminal.println(); 
   
  delay(100); 
}



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 77

Speed Controlled by Quadrature Encoders - Arduino Example
The following example was written using an Arduino UNO using packet serial wiring and 
quadrature encoder wiring diagrams. The example will command a 4wheel robot to move 
forward, backward, right turn and left turn slowly. You can change the speed by adjusting the 
value of Speed and Speed2 variables. Additional example programs can be downloaded from 
Ionmc.com.

//Set mode 7(packet serial address 0x80) and mode 4(38400) 
 
//Includes required to use Roboclaw library 
#include "BMSerial.h" 
#include "RoboClaw.h" 
 
#define SPEED 12000 
#define SPEED2 12000 
 
//Roboclaw Address 
#define address 0x80 
 
//Velocity PID coefficients 
#define Kp 1.0 
#define Ki 0.5 
#define Kd 0.25 
#define qpps 44000 
 
//Definte terminal for display. Use hardware serial pins 0 and 1 
BMSerial terminal(0,1); 
 
//Setup communcaitions with roboclaw. Use pins 10 and 11 with 10ms timeout 
RoboClaw roboclaw(10,11,10000); 
 
long speed; 
long speed2; 
 
void setup() { 
  //Open terminal and roboclaw serial ports 
  terminal.begin(57600); 
  roboclaw.begin(38400); 
   
  speed = SPEED; 
  speed2 = SPEED2; 
   
  //Set PID Coefficients 
  roboclaw.SetM1VelocityPID(address,Kd,Kp,Ki,qpps); 
  roboclaw.SetM2VelocityPID(address,Kd,Kp,Ki,qpps);   
} 



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 78

void displayspeed(void) 
{ 
  uint8_t status1,status2,status3,status4; 
  bool valid1,valid2,valid3,valid4; 
   
  int32_t enc1= roboclaw.ReadEncM1(address, &status1, &valid1); 
  int32_t enc2 = roboclaw.ReadEncM2(address, &status2, &valid2); 
  int32_t speed1 = roboclaw.ReadSpeedM1(address, &status3, &valid3); 
  int32_t speed2 = roboclaw.ReadSpeedM2(address, &status4, &valid4); 
  terminal.print("Encoder1:"); 
  if(valid1){ 
    terminal.print(enc1,DEC); 
    terminal.print(" "); 
    terminal.print(status1,HEX); 
    terminal.print(" "); 
  } 
  else{ 
    terminal.print("invalid "); 
  } 
  terminal.print("Encoder2:"); 
  if(valid2){ 
    terminal.print(enc2,DEC); 
    terminal.print(" "); 
    terminal.print(status2,HEX); 
    terminal.print(" "); 
  } 
  else{ 
    terminal.print("invalid "); 
  } 
  terminal.print("Speed1:"); 
  if(valid3){ 
    terminal.print(speed1,DEC); 
    terminal.print(" "); 
  } 
  else{ 
    terminal.print("invalid "); 
  } 
  terminal.print("Speed2:"); 
  if(valid4){ 
    terminal.print(speed2,DEC); 
    terminal.print(" "); 
  } 
  else{ 
    terminal.print("invalid "); 
  } 
  terminal.println(); 
} 



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 79

 
void loop() { 
  roboclaw.SpeedM1(address,speed); 
  roboclaw.SpeedM2(address,speed); 
  for(uint8_t i = 0;i<100;i++){ 
    displayspeed(); 
    delay(10); 
  } 
 
  roboclaw.SpeedM1(address,-speed); 
  roboclaw.SpeedM2(address,-speed); 
  for(uint8_t i = 0;i<100;i++){ 
    displayspeed(); 
    delay(10); 
  } 
 
  roboclaw.SpeedM1(address,0); 
  roboclaw.SpeedM2(address,0); 
  delay(2000); 
 
  roboclaw.SpeedM1(address,speed2); 
  roboclaw.SpeedM2(address,-speed2); 
  for(uint8_t i = 0;i<100;i++){ 
    displayspeed(); 
    delay(10); 
  } 
 
  roboclaw.SpeedM1(address,-speed2); 
  roboclaw.SpeedM2(address,speed2); 
  for(uint8_t i = 0;i<100;i++){ 
    displayspeed(); 
    delay(10); 
  } 
   
  roboclaw.SpeedM1(address,0); 
  roboclaw.SpeedM2(address,0); 
  delay(2000); 
}



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 80

RoboClaw Electrical Specifications

Characteristic Model Min Typ Max Rating

Pulse Per Second All 0 19,660800 QPPS

Logic Battery All 6 12 34 VDC

Main Battery 2x5A 6 34 VDC

2x7A 6 34 VDC

2x15A 6 34 VDC

2x30A 6 34 VDC

2x45A 6 34 VDC

2x60A 6 34 VDC

2x60A HV 10.5 60 VDC

Maximum External Current Draw (BEC) 2x5A 200 mA

2x7A 200 mA

2x15A 3 A

2x30A 3 A

2x45A 3 A

2x60A 3 A

2x60A HV 200 mA

Motor Current Per Channel 2x5A 5(2) 10(1) A

2x7A 7(2) 15(1) A

2x15A 15(2) 30(1)

2x30A 30(2) 60(1)

2x45A 45(2) 60(1)

2x60A 60(2) 120(1)

2x60A HV 60(2) 120(1)

Logic Circuit All 30 mA

I/O Input All 0 5 VDC

I/O Output All 0 3.3 VDC

Analog Voltage Range All 0 2 VDC

Tempature Range All -40 40 +100 C

Notes:
1. Peak current is automatically reduced to the typical current limit as temperature approaches 85C.
2. Current is limited by maximum temperature. Starting at 85c, the current limit is reduced on a slope with a maximum temperature of 

100c, which will reduce the current to 0 amps. 



RoboClaw Series 
Brushed DC Motor Controllers

RoboClaw Series User Manual 81

Warranty
Ion Motion Control warranties its products against defects in material and workmanship for a 
period of 1 year. If a defect is discovered, IonMC will, at our discretion, repair, replace, or refund 
the purchase price of the product in question. Contact us at support@ionmc.com. No returns will 
be accepted without the proper authorization. 

Copyrights and Trademarks
Copyright© 2014,2015 by Ion Motion Control, Inc. All rights reserved. RoboClaw and USB 
RoboClaw are registered trademarks of Ion Motion Control, Inc. Other trademarks mentioned are 
registered trademarks of their respective holders. 

Disclaimer
Ion Motion Control cannot be held responsible for any incidental, or consequential damages 
resulting from use of products manufactured or sold by Ion Motion Control or its distributors. 
No products from Ion Motion Control should be used in any medical devices and/or medical 
situations. No product should be used in a life support situation. 

Contacts
 

 Email: sales@ionmc.com 
 Tech support: support@ionmc.com 
 Web: http://www.ionmc.com 

Discussion List
A web based discussion board is maintained at  http://forums.ionmc.com.

Technical Support
Technical support is available by sending an email to support@ionmc.com, by opening a support 
ticket on the Ion Motion Control website or by calling 800-535-9161 during normal operating 
hours. All email will be answered within 48 hours.


