

Monochrome OLED Breakouts

Created by lady ada

https://learn.adafruit.com/monochrome-oled-breakouts

Last updated on 2021-12-12 02:53:05 PM EST

©Adafruit Industries Page 1 of 57

5

7

7

7

8

9

9

10

11

13

13

14

15

15

16

16

18

18

19

19

21

21

23

24

24

25

25

25

27

27

27

28

28

29

29

30

30

31

36

37

37

Table of Contents

Overview

Power Requirements

• OLED Power Requirements

• 5V- ready 128x64 and 128x32 OLEDs

• 0.96" 128x64 OLED

Arduino Library & Examples

• Install Arduino Libraries

• Run Demo!

• Create Bitmaps

Wiring 128x64 OLEDs

• Solder Header

• I2C or SPI

• Using with I2C

• Converting From I2C to SPI Mode

• Wiring It Up!

• Using with SPI

Wiring 128x32 SPI OLED display

• 128x32 SPI OLED

Wiring 128x32 I2C Display

• 128x32 I2C OLED

Wiring OLD 0.96" 128x64 OLED

• 128x64 Version 1.0 OLED

CircuitPython Wiring

• Adafruit OLED FeatherWing

• Adafruit 128x32 I2C OLED Display

• Adafruit 128x32 SPI OLED Display

• Adafruit 0.96" 128x64 OLED Display STEMMA QT Version - I2C Wiring

• Adafruit 0.96" or 1.3" 128x64 OLED Display Original Version - I2C Wiring

• Adafruit 0.96" or 1.3" 128x64 OLED Display - SPI Wiring

CircuitPython Setup

• CircuitPython Installation of DisplayIO SSD1306 Library

• Code Example Additional Libraries

CircuitPython Usage

• I2C Initialization

• 128 x 64 size OLEDs (or changing the I2C address)

• Adding hardware reset pin

• SPI Initialization

• Example Code

• Where to go from here

Python Wiring

• Adafruit PIOLED

©Adafruit Industries Page 2 of 57

37

38

38

39

40

40

41

41

41

41

42

43

43

43

44

44

49

50

50

50

50

51

52

53

53

55

55

57

• Adafruit 128x64 OLED Bonnet for Raspberry Pi

• Adafruit 128x32 I2C OLED Display

• Adafruit 0.96" 128x64 OLED Display STEMMA QT Version - I2C Wiring

• Adafruit 0.96" or 1.3" 128x64 OLED Display Original Version - I2C Wiring

• Adafruit 128x32 SPI OLED Display

• Adafruit 0.96" or 1.3" 128x64 OLED Display - SPI Wiring

Python Setup

• Python Installation of SSD1306 Library

• Pillow Library

• Speeding up the Display on Raspberry Pi

Python Usage

• I2C Initialization

• 128 x 64 size OLEDs (or changing the I2C address)

• Adding hardware reset pin

• SPI Initialization

• Example Code

Troubleshooting

Downloads

• Software

• Datasheets

• Files

• Schematic & Fabrication Print for 0.96" OLED - STEMMA QT version

• Schematic & Fabrication Print for 0.96" OLED - Original version

• Schematic & Fabrication Print for 1.3" OLED

• Schematic & Fabrication Print for 1.3" OLED STEMMA QT

• Schematic & Fabrication Print for 0.91" 128x32 I2C

• Schematic & Fabrication Print for 0.91" 128x32 I2C STEMMA QT

• Schematic & Fabrication Print for 0.91" 128x32 SPI

©Adafruit Industries Page 3 of 57

©Adafruit Industries Page 4 of 57

Overview

This is a quick tutorial for our 128x64 and 128x32 pixel monochrome OLED displays.

These displays are small, only about 1" diagonal, but very readable due to the high

contrast of an OLED display. Each OLED display is made of 128x64 or 128x32

individual white OLEDs, each one is turned on or off by the controller chip. Because

the display makes its own light, no backlight is required. This reduces the power

required to run the OLED and is why the display has such high contrast; we really like

this miniature display for its crispness!

©Adafruit Industries Page 5 of 57

The driver chip, SSD1306 can communicate in multiple ways including I2C, SPI and 8-

bit parallel. However, only the 128x64 display has all these interfaces available. For

the 128x32 OLED, only SPI is available. Frankly, we prefer SPI since its the most

flexible and uses a small number of I/O pins so our example code and wiring diagram

will use that.

For the 0.96" STEMMA QT version, we've updated the design to add auto-reset

circuitry so that the reset pin is optional, since it speaks I2C you can easily connect it

up with just two wires (plus power and ground!). We've even included SparkFun

qwiic (https://adafru.it/Fpw) compatible STEMMA QT (https://adafru.it/Ft4) connectors

for the I2C bus so you don't even need to solder!

©Adafruit Industries Page 6 of 57

https://www.sparkfun.com/qwiic
https://www.sparkfun.com/qwiic
https://learn.adafruit.com/introducing-adafruit-stemma-qt

Power Requirements

OLED Power Requirements

The OLED and driver require a 3.3V power supply and 3.3V logic levels for

communication. The power requirements depend a little on how much of the display

is lit but on average the display uses about 20mA from the 3.3V supply. Built into the

OLED driver is a simple switch-cap charge pump that turns 3.3v-5v into a high voltage

drive for the OLEDs. You can run the entire display off of one 3.3V supply or use 3.3V

for the chip power and up to 4.5V for the OLED charge pump or 3.3V for the chip

power and a 7-9V supply directly into the OLED high voltage pin.

5V- ready 128x64 and 128x32 OLEDs

Unless you have the older v1 128x64 OLED, you can rest assured that your OLED is

5V ready. All 1.3" 128x64 and the small 128x32 SPI and I2C are 5V ready, if you have a

v2 0.96" 128x64 OLED with the 5V ready mark on the front, it's also 5V safe. If you

have an older 0.96" OLED (see below) you'll need to take extra care when wiring it to

a 5V micontroller. The OLED is designed to be 5V compatible so you can power it

with 3-5V and the onboard regulator will take care of the rest.

All OLEDs are safe to use with 3.3V logic and power.

©Adafruit Industries Page 7 of 57

Simply connect GND to ground, and Vin to a 3 to 5V power supply. There will be a

3.3V output on the 3Vo pin in case you want a regulated 3.3V supply for something

else.

0.96" 128x64 OLED

The older 0.96" 128x64 OLED is a little more complex to get running as it is not 5V

compatible by default, so you have to provide it with 3.3V power.

VDD is the 3.3V logic power. This must be 3 or 3.3V

•

©Adafruit Industries Page 8 of 57

VBAT is the input to the charge pump. If you use the charge pump, this must be

3.3V to 4.2V

VCC is the high voltage OLED pin. If you're using the internal charge pump, this

must be left unconnected. If you're not using the charge pump, connect this to a

7-9V DC power supply.

For most users, we suggest connecting VDD and VBAT together to 3.3V and then

leaving VCC unconnected.

Arduino Library & Examples

For all of the different kinds of small OLED monochrome displays, you'll need to install

the Arduino libraries. The code we have is for any kind of Arduino, if you're using a

different microcontroller, the code is pretty simple to adapt, the interface we use is

basic bit-twiddling SPI or I2C

Install Arduino Libraries

Using these OLEDs with Arduino sketches requires that two libraries be installed: Ad

afruit_SSD1306, which handles the low-level communication with the hardware, and A

dafruit_GFX, which builds atop this to add graphics functions like lines, circles and

text.

In recent versions of the Arduino IDE software (1.6.2 and later), this is most easily

done through the Arduino Library Manager.

Open up the Arduino library manager:

Search for the Adafruit SSD1306 library and install it

•

•

©Adafruit Industries Page 9 of 57

Search for the Adafruit GFX library and install it

If using an earlier version of the Arduino IDE (prior to 1.8.10), also locate and install Ad

afruit_BusIO (newer versions will install this dependency automatically).

We also have a great tutorial on Arduino library installation here:

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://

adafru.it/aYM)

Run Demo!

After installing the Adafruit_SSD1306 and Adafruit_GFX library, restart the Arduino

IDE. You should now be able to access the sample code by navigating through menus

in this order: File→Examples→Adafruit_SSD1306→SSD1306...

After you've finished wiring the display as indicated on the following pages, load the

example sketch to demonstrate the capabilities of the library and display.

The OLED SSD1306 driver is based on the Adafruit GFX library which provides all the

underlying graphics functions such as drawing pixels, lines, circles, etc. For more

©Adafruit Industries Page 10 of 57

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use
http://learn.adafruit.com/adafruit-gfx-graphics-library
http://learn.adafruit.com/adafruit-gfx-graphics-library

details about what you can do with the OLED check out the GFX library tutorial (https:

//adafru.it/aPx)

Create Bitmaps

You can create bitmaps to display easily with the LCD assistant software (https://

adafru.it/aPs). First make your image using any kind of graphics software such as

photoshop or Paint and save as a Monochrome Bitmap (bmp)

©Adafruit Industries Page 11 of 57

http://learn.adafruit.com/adafruit-gfx-graphics-library
http://en.radzio.dxp.pl/bitmap_converter/

Select the following options (You might also want to try Horizontal if Vertical is not

coming out right)

and import your monochrome bitmap image. Save the output to a cpp file

©Adafruit Industries Page 12 of 57

You can use the output directly with our example code

Wiring 128x64 OLEDs

Solder Header

Before you start wiring, a strip of header must be soldered onto the OLED. It is not

possible to "press-fit" the header, it must be attached!

©Adafruit Industries Page 13 of 57

Start by placing an 8-pin piece of header

with the long ends down into a

breadboard for stability

Place the OLED on top so all the short

ends of the header stick thru the header

pads

Finish by soldering each of the 8 pins to

the 8 pads!

I2C or SPI

The nice thing about the 128x64 OLEDs is that they can be used with I2C (+ an

optional reset line) or SPI. SPI is generally faster than I2C but uses more pins. It's also

easier for some microcontrollers to use SPI. Anyways, you can use either one with this

©Adafruit Industries Page 14 of 57

https://learn.adafruit.com//assets/2616
https://learn.adafruit.com//assets/2616
https://learn.adafruit.com//assets/2617
https://learn.adafruit.com//assets/2617
https://learn.adafruit.com//assets/2618
https://learn.adafruit.com//assets/2618

display

Using with I2C

The display can be used with any I2C microcontroller. Because the I2C interface is for

'writing' to the display only, you'll still have to buffer the entire 512 byte frame in the

microcontroller RAM - you can't read data from the OLED (even though I2C is a

bidirectional protocol).

If you have the older non-STEMMA

version of the OLED, you'll need to solder

the two jumpers on the back of the

OLED. Both must be soldered 'closed' for

I2C to work!

For the new STEMMA-capable version,

the J1 and J2 jumpers are closed so that

the display is by default in I2C mode!

There's a typo on the board, to put it into

SPI, open the two jumpers (as they're

closed by default)

Converting From I2C to SPI Mode

The original version of this display was SPI by default, and you could convert to I2C

with some light soldering. Many folks using these displays did not know how to

solder, didn't own an iron or were not comfortable with soldering, so we converted

the board to STEMMA QT 'plug and play' I2C so no soldering is required to use in I2C

mode.

©Adafruit Industries Page 15 of 57

https://learn.adafruit.com//assets/93883
https://learn.adafruit.com//assets/93883
https://learn.adafruit.com//assets/86658
https://learn.adafruit.com//assets/86658

To convert it back to SPI is very easy, and requires a thin screwdriver or other sharp-

tipped item be careful not to cut towards you as always so you do not accidentally cut

yourself!

Wiring It Up!

Finally, connect the pins to your Arduino

GND goes to ground (black wire on STEMMA QT version)

Vin goes to 5V (red wire on STEMMA QT version)

Data to I2C SDA (on the Uno, this is A4 on the Mega it is 20 and on the

Leonardo digital 2) (blue wire on STEMMA QT version)

Clk to I2C SCL (on the Uno, this is A5 on the Mega it is 21 and on the Leonardo

digital 3) (yellow wire on STEMMA QT version)

RST to digital 4 (you can change this pin in the code, later) (Not necessary on

0.96" STEMMA QT version)

This matches the example code we have written. Once you get this working, you can

try a different Reset pin (you can't change the SDA and SCL pins).

Finally you can run the File→Sketchbook→Libraries→Adafruit_SSD1306→SSD1306_1

28x64_i2c example

Using with SPI

The breakouts are ready for SPI by default, but if you used them for I2C at some

point, you'll need to remove the solder jumpers. Use wick or a solder sucker to make

sure both are clear!

For the STEMMA QT version of this board, you do not need to connect RST - this

revision added auto-reset circuitry so the RESET pin is not required.

•

•

•

•

•

©Adafruit Industries Page 16 of 57

If you have the older non-STEMMA

version of the OLED, the breakouts are

ready for SPI by default.

If you used them for I2C at some point,

you'll need to remove the solder jumpers.

Use wick or a solder sucker to make sure

both are clear!

If you have the newer STEMMA QT

version cut the two jumpers instead!

Finally, connect the pins to your Arduino -

GND goes to ground

Vin goes to 5V

DATA to digital 9

CLK to digital 10

D/C to digital 11

RST to digital 13

CS to digital 12

(Note: If using the display with other SPI devices, D/C, CLK and DAT may be shared,

but CS must be unique for each device.)

This matches the example code we have written. Once you get this working, you can

try another set of pins.

Finally you can run the File→Sketchbook→Libraries→Adafruit_SSD1306→SSD1306_1

28x64_spi example

•

•

•

•

•

•

•

©Adafruit Industries Page 17 of 57

https://learn.adafruit.com//assets/2619
https://learn.adafruit.com//assets/2619
https://learn.adafruit.com//assets/86687
https://learn.adafruit.com//assets/86687

Wiring 128x32 SPI OLED display

128x32 SPI OLED

The 128x32 SPI OLED is very easy to get up and running because it has built in level

shifting. First up, take a piece of 0.1" header 8 pins long.

Plug the header long end down into a breadboard and place the OLED on top. Solder

the short pins into the OLED PCB.

©Adafruit Industries Page 18 of 57

Finally, connect the pins to your Arduino - GND goes to ground, Vin goes to 5V, DATA

to digital 9, CLK to digital 10, D/C to digital 11, RST to digital 13 and finally CS to

digital 12.

(Note: If using the display with other SPI devices, D/C, CLK and DAT may be shared,

but CS must be unique for each device.)

This matches the example code we have written. Once you get this working, you can

try another set of pins.

Finally you can run the File→Sketchbook→Libraries→Adafruit_SSD1306→SSD1306_1

28x32_SPI example

Wiring 128x32 I2C Display

128x32 I2C OLED

The 128x32 I2C OLED is very easy to get up and running because it has built in level

shifting and regulator. First up, take a piece of 0.1" header 6 pins long.

Plug the header long end down into a

breadboard

If you're using the 128x32 OLED, be sure to uncomment the "#define

SSD1306_128_32" in the top of Adafruit_SSD1306.h to change the buffer size

©Adafruit Industries Page 19 of 57

https://learn.adafruit.com//assets/1157
https://learn.adafruit.com//assets/1157

Place the OLED on top

Solder the short pins into the OLED PCB.

Finally, connect the pins to your Arduino

GND goes to ground

Vin goes to 5V

•

•

©Adafruit Industries Page 20 of 57

https://learn.adafruit.com//assets/1158
https://learn.adafruit.com//assets/1158
https://learn.adafruit.com//assets/1159
https://learn.adafruit.com//assets/1159

SDA to I2C Data SDA pin (on the Uno, this is A4 on the Mega it is 20 and on the

Leonardo digital 2)

SCL to I2C Clock SCL pin (on the Uno, this is A5 on the Mega it is 21 and on the

Leonardo digital 3)

RST to digital 4 (you can change this pin in the code, later)

This matches the example code we have written. Once you get this working, you can

change the RST pin. You cannot change the I2C pins, those are 'fixed' in hardware

Finally you can run the File→Sketchbook→Libraries→Adafruit_SSD1306→SSD1306_1

28x32_i2c example

Wiring OLD 0.96" 128x64 OLED

128x64 Version 1.0 OLED

The version 1 128x64 OLED runs at 3.3V and does not have a built in level shifter so

you'll need to use a level shifting chip to use with a 5V microcontroller. The following

will assume that is the case. If you're running a 3.3V microcontroller system, you can

skip the level shifter.

We'll assume you want to use this in a

breadboard, take a piece of 0.1" header

10 pins long.

•

•

•

This wiring diagram is only for the older 0.96" OLED that comes with a level

shifter chip. If you did not get a level shifter chip, you have a V2.0 so please

check out the other wiring tutorial!

©Adafruit Industries Page 21 of 57

https://learn.adafruit.com//assets/692
https://learn.adafruit.com//assets/692

Place the header in a breadboard and

then place the left hand side of the OLED

on top.

And solder the pins

We'll be using the internal charge pump

so connect VDD and VBAT together (they

will connect to 3.3V). GND goes to

ground.

Place a CD4050 level shifter chip so pin

one is at the top.

©Adafruit Industries Page 22 of 57

https://learn.adafruit.com//assets/694
https://learn.adafruit.com//assets/694
https://learn.adafruit.com//assets/697
https://learn.adafruit.com//assets/697
https://learn.adafruit.com//assets/700
https://learn.adafruit.com//assets/700
https://learn.adafruit.com//assets/701
https://learn.adafruit.com//assets/701

Connect pin 10 to D/C pin 12 to CLK (SPI

clock) and pin 15 to DAT (SPI data).

Connect pin 2 to RES (reset) and pin 4

to CS (chip select). Pin 1 goes to 3.3V and

pin 8 to ground.

(Note: If using the display with other SPI

devices, D/C, CLK and DAT may be

shared, but CS must be unique for each

device.)

You can connect the inputs of the level

shifter to any pins you want but in this

case we connected digital I/O 13 to pin 3

of the level shifter, 12 to pin 5, 11 to pin

9, 10 to pin 11 and 9 to pin 14. This

matches the example code we have

written. Once you get this working, you

can try another set of pins.

CircuitPython Wiring

It's easy to use OLEDs with CircuitPython and the Adafruit CircuitPython DisplayIO

SSD1306 (https://adafru.it/FRA) module. This module allows you to easily write

CircuitPython code to control the display.

You can use this sensor with any CircuitPython microcontroller board.

©Adafruit Industries Page 23 of 57

https://learn.adafruit.com//assets/702
https://learn.adafruit.com//assets/702
https://learn.adafruit.com//assets/703
https://learn.adafruit.com//assets/703
https://learn.adafruit.com//assets/704
https://learn.adafruit.com//assets/704
https://github.com/adafruit/Adafruit_CircuitPython_DisplayIO_SSD1306
https://github.com/adafruit/Adafruit_CircuitPython_DisplayIO_SSD1306

We'll cover how to wire the OLED to your CircuitPython microcontroller board. First

assemble your OLED.

Connect the OLED to your microcontroller board as shown below.

Adafruit OLED FeatherWing

Solder the Feather with female

headers on top or stacking headers.

Attach the OLED FeatherWing using

the stacking method.

Adafruit 128x32 I2C OLED Display

Microcontroller 3V to OLED VIN

Microcontroller GND to OLED GND

Microcontroller SCL to OLED SCL

Microcontroller SDA to OLED SDA

Microcontroller D9 to OLED RST

•

•

•

•

•

•

•

©Adafruit Industries Page 24 of 57

https://learn.adafruit.com//assets/68585
https://learn.adafruit.com//assets/68585
https://learn.adafruit.com//assets/68726
https://learn.adafruit.com//assets/68726

Adafruit 128x32 SPI OLED Display

Microcontroller 3V to OLED VIN

Microcontroller GND to OLED GND

Microcontroller SCK to OLED CLK

Microcontroller MOSI to OLED Data

Microcontroller D5 to OLED CS

Microcontroller D6 to OLED D/C

Microcontroller D9 to OLED RST

Adafruit 0.96" 128x64 OLED Display STEMMA QT Version

- I2C Wiring

You do not need to alter the jumpers on

the back - I2C is the default configuration

on this display!

Microcontroller 3V to OLED Vin

Microcontroller GND to OLED Gnd

Microcontroller SCL to OLED Clk

Microcontroller SDA to OLED Data

Note: Connecting the OLED RST is not

necessary as this revision added auto-

reset circuitry so the RESET pin is not

required.

Adafruit 0.96" or 1.3" 128x64 OLED Display Original

Version - I2C Wiring

•

•

•

•

•

•

•

•

•

•

•

Check that the two jumpers are CLOSED on the back of the display to use with

I2C

©Adafruit Industries Page 25 of 57

https://learn.adafruit.com//assets/68727
https://learn.adafruit.com//assets/68727
https://learn.adafruit.com//assets/93882
https://learn.adafruit.com//assets/93882

Microcontroller 3V to OLED Vin

Microcontroller GND to OLED Gnd

Microcontroller SCL to OLED Clk

Microcontroller SDA to OLED Data

Microcontroller D9 to OLED Rst

•

•

•

•

•

©Adafruit Industries Page 26 of 57

https://learn.adafruit.com//assets/68737
https://learn.adafruit.com//assets/68737
https://learn.adafruit.com//assets/68738
https://learn.adafruit.com//assets/68738
https://learn.adafruit.com//assets/68755
https://learn.adafruit.com//assets/68755
https://learn.adafruit.com//assets/68756
https://learn.adafruit.com//assets/68756

Adafruit 0.96" or 1.3" 128x64 OLED Display - SPI Wiring

Microcontroller 3V to OLED Vin

Microcontroller GND to OLED Gnd

Microcontroller SCK to OLED Clk

Microcontroller MOSI to OLED Data

Microcontroller D5 to OLED CS

Microcontroller D6 to OLED DC

Microcontroller D9 to OLED Rst

CircuitPython Setup

CircuitPython Installation of DisplayIO

SSD1306 Library

To use the SSD1306 OLED with your Adafruit CircuitPython board you'll need to install

the Adafruit CircuitPython DisplayIO SSD1306 (https://adafru.it/FRA) module on your

board.

First make sure you are running the latest version 5.0 or later of Adafruit

CircuitPython (https://adafru.it/Amd) for your board.

Check that the two jumpers are OPEN on the back of the display to use with SPI

•

•

•

•

•

•

•

You must be using CircuitPython 5 or later for this to work!

©Adafruit Industries Page 27 of 57

https://learn.adafruit.com//assets/68740
https://learn.adafruit.com//assets/68740
https://learn.adafruit.com//assets/68754
https://learn.adafruit.com//assets/68754
https://github.com/adafruit/Adafruit_CircuitPython_DisplayIO_SSD1306
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython

Next you'll need to install the necessary libraries to use the hardware--carefully follow

the steps to find and install these libraries from Adafruit's CircuitPython library bundle

(https://adafru.it/uap). Our CircuitPython starter guide has a great page on how to

install the library bundle (https://adafru.it/ABU).

If you choose, you can manually install the libraries individually on your board:

adafruit_displayio_ssd1306

adafruit_bus_device

Before continuing make sure your board's lib folder or root filesystem has the

adafruit_displayio_ssd1306.mpy and adafruit_bus_device files and folders copied

over.

Next connect to the board's serial REPL (https://adafru.it/Awz) so you are at the

CircuitPython >>> prompt.

Code Example Additional Libraries

For the Code Example, you will need an additional library. We decided to make use of

a library so the code didn't get overly complicated.

Adafruit_CircuitPython_Display_Text

https://adafru.it/FRB

Go ahead and install this in the same manner as the driver library by copying the adaf

ruit_display_text folder over to the lib folder on your CircuitPython device.

CircuitPython Usage

It's easy to use OLEDs with Python and the Adafruit CircuitPython DisplayIO SSD1306

(https://adafru.it/FRA) module. This module allows you to easily write Python code to

control the display.

To demonstrate the usage, we'll initialize the library and use Python code to control

the OLED from the board's Python REPL.

•

•

Displayio is only available on express board due to the smaller memory size on

non-express boards.

©Adafruit Industries Page 28 of 57

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/the-repl
https://github.com/adafruit/Adafruit_CircuitPython_Display_Text/releases
https://github.com/adafruit/Adafruit_CircuitPython_DisplayIO_SSD1306

I2C Initialization

If your display is connected to the board using I2C (like if using a Feather and the

FeatherWing OLED) you'll first need to initialize the I2C bus. First import the

necessary modules:

import board

Now for either board run this command to create the I2C instance using the default

SCL and SDA pins (which will be marked on the boards pins if using a Feather or

similar Adafruit board):

i2c = board.I2C()

After initializing the I2C interface for your firmware as described above, you can

create an instance of the I2CDisplay bus:

import displayio
import adafruit_displayio_ssd1306
display_bus = displayio.I2CDisplay(i2c, device_address=0x3c)

Finally, you can pass the display_bus in and create an instance of the SSD1306 I2C

driver by running:

display = adafruit_displayio_ssd1306.SSD1306(display_bus, width=128, height=32)

Now you should be seeing an image of the REPL. Note that the last two parameters to

the SSD1306 class initializer are the width and height of the display in pixels. Be sure

to use the right values for the display you're using!

128 x 64 size OLEDs (or changing the I2C address)

If you are using a 128x64 display, the I2C address is probably different (0x3d), unless

you've changed it by soldering some jumpers:

display_bus = displayio.I2CDisplay(i2c, device_address=0x3d)
display = adafruit_displayio_ssd1306.SSD1306(display_bus, width=128, height=64)

©Adafruit Industries Page 29 of 57

Adding hardware reset pin

If you have a reset pin (which may be required if your OLED does not have an auto-

reset chip like the FeatherWing) also pass in a reset pin like so:

display_bus = displayio.I2CDisplay(i2c, device_address=0x3c, reset=board.D9)

At this point the I2C bus and display are initialized. Skip down to the example code

section.

SPI Initialization

If your display is connected to the board using SPI you'll first need to initialize the SPI

bus.

If you're using a microcontroller board, run the following commands:

import board
import displayio
import adafruit_displayio_ssd1306

displayio.release_displays()

spi = board.SPI()
tft_cs = board.D5
tft_dc = board.D6
tft_reset = board.D9

display_bus = displayio.FourWire(spi, command=tft_dc, chip_select=tft_cs,
 reset=tft_reset, baudrate=1000000)
display = adafruit_displayio_ssd1306.SSD1306(display_bus, width=128, height=64)

The parameters to the FourWire initializer are the pins connected to the

display's DC, CS, and reset. Because we are using keyword arguments, they can be in

any position. Again make sure to use the right pin names as you have wired up to

your board!

Note that the last two parameters to the SSD1306 class initializer are the width and h

eight of the display in pixels. Be sure to use the right values for the display you're

using!

©Adafruit Industries Page 30 of 57

Example Code

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

"""
This test will initialize the display using displayio and draw a solid white
background, a smaller black rectangle, and some white text.
"""

import board
import displayio
import terminalio
from adafruit_display_text import label
import adafruit_displayio_ssd1306

displayio.release_displays()

oled_reset = board.D9

Use for I2C
i2c = board.I2C()
display_bus = displayio.I2CDisplay(i2c, device_address=0x3C, reset=oled_reset)

Use for SPI
spi = board.SPI()
oled_cs = board.D5
oled_dc = board.D6
display_bus = displayio.FourWire(spi, command=oled_dc, chip_select=oled_cs,
reset=oled_reset, baudrate=1000000)

WIDTH = 128
HEIGHT = 32 # Change to 64 if needed
BORDER = 5

display = adafruit_displayio_ssd1306.SSD1306(display_bus, width=WIDTH,
height=HEIGHT)

Make the display context
splash = displayio.Group()
display.show(splash)

color_bitmap = displayio.Bitmap(WIDTH, HEIGHT, 1)
color_palette = displayio.Palette(1)
color_palette[0] = 0xFFFFFF # White

bg_sprite = displayio.TileGrid(color_bitmap, pixel_shader=color_palette, x=0, y=0)
splash.append(bg_sprite)

Draw a smaller inner rectangle
inner_bitmap = displayio.Bitmap(WIDTH - BORDER * 2, HEIGHT - BORDER * 2, 1)
inner_palette = displayio.Palette(1)
inner_palette[0] = 0x000000 # Black
inner_sprite = displayio.TileGrid(
 inner_bitmap, pixel_shader=inner_palette, x=BORDER, y=BORDER
)
splash.append(inner_sprite)

Draw a label
text = "Hello World!"
text_area = label.Label(
 terminalio.FONT, text=text, color=0xFFFFFF, x=28, y=HEIGHT // 2 - 1
)
splash.append(text_area)

©Adafruit Industries Page 31 of 57

while True:
 pass

Let's take a look at the sections of code one by one. We start by importing the board

so that we can initialize SPI, displayio , terminalio for the font, a label , and

the adafruit_displayio_ssd1306 driver.

import board
import displayio
import terminalio
from adafruit_display_text import label
import adafruit_displayio_ssd1306

Next we release any previously used displays. This is important because if the

microprocessor is reset, the display pins are not automatically released and this

makes them available for use again.

displayio.release_displays()

Next we define the reset line, which will be used for either SPI or I2C.

oled_reset = board.D9

If you're using I2C, you would use this section of code. We set the I2C object to the

board's I2C with the easy shortcut function board.I2C() . By using this function, it

finds the SPI module and initializes using the default SPI parameters. We also set the

display bus to I2CDisplay which makes use of the I2C bus.

Use for I2C
i2c = board.I2C()
display_bus = displayio.I2CDisplay(i2c, device_address=0x3c, reset=oled_reset)

If you're using SPI, you would use this section of code. We set the SPI object to the

board's SPI with the easy shortcut function board.SPI() . By using this function, it

finds the SPI module and initializes using the default SPI parameters. We set the

OLED's CS (Chip Select), and DC (Data/Command) pins. We also set the display bus to

FourWire which makes use of the SPI bus. The SSD1306 needs to be slowed down to

1MHz, so we pass in the additional baudrate parameter.

spi = board.SPI()
oled_cs = board.D5
oled_dc = board.D6
display_bus = displayio.FourWire(spi, command=oled_dc, chip_select=oled_cs,
 reset=oled_reset, baudrate=1000000)

©Adafruit Industries Page 32 of 57

In order to make it easy to change display sizes, we'll define a few variables in one

spot here. We have the display width, the display height and the border size, which

we will explain a little further below. If your display is something different than these

numbers, change them to the correct setting.

WIDTH = 128
HEIGHT = 32 # Change to 64 if needed
BORDER = 5

Finally, we initialize the driver with a width of the WIDTH variable and a height of the

HEIGHT variable. If we stopped at this point and ran the code, we would have a

terminal that we could type at and have the screen update.

display = adafruit_displayio_ssd1306.SSD1306(display_bus, width=WIDTH,
height=HEIGHT)

Next we create a background splash image. We do this by creating a group that we

can add elements to and adding that group to the display. In this example, we are

limiting the maximum number of elements to 10, but this can be increased if you

would like. The display will automatically handle updating the group.

splash = displayio.Group(max_size=10)
display.show(splash)

Next we create a Bitmap that is the full width and height of the display. The Bitmap is

like a canvas that we can draw on. In this case we are creating the Bitmap to be the

same size as the screen, but only have one color. Although the Bitmaps can handle

©Adafruit Industries Page 33 of 57

up to 256 different colors, the display is monochrome so we only need one. We

create a Palette with one color and set that color to 0xFFFFFF which happens to be

white. If were to place a different color here, displayio handles color conversion

automatically, so it may end up black or white depending on the calculation.

color_bitmap = displayio.Bitmap(WIDTH, HEIGHT, 1)
color_palette = displayio.Palette(1)
color_palette[0] = 0xFFFFFF # White

With all those pieces in place, we create a TileGrid by passing the bitmap and palette

and draw it at (0, 0) which represents the display's upper left.

bg_sprite = displayio.TileGrid(color_bitmap,
 pixel_shader=color_palette,
 x=0, y=0)
splash.append(bg_sprite)

Next we will create a smaller black rectangle. The easiest way to do this is to create a

new bitmap that is a little smaller than the full screen with a single color of 0x000000 ,

which is black, and place it in a specific location. In this case, we will create a bitmap

that is 5 pixels smaller on each side. This is where the BORDER variable comes into

use. It makes calculating the size of the second rectangle much easier. The screen

we're using here is 128x64 and we have the BORDER set to 5 , so we'll want to

subtract 10 from each of those numbers.

We'll also want to place it at the position (5, 5) so that it ends up centered.

Draw a smaller inner rectangle
inner_bitmap = displayio.Bitmap(WIDTH-BORDER*2, HEIGHT-BORDER*2, 1)

©Adafruit Industries Page 34 of 57

inner_palette = displayio.Palette(1)
inner_palette[0] = 0x000000 # Black
inner_sprite = displayio.TileGrid(inner_bitmap,
 pixel_shader=inner_palette,
 x=BORDER, y=BORDER)
splash.append(inner_sprite)

Since we are adding this after the first square, it's automatically drawn on top. Here's

what it looks like now.

Next add a label that says "Hello World!" on top of that. We're going to use the built-in

Terminal Font. In this example, we won't be doing any scaling because of the small

resolution, so we'll add the label directly the main group. If we were scaling, we would

have used a subgroup.

Labels are centered vertically, so we'll place it at half the HEIGHT for the Y coordinate

and subtract one so it looks good. We use the // operator to divide because we

want a whole number returned and it's an easy way to round it. We'll set the width to

around 28 pixels make it appear to be centered horizontally, but if you want to

change the text, change this to whatever looks good to you. Let's go with some white

text, so we'll pass it a value of 0xFFFFFF .

Draw a label
text = "Hello World!"
text_area = label.Label(terminalio.FONT, text=text, color=0xFFFFFF, x=28, y=HEIGHT//
2-1)
splash.append(text_area)

Finally, we place an infinite loop at the end so that the graphics screen remains in

place and isn't replaced by a terminal.

©Adafruit Industries Page 35 of 57

while True:
 pass

If you've been following along with a FeatherWing or 128x32 OLED, this is what it

should look like:

Where to go from here

Be sure to check out this excellent guide to CircuitPython Display Support Using

displayio (https://adafru.it/EGh)

©Adafruit Industries Page 36 of 57

https://learn.adafruit.com/circuitpython-display-support-using-displayio
https://learn.adafruit.com/circuitpython-display-support-using-displayio

Python Wiring

It's easy to use OLEDs with Python and the Adafruit CircuitPython SSD1306 (https://

adafru.it/u1f) module. This module allows you to easily write Python code to control

the display.

We'll cover how to wire the OLED to your Raspberry Pi. First assemble your OLED.

Since there's dozens of Linux computers/boards you can use we will show wiring for

Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to

see whether your platform is supported (https://adafru.it/BSN).

Connect the OLED as shown below to your Raspberry Pi.

Adafruit PIOLED

The PiOLED comes fully assembled.

Simply plug into any Raspberry Pi

as shown.

Adafruit 128x64 OLED Bonnet for Raspberry Pi

The OLED Bonnet comes fully

assembled. Simply plug into the

Raspberry Pi as shown.

•

•

©Adafruit Industries Page 37 of 57

https://github.com/adafruit/Adafruit_CircuitPython_SSD1306
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com//assets/68735
https://learn.adafruit.com//assets/68735
https://learn.adafruit.com//assets/68736
https://learn.adafruit.com//assets/68736

Adafruit 128x32 I2C OLED Display

Pi 3.3V to OLED VIN

Pi GND to OLED GND

Pi SCL to OLED SCL

Pi SDA to OLED SDA

Pi GPIO4 to OLED RST (or any

available GPIO pin)

Adafruit 0.96" 128x64 OLED Display STEMMA QT Version

- I2C Wiring

You do not need to alter the jumpers on

the back - I2C is the default configuration

on this display!

Pi 3.3V to OLED Vin (red wire)

Pi GND to OLED Gnd (black wire)

Pi SCL to OLED Clk (yellow wire)

Pi SDA to OLED Data (blue wire)

Note: Connecting the OLED RST is not

necessary as this revision added auto-

reset circuitry so the RESET pin is not

required.

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 38 of 57

https://learn.adafruit.com//assets/68728
https://learn.adafruit.com//assets/68728
https://learn.adafruit.com//assets/93880
https://learn.adafruit.com//assets/93880

Adafruit 0.96" or 1.3" 128x64 OLED Display Original

Version - I2C Wiring

You must solder two jumpers closed on

the back of the display to use with I2C!

Pi 3.3V to OLED Vin

Pi GND to OLED Gnd

Pi SCL to OLED Clk

Pi SDA to OLED Data

Pi GPIO4 to OLED Rst (or any

available GPIO pin)

•

•

•

•

•

©Adafruit Industries Page 39 of 57

https://learn.adafruit.com//assets/68744
https://learn.adafruit.com//assets/68744
https://learn.adafruit.com//assets/68745
https://learn.adafruit.com//assets/68745
https://learn.adafruit.com//assets/68752
https://learn.adafruit.com//assets/68752

Adafruit 128x32 SPI OLED Display

Pi 3.3V to OLED VIN

Pi GND to OLED GND

Pi MOSI to OLED DATA

Pi SCLK to OLED CLK

Pi GPIO4 to OLED RST (or any

available GPIO pin)

Pi GPIO5 to OLED CS (or any

available GPIO pin)

Pi GPIO6 to OLED DC (or any

available GPIO pin)

Adafruit 0.96" or 1.3" 128x64 OLED Display - SPI Wiring

Pi 3.3V to OLED VIN

Pi GND to OLED GND

Pi MOSI to OLED DATA

Pi SCLK to OLED CLK

Pi GPIO4 to OLED RST (or any

available GPIO pin)

Pi GPIO5 to OLED CS (or any

available GPIO pin)

Pi GPIO6 to OLED DC (or any

available GPIO pin)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 40 of 57

https://learn.adafruit.com//assets/68753
https://learn.adafruit.com//assets/68753
https://learn.adafruit.com//assets/81400
https://learn.adafruit.com//assets/81400
https://learn.adafruit.com//assets/81401
https://learn.adafruit.com//assets/81401

Python Setup

You'll need to install the Adafruit_Blinka library that provides the CircuitPython

support in Python. This may also require enabling I2C on your platform and verifying

you are running Python 3. Since each platform is a little different, and Linux changes

often, please visit the CircuitPython on Linux guide to get your computer ready (https

://adafru.it/BSN)!

Python Installation of SSD1306 Library

Once that's done, from your command line run the following command:

pip3 install adafruit-circuitpython-ssd1306

If your default Python is version 3 you may need to run 'pip' instead. Just make sure

you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

If that complains about pip3 not being installed, then run this first to install it:

sudo apt-get install python3-pip

Pillow Library

We also need PIL, the Python Imaging Library, to allow using text with custom fonts.

There are several system libraries that PIL relies on, so installing via a package

manager is the easiest way to bring in everything:

sudo apt-get install python3-pil

That's it. You should be ready to go.

Speeding up the Display on Raspberry Pi

For the best performance, especially if you are doing fast animations, you'll want to

tweak the I2C core to run at 1MHz. By default it may be 100KHz or 400KHz

To do this edit the config with sudo nano /boot/config.txt

•

•

•

©Adafruit Industries Page 41 of 57

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

and add to the end of the file

dtparam=i2c_baudrate=1000000

reboot to 'set' the change.

Python Usage

It's easy to use OLEDs with Python and the Adafruit CircuitPython SSD1306 (https://

adafru.it/u1f) module. This module allows you to easily write Python code to control

the display.

You can use this sensor with any computer that has GPIO and Python thanks to

Adafruit_Blinka, our CircuitPython-for-Python compatibility library (https://adafru.it/

BSN).

To demonstrate the usage, we'll initialize the library and use Python code to control

the OLED from the board's Python REPL.

Since we are running full CPython on our Linux/computer, we can take advantage of

the powerful Pillow image drawing library to handle text, shapes, graphics, etc. Pillow

is a gold standard in image and graphics handling, you can read about all it can do

here (https://adafru.it/FU7).

©Adafruit Industries Page 42 of 57

https://github.com/adafruit/Adafruit_CircuitPython_SSD1306
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://pillow.readthedocs.io/en/stable/
https://pillow.readthedocs.io/en/stable/
https://pillow.readthedocs.io/en/stable/

I2C Initialization

If your display is connected to the board using I2C (like if using a PiOLED or Bonnet)

you'll first need to initialize the I2C bus. First import the necessary modules:

import board
import busio

Now for either board run this command to create the I2C instance using the default

SCL and SDA pins of your I2C host:

i2c = busio.I2C(board.SCL, board.SDA)

After initializing the I2C interface for your firmware as described above you can

create an instance of the SSD1306 I2C driver by running:

import adafruit_ssd1306
oled = adafruit_ssd1306.SSD1306_I2C(128, 32, i2c)

Note that the first two parameters to the SSD1306_I2C class initializer are the width

and height of the display in pixels. Be sure to use the right values for the display

you're using!

128 x 64 size OLEDs (or changing the I2C address)

If you are using a 128x64 display, the I2C address is probably different (0x3d), unless

you've changed it by soldering some jumpers:

oled = adafruit_ssd1306.SSD1306_I2C(128, 64, i2c, addr=0x3d)

Adding hardware reset pin

If you have a reset pin (which may be required if your OLED does not have an auto-

reset chip like the FeatherWing) also pass in a reset pin like so:

import digitalio

reset_pin = digitalio.DigitalInOut(board.D4) # any pin!
oled = adafruit_ssd1306.SSD1306_I2C(128, 32, i2c, reset=reset_pin)

©Adafruit Industries Page 43 of 57

At this point the I2C bus and display are initialized. Skip down to the example code

section.

SPI Initialization

If your display is connected to the board using SPI you'll first need to initialize the SPI

bus:

import adafruit_ssd1306
import board
import busio
import digitalio

spi = busio.SPI(board.SCK, MOSI=board.MOSI)
reset_pin = digitalio.DigitalInOut(board.D4) # any pin!
cs_pin = digitalio.DigitalInOut(board.D5) # any pin!
dc_pin = digitalio.DigitalInOut(board.D6) # any pin!

oled = adafruit_ssd1306.SSD1306_SPI(128, 32, spi, dc_pin, reset_pin, cs_pin)

Note the first two parameters to the SSD1306_SPI class initializer are the width and h

eight of the display in pixels. Be sure to use the right values for the display you're

using!

The next parameters to the initializer are the pins connected to the

display's DC, reset, and CS lines in that order. Again make sure to use the right pin

names as you have wired up to your board!

Example Code

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

"""
This demo will fill the screen with white, draw a black box on top
and then print Hello World! in the center of the display

This example is for use on (Linux) computers that are using CPython with
Adafruit Blinka to support CircuitPython libraries. CircuitPython does
not support PIL/pillow (python imaging library)!
"""

import board
import digitalio
from PIL import Image, ImageDraw, ImageFont
import adafruit_ssd1306

Define the Reset Pin
oled_reset = digitalio.DigitalInOut(board.D4)

Change these
to the right size for your display!

©Adafruit Industries Page 44 of 57

WIDTH = 128
HEIGHT = 32 # Change to 64 if needed
BORDER = 5

Use for I2C.
i2c = board.I2C()
oled = adafruit_ssd1306.SSD1306_I2C(WIDTH, HEIGHT, i2c, addr=0x3C, reset=oled_reset)

Use for SPI
spi = board.SPI()
oled_cs = digitalio.DigitalInOut(board.D5)
oled_dc = digitalio.DigitalInOut(board.D6)
oled = adafruit_ssd1306.SSD1306_SPI(WIDTH, HEIGHT, spi, oled_dc, oled_reset,
oled_cs)

Clear display.
oled.fill(0)
oled.show()

Create blank image for drawing.
Make sure to create image with mode '1' for 1-bit color.
image = Image.new("1", (oled.width, oled.height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Draw a white background
draw.rectangle((0, 0, oled.width, oled.height), outline=255, fill=255)

Draw a smaller inner rectangle
draw.rectangle(
 (BORDER, BORDER, oled.width - BORDER - 1, oled.height - BORDER - 1),
 outline=0,
 fill=0,
)

Load default font.
font = ImageFont.load_default()

Draw Some Text
text = "Hello World!"
(font_width, font_height) = font.getsize(text)
draw.text(
 (oled.width // 2 - font_width // 2, oled.height // 2 - font_height // 2),
 text,
 font=font,
 fill=255,
)

Display image
oled.image(image)
oled.show()

Let's take a look at the sections of code one by one. We start by importing the board

so that we can initialize SPI, digitalio , several PIL modules for Image Drawing,

and the adafruit_ssd1306 driver.

import board
import digitalio
from PIL import Image, ImageDraw, ImageFont
import adafruit_ssd1306

©Adafruit Industries Page 45 of 57

Next we define the reset line, which will be used for either SPI or I2C. If your OLED

has auto-reset circuitry, you can set the oled_reset line to None

oled_reset = digitalio.DigitalInOut(board.D4)

In order to make it easy to change display sizes, we'll define a few variables in one

spot here. We have the display width, the display height and the border size, which

we will explain a little further below. If your display is something different than these

numbers, change them to the correct setting.

WIDTH = 128
HEIGHT = 32 # Change to 64 if needed
BORDER = 5

If you're using I2C, you would use this section of code. We set the I2C object to the

board's I2C with the easy shortcut function board.I2C() . By using this function, it

finds the SPI module and initializes using the default SPI parameters. We also set up

the oled with SSD1306_I2C which makes use of the I2C bus.

Use for I2C.
i2c = board.I2C()
oled = adafruit_ssd1306.SSD1306_I2C(WIDTH, HEIGHT, i2c, addr=0x3c, reset=oled_reset)

If you're using SPI, you would use this section of code. We set the SPI object to the

board's SPI with the easy shortcut function board.SPI() . By using this function, it

finds the SPI module and initializes using the default SPI parameters. We set the

OLED's CS (Chip Select), and DC (Data/Command) pins. We also set up the OLED with

SSD1306_SPI which makes use of the SPI bus.

Use for SPI
spi = board.SPI()
oled_cs = digitalio.DigitalInOut(board.D5)
oled_dc = digitalio.DigitalInOut(board.D6)
oled = adafruit_ssd1306.SSD1306_SPI(WIDTH, HEIGHT, spi, oled_dc, oled_reset,
oled_cs)

Next we clear the display in case it was initialized with any random artifact data.

Clear display.
oled.fill(0)
oled.show()

Next, we need to initialize PIL to create a blank image to draw on. Think of it as a

virtual canvas. Since this is a monochrome display, we set it up for 1-bit color, meaning

©Adafruit Industries Page 46 of 57

a pixel is either white or black. We can make use of the OLED's width and height

properties as well. Optionally, we could have used our WIDTH and HEIGHT variables.

Create blank image for drawing.
Make sure to create image with mode '1' for 1-bit color.
image = Image.new('1', (oled.width, oled.height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Now we start the actual drawing. Here we are telling it we want to draw a rectangle

from (0,0) , which is the upper left, to the full width and height of the display. We

want it both filled in and having an outline of white, so we pass 255 for both numbers.

Draw a white background
draw.rectangle((0, 0, oled.width, oled.height), outline=255, fill=255)

If we ran the code now, it would still show a blank display because we haven't told

python to use our virtual canvas yet. You can skip to the end if you would like to see

how to do that. This is what our canvas currently looks like in memory.

Next we will create a smaller black rectangle. The easiest way to do this is to draw

another rectangle a little smaller than the full screen with no fill or outline and place it

in a specific location. In this case, we will create a rectangle that is 5 pixels smaller on

each side. This is where the BORDER variable comes into use. It makes calculating

the size of the second rectangle much easier. We want the starting coordinate, which

consists of the first two parameters, to be our BORDER value. Then for the next two

parameters, which are our ending coordinates, we want to subtract our border value

©Adafruit Industries Page 47 of 57

from the width and height. Also, because this is a zero-based coordinate system, we

also need to subtract 1 from each number.

Draw a smaller inner rectangle
draw.rectangle((BORDER, BORDER, oled.width - BORDER - 1, oled.height - BORDER - 1),
 outline=0, fill=0)

Here's what our virtual canvas looks like in memory.

Now drawing text with PIL is pretty straightforward. First we start by setting the font to

the default system text. After that we define our text and get the size of the text.

We're grabbing the size that it would render at so that we can calculate the center

position. Finally, we take the font size and screen size to calculate the position we

want to draw the text at and it appears in the center of the screen.

Load default font.
font = ImageFont.load_default()

Draw Some Text
text = "Hello World!"
(font_width, font_height) = font.getsize(text)
draw.text((oled.width//2 - font_width//2, oled.height//2 - font_height//2),
 text, font=font, fill=255)

Finally, we need to display our virtual canvas to the OLED and we do that with 2

commands. First we set the image to the screen, then we tell it to show the image.

Display image
oled.image(image)
oled.show()

©Adafruit Industries Page 48 of 57

Here's what the final output should look like.

Troubleshooting

Display does not work on initial power but does work

after a reset.

The OLED driver circuit needs a small amount of time to be ready after initial

power. If your code tries to write to the display too soon, it may not be ready. It will

work on reset since that typically does not cycle power. If you are having this issue,

try adding a small amount of delay before trying to write to the OLED.

In Arduino, use delay() to add a few milliseconds before calling oled.begin(). Adjust

the amount of delay as needed to see how little you can get away with for your

specific setup.

Display is showing burn in on some pixels.

The display can have image burn in for any pixels left on over a long period of time

- many days. Try to avoid having the display on constantly for that length of time.

Don't forget you MUST call oled.image(image) and oled.show() to actually display

the graphics. The OLED takes a while to draw so cluster all your drawing

functions into the buffer (fast) and then display them once to the oled (slow)

©Adafruit Industries Page 49 of 57

Downloads

Software

You can download our SSD1306 OLED display Arduino library from github (https://

adafru.it/aHq) which comes with example code. The library can print text, bitmaps,

pixels, rectangles, circles and lines. It uses 1K of RAM since it needs to buffer the

entire display but its very fast! The code is simple to adapt to any other

microcontroller. You'll also have to install the Adafruit GFX graphics core library at this

github repo (https://adafru.it/aJa) and install it after you've gotten the OLED driver

library.

You can check out a simulator for these OLEDs at https://wokwi.com/arduino/libraries

/Adafruit_SSD1306 (https://adafru.it/Ncf)

Datasheets

UG-2864HSWEG01 (https://adafru.it/aJI) Datasheet

UG-2832HSWEG02 (https://adafru.it/qrf) Datasheet

UG-2864HSWEG01 (https://adafru.it/wWD) User Guide

UG-2832HSWEG04 (https://adafru.it/qVA) Datasheet

UG-2864KSWLG01 (https://adafru.it/Re8) Datasheet

SSD1306 (https://adafru.it/aJK) Datasheet

Files

EagleCAD PCB files for 128x32 0.91" SPI display PCB (https://adafru.it/aJL)

EagleCAD PCB files for 128x32 0.91" I2C display on GitHub (https://adafru.it/rPF)

EagleCAD PCB files for 128x64 0.96" display on GitHub (https://adafru.it/aJM)

EagleCAD PCB files for 128x64 1.3" display on GitHub (https://adafru.it/rJe)

Fritzing objects available in the Adafruit Fritzing Library (https://adafru.it/aP3)

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 50 of 57

https://github.com/adafruit/Adafruit_SSD1306
https://github.com/adafruit/Adafruit-GFX-Library
https://github.com/adafruit/Adafruit-GFX-Library
https://wokwi.com/arduino/libraries/Adafruit_SSD1306
https://wokwi.com/arduino/libraries/Adafruit_SSD1306
http://www.adafruit.com/datasheets/UG-2864HSWEG01.pdf
https://cdn-shop.adafruit.com/datasheets/UG-2832HSWEG02.pdf
http://www.adafruit.com/datasheets/UG-2864HSWEG01%20user%20guide.pdf
https://cdn-shop.adafruit.com/datasheets/UG-2832HSWEG04.pdf
https://cdn-learn.adafruit.com/assets/assets/000/100/779/original/2011241005_UG-Univision-Semicon-UG-2864KSWLG01_C113322.pdf?1616084674
http://www.adafruit.com/datasheets/SSD1306.pdf
https://github.com/adafruit/Adafruit-128x32-SPI-OLED-breakout-board-PCB
https://github.com/adafruit/Adafruit-128x32-I2C-OLED-Breakout-PCB
https://github.com/adafruit/Adafruit-128x64-Monochrome-OLED-PCB
https://github.com/adafruit/Adafruit-1.3inch-128x64-Mono-OLED-PCB
https://github.com/adafruit/Fritzing-Library

Schematic & Fabrication Print for 0.96"

OLED - STEMMA QT version

©Adafruit Industries Page 51 of 57

Schematic & Fabrication Print for 0.96"

OLED - Original version

©Adafruit Industries Page 52 of 57

Schematic & Fabrication Print for 1.3" OLED

Schematic & Fabrication Print for 1.3" OLED

STEMMA QT

As of Nov 20, 2019 we've done a re-design to make the display more plug and play.

There is now an auto-reset circuit so that it will reset the display on power up. We've

©Adafruit Industries Page 53 of 57

also changed the default protocol to be I2C instead of SPI. To convert to SPI mode

you will need to cut two jumpers (there's a typo on the PCB). We have also added two

STEMMA QT / Qwiic connectors for plug and play usage! The board size, mounting

holes and layout has changed slightly to accommodate these changes.

©Adafruit Industries Page 54 of 57

Schematic & Fabrication Print for 0.91"

128x32 I2C

Schematic & Fabrication Print for 0.91"

128x32 I2C STEMMA QT

As of Nov 20, 2019 we've done a re-design to make the display more plug and play.

There is now an auto-reset circuit so that it will reset the display on power up. We've

also changed the default protocol to be I2C instead of SPI. To convert to SPI mode

you will need to cut two jumpers (there's a typo on the PCB). We have also added two

©Adafruit Industries Page 55 of 57

STEMMA QT / Qwiic connectors for plug and play usage! The board size, mounting

holes and layout has changed slightly to accommodate these changes.

©Adafruit Industries Page 56 of 57

Schematic & Fabrication Print for 0.91"

128x32 SPI

©Adafruit Industries Page 57 of 57

	Monochrome OLED Breakouts
	Table of Contents
	Overview
	Power Requirements
	Arduino Library & Examples
	Wiring 128x64 OLEDs
	Wiring 128x32 SPI OLED display
	Wiring 128x32 I2C Display
	Wiring OLD 0.96" 128x64 OLED
	CircuitPython Wiring
	CircuitPython Setup
	CircuitPython Usage
	Python Wiring
	Python Setup
	Python Usage
	Troubleshooting
	Downloads

	Overview
	Power Requirements
	OLED Power Requirements
	5V- ready 128x64 and 128x32 OLEDs
	0.96" 128x64 OLED

	Arduino Library & Examples
	Install Arduino Libraries
	Run Demo!
	Create Bitmaps

	Wiring 128x64 OLEDs
	Solder Header

	I2C or SPI
	Using with I2C
	Converting From I2C to SPI Mode
	Wiring It Up!
	Using with SPI

	Wiring 128x32 SPI OLED display
	128x32 SPI OLED

	Wiring 128x32 I2C Display
	128x32 I2C OLED

	Wiring OLD 0.96" 128x64 OLED
	128x64 Version 1.0 OLED

	CircuitPython Wiring
	Adafruit OLED FeatherWing
	Adafruit 128x32 I2C OLED Display
	Adafruit 128x32 SPI OLED Display
	Adafruit 0.96" 128x64 OLED Display STEMMA QT Version - I2C Wiring
	Adafruit 0.96" or 1.3" 128x64 OLED Display Original Version - I2C Wiring
	Adafruit 0.96" or 1.3" 128x64 OLED Display - SPI Wiring

	CircuitPython Setup
	CircuitPython Installation of DisplayIO SSD1306 Library
	Code Example Additional Libraries

	CircuitPython Usage
	I2C Initialization
	128 x 64 size OLEDs (or changing the I2C address)
	Adding hardware reset pin

	SPI Initialization
	Example Code
	Where to go from here

	Python Wiring
	Adafruit PIOLED
	Adafruit 128x64 OLED Bonnet for Raspberry Pi
	Adafruit 128x32 I2C OLED Display
	Adafruit 0.96" 128x64 OLED Display STEMMA QT Version - I2C Wiring
	Adafruit 0.96" or 1.3" 128x64 OLED Display Original Version - I2C Wiring
	Adafruit 128x32 SPI OLED Display
	Adafruit 0.96" or 1.3" 128x64 OLED Display - SPI Wiring

	Python Setup
	Python Installation of SSD1306 Library
	Pillow Library
	Speeding up the Display on Raspberry Pi

	Python Usage
	I2C Initialization
	128 x 64 size OLEDs (or changing the I2C address)
	Adding hardware reset pin

	SPI Initialization
	Example Code
	Troubleshooting
	Display does not work on initial power but does work after a reset.
	Display is showing burn in on some pixels.

	Downloads
	Software
	Datasheets
	Files
	Schematic & Fabrication Print for 0.96" OLED - STEMMA QT version
	Schematic & Fabrication Print for 0.96" OLED - Original version
	Schematic & Fabrication Print for 1.3" OLED
	Schematic & Fabrication Print for 1.3" OLED STEMMA QT
	Schematic & Fabrication Print for 0.91" 128x32 I2C
	Schematic & Fabrication Print for 0.91" 128x32 I2C STEMMA QT
	Schematic & Fabrication Print for 0.91" 128x32 SPI

