Atmel QTouch Library

User Guide

Supports QTouch® and QMatrix® acquisition for Keys, Sliders
and Rotors

AIMEL

@ Rev. 8207K-AT42-09/11

AIMEL

&

Rev. 8207K-AT42-02/11

Table of Contents

L= 1 o] F=N0) A 0] o] (=Y o1 £ 2
I Y = Vo = SRR 9
2 1 1 o Yo [V T3 1o o 10 9
T O)V 2T oY AT 1T 11
4 Abbreviations and DefinitioNScooiveiiiiii i 11
4.1 DEfINILIONS ..o 11

5 Generic QTOUCKh LiDraries ..o v e 13
L 700 R [0 £ Yo [1 T 1T o 13
L7 Xod o |8 111110 o TN Y= 1 1 o o SR 13
5.2.1 QTouch acqUISItioN MELNOM.coiiiiiiiie e e e s areeeeaeeas 14
5.2.1.1 Sensor schematics for a QTouch acquisition method designccoecuvvieeeenn. 14

5.2.2 QMatriX acquUISItioN METNOU.cciiiiiiiiii e e e e e e e s araeeeeeean 15
5.2.3 Sensor schematics for a QMatrix acquisition method design..........ccccceeiviviiiiene e, 16

5.3 Global settings common to all sensors of a specific acquisition method........................ 16
5.3.1 Recalibration TAreSNOIdcovviiiiiiiiiiiiiiiiiiieeieee ettt eeeeeeeeesesaseseseresasssessssssssssssssssssrsrsrsnees 17
5.3.2 (D= (= To 0] (= To | = U1 T o SO RU P UPPRP 17
5.3.3 [10 (o] [o I T [TP PPPPPPPPPPPPPPPPRt 17
5.3.4 MaximuUM ON DUFALION........ceiiriiiiiiiieeeerieeeeeeeeerreetereeeereerrreeeeesrrrerrrererererrrererrrererrrerrr.r..... 18
5.35 POSItIVE / NEQALIVE DIiff....eiiiiiiiiiiiiiii e e e s e e e e e e st areaaeeesanees 18
5.3.6 Positive Recalibration DEIAY.............coiiiiiiiiiiiiiiee ettt e e e a e e 18

5.4 SensOr SPECIfIC SEHINGS ..uvvviieiiiiiiiiii e e e e e e e e e e e s e s e e e e e e s snnrnaeees 19
541 (D= (Tl a1 (=] a1 (o IR PPPPPPPPPPPPPPPPRt 19
5.4.2 [Y] (T (=T [PR UPPUPN 19
5.4.3 POSItION RESOIULIONiiiiiiiiiiiiiiiiiiiiieee ettt eeeeeeeeeeeeeeeeeteeeeesesesssrssnnens 20
5.4.4 POSITION HY STEISIS. ... iiiiiiiii ettt e e e e e s et e et e e e s es b tb e e e eaeeesssntbaneeaeeesannees 20
5.45 Adjacent Key SUPPresSIioN (AKS)......ooiiiiiiieee ettt e e s e e e e e e e e e sneaaee s 20

5.5 USING thE SENSOISiiiiiiiiiee ittt ee e e e e e e e e e st ae e e e e e e s e nnnn e eeeeeeesannnrnneees 21
55.1 AVOIING CrOSS-TAIKvviiiiiee ittt e e e e e e e e s e et e et e e e s eaab b e e e aaeeeannnrreees 21
5.5.2 MUIIPIE MEASUIEIMEINES ...eeiiii e ittt ee e s ettt e e e e et e e e e e e s st e e e e e e s sasbtreeeeaeeaasnntbaeeaaeeasannees 21
55.3 LU= U0 [g =T o o T N 22

56 QTOUCHh APL ANd USAQE ...cevieeiiiiiiiiiiiie e e i eitiie e e e e e s sstetee e e e e e s e sntaae e e e e e e s s snnnbeneeeeeeesnnnnnneees 23
5.6.1 (O o U o g o] = YA AN = PO U UUR PP 23
5.6.2 touch_api.h - public header fil@coi i 23
5.6.3 Type Definitions and enumerations used in the library..........c.cccccoiii e, 23
LN 5 A Y/ o T=To (= S TP 23

Lo R T 01010 1 (=] = 1 (] 0 T 23
5.6.3.2.1 SENSOI Y PE i ———— 23
N I - 1T o [(o 11] o 1 SR 23
5.6.3.2.3 ChanNEI L. ..eeeiiiiiii e 24

I T B A 4 1Y) (=Y (=] 1 SR 24
LG TG T ST (=TT o 1111 o 1 SR 25
5.6.3.2.6 recal threshold t.........c..oooiieiiiiiie e 25

5.6.4 (D= | =] 10 (o (U= ORI 26
5.6.4.1 gt tOUCKH _STAUS L. it e e e e e e 26

8207K-AT42-09/11

5.6.4.2 gt _touch_lib_config_data t.......cccooovieeeiiiiir e 26

5.6.4.3 qgt_touch _lib_measure_data t........ccccccoiiiiiiiiiiee i 27
5.6.4.4 gt BUISt IENQLNS ... ————————— 27
B5.6.4.5 1A _SENSON f.iiiiiiiiieie e 28
5.6.4.6 qtlIb_SIGINFO_T .ooiiiiiee e 28
5.6.5 PUDIIC FUNCHONS ...ttt e e 29
5.6.5.1 (QU_SEL PArAMELEIS ...ooiiii e 29
5.6.5.2 gL eNabIe _KEY ...oooi i 30
5.6.5.3 gL_€NADIE _TOIOF ..o 30
5.6.5.4 gt_enable SIAET ... e 31
5.6.5.5 gt NIt _SENSING .eiieeiiiiiiiiiiii et e e e s e e e e s e a e e e e aeen 31
5.6.5.6 Ol _MEBASUIMNE _SENSOIS...ccieieie e e i e e e eeee et et e et e et e e e e e et e e s e e e e s s e e aean e s ananananananananan e ans 31
5.6.5.7 qt_calibrate _SENSINGuvuiiiieeiiiiiieii e 32
5.6.5.8 (L reSEt SENSINGciiueiieiiiiee e eccir et e e e e e e e e e s s e e e e e e e aees 33
5.6.5.9 gt _get SENSOr deRaA........ccveeiiiiiiiiiiie e 33
5.6.5.10 gt _get lIDrary Sig ..ccueeeieeeeiiiiiiiiiee et 33
5.6.6 Sequence of Operations and UsiNg the APL...........ooooiiiiiiie e 33
5.6.6.1 Channel NUMDEINGouiiiiii e 34
5.6.6.1.1 Channel numbering when using QTouch acquisition method......................... 34
5.6.6.1.2 Channel numbering when using QMatrix acquisition method........................ 40
5.6.6.2 SeNnSOr NUMDBDENGuuiiiiiiieiie et e e e e 42
5.6.6.3 Filtering Signal MeasUrEmMENTS.........ccooiiiiiiiiiiie e 43
5.6.6.4 Allocating unused Port Pins for User Application...........cccccooviiiiiiiiininiiiiiieeeenn, 45
5.6.6.5 Disabling and Enabling of Pull-up for AVR deViCescccccccevcviriiiieeeiiiiiiieeeeenn, 46
5.6.7 (070] 0153 1 =11] SRR 46
5.6.7.1 QTouch acquisition method CONSIraINtScceeeiiiiiiiiiiiee e 46
5.6.7.2 QMatrix acquisition method CONSIraINtSceeeeviiiiiiiiiiee e 46
5.6.7.3 Design Guidelines for QMatrix acquisition method systems.........cccccccevvvvvveennnnn. a7
5.6.8 Frequency of operation (Vs) Charge cycle/dwell cycle times: ... 48
5.6.9 11T 18] o] £ PP P PP PP PPPPPPPPPPRPPPPPRt 49
5.6.10 Integrating QTouch libraries in your appliCationoocueiiiiiiiiiiiii e 49
5.6.10.1 Directory structure of the library fileS.........ccccceee i, 49
5.6.10.2 Integrating QTouch acquisition method libraries in your application................ 51
5.6.10.2.1 Example for 8Dit AVR ... 53
5.6.10.2.2 EXaMPIE fOr ATSAM ..ottt 54
5.6.10.2.3 Checklist of items for integrating QTouch acquisition method libraries......... 55
5.6.10.3 Integrating QMatrix acquisition method libraries in your application 56
5.6.10.3.1 Example for 8Dit AVR ...t 56
5.6.10.3.2 Example for 32Dit AVRcocoiiiiieeee e 63
5.6.10.3.3 Checklist of items for integrating QMatrix Capacitive sensing libraries......... 67
5.6.10.4 Common CheCKliSt ITEMS.......uuiiiiiiiiie e 67
5.6.10.4.1 Configuring the stack size for the application...........ccccccceevviivciiiiree e, 67
5.6.11 EXamPIe ProJECL RSeeieieieei ettt e et e e e as 68
5.6.11.1 Using the Sample ProJECES.......uuuiiiiiiiiiiiiieii e e e e e snnrae e e e 69
5.6.11.2 Example applications for QTouch acquisition method libraries........................ 69
5.6.11.2.1 Selecting the right configuration ... 69
5.6.11.2.2 Changing the settings to match your device............cccccceiiiiiiiiiiiicc e, 70
5.6.11.2.3 Changing the library configuration parameters............ccccceviiiiiieeeeeee e, 71
5.6.11.2.4 Using the eXample ProjECLSuciiiiiiiiiiiiiiieie et 73
5.6.11.3 Example applications for QMatrix acquisition method libraries........................ 73
5.6.11.3.1 Selecting the right configurationcccoveeee i 74
5.6.11.3.2 Changing the library configuration parameters..........ccccccceevvvvnvieereeeeeisccennnen, 75
5.6.11.3.3 Using the eXample ProjECESuueiieeeiiiiiiiiiieee e creeee e s e e 76
5.6.11.4 Adjusting the Stack size when using IAR IDEcccccceevviiiiiiieiee e 76
5.6.11.5 OptimizZation I@VEIS.......ccoceeiiiiiiiiiiee et e e e e rr e 77
5.6.11.6 Debug Support in Example applications............cccccuviiiveeeiiiiciiiiiiee e 78

AIMEL °

&

AIMEL

&

5.6.11.6.1 Debug Support in the sample applications for EVK2080 and QT600 boards 78

5.6.11.6.2 How to turn on the debug OptioN...........cccviiiieiie e 78
5.6.11.6.3 Debug Interface if USB Bridge board is not availablecccccccoovnne 79
LT A I o1 =1 VY £ T = U | =SSR 79
5.7.1 QTouch Acquisition method library Variants...........cccccoveiviiiiie e 79
L A% I A [1 e T [0 Tox £ o] o [T UPT TP 79
5.7.1.2 Support for different compiler tool Chains...........ccooiiiiiiiiiiin e 80
5.7.1.3 QTouch Acquisition method library naming conventions..............ccccccoeviiiiiieeenn. 80
5.7.1.3.1 Naming convention for libraries to be used with GCC tool chain.................... 80
5.7.1.3.2 Naming convention for libraries to be used with IAR Embedded Workbench 81
5.7.1.4 QTouch acquisition method library variants............ccccccceeiiiiiiiii e, 81
5.7.1.5 Port combinations supported for SNS and SNSK pin configurations 82
5.7.1.5.1 Tips on pin assignments for the sensor design using one pair of SNS/SNSK
ports 82
5.7.1.5.2 Port combinations supported for two port pair SNS and SNSK pin
(o700 18] =110 <SSP 83

5.7.1.6 Sample applications and Memory requirements for QTouch acquisition method
libraries 85

5.7.2 QMatrix acquisition method library variants............cccccoociviiiiii i 85
LT 20 N [11 (e T [0 Tox £ o] o [O PP URTPUPRI 85
5.7.2.2 Support for different compiler tool Chains............cooiiiiiiiiiiii e 85
5.7.2.3 QMatrix Acquisition method library naming conventionscccccceeveriiveneeennn. 85
5.7.2.4 QMatrix acquisition method library variantscccccccieiiniiiiiiie e, 88
5.7.2.4.1 Devices supported for QMatrix ACQUISILIONcoooiuiiiiiiiiiiiiiiiieee e 88
5.8 PIN Configuration for QTOUCh LIDraries ... 88
5.8.1 Pin Configuration for QTouch Acquisition Method.............cooiiiuiiiiiiiiiii e 88
5.8.1.1 Rules for configurable SNS-SNSK Mask Generationccccvvvereeeriiiivvnnnnnenn. 89
5.8.1.1.1 Example for 8 channel interport mask Calculation with one port pair............. 90
5.8.1.1.2 Example for 8 channel intraport mask Calculation with two port pairs............ 91

5.8.1.1.3 Example for 12 channel intraport-interport mask Calculation with two port

pairs 92
5.8.1.1.4 Example for 16 channel intreport-interport mask Calculation with two port
pairs 93

5.8.1.2 How to Use QTouch Studio For Pin Configurabilitycccoociiiiiiiiniiiin, 94
5.8.2 Pin Configuration for QMatrix Acquisition Method..............oooiiiiiiiee i 102
5.8.2.1 Configuration RUIES:ooi it a e 102
5.8.2.2 How to use QTouch Studio for Pin Configurability:cccoiiiiiiniiiiienn. 103
5.9 MISRA ComMPlianCe REPOMceiiiiiiiiiiitei et 110
5.9.1 WARAL IS COVEIBAeiiiiiiiiiie ittt ettt sine e 110
5.9.2 Target ENVIFONMENT......uiiiii ittt e e e et e e e e e et e e e e e e e asantbaeeeaeeeesnnsbaees 111
5.9.3 Deviations from MISRA C Standardsccocviiiiieiiiiiieeiin e 111
5.9.3.1 QTouch acquisition method libraries............ccccoiiiiii e 111
5.9.3.2 QMatrix acquisition method librariesccccceeeviiiciieiiee e 111
L0 I (g (o) I KT U o T 112
L0 O O 4 =T 24] TP PP UPPRRPN 113
6 Device SPeCifiC LIDrari@S. ..o 114
L A [o1 1 o o (U1 1o o PP PPTTT S 114
6.2 DEVICES SUPPOITEAeeeeiiiiieeiiiitie it e ettt et e e e e ettt e e e e e s et e e e e e e e s nbb e ee e e e e e e annneneeas 114
6.3 QTouch Library for AT32UC3L HEVICESueeiiiiiiiiiiiiiiiaae et 114
6.3.1 Salient Features of QTouch Library for UC3Lcioiiiiiiiiiiie e 114

4 8207K-AT42-09/11

6.3.1.1 QMatriX MEthOU SENSONuuutuiuruiiriiiririririraratararerarararerar bbbt 114

6.3.1.2 QTOUCHh MELNOO SENSOKuuuutuiuruririririrerirarererararerererererarerararererererar—rererrr.—————————. 114
6.3.1.3 AUtONOMOUS QTOUCKH SENSOKuuvuvureririrurirererararerarererersrerererererere.——————————————. 115
6.3.1.4 AddItiONAl FEATUIESceiiiiiiiiiiieie et e e e e 115
6.3.2 Device variants supported fOr UCSLc.uuuiiiiieiiiiiiiiis ettt a e r e e e e e enees 115
6.3.3 Compiler tool chain SUPPOIt FOr UCSL ...uviiiiiiiiiiiiiiiee et 115
Table 8 Compiler tool chains support for UC3L QTouch Librarycccoocciiiiinnnins 116
6.3.4 Overview of QTouch Library APIfor UC3L......cccuviiiiiiiiiiiiiiieee et 116
Figure 35 Overview diagram of QTouch Library for UC3Lceiiiiiiiiiiiiiieieeiiii, 117
6.3.5 Acquisition method SUPPOIt FOr UCSL......uuiiiieiiiiiiiiiiee et a e 117
Table 9 Acquisition method SPeCific APloiiiiiii e 117
6.3.6 API State Maching fOr UCSLucoiiiiiiieiiieiiie sttt 117
Figure 36 State Diagram of QTouch Library for UC3Lcccuuviiiiiiiiiiiiiieeeeeee i 118
6.3.7 QMatrix method sensor operation for UC3L..........uuiiiiiiiiiiiiieee et 118
6.3.7.1 QMatrix method pin selection fOr UC3Lcccooiiiiiiiieiieeiieieee e 118
Table 10 QMatrix Resistive drive pin OPLIONccoiiiiieieeee e e e 119
6.3.7.2 QMatrix method Schematic fOr UC3Luuuuiuuriuriiiiiiiiiiiinieieiereieieieiereren.. 119
6.3.7.2.1 Internal DiSCharge MOUEcccuvviiiiiee e 119
6.3.7.2.2 External Discharge Modeueeriieiiiiiiiiiiicee e 120
6.3.7.2.3 SMP DisSCharge MOEccoocuiiiiiieei e 120
6.3.7.2.4 VDIVEN Voltage Divider Enable optionccccccoevcviiiiiiee i, 120
6.3.7.2.5 SYNC PIN OPLION ..ttt e e e e e e e e e eneeeeas 120
Figure 37 QMatrix method SChemMatiCcouuiiiiiiiiii e 122
6.3.7.3 QMatrix method hardware resource requirement for UC3L........ccccoevviiiiiineennn. 122
6.3.7.4 QMatrix method Channel and Sensor numbering for UC3Lccccooviiiiiineennn. 122
Figure 38 QMatrix channel numbering for UC3Lcooiiiiiiiiiiiiiee e 122
6.3.7.5 QMatrix method APl FIOW fOr UC3L.........uuuuuiuiuiiiiiiiiiiiiiiinininininisisinisrninennn. 123
Figure 39 QMatrix APl Flow diagram for UC3Lcccceveeeiiiiiiiieeee e 124
6.3.7.6 QMatrix method Disable and Re-enable Sensor for UC3L..........cccvvvvvvvvvnvnnnnnnns 125
6.3.8 QTouch Group A/B method sensor operation for UC3L.........ccoouiiiiiiiiiieeiiiiiiee e 125
6.3.8.1 QTouch Group A/B method pin selection for UC3Lcccocccivievveeeiiiiiiieeeenn, 125
Table 11 QTouch Resistive drive Pin OPtioNcciiiceiiiireeee e e e srere e e e 126
6.3.8.2 QTouch Group A/B method Schematic for UC3Lcceevviviviiivine e, 126
6.3.8.2.1 RESISHIVE DIiVE OPLION....eiiiiiiiiiiiiiiii ettt e e 126
6.3.8.2.2 SYNC PN OPLION ...ttt ettt e e e e e e e e e e naeeeeas 126
Figure 40 QTouch Group A/B and Autonomous QTouch schematic arrangement 127
6.3.8.3 QTouch Group A/B method hardware resource requirement for UC3L............. 127
6.3.8.4 QTouch Group A/B method Channel and Sensor numbering for UC3L 128
Figure 41 QTouch method Channel/Sensor NnUMDbEringcceveeriiiiiieeeeee e, 128
Figure 42 QTouch method Channel/Sensor numbering when Group A and B are used
100 =T 1 =T SRR 129
6.3.8.5 QTouch Group A/B method API Flow for UC3L.......cccccceeeviiiiiiieeee e 129
Figure 43 QTouch method API Flow diagram...........ccceeeeeeiiiiiiiiieeee e e 131
6.3.8.6 QTouch Group A/B method Disable and Re-enable Sensor for UC3L.............. 131
6.3.9 Autonomous QTouch sensor operation for UC3Lcooiuiiiiiiaiiiiiieie e 131
6.3.9.1 Autonomous QTouch Sensor pin selection for UC3Lcccccvvvvvveecviiiiiiennnnenn, 131
6.3.9.2 Autonomous QTouch sensor Schematic for UC3Lccccvviminininininininininnninnn, 131
6.3.9.3 Autonomous QTouch method hardware resource requirement for UC3L 131
Table 12 Sleep mode support for Autonomous QTOUCH ... 132
6.3.9.4 Autonomous QTouch Sensor APl FIow for UC3L.........c.ccccuvviviiiiiiininiiininininnninn, 132
Figure 44 Autonomous QTouch API FIow diagramccccueieiiiiiiiiiiiieeeeee e 133
6.3.9.5 Autonomous QTouch method Enable and Disable Sensor for UC3L................ 133
6.3.10 Raw acquisition mode SUPPOIt FOr UCSBL.......ceiiiiiiiiiiiieae e aiiiiiiee e e e e e e 133
Figure 45 Raw acquisition mode API Flow diagramccccovvvveeeeiiiiiiiieneee e, 134
6.3.11 Library Configuration parameters for UC3L........ooiuiiiiiiiiaiiiiiiiee e 134

AIMEL °

&

AIMEL

&

Table 13 QTouch Library for UC3L Configuration parameters.........ccccccevvecvvveereeennnnns 135
6.3.12 Example projects for QTouch Library for UC3L..........ccoiiiiiiiiiiiiiiiaei e 135
6.3.12.1 EXamPIe ProjECt USAQE......uvurrieieeeiiiiiieieeee e e s e esiieeee e e e e e s s snnieeee e e e e e s s nnnnnneeeaees 135
Figure 46 GNU Example project usage with AVR32 Studioccceevvvivvvviereeeeeiiiinnne, 136
Figure 47 IAR Example project usage with IAR Embedded Workbench for AVR32 136
6.3.12.2 QMatrix EXample ProjECE.........ooiiiiiiiiiiiiiiee e 136
6.3.12.3 QTouch Group A EXample ProjeCtccoiiiiiiiiiiiiieiieiiiiiieee e 136
6.3.12.4 Autonomous QTouch Example Projectcccuuieeiiiiiiiiiiiiiieiee e 137
6.3.13 Code and Data Memory requirements for UC3Lcouieiiiiiiiiieiie e ee e essiiveee e e e e 137
6.3.13.1 QMatrix method Memory reqUIrEMENTt..........coooiuiiiiiieeeiiiiiiie e 137
Table 14 Typical Code and Data memory for Standalone QMatrix operation.............. 138
6.3.13.2 QTouch Group A/B method memory requiremMent...........cccvvveeeeeeesssiciveneenen 138
Table 15 Typical Code and Data memory for Standalone QTouch Group A/B operation
.. 138
6.3.13.3 Autonomous QTouch memory requIiremMentcccceeeveriiiieeeeeeeesesieeeeeeeens 138
Table 16 Minimum Code and Data for Standalone Autonomous QTouch sensor........ 139
6.3.14 Public header files of QTouch Library for UC3L..........coiiiiiiiiiiiieiiaeiaiieee e 139
6.3.15 Type Definitions and enumerations used in the library.............cccccoiiii e 139
B.3.15.1 TYPEAETS .oeiiieee it 139
6.3.15.1.1 tOUCh_ACH_SEALUS t....eeiiiiieiiiiiiiiiie ettt e e 139
6.3.15.1.2 tOUCK_ Ot gDt e e 140
6.3.15.2 ENUMEIALIONS.ctiiiiiiieeee ittt e e sttt e e e e e e s s be e e e e e e e e s e nnnbeeeaaaeeas 140
6.3.15.2.1 toUCh _ret t...oi s 140
6.3.15.2.2 touch_lib_state t..........ccoooiiiiii i, 141
6.3.15.2.3 tOUCh_ACH_MOAE Tueiiiiiiiiiiiiieie e 141
6.3.15.2.4 SENSOI_LYPE Lo ——— 142
6.3.15.2.5 @KS_GrOUP L .eiieieeiiiiiieiiei e e ettt e e e e e e e e e s e e e e e e s e e e e e e e e e nnnnae s 142
6.3.15.2.6 NYSIEIESIS L.uiiiiieiiiiiiiieiiei e s ettt e e s e e e s e s e e e e e s s e e e e e e e annnneeees 142
6.3.15.2.7 recal_threshold_t........ccccceiiiiiiie e 143
R T2 T Y=Y (1) o) o PSR 143
6.3.15.2.9 at_StatuS ChaNQE Tooiiiiiiiiiieii e 143
6.3.15.2.20 X_PIN_OPLIONS T ..ttt e e 144
6.3.15.2.11 Y PIN_OPLIONS Tttt a e 144
6.3.15.2.12 gt_PiN_OPLIONS .. .eeeiiiiiiieiieiiiiii et 144
6.3.15.2.13 general_pin_OPtioNS L. ...coi i 144
6.3.16 DALA SIUCTUIESci i ittt e ettt e e e e et e e e e e s et e et e e e s et et e e e e e ananbreneeeeeeennen 145
L T G T Y= 1Yo] A PSSP 145
6.3.16.2 touch_global param _t.......ccccoeiiioiiiii e 145
6.3.16.3 toUCh_fIlter _data L........ccoiiiiiiiiiii e 145
6.3.16.4 touch_measure_data t.........cccccceeiiiiiiiiiiiiee e e e e 146
SRS I G TSI (o 10 Td o T o 10 N o = 2 N PP 146
6.3.16.6 tOUCh_at PAr@m _t.......cccoiiiiiiiiiiiie e ie i e e s e er e e e e e s re e e e e e e s eeeeee s 146
SRS G T AN (o 10T o T o | G o T = 0 1 PP 147
ORI e T (o 10 (o o -) = L L OPPRPNS 148
6.3.16.9 tOUCK_OgM_AM@_ Tttt e e 148
L 0 G700 KO I (o 10 Td o T o 0 N o1 L PP 148
6.3.16.11 tOUCK_ At PIN_ ..o e e a e 149
6.3.16.12 tOUCK_ Ot PIN_ .. e e e e e a e 149
LI 0 G700 C T (o 10T T o 0 N (= 1 PP 149
T T84 G700 I S (o 0T - (= [PP 150
LI 0 G 704 ST (o 10T T o | A = [PP 151
6.3.16.16 tOUCh_gM_CONFIG T .eiiiiiiiiiiiiiii e e e eee s 151
6.3.16.17 tOUCh_at CONTIG T ..uuiiiiiiiiiiiiiii e e e e e e ae s 152
6.3.16.18 tOUCh_ Ot CONTIG T .uuiiiiiiiiiiiiiii e e e e r e e e 152
6.3.16.19 touch_general_Config Tc..eeiiiiiiiiiiiiii e 153
6.3.16.20 tOUCH_CONFIG T e e e e e e e 153

8207K-AT42-09/11

LI T84 T2 N (o 10T 1) o T PP 154

6.3.17 Public Functions of QTouch Library for UC3L...........eeiiiiiiiiiiiieiee e 154
6.3.17.1 QMANX AP ..oeiiiiiiiie it 154
6.3.17.1.1 touCh_gmM_SENSOIS_INQt....ccciiiiiiiiiieee e e i e s e e e e s e e s e nnaneeees 154
6.3.17.1.2 touch_gm_SENSOr_CONFIQ.......cuuuuiiiieeiiiiiiiieie e 155
6.3.17.1.3 touch_gm_sensor_update _CONfig........cccuuriiiiiiiiiiiiiiiie e 155
6.3.17.1.4 touch_gm_sSensor_get CONig.......cuuui i 156
6.3.17.1.5 touch_gm_channel_udpate_burstlencccccoiiiiii e, 156
6.3.17.1.6 touch_gm_update_global_paramccceeeiieiiiiiiiiieeeee e 157
6.3.17.1.7 touch_gm_get_global_paramcccooouiiiiiiaaiiiiiieee e 157
6.3.17.1.8 touch_gm_sensors_calibrate...........cccoccuvieeiieeiiiie e 157
6.3.17.1.9 touch_gm_sensors_start_acquiSitionccccccovveiiviiriree s 157
6.3.17.1.10 touch_gm_get _liBiNfO.......cooiiiiiiee e 158
6.3.17.1.11 touch_gm_sensor_get delta..........cccoocuvvieeiiee i 159
6.3.17.2 QTouch Group A and QTouch Group B APlccveeveeeiiiieeee e 159
6.3.17.2.1 toUCh_gt_SENSOIS_INIt...iiiieiiiiciiieiee e e e e e e e e e e e s e 159
6.3.17.2.2 touch_gt_SeNSOr_CONFIQ.......oouuriiiiiieee i 159
6.3.17.2.3 touch_gt_sensor_update _CONFig........cooiuuriiiiiaiiiiiieee e 160
6.3.17.2.4 touch_gt_sensor_get CONfig........uuu i 161
6.3.17.2.5 touch_qgt_update_global_param ... 161
6.3.17.2.6 touch_gt_get_global_param ... 161
6.3.17.2.7 touch_gt_sensors_calibrate...........ccccoooiiiiiiii 162
6.3.17.2.8 touch_qt_sensors_start_ aCquiSItioncccceeeeviiiiiiiieee e 162
6.3.17.2.9 touch_qgt _sensor_ disable........ccccceeeiiiciiiiie e 163
6.3.17.2.10 touch_qt _Sensor_ re€NabIle...........cooovciuiiiiieee i 163
6.3.17.2.11 touch_qt_get libiNfOccoiiiiiieec e 164
6.3.17.2.12 touch_qt_sensor_get delta........cccccceoviciiiiiiie i 164
6.3.18 AULONOMOUS TOUCKH AP . ..ottt ettt e et sare e e nebeee s 164
6.3.18.1.1 touch_at_Sensor_iNit..........ccceeeeii e 164
6.3.18.1.2 touch_at_sensor_enablecoo oo, 165
6.3.18.1.3 touch_at_sensor_disable.............cccooe i, 165
6.3.18.1.4 touch_at_sensor_update _CONFig.........oooiuuriiiiiaaiiiieee e 165
6.3.18.1.5 touch_at_sensor_get CONfig........uuiii it 166
6.3.18.1.6 touch_at_get lIDINFO......ccoiiiiii e 166
6.3.18.2 COMMON AP ... e e s e e 166
6.3.18.2.1 touch_event _diSPatCher.........c..uuiiiiiii i 166
SRS S 27 (o1 [1o =1 1 T PSR 166
6.3.19 Integrating QTouch libraries for AT32UC3L in your applicationcccceeiiiiiiiiiieneeeniens 167
6.3.20 MISRA Compliance Report of QTouch Library for UC3Lcoiiiiiiiiiiiiiieeeiiiieeee e 167
6.3.21 WHAL IS COVEIEAttt e e ettt e e e e e ettt e e e e e e e anntbeeeaaeeeeannes 167
6.3.22 Target ENVIFONMENL...... ..ottt e e e ettt e e e e e e e ettt e e e e e e eaannsbeeeeaeeeeannes 167
6.3.23 Deviations from MISRA C Standardsccoeeoeiiiiiiiieeeei e a e ae e 167
6.3.24 Known Issues with QTouch Library for UC3L...........uuiiiiiiiiiiiiiiieee e 168
6.4 QTouch Library for ATtINY20 AEVICE.......cuuiiiiiieiie ittt 169
6.4.1 Salient Features of QTouch Library for ATHNY20coooiiiiiiiiiieiee e 169
6.4.1.1 QTOUCHh MELNOM SENSOKuuuutuiuruririririririrerererararerererererarerara et 169
6.4.2 Compiler tool chain support for ATHNY20oooueeiiiiieee e a e 169
Table 17 Compiler tool chains support for ATtiny20 QTouch Library........cccccccevveeennns 169
6.4.3 Overview of QTouch Library for ATHNY20ouueiiiiiieeeee e 169
Figure 48 Schematic overview of QTouch on TiINY20ccccvvieveeeei i 170
6.4.4 API Flow diagram for ATHNY20........cciiiiiiiiiiee ettt e e s e st ae e e e e e e s sneraees 170
Figure 49 Linker configuration options for TiINY20..........ccooiiiiiiiiiiiieeee e 170
Figure 50 QTouch method for Tiny20 API Flow diagramcccccoeiiiiiiiieieeeeeiniiiee, 171
6.4.5 QTouch Library configuration parameters for ATHNY20..........ccooiiiiiiiiieriee e 172
Table 18 QTouch Library for ATtiny20 Configuration parameters..........coccuvveeeeeennnns 173

AIMEL !

&

AIMEL

&

6.4.6 QTouch Library ATtiny20 EXample ProjeCtS.........ueeiii oo 173
6.4.7 QTouch Library ATtiny20 code and data memory requiremMentscccceoveceeieereeeseenneneenn. 173
Table 19 QTouch Library for ATtiny20 Memory requirements..........cccceevvvveeeerieeeeennns 174
6.5 QTouch Library for ATtINYA0 AEVICE.......cuuiiiiiieiieiiieiee et 174
6.5.1 Salient Features of QTouch Library for ATHNYAOcooiiiiiiiiieia e 174
6.5.1.1 QTOUCH MELNOM SENSOKuuuuururuririririririrarererararererererererararerererer—r————ererar.—.———————. 174
6.5.2 Compiler tool chain support for ATHNYAO ..o e e e 175
Table 20 Compiler tool chains support for ATtiny40 QTouch Library..........cccccevveeennnns 175
6.5.3 Overview of QTouch Library for ATHNYA0ccuiiiiiiee e 175
Figure 51 Schematic overview of QTouch on TINY40ococuiiiiiiiiiiiieee e 176
6.5.4 API Flow diagram for ATHNYZAO........cciiiiiiiiiiee ettt e e e e e snrbae e e e e e e e sneraee s 176
Figure 52 QTouch method for Tiny40 API Flow diagramcccccceeiiiiiiiieieeeeiiniiiee, 177
6.5.5 QTouch Library configuration parameters for ATHNY40..........ccooeiiiiiiiierie e 178
Table 21 QTouch Library for ATtiny40 Configuration parameters..........coccuveeeeeeennnns 178
6.5.6 QTouch Library ATtiny40 EXample ProjECS....ccuuviiiiee ittt 178
6.5.7 QTouch Library ATtiny40 code and data memory requirements.........cccceeeeeevvvveereeeeeesvenennn. 179
Table 22 QTouch Library for ATtiny40 Memory reqUIrements..........ccceeeveivieeeeeaenenens 179
7 Generic QTouch Libraries for 2K DeVICEScceviiiiiiiiia 179
4% S 111 o o [0 Tox 1o o PR 179
A A B LoV oI W] o] o Lo o (=T E PRSP 180
7.3 Salient Features of QTouch Library for 2K DEVICES.........ccovvvuvviiiiieeciiiiiiieeee e 180
T4 LIDIArY VANANTS c..eoiiiiiiiee ettt sttt e ettt e e e st e e s anb e e e enees 180
7.5 QTouch API for 2K DeVices and USAQE.......ccueeeuiiicrriiieieeeiiiiiiiieeeeeeesesenieeeeeaesssnnnneneees 180
75.1 touch_api_2kdevice.h - public header file ... 180
75.2 Sequence of Operations and UsiNg the APL............oooiiiiiiiii e 181
7.5.2.1 Channel NUMDEIINGccoiiiiiiiiii e e e e 181
7.5.2.1.1 Channel numbering when routing SNS and SNSK pins to different ports..... 181
7.5.2.1.2 Channel numbering when routing SNS and SNSK pins to the same port.... 181
7.5.2.2 Rules For Configuring SNS and SNSK masks for 2K DevViCesS...........cccvvvveennn. 182
7.5.2.2.1 Configuring SNS and SNSK masks in case of Interport:ccccceeeeeviinnnnen. 182
7.5.2.2.2 Configuring SNS and SNSK masks in case of Intraport:ccccceeeeviennnen. 182
753 Integrating QTouch libraries for 2K Devices in your applicationcccceeeiiiiiiiineeeninns 183
7.6 MISRA COmMPlianCe REPOITueiiiiiiie it 184
7.6.1 WHEL IS COVEIBA ... ettt ettt e e e e e et e e e e e e e e et be e e e e e e e e anntaneeas 184
7.6.2 Target ENVIFONMENTooi ittt e e e e e e et e e e e e e e et e e e e e e e e e anneaeeeas 184
7.6.3 Deviations from MISRA C StandardsScouieaiiiiiiiiiiieai e a e e e e e enees 184
7.6.3.1 QTouch acquisition method libraries for 2K deviCesS...........ccccvveveveeeiiiiciinnnnne.n. 184
8 REVISION HISTOMY e e 185
DY o F=] 1= PP USPPPPRPRRPRPN 187
8 8207K-AT42-09/11

Preface

This manual contains information that enables customers to implement capacitive touch solutions
on ATMEL AVR® microcontrollers and ARM®-based AT91SAM microcontrollers using ATMEL
QTouch libraries. This guide is a functional description of the library software, its programming
interface and it also describes its use on the supported reference systems.

Use of this software is bound by the Software License Agreement included with the Library.

Related documents from ATMEL
Documents related to QTouch capacitive sensing solutions from ATMEL are

e TS2080A/B data sheet.

e QT600 users guide

¢ Release Notes for ATMEL QTouch libraries.

e A library selection excel workbook that is used for the selection of the appropriate library
variant from the package available under in the install directory. The default location is
C:\Program Files\Atmel\Atmel_QTouch_Libraries_4.4\

e Capacitive touch sensor design guide
http://www.atmel.com/dyn/resources/prod_documents/doc10620.pdf .

If you need Assistance

For assistance with QTouch capacitive sensing software libraries and related issues, contact your
local ATMEL sales representative or send an email to touch@atmel.com for AVR libraries and
at9lsupport@atmel.com for SAM libraries.

Introduction

ATMEL QTouch Library is a royalty free software library (available for GCC and IAR compiler tool
chains) for developing touch applications on standard AVR and SAM microcontrollers. Customers
can link the library into their applications in order to provide touch sensing capability in their

AIMEL °

&

http://www.atmel.com/dyn/resources/prod_documents/doc10620.pdf�
mailto:touch@atmel.com�
mailto:at91support@atmel.com�

AIMEL

&

projects. The Library can be used to develop single chip solutions for control applications which
have touch sensing capabilities, or to develop standalone touch sensing solutions which interface
with other host or control devices.

Features of ATMEL QTouch Library include

Capacitive touch sensing using patented charge-transfer signal acquisition for robust
sensing.

Support for a wide range of 8- and 32-bit AVRs.

Support for 32-bit ARM microcontrollers.

Support for 8-bit tiny AVRs having flash of 2K bytes.

Support both QTouch and QMatrix acquisition methods and autonomous touch for UC3L.
Support up to 64 touch sense channels for generic libraries and up to 136 channels for
UCS3L libraries.

Flexible choice of touch sensing functionality (keys, sliders, wheels) in a variety of
combinations.

Includes Adjacent Key Suppression® (AKS®) technology for the unambiguous detection of
key events.

Support for both IAR and GCC compiler tool chains.

A comparison of various features and parameters between QTouch Libraries for Generic
8-bit and 32-bit AVRs as well as Device Specific Libraries is provided in the table below.

Feature Comparison between Generic QTouch Libraries and Device Specific Libraries

Parameter/Func | Generic Tiny 2K Tiny20 Tiny40 Generic UC3L ATSAM
tionality Libraries, | Libraries | Libraries | Libraries | Libraries, | Libraries | Libraries
Tiny_Meg 32 Bit
a_Xmega AVR
Technology QTouch, QTouch QTouch- QTouch- QTouch, QTouch, QTouch
QMatrix ADC ADC QMatrix QMatrix
Rotors/Sliders Yes No No No Yes Yes Yes
Support
Filter Callback Yes Yes No Yes Yes Yes Yes
Library Status Yes Yes No No Yes Yes Yes
Flags
Library Yes No No No Yes Yes Yes
Signhature
Calibrate Yes Yes (Only No No Yes Yes Yes
Sensing burst_again
flag)
Reset Sensing Yes Yes No No Yes Yes Yes
Sensor Deltas Yes Yes No Yes Yes Yes Yes
Maximum AKS |7 7 1 7 7 7 7
Groups
Maximum 16 4 5 12 32 17 32
Channels, QT
Maximum 4 0 0 0 8 8
Rotors/Sliders,
QT
Maximum 64 0 0 0 64 64 0
Channels, QM
Maximum 8 0 0 0 8 0
Rotors/Sliders,

10

8207K-AT42-09/11

QM
Autonomous No No No No No Yes No
Touch
Sensor Yes Yes No No Yes Yes Yes
Reconfiguratio
n
Frequency Always If Never Never Always Programma | Always
Hopping SS _POWER_ ble
Enabled OPTIMIZA
TION =0
Delay Cycles QT_DELAY | QT_DELAY | Values: DEF_QT_C | QT_DELAY | xx_CHLEN, | QT_DELAY
Parameter _CLCYES | _CLCYES 1,2,4,8,10 HARGE_S | _CYCLES xx_SELEN | _CLCYES
(QT (Value: 1 to HARE_DEL | (QT Values | (QT/QM (Value: 3 to
Values: 1to | 255) AY :1to 255 Value: 3to | 255)
255 (Value: 1to | QM Values: | 255)
QM Values: 255) 1,2,3,4,5,10
1,2,3,4,5,10 ,25,50)
,25,50)
Debug Interface | _DEBUG_I | None NDEBUG _DEBUG_ | _DEBUG_I| | DEF_TOU | _DEBUG_I
Enable Macro NTERFAC QTOUCH_ | NTERFAC | CH_QDEB | NTERFAC
E_ STUDIO_ E_ UG_ENAB | E_
LE

This user guide describes the content, design and use of the QTouch Libraries. This should be
read in conjunction with all of the applicable documents listed below
e Device datasheet for the selected ATMEL device used for touch sensing.

e Data sheet for the selected evaluation board.

A library selection guide that is used for the selection of the appropriate library from the
released package. Default path:

C:\ Program Files\Atmel\Atmel_QTouch_Libaries_4.x\Library_Selection_Guide.xIs

The intended readers of this document are engineers, who use the QTouch Library on ATMEL
microcontrollers to realize capacitive touch sensing solutions.

Overview
This chapter gives a brief introduction to each of the chapters that make up this document
1. Preface
2. Introduction: Provides an introduction to the scope and use of the QTouch Library.
3. Overview: This chapter
4. Abbreviations and Definitions: Provides a description of the abbreviations and
definitions used in this document
5. Generic QTouch Libraries: Provides an overview of the QTouch libraries and the

different acquisition methods for generic ATMEL devices.

6. Device Specific Libraries: Provides an overview of the QTouch libraries and the
different acquisition methods for ATMEL devices specific for touch sensing.

7. Revision History: Provides a revision history of this document

Abbreviations and Definitions

Definitions

e AVR: refers to a device(s) in the tinyAVR®, megaAVR®, XMEGA™ and UC3
microcontroller family.

AIMEL .

&

12

AIMEL

ARM: refers to a device in the ATSAM ARM® basedmicrocontroller family.

ATMEL QTouch Library: The combination of libraries for both touch sensing acquisition
methods (QTouch and QMatrix).

QTouch Technology: A type of capacitive touch sensing technology using self
capacitance - each channel has only one electrode.

QMatrix Technology: A type of capacitive touch sensing technology using mutual
capacitance — each channel has an drive electrode (X) and an receive electrode (Y).

Sensor: A channel or group of channels used to form a touch sensor. Sensors are of 3
types (keys, rotors or sliders).

KEY: a single channel forms a single KEY type sensor, also known as a BUTTON

ROTOR, also known as a WHEEL, a group of channels forms a ROTOR sensor to detect
angular position of touch.

0 A Rotor is composed of 3 channels for a QTouch acquisition method.
0 A Rotor can be composed of 3 to 8 channels for QMatrix acquisition method.

SLIDER, a group of channels forms a SLIDER sensor to detect the linear position of
touch.

0 A Slider is composed of 3 channels for a QTouch acquisition method.
0 A Slider can be composed of 3 to 8 channels for QMatrix acquisition method.
AKS: Adjacent Key Suppression. See Section 5.4.5

SNS PIN: Sense line for capacitive measurement using the QTouch Technology -
connected to Cs.

SNSK PIN: Sense Key line for capacitive measurement using the QTouch Technology -
connected to channel electrode through Rs.

X Line: The drive electrode (or drive line) used for QMatrix Technology.
Y Line: The receive electrode (or receive line) used for QMatrix Technology.

Port Pair: A combination of SNS port and SNSK port to which sensors are connected for
QTouch technology. The SNS and SNSK ports used in a port pair can be located in the
same AVR Port (8 pins for 4 sensors), or they may be in different 2 different AVR Ports
(8+8 pins for 8 sensors).

Charge Cycle Period: It is the width of the charging pulse applied to the channel
capacitor.

Dwell Cycle: In a QMatrix acquisition method, the duration in which charge coupled from
X to Y is captured.

Acquisition: A single capacitive measurement process.

Electrode: Electrodes are typically areas of copper on a printed circuit board but can also
be areas of clear conductive indium tin oxide (ITO) on a glass or plastic touch screen.

Intra-port: A configuration for QTouch acquisition method libraries, when the sensor SNS
and SNSK pins are available on the same port.

Inter-port: A configuration for QTouch acquisition method libraries, when the sensor SNS
and SNSK pins are available on distinct ports.

8207K-AT42-09/11

Generic QTouch Libraries

Introduction

ATMEL QTouch provides a simple to use solution to realize touch sensing solutions on a range of
supported ATMEL AVR Microcontrollers. The QTouch libraries provide support for both QTouch
and QMatrix acquisition methods.

Touch sensing using QMatrix or QTouch acquisition methods can be added to an application by
linking the appropriate ATMEL QTouch Library for the AVR Microcontroller and using a simple set
of API to define the touch channels and sensors and then calling the touch sensing API's
periodically (or based on application needs) to retrieve the channel information and determine
touch sensor states.

Figure 5-1 shows a typical configuration of channels when using an AVR and using the ATMEL
QTouch Library. The ATMEL QTouch Library has been added to a host application running on an
AVR microcontroller. The sample configuration illustrates using the library that supports eight
touch channels numbered 0 to 7. The sensors are configured in the following order,

Sensor 0 on channels 0 to 2 have been configured as a rotor sensor.

Sensor 1 on channels 3 to 5 have been configured as a slider sensor.

Sensor 2 on channel 6 is configured as key sensor.

Sensor 3 on channel 7 is configured as key sensor.

The host application uses the QTouch Library API's to configure these channels and sensors,
and to initiate detection of a touch using capacitive measurements.

channel 0

channel 1

channel 2

channel 3 sensor0

Atmel QTouch

Host
e Library channel 4

Application

sensorl

channel 5

channel 6

<::> sensor2
channel 7

<::> sensor3

Figure 5-1 : Typical interface of the ATMEL QTouch library with the host application.

The QTouch libraries use minimal resources of the microcontroller. The sampling of the sensors
is controlled by the QTouch library, while the sampling period is controlled by the application
(possibly using timers, sleep periods, varying the CPU clock, external events like interrupts or
communications, etc).

Acquisition Methods

There are two methods available for touch acquisition namely
1. QTouch acquisition method.
2. QMatrix acquisition method.

AIMEL e

&

AIMEL

&

Libraries for AVR microcontrollers include both acquisition methods. Libraries for ATSAM
microcontrollers include only QTouch acquisition method.

QTouch acquisition method

The QTouch acquisition method charges an electrode of unknown capacitance to a known
potential. The resulting charge is transferred into a measurement capacitor (Cs). The cycle is
repeated until the voltage across Cs reaches a voltage Vih. The signal level is the number of
charge transfer cycles it took to reach that voltage. Placing a finger on the touch surface
introduces external capacitance that increases the amount of charge transferred each cycle,
reducing the total number of cycles required for Cs to reach the voltage. When the signal level
(number of cycles) goes below the present threshold, then the sensor is reported to be in
detected.

QTouch acquisition method sensors can drive single or multiple keys. Where multiple keys are
used, each key can be set for an individual sensitivity level. Keys of different sizes and shapes
can be used to meet both functional and aesthetic requirements.

NOTE: It is recommended to keep the size of the keys larger than 6mmx6mm to ensure reliable
and robust measurements, although actual key design requirements also depend on panel
thickness and material. Refer to the ATMEL Capacitive touch sensor design guide for details.

QTouch acquisition method can be used in two ways

e normal touch contact (i.e. when pressing buttons on a panel), and
e high sensitivity proximity mode (i.e. when a panel lights up before you actually contact it).

Fiedd coupling

[T Dislectric
i ¥ front panel

Sampla) Elactrode
capacitor ¢

Figure 5-2 : QTouch Acquisition

QTouch circuits offers high signal-to-noise ratio, very good low power performance, and the
easiest sensor layout.

Sensor schematics for a QTouch acquisition method design

14 8207K-AT42-09/11

Sampling
capacitor

SNSK

PB1 Rs Electrode

Microcontroller —
Used for touch e

application
potcat

Typical Rs- 1k
values: Cs-22nF
PpcT —4—n—m——— e
Port requirements:
SNS SNS: generic I/O pin
SNSK: generic I/O pin

Rs- Series resistor, Cs — Sample capacitor, PB1- PortB bitl, and PC1- PortC bitl

Figure 5-3 : Schematics for a QTouch acquisition method design

QMatrix acquisition method

QMatrix devices detect touch using a scanned passive matrix of electrode sets. A single QMatrix
device can drive a large number of keys, enabling a very low cost-per-key to be achieved.

Fiald coupling

Diglectric
front panel

- —

Dirive A Drive ¥ Rocaive

buffer electrode electrode
\ Collecied
charge
Dirive
| | I | pulses

Figure 5-4 : QMatrix Acquisition method

QMatrix uses a pair of sensing electrodes for each channel. One is an emitting electrode into
which a charge consisting of logic pulses is driven in burst mode. The other is a receive electrode
that couples to the emitter via the overlying panel dielectric. When a finger touches the panel the
field coupling is changed, and touch is detected. The drive electrode (or drive line) used for

AIMEL ”

&

AIMEL

&

QMatrix charge transfer is labeled as the X line. The receiver electrode (or receive line) used for
QMatrix charge transfer is labeled as the Y line.

QMatrix circuits offer good immunity to moisture films, extreme levels of temperature stability,
superb low power characteristics, and small IC package sizes for a given key count.

Sensor schematics for a QMatrix acquisition method design

Atmel MCU
Sensors,

XY
RX0
Sensor

X

|tk

YA:Configurable I/O pin (*)
YB: ADC port (*)

SMP: Configurable 1/O pin
Vref: AINO (Comparator)

Vref
(*): The port 1/0 pin should

be in consecutive order

RXn
RYO
0.
YmA
RYm
Cso | | Csm
Typical values:
RX: 1k
YOB RY: 1k
CS: 4.7nF
RYB: 470k
YmB Port-pin count =
n+@2*m)+2
n — number of X lines
RYBO RYBmM m — number of Y lines
Port requirements:
X: Configurable 1/0O pin
SMP

Figure 5-5: Schematics for a QMatrix acquisition method design

Global settings common to all sensors of a specific acquisition method

The touch sensing using QTouch library could be fine tuned by using a number of configurable
settings. This section explains the settings that are common to all sensors of a specific acquisition
method like QMatrix or QTouch.

For example, if recalibration threshold (one of the global settings) of QMatrix acquisition method
is set as 1, all QMatrix sensors will have recalibration threshold of 1.

16 8207K-AT42-09/11

Recalibration Threshold

Recalibration threshold is the level above which automatic recalibration occurs. Recalibration
threshold is expressed as a percentage of the detection threshold setting. This setting is an
enumerated value and its settings are as follows:
e Setting of 0 = 100% of detect threshold (RECAL_100)
Setting of 1 = 50% of detect threshold (RECAL_50)
Setting of 2 = 25% of detect threshold (RECAL_25)
Setting of 3 = 12.5% of detect threshold (RECAL_12_5)
Setting of 4 = 6.25% of detect threshold (RECAL_6_25)

However, an absolute value of 4 is the hard limit for this setting. For example, if the detection
threshold is say, 40 and the Recalibration threshold value is set to 4. This implies an absolute
value of 2 (40 * 6.25% = 2.5), but this is hard limited to 4.

Setting Variable name Data Type | Unit Min | Max Typical
Recalibration threshold gt_recal_threshold | uint8 t Enum | 4 Detect 1
threshold

Detect Integration

The QTouch Library features a detect integration mechanism, which acts to confirm detection in a
robust fashion. The detect integrator (DI) acts as a simple signal filter to suppress false detections
caused by spurious events like electrical noise.

A counter is incremented each time the sensor delta has exceeded its threshold and stayed there
for a specific number of acquisitions, without going below the threshold levels. When this counter
reaches a preset limit (the DI value) the sensor is finally declared to be touched. If on any
acquisition the delta is not seen to exceed the threshold level, the counter is cleared and the
process has to start from the beginning. The DI process is applicable to a ‘release’ (going out of
detect) event as well.

For example, if the DI value is 10, then the device has to exceed its threshold and stay there for
10 acquisitions in succession without going below the threshold level, before the sensor is
declared to be touched.

Setting Variable name | Data Type Unit Min Max Typical

DI gt_di uint8 t Cycles 0 255 4

Drift Hold Time

Drift Hold Time (DHT) is used to restrict drift on all sensors while one or more sensors are
activated. It defines the length of time the drift is halted after a key detection.

This feature is useful in cases of high density keypads where touching a key or floating a finger
over the keypad would cause untouched keys to drift, and therefore create a sensitivity shift, and
ultimately inhibit any touch detection.

Setting Variable name Data Type Unit Min | Max | Typical

Drift hold time gt drift_hold time uint8_t 200 ms 1 255 20 (4s)

AIMEL Y

AIMEL

Maximum ON Duration

If an object unintentionally contacts a sensor resulting in a touch detection for a prolonged interval
it is usually desirable to recalibrate the sensor in order to restore its function, perhaps after a time
delay of some seconds.

The Maximum on Duration timer monitors such detections; if detection exceeds the timer's
settings, the sensor is automatically recalibrated. After a recalibration has taken place, the
affected sensor once again functions normally even if it still in contact with the foreign object.

Max on duration can be disabled by setting it to zero (infinite timeout) in which case the channel
never recalibrates during a continuous detection (but the host could still command it).

Setting Variable name Data Type | Unit Min | Max | Typical

Maximum ON Duration | gt_max_on_duration | uint8 t 200ms | O 255 | 30 (6s)

Positive / Negative Drift

Drift in a general sense means adjusting reference level (of a sensor) to allow compensation for
temperature (or other factor) effect on physical sensor characteristics. Decreasing reference level
for such compensation is called Negative drift & increasing reference level is called Positive drift.
Specifically, the drift compensation should be set to compensate faster for increasing signals than
for decreasing signals.

Signals can drift because of changes in physical sensor characteristics over time and
temperature. It is crucial that such drift be compensated for; otherwise false detections and
sensitivity shifts can occur.

Drift compensation occurs only while there is no detection in effect. Once a finger is sensed, the
drift compensation mechanism ceases since the signal is legitimately detecting an object. Drift
compensation works only when the signal in question has not crossed the ‘Detect threshold’ level.

The drift compensation mechanism can be asymmetric; it can be made to occur in one direction
faster than it does in the other simply by changing the appropriate setup parameters.

Signal values of a sensor tend to decrease when an object (touch) is approaching it or a
characteristic change of sensor over time and temperature. Decreasing signals should not be
compensated for quickly, as an approaching finger could be compensated for partially or entirely
before even touching the channel (negative drift).

However, an object over the channel which does not cause detection, and for which the sensor
has already made full allowance (over some period of time), could suddenly be removed leaving
the sensor with an artificially suppressed reference level and thus become insensitive to touch. In
the latter case, the sensor should compensate for the object’'s removal by raising the reference
level relatively quickly (positive drift).

Setting Variable name Data Type Unit Min Max | Typical
Negative Drift gt _neg_drift_rate uint8 t 200 ms 1 127 20 (4s)
Positive Drift gt _pos_drift_rate uint8 t 200 ms 1 127 5 (1s)

Positive Recalibration Delay

18 8207K-AT42-09/11

If any key is found to have a significant drop in signal delta, (on the negative side), it is deemed to
be an error condition. If this condition persists for more than the positive recalibration delay, i.e.,
gt_pos_recal_delay period, then an automatic recalibration is carried out.

A counter is incremented each time the sensor delta is equal to the positive recalibration
threshold and stayed there for a specific number of acquisitions. When this counter reaches a
preset limit (the PRD value) the sensor is finally recalibrated. If on any acquisition the delta is
seen to be greater than the positive recalibration threshold level, the counter is cleared and the
positive drifting is performed.

For example, if the PRD value is 10, then the delta has to drop below the recalibration threshold
and stay there for 10 acquisitions in succession without going below the threshold level, before
the sensor is declared to be recalibrated.

Setting Variable name Data Type Unit Min Max | Typical
Positive gt_pos_recal_delay uint8_t cycles 1 255 3
Recalibration

Delay

Sensor specific settings

Apart from global settings as mentioned in the section above, touch sensing using QTouch library
could also be fine tuned by more number of configurable settings.

This section explains the settings that are specific to each sensor. For example, sensor 0 can
have a detect threshold (one of the sensor specific setting) that is different from sensor 1.

Detect threshold

A sensor’s negative (detect) threshold defines how much its signal must drop below its reference
level to qualify as a potential touch detect. The final detection confirmation must however satisfy
the Detect Integrator (DI) limit. Larger threshold values desensitize sensors since the signal must
change more (i.e. requires larger touch) in order to exceed the threshold level. Conversely, lower
threshold levels make sensors more sensitive.

Threshold setting depends on the amount of signal swing that occurs when a sensor is touched.
Thicker front panels or smaller electrodes usually have smaller signal swing on touch, thus
require lower threshold levels.

Setting Variable name Data Type Unit Min Max Typical
Threshold threshold uint8 t counts 3 255 10-20
Hysteresis

This setting is sensor detection hysteresis value. It is expressed as a percentage of the sensor
detection threshold setting. Once a sensor goes into detect its threshold level is reduced (by the
hysteresis value) in order to avoid the sensor dither in and out of detect if the signal level is close
to original threshold level.

e Setting of 0 = 50% of detect threshold value (HYST_50)

e Setting of 1 = 25% of detect threshold value (HYST_25)

e Setting of 2 = 12.5% of detect threshold value (HYST_12_5)

e Setting of 3 = 6.25% of detect threshold value (HYST_6_25)

AIMEL 0

AIMEL

&

Setting Variable name Data Type Unit Min Max Typical

Hysteresis | detect _hysteresis | uint8 t (2 bits) | Enum | HYST 6 25 | HYST 50 | HYST 6 25

Position Resolution

The rotor or slider needs the position resolution (angle resolution in case of rotor and linear
resolution in case of slider) to be set. Resolution is the number of bits needed to report the
position of rotor or slider. It can have values from 2bits to 8 bits.

Setting | Variable Data Unit | Min Reported Max | Reported Typica

name Type position position I
Position | position_ uint8 t | - 2bits | 0-3 8 bits | 0-255 8
Resoluti | resolution (3 bits)

on

Position Hysteresis

In case of QMatrix, the rotor or slider needs the position hysteresis (angle hysteresis in case of
rotor and linear hysteresis in case of slider) to be set. It is the number of positions the user has to
move back, before touch position is reported when the direction of scrolling is changed and
during the first scrolling after the touch down.

Hysteresis can range from 0 (1 position) to 7 (8 positions). The hysteresis is carried out at 8 bits
resolution internally and scaled to desired resolution; therefore at resolutions lower than 8 bits
there might be a difference of 1 reported position from the hysteresis setting, depending on where
the touch is detected.

At lower resolutions, where skipping of the reported positions is observed, hysteresis can be set
to 0 (1 position). At Higher resolutions (6 ..8bits) , it would be recommended to have a hysteresis
of at least 2 positions or more.

NOTE:
It is not valid to have a hysteresis value more than the available bit positions in the resolution.
Ex: do not have a hysteresis value of 5 positions with a resolution of 2 bits (4 positions).

Setting Variable name Data Type Unit Min Max Typical
Position position_hysteresis | uint8_t (3 bits) - 0 7 3
Hysteresis

NOTE:

Position hysteresis is not valid (unused) in case of QTouch acquisition method libraries.

Adjacent Key Suppression (AKS)

In designs where the sensors are close together or set for high sensitivity, multiple sensors might
report detect simultaneously if touch is near them. To allow applications to determine the
intended single touch, the touch library provides the user the ability to configure a certain number
of sensors in an AKS group.

When a group of sensors are in the same AKS group, then only the first strongest sensor will
report detection. The sensor reporting detection will continue to report detection even if another
sensor’s delta becomes stronger. The sensor stays in detect until its delta falls below its detection
threshold, and then if any more sensors in the AKS group are still in detect then the strongest will

20 8207K-AT42-09/11

report detection. So at any given time only one sensor from each AKS group will be reported to
be in detect.

The library provides the ability to configure any sensor to be included in any one of the Adjacent
Key Suppression Groups (AKS Group).

Setting Variable name Data Type Unit Min Max | Typical

AKS Group aks_group uint8 t (3 bits) Enum 0 (off) 7 0 (off)

Using the Sensors

Avoiding Cross-talk

In ATMEL QTouch library variants that use QTouch acquisition technology, adjacent sensors are
not measured at the same time. This prevents interference due to cross-talk between adjacent
channels, but at the same time some sensor configurations take longer to measure than others.
For example, if an 8-channel device is configured to support 8 keys, then the library will measure
the keys on channels 0, 2, 4, and 6 parallely, followed by keys on channels 1, 3, 5, and 7. If the
same device is configured, say, to support 4 keys, putting them either on all the odd channels or
on all the even channels means that they can all be measured simultaneously.

This means the library calls are faster, and the device can use less power. So, it is recommended
that the appropriate channel numbers are used when using less than the maximum number of
channels available for the device to ensure optimum performance. In a similar sense for faster
execution and reduced power consumption, it is also advisable to use intra-port sensor
configuration instead of inter-port sensor configuration while using 4 channels on the same port.

Multiple measurements

The library will not automatically perform multiple measurements on a sensor (Ex: To resolve for
instance Detect Integration or recalibration.). The user is given the option to perform the
measurement multiple times if certain conditions are met. This will enable the user to implement
the time critical code thereby making the gt_measure_sensors() a non-blocking API .The host
application has to perform multiple measurements, based on the need. The global flag
QTLIB_BURST_AGAIN indicating that multiple measurements are needed is passed to the user.
This is BIT8 of the return value from the qt_measure_sensors() APIl. The main_<devicename>.c
has the example usage to perform multiple measurements.

If QTLIB_BURST_AGAIN = 1, multiple measurements are needed to
» To compensate for drift
» Resolve re-calibration
» Resolve calibration.
» Resolve detect integration.

If QTLIB_BURST_AGAIN = 0, multiple measurements are not needed and the user can execute
the host application code. Apart from QTLIB_BURST_AGAIN, various flags are provided to the
user to perform the multiple measurements based on the need of the host application to act to
specific situation. Description of the these flags can be found in the section5.6.5.6

Note: To maintain robustness and timing of the touch sensing measurement, it is recommended
that the user calls the gt_measure_sensors() immediately if the flag QT_BURST_ AGAIN=1.
However, the user is allowed to run time- critical section (not more than few instructions) of the
host application comprising on the touch sensing timing.

AIMEL 2t

AIMEL

&

Guard Channel

Guard channel in Qtouch Acquisition Method allows one key to be configured as a guard channel
to help prevent false detection. Guard channel keys should be more sensitive than the other keys
(physically bigger or larger Cs).To enable key as guard channel, the designated key is connected
to a sensor pad which detects the presence of touch and overrides any output from the other
keys using the AKS feature.

The key can be configured to have a guard channel function by adjusting a number of
independent settings. The Guard channel is designed so that it is likely to be activated unless a
key is accurately touched.

The guard channel sensor must be set up so that it is slightly more sensitive than the keys that it
surrounds. The exact amount of increase depends on the application and is best determined by
experimentation.
There are three methods of increasing the sensor sensitivity that can be used in combination:

1. Increasing the size of the sensor.

2. Increasing the value of the Sample Capacitor (Cs).

3. Adjust the detection threshold for the sensor.

The sensor size and capacitor values should be altered to establish the base sensitivity for the
sensor. Once these values have been established, the detection threshold can be used to fine
tune the sensor.

+—"\\A
I
o~ /
I
, ~ | /T
MCU with VW
SNSand [mel—<]
SNSK +— WA
Pins
+—A\
I—
+—WA
=

The Above figure illustrates how a Guard sensor/key is to be visualized.It has six keys and five
keys are surrounded by a Guard Channel.

Please refer QTANOO3L1 for further information on Guard Channel.
http://www.atmel.com/dyn/resources/prod_documents/QTANO0031(2).pdf

22 8207K-AT42-09/11

QTouch APl and Usage

The Atmel QTouch library provides support for many devices. This chapter explains the touch
library for such devices without any hardware support.

QTouch Library API

This section describes the QTouch library Application Programming Interface (API) for touch
sensing using QTouch and QMatrix acquisition methods.

Using the API, Touch sensors and the associated channels can be defined. Once touch sensing
has been initiated by the user, the host application can use the API to make touch measurements
and determine the status of the sensors.

touch_api.h - public header file

The touch_api.h header file is the public header file which needs to be included in users
application and it has the type definitions and function prototypes of the API’s listed in sections
5.6.3,5.6.4and 5.6.5

The touch_api.h header file is located in the library distribution in the following directory.

o _\Atmel_QTouch_Libraries_4.x\Generic_QTouch_Libraries\include
Type Definitions and enumerations used in the library

Typedefs

This section lists the type definitions used in the library.

Typedef Notes

uint8_t unsigned 8-bit integer
int8 t signed 8-bit integer
uintlé t unsigned 16-bit integer
intl6 t signed 16-bit integer

uint32_t unsigned 32-bit integer

threshold_t | unsigned 8-bit integer
used for setting a sensor detection threshold

Enumerations

This section lists the enumerations used in the QTouch Library.

sensor_type_t
Enumeration sensor_type_t

Use Define the type of the sensor

Values Comment
SENSOR_TYPE_UNASSIGNED | Channel is not assigned to any sensor
SENSOR _TYPE_KEY Sensor is of type KEY

SENSOR TYPE ROTOR Sensor is of type ROTOR

SENSOR TYPE_ SLIDER Sensor is of type SLIDER

aks_group_t

Enumeration aks_group_t

Use Defines the Adjacent Key Suppression (AKS) groups each sensor may be
associated with (see section 5.3.4 Maximum ON Duration)

AKS is selectable by the system designer

AIMEL 2

&

AIMEL

&

7 AKS groups are supported by the library

Values

Comment

NO_AKS_GROUP

NO AKS group selected for the sensor

AKS_GROUP_1

AKS Group number 1

AKS_GROUP 2

AKS Group number 2

AKS_GROUP 3

AKS Group number 3

AKS_GROUP 4

AKS Group number 4

AKS_GROUP 5

AKS Group number 5

AKS_GROUP 6

AKS Group number 6

AKS_GROUP_7

AKS Group number 7

channel _t
Enumeration
Use

channel_t
The channel numbers used in the library.

When using the QTouch acquisition method, the channel numbers have a one
to one mapping to the pin numbers of the port being used.

When using the QMatrix acquisition method, the channel numbers are ordered
in a matrix sequence

Values Comment

CHANNEL 0 Channel number : 0
CHANNEL 1 Channel number : 1
CHANNEL 2 Channel number : 2
CHANNEL 3 Channel number : 3

Channel number: ..

Upto CHANNEL (N-1)

Channel number N-1 : for an N Channel library

The maximum number of channels supported is dependent on the library variant. Possible values
of N are as listed below

Acquisition method | Device type | Possible values of N
(Maximum number of channels)
QTouch acquisition 8-bit 4,8,16
32-bit 8,16, 32
QMatrix Acquisition 8-bit 8,16,32,64

hysteresis_t
Enumeration
Use

24

Hysteresis_t
Defines the sensor detection hysteresis value. This is expressed as a
percentage of the sensor detection threshold.

This is configurable per sensor.

HYST_x = hysteresis value is x percent of detection threshold value (rounded
down).

Note that a minimum value of 2 is used as a hard limit. Example: if detection
threshold = 20, then:

HYST_50 = 10 (50 percent of 20)

HYST_25 =5 (25 percent of 20)

HYST_12_5 =2 (12.5 percent of 20)

HYST_6_25 =2 (6.25 percent of 20 = 1, but set to the hard limit of 2)

8207K-AT42-09/11

Values Comment

HYST 50 50% Hysteresis
HYST 25 25% Hysteresis
HYST 12 5 | 12.5% Hysteresis
HYST 6 25 | 6.25% Hysteresis

resolution_t

Enumeration
Use

resolution_t

For rotors and sliders, the resolution of the reported angle or position.
RES_x_BIT = rotor/slider reports x-bit values.

Example: if slider resolution is RES_7_BIT, then reported positions are in the
range 0...127.

Values Comment

RES 1 BIT | 1 hit resolution : reported positions range 0 — 1
RES 2 BIT | 2 hit resolution : reported positions range 0 — 3
RES 3 BIT | 3 hit resolution : reported positions range 0 — 7
RES 4 BIT | 4 hit resolution : reported positions range 0 — 15
RES 5 BIT | 5 hit resolution : reported positions range 0 — 31
RES 6 BIT | 6 hit resolution : reported positions range 0 — 63
RES 7 BIT | 7 hit resolution : reported positions range 0 — 127
RES 8 BIT | 8 hit resolution : reported positions range 0 — 255

recal_threshold_t

Enumeration
Use

recal_threshold_t
A sensor recalibration threshold. This is expressed as a percentage of the
sensor detection threshold.

This is for automatic recovery from false conditions, such as a calibration while
sensors were touched, or a significant step change in power supply voltage.

If the false condition persists the library will recalibrate according to the settings
of the recalibration threshold.

This setting is applicable to all the configured sensors.

Usage :

RECAL_x = recalibration threshold is x percent of detection threshold value
(rounded down).

Note: a minimum value of 4 is used.

Example: if detection threshold = 40, then:

RECAL_100 =40 (100 percent of 40)

RECAL_50 =20 (50 percent of 40)

RECAL_25 =10 (25 percent of 40)

RECAL_12_5 =5 (12.5 percent of 40)
RECAL_6_25 =4 (6.25 percent of 40 = 2, but value is limited to 4)
Values Comment
RECAL_100 | 100% recalibration threshold
RECAL_50 50% recalibration threshold
RECAL_ 25 25% recalibration threshold
RECAL 12 5 | 12.5% recalibration threshold
RECAL 6 25 | 6.25% recalibration threshold

AIMEL 2

&

AIMEL

&

Data structures

This section lists the data structures that hold sensor status, settings, and diagnostics information

gt_touch_status t

Structure gt_touch_status_t
Input / Output Output from the Library
Use Holds the status (On/ Off) of the sensors and the linear and angular positions

of sliders and rotors respectively

Fields Comment

sensor_states|[] For Sensor, the sensor_states. Bit “n” = state of nth sensor :
Bit Value O - indicates the sensor is not in detect
Bit Value 1 - indicates the sensor is in detect

rotor_slider_values[] | Rotors angles or slider positions if rotors and sliders are used. These
values are valid when sensor states shows that the corresponding rotor or
slider is in detect

The macro that can get the sensor state when the sensor number is provided can be something
as below:

#define GET_SENSOR_STATE(SENSOR_NUMBER)
qt_measure_data.qt_touch_status.sensor_states[(SENSOR_NUMBER/8)] &
(1 << (SENSOR_NUMBER % 8))

The host application can use this macro to act accordingly, the following example shows how to
toggle a 10 pin (PD2) based on the sensor0 state.(Set PD2 if sensor0 is in detect, and clear PD2
if sensor0 is not in detect)

Ex: /*Set pin PD2 direction as output*/
DDRD]= (lu << PORTD2);
if (GET_SENSOR_STATE(0) !=0)
{ PORTD |= (lu << PORTD2); /* Set PORTD2 */
}
else {

PORTD &= ~(lu << PORTD2); /* Clear PORTD2 */

gt_touch_lib_config_data_t

Structure gt_touch_lib_config_data t

Input / Output Input to the library

Use Global Configuration data settings for the library.
Fields Type Comment

gt_recal_threshold recal_threshold_t | Sensor recalibration threshold. Default: RECAL_50 (recalibration
threshold = 50 percent of detection threshold. Refer to section
5.3.1 Recalibration Threshold more details

gt_di uint8_t Sensor detect integration (D) limit. Default value: 4. Refer to

26 8207K-AT42-09/11

section 5.3.2 Detect Integration for more details

gt_drift_hold_time

uint8_t

Sensor drift hold time in units of 200 ms. Default value: 20 (20 x
200 ms = 4s), that is hold off drifting for 4 seconds after leaving
detect. Refer to section 5.3.3 Drift Hold Time for more details

gt_max_on_duration

uint8_t

Sensor maximum on duration in units of 200 ms. For example:
150 = recalibrate after 30s (150 x 200 ms). 0 = recalibration
disabled Default value: 0 (recalibration disabled). Refer to
section 5.3.4 Maximum ON Duration for more details.

gt_neg_drift_rate

uint8_t

Sensor negative drift rate in units of 200 ms. Default value: 20
(20 x 200 ms = 4s per LSB). Refer to section 5.3.5 Positive /
Negative Drift for more details

gt_pos_drift_rate

uint8_t

Sensor positive drift rate in units of 200 ms. Default value: 5 (5 x
200 ms = 1s per LSB). Refer to section 5.3.5 Positive / Negative
Drift for more details

gt_pos_recal_delay

uint8_t

Sensor positive recalibration delay. Default: 3. Refer to section
5.3.6 for more details.

The measurement limit for touch sensing using QTouch acquisition method is hard coded as

8192.

The QTouch library exports a variable of this type so that the user can specify the threshold
parameters for the library. The API qt_set_parameters() should be called to apply the parameters

specified.

extern

gt_touch_lib_measure_data_t

Structure
Input / Output
Use

qt_touch_lib_config _data t gt config_data;

gt_touch_lib_measure_data t
Output from the library
Data structure which holds the sensor and channel states and values.

Fields Type Comment

channel signals uintl6 t The measured signal on each channel.

channel references | uintl6 t The reference signal for each channel.

gt _touch_status gt_touch_status t | The state and position of the configured sensors

The QTouch library exports a variable of this type which can be accessed to retrieve the touch
status of all the sensors.

extern gt_touch_lib_measure data t qt_measure_data;

gt_burst_lengths

Structure
Input / Output
Use

gt_burst_lengths
Input to the library

NOTE: Applicable only to the QMatrix acquisition method libraries

This data structure is used to specify the burst lengths for each of the QMatrix

channels
Fields Type Comment
gt_burst_lengths[] | uint8_t | The burst length for each of the QMatrix channel in units of pulses. Default

value: 64 pulses.
These values can be configured for each channel individually.

27

AIMEL

&

AIMEL

&

The signal gain for each sensor is controlled by circuit parameters as well as the burst length.
The burst length is simply the number of times the charge-transfer (‘QT’) process is performed on
a given sensor. Each QT process is simply the pulsing of an X line once, with a corresponding Y
line enabled to capture the resulting charge passed through the sensor’s capacitance Cx.

The QMatrix acquisition method library exports a variable of this type which can be accessed to
set the burst length for each of the QMatrix channels

extern uint8_t qt_burst_lengths[QT_NUM_CHANNELS];

tag_sensor_t

Structure
Input / Output
Use

tag_sensor_t
Output from the library
Data structure which holds the internal sensor state variables used by the

library.
Fields Type Comment
State uint8_t | internal sensor state
general_counter uint8_t | general purpose counter: used for calibration, drifting, etc
ndil_counter uint8_t | drift Integration counter
Threshold uint8_t | sensor detection threshold. Refer to section 5.4.1 Detect threshold for more

details

type_aks_pos_hyst | uint8_t

holds information for sensor type, AKS group, positive recalibration flag, and
hysteresis value

Bit fields Use
B1:BO Hysteresis. Refer to section 5.4.2 Hysteresis for more
details
B2 positive recalibration flag
B5:B3 AKS group. Refer to section 5.4.5 for more details
B7:B6 sensor type
from_channel uint8_t | starting channel number for sensor
to_channel uint8 t | ending channel number for sensor
Index uint8_t | index for array of rotor/slider values
gt_lib_siginfo_t
Structure gt_lib_siginfo_t

Input / Output
Use

Output from the library
Data structure which holds the information about the library variant and its
version information.

gt_lib_siginfo_t structure definition for a QTouch acquisition method library variant

Fields Type Comment
library_version uintl6_t | Holds the library version information.
Bit fields Use
B3 : BO Patch version of the library
B7 : B4 Minor version of the library
B15:B8 Major version of the library
lib_sig_lword uintl6_t | Holds the general information about the library
Bit fields Use
B1:BO Library Type :
00 : QTouch acquisition method
01 : QMatrix acquisition method
B2 Compiler tool chain used
28 8207K-AT42-09/11

0-GCC
1-1AR

B9 : B3 Maximum number of channels
supported by the library

B10 0 — Library supports only keys
1 — Library supports keys and
rotors

B15:B11 Maximum number of rotors and
sliders supported by the library

lib_sig_hword uintl6_t | Reserved

gt_lib_siginfo_t structure d

efinitions for a QMatrix acquisition method library variant

Fields Type Comment
library_version uintl6_t | Holds the library version information.
Bit fields Use
B3 : BO Patch version of the library
B7 : B4 Minor version of the library
B15:B8 Major version of the library
lib_sig_lword uintl6_t | Holds the general information about the library
Bit fields Use
B1:BO Library Type :
00 : QTouch acquisition method
01 : QMatrix acquisition method
B2 Compiler tool chain used
0-GCC
1-1AR
B9 : B3 Maximum number of channels
supported by the library
B10 0 — Library supports only keys
1 — Library supports keys and
rotors
B15:B11 Maximum number of rotors and
sliders supported by the library
lib_sig_hword uintl6_t | Holds information about the X and Y lines for a QMatrix library variant
Bit fields Use
B4 : BO Number of X Lines
B8 : B5 Number of Y Lines
B9 0

Public Functions

This section lists the public functions available in the QTouch libraries and its usage.

gt_set_parameters

This function is used to initialize the global configuration settings in the variable
qt_config_data of the QTouch and QMatrix acquisition method libraries.

void gt_set_parameters (void)

Arguments | Type [Comment

Void - This function will initialize the parameters required by the library to default values .But
the default values can be changed by the user by modifying the global threshold
values as defined in gt_touch lib_config data t. See section O for details.

NOTE:

AIMEL 29

&

AIMEL

e This function can be called any time to apply the threshold parameters of the library as
specified by modifying the global data structure qt_config_data exported by the library.

gt_enable_key

This function is used to configure a channel as a key.

void gqt_enable_key (
channel_t
aks group_t
threshold_t
hysteresis_t

channel ,

aks group ,
detect_threshold ,
detect_hysteresis

)
Arguments Type Comment
Channel channel t Specifies the channel number to be configured for use as a “key”
aks_group aks_group Specifies the aks group associated with the sensor being configured as

ukeyn

detect threshold

threshold_t

Specifies the detect threshold for the sensor

detect_hysteresis

hysteresis_t

Specifies the detection hysteresis for the sensor

gt_enable_rotor

This function is used to configure a set of channels as a rotor.

void gt_enable_rotor (
channel_t
channel_t
aks group_t
threshold_t
hysterisis_t
resoulution_t

from_channel ,
to_channel ,
aks_group ,

detect threshold ,
detect hysterisis ,
angle_resolution ,

uint8_t angle_hysterisis

)
Arguments Type Comment
from_channel Channel_t | Specifies the starting channel number to be configured for use as a “Rotor”
to_channel Channel t | Specifies the end channel number to be configured for use as a “Rotor”
aks_group aks_group | Specifies the aks group associated with the sensor being configured as

“ROTOR”

detect_threshold | threshold t | Specifies the detect threshold for the sensor
detect_hysterisis | hysterisis_t | Specifies the detection hysteresis for the sensor
angle resolution | resolution t | Specifies the resolution of the reported angle value
angle hysterisis | uint8 t Specifies the hysteresis of the reported angle value

NOTE:

e A “Rotor” sensor requires contiguous channel numbers.

e The rotor / slider number depends on the order in which the rotor or sliders are enabled.
The first rotor or slider enabled will use “rotor_slider_values[0]”, the second will use
“rotor_slider_values[1]”, and so on. The reported rotor value is valid when the rotor is
reported as being in detect.

e In case of QMatrix acquisition method library, the from_channel and to_channel can be
between 3 to 8 channel numbers apart (i.e. it can support 3 to 8 channel rotors).

e In case of QTouch acquisition method library, the from_channel and to_channel can be 3
channels apart (i.e. can support only 3 channel rotors).

30

8207K-AT42-09/11

gt_enable_slider

This function is used to configure a set of channels as a rotor.

void gt_enable_slider (

channel_t from_channel ,
channel_t to_channel ,
aks group_t aks group ,
threshold_t detect_threshold ,
hysterisis_t detect hysterisis ,
resolution_t position_resolution ,
uint8_t position_hysteresis
)
Arguments Type Comment
from_channel Channel_t | Specifies the starting channel number to be configured for use as a
“Slider”
to_channel Channel t | Specifies the end channel number to be configured for use as a “Slider”
aks_group aks_group | Specifies the aks group associated with the sensor being configured as
“Slider”

detect_threshold threshold t | Specifies the detect threshold for the sensor

detect hysterisis hysterisis t | Specifies the detection hysteresis for the sensor

position_resolution | resolution_t | Specifies the resolution of the reported position value

position_hysterisis | uint8_t Specifies the hysteresis of the reported position value

NOTE:

e A‘“Slider” sensor requires a contiguous numbers of channels.

e The rotor / slider number depends on the order in which the rotor or sliders are enabled.
The first rotor or slider enabled will use “rotor_slider_values[0]”, the second will use.
“rotor_slider_values[1]”, and so on. The reported rotor value is valid when the slider is
reported as being in detect.

e In case of QMatrix acquisition method library, the from_channel and to_channel can be
between 3 to 8 channels apart (i.e. it can support 3 to 8 channel sliders).

e In case of QTouch acquisition method library, the from_channel and to_channel can be 3
channels apart (i.e. can support only 3 channel sliders).

gt_init_sensing

This function is used to initialize the touch sensing for all enabled channels. All required sensors
should be configured before calling this function.

void qt_init_sensing (void)

Arguments | Type | Comment

Void - -

NOTE:

e All sensors must be configured (using qt _enable key, qt _enable rotor or
gt_enable_slider) before calling this function.
e This functions initializes all the configured sensors, performs calibration.

gt_measure_sensors

This function performs a capacitive measurement on all enabled sensors. The measured signals
for each sensor are then processed to check for user touches, releases, changes in rotor angle
and changes in slider position.

AIMEL -

&

AIMEL

&

unitlé_t gt _measure_sensors(uintl6é_t current_time ms)

Arguments Type | Comment

current_time_ms | uintl6 | The current time in milliseconds

Return | Comment

Value

uintl6_t | Returns the status of the Library as a combination of the following bit fields.

Return value Bit Comments

definition

QTLIB_NO_ACTIVITY 0x0000 No activity detected on any of the
sensors

QTLIB_IN_DETECT 0x0001 At least one sensor is in detect

QTLIB_STATUS_CHANGE 0x0002 At least one sensor has changed
ON/OFF state since the last call to
gt_measure_sensor()

QTLIB_ROTOR_SLIDER_POS_CHANGE | 0x0004 At least one rotor/slider has changed
position since the last «call to
gt_measure_sensors()

QTLIB_CHANNEL_REF_CHANGE 0x0008 At least one reference value has
changed since last call to
gt_measure_sensors()

QTLIB_BURST_AGAIN 0x0100 Flag to indicate Multiple measurements
needed.

QTLIB_RESOLVE_CAL 0x0200 Multiple measurements needed to
resolve calibration. Call
gt_measure_sensors() once again.

QTLIB_RESOLVE_FILTERIN 0x0400 Multiple measurements needed to
resolve filtering. Call
gt_measure_sensors() once again.

QTLIB_RESOLVE_DI 0x0800 Multiple measurements needed to
resolve detect integration. Call
gt_measure_sensors() once again.

QTLIB_RESOLVE_POS_RECAL 0x1000 Multiple measurements needed to
resolve positive recalibration. Call
gt_measure_sensors() once again.

NOTE:

All sensors must

gt_calibrate_sensing

be configured (using qt enable key or
gt_enable_slider) and initialized by calling gt_init_sensing before calling this function.

This function forces a recalibration of all enabled sensors.

void qt_calibrate_sensing(void)

Arguments

Type | Comment

Void

NOTE:

32

gt_enable_rotor or

Recalibration may be useful if, for example, it is desired to globally recalibrate all sensors
on a change in application operating mode.
This function must be called only when the sensors have been configured and initialized.

8207K-AT42-09/11

gt_reset_sensing

This function disables all sensors and resets all configuration settings (for example, “qt_di") to
their default values.

void gqt_reset_sensing(void)

Arguments | Type | Comment

Void - -

NOTE:

e This may be useful if it is desired to dynamically reconfigure sensing. After calling this
function, any required sensors must be re-enabled, filter callback needs to be re-
initialized, and “qt_init_sensing()” must be called before “gt_measure_sensors()” is called
again.

e In case of QMatrix, the burst lengths for all channels are set to zero.

gt_get_sensor_delta

This function returns the delta value for a given channel.

intlé_t gt _get sensor_delta(uint8_t sensor_number)

Arguments Type Comment

sensor_number | unit8 t | sensor id for which the delta is required

Return type | Comment

intl6 t The delta value of the sensor specified

NOTE:
e All sensors must be configured (using qt_enable_key or qt_enable_rotor or
gt_enable_slider) and initialized by calling gt_init_sensing before calling this function.
gt_get_library_sig
This function is used to retrieve the library version and signature from the library.

void qt_get library_sig(gt_lib_siginfo_ t *lib_sig ptr)

Arguments | Type Comment

lib_sig_ptr gt _lib_siginfo_t* | Pointer to the structure which needs to be
updated with the library signature
information

NOTE:

e The function gt_measure_sensors() should have been called at least once prior to calling
this function.

Sequence of Operations and Using the API

Figure 6 illustrates the sequence of operations required to be performed to add touch to an end
application. By using the simple API's as illustrated in the sequence flowchart, the user can add
touch sensing in his design.

AIMEL >

AIMEL

&

Channel Numbering

Channel numbering when using QTouch acquisition method

QTouch acquisition method libraries require 2 GPIO pins per channel. QTouch libraries can be
configured to use 1 to 16 channels requiring 2 to 32 pins respectively. There are two options
provided for connecting the SNS and SNSK pins.

1. The SNS and SNSK pins are connected to separate ports. (i.e. Interport)

2. The SNS and SNSK pins are connected to the same port. (i.e. Intraport)

The following list provides a look at various combinations supported by various 8bit AVR
libraries released for each device.

When pin configurability is not used:

4-channel library — supports up to 4 channels using 4 consecutive pins on different SNS
and SNSK ports (or) supports up to 4 channels using 8 consecutive pins on the same
port used for both SNS and SNSK lines. This library requires 1 or 2 ports.

8-channel library — supports up to 8 channels using 8 consecutive pins on different SNS
and SNSK ports (or) supports up to 8 channels using 16 pins spread over two ports (SNS
and SNSK are on alternate pins) with SNS1 and SNSK1 pins on the first port and SNS2
and SNSK2 pins on the second port. This library requires 2 ports.

12-channel library (available only for 8bit AVR devices) — supports up to 12 channels out
of which, 8 channels with 8 consecutive pins for SNS1 and SNSK1 are available on
different ports and the other 4 channels with 8 consecutive pins available on the same
port for both SNS and SNSK lines. This library requires a total of 3 ports.

16-channel library — supports up to 16 channels out of which, 8 channels with 8
consecutive pins for SNS1 and SNSK1 are available on different ports and the other 8
channels with 8 consecutive pins are available on a different pair of SNS2 and SNSK2
ports. This library requires a total of 4 ports.

When pin configurability is used:

Note:

4-channel library — supports up to 4 channels using any 4 pins on different SNS and
SNSK ports (or) supports up to 4 channels using pins on the same port used for both
SNS and SNSK lines. This library requires 1 or 2 ports.

8-channel library — supports up to 8 channels using 8 pins on different SNS and SNSK
ports (or) supports up to 8 channels using pins spread over two ports (SNS and SNSK
are on alternate pins) with SNS1 and SNSK1 pins on the first port and SNS2 and SNSK2
pins on the second port. This library requires 2 ports.

12-channel library (available only for 8bit AVR devices) — supports up to 12 channels out
of which, 8 channels with 8 pins for SNS1 and SNSK1 are available on different ports and
the other 4 channels with 8 pins available on the same port for both SNS and SNSK
lines. This library requires a total of 3 ports.

16-channel library — supports up to 16 channels out of which, 8 channels with 8 pins for
SNS1 and SNSK1 are available on different ports and the other 8 channels with 8 pins
are available on a different pair of SNS2 and SNSK2 ports. This library requires a total of
4 ports.

» When a library supports 4 channels using 8 consecutive pins on the same port, the SNS and
SNSK pins are allocated alternately. This is valid for all the libraries mentioned above.

34

8207K-AT42-09/11

» Usage of intraport configuration requires more code memory than the interport configuration.
The values mentioned in the Library_selection_Guide.xIs are for interport configurations. The
memory consumption for intra-port will be higher to the values mentioned in the
Library_selection_Guide.xls

» The configurations on pin configurability should be used in conjunction with the rules for
assigning the pins that are described in section 5.8.2

For UC3 and ATSAM libraries, an n- channel library supports up to n channels using n
consecutive pins on different SNS and SNSK ports (or) supports up to n/2 channels using (n)
consecutive pins on the same port used for both SNS and SNSK lines. This library requires 1 or 2
UC3 or ATSAM ports. In addition to this, for the ATSAM libraries the pins can be configured on 3
ports based on the configuration selected.

NOTE:

Some of the devices in UC3 family has ports having more than 32 pins or less than 32
pins.In those devices, the mapping is given as below:

GPIO Port0 -> A

GPIO Portl -> B

GPIO Port2 -> C

GPIO Port3 -> X
Example SNS=A and SNSK=X, So channel O will be (SNSO = GPIOO_Pin0 and SNSKO =
GPIO3_Pin0).
Similarly,Example SNS=X and SNSK=X, So channel 0 will be (SNSO = GPIO3_Pin0 and SNSKO
= GPIO3_Pinl).

AIMEL %

&

36

AIMEL

o
&

gt_reset_sensing()

The host application (optionally) calls “qt_reset_sensing()"
to reset all channels and touch sensing parameters to their
default states. This step is only required if the host wants to
dynamically reconfigure the library at runtime

47 |

gt_enable_xxx()

The host application calls “gt_enable_key()", “gt_enable_rotor()”
and/or “qt_enable_slider()" as required to configure the touch
sensors

47

gt_init_sensing()

The host application calls gt_init_sensing() to calibrate all the
configured channels and prepare the sensors for capacitive
measurement

47

gt_set_parameters()

The host application gt_set_parameters() to initialize the threshold
parameters for the library. If the user needs to change the thresholds,
edit the global data structure qgt_config_data prior to calling this API

<7

init_timer_isr()

The host application initializes the timer module required for
capacitive measurement

<V

gt_measure_sensors()

The host application periodically calls
“gt_measure_sensors()" to make capacitive measurements.

: it Part of host application
Time-critical host which cannot wait till multiple

app|ica'[i0n code | measurements are complete (should
be as minimal as possible)

Check if multiple measurements are needed or not:
To resolve calibration
To resolve DI
To resolve positive recalibration
To compensate for drift

QTLIB_BURST_A

No

\ 4

check gt_touch_status

check the global status variable “gt_touch_status” to see if any
sensors are in detect, and the angle or position of any enabled
rotors or sliders

Non-Time critical host application code

] Host application which can be executed after

the completion of multiple measurements
for all the channels

Figure 5-6: Sequence of operations to add Touch capability

8207K-AT42-09/11

Channel numbering when routing SNS and SNSK pins to
different ports

Figure 5-7 illustrates a sample QTouch capacitive sensing solution which uses four ports (two
port pairs) on a device for routing the SNS and SNSK lines required.

When SNS and SNSK pins are available on different ports, the channel numbering follows the pin
numbering in the ports selected, when pin configurability is not used.

The channel numbers follow the pin numbers starting with the LSB (pin 0 is channel 0
and pin 7 is channel 7).

When a library on corresponding device is configured to use more than two ports for SNS
and SNSK pins, the channel nhumbers in the second set of SNS/SNSK port pair continue
from the preceding pair as illustrated in Figure 5-7(pin O of next port pair is channel 8 and
pin 7 of the next port pair is channel 15).

Support for more than one pair of SNS and SNSK ports are not available for UC3™
devices.

SNS pins within a single port and SNSK pins within another single port can only be used
as channels for slider/rotor. Slider/Rotor channels cannot share SNS/SNSK pins on
different ports.

Since the channel numbers are fixed to the pins of the SNS and SNSK ports, if the
design calls for use of a subset of the pins available in the SNS and SNSK ports, the user
has to skip the channel numbers of the unused SNS and SNSK pins.

o0 For example, on a 8 channel configuration using a single pair of SNS and SNSK
ports, if pin 2 is not used for touch sensing (on both SNS and SNSK ports),
channel number 2 is unavailable and care should be taken while configuring the
channels and sensors to avoid using this channel.

AIMEL ¥

&

AIMEL

&

Pin 0 channel 0
Pin 1 channel 1 sensorQ
channel 2
Port A Pin 2
) channel 3
AllSNSKpins Pin3 1= - 4
terminated Pin 4 sensorl
on this port Pin 5 channel 5
Pin 6 |-channel 6 O sensor2
Pin 7 channel 7 O sensor3
SNS - SNSK
Port Pair one jr—
Pin 0 channel 0 1
Pin 1 channel 1 e
Port B Pin 2 4channeL2——‘777
Pin 3 channel 3 1
All SNS pins n
terminated Pin 4 channel 4 —
on this port Pin 5 channel 5 O
Pin 6 channel 6 1
channel 7
NG Pin7/
Pin 0 channel 8
Pin 1 channel 9 sensor4
. channel 10
Port C Pin 2
) channel 11
AllSNSKpins Pin3 | - 1o
terminated Pin 4 sensor5
on this port Pin 5 channel 13
Pin 6 [Channel 14 () sensoré
Pin 7 channel 15 O sensor7
SNS - SNSK
Port Pair two —
Pin 0 channel 8 1
Pin 1 channel 9 e
Port D Pin 2 Mii
Pin 3 channel 11 L
All SNS pins n
terminated Pin 4 channel 12 —
on this port Pin 5 | channel 13 B
Pin 6 channel 14 1
channel 15

Pin 7

Figure 5-7 : channel numbering for QTouch acquisition method when the SNS and SNSK
pins are connected to different ports.

Channel numbering when routing SNS and SNSK pins
to different ports with pin configurability

When SNS and SNSK pins are available on different ports, the channel numbering
follows the pin numbering in the ports selected based on SNS_array and SNSK_array
bits enabled.The pins which needs to be used for touch should be provided in the Pin
Configurator Wizard in QTouch Studio and the pin configurator Wizard tool will generate
the SNS_array and SNSK_array masks and channel numbering will be based on which
pins are enabled for touch in consecutive way.Below is an example to illustrate the same:

38 8207K-AT42-09/11

Example:

SNS and SNSK pins are configured with few rules keeping in mind as illustrated in
section

Pins A0 ,A1,A4 and A6 of PORT A are SNS pins and pins B2,B3,B5,B7 are SNSK pins of
PORT B.

Channel 0 will be forming a SNS-SNSK pair as AOB2.

Channel 1 will be forming a SNS-SNSK pair as A1B3

Channel 2 will be forming a SNS-SNSK pair as A4B5

Channel 3 will be forming a SNS-SNSK pair as A6B7.

The channel numbering is not dependent on the pin numbering.

Channel numbering when routing SNS and SNSK pins to
the same port

When SNS and SNSK pins are connected to the same port, the even pin numbers will be used as
SNS pins and the odd pins will be used as the SNSK pins.

e The number of channels supported will be limited 4 channels for an 8-bit device and 16
channels for a 32-bit device (e.g. UC3).

e For e.g., for a 4 channel configuration where the SNS and SNSK pins are connected to
Port B, the port pins 0&1 are used for channel 0.

e The channel number is derived from the position of the pins used for SNS and SNSK
lines for any channel.

channel number = floor([SNS(or SNSK) pin number] / 2)

o For e.g., pins 4 and 5 are connected to a SNS/SNSK pair and the channel nhumber
associated with the SNS/SNSK pin is 2.

-

Pin 0 SNS pin

channel 0 . =
Port A Pin 1 SNSK pin —_1
Pin 2 SNS pin —
SI\'IAQK o 3 channel 1 gnsk pin — sensor1
and . SNS pin
. Pin 4 P
SNS pins channel 2 snsk pin -
terminated Pin 5 ——
on the same port _. SNS pin
Pin 6 h 3) 1
Pin 7 channel 3 sNsK pin —_ Q sensor2

- /

Figure 5-8 : Channel numbering for QTouch acquisition method when the SNS and SNSK
pins are connected to the same port

Channel numbering when routing SNS and SNSK pins to
the same port with pin configurability
When SNS and SNSK pins are connected to the same port, different pins can be used as SNS

and SNSK pins.But SNS and SNSK pins are configured with few rules keeping in mind as
illustrated in section

AIMEL %

AIMEL

&

Example:

Pins A0 ,A3 and A5 of PORT A are SNS pins and pins A2,A4,A7 are SNSK pins of PORT
A.

Channel 0 will be forming a SNS-SNSK pair as AOA2.

Channel 1 will be forming a SNS-SNSK pair as A3A4

Channel 2 will be forming a SNS-SNSK pair as A5A7.

The channel numbering is not dependent on the pin numbering.

Channel numbering when using QMatrix acquisition method
Figure 5-9 illustrates a QMatrix capacitive sensing solution which uses 4 X lines and 4 Y lines
thereby providing a 16 channel solution.

Note:
1. All channels selected for a specific rotor or slider should be on a single Y line.

2. The choice of ports for X and Y lines is left to the user to based on the availability of the
pins available in the particular device selected. Please refer to the section 5.8.2 for more
details configuring of touch sensing pins for QMatrix.

The channel numbering for QMatrix configuration follows a matrix pattern with the channel
numbers starting from 0 for the matrix intersection (X0YO) and increasing along the X lines for a
given Y line (Channel 1 is X1YO0) and then moving on to the row number O for the next column.
Table 1 lists the possible channel numbers and the associated X/Y line associations for the
different configurations of QMatrix library variants.

A group of channels form a sensor and the sensor numbering is determined by the order in which
the user defines the association of channels and uses them as a sensor.

The channel numbering is fixed for a specific library variant based on the number of X and Y lines
used whereas the sensor numbering is determined at the time of usage based on the order in
which the user defines the association of the channels to create a sensor.

\ \ M AN M
ChoOl| i ch4i i chs chi2
X0 W
Ch1 Chi9 Chi13
X1 Chs \
ROTOR/SLIDER
Ch2 chio
X2 ché) Chi14
X3 Ch3 ch7 ch 11 Chi15
v ’ v\ L/ L/ /
7 I A
or

YO Y1 Y2 Y3

QMatrix also supports such rotor/slider configuration.
QMatrix Channels The channels selected for a Rotor / Slider MUST be on a single YA/YB line.

Figure 5-9: Channel Numbering for QMatrix acquisition method libraries

40 8207K-AT42-09/11

Table 1 : Channel numbers for QMatrix configurations

Line label 4 8 16 16 32 56 64
channel channel channel channel channel channel channel
configur | configurat | Configura | Configura | configurat | configurat | configurat
ation ion tion tion ion ion ion
(4x1) (4 x 2) (8x2) (4 x 4) (8 x 4) (8x7) (8 x 8)

Channel 0 X0YO X0YO X0YO X0YO X0YO X0YO X0YO

Channel 1 X1YO0 X1YO0 X1YO0 X1YO0 X1YO0 X1YO0 X1YO0

Channel 2 X2Y0 X2Y0 X2Y0 X2Y0 X2Y0 X2Y0 X2Y0

Channel 3 X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X3Y0

Channel 4 N/A X0Y1l X4Y0 X0Y1l X4Y0 X4Y0 X4Y0

Channel 5 N/A X1Y1l X5Y0 X1Y1l X5Y0 X5Y0 X5Y0

Channel 6 N/A xX2Y1 X6YO0 xX2Y1 X6YO0 X6YO0 X6Y0

Channel 7 N/A X3Y1 X7Y0 X3Y1 X7Y0 X7Y0 X7Y0

Channel 8 N/A N/A X0Y1 X0Y?2 X0Y1 X0Y1 X0Y1l

Channel 9 N/A N/A X1Y1 X1Y2 X1Y1 X1Y1 X1Y1l

Channel 10 N/A N/A X2Y1 X2Y2 X2Y1 X2Y1 xX2Y1

Channel 11 N/A N/A X3Y1 X3Y2 X3Y1 X3Y1 X3Y1

Channel 12 N/A N/A X4Y1 X0Y3 X4Y1 X4Y1 X4Y1

Channel 13 N/A N/A X5Y1 X1Y3 X5Y1 X5Y1 X5Y1

Channel 14 N/A N/A X6Y1 X2Y3 X6Y1 X6Y1 X6Y1

Channel 15 N/A N/A X7Y1 X3Y3 X7Y1 X7Y1 X7Y1

Channel 16 N/A N/A N/A N/A X0Y?2 X0Y?2 X0Y?2

Channel 17 N/A N/A N/A N/A X1Y?2 X1Y?2 X1Y2

Channel 18 N/A N/A N/A N/A X2Y2 X2Y2 X2Y2

Channel 19 N/A N/A N/A N/A X3Y2 X3Y2 X3Y2

Channel 20 N/A N/A N/A N/A X4Y?2 X4Y?2 X4Y?2

Channel 21 N/A N/A N/A N/A X5Y2 X5Y2 X5Y2

Channel 22 N/A N/A N/A N/A X6Y2 X6Y2 X6Y2

Channel 23 N/A N/A N/A N/A X7Y2 X7Y2 X7Y2

Channel 24 N/A N/A N/A N/A X0Y3 X0Y3 X0Y3

Channel 25 N/A N/A N/A N/A X1Y3 X1Y3 X1Y3

Channel 26 N/A N/A N/A N/A X2Y3 X2Y3 X2Y3

Channel 27 N/A N/A N/A N/A X3Y3 X3Y3 X3Y3

Channel 28 N/A N/A N/A N/A X4Y3 X4Y3 X4Y3

Channel 29 N/A N/A N/A N/A X5Y3 X5Y3 X5Y3

Channel 30 N/A N/A N/A N/A X6Y3 X6Y3 X6Y3

Channel 31 N/A N/A N/A N/A X7Y3 X7Y3 X7Y3

Channel 32 N/A N/A N/A N/A N/A X0Y4 X0Y4

Channel 33 N/A N/A N/A N/A N/A X1Y4 X1Y4

Channel 34 N/A N/A N/A N/A N/A X2Y4 X2Y4

Channel 35 N/A N/A N/A N/A N/A X3Y4 X3Y4

Channel 36 N/A N/A N/A N/A N/A X4Y4 X4Y4

Channel 37 N/A N/A N/A N/A N/A X5Y4 X5Y4

Channel 38 N/A N/A N/A N/A N/A X6Y4 X6Y4

Channel 39 N/A N/A N/A N/A N/A X7Y4 X7Y4

Channel 40 N/A N/A N/A N/A N/A X0Y5 X0Y5

Channel 41 N/A N/A N/A N/A N/A X1Y5 X1Y5

Channel 42 N/A N/A N/A N/A N/A X2Y5 X2Y5

Channel 43 N/A N/A N/A N/A N/A X3Y5 X3Y5

Channel 44 N/A N/A N/A N/A N/A X4Y5 X4Y5

Channel 45 N/A N/A N/A N/A N/A X5Y5 X5Y5

Channel 46 N/A N/A N/A N/A N/A X6Y5 X6Y5

41

AIMEL

&

AIMEL

&

Channel 47 N/A N/A N/A N/A N/A X7Y5 X7Y5
Channel 48 N/A N/A N/A N/A N/A X0Y6 X0Y6
Channel 49 N/A N/A N/A N/A N/A X1Y6 X1Y6
Channel 50 N/A N/A N/A N/A N/A X2Y6 X2Y6
Channel 51 N/A N/A N/A N/A N/A X3Y6 X3Y6
Channel 52 N/A N/A N/A N/A N/A X4Y6 X4Y6
Channel 53 N/A N/A N/A N/A N/A X5Y6 X5Y6
Channel 54 N/A N/A N/A N/A N/A X6Y6 X6Y6
Channel 55 N/A N/A N/A N/A N/A X7Y6 X7Y6
Channel 56 N/A N/A N/A N/A N/A N/A X0Y7
Channel 57 N/A N/A N/A N/A N/A N/A X1Y7
Channel 58 N/A N/A N/A N/A N/A N/A X2Y7
Channel 59 N/A N/A N/A N/A N/A N/A X3Y7
Channel 60 N/A N/A N/A N/A N/A N/A X4Y7
Channel 61 N/A N/A N/A N/A N/A N/A X5Y7
Channel 62 N/A N/A N/A N/A N/A N/A X6Y7
Channel 63 N/A N/A N/A N/A N/A N/A X7Y7

Sensor Numbering

The ordering and numbering of sensors is related to the order in which the sensors are enabled.
This is independent of the acquisition method (QMatrix or QTouch acquisition method libraries).

For example, consider this code snippet:

/* enable slider */
qt_enable_slider (CHANNEL_O, CHANNEL_2, AKS_ GROUP_1, 16,
HYST_6 25, RES 8 BIT, 0);

/* enable rotor */
qt_enable_rotor (CHANNEL 3, CHANNEL 5, AKS GROUP_1, 16, HYST 6 25,
RES_8 BIT, 0);

/* enable keys */
qt_enable_key (CHANNEL_6, AKS GROUP_2, 10, HYST 6 _25);
gt_enable_key (CHANNEL_7, AKS_GROUP_2, 10, HYST_6_25);

In the case above, the slider on channels 0 to 2 will be sensor 0, the rotor on channels 3-to-5 is
sensor 1 and the keys on channels 6 and 7 are sensor numbers 3 and 4 respectively.

When the touch status is reported or queried, the corresponding sensor positions and status
indicate the touch status. For example, the slider is in detect if “qt_measure_ data.
gt_touch_status.sensor_states” bit position O is set. Similarly, the rotor on channels 3 to 5 is
sensor 1, and the keys on channels 6 and 7 are sensors 2 and 3 respectively.

However, the code could be re-arranged as follows to give a different sensor numbering.

/* enable rotor */

qt_enable_rotor (CHANNEL_3, CHANNEL_5, NO_AKS_GROUP, 16,
HYST 6 25, RES_8 BIT, 0);

/* enable keys */

qt_enable_key (CHANNEL_6, AKS GROUP_2, 10, HYST_6_25);
qt_enable_key (CHANNEL_7, AKS_GROUP_2, 10, HYST_6_25);

/* enable slider */

42 8207K-AT42-09/11

qt_enable_slider (CHANNEL_O, CHANNEL_2, NO_AKS_GROUP, 16,
HYST_6_25, RES_8 _BIT, 0);

Now, the rotor is sensor 0, the keys are sensors 1 and 2, and the slider is sensor 3.

So, the order in which the user enables the sensors is the order in which the sensors are
numbered. Depending on the user requirements, the sensors can be configured in the preferred
order.

NOTE: In case of QMatrix, the channels on the Unused X lines (or) unused Y lines should be
ignored and not to be used as arguments in this API.

Ex: If the host application needs only 24 channels , there are two possible options.

1. In 32 (8x4 configuration), if X6 and X7 are unused, channel6, channel?,
channell4, channell5, channel 22, channel23, channel30, channel 31
cannot be used

2. In 32 (8x4 configuration), if Y3 is unused, channe24, channel25,
channel26, channel27, channel 28, channel29, channel30, channel 31
cannot be used

Filtering Signal Measurements
The ATMEL QTouch Library API provides a function pointer called “qt_filter_callback”. The user

can use this hook to apply filter functions to the measured signal values.

If the pointer is non-NULL, the library calls the function after library has made capacitive channel
measurements, but before the library has processed the channel information and determining the
sensor states.

AIMEL *

&

AIMEL

&

e

O
O

channel 0
channel 1
channel 2
channel 3
channel 4
channel 5
channel 6
channel 7

QTouch/QMatrix Channel Acquisition Method ‘

channel_signals[]

A

‘ optional gt_filter_callback() function ‘
\

*modified channel_signals[]

‘ post-processing ‘

imodified channel_signals[]

gt_touch_status.sensor_states|[]
gt_touch_status_rotor_slider_values[]

Figure 5-10 : Block diagram to represent usage of filter callback function

Example: Averaging the Last Four Signal Values
1. Add a static variable in the main module:
/* Filter for channel signals */
static uintl6_t filter[QT_NUM_CHANNELS][41;

2. Add a filter function prototype to the main module:
/* example signal filtering function */
static void filter_data mean_4(void);

3. When configuring the ATMEL QTouch library, set the callback function pointer:
/* set callback function */

qt_filter_callback = filter_data mean 4;

4. Add the filter function:
void Filter_data _mean_4(void)
{ _
uint8 t 1;
/*
* Shift previously stored channel signal data.
* Store new channel signal data.

* Set library channel signal data = mean of last 4 values.
*/

for(i = Ou; i < QT_NUM_CHANNELS; i++)

{
filter[i]1[0] = filter[i][1];

44 8207K-AT42-09/11

filter[i][1] = filter[i][2];
filter[i][2] = filter[i]1[3];
filter[i][3] = gt_measure_data.channel_signals[i];

qt_measure_data.channel_signals[i] = (¢ Tfilter[i][0] +
filter[i][1] +
filter[i][2] +
filter[i][3]) 7 4u);
}
}

The signal values processed by the ATMEL QTouch Library are now the mean of the last four
actual signal values.

Allocating unused Port Pins for User Application

The GPIO pins within a port that are not used for QTouch or QMatrix acquisition methods can be
used for user application. The usage of pins for QTouch is based on the channels that are being
configured while enabling the sensors (keys/rotors/sliders).

The example below configuring 4 keys, a rotor and a slider shows how the pin configurability is
achieved by configuring the sensor channels. The code snippet configures a specific 10 channels
of a 16 channel library based on the GPIO port pins available for QTouch™,

Port Configuration:

#define SNSK1 C
#define SNS1 D
#define SNSK2 A
#define SNS2 B

Channel/Pin Configuration:

/* enable a key on channel 0 */
qt_enable_key(CHANNEL O, AKS GROUP_2, 10u, HYST 6 25);

/* enable a slider on channels 2 to 4 */
qt_enable_slider(CHANNEL_ 2, CHANNEL 4, AKS GROUP_1, 16u, HYST 6 25,
RES 8 BIT, Ou);

/* enable a key on channel 6 */
gt_enable_key(CHANNEL_6, AKS_GROUP_2, 10u, HYST 6 25);

/* enable a key on channel 7 */
qt_enable_key(CHANNEL 7, AKS GROUP_2, 10u, HYST 6 25);

/* enable a rotor on channels 12 tol4 */
qt_enable_rotor(CHANNEL 12, CHANNEL_ 14, AKS GROUP_1, 16u,
HYST 6 25, RES 8 BIT, Ou);

/* enable a key on channel 15 */
qt_enable_key(CHANNEL_15, AKS GROUP_2, 10u, HYST 6 25);

The channel numbers 0,2,3,4,6,7 are allocated to pins 0,2,3,4,6,7 of (D,C) port pair respectively.
Pins 1 and 5 of ports C and D can be used for user application. Similarly the channel numbers
12,13,14,15 are allocated to pins 4,5,6,7 of (B,A) port pair respectively. Pins 1, 2, 3 and 4 of ports
B and A are again unused by the QTouch library and can be used for user application.

AIMEL *

AIMEL

Disabling and Enabling of Pull-up for AVR devices

The Pull-up circuit available (in AVR devices) for each GPIO pin has to be disabled before
QTouch acquisition is performed. For tinyAVR and megaAVR devices the Pull-up circuit for all
GPIO port pins are enabled and disabled together. When user needs to configure the pins that
are not used by QTouch library for his application, he may enable the Pull-up circuit after QTouch
measurements are performed and disable them before the touch acquisition starts once again (as
shown in the code snippet below).

/* Disable pull-ups for all pins */
MCUCR 1= (1lu << PUD); //MCUCR_PUD = 1u;

/* perform QTouch measurements */
qt_measure_sensors (current_time_ms_touch);

/* Enable pull-ups for all pins */
MCUCR &= ~ (lu << PUD); //MCUCR_PUD = OQu;

For XMEGA devices the Pull-up circuit for each individual GPIO port pins can be configured
individually, by writing to the PINNCTRL register of the ports being used.

Constraints

QTouch acquisition method constraints
QTouch acquisition method libraries are available for different port combinations.
Some of the key constraints while configuring the sensors are

e Rotors/sliders have to be connected on three adjacent channels. (e.g. (1,2,3) or (3,4,5)
...) within the same port. Possible combinations are (0,1,2), (1,2,3) for a configuration
which supports 4 channels. Possible combinations (0,1,2), (1,2,3), (2,3,4), (3,4,5), (4,5,6),
(5,6,7) for a configuration which supports 8 channels.

e If two port pairs are used for the design, all the channels for a sensor have to be
connected on a single port pair. Combining channels from multiple ports is not possible
when designing sensors. e.g. It is not possible to have a rotor with channel numbers (
7,8,9) on a 16 channel library variant which uses two port-pairs.

Note: The above constraints are explained with respect to 8bit AVR. The same could be extended
to 32bit AVR and ATSAM for 32 channel libraries where each port has 32 pins.

QMatrix acquisition method constraints

QMatrix acquisition method libraries are available for a set of AVRs The library variants can be
configured to have port and pin assignments for X, Ya, Yb and SMP. Please refer to section 5.8.2
for port-pin configurability.

Some of the key constraints are

o The QMatrix acquisition method libraries internally use TIMER1 for the operation,
TIMER21 will not be available for critical sections of the code where the library is called.
But resources are available to the host application when the normal user’s application is
running.

e In case of XMEGA™ devices, the resources are used internal to the library and hence
cannot be used by the host application

o0 Timer/Counter 1 on PORTC (TCC1)
0 Analog Comparator on PORTA (ACA)

46 8207K-AT42-09/11

0 Event System Channel0 (EVSYS_CHO0)
e The sensor channel number and the relation with X and Y lines strictly follows from the
table provided in the section Table 1.
e Arotor /slider sensor can be configured with 3 to 8 channels per rotor or slider depending
on the requirement of the application subject to the total number of channels available in
the library variant selected as listed below.

Number of XxY Maximum Channels per ROTOR_SLIDER
channels

4 4x1 4

8 4x2 4

16 4x4 4

16 8x2 8

32 8x4 8

56 8x7 8

64 8x8 8

e For example, 16 channel libraries with 4X and 4Y lines supports maximum of 4 channels
per Rotor/Slider. But, a 16 channel with 8X and 2Y lines supports maximum of 8
channels per Rotor/Slider.

e If the lines of the Drive and Receive electrode (X lines or the Y lines) share the same
lines with the JTAG, JTAG needs to be disabled. Please check the data sheet to ensure
that there are no conflicts between the X/Y lines and JTAG lines used for the device.

e YB line for a particular device cannot be changed and it has to be the configured to be
the ADC port of the selected device.

e The AINO pin of the device needs to be connected to the GND.

e In case of XMEGA devices, the reference pin for input to analog comparator is Pin7 of
PORTA with all the combinations of libraries supported. Hence, this needs to be
connected to GND

e Proper grounding should be taken care when the controller board and touch sensing
board are different.

e The channels used for an individual rotor or slider should all be on the same Y line.

e The maximum number of Rotors / Sliders supported by the QMatrix acquisition method
depends on the configuration. Refer to the Library Selection_Guide.xIs for details.

e Vcc should be kept at 4.5V or lower for reliable operation

Design Guidelines for QMatrix acquisition method systems

AVR Microcontrollers can use a number of clock sources, ranging from high precision external
crystals to less accurate resonators down to simple external RC circuits. Most AVR devices also
come with integrated RC oscillators. This provides a system clock source without additional cost
or board space. When using internal RC oscillators some considerations need to be taken. The
accuracy i.e. frequency of CMOS RC oscillators will vary slightly from device to device due to
process variance.

QMatrix acquisition method uses an internal timer to measure the discharge time of a capacitor,
and any frequency variation or fluctuation in the RC Oscillator will thus show up as a variance in
the measurement data. The application should for this reason be designed and tuned to allow for
such variance in the internal RC oscillator frequency. For most AVR microcontrollers, the rated
accuracy of the internal RC oscillator is 2%, and to have some headroom and guarantee a robust
and stable system, the designer should aim to follow these design rules:

» Reference Value should be in the 150-300 range

» Typical delta when touched should be at least 10% of the Reference Value

AIMEL Y

&

AIMEL

&

» Recommended threshold should be at least 5% of the reference value and at least 50%
of the typical delta (Higher value gives better robustness)

>
>

Hysteresis should be as high as possible in noisy systems (50%)
DI should be set to at least 4

If the design of the system does not comply with the rules above, special attention should be
taken when testing it to make sure that the design meets the desired performance. In systems
with big signal values and small deltas (i.e. less than 10%) it is recommended to either change
component values to conform to the 10% delta rule, or change to a higher precision clock source.

QTouch Studio is the preferred tool when checking and validating any QTouch Designs.

Frequency of operation (Vs) Charge cycle/dwell cycle times:

The library needs different charge / dwell cycles based on the operation and design. The
recommended range of charge/dwell cycle times that the user must select based on the operating
clock frequency of the Microcontroller is provided in the table below.

Fine tuning of the cycle times to match the sensor design may be done by monitoring the
reference levels, and finding the shortest cycle time where the reference level has reached >98%
of maximum reference value seen with a much longer cycle time. If the cycle time is too short the
design may experience temperature sensitivity.

Possible values:
The following table lists the possible values of QT_DELAY_CYCLES for both QTouch and

QMatrix acquisition method libraries.

Example:

Acquisition method

Possible values

QTouch

Any value from 1- 255 for 8bit AVR
3,4,5,10,25,50 for UC3 and ATSAM
libraries

QMatrix

1,2,3,4,5,10,25,50

When operating at 4 MHz, 1~10 cycle charge times are recommended (0.125us to 1.25us).

Table 2: Frequency of operation

Frequency of microcontroller Cycle time | Suitable Charge Cycle times (or)
Microcontroller (us) Suitable Dwell Cycle times
(MH2z)) (us)
1 1 1to 2 cycles (1us to 2us)
2 0.5 1to 5 cycles (0.5us to 2.5us)
4 0.25 1to 10 cycles (0.25us to 2.5us)
8 0.125 1to 10 cycles (0.125us to 1.25us)
10 0.1 2 to 25 cycles (0.2us to 2.5us)
16 0.0625 2 to 25 cycles (0.125us to 1.5625us)
20 0.05 3 to 50 cycles (0.15us to 2.5us)
48 0.02083 5~50 cycles (0.104us to 1.04us)
>48 <0.02083 5to < 50 (up to 255 cycles for 8hit AVR)

Note:

e For UC3 and ATSAM devices, 1 & 2 charge cycle delay times are not supported.

48

8207K-AT42-09/11

If the microcontroller is only used for Touch detection then running at the lowest frequency
possible for the desired touch response may provide the best power and EMC performance. If it
is also used for other functions then running at a higher frequency may be necessary. In some
power critical applications it may be worth switching the frequency on the fly, such as lowering the
frequency during touch detect API instead of using long cycle times, and then switching to a
higher frequency for non-touch code. It is necessary to carefully design timer operation when
change frequencies.

Interrupts

The library disables interrupts for time-critical periods during touch sensing. These periods are
generally only a few cycles long, and so host application interrupts should remain responsive
during touch sensing. However, any interrupt service routines (ISRs) during touch sensing should
be as short as possible to avoid affecting the touch measurements or the application
responsiveness. As a rule of thumb, the combined durations of any ISRs during a capacitive
measurement should be less than 1 msec,i.e., the QTouch acquisition cannot be pre-empted for
more than 1msec. This can be tested during system development by checking the acquisition
duration on the touch channels on an oscilloscope. If the total burst duration for any channel
varies by more than 1ms while the user is not touching any sensors, then ISRs could adversely
affect the measurements. Please note that none of the API functions should be called from a user
interrupt.

Integrating QTouch libraries in your application

This section illustrates the key steps required in integrating the QTouch library in your application.

Directory structure of the library files

The QTouch library directory structure is as listed below

What Where Comments

Root Default directory is This is the default

installation | C:\Program
Files\Atmel\Atmel_QTouch_Libraries_4.x\Generic_QTouch_Libraries

directory path but the user
can install the directory in
desired location.

Header file | ..\include

touch_api.h is located in
this
directory.touch_api_2kdev
ic.h for 2K devices support
is also added in this
directory

Configurati | QTouch acquisition | 8-bit .\Atmel_QTouch_Libraries_4.x\ touch_gt_config.h
on and method libraries devices | Generic_QTouch_Libraries gt_asm_tiny_mega.S
assembler \AVR_Tiny_Mega_XMega\QTouch\co S
routines mmon_files qt_asm_xmega.
for touch_qt_config_2kdevice
acquisition .h
gt_asm_tiny_mega_2kdev
ice.S
ucs3 Not needed for UC3 devices
ATSAM | Not needed for ATSAM devices

AIMEL

&

49

AIMEL

&

QMatrix acquisition | 8-hit .\Atmel_QTouch_Libraries_4.x\ touch_gm_config.h
method libraries devices \(i(i}wsri_lc___QT&uch_I;i(lKArarief atria gm_asm_tiny_mega.S
mmon. flir|18y8_ ega_XMega\QMatrixico gm_asm_m8535_m16.S
h gm_asm_xmega.S
gm_asm_tiny_mega_shar
edyayb.S
gm_asm_m8535_m16_sh
aredyayb.S
gm_asm_xmega_sharedy
ayb.S
UC3 \Atmel_QTouch_Libraries_4.x\ touch_gm_config32.h
Generic_QToych_Libraries_\32bit_AV touch_gm_config32_asse
R\UC3\QMatrix\common_files mbler.h
gm_asm_uc3c_gcce.X
gm_asm_uc3c_iar.s82
Library | QTouch acquisition | 8-bit .\Atmel_QTouch_Libraries_4.x\
files method libraries devices Generic_QTouch_Libraries All libraries (.r90 for IAR
\AVR_Tiny_Mega_XMega\QTouch\iib | @d .a for GCC) for the
rary files supported 8 bit devices
— o are in this location.
ucs .(-B\eA;rgr?(I:_%ﬁgﬁu_LLIitlJ)rrerliissj.X\ Also r82 libraries for AVR
— — 32 bit devices are also
\32bit_ AVR\UC3\QTouchllibrary_files | qre
ATSAM | .\Atmel_QTouch_Libraries_4.x\
Generic_QTouch_Libraries
\AT91SAM\SAM3\QTouch\library_file
s
QMatrix acquisition | 8-bit .\Atmel_QTouch_Libraries_4.x\
method libraries devices | Generic QTouch_Libraries
\AVR_Tiny_Mega_XMega\QMatrix\lib
rary_files
uUC3 .\Atmel_QTouch_Libraries_4.x\
Generic_QTouch_Libraries\32bit_ AV
R\UC3\QMatrix\library files
Example QTouch acquisition | 8-bit .\Atmel_QTouch_Libraries_4.x\ All example projects using
Projects method libraries devices Generic_QTouch_Libraries_ the libraries above (IAR
\AVR_Tiny_Mega_XMega\QTouch\ex | @d ~ GCC) for the
ample_projects supported devices are in
this location
uC3 .MAtmel_QTouch_Libraries_4.x\
Generic_QTouch_Libraries
\32bit_ AVR\UC3\QTouch\example_pr
ojects
ATSAM | .\Atmel_QTouch_Libraries_4.x\
Generic_QTouch_Libraries\AT91SA
M\SAM3\QTouch\library_files\exampl
e_projects
QMatrix acquisition | 8-bit .\Atmel_QTouch_Libraries_4.x\
method libraries devices | Generic QTouch_Libraries
\AVR_Tiny_Mega_XMega\QMatrix\ex
ample_projects
uUC3 .\Atmel_QTouch_Libraries_4.x\
Generic_QTouch_Libraries\32bit_ AV
R\UC3\QMatrix\example _projects
50 8207K-AT42-09/11

Integrating QTouch acquisition method libraries in your application

The following steps illustrate how to add QTouch acquisition method support in your application.

1) QTouch acquisition method library variants are offered for IAR and AVR Studio/GCC tool
chains. First step is to select the compiler tool chain to be used based on the code and
data memory requirements. The list of supported compiler tool chains can be found in
5.7.1.2.

Use the library selection guide (C:\ Program Files\Atmel\Atmel_QTouch_Libaries_4.x\
Library _Selection_Guide.xls) to select the QTouch acquisition method library variant
required for the device.

a. There are specific library variants distributed for each microcontroller. You would
need the following parameters to identify the right library variant to be used in
your application

i. The microcontroller to be used for the application.
ii. The acquisition method to be used for the application.
iii. The number of channels you need for the application.
iv. Whether Rotor and/or Slider support required in the application.
v. The number of rotors and/or slider needed for the application.

b. There are specific variants of the library which is pre-built with a specific
configuration set supported. Use the library selection guide (C:\ Program
Files\Atmel\ Atmel_QTouch_Libaries_4.x\Library_Selection_Guide.xIs) to find the
sample project using the QTouch acquisition method library variant.

2) Define the constants and symbol names required

a. The next step is to define certain constants and symbols required in the host
application files where the touch API is going to be used.

b. The constant/symbol names are as listed in the table below.

c. The constant/symbol definitions can be placed in any of the following.

i. Defined user’s project options. All the constants/symbols must be defined
for both the compiler and assembler preprocessing definitions.

ii. As an alternative, it is also declared in the touch_qt _config.h file. The
user may modify these defined values based on the requirements.

Table 3 : Constant and symbol name definitions required to use the QTouch acquisition
method libraries

Symbol / Constant name Range of values Comments
QTOUCH This macro has to be defined in
order to use QTouch libraries.

SNS1 & SNSK1 Refer to library selection guide. To be used if only single
port pair is needed for the
design.

SNS1 - SNSK1 Refer to library selection guide. | To be used if two port pairs

& are needed for the design.

SNS2 — SNSK2

_SNS1_SNSK1_SAME_PORT_ Comment/uncomment define To be enabled if the same

port is used for SNSK1 and
SNS1 pins for QTouch. If
SNSK1 and SNS1 pins are
on different ports then this
definition is not required.

_SNS2_SNSK2_SAME_PORT_ Comment/uncomment define To be enabled if the same
port is used for SNSK2 and
SNS2 pins for QTouch. If
SNSK1 and SNS1 pins are
on different ports then this

AIMEL .

&

AIMEL

&

definition is not required.

QT_NUM_CHANNELS

4, 8, 12, 16 for tinyAVR,
megaAVR and XMEGA device
libraries and 8, 16, 32 for UC3
device libraries.

_ROTOR_SLIDER_

Rotor / slider can be added to

A library with rotor / slider

the design, if this macro is | functionality already
enabled. available needs to be
selected if this macro is to
be enabled.
QT_DELAY_CYCLES 1to 255 Please refer to section
5.6.8.
_POWER_OPTIMIZATION_ Oor1l Used to reduce the power

(Required only for ATtiny and ATmega
libraries. ATxmega and UC3 libraries by
default optimized for power without any
limitations)

consumed by the library.
When power optimization is
enabled the unused pins,
within a port used for
QTouch, may not be usable
for interrupt driven
applications. Spread
spectrum noise reduction is
also disabled when power
optimization is enabled.

_TOUCH_ARM_

To be defined when using
ATSAM libraries

For ATSAM libraries only.

QTOUCH_STUDIO_MASKS

This macro needs to be defined
if QTouch Studio Pin
Configurator Wizard.is used to
generate the SNS and SNSK
masks.

Please refer to section 5.8.1

_STATIC_PORT_PIN_CONF_

This macro needs to be defined
only in case of 4 and 8 channel
libraries with interport
configuration and pin
configurability.

Please refer to section 5.8.1

4) Using QTouch API's in your application to add touch functionality
a. The clock, host application and other peripherals needed by the host application

needs to be initialized.

b. In your application, create, initialize and configure the sensors.
i. The APIs of interest are qt_enable_key/rotor/slider().see sections 5.6.5.2,
5.6.5.3 and 5.6.5.4.

c. The channel

configuration parameters need to be set

gt_set parameters() (see section 5.6.5.1.

d. Once the sensors are configured, gt_init_sensing() has to be called to trigger the
initialization of the sensors with the configuration defined in steps above.

d. Provide timing for the QTouch libraries to operate. i,e the QTouch libraries do not
use any timer resources of the microcontroller. The Host application has to
provide the required timing and also call the API's at the appropriate intervals to
perform touch sense detect operations.

NOTE: The ATSAM example applications provided with the libraries illustrate the

usage for the evaluation kits supported by the library. Please refer to the main.c files

for reference.

5) Adding the necessary source files
The following files are to be added along with the touch library and user application

before compilation:

52

by calling the

8207K-AT42-09/11

e ATtiny, ATmega devices - touch_api.h, touch_qt_config.h and

gt_asm_tiny _mega.S

e ATxmega devices - touch_api.h, touch_qt_config.h and qt_asm_xmega.S

e UC3 devices — touch_api.h

e ATSAM devices - touch_api.h and touch_qt_config.h

6) General application notes

e The clock, host application and other peripherals needed by the host application

needs to be initialized.

e Ensure that there are no conflicts between the resources used by the touch

library and the host application.

e Ensure that the stack size for your application is adjusted to factor in the stack
depth required for the operation of the touch libraries.

Example for 8bit AVR

The example below will explain in detail the steps to follow for library selection.

Criteria

Selection

Notes

Microcontroller

ATMegal280

IDE and compiler tool chain

AVR sTUDIO®

The GCC compiled variant of the libraries for the

used and GNU compiler IDE device selected needs to be used.
Number of Keys required | 3 Each key requires 1 QTouch acquisition channel
for the application
Rotors and sliders required | Yes
Number of Rotors and | 3 Each rotor / slider will require 3 channels.
Sliders required
Number of Channels | 12 3 Keys + (3 rotors x 3 channels per rotor/slider)
required for the application - 12 channels
(should be the sum of all
channels required for all the
keys ,rotors and sliders
used in the design)
Charge cycle time required | 1 cycle Assuming the device is configured with a clock
for the design frequency of 4Mhz
Number of ports needed 3 ports This is determined based on the number of
channels required and the routing required for the
channels SNS and SNSK pins to the ports
For this design, 24 pins are required and we need
3 ports to support the sensors.
Choice of ports available | SNS/ SNS1 Port | The choice of ports for the port pairs is limited and
for the design SNSK A can be found in the section 5.7.1.5
Pairl
ports SNSK1 Port
A
SNS/ SNS2 Port
SNSK 'B
Pair 2
ports SNSK2 Port
:C
Is there a need for reduced | _POWER_ Enabling _POWER_OPTIMIZATION_ will lead to

power consumption (and
reduced execution time)?

OPTIMIZATION_ =1

a 40% reduction in power consumed by the
library, but at the expense of reduced external
noise immunity. When power optimization is
enabled, the unused pins within a port used for
QTouch, may not be usable for interrupt driven
applications. This option is available only for
ATtiny and ATmega devices.

AIMEL >3

&

AIMEL

&

SNS1 and SNSK1 pins use | _SNS1_SNSK1_SAME | The _SNS1_SNSK1_SAME_PORT_ symbol
the same port. _PORT_ needs to be defined as port A is used for both
SNS1 and SNSK1 pins.

Given the above requirements for the applications, the first step is to select the right library
variant required.

Step 1: Selecting the right library variant

Referring to the library selection guide, we see that there are a few variants of libraries supported
for ATmegal280. Since the application requires 12 channels and rotor slider support, one has to
select a library variant which supports at least 12 channels or more along with 3 Rotors/Sliders.
Hence we select the 12 channel library variant for GCC complier which supports the required
number of sensors/channels. This works out to be 11bavr51gl_12qt_k 3rs.a

Step 2: Defining the constants / symbols in the project space
In the host application file (say main.c), define the following constants and symbols
#define QTOUCH_
#define QT_NUM_CHANNELS 12
#define SNSK1 A
#define SNS1 A
#define SNSK2 B
#define SNS2 C
#define QT_DELAY_CYCLES 1
#define _POWER_OPTIMIZATION_ 1
#define _SNS1_SNSK1_SAME_PORT_
NOTE: The above definitions are available in touch_qt_config.h file. Alternatively, you
can define these in your IDE’s project options or have them defined in a separate header
file. For IAR IDE, all these symbols have to defined for both compiler and assembler
preprocessor defines separately.
Step 3: Usage of library API's

Now, you can use the touch API’s to create, initialize and perform touch sensing. Please refer to
the sample applications in section 5.6.11.2 for reference. These sample applications illustrate the
usage of the API's and the sequence of operation.

Step 4: Adding necessary source files for compilation

The source files needed for compiling your application along with the touch library are
touch_api.h, touch_gt_config.h and gt_asm_tiny_mega.S.

Example for ATSAM
The example below will explain in detail the steps to follow for library selection.

Criteria Selection Notes
Microcontroller AT91SAM3S
IDE and compiler tool chain used IAR Workbench and GNU compiler | The GCC compiled

variant of the libraries for
the device selected needs

to be used.
Number of Keys required for the | 3 Each key requires 1
application QTouch acquisition
channel
Rotors and sliders required Yes
Number of Rotors and Sliders required 3 Each rotor / slider will
require 3 channels.
Number of Channels required for the | 12 3 Keys + (3 rotors x 3

54 8207K-AT42-09/11

application (should be the sum of all
channels required for all the keys ,rotors
and sliders used in the design)

channels per rotor/slider)
- 12 channels

Charge cycle time required for the design | 5 cycles Assuming the device is
configured with a clock
frequency of 48Mhz

Number of SNS/SNSK port pairs needed | 2 pairs This is determined based
on the free PIO of the
board

Choice of ports available for the design SNS/SNSK SNS1 Port: A The choice of ports for

Pairl port the port pairs is limited
and can be found in the
SNSK1 Port: A section 5.7.1.5
SNS/SNSK SNS2 Port: B
Pair 2 port

SNSK2 Port: B

Given the above requirements for the applications, the first step is to select the right library

variant required.

Step 1: Selecting the right library variant

Referring to the library selection guide, we see that there are a few variants of libraries supported
for AT91SAM3S. One library is for IAR and the other is for GNU. If we want to use IAR
Workbench, we use the library name: libsam3s-32qt-k-8rs-iar.a.

Step 2: Defining the constants / symbols in the project space
In IAR, change preprocessor options by adding the good defines:

_TOUCH_ARM_
QTOUCH

SNS1=B

SNSK1=B

SNS2=A

SNSK2=A
QT_NUM_CHANNELS=32
_ROTOR_SLIDER_
QT_DELAY_CYCLES=10

_SNS1_SNSK1_SAME_PORT_
_SNS2_SNSK2_SAME_PORT _

Alternatively, you can have them defined in a separate header file.

Step3: Usage of library API's

Now, you can use the touch API's to create, initialize and perform touch sensing.

Checklist of items for integrating QTouch acquisition method libraries
The following is a checklist of items which needs to be ensured when integrating QTouch

acquisition method libraries

= The clock prescaler register (e.g. CLKPR, XDIV) needs to be configured correctly based
on the device selected. Some devices have clock frequency selection based on fuses. It
has to be ensured the fuses are set correctly in such cases.

AIMEL

&

55

AIMEL

&

= |t is recommended to disable PULL-UP resistor on all port pins used for touch sensing on
the device selected (e.g. PUD bit in MCUCR, SFIOR for a few of the tinyAVR and
megaAVR devices Please refer to the Data sheet of the selected device).
= The 16 bit timer in each device has been used for performing touch measurements
periodically. The datasheet for all the devices have to be checked to ensure that the
correct timer peripheral and its registers are used (file: main.c).
= The interrupt vector macro may also change from device to device and this needs to be
verified in the datasheet for the device used.
= Check if the timer is configured correctly to support the measurement period needed (e.qg.
25msec or 50 msec).
= The sample applications for the evaluation kits and supported devices illustrate the
proper initialization sequence and usage of the timer resources (file: main.c). Please use
this as a reference for your application design.
The host application must provide the current time to the library. This information is passed to the
library as an argument to the function qt_measure_sensors()”. This is used for time-based library
operations such as drift compensation.

Integrating QMatrix acquisition method libraries in your application

Example for 8bit AVR

Based on the application design needs, the user needs to select the right library variant and the
configuration to be used along with the variant. This section illustrates the steps required to select
the right QMatrix acquisition method library variant and configuration for your application. QMatrix
acquisition method library Variants are offered for IAR and AVR-GCC tool chains. First step is to
select the compiler tool chain for which the libraries are required. The list of supported compiler
tool chains can be found in section 5.7.2.2

There are specific library variants distributed for each microcontroller. For your design, you would
need the following information to select the correct library variant
a. Device to be used for the design
b. The number of touch sensing channels needed by the application — Then identify the
Maximum number of channels required for the design that are supported by the library.
c. Number of X lines to be used in the design
a. The ports on which your design permits to have the X lines
b. The X lines can be spread on a maximum of three ports, the more ports used the
more is the code memory requirement by the library.
d. Number of Y lines to be used in the design
a. The port-pins ports on which your design permits to have the Y lines
e. Do you need support for Rotors and/or Sliders in your design
a. If yes, how many rotors/sliders would be needed?
b. Based on a) above, identify the maximum number of rotors sliders that the library
supports
f. Which compiler platform you intend to use to integrate the libraries — IAR or AVR -GCC

Follow the steps listed below to arrive at the right library variant
1) Select the device from the list of supported devices listed in 5.7.2.4.1
2) Select the right library variant for the device selected from the selection guide available
in
C:\ Program Files\Atmel\Atmel_QTouch_Libaries_4.x\Library Selection_Guide.xlIs
Each variant supports
a. a specific number of channels,
b. Supports a specific configuration of X x Y matrix pins (eg 4 x 2 for 4 - X pins & 2
-Y pins)

56 8207K-AT42-09/11

c.
d.
e.

has support for Rotor / Slider (either supported or not)
support is available for IAR and/or GCC compiler tool chain
support for specific number of rotors sliders.

3) Define the constants and symbol names required

a.

The next step is to define certain constants and symbols required in the host
application files where the touch API is going to be used. These values are
derived from the parameters defined in step 2 for your application
The constant/symbol names are as listed in the table below
The constant/symbol definitions can be placed in any of the following
i. Inthe user’'s ‘C’ file prior to include touch_api.h in the file
ii. Defined user’s project options.
iii. Modifying the defines in a touch_gm_config.h available in the path
C:\Program Files\Atmel\Atmel_QTouch_Libraries_4.x\ Generic_QTouch_Libraries
\AVR_Tiny_Mega_XMega\QMatrix\common_files

AIMEL >

&

AIMEL

&

Table 4 :List of configurable parameters for touch library usage.

Symbol / Constant Range of values Comments
name
QMATRIX Symbol defined to indicate Define this symbol to indicate QMatrix

QMatrix acquisition method is
required

acquisition method is required

QT_NUM_CHANNELS

The number of channels the
library supports.(Possible
values:4,8,16,32,56,64).
Note: 56 channel for only
ATxmega Devices.

Value should be same as the number of
channels that the library supports

NUM_X_LINES The number of X lines the Value should be same as the number of X
library supports.(Possible lines that the library supports. Refer to
values:4,8) library selection guide

NUM_Y_LINES The number of Y lines the Value should be same as the number of Y

library supports.(Possible
values:1,2,4,7,8)

Note: 7 Y-lines for only
ATxmega Devices)

lines that the library supports. Refer to
library selection guide

_ROTOR_SLIDER_

Symbol defined if Rotor and/or
slider is required

Needs to be added in case user needs to
configure ROTOR/SLIDER

Needs to be removed for ALL KEYS
configuration

QT_MAX_NUM_ROTO
RS_SLIDERS

Maximum number of
rotors/sliders the library
supports(possible
values:0,2,4,8)

Subject to support for rotors/sliders in the
library selected.

QT _DELAY_CYCLES

Possible values
:1,2,3,4,5,10,25,50

Please refer to section 5.6.8

NUM_X_PORTS

Number of ports on which the
X lines needs to be spread.
(Possible values 1,2,3)

Maximum number of ports that the X lines
can spread is 3.

Note: Code memory required increases
with the increase in NUM_X_PORTS

PORT_X_ 1 First 10 port for configuring the | Drive electrode for touch sensing using
X lines.Any 10 port available QMatrix acquisition
with the device. Valid when NUM X PORTS =1,2,3
PORT_NUM_1 1 Please donot edit this macro
Valid when NUM_X PORTS =1,2,3
PORT_X_ 2 Second IO port for configuring | Drive electrode for touch sensing using
the X lines. Any 10 port QMatrix acquisition
available with the device. Valid when NUM_X_PORTS =2,3
PORT_NUM_2 2 Please donot edit this macro
Valid when NUM_X_ PORTS =2,3
PORT_X_3 Third 10 port for configuring Drive electrode for touch sensing using
the X lines. Any 10 port QMatrix acquisition
available with the device. Valid when NUM_X_PORTS =3
PORT_NUM_3 3 Please donot edit this macro
Valid when NUM_X_PORTS =3
PORT_YA Any IO port available with the Receive electrode for touch sensing using
device. QMatrix acquisition
PORT_YB ADC port available for the Receive electrode for touch sensing using
device. QMatrix acquisition
PORT_SMP Any IO port available with the Port of the Sampling pin for touch sensing
device. using QMatrix acquisition
SMP_PIN Any IO port available with the Sampling pin for touch sensing using
device. QMatrix acquisition
ATXMEGA Symbol defined if an ATxmega | Needs to be added if the device to be

Device is used for QMatrix
sensing technology

supported is ATXxmegaxxxx

58

8207K-AT42-09/11

Once you have selected the right library variant and configuration parameters for the application,
follow the steps outlined below to integrate the library variant in your application.

4) Fill in the arrays x_line_info_t x_line_info[NUM_X LINES] vy line_info_t
ya_line_info[NUM_Y_LINES] and y_line_info_t yb_line_infolNUM_Y_LINES] using the
pin configuration wizard provided by the QTouch Studio.

5) Copy the library variant that was selected in step one to your project’s working directory
or update your project to point to the library selected.

Include the “touch_api.h” header file and assembler source file from the QTouch library in
your application. The touch_api.h can be found in the release package at C:\Program
Files\Atmel\Atmel_QTouch_Libraries_4.x\ Generic_QTouch_Libraries
\AVR_Tiny_Mega_XMega\QMatrix\common_files. The assembiler files mentioned below
could be found at the location C:\Program Files\Atmel\Atmel_QTouch_Libraries_4.x\
Generic_QTouch_Libraries \AVR_Tiny_Mega_XMega\QMatrix\common_ files
a. gm_asm_tiny_mega.S in case of ATtiny and ATmega devices.
b. gm_asm_xmega.S in case of ATxmega devices.
c. gm_asm_m8535_m16.S in case of ATmega8535 and ATmegal6 devices.
In case of using YA/YB lines on the same port the following assembler files has to be
used
d. gm_asm_tiny_mega_sharedyayb.S in case of ATtiny and ATmega devices while sharing
the same port for YA and YB lines
e. gm_asm_m8535 m1l6_sharedyayb.S in case of Atmega8535 and ATmegal6 devices
while sharing the same port for YA and YB lines
f. gm_asm_xmega_sharedyayb.S in case of ATxmega devices while sharing the same port
for YA and YB lines

6) Initialize/create and use the touch api’s in your application

a. Inyour application, create, initialize and configure the sensors.

a. The APIs of interest are gt_enable_key/rotor/slider().see sections 5.6.5.2,
5.6.5.3and 5.6.5.4

b. configure the global configuration parameters valid for all the sensors in the
library

c. Provide timing for the QTouch libraries to operate. i,e. the QTouch libraries do
not use any timer resources of the microcontroller. The Host application has to
provide the required timing and also call the API's at the appropriate intervals to
perform touch sense detect operations

7) General application notes

a. The clock, host application and other peripherals needed by the host application
needs to be initialized.
b. The QMatrix acquisition method libraries internally use TIMER1 for their
operation.
c. Ensure that there are no conflicts between the resources used by the touch
library and the host application
d. Ensure that the stack size is adjusted to factor in the stack depth required for the
operation of the touch libraries.
Example
The example below will explain in detail the steps to follow for library selection.
Criteria Selection Notes
Microcontroller ATTiny88 List of supported devices can be
found at

Library_Selection_Guide.xls

AIMEL >0

&

AIMEL

&

Number of
channels required

for the application

number channels available for a
Tiny88 is

Library_Selection_Guide.xls

listed in

Number of X lines

needed

Based on the number of channels,
since 8 channels is needed, 4 X lines

are supported.

NUM_X_LINES is 4

Since 3 X- lines (6 channels) are
used, Do not initialize 4™ element
in x_line_info[NUM_X_LINES].
Hence channel6, channel7 need

not be used.

Number of Y lines

needed

Based on the number of channels,
since 8 channels is needed, 2 Y lines

are supported

NUM_Y_LINES is 2

Rotors and sliders
required and

Number of
ROTOR/SLIDERS

Yes
2

for
the

Library variants supported
ATTiny88 is

Library_Selection_Guide.xls

listed in

X_LINES on pins
as below(4-X lines)
X0- BO, X1- D2,X3
—B7, X4 -B5

FILL_OUT_X_LINE_INFO(Z1,0),
FILL_OUT_X_LINE_INFO(2,2),
FILL_OUT_X_LINE_INFO(1,7),

Main file has to be edited based
on the configuration. Refer to
section 5.8.2.1 . Refer channel

numbering from the
section5.6.6.1.2

Or
This can be filled from the output
of the pin configurator tool in
QTouch Studio. Please refer to

section 5.8.2

Y_LINES on pins
as below (2 Y-
Lines)

YOA- DO, YOB- C1,
Y1A-D5, Y1B-C4,

FILL_OUT_YA_LINE_INFO(0),
FILL_OUT_YA_LINE_INFO(5),

FILL_OUT_YB_LINE_INFO(1),
FILL_OUT_YB_LINE_INFO(4),

Main file has to be edited based
on the configuration. Refer to
section 5.8.2.1

Or
This can be filled from the output
of the pin configurator tool in
QTouch Studio. Please refer to

section 5.8.2

NUM_X_ PORTS 2 Since X lines are spread on a
multiple(2) ports: PORTB, PORTD
Compiler tool chain | IAR Supported compiler tool chains

60

8207K-AT42-09/11

listed in 5.7.2.2

Choice of ports | PORT X 1=B Any pins that are not conflicting
available for the | PORT_X 2=D with the host application and
design YA Line on PORTD follow the configuration supported
YB Line on PORTC by library can be used.
SMP Pin on PORTD pin 7 Or
QT_DELAY_CYCLES of 4 This can be filled from the output

of the pin configurator tool in
QTouch Studio. Please refer to

section 5.8.2

Given the above requirements for the applications, the first step is to select the right library
variant required.

Step 1:

Select the Device that suits the requirements based on the touch sensing channels needed from
the library selection guide available at C:\ Program Files\Atmel\ Atmel_QTouch_Libaries_4.x\
Library_Selection_Guide.xls

Step 2:

From the Library_selection_Guide.xlIs list,, we see that there are a few variants of libraries
supported for AT Tiny device. Since the application requires 6 channels and rotor slider support,
one has to select a library variant which supports at least 6 channels or more. Hence we select
the 8 channel library which supports the required Port combination and the delay cycle preferred
which works out to be the variant

e libvlglsl 8gm_4x_2y krs_2rs.r90

Step 3:
Defining the constants / symbols in the project space or modifying in touch_gm_config.h
In the host application file (say main.c), define the following constants and symbols
#define _QMATRIX_
#define QT_NUM_CHANNELS
#define NUM_X_LINES
#define NUM_Y_LINES
#define NUM_X_PORTS
#define PORT_X 1
#define PORT_NUM_1
#define PORT_X 2
#define PORT_NUM_2
#define PORT_YA
#define PORT_YB
#define PORT_SMP
#define SMP_PIN
#define QT_DELAY_CYCLES
#define ROTOR_SLIDER _
#define QT_MAX_NUM_ROTORS_SLIDERS 2

ANUOOUONORTNNAO®

Note:
1. Some of these macro’s can be taken from the output of the Pin configurator tool from
QTouch Studio. Refer to section 5.8.2

AIMEL o

&

AIMEL

2. The above definitions should be placed before including “touch_api.h” in your files.
Alternatively, you can define these in your IDE’s project options or have them defined in a
separate header.

3. These can also be modified in the touch_gm_config.h, after defining the _QMATRIX_ in
the project space.

4. In case XMEGA device is used for QMatrix the symbol __ ATXMEGA_ has to be included
in the Project space along with the symbols mentioned above.

Step 4:

Filling Arrays in the main.c file

According to the pin availability for the touch sensing, initialize the arrays in the main.c file as
below:

x_line_info_t x_line_info[NUM_X LINES]= {
FILL _OUT_X LINE_INFO(C 1,0u),
FILL_OUT_X_ LINE_INFO(2,2u),
FILL_OUT_X LINE_INFO(C 1,7u),

}:

y_line_info_t ya_line_info[NUM_Y_LINES]= {
FILL_OUT_YA LINE_INFO(C Ou),
FILL_OUT_YA LINE_INFO(5u),

}:

y_line_info_t yb_line_info[NUM_Y_LINES]= {
FILL_OUT_YB_LINE_INFO(Ou),
FILL_OUT_YB_LINE_INFO(5u),

}:

Note:

1. This part of the snippet can be taken from the output of the Pin configurator tool from
QTouch Studio.

Step 5:

Usage of libraries

Now, you can use the touch API’s to create, initialize and perform touch sensing. Please refer to
the sample applications in section 5.6.11.3 for reference. These sample applications illustrate the
usage of the API's and the sequence of operation

Resources used by QMatrix acquisition method libraries

The following additional resources are used by the QMatrix acquisition method libraries.

e One Analog Comparator
e One internal Timer (Usually Timerl depending on the availability on particular
microcontroller)

e One ADC Multiplexer(The critical section of the touch sensing library disables the use of
ADC as conversion unit and enables the same ADC as a multiplexer, but the user can
use the ADC for conversion in rest of his application code)

e The ADCMUX is used by the library during the touch sensing acquisition, however it is
restored with the value from host application before exiting the gt_measure_sensors().
Such that the ADC is available to the host application for conversion.

62 8207K-AT42-09/11

In case of XMega devices, the resources are used internal to the library and hence cannot be
used by the host application

0 Analog ComparatorO on PORTA (AC0 on PORTA)
0 Timer/Counterl on PORTC (TCC1)
0 Event System Channel0 (EVSYS_CHO0)

Example for 32bit AVR

Based on the application design, the user needs to select the right library variant and the
configuration to be used along with the variant. This section illustrates the steps required to select
the right QMatrix acquisition method library variant and configuration for your application.

For your design, you would need the following information to select the correct library variant
a. Device to be used for the design(only AT32UC3C0512 supported)
b. The number of touch sensing channels needed by the application — Then identify the
Maximum number of channels required for the design that are supported by the library.
c. Number of X lines to be used in the design
a. The port on which your design permits to have the X lines
b. The X lines can be spread on a single port.
d. Number of Y lines to be used in the design
c. The port-pins ports on which your design permits to have the Y lines
e. Do you need support for Rotors and/or Sliders in your design
d. If yes, how many rotors/sliders would be needed?
e. Based on a) above, identify the maximum number of rotors sliders that the library
supports
f. Which compiler platform you intend to use to integrate the libraries — IAR or AVR -GCC

After selecting the right library variant, following steps are to be performed

1) Define the constants and symbol names required
a. The next step is to define certain constants and symbols required in the host
application files where the touch API is going to be used. These values are
derived from the parameters defined in step 2 for your application
b. The constant/symbol hames are as listed in the table below
c. The constant/symbol definitions can be placed in any of the following
iv. Inthe user’'s ‘C’ file prior to include touch_api.h in the file
v. Defined user’s project options.
vi. Modify the defines in a touch_gm_config32.h and
touch_gm_config32_assembler.h file available in the path.
C:\Program Files\Atmel\Atmel_QTouch_Libraries_4.x\
Generic_QTouch_Libraries \AVR_Tiny_Mega_XMega\QMatrix\common_files

Symbol / Constant Range of values Comments
name

_QMATRIX _ Symbol defined to indicate Define this symbol to indicate QMatrix
QMatrix acquisition method | acquisition method is required
is required

QT_NUM_CHANNEL | The number of channels Value should be same as the number

S the library supports.(of channels that the library supports
Possible
values:4,8,16,24,32,64).

NUM_X LINES The number of X lines the Value should be same as the number

AIMEL °

&

AIMEL

&

library supports.(Possible of X lines that the library supports.

values:4,8) Refer to library selection guide
NUM_Y_LINES The number of Y lines the Value should be same as the number
library supports.(Possible of Y lines that the library supports.
values:1,2,3,4,8) Refer to library selection guide
_ROTOR_SLIDER_ Symbol defined if Rotor Needs to be added in case user
and/or slider is required needs to configure ROTOR/SLIDER
Needs to be removed for ALL KEYS
configuration
QT_MAX_NUM_ROT | Maximum number of Subject to support for rotors/sliders in
ORS_SLIDERS rotors/sliders the library the library selected.

supports(possible
values:0,2,3,4,8)

QT_DELAY_CYCLES | Possible values Please refer to section 5.6.8
:1,2,3,4,5,10,25,50

PORT X 1 First IO port for configuring | Drive electrode for touch sensing
the X lines.Any 10 port using QMatrix acquisition
available with the device.

PORT_YA Any 10 port available with Receive electrode for touch sensing
the device. using QMatrix acquisition

PORT_YB Analog Comparator port Receive electrode for touch sensing
available for the device. using QMatrix acquisition

PORT_SMP Any 10 port available with Port of the Sampling pin for touch
the device. sensing using QMatrix acquisition

SMP_PIN Any 10 port available with Sampling pin for touch sensing using
the device. QMatrix acquisition

Once you have selected the right library variant and configuration parameters for the application,
follow the steps outlined below to integrate the library variant in your application.

1) Filll in the arrays x_line_info t x_line_info[NUM_X LINES] vy line_info_t
ya_line_info[NUM_Y_LINES] and y_line_info_t yb_line_info[NUM_Y_LINES] as given in
main.c file.

Filling Arrays in the main.c file
According to the pin availability for the touch sensing, initialize the arrays in the main.c
file as below:

x_line_info_t x_line_info[NUM_X_LINES]= {
FILL_OUT_X_ LINE_INFO(1,0u),
FILL_OUT_X_ LINE_INFO(1,2u),
FILL_OUT_X_LINE_INFO(1,7u),
FILL_OUT_X_LINE_INFO(1,15u),

3

First argument of FILL_OUT_X_LINE_INFO should always be 1 as X port is only on one
port.Second arguments denotes the pins on that particular port.

y_line_info_t ya_line_info[NUM_Y_LINES]={
FILL_OUT_YA_LINE_INFO(Ou),
FILL_OUT_YA_LINE_INFO(5u),

}1
y_line_info_t yb_line_info[NUM_Y_LINES]= {

64 8207K-AT42-09/11

FILL_OUT_YB_LINE_INFO(7u),
FILL_OUT_YB_LINE_INFO(22u),

g

Yb lines are one of the inputs of the Analog Comparators.

2) Copy the library variant that was selected in step 1 to your project’s working directory or

update your project to point to the library selected.
Include the “touch_api.h” header file and assembler source file from the QTouch library in
your application. The touch_api.h can be found in the release package at C:\Program
Files\AtmelAtmel_QTouch_Libraries_4.x\Generic_QTouch_Libraries\include. The
assembler files mentioned below could be found at the location C:\Program
Files\AtmelAtmel_QTouch_Libraries_4.x\Generic_QTouch_Libraries\32bit AVR\UC3\Q
Matrix\common_files

e. gm_asm_uc3c_gcc.x in case of GCC compiler

f. gm_asm_uc3c_iar.s82 in case of IAR compiler.

3) Initialize/create and use the touch api’s in your application
d. Inyour application, create, initialize and configure the sensors.
a. The APIs of interest are gt_enable_key/rotor/slider().see sections 5.6.5.2,
5.6.5.3and 5.6.5.4
e. configure the global configuration parameters valid for all the sensors in the
library
f. Provide timing for the QTouch libraries to operate. i,e. the QTouch libraries do
not use any timer resources of the microcontroller. The Host application has to
provide the required timing and also call the API's at the appropriate intervals to
perform touch sense detect operations
4) General application notes
g. The clock, host application and other peripherals needed by the host application
needs to be initialized.
h. The QMatrix acquisition method libraries for 32 Bit devices internally use TIMERO
with channelO for their operation.
i. Ensure that there are no conflicts between the resources used by the touch
library and the host application

Resources used by QMatrix acquisition method libraries
for 32 Bit device

Devices supported by 32 Bit Qmatrix Acquisition libraries are:

1. AT32UC3CO0512

The following additional resources are used by the QMatrix acquisition method libraries.

Four Analog Comparator

One internal Timer (Timer0 with channelO)
Two Analog Comparator Interface ACIFAQ/1.
Event System Channel 16 is used.

The device has two Analog comparator interfaces ACIFAO and ACIFA1l .Each interface
provides the flexibility to configure two analog comparators ACA and ACB comparators..UC3C

AIMEL ®

&

AIMEL

&

has Four Comparators (ACOA , AC1A , ACOB , AC1B), So there are 10 Possible Yb lines as
given in table below.

User has flexibility to configure maximum 8 Yb lines for maximum 64 channel libraries.Below
table states the Yblines which can be configured

Yb Lines of the Four Port A

Analog Comparators Pins
ACOANO(ACOA Comparator) PA22
ACOAN1(ACOA Comparator) PA27
ACOBPO(ACOA Comparator) PA23
AC1ANO(AC1A Comparator) PA13
AC1AN1(AC1A Comparator) PAO7
AC1BPO(AC1A Comparator) PAl14
ACOBNO(ACOB Comparator) PA21
ACOBN1(ACOB Comparator) PA29
AC1BNO(AC1B Comparator) PA15
AC1BN1(AC1B Comparator) PAO9

These Yb lines are the negative input pins of the analog comparator.To use the library, the below
table shows the lines which are externally grounded for Proper Qmatrix operation

66

Positive Input Pins of the Four Port A
Analog Comparators Pins
ACOAPO(ACOA Comparator) PA20
ACOBP1(ACOB Comparator) PA28
AC1APO(AC1A Comparator) PA12
AC1BP1(AC1B Comparator) PAO8

If only one comparator is used , then the corresponding pin of that comparator is properly
externally grounded.Above table shows the Analog comparator usage and the corresponding
lines which needs to be grounded.

The Port pin configurability is provided in the library to select any port for Ya or X lines.The
Port for Yb lines is fixed which is PORTA as these lines are inputs of the Analog comparators
which are fixed pins of PORTA.

X,YAYB,SMP | Ports on UC3C
Configurations | PORTA PORTB PORTC PORTD
X Yes Yes Yes Yes
YA Yes Yes Yes Yes
YB Yes(only few No No No
pins of PortA

8207K-AT42-09/11

can be
configured as
Yb Lines)

SMP Yes Yes Yes Yes

The configurability is provided to select X,SMP and YA lines on Same Port ,X,SMP and
YB lines on same port.
Number of X ports should be 1 means the X lines should be connected to a single port.

Note: YA and YB cannot be on the same port.
SMP Pin should be less than equal to 19" pin of any Port.

Checklist of items for integrating QMatrix Capacitive sensing libraries
When integrating QMatrix acquisition method libraries, ensure the following

Check that the CLKPR register is available for the selected device. If not remove the
CLKPR statements.
Ensure that the configuration for the QMatrix is done in touch_gm_config.h and the
arrays of the x_line_info and y_line info are filled as indicated section 5.8.2
MCUCR register is available and if so disable pullups
Check if the timer registers and bit fields used are correct and change them if necessary.
The above settings can be modified by the user by changing the API's that are available
to the user. The API’s include
0 Qt_set parameters ()

The host application must provide the current time.
This information is passed to the library as an argument to the function
gt_measure_sensors()”. This is used for time-based library operations such as drift
compensation.
The GPIO internal pull-ups must be disabled for all port pins used for touch sensing when
calling the library.
For 8-bit AVR devices, this can be done by

b. Setting the “PUD” bit in the “MCUCR?” register or

c. Setting the “PUD” bit in the “SFIOR” register.
Setting the JTD bit in the “MCUCR” register to disable JTAG Interface in MCU (if
available). This can be done only when the JTAG lines are in conflict with the desired
touch sensing lines.
The library must be called often enough to provide a reasonable response time to user
touches. The typical time to call the library is from 25 ms to 50 ms.
Care should be taken while using the ADC conversion logic and QMatrix library such that
the host application waits for approximately 1msec before actually calling the
gt_measure_sensors() API depending upon the ADC clock.

Common checklist items

Configuring the stack size for the application
The stack requirements for the QTouch library should be accounted for and the stack size
adjusted in the user’s project for proper operation of the software when using the IAR IDE. This
section lists the stack usage for the different variants of the QTouch and QMatrix acquisition
method libraries applicable to the IAR compiler tool chain.

AIMEL o

AIMEL

Note: When using the IAR IDE / compiler tool chain, the map file generated for the application will
list total CSTACK & RSTACK requirements. Please adjust the total CSTACK and RSTACK
values in the IAR project options to be greater than the values listed in the map file. Refer to

&

section 5.6.11.4 which illustrates how to change the settings in IAR IDE.

Table 5 : Stack requirements of the QTouch capacitive sensing libraries when using IAR IDE

projects

QTouch Acquisition method Libraries : Stack usage for IAR compiler tool chain

Configuration

CSTACK size | RSTACK size

Single port pair - only keys (4 / 8 channels) 0x30 0x28
Single port pair — keys/ rotors/ sliders (4/8 channel) | 0x40 0x2C
Two port pairs - only keys keys (16 channel) 0x50 0x28
Two port pairs — keys/ rotors/ sliders (16 channel) 0x60 0x2C

Table 6 : Stack requirements of the QMatrix capacitive sensing libraries when using IAR IDE

projects
QMatrix Acquisition method Libraries : Stack usage for IAR compiler tool chain
Number of Configuration CSTACK size | RSTACK size
channels
4 ONLY KEYS 0x20 0x20
4 KEYS/ROTOR/SLIDER 0x30 0x20
8 ONLY KEYS 0x25 0x20
8 KEYS/ROTOR/SLIDER 0x35 0x20
16 ONLY KEYS 0x30 0x20
16 KEYS/ROTOR/SLIDER 0x40 0x20
32 ONLY KEYS 0x35 0x25
32 KEYS/ROTOR/SLIDER 0x45 0x25
56 ONLY KEYS 0x45 0x25
56 KEYS/ROTOR/SLIDER 0x55 0x25
64 ONLY KEYS 0x45 0x25
64 KEYS/ROTOR/SLIDER 0x55 0x25

Example project files

The QTouch library is shipped with various example projects to illustrate the usage of the touch
API's to add touch sensing to an application across various devices

68

8207K-AT42-09/11

Sample applications are also provided for the following kits

1 TS2080A, QT600_ATtiny88 QT8, QT600_ATxmegal28al QT16 : QTouch Technology
evaluation Kits

2 TS2080B, QT600_ATmega324_QM®64 : QMatrix Technology evaluation Kits

Note: Example projects must be built in the installed folder, and if moved/copied elsewhere then
paths must be edited appropriately.

Using the Sample projects

The sample applications are shipped with the complete set of files required to configure, build and
download the application for both IAR-workbench and AVR Studio IDE.

Since more than one device may use the same library (applicable for QTouch acquisition method
libraries), example project files and applications have been provided only for select devices which
use these libraries.

Example applications for QTouch acquisition method libraries

Selecting the right configuration

Each example project for a device can support multiple configurations (i.e a. keys only, b. with
rotors and sliders ¢.16 channel etc...). The configuration sets determine the configuration options
for using the library and also the right library variant to link with the project.

The configuration sets for IAR IDE are named according to the convention listed below

Configuration set for IAR IDE
Naming convention : <vP>g<Q>_<CH>qt_k <RS>rs

Field Values Comments

Name

vP vl, v3, xmega, uc3a, | VersionP of the core AVR device supported by this library variant
uc3b, uc3c

Q 1to6 GroupQ of the core AVR device supported by this library variant

CH 4,8,12, 16, 32 Total number of channels supported by each library.

RS 1,2,3,4,8 Total number of rotors / sliders supported for the respective channel

counts mentioned in previous row.

The configuration sets for AVR Studio IDE are named according to the convention listed below

Configuration set for AVR Studio IDE
<avrP>g<Q> <CH>qt_k <RS>rs

Field Values Comments

Name

avrP avr25, avr4, avr 51, avr5, | VersionP of the core AVR device supported by this library

Xmega, uc3a, uc3b, uc3c variant

Q 1to6 GroupQ of the core AVR device supported by this library
variant

CH 4,8,12,16,32 Total number of channels supported by each library.

RS 1,2,3,4,8 Total number of rotors / sliders supported for the respective
channel counts mentioned in previous row.

Depending on your need, you need to select the right configuration required and build the project.

AIMEL *°

&

'IAR Embedded Workbench IDE

=]
|v'| al_8qt_k_2rs v|

w1gl_Bgt k_Ors

wigl_4qt_k_Ors

wigl_Agt k Tis

T 1 = =T -

F— libre g1 -dgtke-rs.080

F— [l g1-Bgtk-rs.ran

F— [libn1 g1 -Bgtke-2rs.ra0

main_aftinyg4.c .
3 0utput

Figure 5-11: Selecting the right configuration in the QTouch acquisition method example
applications in IAR —IDE

5?}'—-\ Active Configuration | awrdgl_dat_k_Ors M [Edit I:'2'f'lfiEILrlelti':'ﬁS]
‘Z‘- ﬁ; avrdgl_16qt_k_Ors
LY
[[] Use Extemal Mak Ll L

General R
1. Target name must :::431@3([0:2
2. Cleanrebuild supd avr4g'|_8qt_k_2rs
ﬁ 3. Makefile and targetTIIET ERET e Tare TOmeT
Include
Direckaries Output File Mame: |awdg1_qt_e:-cample.elf |

@ Output File Directnry:|5Vf491_4qt_k_ﬂf3\ |[.

Devics: |atmega85'l 5 M Ursigned Chars [funsigned-char]
- Unzigned Bitfields [-funzigned-bitfieldz)
Feuency: | ke
), | 0 u Pack Structure Members [-fpack-ztiuct]
Optimizatior: Uz i
Bl Shart Enums [-fshort-enums)

Libraries

Memary Sektings

Figure 5-12 : Selecting the right configuration in QTouch acquisition method example
applications in AVR-4 IDE

Changing the settings to match your device
Processor settings

Once you have selected the appropriate example project and the configuration, you need to
ensure that the settings in the project are configured to reflect the correct device. The settings
include

o Device type (CPU type) for the project

70 8207K-AT42-09/11

Uplinns for node™=¥1g1_qt_example®

Cateqgory:

Assembler
Zuskom Build
Build Actions
Linker
Debugger
AVR OMNE!
CCR
ICE200
ITAGICE

Dragon
Simulakar

CIC++ Compiler

ITAGICE mikII

Third-Party Driver

x|

Proceszor configuration

Target] Dutput] Library Canfiguration | Libramy Dptions] Heap Configu 4 | *

| -cpustingB4, ATtinyB4
—cpu=tingSd, AT tinpd4
~cpus=tinggh, ATtinyds
—cpu=tingBE1, ATlinpaE1
—cpu=tingd7, ATtingE?
—~cpus=tingg8, ATtinydd

~cpu=uzb162, ATI0USBE16Z2

~cpu=usb1286, ATI0USET286 I
~cpu=usb1287, ATI0USE1237

| Small

Sushbarn mombinneating

Figure 5-13 : Changing the processor settings for the examples in IAR IDE

avr4g1 _qt_example Project Options]

X
Slad
'1‘\.\."’

General

Include
Directories

o

Libraries

o

o
>

Memory Setkings

Cuskamn Optior@

Active Configuration | avrdgl_4qt_k_Ors

[]Use Estenal M akefile

Output File Name: | avrdgl_at_example. elf

Output File Directary: |avrdgl_dqt_k_Orsh

[v]
atd3usb320 ”~
atd3ush355
at?Bc?11
atBef401
at30ce534
at30canl2s
at3lcan3z
at30cankd
Create Hex F| at30pwm1
at30pwmsz

Device:

Frequency:

Optimization:

rate Map File

[v] Edit Configurationz

(.

Unzigned Chars [-funsigned-char]
Unsigned Bitfields [-funsigned-bitfields)
Pack Structure Members [-fpack-struct)
Shart Enums [-fshort-enums)

Generate List File

at30pwmz16

atI0pwmzh I
at90pwm3

Ok I[Cancel H Help

|

L=y LONT R =

Figure 5-14 : Changing the processor settings for the examples in AVR-Studio 4

Changing the library configuration parameters
The configuration parameters required for the library are specified in the project options of the
examples. While using the IAR IDE, the symbols have to be declared in both the compiler and
assembler preprocessor defines. Please refer to the example projects provided with the QTouch
libraries release for more information. The mandatory constants to be defined are as listed below.

Symbol / Constant name

Range of values

Comments

QTOUCH

This macro has to be
defined in order to use
QTouch libraries.

SNS & SNSK

Section 5.7.1.5 provides
details on the range of
values allowed.

needed for the design

To be used if only single port pair is

AIMEL

&

71

AIMEL

&
&

SNS1 — SNSK1 & SNS2 —
SNSK2

Section 5.7.1.5.2 has
details on the range of
values allowed

To be used if two port pairs are needed for
the design

QT_NUM_CHANNELS

4, 8, 12, 16 for tinyAVR,
megaAVR and XMEGA
device libraries and 8, 16,
32 for UC3 device libraries.

_ROTOR_SLIDER_

Rotor / slider can be added
to the design, if this symbol
is defined

A library with rotor / slider functionality
already available needs to be selected if
this macro is to be enabled

_DEBUG_INTERFACE_

The debug interface code in
the example application will
be enabled if this macro is
enabled.

This will enable the application to output
QTouch measurement values to GPIO
pins, which can be used by a USB bridge
to view the output on Hawkeye or QTouch
Studio. This feature is currently supported
by EVKITS 2080A and QT600 boards.

QT _DELAY_CYCLES

1to 255

Please refer to section

QTOUCH_STUDIO_MASKS

This macro needs to be
defined if QTouch Studio
Pin Configurator Wizard.is
used to generate the SNS
and SNSK masks.

Please refer to section 5.8.1

_STATIC_PORT_PIN_CONF_

This macro needs to be
defined only in case of 4
and 8 channel libraries with
interport configuration and
pin configurability.

Please refer to section 5.8.1

a\rr4g1 _qt_example Project Options 1
[—— [Custom Compilation O ptions
T (Al Fles]
main_atrmegalslb.c
Include [Linker Options]
Directories
Libraries -
“funzigned-char
' -funzigned-bitfields
' ’ fpack-struct
-fshort-enums
Memary Settings
Add
7
=~ Extemal Tools
Cusham Options Use WindyR
avi-goe: | CNwinaWR-200303135binhavr-goc. exe
make: | CNWindWR-2009031 hutils\bintmake. exe
I OF. l [Cancel] [Help]

Figure 5-15: Specifying the QTouch acquisition method library configuration parameters

72

in AVR Studio IDE

8207K-AT42-09/11

pmns or node “¥1g1_qt_example E

Category: Factory Settings
General Options I Multiile Compilation
r
Assembler
Custorm Build Languaga] Code } Dntimizaliunsl Dulput] List Preprocessor l DLIL
f.u'linmuns I Ignore standard include directories: |$TOOLKIT_DIR$MNGY
et FTO0LKIT_DIRFHNCACLIE,
Debugger
AVR. ONE! Additional include directaries: [one per ine]
CCR -
LCE200 LA Ainclude
ITAGICE
;TAGICE kIl Freinclude file:
ragon
Simulator | J
Third-Party Driver Defired spmbols: (one per ling) [~ Preprocessor oulput to file
|
|

Figure 5-16 : Specifying the QTouch acquisition method library configuration parameters
in IAR IDE

Using the example projects
The sample applications are shipped with the complete set of files required to configure, build,
execute and test the application for both IAR-workbench and AVR Studio IDEs.

The sample applications are provided for the evaluation kits and a few configurations for select
devices. The user can use the sample applications as a reference or baseline to configure
different configurations. Please ensure to change the configuration settings in the project options
to match the device selected.

To change the configuration settings of the sample applications,
1. Select the configuration from the list of configurations available.

2. If the user wishes to have a new name for the configuration to be used, a new
configuration can be added to the project.

3. If a different variant of the library needs to be used, remove the existing library in that
particular configuration and add the library variant that you require. Please refer to
5.7.1.4 for details on the different library variants. Update the linker options to specify
the library to be linked.

4. Specify the tunable configuration parameters for the project as illustrated in sections
5.6.11.2.2 and 5.6.11.2.3.

Example applications for QMatrix acquisition method libraries

The QMatrix acquisition method libraries include example projects for some of the supported
devices. Example projects for both IAR IDE and AVR Studio IDE along with example applications
are provided for select devices using the QMatrix acquisition libraries. These sample applications
demonstrate the usage of the touch API's to add touch sensing to an application. Refer to the
library selection guide for details on the example projects and sample applications supported for
the release.

AIMEL e

&

AIMEL

&
&

Selecting the right configuration
The sample applications are built to support a maximum channel support configuration available
for that particular device for both IAR & AVR IDEs.

Internally there are two configurations for each device.

e ALL KEYS configuration : Supports only keys
e KEYS/ROTORS/SLIDERS configuration : Supports keys or rotors or sliders
concurrently
These configurations enable a set of stored options and a specific library to be selected in order
to build application using the specific library.

2 1AR Embedded Workbench IDE

File Edit W“iew Project Tools ‘Window Help

D& L& | =]

Wiarkspace E

| w3g3_Bdqm_S=_ Sy ks drs ﬂ

w303 _Bdqm_B=_Su krs Brs
w3g3 Bdgm Bw By k Ors

g B By krs drz
|—) ik 3g3_B4gm_Bx_ Sy k_Ors.r30
|— libe3g3_Bdom_Bx_By_krs_drs.ri0
|— | ik 3g3_bdgm_Bx_By_krs_Brs.r40

main_v3g3.c x
gm_asm_tiny_mega.s *
L@ [Output

Figure 5-17 : Selecting the right configuration in the QMatrix acquisition method example
applications in IAR —IDE

avrbg3d_qm_example Project Options _|
,F,—\) Active Configuration | avrSg3_gm_Bdch 8= 8y _krs Sz ~ | |Edit Configurations
‘2‘ \')_-; avr5g3 gm_Bdch S« Buw k Oz
e avrhg3_gm_Edch
General [Use Extemal Maky avr5g3 gm_Edch Sx
Include
Directaries Output File Name: | aviBg3_gm_ssxample. lf |

g Dutput File Directory: | avrBo3_am_B4ch_Bx_Bu_krs_8rs\ | (]

Libraries Device Unzigned Chars [-funsigned-char]
Unzigned Bitfields [-funzigned-bitfieldz]
'i Frequency: [ne

Fack Structure Members [-fpack-struct)
Short Enums [-fshort-enumns]

O ptirmization: 0= -
Memory
Settings

E ;? Create Hex File [] Generate kap File [] Generate List Fils

[ak.] [Cancel] [Help]

Figure 5-18 : Selecting the right configuration in the QMatrix acquisition method example
applications in AVR Studio IDE

74 8207K-AT42-09/11

Changing the library configuration parameters
The configuration parameters required for the library are specified in the project options of the
examples. They are as listed in section 5.6.10.3. While using the IAR IDE, the symbols have to
be declared in both the compiler and assembler preprocessor defines. Please refer to the
example projects provided with the QTouch libraries release for more information.

Options for node “v3g3_ qgm_example™

Categorny:

General Options

Assembler
Cuskomn Build
Build Actions
Linker
Debugger
ANROMED
CCR
ICEZO0
ITAGICE
ITAGICE mkII
Dragon
Sirnulakor
Third-Party Driver

Factory Settings

[Multi-file Compilation
I~

Freprocesszor] D4 »

[lgnore standard include directories: [$TOOLKIT_DIR$MMC,
FTOOLEIT_DIR$FAMCACLIE

Language] Code I Dptimizations] Dutput] Lizt

Additional include directories: [one per ling)]

LA A AInciude
A scommon_files

Freinclude file:
| -

[Preprocessor output to file
-~ I
—

Ok I Cancel

Options for node “v3g3 qm_example™

Category:

General Options
M+ Compiler

Cuskom Build
Build Actions
Linker
Debugger
AVR COME!
CCR
IZEZ00
ITAGICE
ITAGICE mkII
Dragon
Simulakor
Third-Party Driver

Factory Settings

Language] Clutput] Lizt Preprocessar | Diagnostics] Extra Options]

Include directaries: [one per line)

‘$TDDLKIT_DIFI$\INC‘\

Defined symboals: [one per ling)

Predefined symbolz

¥ _ IAR_STYSTEMS_ASM__ W _ TIME__
V¥ _FILE__ ¥ __DATE_
¥ __LINE__ V _TID__

Ok, | Cancel |

Figure 5-19 : Specifying QMatrix acquisition library parameters in IAR IDE project

AIMEL

&

75

AIMEL

&
&

avrbg3d_gm_example Project Options rg|
—_— [Custom Compilation Options
3 [l files] [Femove]
main_avrsgd.c
Include grn_asrm_ting_megaS
Directories [Linker Options]

Libraries

&
L
Memary
Settings | [add]
!/? External Tools
- Use WinavF

LR avr-gee: | D \windR-2009031 3\bintavr-goe exe |

make: |D:\Wir‘»’-‘«VFlQDDSDm3\utils\bin\make.exe |

I Ok l [Cancel] [Help]

Figure 5-20 : Specifying QMatrix acquisition library parameters in AVR Studio IDE project

Using the example projects
The sample applications are shipped with the complete set of files required to configure, build,
execute and test the application for both IAR-workbench and AVR Studio IDEs.

The sample applications are provided for the evaluation kits and a few configurations for select
devices.

The user can use the sample applications as a reference or baseline to configure different
configurations. Please ensure to change the configuration settings in the project options to match
the device selected

To change the configuration settings of the sample applications,

1) Select the configuration from the list of configurations available as shown in section
5.6.11.3.1

2) If the user wishes to have a new name for the configuration to be used, a new
configuration can be added to the project

3) If a different variant of the library needs to be used, remove the existing library in that
particular configuration and add the library variant that you require. Please refer to library
selection guide for details on the different library variants. Update the linker options to
specify the library to be linked

4) Specify the tunable configuration parameters for the project as illustrated in 5.6.11.3.2

5) For QMatrix on XMEGA devices, please check if the pre-processor symbol _ATXMEGA _
is added in the project space or not.

Adjusting the Stack size when using IAR IDE

The example projects for IAR IDE, the CSTACK and RSTACK values are configured to account
for the requirements of the QTouch libraries and the included main.c file which illustrates the
usage of the touch API.

e Adjust the CSTACK and RSTACK values appropriately based on additional software
integrated or added to the examples.

76 8207K-AT42-09/11

Dptions for node ™“v1g1_qt” example™]

Categony:

General Options

CJC++ Compiler
Assembler
Custom Build Heap Corfiguration System | MISRAC2004 | MisRaC1g3s] <[»]
f_“'l'i Actions Data stack [CSTACK) Rretum addvess stack (RSTACK)
D'Zbu':;ger Size [bytes): [0w30 Depth levelst [0¢10
AR ONE! r r
CCR
ICE200
ITAGICE r
ITAGICE mkIT r
Dragon
Sirnulator | | |
Third-Party Driver
Iv Initialize unused interupt vectors with RETI instructions
I¥ Enable bit definitions in | /0-nelude files

1] 9 | Cancel |

Figure 5-21 : Modifying the stack size in IAR IDE

Optimization levels

The default configuration settings in sample projects which ship with the library are set to the
highest level of optimization for IAR and GCC variants of the libraries. The user might be required
to change this setting for debugging purposes
¢ In case of IAR, The optimizations tab in project configuration options specifies High.
e In case of GCC, the libraries are compiled with the —Os which signifies that the
Optimization for generating the library is maximum.

Uptions for node™vi1ig1_qt"example™ 1

Category: Factory Settings

zeneral Options [Multi-file Compilation
r
Assemnbler
Custam Build Languagel Code Optimizations lDutput] List] Preprncessnr] palr
Euild Actions
Linker (¢ Size

‘High [Maximumn optimization) j
Mone [Best debug suppaort]
Enabled optin hDW

Debugger i Speed
AYR ONE!

CCR dium

ICEZ00 [Ty High (M aximum optimization)
ITAGICE Function inlining

ITAGICE mkIl [v] Code mation

Dragon Crozz call [v]
Sirmulator

Third-Party Driver

Murnber of cross-call passes: |2 -

[Always do cross call optimization

Figure 5-22 : Specifying the optimization level in IAR IDE

AIMEL "

&

AIMEL

&

Debug Support in Example applications

The EVK2080 and QT600 applications provide output debug information on standard GPIO pins
through the USB Bridge IC to PC software for display by AVR QTouch Studio. Similarly for
ATMEL devices that are not supported through EVK or QT600 kits, the output measurement
values can be viewed through AVR QTouch Studio using the same QDebug protocol and QT600
USB bridge.

If a QT600 bridge is not available, please refer to section 5.6.11.6.3 for more information on
observing the output touch measurement data without the use of a USB bridge or AVR QTouch
Studio.

Debug Support in the sample applications for EVK2080 and QT600 boards
The sample applications provided for the EVK2080 boards, QT600 boards and the other example
projects output debug information which is captured by a USB bridge chip and then routed to the
QTouch Studio for display.

Note:

The port and pins assigned for the QDebug protocol with the example projects are arbitrary and
have to be changed based on the project configuration chosen and pin availability.

A separate App note is available on the Atmel website (in QTouch libraries webpage) explaining
the QT600 debug protocol.

How to turn on the debug option
In the project options, the symbol definition _DEBUG_INTERFACE_ is used to enable reporting
the debug data. Based on the IDE used, you can do the following to enable the debug feature

= JAR-EWAVR:
In the project options -> C/C++ compiler -> Preprocessor Tab
Add the Directive _DEBUG_INTERFACE_

Options for node “v3g1_8qt_example™

ety Factomy Settings
General Options [tulti-file Compilation
I
Assembler
Cuskomn Build Language] Code] Dptimizations] Dutput] Lizt Preprocessor] DL'L

Build Actions
Linker
Debugger

[lgnore standard include directories: [$TOOLKIT_DIR$SMCY
FTOOLKIT_DIR$MMCNCLIBS

CCR Additional include directories: [one per ling]

LZEZ00

ITAGICE

ITAGICE mkIl

;).ragloz Freinclude file:

imnulator

Third-Parky Driver | J
Defined symbols: [one per line) [~ Preprocessor autput ta file
MDEEUG I

OTOUCH —
DEELG_IMTERFACE
_ROTOR_SLIDER_

ak I Cancel |

Figure 5-23 : Enabling Debug Support for the library in IAR IDE

78 8207K-AT42-09/11

= WINAVR- GCC:
In the Project configuration Options -> Custom Options->
Add the Directive -D_DEBUG_INTERFACE_

mBi_32gm_example Project Options

| — (] Customn Compilation Options

F AN files] wiall Remave
L"_AJ mair_m8a_32ch.c -gdwarf-2 4
Include [Linker Options] -shd=gnui39

D DEBUG INTERFACE
-D_ROTOR_SLIDER_

"1 Oz
g ‘funsigned-char
‘funsigned-bitfields

o -fpack-struct
Libraries -Fshart-enums

Directories

i'!'
Memory Settings Edit
5 7 Add
[

=<1 External Tools

Cusharm Options W Uze wWintdR
avI-goe: |C:\WinAVF|-2EIUSD31 Mbintavr-goc.exe

make: |C:\WinAVF|-2EIDSD313'\utils\bin\make.exe

0k | Cancel | Help |

Figure 5-24 : Enabling Debug support for the library in AVR Studio IDE

Debug Interface if USB Bridge board is not available

For the sample applications using the devices that are not supported on EVK2080 and QT600 the
debug interface code is not provided. This is because a separate USB bridge board is required to
read the data and display it on QTouch studio. However in this case the output touch
measurement data can still be viewed using the IAR or AVR Studio IDE when running the code in
debug mode using debug wire or emulator.

extern gt_touch_lib_measure _data t qt measure_data;

The qt_measure_data global variable contains the output touch measurement data. Refer to
section 5.6.4.3 for more information on the data type.

For GCC generated libraries the output touch measurement data can be observed on the watch
window through the pointer pgt_measure_data.

qt_touch_lib_measure_data_t *pqt_measure_data = &qt_measure_data;

Library Variants
QTouch Acquisition method library variants

Introduction

Variants of the ATMEL QTouch Library based on QTouch Technology are available for a range of
ATMEL Microcontrollers. This section lists the different variants available. By following a simple
series of steps, the user can identify the right library variant to use in his application.

AIMEL "

&

AIMEL

&

Support for different compiler tool chains

The QTouch acquisition method libraries are supported for the following compiler tool chains.

Table 7 Compiler tool chains supported for QTouch acquisition method libraries

Tool Version

IAR Compiler for 8bit AVR 551

IAR Embedded Workbench for AVR 5.5.7.1355

GCC — AVRStudio 4.18 build 692

IAR Compiler 32bit AVR 4.10

WinAVR for 8hit AVR 20100110

GCC — AVR32 Studio 2.5.0

GCC — GCC GNU Tool Chain 32bit AVR | avr32-gnu-toolchain-2.4.2
IAR Embedded Workbench for ARM 5.40.4

GCC for ARM Sourcery G++ Lite 2009¢3-68

QTouch Acquisition method library naming conventions

The libraries are named according the convention listed below

Naming convention for libraries to be used with GCC tool chain
lib<coreP>gl <CH>qt k <RS>rs.a

Field
name

Possible
values

Comments

coreP

avr25
avr 35
avr 4
avr 51
avr 5
avrxmega2
avrxmega3
avrxmega4
avrxmegab
avrxmega6b
avrxmega7
uc3a
uc3b
uc3c
sam3s
sam3u
sam3n

VersionP of the core for AVR/ATSAM devices supported by this library variant
for tinyAVR and megaAVR devices.

CH

4,8, 12, 16,
32

Total number of channels supported by each library.

RS

1,2,3,4,8

Total number of rotors / sliders supported for the respective channel counts
mentioned in previous row.

For example, the library variant “libavr25g1_8qt_k_2rs.a” supports the following configuration

80

Device : tinyAVR or megaAVR device belonging to core version avr25

Belongs to a set of devices of group 1 supported by this library

8207K-AT42-09/11

e Support a maximum of 8 channels

e Supports a maximum of up to 2 rotors / sliders.

Naming convention for libraries to be used with IAR Embedded Workbench
The libraries are named according the naming convention listed below

lib<coreP>g<Q>_ <CH>qt_k <RS>rs.ro0

Field Possible Comments
name values

coreP vl VersionP of the for AVR/ATSAM devices supported by this library variant
v3 variant for tinyAVR and megaAVR devices.

v3xmsf
v3xm
v4xm
vbxm
v6xm
uc3a
uc3b
uc3c
sam3s
sam3u
sam3n

Q 1to3 GroupQ of the core AVR device supported by this library variant

CH 4, 8,12, 16, Total number of channels supported by each library.
32

RS 1,2,3,4,8 Total number of rotors / sliders supported for the respective channel counts
mentioned in previous row.

For example, the library variant “libv3g2_4qt_k_1rs.r90” supports the following configuration
e Device : tinyAVR or megaAVR device belonging to core version v3
e Belongs to a set of devices of group 2 supported by this library
e Supports a maximum of 4 channels

e Supports 1 rotor/slider

QTouch acquisition method library variants

lists the different QTouch acquisition method library variants supported for AVRs. Use this table
to select the correct library variant to be used in your application. Each row in the table below
indicates
e the corresponding Ports available for SNS and SNSK pins
e Compilers used for generating the libraries
e The library names to be selected for the requirements

Note: The libraries that are supported as listed in the table are only supported provided the
device memory requirements are also satisfied.

Naming convention of the library

<ch> Maximum channels supported by the library.
Device Range
tinyAVR, megaAVR, XMEGA 4,8,12,16
UC3 8,16,32
ATSAM 32

AIMEL o

&

AIMEL

&

<RS> Maximum number of rotor / sliders supported

NOTE:
e For 8-bit devices, ports which have less than 8 pins cannot be used by the QTouch
acquisition method libraries. Check the data sheet to determine the number of pins
supported for each port

Port combinations supported for SNS and SNSK pin configurations

For the list of all ports supported for each device please refer to the library selection guide. There
are no limitations for AVR devices (8bit and 32 bit) on the combination of SNS and SNSK port to
be used from QTouch libraries 4.0 release onwards.

For ATSAM devices the one port pair combinations supported are given below in the table.

One port pair supported combinations for | AA, BB, CC, AB, BA, AC, CA, BC, CB
ATSAM

Tips on pin assignments for the sensor design using one pair of SNS/SNSK

ports
This section lists tips on selecting the pin assignments when using a single port pair for the SNS
and SNSK Pins.

Design choice for the sensor Example Port configuration with pin assignments

SNSK & SNS pins are on different | If the SNS1(C) and SNSK1(B) pins are on two different ports, the
ports, number of channels = 4 user should mount the sensors onto the corresponding pins such

as (PC0,PB0), (PC1,PB1), (PC2,PB2) and (PC3,PB3), when pin
configurability is not used.

e In case of pin configurability, sensors should be mounted on the
pins as selected based on rules illustrated in section 5.8.1

SNSK & SNS pins are on different | ¢ If the SNS1(C) and SNSK1(B) pins are on two different ports, the
ports, number of channels = 8 user should mount the sensors onto the corresponding pins such
as (PCO0,PB0), (PC1,PB1), (PC2,PB2) and so on, When pin
configurability is not used.

e When using pin configurability, sensors should be mounted on the
pins as selected based on rules illustrated in section 5.8.1

e When pin configurability is not used, channel 0 will be on (PCO,
PBO) pins, channel 1 will be on (PC1, PB1) pins and so on up to
channel 7 will be on (PC7, PB7) pins.

e When using pin configurability, channel should be assigned as
given in section 5.6.6.1.1.2

SNSK & SNS pins are on different | ¢ If the SNS1(B) and SNSK1(A) pins are on two different ports, the
ports, number of channels = 32 user should mount the sensors onto the corresponding pins such
when using UC3 device as (PB0,PA0), (PB1,PAl), (PB2,PA2)..

e In this case channel 0 will be on (PBO, PAO) pins, channel 1 will be
on (PB1, PA1) pins and so on up to channel 31 will be on (PB31,
PA31) pins.

82 8207K-AT42-09/11

SNSK & SNS pins are on the
same port, number of channels =
2

If the use of SNS1(A) and SNSK1(A) pins are on the same port,
the user should always have the configuration (PAO, PA1) & (PA2,
PA3). In this case channel 0 will be on (PAO, PA1) pins; channel 1
will be on (PA2, PA3) pins. The even pins of the port are used as
SNS1 pins and odd pins of the port are used as SNSK1 pins

When pin configurability is used, sensors should be mounted on
the pins as selected as per the rules illustrated in section 5.8.1 and
channels should be assigned as given in section 5.6.6.1.1.4

SNSK & SNS pins are on the
same port, number of channels =
4

If the use of SNS1(A) and SNSK1(A) pins are on the same port,
the user should always have the configuration (PAO, PA1), (PA2,
PA3), (PA4, PAS) & (PA6, PAY). In this case channel 0 will be on
(PAO, PA1) pins, channel 1 will be on (PA2, PA3) pins and so on
up to channel 4 will be on (PA6, PA7) pins. The even pins of the
port are used as SNS1 pins and odd pins of the port are used as
SNSK1 pins, when pin configurability is not being used.

When using pin configurability, sensors should be mounted on the
pins as selected as per the rules illustrated in section 5.8.1 and
channels should be assigned as given in section 5.6.6.1.1.4

SNSK & SNS pins are on the
same port, number of channels =
16

(‘Available only for UC3 devices if
more than 4 channels are to be
used on a single port. For
tinyAVR, megaAVR, XMEGA
devices up to 8 channels with
SNS and SNSK on same ports
refer to section 5.7.1.5.2)

This configuration is available only for UC3 library variants.

In the use of SNS(A) and SNSK(A) pins are on the same port, the
user should always have the configuration (PAO, PAl), (PA2,
PA3), (PA4, PA5) & so on. In this case channel 0 will be on (PAO,
PA1) pins, channel 1 will be on (PA2, PA3) pins and so on up to
channel 15 will be on (PA30, PA31) pins. The even pins of the port
are used as SNS pins and odd pins of the port are used as SNSK
pins

SNSK & SNS pins are on the
same port, number of channels =
16

(Available only for SAM devices)

If the use of SNS(A) and SNSK(A) pins are on the same port, the
user should always have the configuration (PAO, PAl), (PA2,
PA3), (PA4, PA5), (PA6, PA7) and so on.

In this case channel 0 will be on (PAO, PA1) pins, channel 1 will be
on (PA2, PA3) pins and so on up to channel 15 will be on (PA30,
PA31) pins.

The even pins of the port are used as SNS pins and odd pins of
the port are used as SNSK pins

Port combinations supported for two port pair SNS and SNSK pin

configurations

For the list of all ports supported for each device please refer to the library selection guide. There
are no limitations on the combination of SNS and SNSK port to be used from QTouch libraries 4.0

release onwards.

For ATSAM devices the total two port pairs supported combinations are given below in the table.

Two port pairs supported combinations for | AA BB, BB_AA, AA CC, CC_AA, BB _CC,

ATSAM

CC_BB, AA_BC, AA_CB, BB_AC, BB_CA,
CC_BA, CC_AB

AIMEL -

&

AIMEL

&

Tips on pin assignments for the sensor design using
two pairs of SNS/ SNSK ports

This section lists tips on selecting the pin assignments when using a single port pair for the SNS

and SNSK Pins.

Design choice for the sensor

Example Port configuration with pin assignments

SNSK1-SNS1 & SNSK2-SNS2 pins
are all on different ports, number of
channels = 16

(Use the 16channel library in this
case. Ensure the port definitions for
SNS1,SNSK1,SNS2,SNSK2 are all in
place)

E. g. SNS1(D), SNSK1(B) & SNS2(C), SNSK2(A)
Recommended configuration: (PDO, PBO0), (PD1, PB1),..(PD7,
PB7), (PCO,PAQ).. to (PC7, PAT). In this case channel 0 will be
on (PDO, PBO) pins, channel 1 will be on (PD1, PB1) pins,
channel 8 will be on (PCO, PAQ), channel 9 will be on (PC1,
PA1) and so on up to channel 15 will be on (PC7, PA7) pins.
However, the user can mount the sensors on pins as selected
as per the rules illustrated in section 5.8.1 and channels
should be assigned as given in section 5.6.6.1.1.2

SNSK1-SNS1 are on same port &
SNSK2-SNS2 pins are on same port,
number of channels = 8

(Use the 8channel library in this case.
Ensure the port definitions for
SNS1,SNSK1,SNS2,SNSK2 are all in
place)

E.g. SNS1(K), SNSK1(K) & SNS2(H), SNSK2(H) on same
ports,

Recommended configuration: In case Pin configurability is not
used, (PKO, PK1), (PK2, PK3),..(PK6, PK7), (PHO,PH1).. to
(PH6, PH7).In this case channel 0 will be on (PKO, PK1) pins,
channel 1 will be on (PK2, PK3) pins, channel 4 will be on
(PHO, PH1), channel 5 will be on (PH2, PH3) and so on up to
channel 7 will be on (PH6, PH7) pins. The even pins of the port
are used as SNS pins and odd pins of the port are used as
SNSK pins.

When pin configurability is used, sensors should be mounted
on the pins as selected as per the rules illustrated in section
5.8.1 and channels should be assigned as given in section
5.6.6.1.1.2

SNSK1-SNS1 are on different ports &
SNSK2-SNS2 pins are on same port,
number of channels = 12

(Use the 12channel library in this
case. Ensure the port definitions for
SNS1,SNSK1,SNS2,SNSK2 are all in
place)

E.g. SNS1(H), SNSK1(F) on different ports & SNS2(E),
SNSK2(E) on same ports.

Recommended configuration : In case Pin configurability is not
used, (PHO, PFO), (PH1, PF1),.(PH7, PF7), (PEO,PE1).. to
(PE6, PETY). In this case channel 0 will be on (PHO, PFO) pins,
channel 1 will be on (PH1, PF1) pins... channel 8 will be on
(PEO,PE1), channel 9 will be on (PE2,PE3) and so on up to
channel 11 will be on (PH6, PH7) pins. The even pins of the
port E are used as SNS pins and odd pins of the port E are
used as SNSK pins.

When pin configurability is used, sensors should be mounted
on the pins as selected as per rules illustrated in section 5.8.1
and channels should be assigned as given in section
5.6.6.1.1.2 and section 5.6.6.1.1.4

SNSK1-SNS1 are on same port &
SNSK2-SNS2 pins are on different
ports, number of channels = 12

(Use the 12channel library in this
case. Ensure the port definitions for
SNS1,SNSK1,SNS2,SNSK2 are all in
place)

E.g. SNS1(G), SNSK1(G) on different ports & SNS2(B),
SNSK2(D) on same ports

Recommended configuration: In case Pin configurability is not
used, (PGO, PG1), (PG2, PG3),..(PG6, PG7), (PB0O,PDO)... to
(PB7, PD7). In this case channel 0 will be on (PGO, PG1) pins,
channel 1 will be on (PG2, PG3) pins... channel 3 will be on
(PG6, PG7), channel 4 will be on (PB0,PDO0) and so on up to
channel 11 will be on (PB7, PD7) pins. The even pins of the
port G are used as SNS pins and odd pins of the port G are
used as SNSK pins

84

8207K-AT42-09/11

e When pin configurability is used, sensors should be mounted
on the pins as selected as per rules illustrated in section 5.8.1
and channels should be assigned as given in section
5.6.6.1.1.2 and section 5.6.6.1.1.4

Sample applications and Memory requirements for QTouch acquisition method libraries
Refer to the library selection guide for memory requirements for each of the libraries supported in
the release.

QMatrix acquisition method library variants

Introduction

Variants of the ATMEL QTouch Library based on Matrix™ acquisition technology are available for
a range of ATMEL Microcontrollers. Refer to the library selection guide (C:\ Program Files\Atmel\
Atmel_QTouch_Libaries_4.x\Library Selection_Guide.xls) for the list of devices -currently
supported for QMatrix.

Support for different compiler tool chains

The QMatrix acquisition method libraries are supported for the following compiler tool chains.

Tool Version

IAR Compiler 551

IAR Embedded Workbench 5.5.7.1355

GCC - AVR Studio 4.18 build 692

WinAVR 20100110

IAR Compiler 32bit AVR 4.10

GCC — AVR32 Studio 25.0

GCC GNU Tool Chain 32bit AVR | avr32-gnu-toolchain-2.4.2

QMatrix Acquisition method library naming conventions

The libraries are named according the naming convention listed below

Tool Chain Naming convention
GCC Tool Chain lib<D>_<NC>gm_<NX>x_<NY>y <CFG>_<NRS>rs.a
IAR - EWAR lib<D>_<NC>gm_<NX>X_<NY>y <CFG>_<NRS>rs.ro0
Field Possible values Comments
name
D Common for IAR & GCC: Indicates the device / core group name in short form.
ATtiny167,
ATmegal28rfal, For XMEGA Devices, Core groups are taken which
ATmega8535 follows
Specific to IAR: As below for both GCC and IAR
v1g1s0 (ATtiny44,
ATtiny84) Supported XMEGA Devices
vlglsl (ATtiny4s, ATxmegal6A4,

AIMEL %

&

86

AIMEL

&

ATtiny88)
v1gls2(ATtiny461,
ATtiny861)
ATmegal6a
v1g2sl (ATmegad8PA,
ATmega88PA)
v3xmsf (ATxmegal6A4,
ATxmegal6D4,
ATxmega32A4,
ATxmega32D4)
v3xm (ATxmega64A3)
vaxm(ATxmega64Al)
vExm(ATxmegal28A3,
ATxmegal92A3,
ATxmega256A3,
ATxmega256A3B)
v6xm(ATxmegal28Al1)
v3g3 (ATmegal65P,
ATmega325P,
ATmegab45,
ATmegal64p,
ATmega324p,
ATmega324pa,
ATmegab44p,
ATmegal68p,
ATmega328p,
AT90CAN32,
AT90CANG64
)
v3g5 (AT90CAN128,
AT90USB1286,
AT90USB1287,
ATmegal280,
ATmegal281

)
v3g6 (AT90USB162

)
v3g7 (AT90USB646,
ATI0USB647
)
Specific to GCC:
avr25g1s0 (ATtiny44,
ATtiny84)
avr25gl1sl (ATtiny48,
ATtiny88)
avr25g1s2(ATtiny461,
ATtiny861)
ATmegal6

ATxmegal6D4,
ATxmega32A4,
ATxmega32D4,
ATxmega64Al
ATxmegal28Al
ATxmega64A3
ATxmegal28A3,
ATxmegal92A3,
ATxmega256A3,
ATxmega256A3B)

8207K-AT42-09/11

avr4glsl (ATmega48P,
ATmega88P)

avr5g4 (ATO0USB646,

ATI90USB647

)
avr5g6 (AT90USB162

)
avrxmega2 (ATxmegal6A4,
ATxmegal6D4,
ATxmega32D4)
avrxmega3 (ATxmega32A4)
avrxmega4 (ATxmega64A3)
avrxmega5(ATxmega64Al)
avrxmega6(ATxmegal28A3,
ATxmegal92A3,
ATxmega256A3,
ATxmega256A3B)
avrxmega7(ATxmegal28Al)
avr5g3 (ATmegal65P,
ATmega325P,
ATmegab45,
ATmegal64p,
ATmega324p,
ATmega324p,
ATmegab44p,
ATmegal68p,
ATmega328p,
AT90CAN32,
AT90CANG64

)
avr51g2 (AT90CAN128,

AT90USB1286,
AT90USB1287,
ATmegal280,
ATmegal281
)
AT32UC3C0512
NC 4,8,16,24,32,56,64 Indicates the maximum number of channels that the
library supports
56 (8 x 7) support only for ATXmega Devices.
24((8 x 3) support only for 32 Bit Devices.
NX 4.8 Indicates the number of X-Lines that the library needs

for supporting the listed number of channels.
The X lines on a PORT always start with Least
Significant Bit of the PORT.

Ex: #define PORT_X 1 B in case of a 4x2
QMatrix library means

AIMEL o7

&

AIMEL

&

X0,X1,X2,X3 are on PB0O,PB1,PB2,PB3

NY 1,2,3,4,7,8 Indicates the number of Y-Lines that the library needs
for supporting the listed number of channels

NY=7 support only for ATXmega Devices
NY=3 support only for 32Bit Devices

CFG k k — library variant supports only keys
krs krs — library variant supports keys, Rotors and Sliders
NRS 0,1,2,3,4,8 Maximum number of rotor sliders that the library
supports.

NRS=3 support only for 32Bit Devices

The table below provides a few examples of the naming convention.

Example Library name Configuration supported

libavr51g2_8gm_4x_2y krs_2rs.a e Compiler tool chain : GCC

Device : ATMegal64P

8 Channels

4 X lines

2Y lines

Supports Keys, Rotors and Sliders (krs)
2 Rotors and Sliders

libavr25g1s1_16gm_8x_2y k 0rs.r90 Compiler tool chain : IAR
Device : ATTiny88

16 Channels

8 X lines

2Y lines

Supports only keys (k)

0 Rotors and Sliders

QMatrix acquisition method library variants

Devices supported for QMatrix Acquisition
Refer to the Library selection_guide.xls for the list of devices supported for QMatrix for this
release.

PIN Configuration for QTouch Libraries

Pin Configuration for QTouch Acquisition Method

88

Pin configurability for QTouch acquisition method is provided for 8Bit AVR’s. QTouch
acquisition method libraries can be used to configure SNS and SNSK on any pins of the
port. But few rules should be followed while assigning the SNS and SNSK on particular
pins. These rules are internal to the library. But QTouch Studio —Pin Configuration Wizard
can be used to assign SNS and SNSK on the pins and rules are internally taken care in the
QTouch Studio Pin Configuration Wizard.

By default, for 4 and 8 channel QTouch acquisition libraries, the channel numbering follows
the pin number of the port.

To use the pin configurability, enable the macro _STATIC_PORT_PIN_CONF_ in the
project options or define the macro in the touch_qt_config.h file.

To use the pin configurability feature, the SNS_array and SNSK_array masks are exported
for the user, which needs to be initialized. These SNS_array and SNSK_array masks can

8207K-AT42-09/11

be taken from the QTouch Studio Pin Configuration Wizard and can be copied at
appropriate place in the main.c file as explained in the example projects provided.

QTOUCH_STUDIO_MASKS macro is used for providing pin configurability feature for
QTouch Acquisition method libraries.

In case the macro QTOUCH_STUDIO_MASKS enabled in project space,
SNS_array and SNSK_array takes values that are supplied by the user in main.c files.
This will reduce the code memaory foot print of the library.

In case the macro QTOUCH_STUDIO_MASKS is not enabled in project space,
SNS_array and SNSK_array are calculated internal to the library according to the
configured sensors.

Note:
1. Port pin configurability is enabled for the following configurations,
4- channel intraport configuration
8-channel intraport configuration
12-channel configuration

16- channel configuration

2. In case, the user wants to use the pin configurability for the other supported
configurations, (4- channel interport and 8-channel interport), the user has to enable the
macro _STATIC_PORT_PIN_CONF_ in his project space.

Rules for configurable SNS-SNSK Mask Generation

R X
SNS1=PORTA
PORT PAIR 1 c hi 0
X X X
SNSK1=PORTB
X X X
SNS2=PORTC '
PORT PAIR 2 Chs c Ch3
v
X X | x

SNSK2=PORTD

AIMEL %

&

AIMEL

&

The channel numbers are allocated based on enabled SNS pins starting from LSBit of
port 1(SNS1) and ending with MSBIt of port 2(SNS2).

The number of SNS pins in a port pair should be equal to the SNSK pins in the same port
pair so it can form a pair.

The first SNS port pin should always be mapped to the first SNSK port pin in any port
pair. Similarly the second SNS port pin should always be mapped to second SNSK pin
and so on.

Even sensors with in a port pair should be placed in one mask and odd sensors with-in a
port pair should be placed in the second mask. In case of interport, first channel should
always start with odd masks and then even masks is filled .

All the three channels for ROTORS and SLIDERS should be placed within the same
mask. And should be in the same port pair.

Keys on adjacent channels should be placed on different masks.

For 8 channel case when 2 ports are enabled, the pins for the 8 channels can be spread
on the 2 ports. The pin configuration is done based on the rules mentioned above.

For 16 channel case when 2 ports are enabled, all the pins for the 16 channels are
allocated among the pins of the 2 ports.

Example for 8 channel interport mask Calculation with one port pair

90

X X X
SNS1=PORT
C C Ch
X X X

SNSK1=PORTB

This example is for interport 8 channel library with only one port pair used.
Channel0O is AOB2,Channell is A3B5 and Channel2 is A7B7 are enabled for the 8
channel library.

The SNS_array and SNSK_array masks are calculated by the Qtouch Studio with rules
mentioned above.

In this case, the SNS_array and SNSK_array values will be as mentioned below:
SNS_array[0][0]=0x41; (SNS even mask for port pair 1)

SNS_array[0][1]=0x08; (SNS odd mask for port pair 1)

SNS_array[1][0]=0x00; (SNS even mask for port pair 2)

SNS_array[1][1]=0x00; (SNS odd mask for port pair 2)

SNSK _array[0][0]=0x84; (SNSK even mask for port pair 1)

SNSK _array[0][1]=0x20; (SNSK odd mask for port pair 1)

8207K-AT42-09/11

SNSK_array[1][0]=0x00; (SNSK even mask for port pair 2)
SNSK_array[1][1]=0x00; (SNSK odd mask for port pair 2)

As there is no second port pair used for this, so that's why SNS_array[1][0],
SNS_array[1][1], SNSK_array[0][1] and SNSK_array[1][1] are having value zero.

Example for 8 channel intraport mask Calculation with two port pairs

X X X
SNS1=PORT
C Ch1 Cho
X X X

SNSK1=PORTA

SNS2=PORTB

Chs Ch4 C

X X X

SNSK2=PORTB

This example is for intraport 8 channel library with two port pair used.

ChannelO is A1A3,Channell is A4A5 and Channel2 is A6A7 are enabled in the first port
pair. Channel3 is B1B2,Channel4 is B3B4 and Channel5 is B5B6 are enabled in the
second port pair.

The SNS_array and SNSK_array masks are calculated by the Qtouch Studio with rules
mentioned above.

In this case, the SNS_array and SNSK_array values will be as mentioned below:
SNS_array[0][0]=0x52; (SNS even mask for port pair 1)

SNS_array[0][1]=0x00; (SNS odd mask for port pair 1)

SNS_array[1][0]=0x2a; (SNS even mask for port pair 2)

SNS_array[1][1]=0x00; (SNS odd mask for port pair 2)

SNSK_array[0][0]=0xa8; (SNSK even mask for port pair 1)

SNSK_array[0][1]=0x00; (SNSK odd mask for port pair 1)

SNSK_array[1][0]=0x54; (SNSK even mask for port pair 2)

AIMEL -

&

AIMEL

&

SNSK_array[1][1]=0x00; (SNSK odd mask for port pair 2)

In case of Intraport, odd SNS_array and SNSK_array masks are always zero.So that’s
why SNS_array[0][1] ,SNS_array[1][1], SNSK_array[0][1] and SNSK_array[1][1] are zero
for both the port pairs.

Example for 12 channel intraport-interport mask Calculation with two port
pairs

X X X
SNS1=PORT
C Chi Cho
X X X

SNSK1=PORTA

SNS2=PORTB

Ch5 Ch4 C

X X X

SNSK2=PORTD

This example is for intraport-interport 12 channel library with two port pair used.
Channel0 is A1A3,Channell is A4A5 and Channel2 is A6A7 are enabled in the first port
pair. Channel3 is B1D2,Channel4 is B3D4 and Channel5 is B5D6 are enabled in the
second port pair.

The SNS_array and SNSK_array masks are calculated by the Qtouch Studio with rules

mentioned above.
In this case, the SNS_array and SNSK_array values will be as mentioned below:

SNS_array[0][0]=0x52; (SNS even mask for port pair 1)
SNS_array[0][1]=0x00; (SNS odd mask for port pair 1)
SNS_array[1][0]=0x22; (SNS even mask for port pair 2)
SNS_array[1][1]=0x08; (SNS odd mask for port pair 2)
SNSK_array[0][0]=0xa8; (SNSK even mask for port pair 1)
SNSK _array[0][1]=0x00; (SNSK odd mask for port pair 1)
SNSK_array[1][0]=0x44; (SNSK even mask for port pair 2)

92 8207K-AT42-09/11

SNSK_array[1][1]=0x10; (SNSK odd mask for port pair 2)

As the first port pair is intraport, so that's why SNS_array[0][1] and SNSK_array[0][1] are
zero as odd masks are always zero in case of Intraport.

Example for 16 channel intreport-interport mask Calculation with two port
pairs

x| X X
SNS1=PORTA
PORT PAIR 1 ?/ \‘&hl 0
X X X
SNSK1=PORTB
X X X
SNS2=PORTC '
PORT PAIR 2 Chs c Ch3
y
X X | X

SNSK2=PORTD

This example is for interport-interport 16 channel library with two port pair used.
Channel0 is A2B0,Channell is A4B3 and Channel2 is A5B6 are enabled in the first port
pair. Channel3 is C1D2,Channel4 is C3D3 and Channel5 is C5D4 are enabled in the
second port pair.

The SNS_array and SNSK_array masks are calculated by the Qtouch Studio with rules
mentioned above.

In this case, the SNS_array and SNSK_array values will be as mentioned below:
SNS_array[0][0]=0x24; (SNS even mask for port pair 1)

SNS_array[0][1]=0x10; (SNS odd mask for port pair 1)

SNS_array[1][0]=0x22; (SNS even mask for port pair 2)

SNS_array[1][1]=0x08; (SNS odd mask for port pair 2)

SNSK_array[0][0]=0x41; (SNSK even mask for port pair 1)

SNSK _array[0][1]=0x08; (SNSK odd mask for port pair 1)

AIMEL .-

&

AIMEL

&

SNSK_array[1][0]=0x14; (SNSK even mask for port pair 2)
SNSK_array[1][1]=0x08; (SNSK odd mask for port pair 2)

How to Use QTouch Studio For Pin Configurability

The following steps describe the details on how to use pin configurability for QTouch
Acquisition method:

1. Open AVR QTouch Studio .Enable the Design Mode Radio button on the left hand side of
the screen.

=8 AYR QTouch Studio

File Wiew Tools wWindow Help

wilps 2 E A

0 T ol T [T | RS LB L | KjESensor Configuration - 0 X

Application Mode
{1 Analysis Mode

() Design Mode
Auko-assign Channels

Touch Data Read Contral

[] auto-skart Reading

Conneckion State

Mot Connected Mo design project loaded.

Figure 5-25 Selecting the Design mode in the AVR QTouch Studio

1. Go to File Menu option and click New Design.

94 8207K-AT42-09/11

Figure 5-26 Selecting the New Design in the AVR QTouch Studio

[l AVR QTouch Studio

File | Wiew Tools Window Help

_"| Mew Design. ..

LE Cpen Design... Bl Kit'Sensor Confi
= Desi
lml Save Design o K
Exit)
“ Configurati
FDESIMIOOE
futo-assign Channels Kit Technolog
Height
Touch Daka Read Control width
Mame
Kit image

2. Inthe Create New Design Window, give the Project name and Kit Technology (QTouch in

this case) and and Number of sensors (Keys/Rotors/Sliders) and click Create Design.

Create New Design

Figure 5-27: Creating New Design in the AVR QTouch Studio

Specify the project id, project name, and kit layout for the new design.
“alid project ids are in the range 0x0001 to OxEFFF [Decimal: 1 to 61439).

Prjec It

Project Mame: | zample_qgt

Kit Canwas Properties

Height Wwidth | 200
Kit Image | | E]
it Technology Sensors
Murnber of Buttons -4 ES
&) QTouch v
Murnber of YWhesls
b atri
& AL Murber of Sliders

[Create Design I’ LCancel]

3. After Creating Design, the new screen pops up which shows all the sensors which have

been created.

AIMEL

&

95

96

AIMEL

&

Yirtual Kit Yiew x|l

s s Gk @ @ IO
Design Mode

Project Id: Ox7
Project Name: sample_qgt

OO ONO.

Figure 5-28: New Design Sensors in the AVR QTouch Studio virtual kit

4. Now Go to Tools->Pin Configuration Wizard.Pin configuration

[l AVR QTouch Studio

File “iew | Tools | Window Help

4 | ES

QTouch Studio] 32 Pin Canfiguration Wwizard

Dresign Validation \Wizard

nim
i

spplication M
pplication Optiars. .. =

) Analysis Mo
Configuration Options

(%) Design Mode g p

Auto-assign Channels kit Technology QTouch v
Height 200

Touch Data Read Cantral width 200
Mame kit
Kit image | .1

Figure 5-29: Selecting the pin configuration wizard for theDesign

5. Pin configuration Window will pop up with the information on the usage of the tool.

Click Next to proceed to the configuration.

8207K-AT42-09/11

Pin Configuration Wizard

Pin Configuration Wizard

Welcome to the QTouch Pin Configuration Wizard
The Wizard will take you step by step through the process of assigning the touch sensors to
physical 1O pins on the MCU.

Step 1. Select MCU

First step will be to select which MCU you want to use for
your project.

Step 2. Select 10 Ports

QTouch Library is very flexible, so you need to tell which
sensors you want to connect to which 10 Ports.

Step 3. Assign 10 Pins

Use the default assignement, or specify manually which
touch sensor goes to which pins on the MCU. Default
settings are available if you do not want to assign them
manually.

Step 4. Code

Initialization code will be automatically generated to configu
QTouch Library for the specified functionallity. Cut and Paste
cade into your groject.

Figure 5-30: : Start page of the wizard

6. Select the MCU and click Next as shown below.

AIMEL >

&

Pin Configuration Wizard

Pin Configuration Wizard

¥ Start

- . MCU Selection
I MCU Selection 3 y .
This page allows you to choose the MCU. The dropdown lists all the microcontrollers that are
C b tio supported by the current technology (QTouch).

1. Select MCU Family (Optional)

h Design Details You can select an MCU family to reduce the number of devices
Code Buttone: 4 listed in the device selection list.
Wheels/Sliders: 0
Channels: 4 | tinyAWVR. ~ |
2. Select MCU

Select the specific MCU for you solution,
v

Max Wheels/Sliders: 3
Max Channels: 12
hiax Ports: A.B.C.D

o))

Figure 5-31: Selecting the MCU for the New Design

7. Select the SNS and SNSK ports needs for the design and click Next.

Pin Configuration Wizard

Pin Configuration Wizard

v Start
v MCU Selection Port-Pair Combination

Pleaze assign IC Ports to the sensors,
I Port-Pair Combination

SNS, SNSK Selection
- . Port Pair 1 - Sensors
Summary 1. Select SNS and SNSK Port for pairl Buttond

- Buttonl

- Button2

2. Assign Sensors to port pair

a) Click ‘ toc move the sensor to port pair 2 @ '

b) Click t to move the sensor to port pair 1

Port Pair 2 - Sensors

3. Select SNS and SNSK Port for pair2

o))

Figure 5-32: Selecting SNS and SNSK ports in the New Design

8207K-AT42-09/11

8. Select the pins used for the design and click Next

If there is error in the selection of the pins (Ex: conflictin pins used), a red marker will be
appear and the user cannot proceed to next step in configuration until the user has done the

correct pin selection.

Now once the selection is done without errors, Click Next

Pin Configuration Wizard

Pin Configuration Wizard

v Start
: SNS, SNSK Selection

¥ Port-Pair Combination

¥ MCU Selecticn This page guides you ta assign pins for the carresponding sensar.

| SNS, SNSK Selection 1. Select Pins for the Sensor
You can select pin for the corresponding sensors.

Sensor ENS SNSK
Port | Pin Port | Pin
Buttond B 0 v \) D 2 v
Buttonl B 1 v D 3 v
Bution2 5 YO o 4+ v
Button3 B |5 v| D 7 v
Auto Assign
6 Errors
Duplicate port pin selection
oo) e]

Figure 5-33: Selecting the SNS and SNSK Port Pins in the new Design(With Error)

AIMEL

&

99

AIMEL

&

Pin Configuration Wizard

Pin Configuration Wizard

¥ Start
¥ MCU Selection
v Port-Pair Combination

SNS, SNSK Selection 1. Select Pins for the Sensor
You can select pin for the corresponding sensors.

SNS, SNSK Selection

This page guides you to assign pins for the corresponding sensor.

Sensar SNS SNSK
Part Pin Port Pin
Button0 B 0 e o 2 4
Button1 B 1 - D 3 ~
Button2 B 3 w D 4 "
Buttond B [5 |w D -

Figure 5-34: Selecting the SNS and SNSK Port Pins in the new Design(Without Error)

Once the pins are selected, Pin Wizard will provide the summary report .Check whether details
are correct as specified.Click Next

Pin Configuration Wizard

Pin Configuration Wizard

¥ Start
Summary
¥ MCU Selection Displays the list of values selected

v Port-Pair Combination
¥ 5NS, SNSK Selection
MCU : ATtiny38

Total Sensors Selected : 4

Sensor Channel SNS,SNSK
Button0 Channeld PEO,PO2
Button1 Channel1 PB1,PD3
Button2 Channel2 PE3,PD4
Button3 Channel3 PBS,PD7

Recommended Library :
18R : libvigl-4at-k-Ors.r90
IAR : libvigl-4gt-k-1rs.r90
GCC : libavr25gi-4gt-k-Ors.a
GCC ¢ libavr2Sgl-dgt-k-1rs.a

o

Figure 5-35: Summary report

100 8207K-AT42-09/11

9.
Note:
1. To

Pin Configuration Wizard

Pin Configuration Wizard

v start Code

¥ MCU Selection Generated code snippet from user selection

v Port-Pair Combination
¥ &SNS, SNSK Selection #define QTOUCH_STUDIO_MASKS 1

v Summary #define NUMBER_OF_PORTS

#define SNSK1 D
SNS_array[0][0]= 0x2
SNS_array[0][1]= 0x22

SNS_array[1][0]= 0x0
SNS_array[1][1]= 0x0

SNSK_array[0][0]= Ox14
SNSK_amay[0][1]= 0x33
SNSK_array[1][0]= Ox0
ENSK_array[1][1]= Oxd

Copy Code

Figure 5-36: Code Generation tab in Pin Configuration wizard

In the New Window Screen, the code is shown on the
screen.QTOUCH_STUDIO_MASKS needs to be enabled in the project option or in
touch_qgt_config.h file .And in the main.c file, this code SNS_array and SNSK_array
needs to be copied from here and put under QTOUCH_STUDIO_MASKS macro as
shown below in the main.c file:

#ifdef QTOUCH_STUDIO_MASKS
SNS_array[0][0]=0x09;
SNS_array[0][1]=0x22;
SNS_array[1][0]=0x00;
SNS_array[1][1]=0x00;
SNSK_array[0][0]=0x14;
SNSK_array[0][1]=0x88;
SNSK_array[1][0]=0x00;
SNSK_array[1][1]=0x00;

#endif

use 4 and 8 channel libraries(interport case) for pin configurability

_STATIC_PORT_PIN_CONF_ macro needs to be enabled in the project options or in
touch_qt_config.h file.

A mEL 101

&

AIMEL

2. QTOUCH_STUDIO_MASKS needs to be enabled if using pin configurability .If not enabled
then, static pin mapping will work same as in the earlier versions of the libraries

Pin Configuration for QMatrix Acquisition Method

The QMatrix acquisition method libraries needs to be used after configuring X and YA and
YB lines on 10 pins of the port as described in the configuration rules described in the
section below. The QTouch Studio Pin Configurator Wizard can be used to assign X, YA,
YB, SMP lines on the pins and rules are internally taken care in the Qtouch Studio Pin
Configurator Wizard.

The snippets can be taken from the QTouch Studio Pin Configurator Wizard and copied to
appropriate places in the main.c and touch_gm_config.h files in the example projects
provided.

Configuration Rules:

Note:

1. The X lines can be configured on different ports up to a maximum of 3 ports

Ex: NUM_X_PORTS = 3 (maximum value supported). However the possible values
are NUM_X_PORTS =1 or NUM_X_PORTS =2 or NUM_X_PORTS =3

The X lines can be configured on the three different ports.
The X lines can be configured on any pins of the ports selected above

Ex: X0 on PB2, X1 on PD5, X2 on PEO, X3 on PD1(when NUM_X_LINES= 4),
Provided that these pins do not conflict with the other pins for touch sensing or with the
host application usage.

The Y lines can be configured on the any of the pins of the ports selected
Ex: Any pins on the PORT_YA and PORT_YB selected.
Suppose, PORT_YAis D, and PORT_YBis C

Since, pin 5 and pin 1 PORTD are already used for X lines(X1, X3), the user can select
any of the remaining pins for YOA lines. Suppose that YO is on pin2 and Y1 is on pin6

Hence, YOA — PD2, YOB — PC2, Y1A — PD6, Y1B — PC6,

Both YA and YB lines can share the same port. And the YA and YB need not be on same
corresponding pins of the ports.

The PORT_YB is fixed for each device and should be same as the PORT on which the
ADC input pins are available.

The SMP pin can be configured on any of the IO PORT pins available.
Ex: PORT_SMP =D
SMP_PIN = 7 as this pin is not being used by touch sensing.

> Please take care that the touch sensing pins do not conflict with other 10 pins used by host

102

application

8207K-AT42-09/11

How to use QTouch Studio for Pin Configurability:

The following steps describe the details on how to use pin configurability for QMatix
Acquisition method:

1. Open AVR Qtouch Studio .Enable the Design Mode Radio button on the left hand
side of the screen..

=8 AYR QTouch Studio

File Wiew Tools wWindow Help

w2 E A o

0 T ol T [T | RS LB L | KjESensor Configuration - 0 X

Application Mode
{1 Analysis Mode

() Design Mode
Auko-assign Channels

Touch Data Read Contral

[] auto-skart Reading

Conneckion State

Mot Connected Mo design project loaded.

Figure 5-37: Selecting the Design mode in the AVR QTouch Studio

2. Go to File Menu option and click New Design

ATMEL 103

&

104

3.

AIMEL

&
&

£ AVR QTouch Studio
View Tools Window Help

_‘| Mew Design,..
I L_'? Open Design. .. Kit/Sensor Configuration * 1 X Yirtual Kit Yiew
[& | sawe Design £ 0 @ @ o]
Exit Design Mode

EFDESIghTToaE

Auko-assign Channels

Touch Data Read Conkrol

] Auto-start Reading
Connection State

Not Connected Mo design project loaded.

No design project loac
can connect a kit and

Figure 5-38: Selecting New Design

In the Create New Design Window, give the Project name and Kit Technology

(QMatrix in this case) and Number of sensors (Keys/Rotors/Sliders) and click Create
Design.

Create New Design

Specify the project id, project name, and kit lapout for the new design.
“Walid project ids are in the range 020007 to OEFFF [Decimal: 1 to 651439].

Froject 1d: Ox5

Froject Hame: |samp|e_|:m:-i |

kit Canwvas Properties

Height |200 width | 200 |
Kit Image | | []
Kit Technology SEnsors

© QTouch Mumber of Butbons

4

Mumber of Wwheels
Mumber of Sliders m

*) G atrix

Create Design l [Cancel

Figure 5-39 Creating New Design in the AVR QTouch Studio

8207K-AT42-09/11

After Creating Design , the new design mode shows the virtual kit view with sensors that
have been created in some order.

¥irtual Kit Yiew - X

J 455 @ @
Design Mode

Project Id: Ox5
Project Name: sample_proi

OO ONO.

©)

Figure 5-40: New Design Sensors in the AVR QTouch Studio

4. Now Go to Tools->Pin Configuration Wizard as shown below.

&l AVR QTouch Studio

File Wiew | Tools | Window Help

i E E & Design Yalidation Wizard

QTouch Studiol| 3% Pin Configuration Wizard

application M
Slpllelian Opkions... - "
) analysis o
Configuration Options [
(%) Design Mode g P
F
Auto-assign Channels Kit Technology QMatrix bt F
Height 200
Touch Data Read Control width 200
Name Kit

Kit image | |E]

bl tice Theebodd | nera a

Figure 5-41: Selecting the pin configuration wizard
5. Pin configuration Window will pop up with the information on the usage of the tool.

Click Next to proceed.

A mEL 105

&

106

AIMEL

&
&

Pin Configuration Wizard

Pin Configuration Wizard

Welcome to the QMatrix Pin Configuration Wizard

The wizard will take you step by step through the process of assigning the touch sensors to
physical 10 pins on the MCU.

Step 1. Select MCU

First step will be to select which MCU you want to use for
your project.

Step 2. Select Channels and matrix layout
select a library that support the number of channels you nsed,
and select the X and ¥ layout yvou want. (or just use default

Step 3. Assign 10 Pins

Usze the default assignement, or specify manually which line
sensor goes to which pins on the MCU. Default settings are
available if you do not want to assign them manually.

Step 4. Code

Initialization code will be automatically generated to configu
QTouch Library for the specified functionallity. Cut and Paste
code into your project.

Figure 5-42: Start window of the configuration wizard

6. .Select the MCU and click Next as shown below.

Pin Configuration Wizard

Pin Configuration Wizard

¥ Start

: MCU Selection
I MCU Selection 3 .)
This page allows you to choose the MCU. The dropdown lists all the microcontrollers that are
supported by the current technology (QTouch).

1. Select MCU Family (Optional)

Design Details You can select an MCU family to reduce the number of devices
Buttons: 4 listed in the device selection list.
Wheels/Sliders: 1 -
Channels: 8 |t|nyA\."R v|
2. Select MCU

Select the specific MCU for you solution.
v

Max Wheels/Sliders: 4
Max Channels: 16
Max Ports: A,B,C,D

Figure 5-43: MCU selection window from the configuration wizard.

7. Select the Channels needed for the design from the list provided and click Next.

8207K-AT42-09/11

If 6 channels are needed, the next immediate value that suits the design needs to be
selected. le., 8 channels (4 x 2) configuration.

Pin Configuration Wizard

Pin Configuration Wizard
¥ Start .
) Channel Selection
¥ MCU Selection Please select the total number of channels and X Lines
I Channel Selection
1. Select Channel 2. Select XY Lines
Channel X-Lines x Y¥-Lines
OF D2
O1s
(o o)

Figure 5-44: Selecting channels and configuration in the New Design

8. Select the pins used for the design and click Next.

If there is error in the selection of the pins (Ex: conflictin pins used), a red marker will be
appear and the user cannot proceed to next step in configuration until the user has done the
correct pin selection.

Now once the selection is done without errors, Click Next.

107

AIMEL

&

AIMEL

&

Pin Configuration Wizard

Pin Configuration Wizard

¥ Start
2 X & Y Line Selection

¥ MCU Selection Select Port,Pins for XY Lines

¥ Channel Selection
1.Select SMP Port [0+ 7 =
5 vinesecon = s

2. Select XLines 3. Select YLines
AING Port: PDS
YB-ADC: C X Portin
L Pin
X0 B w1 |4
g YOA (1w
®1 (5] w2 L
L YiA (3w
X2 B a

Auto Assign
6 Errors

Fage contains 1 or more emrors.Remaove errors to procesd....

[) e)

Figure 5-45: Selecting the X,YA,YB,SMP Pins in the new Design with errors.

Pin Configuration Wizard

Pin Configuration Wizard

¥ Start
2 X & Y Line Selection

¥ MCU selection Select Port,Pins far XY Lines

¥ Channel Selection
1. Select SMP Port
I X & Y Line Selection

2. Select XLines 3. Select YLines
AINO Port: PDE
YB-ADC: C - —
¥ Pin
X0 B w1l w
voa |1 e
H1 s} w2 L4
via |3 e
x2 B |5 -
W3 D w m w

Auto Assign

Figure 5-46: Selecting the X,YA,YB,SMP Pins in the new Design without errors.

Once the pins are selected, Pin Wizard will provide the summary report .Check whether details
are correct as specified.Click Next.

108 8207K-AT42-09/11

If there are some errors that are found in the summary report, the user can click “back” button

and modify the changes needed.

Pin Configuration Wizard

Pin Configuration Wizard

¥ Start
) Summary
¥ MCU Selection Displays the list of values selected
+" Channel Selection
~
¥ X & ¥ Line Selection =
MCU : ATTny3E
E— T
Max Channels Supported : 3
X & Y Lines Config : 4x2
SMP :FD7
AINO : PD&
X0:PE1 YOA:PDL YOB:PCL
X1:PD2Z YLA:PDS Y1B:PCS
X2:PES
X3:PD0O
Channel x YA YB
Channald PB1 PDL PCL
Channall PD2 PDL PCL
Channal2 PBS PD1 PC1
Channal3 PDO PD1 PC1
Channal4 PB1 PD3 PC3 b
Channals PD2 FD3 PC3
Channels PBS PD3 PC3
Channal7 PDO PD3 PC3
adlf
o
T e

Figure 5-47: Summary report

Pin Configuration Wizard

Pin Configuration Wizard

¥ Start
¥ MCU selection

Code

Generated code snippet frem user selection
¥ Channel Selection

¥ X &Y Line Selection #define NUM_X_PORTS 2

¥ Summary #define PORT_X_1 B

zdefine PORT_X_2 D
—

zdefine PORT_YA D

zdefine PORT_YE [

zdefine SMP_PORT D

zdefine SMP_PIN 7

FILL_OUT_X_LINE_INFO(Z,1);
FILL_OUT_X_LINE_INFO(2,2);
FILL_OUT_¥_LINE_INFO(1,5);
FILL_OUT_¥_LINE_INFO(2,0);

FILL_OUT_Y_LINE_INFO(1);
FILL_OUT_Y_LINE_INFO(3);

Copy Code

[<seck J[__Fnsh]

Figure 5-48: Code Generation tab in Pin Configuration wizard

9. The code is shown in the New Window Screen.

AIMEL

@
&

109

AIMEL

&

The code can be copied using the “copy code” and pasted in the main.c and
touch_gm_config file,

a. Intouch_gm_config.h,

Copy the following header definitions as part of the preprocessor directives in
the project space or in the beginning of the file

#define NUM_X_PORTS 2
#define PORT_X_1 B
#define PORT_X_2 D
#define PORT_YA D
#define PORT_YB C
#define SMP_PORT D
#define SMP_PIN 7
b. Inmain.c,
Copy the code as below
x_line_info_t x_line_info[NUM_X_LINES]= {
FILL_OUT_X_LINE_INFO(1,1);
FILL_OUT_X_LINE_INFO(2,2);
FILL_OUT_X_LINE_INFO(1,3);
FILL_OUT_X_LINE_INFO(2,0);
h
y_line_info_t ya line_info[NUM_Y_LINES]={
FILL_OUT_YA_LINE_INFO(1);
FILL_OUT_YA_LINE_INFO(3);
h
y_line_info_t yb_line_info[NUM_Y_LINES]={
FILL_OUT_YB_LINE_INFO(1);
FILL_OUT_YB_LINE_INFO(3);

MISRA Compliance Report

This section lists the compliance and deviations for MISRA standards of coding practice for the
QTouch and QMatrix acquisition method libraries.

What is covered

The QTouch and QMatrix acquisition method libraries adhere to the MISRA standards. The
additional reference code provided in the form of sample applications is not guaranteed to be
MISRA compliant.

110 8207K-AT42-09/11

Target Environment

Development Environment

IAR Embedded Workbench

MISRA Checking software

The MISRA C Compliance has been performed for the library
using MISRA C 2004 Rules in IAR Workbench development
environment.

MISRA Rule set applied

MISRAC 2004 Rule Set

Deviations from MISRA C Standards

QTouch acquisition method libraries

The QTouch acquisition method libraries were subject to the above mentioned MISRA
compliance rules. The following exceptions have not been fixed as they are required for the

implementation of the library.

Applicable | QTouch libraries version

Release 4.4

Rule No Rule Description Exception noted / How it is addressed

11 Rule states that all code This Rule is not supported as the library
shall conform to ISO 9899 implementation requires IAR extensions like
standard C, with no __interrupt. These intrinsic functions relate to
extensions permitted. device hardware functionality, and cannot

practically be avoided.

10.1 Rule states that implicit The library uses macros to combine symbol
conversion from Underlying definitions to form a unique expanded symbol
long to unsigned long name and in this, the usage of unsigned qualifiers

for numeric constants (e.g. 98u) causes name
mangling. This is the only occurrence of this error
in the library.

10.6 This Rule says that a 'U’ The library uses macros to combine symbol
suffix shall be applied to all definitions to form a unique expanded symbol
constants of 'unsigned' type | name and in this, the usage of unsigned qualifiers

for numeric constants (e.g. 98u) causes name
mangling. This is the only occurrence of this error
in the library.

14.4 Rule states that go-to The library uses conditional jump instructions to
statement should not be reduce the code footprint at a few locations and
used. this is localized to small snippets of code. Hence

this rule is not supported.
Rule states that In the There is one instance where the library breaks this
definition of a function-like rule where two macro definitions are combined to

19.10 macro, each instance of a form a different symbol name. Usage of
parameter shall be enclosed | parenthesis cannot be used in this scenario.
in parenthesis

19.12 Rule states that there shall There is one instance in the library where this rule
be at most one occurrence is violated where the library concatenates two
of the # or ## preprocessor macro definitions to arrive at a different definition.
operator in a single macro
definition

QMatrix acquisition method libraries

The QMatrix acquisition method software was subject to the above mentioned MISRA compliance
rules. The following exceptions have not been fixed as they are required for the implementation of

the library.

111

AIMEL

&

AIMEL

&

Applicable | QTouch libraries ver 4.4
release
Rule No Rule Description Exceptions Reason
11 Rule states that all code This Rule is not supported as the library
shall conform to 1ISO 9899 implementation requires IAR extensions like
standard C, with no __interrupt. These intrinsic functions relates to
extensions permitted. device hardware functionality, and cannot
practically be avoided
10.1 Rule states that lllegal The library uses macros to combine symbol
implicit conversion from definitions to form a unique expanded symbol
Underlying long to unsigned | name and in this, the usage of unsigned qualifiers
long for numeric constants (e.g. 98u) causes name
mangling. This is the only occurrence of this error
in the library.
10.6 This Rule says that a 'U’ The library uses macros to combine symbol
suffix shall be applied to all definitions to form a unique expanded symbol
constants of 'unsigned' type name and in this, the usage of unsigned qualifiers
for numeric constants (e.g. 98u) causes name
mangling. This is the only occurrence of this error
in the library.
Rule states that In the There is one instance where the library breaks this
definition of a function-like rule where two macro definitions are combined to
1910 macro, each instance of a form a different symbol name. Usage of _
' parameter shall be enclosed | parenthesis cannot be used in this scenario.
in parenthesis
19.12 Rule states that there shall There is one instance in the library where this rule
be at most one occurrence is violated where the library concatenates two
of the # or ## preprocessor macro definitions to arrive at a different definition.
operator in a single macro
definition

Known Issues

Issue

Cause Remedy / workaround

QMatrix Touch Sensing on XMEGA AVRs

The Pins PE6,PE7 and PF5 of
ATxmega<xxx>A3 devices do not work for
touch sensing when tested along with STK600

Suggested to use combinations with
other ports

GCC compiler Optimization issue with
QMatrix Libraries on ATtiny167

In case of QMatrix GCC library for ATtiny167,
few channels produces low signal and reference
value compared to other channels, when tested
with STK600.

Suggested to use the default
Optimization level of —OO0 for
ATtiny167 in case of GCC.

GCC Compiler Issue for ATmegal28RFA1
device

The Latest GCC WinAVR-20090313 is having
problems with ATmegal28RFA1 device. It
places the .data section to the memory location
0x800100 instead of 0x800200.

In the linker options for the GCC
project of ATmegal28RFAL device ,
the following options have to be
added:

-WI,--section-
start=.data=0x800200

112

8207K-AT42-09/11

The GCC example projects for QMatrix does not
compile the delay cycles
(QT_DELAY_CYCLES) above a value of 5
because of the preprocessor expansions.

Recommended to remove UL from
the preprocessor constants and in
the chain of macros used for
QT_DELAY_CYCLES. Valid for
QT_DELAY_CYCLES =5,10,25,50.

Compiling QT600 project files throws

unused variable warning.

These variables are available in
the debug protocol for future use.

When using IAR workbench for ATSAM to
integrate the touch libraries, the linker
would generate a warning indicating:

Warning[Lp005]: placement includes a mix
of sections with content (example "ro data
section .data_init in xfiles.o(dI7M_tl_if.a)")
and sections without content (example "rw
data section .data in xfiles.o(dI7M_tl_if.a)")

Warning[Lp006]: placement includes a mix
of writable sections (example "rw data
section .data in xfiles.o(dI7M_tl_if.a)") and
non-writable sections (example "ro data
section .data_init in xfiles.o(dI7M_tl_if.a)")

This is because
we link the
library in RW
data section.

Checklist

This section lists troubleshooting tips and common configuration tips.

Symptom Cause

Action

Sensors do not go into detect or
have unknown results
design

Multiplexing pins
used by QTouch
libraries in your

Check the Pins used for QTouch or
QMatrix acquisition methods do not
overlap with the applications usage
of the ports

Signal values report arbitrary
values

Stray capacitance

Check the sensor design and
minimize stray capacitance
interference in your design

Waveforms of charging /
discharging of channels do not
show up properly in oscilloscopes

JTAG ICE connected
to the board

Try disconnecting the JTAG ICE
completely from the kit

When using the example
applications, the debug values for
some of the channels does not
display appropriate values

JTAG Pins are
enabled in the target.

JTAG Pins are explicitly needs to
be disabled in the main.c file
/* disable JTAG pins */
MCUCR |= (1u << JTD);
MCUCR |= (1u << JTD)

AIMEL

&

113

AIMEL

&

Device Specific Libraries

Introduction

This section provides an overview of the usage of Device specific QTouch Libraries. Device
Specific Libraries have been provided for special devices, which are not covered as part of
Generic Libraries.

Devices supported

The following devices are covered by the Device Specific QTouch Libraries.
1. AT32UC3L family devices.
2. ATtiny20 and ATtiny40 device.

QTouch Library for AT32UC3L devices

ATMEL QTouch Library for UC3L can be used for embedding capacitive touch buttons, sliders
and wheels functionality into UC3L application. The QTouch Library for UC3L uses the Capacitive
Touch Module (CAT) that senses touch on external capacitive touch sensors.

This Section describes the QTouch Library Application Programming Interface (API) for QMatrix
and QTouch method acquisition using the AT32UC3L devices.

Salient Features of QTouch Library for UC3L

QMatrix method sensor

e N Touch Channels formed by an X by Y matrix require (X+2Y+1) physical pins (when
using internal discharge mode), N=X*Y. Please refer Figure 37 for pin requirements in
different modes.

e 1to 136 Touch Channels can be configured.
e Max X Lines =17, Max Y Lines = 8.

e Button is formed using 1 Touch Channel.

e Slider is formed using 3 to 8 Touch Channels.

e Wheel is formed using 3 to 8 Touch Channels.

QTouch method sensor
e 2 Physical pins per Touch Channel.
e QTouch Sensors can be divided into two groups Group A and Group B.
e Each QTouch group can be configured with different properties.
e 1to 17 Touch Channels can be configured.
e Button is formed using 1 Touch Channel.
e Slider is formed using 3 Touch Channels.

e Wheel is formed using 3 Touch Channels.

114 8207K-AT42-09/11

Autonomous QTouch sensor

e A Single QTouch sensor that is capable of detecting touch or proximity without CPU
intervention.

e Allows proximity or activation detection in low-power sleep modes.

Additional Features
e Standalone QMatrix, QTouch Group A/B or Autonomous QTouch operation.
e Support for operation of two or more methods at the same time.
0 Scenario 1: QMatrix and Autonomous QTouch method at the same time.

0 Scenario 2: QTouch Group A, QTouch Group B & Autonomous QTouch at the
same time.

0 Scenario 3: QMatrix, QTouch Group A/B and Autonomous QTouch at the same
time.

e Disable/Re-enable Sensors at any given time for reduced power consumption.

e Raw data acquisition mode without any post-processing of data.

e External synchronization to reduce 50 or 60 Hz mains interference.

e Spread spectrum sensor drive capability.

e QTouch Studio-Touch Analyzer support to fine tune touch implementation.

e AR and GCC Tool chain support.

¢ MISRA Compliant, MISRAC 2004 Rule Set.

e Single Library for QMatrix, QTouch Group A/B and Autonomous QTouch methods.

Device variants supported for UC3L

Below is the list of different devices in AT32UC3L family that is supported by the QTouch library.
1. AT32UC3L016
2. AT32UC3L032
3. AT32UC3L064

Following is the link to AT32UC3L family devices datasheet.

http://www.atmel.com/dyn/resources/prod documents/doc32099.pdf

For capacitive touch sensing module related information Refer to Chapter 28, “Capacitive touch
module (CAT)” of the datasheet.

Compiler tool chain support for UC3L

The QTouch libraries for AT32UC3L devices are supported for the following compiler tool chains.

Tool Version

IAR Embedded Workbench for Atmel AVR32.

IAR32 Compiler. 41

AVR32 Studio. 2.6.0

A IIIEL 115

&

http://www.atmel.com/dyn/resources/prod_documents/doc32099.pdf�
http://www.atmel.com/dyn/resources/prod_documents/doc32099.pdf�

AIMEL

&
&

Table 8 Compiler tool chains support for UC3L QTouch Library

Overview of QTouch Library API for UC3L
The diagram below captures the high level arrangement of the QTouch Library for UC3L API.

The QTouch Library for UC3L API can be used for Sensor configuration, Sensor Acquisition
parameter setting and Sensor Enable/Disable operations. Based on this input Sensor
configuration, the QTouch Library takes care of the initialization, configuration and acquisition
data capture operations using the CAT module. The UC3L CAT module interfaces with the
external capacitive touch sensors and is capable of performing QTouch and QMatrix method
acquisition. For an Overview of QMatrix and QTouch Capacitive Touch acquisition, refer Section
5.2.

The raw acquisition data from the CAT module is processed by the QTouch Library. The
Adjacent Key Suppression (AKS), Detect Integration mechanism, Drift compensation and
Automatic Recalibration components of the Touch Library aid in providing a robust Touch
performance. Once the raw acquisition data is processed, the individual Sensor Status and
Wheel/Slider position information is provided to the user by means of a measurement complete

callback operation.
QTouch Library for UC3L API Overview

ATMEL AT32UC3L

Touch Library API Touch Measure complete callback
provides measured data
and Touch status

QTouch Library

Sensor
Sensor Acquisition Sensor Sensor
Channel/Pin Disable/ Status/Position
. Parameter :
Configuration Re-enable reporting

Setting

Detect
Integration
mechanism

Automatic
Drift
compensation

Adjacent Key
Suppression™
(AKS™)

Automatic
Recalibration

Raw
Acquisition data

Program
CAT registers

%

Touch Channels

Capacitive Touch Button, Slider, Wheel Sensors

116 8207K-AT42-09/11

Figure 35 Overview diagram of QTouch Library for UC3L

Acquisition method support for UC3L

With the QTouch Library for UC3L, it is possible for a user to configure the following types of
Sensors.

e QMatrix method sensors.
e QTouch Group A method sensors.
e QTouch Group B method sensors.

e Autonomous QTouch sensor.

The QTouch Library for UC3L APl has been arranged such that it is possible for the user
application either to use any of the above method Standalone or two or more methods combined
together. The Table below captures the different API available under each method. For normal
operation, it is only required to use the Regular API set for each method. By using only the
Regular API set, it is possible to achieve reduced code memory usage when using the QTouch
Library. The Helper API is provided for added flexibility to the user application.

Acquisition method

Regular API

Helper API

QMatrix method API

touch_gm_sensors_init
touch_gm_sensor_config
touch_gm_sensors_calibrate
touch_gm_sensors_start_acquisition
touch_event_dispatcher

touch_gm_sensor_update_config
touch_gm_sensor_get_config
touch_gm_channel_update_burstlen
touch_gm_update_global_param
touch_gm_get_global_param
touch_gm_get_libinfo
touch_gm_sensor_get_delta
touch_deinit

QTouch Group A/B
method API

(The first parameter to the

QTouch API, allows

distinguish between QTouch
Group A and QTouch Group

B.)

touch_qt_sensors_init
touch_qt_sensor_config
touch_qt_sensors_calibrate
touch_qt_sensors_start_acquisition
to | touch_event_dispatcher

touch_qt_sensor_update_config
touch_qt_sensor_get_config
touch_qt_update_global_param
touch_qt_get_global_param
touch_qt_get_libinfo
touch_qt_sensor_get_delta
touch_qt _sensor_disable
touch_qt _sensor_reenable
touch_deinit

Autonomous QTouch API

touch_at_sensor_init
touch_at_sensor_enable
touch_at_sensor_disable

touch_at_sensor_update_config
touch_at_sensor_get_config
touch_at_get_libinfo
touch_deinit

Table 9 Acquisition method specific API

API State machine for UC3L

The QTouch Library State machine diagram captures the different library States, Events that are

allowed in each State and Event transition from one State to the other.

AIMEL

&

The QTouch Library

117

AIMEL

&

maintains the States of QMatrix, QTouch Group A and QTouch Group B methods independently.
This means that QMatrix can be in a state that is different from the state of QTouch Group A or B
and vice versa.

For the case of Autonomous QTouch, only the TOUCH_STATE_NULL and TOUCH_STATE_INIT
states apply in the State diagram.
e The touch_at _sensor_init event causes a transition from TOUCH_STATE_NULL to
TOUCH_STATE_INIT.
e The touch_deinit event causes a transition from TOUCH_STATE_INIT to
TOUCH_STATE_NULL.

QTouch Library for UC3L State Diagram

touch_xx_sensor_config

touch_xx_sensor_get_config touch_gm_channel_udpate_burstlen
touch_xx_get_global_param touch_qt_sensor_disable
touch_xx_get_libinfo touch_qt_sensor_reenable

A touch_xx_sensor_update_config
touch_xx_sensor_get_config

XX = qgm, qt touch_xx_update_global_param
Sensor state machine for QMatrix touch_xx_get_global_param
and QTouch GroupA/B touch_xx_get_libinfo

touch_gm_channel_udpate_burstlen
touch_xx_sensors_init touch_qgt_sensor_disable
touch_qt_sensor_reenable

TOUCH_
STATE_
CALIBRATE

touch_deinit touch_xx_sensors_calibrate

touch_xx_gensors_calibrate

touch_xx_sensor_update_config
touch_xx_sensor_get_config
touch_xx_update_global_param
Sors_start_acquisition ~ touch_xx_get_global_param
touch_xx_get_sensor_delta
touch_xx_get_libinfo

measurefcompletefcallbac}, -

(provide measured dataﬁmd

touch status) /
touch_xx_se

touch_deinit

TOUCH_
STATE_BUSY

touch_xx_get_libinfo

Figure 36 State Diagram of QTouch Library for UC3L
QMatrix method sensor operation for UC3L

QMatrix method pin selection for UC3L

Please refer AT32UC3L datasheet Table 28-2 Pin Selection Guide and Table 3-1 GPIO
Controller Function multiplexing, for mapping between the QMatrix method pin name and the
GPIO pin. lItis possible to configure a maximum of 17 X Lines and 8 Y-Yk pairs. The X Line X8
(PA16) cannot be used for the QMatrix method as it is required to use this pin for the ACREFN
function.

118 8207K-AT42-09/11

The CAT module provides an option to enable a nominal output resistance of 1kOhm on specific
CAT module pins during the burst phase. The Table below captures the different QMatrix method
pin wherein a Resistive Drive can be optionally enabled. The rows marked with Grey indicate
that Resistive Drive option is not available on that pin. By carefully choosing the QMatrix method
X and Yk pins wherein Resistive Drive can be enabled, saving on external components is
possible.

Section 6.3.1.1 provides detail on the number of Pin and Touch channels required for different
QMatrix method sensor. The hardware arrangement for Wheel or Slider must be such that all
Touch channels corresponding to the Wheel or Slider belong to the same Yk Line.

Also, Section 6.3.11 indicates the various Pin Configuration options for the QTouch Library that
can be used to specify a user defined configuration.

CAT Module Pin Name QMatrix method Pin Name
CSA0 X0
CSBO X1
CSAl YO
CSB1 YKO
CSA2 X2
CSB2 X3
CSA3 Y1
CSB3 YK1
CSA4 X4
CSB4 X5
CSA5 Y2
CSB5 YK2
CSA6 X6
CSB6 X7
CSA7 Y3
CSB7 YK3
CSAS8 X8
CSB8 X9
CSA9 Y4
CSB9 YK4
CSA10 X10
CSB10 X11
CSAl1 Y5
CSB11 YK5
CSA12 X12
CSB12 X13
CSA13 Y6
CSB13 YK6
CSA14 X14
CSB14 X15
CSA15 Y7
CSB15 YK7
CSA16 X16
CSB16 X17

Table 10 QMatrix Resistive drive pin option
(The rows marked with Grey indicate that Resistive Drive option is not available on that pin)

QMatrix method Schematic for UC3L

Internal Discharge mode
The CAT module provides an internal discharge arrangement for QMatrix method. When this
arrangement is used along with the Resistive drive capability, minimal external component is

A IIIEL 119

&

AIMEL

&

required as shown in the case A of Figure 27. When the Resistive drive is option is not enabled,
it is recommended to use 1kOhm resistors on X and Yk Lines external to the UC3L device. This
hardware arrangement is shown in case B.

External Discharge mode

When the External Discharge arrangement is used, a logic-level (DIS) pin is connected to an
external resistor (Rdis) that can be used to control the discharge of the Capacitors. A typical
value for Rdis is 100 kOhm. This value of Rdis will give a discharge current of approximately
1.1V/(100 kOhm) = 11 microAmp. The case C shows this arrangement. The Resistive drive
option on the X and Yk lines can be optionally enabled or disabled with this arrangement. When
the Resistive drive is option is not enabled, it is recommended to use 1kOhm resistors on X and
Yk Lines external to the UC3L device.

SMP Discharge Mode

When the SMP Discharge mode arrangement is used, a logic-level (SMP) pin is connected to the
capacitors through external high value resistors for the discharge of the capacitors. The case D
shows this arrangement. The Resistive drive option on the X and Yk lines can be optionally
enabled or disabled with this arrangement. When the Resistive drive is option is not enabled, it is
recommended to use 1kOhm resistors on X and Yk Lines external to the UC3L device.

VDIVEN Voltage Divider Enable option

The VDIV pin provides an option to make ACREFN a small positive voltage if required. The VDIV
pin is driven when the analog comparators are in use, and this signal can be used along with a
voltage divider arrangement to create a small positive offset on the ACREFN pin. The VDIVEN
option can be used optionally with any of the QMatrix modes discussed in the previous sections.
Typical values for Ra and Rb are Ra=8200 ohm and Rb = 50 ohm. Assuming a 3.3V I/O supply,
this will shift the comparator threshold by 3.3V*(Rb/(Ra+Rb)) which is 20 mV. The VDIVEN pin
option usage in the Internal Discharge mode scenario is shown in case E.

SYNC pin option

In order to prevent interference from the 50 or 60 Hz mains line the CAT can optionally trigger
QMatrix acquisition on the external SYNC input signal. The SYNC signal should be derived from
the mains line and the acquisition will trigger on a falling edge of this signal. The SYNC pin
option can be used with any of the QMatrix modes discussed in the previous sections. The
SYNC pin usage in the Internal Discharge mode scenario is shown in case F.

For QMatrix method SMP, DIS, VDIV and SYNC pin options discussed in this Section, Refer to
Section 6.3.15.2.13.

120 8207K-AT42-09/11

A. QMatrix Internal Discharge mode arrangement.
Resistive drive enabled on X and Yk Lines

Atmel
AT32UC3L

Sensors

G G-

I
xn G- GO
YOA
CAT Cso i csm
Module]’
Typical Values:
YmB CS:4.7nF
n -number of X Lines
m - number of Y Lines
1/0 Pin requirements:
ACIFB- X: QMatrix method X Line
ACREFN| YA: QMatrix method Yk Line

YB: QMatrix method Y Line
ACIFB-ACREFN: PA16 I/O pin

B. QMatrix Internal Discharge mode arrangement.
Resistive drive disabled on X and Yk Lines

Atmel
AT32UC3L

Sensors
RXO0 X, Y
g @*
« RXn
" G- -G
o RX0
YOA
vmA RXn
CAT cso i
Module ..—=CSm
YOB J Typical Values:
CS:4.7nF
YmB RX: 1kOhm
n - number of X Lines
m - number of Y Lines
1/0 Pin requirements:
ACIFB- X: QMatrix method X Line
ACREFN YA: QMatrix method Yk Line
YB: QMatrix method Y Line
ACIFB-ACREFN: PA16 I/O pin

C. QMatrix External Discharge mode arrangement.
Resistive drive enabled on X and Yk Lines

Atmel
AT32UC3L

Sensors

X,
‘
o &
YOA|
YmA i
CAT i
Module Csol _Lcsm
j Typical Values:

YOB CS:4.7nF

Rdis: 100kOhm
YmB
n -number of X Lines
m - number of Y Lines
Rdis

DIS|— VW 1/O Pin requirements:
X: QMatrix method X Line
YA: QMatrix method Yk Line

ACIFB- YB: QMatrix method Y Line
ACREF DIS: CAT-DIS IO pin

ACIFB-ACREFN: PA16 I/O pin

D. QMatrix SMP Discharge mode arrangement.
Resistive drive disabled on X and Yk Lines

Atmel
AT32UC3L

Sensors

RX0 X, Y
@
RXn
X G- GO
RX0
YOA
vmA RXn
CAT i
Module | CSOL _LCSm
T Typical Values:
YOB CS:4.7nF
RX: 1kOhm
RYB: 1kOhm
Ym8 RYBO RYBm
n -number of X Lines
m - number of Y Lines
SMP Q 1/0 Pin requirements:
X: QMatrix method X Line
ACIFB- YA: QMatrix method Yk Line
YB: QMatrix method Y Line
ACREFN 7‘7 SMP: CAT-SMP 10 pin

ACIFB-ACREFN: PA16 I/O pin|

E. QMatrix Internal Discharge mode arra
with Volage Divider option enabled.

Resistive drive enabled

Atmel
AT32UC3L

X2

Xn

on X and Yk Lines

)

ngement

Sensors

Sensor
0.0

YOA
YmA

CAT
Module

YOB

YmB C

R
R

VDIVEN

ACIFB-
ACREFN

Typical Values:

/0 Pin requirements:

n
m - number of Y Lines
Ra
X: QMatrix method X Line
Rb YA: QMatrix method Yk Line
YB: QMatrix method Y Line
VDIVEN: CAT-VDIVEN IO pin
ACIFB-ACREFN: PA16 I/O pin

S:4.7nF
a: 16500 Ohm
b: 50 Ohm

-number of X Lines

Vo |

F. QMatrix Internal Dischal

with Extern
Resistive d

al Sync opti
rive enabled

Atmel
AT32UC3L

X2

Xn|

YOA
YmA
CAT
Module
YOB

YmB

ACIFB-
ACREFN

AIMEL

SYNC|le——

rge mode arrangement

on enabled.

on X and Yk Lines

|

Sensors

&

—0¢

signal

N

tat

Synchronize

Typical Values:
CS:4.7nF

n - number of X Lines
m - number of Y Lines

1/0 Pin requirements:

X: QMatrix method X Line
YA: QMatrix method Yk Line
YB: QMatrix method Y Line
SYNC: CAT-SYNC IO pin
ACIFB-ACREFN: PA16 I/O pin|

&

121

AIMEL

Figure 37 QMatrix method schematic

QMatrix method hardware resource requirement for UC3L

The clock for the CAT module, CLK_CAT, is generated by the Power Manager (PM). This clock is
turned on by default, and can be enabled and disabled in the PM. The user must ensure that
CLK_CAT is enabled before initializing the QTouch Library.

QMatrix operations also require the CAT generic clock, GCLK_CAT. This generic clock is
generated by the System Control Interface (SCIF), and is shared between the CAT and the
Analog Comparator Interface. The user must ensure that the GCLK_CAT is enabled in the SCIF
before using QMatrix functionality. For proper QMatrix operation, the frequency of GCLK_CAT
must be less than one fourth the frequency of CLK_CAT.

For QMatrix operation, the Analog comparators channels are used (using the ACIFB interface)
depending on the Y Lines enabled. See Note 4 in Section 6.3.7.4.

The QMatrix method acquisition using the CAT module requires two Peripheral DMA channels
that must be provided by the application.

QMatrix method Channel and Sensor numbering for UC3L

ChoO|]i chaigimi chis[|]} chi2
X0 NEZ
X1 chi Ch 5§\ Chi9 Chi13
Z
o 4 0 © ROTOR/
: : : SLIDER
%2 Ch2 |& cheigmaiChiol ¥ chi14|®
N
X3 Ch3 Ch 7% ch 11 Chi15
<J N U L N
o

YkO Yki Yk2 Yk3
Figure 38 QMatrix channel numbering for UC3L

The above figure represents a typical 4 X 4 matrix of QMatrix sensor arrangement along with the
channel numbers. The Channel numbering starts with Channel 0 (ChQ) and increase sequentially
from ChO to Ch15. Similarly the Sensor numbering starts with Sensor 0. The Channel number
signifies the order in which the QTouch Library stores the acquisition data in the memory.

Note: The touch_gm_sensor_config API must follow the above Channel and Sensor numbering
when configuring the Sensors.

122 8207K-AT42-09/11

QMatrix method API Flow for UC3L

For the QMatrix operation, the CAT_CLK and GCLK_CAT clocks must be setup appropriately as
a first step. The QMatrix and Common configuration parameters in the touch_config_at32uc3l.h
configuration must then be set up.

Using the init_clock() in main.c and clock.c files,
Set the CAT_CLK Clock to appropriate value.
Set the GCLK_CAT Clock to appropriate value.

'

Using the touch_config_at32uc3l.h configuration file,

Set DEF_TOUCH_QMATRIX = 1.

Set all QM_xx and TOUCH_xx macros to appropriate values.

(This includes 2 peripheral DMA Channels required for QMatrix operation.)

In the main.c file,

Set appropriate gm_burst_length[] values corresponding to all Touch channels .
Set the desired measurement_period_ms for Touch measurement.

C touch_gm_sensors_init())

Configure multiple ¢
QMatrix sensors
touch_gm_sensors_config()
Ctouch_qm_sensors_calibrate())

—

Callin loop (touch_event_dispatcher() >---

time_to_
measure_touch

.--.>< filter_callback(), if enabled >

touch_gm_sensors_start_ ~ \ measure_complete_callback(),
acquisition(NORMAL_ACQ_MODE) measured data and Touch Status
(Host Application code)

ATMEL 123

o

ceccccccccccccccanaqy

AIMEL

Figure 39 QMatrix API Flow diagram for UC3L

The burst length values of each Touch channel must be specified using the gm_burst_length[]
array in the main.c file. The burst length must be specified in the same order of Touch Channel
numbering.

The touch_gm_sensors_init API initializes the QTouch Library as well as the CAT module and
does the QMatrix method specific pin, register and Global Sensor configuration. The
touch_gm_sensor_config APl is used to configure individual sensor. The Sensor specific
configuration parameter can be provided as input to this API.

The touch_gm_sensors_calibrate API is used to calibrate all the configured sensors thereby
preparing the sensors for acquisition. The touch_gm_sensors_start_acquisition API initiates a
QMatrix method measurement on all the configured Sensors. This API takes the peripheral DMA
channels as an input. When a filter_callback function is enabled, the touch_event_dispatcher
function calls the filter_callback function as soon as the raw acquisition data from the Sensors is
available. The user can now optionally apply any filtering routine on the raw acquisition data
before the QTouch Library does any processing on this data. (For an overview of Filter callback
usage, refer Section 5.6.6.4 Example code). Once the QTouch Library has finished processing
the acquisition data from Sensors, the touch_event dispatcher function calls the
measure_complete_callback function indicating the end of a single Touch measurement
operation. The measure_complete_callback provides the measured data and Touch status
information. The measured data is available in the same order of Touch Channel numbering.

Note 1: The Host Application code can execute once a QMatrix acquisition is initiated with the
touch_gm_sensors_start_acqusition APIl. Care must be taken in the Host Application such that
the touch_event_dispatcher function is called frequently in order to process the acquired data.
For a single Touch measurement operation (between a touch_gm_sensors_start_acquisition API
call and the measure_complete_callback function being called), the touch_event_dispatcher
function may execute multiple times in order to resolve the Touch status of Sensors. Failing to
call the touch_event_dispatcher frequently can adversely impact the Touch Sensitivity.

Note 2: Once the Touch Library has been initialized for QMatrix method using the
touch_gm_sensors_init API, a new gm_burst length[x] value of a Touch channel must be
updated only using the touch_gm_channel_update_burstlen API. It is recommended to have
gm_burst_length array as global variable as the Touch Library updates this array when the
touch_gm_channel_update_burstlen API is called.

Note 3: QMatrix burst length setting recommendation.

For a given X Line, the burst length value of ALL enabled Y Lines MUST be the same or set to
0x01(disabled). For example, the burst length value corresponding to (X0,Y1),(X0,Y2)...(X0,Yn)
must be the same. In case of a scenario, wherein it is required to have a different a burst length,
then the following option can be tried out - Enable the 1k ohm drive resistors on all the enabled Y
lines by setting the corresponding bit in the CSARES register.

Note 4: For QMatrix operation, the Analog comparators channels are used (using the ACIFB
interface) depending on the Y Lines enabled. For example, when Y lines Y2 and Y7 are enabled
the Analog comparator channels 2 and 7 are used by the CAT module for QMatrix operation.
The user can uses the rest of the Analog comparator channels in the main application. The
QTouch Library enables the ACIFB using the Control register (if not already enabled by the main
application) when the touch_gm_sensors_init APl is called.

124 8207K-AT42-09/11

QMatrix method Disable and Re-enable Sensor for UC3L

The touch_gm_channel_update burstlen APl can be used for Disabling and Re-enabling of
QMatrix Sensors. In order to Disable a sensor, the QMatrix burst length value of all the Touch
Channels corresponding to the Sensor must be setto 1. For Example, when a Wheel or Slider is
composed of 4 Touch Channels, the touch_gm_channel_update_burstlen API should be used to
set the burst length of all the 4 Touch Channels to 1. For the case of a Button,
touch_gm_channel_update_burstlen API should be used to set burst length of the corresponding
single Touch Channel of the Button to 1. Similarly, when re-enabling a Sensor, appropriate burst
length must be set to all the Touch channels corresponding to the Sensor.

When a QMatrix Sensor is Disabled or re-enabled, it is mandatory to force Calibration on all
Sensors. The Calibration of all Sensors is done using the touch_gm_sensors_calibrate API.

Note: When disabling a Wheel or Slider, care must be taken to set the burst length of all the
Touch channels corresponding to the Wheel or Slider to 1. If any of the Touch channels are
missed out, it may result in undesired behavior of the Wheel or Slider. Similarly when re-enabling
a Wheel or Slider, burst length of all the Touch channels corresponding to the Wheel or Slider
must be set to an appropriate value. If any of the Touch Channels are left disabled with a burst
length value 1, it may result in undesired behavior of Wheel or Slider.

QTouch Group A/B method sensor operation for UC3L

QTouch Group A/B method pin selection for UC3L

Please refer AT32UC3L datasheet Table 28-2 Pin Selection Guide and Table 3-1 GPIO
Controller Function multiplexing, for mapping between the QTouch method pin name
(SNS/SNSK) and the GPIO pin. The CAT module provides an option to enable a nominal output
resistance of 1kOhm on specific CAT module pins during the burst phase. The Table below
captures the different QTouch method pin wherein a Resistive Drive can be optionally enabled.
The rows marked with Grey indicate that Resistive Drive option is not available on that pin. By
carefully choosing the QTouch method SNSK pins wherein Resistive Drive can be enabled,
saving on external components is possible. Section 6.3.1.2 provides detail on the number of Pin
and Touch channels required for different QTouch method sensor. Also, Section 6.3.11 indicates
the various Pin Configuration options for the QTouch Library that can be used to specify a user
defined configuration.

A IIIEL 125

AIMEL

&

CAT Module Pin Name QTouch method Pin Name
CSA0 SNSO
CSBO SNSKO
CSAl SNS1
CsB1 SNSK1
CSA2 SNS2
CSB2 SNSK2
CSA3 SNS3
CSB3 SNSK3
CSA4 SNS4
CSB4 SNSK4
CSAS5 SNS5
CSB5 SNSK5
CSA6 SNS6
CSB6 SNSK6
CSA7 SNS7
CSB7 SNSK7
CSA8 SNS8
CSB8 SNSK8
CSA9 SNS9
CSB9 SNSK9
CSA10 SNS10
CSB10 SNSK10
CSAl1 SNS11
CSB11 SNSK11
CSA12 SNS12
CSB12 SNSK12
CSA13 SNS13
CSB13 SNSK13
CSA14 SNS14
CSB14 SNSK14
CSA15 SNS15
CSB15 SNSK15
CSA16 SNS16
CSB16 SNSK16

Table 11 QTouch Resistive drive pin option
(The rows marked with Grey indicate that Resistive Drive option is not available on that pin.)

QTouch Group A/B method Schematic for UC3L

Resistive Drive option

The cases A and B of the Figure provide the schematic arrangement of QTouch Group A/B and
Autonomous QTouch Sensors. In option A, Resistive drive is enabled on SNSK line. In case B,
Resistive drive is disabled on the SNSK line and in this case, it is recommended to use 1kOhm
resistors on SNSK Line external to the UC3L device.

SYNC pin option

In order to prevent interference from the 50 or 60 Hz mains line the CAT can optionally trigger
QTouch Group A/B and Autonomous QTouch acquisition on the external SYNC input signal. The
SYNC signal should be derived from the mains line and the acquisition will trigger on a falling

126 8207K-AT42-09/11

edge of this signal. The SYNC pin usage in the Internal Discharge mode scenario is shown in
case C. For QTouch method SYNC pin options Refer to Section 6.3.15.2.13.

A. QTouch Group A/B and Autonomous QTouch arrangement.

B. QTouch Group A/B and Autonomous QTouch arrangement.
Resistive drive enabled on SNSK Line.

Resistive drive disabled on SNSK Line.

Atmel

Atmel
AT32UC3L AT32UC3L Rs
SNSK| Sensor SNSK|
CAT CAT
Module Module
Cs Cs
SNS| SNS|

Typical Values:

Typical Values:
Cs: 22nF

Cs: 22nF, Rs:1kOhm

Pin requirements:
SNS: CAT QTouch method I/O pin
SNSK: CAT QTouch method I/0 pin

Pin requirements:
SNS: CAT QTouch method I/O pin
SNSK: CAT QTouch method I/0 pin

C. QTouch Group A/B and Autonomous QTouch arrangement.
Resistive drive enabled on SNSK Line.
External Synchronization enabled.

Atmel
AT32UC3L
SNSK| Sensor
CAT
Module
Cs
SNS
Typical Values:
Cs: 22nF
SYNC|«— Pin requirements:
Sync

g SNS: CAT QTouch method I/O pin
signal SNSK: CAT QTouch method 1/O pin
SYNC: CAT-SYNC /O pin

Figure 40 QTouch Group A/B and Autonomous QTouch schematic
arrangement

QTouch Group A/B method hardware resource requirement for UC3L

The clock for the CAT module, CLK_CAT, is generated by the Power Manager (PM). This clock is

turned on by default, and can be enabled and disabled in the PM. The user must ensure that
CLK_CAT is enabled before initializing the QTouch Library.

A IIIEL 127

&

AIMEL

&

The QTouch method acquisition using the CAT module requires one Peripheral DMA channel
that must be provided by the application.

QTouch Group A/B method Channel and Sensor numbering for UC3L

/

ATMEL
AT32UC3L

.

\

SNS2

SNSK2

SNS3
SNSK3

Sensor 0

SNS5

SNSK5

SNS9

SNSK9

channel 0 i
channel 1 i
channel 2 i
channel 3 i

Q Sensor 1

Figure 41 QTouch method Channel/Sensor numbering

The above Figure represents an example 4 Channel QTouch sensor arrangement along with the
channel numbers. The Channel numbering starts with the lowest SNS-SNSK QTouch method
pair number (SNS2-SNSK2 being the least in this case) and increases as the SNS-SNSK pair
number increases. Similarly the Sensor numbering starts with Sensor 0. The Channel number
signifies the order in which the QTouch Library stores the acquisition data in the memory.

/

ATMEL
AT32UC3L

\

SNS2

SNSK2

SNS3

QTouch Grp A

SNSK3

SNS5

Sensor 0

SNSK5

SNS6

SNSK6

QTouch Grp B

SNS7

SNSK7

Sensor 0

SNS9

SNSK9

h h |
QTouch Grp A Channel 0 —_
1
QTouch Grp A Channel 1 —_
QTouch Grp A Channel 2
—_
QTouch Grp B Channel 0
—
N
Touch Grp A Channel 3
Q p I
1
Touch Grp B Channel 1
Q p -

Q QTouch Grp A
Sensor 1

QTouch Grp B

128

Sensor 1

8207K-AT42-09/11

Figure 42 QTouch method Channel/Sensor numbering when Group A and B
are used together

When both QTouch Group A and QTouch Group B method are used at the same time, the SNS-
SNSK pairs associated with the individual group alone must be taken into consideration when
determining the Channel number.

Note: The touch_qt _sensor_config APl must follow the above Channel and Sensor numbering
when configuring the Sensors.

QTouch Group A/B method API Flow for UC3L

For the QTouch operation, the CAT_CLK must be setup appropriately as a first step. Depending
on QTouch Group that need to be used, the QTouch Group A, QTouch Group B and Common
configuration parameters in the touch_config_at32uc3l.h configuration must then be set up.

The first input argument to the QTouch API, TOUCH QT_GRP_A or TOUCH_ QT _GRP_B
indicates if the QTouch APl must perform the necessary operation on Group A Sensors or Group
B Sensors. The touch_gt_sensors_init API initializes the QTouch Library as well as the CAT
module and does the QTouch method specific pin, register and Global Sensor configuration. The
touch_qgt _sensor_config API is used to configure individual sensor. The Sensor specific
configuration parameter can be provided as input to this API.

The touch_qgt_sensors_calibrate API is used to calibrate all the configured sensors thereby
preparing the sensors for acquisition. The touch_qt_sensors_start acquisition API initiates a
QTouch method measurement on all the configured Sensors (corresponding to the input Touch
Group A or B). This API takes the peripheral DMA channels as an input. When a filter_callback
function is enabled, the touch_event_dispatcher function calls the filter_callback function as soon
as the raw acquisition data from the Sensors is available. The user can now optionally apply any
filtering routine on the raw acquisition data before the QTouch Library does any processing on
this data. (For an overview of Filter callback usage, refer Section 5.6.6.4 Example code). Once
the QTouch Library has finished processing the acquisition data from Sensors, the
touch_event_dispatcher function calls the measure_complete_callback function indicating the end
of a single Touch measurement operation. The measure_complete_callback provides the
measured data and Touch status information. The measured data is available in the same order
of Touch Channel numbering. Separate Filter and Measure complete callback functions must be
provided for Group A and Group B Sensors.

Note: The Host Application code can execute once a QTouch acquisition is initiated with the
touch_gt_sensors_start_acqusition APIl. Care must be taken in the Host Application such that the
touch_event_dispatcher function is called frequently in order to process the acquired data. For a
single Touch measurement operation (between a touch_qgt_sensors_start_acquisition API call
and the measure_complete_callback function being called), the touch_event_dispatcher function
may execute multiple times in order to resolve the Touch status of Sensors. Failing to call the
touch_event_dispatcher frequently can adversely impact the Touch Sensitivity.

ATMEL 129

&

130

AIMEL

&

Using the init_clock() in main.c and clock.c files,
Set the CAT_CLK Clock to appropriate value.

'

Using the touch_config_at32uc3l.h configuration file,

Set DEF_TOUCH_QTOUCH_GRP_A =1, if QTouch Group A is to be used.
Set DEF_TOUCH_QTOUCH_GRP_B =1, if QTouch Group B is to be used.
Set all QTA_xx (if Group A is enabled) to appropriate values.

Set all QTB_xx (if Group B is enabled) to appropriate values.

Set all TOUCH_xx macros to appropriate values.

(This includes 1 peripheral DMA Channels required for QTouch operation.)

In the main.c file,

Set the desired measurement_period_ms for Touch measurement.

The API Sequence below must be repeated for Group A and Group B when both the
Groups are used at the same time. The first argument to the API
TOUCH_QT_GRP_A or TOUCH_QT_GRP_B distinguishes between Group A and
Group B operations. Separate Filter and Measurement complete callback functions
must be provided for Group A and Group B Sensors.

(touch_qt_sensors_init() >

Configure multiple i
QTouch sensors
touch_qt_sensors_config()
C touch_qt_sensors_calibrate())

— ¥

Callin loop C touch_event_dispatcher() >---

time_to_
measure_touch

=~

touch_qt_sensors_start_ .
acquisition(NORMAL_ACQ_MODE)

f Host Apbplication code \

measure_complete_callback(),
measured data and Touch Status

---->< filter_callback(), if enabled)

Figure 43 QTouch method API Flow diagram

QTouch Group A/B method Disable and Re-enable Sensor for UC3L

The touch_qgt_sensor_disable and touch_qt_sensor_reenable API can be used for Disabling and
Re-enabling of QTouch Group A and Group B Sensors. In order to Disable or re-enable a
sensor, the APl must be called with the corresponding sensor_id. Disabling a Sensor disables
the measurement process on all the Touch Channels corresponding to Sensor.

When a QTouch Sensor is Disabled or re-enabled, it is mandatory to force Calibration on all
Sensors. The Calibration of all Sensors is done using the touch_qt_sensors_calibrate API.

Autonomous QTouch sensor operation for UC3L

Autonomous QTouch Sensor pin selection for UC3L

The Autonomous QTouch Sensor pin selection is similar to selection of pin for QTouch Group A/B
as indicated in Section 6.3.8.1. Any one SNS-SNSK pair between SNS0-SNSKO and SNS16-
SNSK16 can be chosen to function as an Autonomous QTouch sensor.

Autonomous QTouch sensor Schematic for UC3L

The Autonomous QTouch Sensor Sensor schematic is similar QTouch schematic as indicated in
Section 6.3.8.2.

Autonomous QTouch method hardware resource requirement for UC3L

The clock for the CAT module, CLK_CAT, is generated by the Power Manager (PM). This clock is
turned on by default, and can be enabled and disabled in the PM. The user must ensure that
CLK_CAT is enabled before initializing the QTouch Library for Autonomous QTouch.

For the Autonomous QTouch Sensor, the complete detection algorithm is implemented within the
CAT module. This allows detection of proximity or touch without CPU intervention. Since the
Autonomous QTouch Sensor operates without software interaction, this Sensor can be used to
wakeup from sleep modes when activated. The Autonomous QTouch Status change interrupt
can be used to wakeup from any of the Sleep modes shown in the Table. The ‘Static’ Sleep
mode being the deepest possible Sleep mode from which a wake up from Sleep is possible using
the Autonomous QTouch. Both an IN_TOUCH status change and OUT_OF_TOUCH status
change indication is available when using Autonomous QTouch.

The Autonomous QTouch method acquisition using the CAT module does not require any
Peripheral DMA channel for operation.

Sleep PBA,B Clock BOD & Voltage
Mode CPU HSB GCLK sources 0Osc32 RCSYS Bandgap Regulator
Idle Stop Run Run Run Run Run On Full power
131

AIMEL

&

AIMEL

&

Frozen Stop Stop Run Run Run Run On Full power
Standby Stop Stop Stop Run Run Run On Full power
Stop Stop Stop Stop Stop Run Run On Low power
DeepStop Stop Stop Stop Stop Run Run Off Low power
Static Stop Stop Stop Stop Run Stop Off Low power

Table 12 Sleep mode support for Autonomous QTouch

Autonomous QTouch Sensor API Flow for UC3L

For the Autonomous QTouch operation, the CAT_CLK must be setup appropriately as a first step.
The Autonomous QTouch and Common configuration parameters in the touch_config_at32uc3l.h
configuration must then be set up.

The touch_at_sensors_init API initializes the QTouch Library as well as the CAT module for the
Autonomous QTouch sensor related pin, register and Global Sensor configuration. The
Autonomous QTouch Sensor can be enabled at any time by the Host Application. Once the
Autonomous QTouch Sensor is enabled, the CAT module performs measurements on this sensor
continuously to detect a Touch Status. When an IN_TOUCH or OUT_OF TOUCH status is
detected, the QTouch Library calls the touch_at_status_change_interrupt_callback function to
indicate the status to the Host application. It is possible to enable and disable Autonomous
QTouch sensor multiple times in the Host application by using the touch_at_sensor_enable and
touch_at_sensor_disable API.

Using the init_clock() in main.c and clock.c files,
Set the CAT_CLK Clock to appropriate value.

!

Using the touch_config_at32uc3l.h configuration file,
Set DEF_TOUCH_AUTONOMOUS_QTOUCH = 1.
Set all AT_xx and TOUCH_xx macros to appropriate values.

(touch_at_sensor _init() >
The callback is called as long

as Autonomous QTouch
sensor is not disabled

Re-enable Autonomous touch_at_sensor_enable() F---nn--- touch_at_status_change_interrupt_callback(),
QTouch Sensor if required — = - Autonomous QTouch Status

Disable Autonomous
QTouch Sensor if required

touch_at_sensor_disable())

132 8207K-AT42-09/11

Figure 44 Autonomous QTouch API Flow diagram

Autonomous QTouch method Enable and Disable Sensor for UC3L

The touch_at _sensor_enable and touch_at sensor_disable API can be used for Enabling and
Disabling and the Autonomous QTouch Sensor. Once the Autonomous QTouch sensor is
enabled, the CAT module performs continuous Touch Measurements on the Sensor in order to
detect the Touch Status.

Raw acquisition mode support for UC3L

The QTouch Library Raw acquisition mode can be used with QMatrix, QTouch Group A and
QTouch Group B methods. When raw data acquisition mode is used, once the raw acquisition
data is available from the CAT module for all the sensors, the measure_complete_callback
function is immediately called with acquisition data (channel_signals). The channel_references,
sensor_states and rotor_slider_values data are not updated by the Touch Library in this mode.

C touch_xx_sensors_init())

Configure multiple ¢
sensors
touch_xx_sensors_config()

< touch_xx_sensors_calibrate() >

—y

Callin loop C touch_event_dispatcher() > -------- ><mea?;\?v—ggglﬂitgﬁc;:g%k(),)

time_to_
measure_touch

touch_xx_sensors_start_
acquisition(RAW_ACQ_MODE)
i 133
C Host Application code

AIMEL

&

Figure 45 Raw acquisition mode APl Flow diagram

Library Configuration parameters for UC3L

The QTouch Library for UC3L provides a single configuration header file touch_config_at32uc3l.h
file for setting the various configuration parameters for each method. The different configuration
parameters corresponding to QMatrix, QTouch Group A/B and Autononmous QTouch sensors
are listed in the Table below.

Paramete QMatrix QTouch Group A/B Autonomous
r QTouch

QM_NUM_X_LINES

Sensor QM_NUM_Y_LINES QTx_NUM_SENSORS None

Configuration | QM_NUM_SENSORS QTx_NUM_ROTORS_SLIDERS
QM_NUM_ROTORS_SLIDERS

Pin QM_X_PINS_SELECTED

Configuration QM_Y_PAIRS_SELECTED QTx_SP_SELECTED AT_SP_SELECTED
QM_SMP_DIS_PIN_OPTION
QM_VDIV_PIN_OPTION
QM_GCLK_CAT_DIV AT_CAT_CLK_DIV
QM_CAT_CLK_DIV AT_CHLEN
QM_CHLEN AT_SELEN
QM_SELEN QTx_CAT_CLK_DIV AT_DILEN
QM_CXDILEN QTx_CHLEN AT_DISHIFT
QM_DILEN QTx_SELEN AT_MAX_ACQ_COUN

Clock and QM_DISHIFT QTx_DILEN T

Register QM_MAX_ACQ_COUNT QTx_DISHIFT AT_ENABLE_SPREAD

Configuration | QM_CONSEN QTx_MAX_ACQ_COUNT _ SPECTRUM
QM_INTREFSEL QTx_ENABLE_SPREAD _SPECTRU | AT_ENABLE_
QM_INTVREFSEL M EXTERNAL_SYNC
QM_ENABLE_SPREAD_SPECTRU | QTx_ENABLE_EXTERNAL_SYNC AT_FILTER
M AT_OUTSENS
QM_ENABLE_EXTERNAL_SYNC AT_SENSE
QM_SYNC_TIM AT_PTHR

134

8207K-AT42-09/11

AT_PDRIFT
AT_NDRIFT
Peripheral
DMA QM_DMA_CHANNEL_0
Channel OM_DMA_CHANNEL 1 QTX_DMA_CHANNEL_0 None
Configuration
Global QM_DlI QTx_DI
acquisition QM_NEG_DRIFT_RATE QTx_NEG_DRIFT_RATE
parameter QM_POS_DRIFT_RATE QTx_POS_DRIFT_RATE
Configuration | QM_MAX_ON_DURATION QTx_MAX_ON_DURATION None
QM_DRIFT_HOLD_TIME QTx_DRIFT_HOLD_TIME
QM_POS_ RECAL_DELAY QTx_POS_RECAL_DELAY
QM_RECAL_THRESHOLD QTx_RECAL_THRESHOLD
Callback
Function QM_FILTER_CALLBACK QTx_FILTER_CALLBACK None
Configuration
gznmfgjrnaﬁon TOUCH_SYNC_PIN_OPTION, TOUCH_SPREAD_SPECTRUM MAX_DEV,
: TOUCH_CSARES, TOUCH_CSBRES
Options

Table 13 QTouch Library for UC3L Configuration parameters

For an overview of the Global acquisition configuration parameters and Sensor specific
parameters, refer Section 5.3 and Section 5.4. The detailed information on other parameters is
available in the configuration header file. For QMatrix method Design guidelines regarding
Sensor parameters refer Section 5.6.7.3.

Example projects for QTouch Library for UC3L

Example Project usage

The GNU Example projects can be imported to the AVR32 Studio using the following menu
option - ‘File->Import->Existing Projects into Workspace’ and ‘Select root directory’.

i w0 &S I -a . =
o =z

= i et ueonemous at_aangle Import Projects o &£
12 w3 anu ok _arp_a_examole Select a drecony oo sesrch for axstng Eclise projects &

|

(% Soloct rook drectory: [\esaple_profects\ucal gru_an sk ecancle] | Brovsa...
© seesarchefie | oo
Projects

FE o arm am_sk_svamsle [\Frogam Fles| el oel Qo Salect Al

Deseloct A1

Refrosh

L]
I Capy projacts into workepace
. = [woring
£ protlems | — B-ri--8
Wocaesogs | |0
3 = o e ==

14 ueal_onu_ce_om_a_sxaniple

A IIIEL 135

&

AIMEL

&

Figure 46 GNU Example project usage with AVR32 Studio
The IAR Example Projects can be used with IAR Embedded Workbench for AVR32 v3.3. The IAR
Example project gives a Compilation error when building with IAR Embedded Workbench for
AVR32 v3.3. The fix for this Compilation error is available in the ‘IAR_Build_Error_Fix.txt’
provided in each of the IAR Example project.

Rady Errors 1), Wamrseaps

Figure 47 IAR Example project usage with IAR Embedded Workbench for
AVR32

QMatrix Example Project

The QMatrix method GNU and IAR Example projects can be found in the following path.
\Device_Specific_Libraries\32bit AVR\UC3L\example_projects\uc3l_gnu_gm_ek example and
\Device_Specific_Libraries\32bit_ AVR\UC3L\example_projects\uc3l_iar_gm_ek example

The QMatrix Example projects demonstrate the QMatrix operation on the UC3L Evaluation Kit
(Rev 2). QMatrix SMP discharge mode hardware arrangement is used for the UC3L Evaluation
Kit with 6 X Lines and 2 Y Lines. Using the 12 Touch Channels (6x2), 6 Touch Sensors are
formed that include a Rotor (that uses six Touch Channels) and 5 keys (each using one Touch
channel).

The Example projects demonstrate the QMatrix measured data and Touch Status usage using
the LED Demo application. The onboard LEDO, LED1, LED2 and LEDS3 are set when the Touch
Position of the Rotor position varies from 0 to 255. By Touching the up key (%), left key (<),
play/pause key (>/||) and right key (>), the LEDO, LED1, LED2 and LED3 can be individually
cleared. When the down key (v) is touched, it clears all LEDs.

QTouch Group A Example Project

The QTouch Group A method GNU and IAR Example projects can be found in the following path.
\Device_Specific_Libraries\32bit AVR\UC3L\example_projects\uc3l_gnu_qgt_grp_a_ example and

\Device_Specific_Libraries\32bit_ AVR\UC3L\example_projects\uc3|_iar_qgt_grp_a_example

136 8207K-AT42-09/11

The QTouch Group A Example projects demonstrate the QTouch method APl usage with a
Rotor, Slider and two keys Sensor configuration.
Autonomous QTouch Example Project

The Autonomous QTouch Sensor GNU and IAR Example projects can be found in the following
path.

\Device_Specific_Libraries\32bit_ AVR\UC3L\example_projects\
uc3l_gnu_autonomous_qt_example and

\Device_Specific_Libraries\32bit_ AVR\UC3L\example_projects\
uc3l_iar_autonomous_qt_example

The Autonomous QTouch Example projects demonstrate the Autonomous QTouch Sensor API
usage. The Example projects also demonstrate wake up from Sleep mode using the
Asynchronous Timer peripheral event.

Note 1: The Example Projects also support relaying the Touch Sensor debug information to the
“QTouch Studio — Touch Analyzer” PC Software. The QTouch Studio can also be used for
setting the Sensor and Global configuration parameters of the QTouch Library at run-time.

The QTouch Studio can be downloaded from the following path.

http://www.atmel.com/products/touchsoftware/qtouchsuite.asp?family id=702

The QDebug two-way debug protocol used by the Example project to communicate (transmit or
receive touch debug data) with the QTouch Studio can be found in the following installation path.

\Device_Specific_Libraries\32bit_ AVR\UC3L\qdebug

e For the UC3L Evaluation kit (uc3l_xx_gm_ek_example Example project) to connect with
the QTouch Studio using the USB interface, the UC3B MCU on the UC3L Evaluation kit
must be Flashed with ISP and Program binaries. The procedure to flash the binaries is
available in the readme note in the following path.

\Device_Specific_Libraries\32bit_ AVR\UC3L\example_projects\uc3l_gnu_gm_ek_exampl
e\ uc3b\readme.txt or

\Device_Specific_Libraries\32bit_ AVR\UC3L\example_projects\uc3l_iar_gm_ek_example
\ uc3b\readme.txt

e For the case of QTouch Group A and Autonomous QTouch Example projects, the
‘QT600-USB Bridge' board can be use to capture the QDebug debug data in the QTouch
Studio.

Note 2: In order to flash the generated elf binary file for GNU and IAR, the following command
can be used from the Command Line.

avr32program --part UC3L064 program -finternal@0x80000000 -e --run -R -cint
uc3l_gnu_gm_ek_example.elf

Code and Data Memory requirements for UC3L

QMatrix method memory requirement

The Table below captures the Typical Code & Data Memory requirement for the QTouch Library
when QMatrix method is used standalone.

In addition to the Data memory captured in the Table, the QMatrix method requires additional
Data Memory that must be provided to the Touch Library for storing the Signals, References,
Sensor information and Touch status. This data memory is provided by the Host Application to

A IIIEL 137

http://www.atmel.com/products/touchsoftware/qtouchsuite.asp?family_id=702�

AIMEL

&

the QTouch Library as QMatrix data block. The size of this Data memory block depends on the
Number of Sensors and the Number of Wheel or Slider configured. The
PRIV_QM_DATA_BLK_SIZE macro in touch_api_at32uc3l.h calculates the size of this data
memory block. For example, for the UC3L Evaluation kit Rev2 that has 6 Sensors including 1
Wheel and 5 Buttons, the QMatrix data block memory size is 236 bytes.

Library Typical Code Typical Code when Typical
with Keys Only one or more Data
Wheel/Sliders is Memory
used
libuc3l-gtouch-iar.r82 5882 7296 278
libuc3l-qtouch-gnu.a 6228 8080 278

Table 14 Typical Code and Data memory for Standalone QMatrix operation

Note: This Typical Code memory usage is achieved when only QMatrix Regular API is used in
the application. Usage of QMatrix Helper APl would consume additional Code memory. Also,
the Code and Data memory indicated in the Table do not account for Example QMatrix
application.

QTouch Group A/B method memory requirement

The Table below captures the Typical Code & Data Memory requirement for the QTouch Library
when QTouch Group A or QTouch Group B Sensor is used standalone. (Additional Data memory
will be required when both Group A and Group B are used at the same time.)

In addition to the Data memory captured in the Table, the QTouch Group A/B method requires
additional Data Memory that must be provided to the Touch Library for storing the Signals,
References, Sensor information and Touch status. This data memory is provided by the Host
Application to the QTouch Library as QTouch data block. The size of this Data memory block
depends on the Number of Sensors and the Number of Wheel or Slider configured. Refer
PRIV_QTx_DATA_ BLK_SIZE macro in touch_api_at32uc3l.h. For example, when 6 Sensors are
used that include 1 Wheel, 1 Slider and 2 Button, the QTouch GroupA/B data block memory size
is 184 bytes.

Library Typical Code Typical Code when Typical
with Keys Only one or more Data
Wheel/Sliders is Memory
used
libuc3l-gtouch-iar.r82 5198 6450 358
libuc3l-qtouch-gnu.a 5290 6774 358

Table 15 Typical Code and Data memory for Standalone QTouch Group A/B
operation

Note: This Typical Code memory usage is achieved when only the QTouch Group A/B Regular
API is used in the application. Usage of QTouch Group A/B Helper APl would consume
additional Code memory. Also, the Code and Data memory indicated in the Table do not account
for Example QTouch application.

Autonomous QTouch memory requirement

The Table below captures the Typical Code & Data Memory requirement for the QTouch Library
when Autonomous Touch Sensor is used standalone.

Library | Typical Codewith | Typical Data |

138 8207K-AT42-09/11

Keys Only Memory
libuc3l-gtouch-iar.rg82 1184 22
libuc3l-qtouch-gnu.a 966 16

Table 16 Minimum Code and Data for Standalone Autonomous QTouch

sensor

Note: This Typical Code memory usage is achieved when only the Autonomous QTouch Regular

API is used in the application.

Usage of Autonomous QTouch Helper APl would consume

additional Code memory. Also, the Code and Data memory indicated in the Table do not account
for Example Autonomous QTouch application.

Public header files of QTouch Library for UC3L

Following are the public header files which need to be included in user’s application and these
have the type definitions and function prototypes of the APIs listed in the following sections

1.
2.

touch_api_at32uc3l.h

- QTouch Library APl and Data structures file.

touch_config_at32uc3l.h - QTouch Library configuration file.

Type Definitions and enumerations used in the library

Typedefs

This section lists the type definitions used in the library.

Typedef Notes

uint8 t unsigned 8-bit integer.

int8 t signed 8 bit integer.

uintl6 t unsigned 16-bit integer.

int16 t signed 16-bit integer.

uint32_t unsigned 32 bit integer.

int32_t signed 32 bit integer.

channel _t unsigned 8 bit integer that represents the channel number, starts from 0.
threshold_t unsigned 8 bit integer to set sensor detection threshold.
sensor_id_t unsigned 8 bit integer that represents the sensor ID, starts from 0.

touch_time _t

unsigned 16 bit integer that represents current time maintained by the
library.

touch_bl t

unsigned 8 bit integer that represents the burst length of a QMatrix
channel.

touch delta t

signed 16 bit integer that represents the delta value of a channel.

touch_acq_status_t

unsigned 16 bit Status of Touch measurement.

touch gt grp t

unsigned 8 bit QTouch Group type.

touch gt dma_t

unsigned 8 bit QTouch Group A/ Group B DMA channel type..

touch_acq_status_t

uint16 t touch_acq_status_t

Use Indicates the result of the last acquisition & processing for a specific touch
acquisition method.

Values Bitmask | Comment

TOUCH_NO_ACTIVITY 0x0000u | No Touch activity.

TOUCH_IN_DETECT

0x0001u | At least one Touch channel is in detect.

139

AIMEL

&

AIMEL

&

TOUCH_STATUS_CHANGE

0x0002u

Status change in at least one channel.

TOUCH_ROTOR_SLIDER_POS_CHANGE

0x0004u

At least one rotor or slider has changed
position.

TOUCH_CHANNEL_REF_CHANGE

0x0008u

Reference values of at least one of the
channel has changed.

TOUCH_BURST_AGAIN

0x0100u

Indicates that reburst is required to
resolve Filtering or Calibration state.

TOUCH_RESOLVE_CAL

0x0200u

Indicates that reburst is needed to
resolve Calibration.

TOUCH_RESOLVE_FILTERIN

0x0400u

Indicates that reburst is needed to
resolve Filtering.

TOUCH_RESOLVE_DI

0x0800u

Indicates that reburst is needed to
resolve Detect Integration.

TOUCH_RESOLVE_POS_RECAL

0x1000u

Indicates that reburst is needed to
resolve Recalibration.

touch_qt_grp_t

uint8_t touch_qt_grp_t

Use QTouch Group type.

Values Value Comment
TOUCH QT GRP_A Ou QTouch Group A.
TOUCH_QT_GRP_B 1u QTouch Group B.

Enumerations

This section lists the enumerations used in the QTouch Library.

touch_ret_t

Enumeration touch_ret t

Use Indicates the Touch Library error code.
Values Comment

TOUCH_SUCCESS

Successful completion of operation.

TOUCH_ACQ_INCOMPLETE

Touch Library is busy with pending previous
Touch measurement.

TOUCH_INVALID_INPUT_PARAM

Invalid input parameter.

TOUCH_INVALID_LIB_STATE

Operation not allowed in the current Touch
Library state.

TOUCH_INVALID_QM_CONFIG_PARAM

Invalid QMatrix config input parameter.

TOUCH_INVALID_AT_CONFIG_PARAM

Invalid Autonomous Touch config input
parameter.

TOUCH_INVALID_QT_CONFIG_PARAM

Invalid QTouch config input parameter.

TOUCH_INVALID_GENERAL_CONFIG_PARAM

Invalid General config input parameter.

TOUCH_INVALID_QM_NUM_X_LINES

Mismatch between number of X lines
specified as QM_NUM_X_ LINES and
number of X lines enabled in QMatrix pin
configuration touch _gm_pin _t x _lines.

TOUCH_INVALID_ QM_NUM_Y_LINES

Mismatch between number of Y lines

140

8207K-AT42-09/11

specified as QM_NUM_Y_LINES and
number of Y lines enabled in QMatrix pin
configuration touch_gm_pin ty yk lines.
TOUCH_INVALID_QM_NUM_SENSORS Number of Sensors specified is greater than
(Number of X Lines * Number of Y Lines).
TOUCH_INVALID_MAXDEV_VALUE Spread spectrum MAXDEYV value should not
exceed (2*DIV + 1).
TOUCH_INVALID RECAL THRESHOLD Invalid Recalibration threshold input value.
TOUCH_INVALID_CHANNEL_NUM Channel number parameter exceeded total
number of channels configured.
TOUCH_INVALID_SENSOR_TYPE Invalid sensor type. Sensor type can NOT be
SENSOR_TYPE_UNASSIGNED.
TOUCH_INVALID_SENSOR_ID Invalid Sensor number parameter.
TOUCH_INVALID DMA PARAM DMA Channel numbers are out of range.
TOUCH_FAILURE_ANALOG_COMP Analog comparator configuration error.
TOUCH_INVALID_RS NUM Number of Rotor/Sliders set as 0, when trying
to configure a rotor/slider.

touch_lib_state t
Enumeration touch_lib_state t

Use Indicates the current state of the library with respect to a specific acquisition
method

Values Comment

TOUCH_LIB_STATE_NULL Library is not yet initialized for the specific acquisition
method

TOUCH_LIB_STATE_INIT Library is initialized, sensor configuration and calibration is
not yet done.

TOUCH_LIB_STATE_READY Library is ready for a new acquisition in the specific method

TOUCH_LIB_STATE_CALIBRATE | Library requires re-calibration before acquisition can be
done for the specific acquisition method

TOUCH_LIB_STATE_BUSY Library is busy with acquisition & processing for the specific
acquisition method

touch_acq_mode_t
Enumeration touch_acq_mode_t

Use Touch library acquisition mode type.
Values Comment
RAW_ACQ_MODE When Raw acquisition mode is used, the measure_complete_callback

function is called immediately once fresh values of Signals are
available. In this mode, the Touch Library does not do any processing
on the Signals. So, the references, Sensor states or Rotor/Slider
position values are not updated in this mode.

NORMAL_ACQ_MODE | \when Nomal acquisition mode is used, the
measure_complete_callback function is called only after the Touch
Library completes processing of the Signal values obtained. The
References, Sensor states and Rotor/Slider position values are
updated in this mode.

A IIIEL 141

&

AIMEL

&

sensor_type_t

Enumeration
Use

sensor_type_t
Define the type of the sensor

Values

Comment

SENSOR_TYPE_UNASSIGNED

Channel is not assigned to any sensor

SENSOR_TYPE_KEY

Sensor is a key

SENSOR_TYPE_ROTOR

Sensor is a rotor

SENSOR_TYPE_SLIDER

Sensor is a slider

aks_group_t
Enumeration
Use

aks_group_t
Defines the Adjacent Key Suppression (AKS) groups that each sensor may be
associated with

AKS™ is selectable by the system designer
7 AKS groups are supported by the library

Values

Comment

NO_AKS_GROUP

No AKS group is selected for the sensor

AKS_GROUP_1

AKS Group number 1

AKS_GROUP 2

AKS Group number 2

AKS_GROUP 3

AKS Group number 3

AKS_GROUP 4

AKS Group number 4

AKS_GROUP 5

AKS Group number 5

AKS_GROUP 6

AKS Group number 6

AKS_GROUP 7

AKS Group number 7

hysteresis_t
Enumeration
Use

Hysteresis_t
Defines the sensor detection hysteresis value. This is expressed as a
percentage of the sensor detection threshold.

This is configurable per sensor.

HYST_x = hysteresis value is x percent of detection threshold value (rounded
down).

Note that a minimum value of 2 is used as a hard limit. Example: if detection
threshold = 20, then:

HYST_50 = 10 (50 percent of 20)

HYST_25 =5 (25 percent of 20)

HYST_12 5 =2 (12.5 percent of 20)

HYST _6_25 =2 (6.25 percent of 20 = 1, but set to the hard limit of 2)

Values Comment

HYST 50 50% Hysteresis

HYST 25 25% Hysteresis

HYST 12 5 12.5% Hysteresis

HYST 6 25 6.25% Hysteresis

142 8207K-AT42-09/11

recal_threshold_t

Enumeration
Use

recal_threshold_t
A sensor recalibration threshold. This is expressed as a percentage of the
sensor detection threshold.

This is for automatic recovery from false conditions, such as a calibration while
sensors were touched, or a significant step change in power supply voltage.

If the false condition persists the library will recalibrate according to the settings
of the recalibration threshold.

This setting is applicable to all the configured sensors.

Usage :

RECAL_x = recalibration threshold is x percent of detection threshold value
(rounded down).

Note: a minimum value of 4 is used.

Example: if detection threshold = 40, then:

RECAL_100 =40 (100 percent of 40)

RECAL_50 =20 (50 percent of 40)

RECAL_25 =10 (25 percent of 40)

RECAL_12 5 =5 (12.5 percent of 40)
RECAL_6_25 =4 (6.25 percent of 40 = 2, but value is limited to 4)
Values Comment
RECAL_100 100% recalibration threshold
RECAL_50 50% recalibration threshold
RECAL_ 25 25% recalibration threshold
RECAL 12 5 12.5% recalibration threshold
RECAL 6 25 6.25% recalibration threshold
resolution_t
Enumeration resolution_t

Use

For rotors and sliders, the resolution of the reported angle or position.
RES_x_BIT = rotor/slider reports x-bit values.

Example: if slider resolution is RES_7_BIT, then reported positions are in the
range 0..127.

Values Comment

RES 1 BIT 1 bit resolution : reported positions range 0 — 1
RES 2 BIT 2 bit resolution : reported positions range 0 — 3
RES 3 BIT 3 bit resolution : reported positions range 0 — 7
RES 4 BIT 4 bit resolution : reported positions range 0 — 15
RES 5 BIT 5 bit resolution : reported positions range 0 — 31
RES 6 BIT 6 bit resolution : reported positions range 0 — 63
RES 7 BIT 7 bit resolution : reported positions range 0 — 127
RES 8 BIT 8 bit resolution : reported positions range 0 — 255

at_status_change _t

Enumeration
Use

at_status_change _t
Indicates the current status of autonomous QTouch sensor

Values

| Comment

A IIIEL 143

&

AIMEL

OUT_OF TOUCH Currently the autonomous QTouch channel is out of touch

IN_TOUCH Currently the autonomous QTouch channel is in detect

X_pin_options_t
Enumeration x_pin_options_t

Use Options for various pins to be assigned as X lines in QMatrix
Values Comment
Xn Use Pin Xn for QMatrix, n ranges from 0 to 17.

Note: X8 pin must NOT be used as X Line and it is recommended to be used as
ACREFN pin for QMatrix.

y_pin_options_t
Enumeration y_pin_options_t
Use Options for various pins to be assigned as Y lines in QMatrix

Values Comment

Yn_YKn Use Pin Yn & YKn for QMatrix, n ranges from 0 to 7

gt_pin_options_t

Enumeration gt_pin_options_t
Use Options for various pins to be assigned as Sense pair for Autonomous QTouch,
QTouch Group A and QTouch Group B acquisition methods.

Values Comment

SPn Use Sense Pair ‘n’, n ranges from 0 to 16.

general_pin_options_t
Enumeration general_pin_options_t

Use Options of various pins to be used for SMP, Discharge, SYNC & VDIV.
Values Comment
USE_NO_PIN No Pin is to be assigned for this purpose

USE PIN PA12 AS SMP | Use Pin PA12 as SMP for QMatrix

USE_PIN_PA13_AS_SMP | Use Pin PA13 as SMP for QMatrix

USE_PIN_PA14 AS_SMP | Use Pin PA14 as SMP for QMatrix

USE_PIN_PA17_AS_SMP | Use Pin PA17 as SMP for QMatrix

USE_PIN_PA21_AS_SMP | Use Pin PA21 as SMP for QMatrix

USE_PIN_PA22_AS_SMP | Use Pin PA22 as SMP for QMatrix

USE_PIN_PAl17_AS DIS Use Pin PA17 as Discharge current control for QMatrix

USE_PIN_PB11_AS VDIV | Use Pin PB11 as Voltage divider enable (VDIVEN) for QMatrix

USE_PIN_PA15 AS SYNC | Use Pin PA15 as external synchronization input signal (SYNC)

USE_PIN_PA18 AS SYNC | Use Pin PA18 as external synchronization input signal (SYNC)

USE_PIN_PA19 AS SYNC | Use Pin PA19 as external synchronization input signal (SYNC)

144 8207K-AT42-09/11

USE_PIN_PB08_AS_SYNC | Use Pin PB08 as external synchronization input signal (SYNC)

USE_PIN_PB12_AS SYNC | Use Pin PB12 as external synchronization input signal (SYNC)

Data structures

This section lists the data structures that hold sensor status, settings, and diagnostics
information.

sensor_t

structure sensor_t

Input / Output Output from the library

Use Data structure which holds the sensor state variables used by the library.
Fields Type Comment

state uint8 t | internal sensor state

general counter uint8 t | general purpose counter: used for calibration, drifting, etc
ndil_counter uint8 t | drift Integration counter

threshold uint8 t | sensor detection threshold

type_aks_pos_hyst | uint8_t | holds information for sensor type, AKS group, positive
recalibration flag, and hysteresis value

Bit fields Use

B1l:BO Hysteresis

B2 positive recalibration flag

B5:B3 AKS group

B7:B6 sensor type
from_channel uint8 t | starting channel number for sensor
to_channel uint8 t | ending channel number for sensor
Index uint8_t | index for array of rotor/slider values
touch_global_param_t
structure touch_global_param_t
Input / Output Input to the Library
Use Holds the sensor acquisition parameters for a specific acquisition method
Fields Type Comment
di uint8 t Sensor detect integration (DI) limit.
neg_drift_rate uint8 t Sensor negative drift rate in units of 200 ms.
pos_drift_rate uint8 t Sensor positive drift rate in units of 200 ms.
max_on_duration uint8 t Sensor maximum on duration in units of 200ms.
drift hold time uint8 t Sensor drift hold time in units of 200 ms.
pos_recal delay uint8 t Sensor Positive recalibration delay.
recal threshold recal threshold t Sensor recalibration threshold.

Refer Section 5.3 for Overview of Global configuration parameters.

touch_filter_data t

structure touch_filter_data_t

Input / Output Output from the Library

Use Touch Filter Callback data type.
| Fields | Type | Comment

AIMEL

&

145

AIMEL

&

num_channel signals uint8 t Length of the measured signal values list.

p_channel signals uintl6 t* | Pointer to measured signal values for each channel.

touch_measure_data_t

structure touch_measure_data_t
Input / Output Output from the Library
Use This structure provides updated measure data values each time the measure

complete callback function is called.

Fields Type Comment

p_acq_status touch_acq_status_t Acquisition status for the specific acquisition
method.

num_channel_signals uint8_t Length of the measured signal values list

p_channel_signals uintle_t* Pointer to the sequential list of measured
signal values of all channels

num_channel_references | uint8 t Length of the measured reference values list.

p_channel_references | uintl6_t* Pointer to the sequential list of reference
values of all channels

num_sensor_states uint8_t Number of sensor state bytes.

p_sensor_states uint8_t* Pointer to the sequential list of touch status of
all sensors

num_rotor_slider values | uint8 t Length of the Rotor and Slider position values list.

p_rotor_slider_values | uint8_t* Pointer to the sequential list of position of all
rotors & sliders

num_sensors uint8 t Length of the sensors data list.

p_sensor sensor_t* Pointer to the sequential list of data of all
Sensors.

touch_gm_param_t

structure touch_gm_param_t
Input / Output Passed as input to touch_gm_sensor_update_config API & got as output from
touch_gm_sensor_get_config API

Use Data structure which holds the configuration parameters for a specific QMatrix
sensor

Fields Type Comment

aks_group aks group t AKS group to which the sensor belong.

detect threshold threshold t Detection threshold for the sensor

detect hysteresis hysteresis_t Detect hysteresis for the sensor.

position_resolution resolution_t Resolution required for the sensor.

position_hysteresis uint8_t Position hysteresis for the sensor

touch_at_param_t

structure touch_at_param_t

Input / Output Passed as input to touch_at_sensor_update_config API & got as output from
touch_at_sensor_get_config API

Use Data structure which holds the configuration parameters for the autonomous
QTouch sensor

146 8207K-AT42-09/11

Structure field Type Corresponds to the device Register Field
register

filter uint8 t ATCFG2 FILTER

outsens uint8 t ATCEG?2 OUTSENS

sense uint8 t ATCEG2 SENSE

pthr uint8 t ATCFEG3 PTHR

odrift uint8 t ATCEGS3 PDRIFT

ndrift uint8 t ATCEGS3 NDRIFT

Refer Section 5.3 for an overview of FILTER (Detect Integration), PTHR (Positive Recalibration
threshold), PDRIFT (Positive Drift rate) and NDRIFT (Negative Drift rate).

OUTSENS - Autonomous Touch Out-of-Touch Sensitivity.

For the autonomous QTouch sensor, specifies how sensitive the out-of-touch detector should be.
When the sensor is not touched, the Autonomous Touch Current count register is same as the
Autonomous Touch Base count register. When the sensor is touched the Autonomous Touch
Current count register decreases. When using the Autonomous QTouch in proximity mode, the
Autonomous Touch Base count register decreases as we move towards proximity of the sensor.
The OUTSENS value can be arrived at by watching the CAT Autonomous Touch Base Count
Register(at memory location OxFFFF686Cu) and Autonomous Touch Current Count Register(at
memory location OXFFFF6870u) during a sensor touch/proximity and not in touch/proximity. A
smaller difference between the Autonomous Touch Base count and Autonomous Touch Current
count register can be chosen as the OUTSENS value. Range: Ou to 255u.

SENSE - Autonomous Touch Sensitivity.

For the autonomous QTouch sensor, specifies how sensitive the touch detector should be.
When the sensor is not touched, the Autonomous Touch Current count register is same as the
Autonomous Touch Base count register. When the sensor is touched the Autonomous Touch
Current count register decreases. When using the Autonomous QTouch in proximity mode, the
Autonomous Touch Base count register decreases as we move towards proximity of the sensor.
The SENSE value can be arrived at by watching the CAT Autonomous Touch Base Count
Register(at memory location OxFFFF686Cu) and Autonomous Touch Current Count Register(at
memory location OxFFFF6870u) during a sensor touch/proximity and not in touch/proximity. A
larger difference between the Autonomous Touch Base count and Autonomous Touch Current
count register can be chosen as the SENSE value. Range: Ou to 255u.

touch_qt_param_t

structure touch_qgt_param_t

Input / Output Passed as input to touch_qt_sensor_update_config API & got as output from
touch_qgt_sensor_get_config API

Use Data structure which holds the status parameters for the QTouch Group A or
Group B sensor.

Fields Type Comment

aks_group aks_group t AKS group to which the sensor belong.
detect_threshold threshold t Detection threshold for the sensor
detect hysteresis hysteresis_t Detect hysteresis for the sensor.
position_resolution resolution_t Resolution required for the sensor.

A IIIEL 147

&

touch_at status

AIMEL

structure touch_at_status

Input / Output Output structure received as part of the Autonomous QTouch Interrupt callback
function.

Use Data structure which holds the status parameters for the autonomous QTouch
sensor.

Structure Type Comment

field

status chanae

at status chanae t

Autonomous OTouch Status chanae

base_count uintl6_t The base count currently stored by the autonomous touch
sensor. This is useful for autonomous touch debugging
purposes.

current_count | uintl6_t The current count acquired by the autonomous touch

sensor. This is useful for autonomous touch debugging
purposes.

touch_gm_dma_t

structure

Input / Output

touch_gm_dma_t

Input to the touch_gm_sensors_start_acquisition() API.

Use Data structure which holds the DMA channel information for touch acquisition
data transfer
Fields Type | Comment
dma_chl | uint8 t | Indicates the DMA channel 1. Can take values from 0 — 11, but should not
be same as dma_ch2
dma_ch2 | uint8 _t | Indicates the DMA channel 2. Can take values from 0 — 11, but should not

be same as dma _chl

touch_gm_pin_t

structure

Input / Output

touch_gm_pin_t
Input to the library

Use Data structure which holds the Pin configuration information for QMatrix
Fields Type Comment
x_lines | uint32_t | Bitmask that indicates the selected X pins for QMatrix. If bit n is set, Xn is
enabled for QMatrix; n can be 0 to 17. Any other bits set are ignored. Note:
For QMatrix operation, X8 is not available as it must be used for ACREFN
function.
Bit |18 |17 |16 |15 |14 |13 |12 |11 |10|9 |8 |7 |6 |5 |4 |3 |2
31
X X [X | X [X | X [X | X [X [X[X|X[X]|X[X]|X]|X
Line 17 |16 |15 |14 |13 |12 |11 |10 |9 |8 |7 |6 |5 |4 |3 |2
y_yk_lin | uint8_t Bitmask that indicates the selected Y pins for QMatrix. If bit n is set, Yn &
es Ykn is enabled for QMatrix; n can be 0 to 7.
148 8207K-AT42-09/11

Bit 7 6 5 4 3 2 1 0
Y Y7 & Y6 & Y5 & Y4 & Y3 & Y2 & Y1& Y0 &
Line YK7 YK6 YK5 YK4 YK3 YK2 YK1 YKO
smp_di | general | Specify one of the following
s_pin _pin_op
tions_t USE_NO_PIN
USE_PIN_PA12_AS SMP
USE_PIN_PA13_AS_SMP
USE_PIN_PA14_AS SMP
USE_PIN_PA17_AS_SMP
USE_PIN_PA21 AS SMP
USE_PIN_PA22_AS_SMP
USE_PIN_PA17_AS DIS
vdiv_pi | 9eneral _—
N _pin_op Specify either USE_NO_PIN or USE_PIN_PB11 _AS VDIV
tions_t

touch_at_pin_t

structure
Input / Output

touch_at_pin_t
Input to the library

Use Data structure which holds the Pin configuration for Autonomous QTouch
sensor

Fields | Type | Comment

atsp uint8_t | Sense pair to be used for autonomous QTouch detection. Choose any one

sense pair from SPO to SP16 using the qt_pin_options_t enum.

For example, if atsp is set as SP7, Sense pair 7 (CSA7, CSB7) will be assigned
for autonomous QTouch detection

touch_qt_pin_t

structure
Input / Output

touch_at_pin_t
Input to the library

Use Data structure which holds the Pin configuration for QTouch sensor.
Fiel | Type | Comment
ds
sp uint3 | Bit n indicates Sense Pair SP[n] is selected. Choose sense pairs from SPO to
2t SP16.
Bit |1 |16 |15 |14 |13 |12 |11 |10 |9 7 514 (3]2|1]0
7-
3
1
SP |- | X1 | XL |XL|XL|XL|XL]|X1l]|X X X X | X | X | X
n | |6 |5 |4 |3 |2 |1 |0 |9|8|7|6|5|4][3|2]1]0
touch_gm_reg_t
structure touch_gm_reg_t
Input / Output Input to the library
149

AIMEL

&

AIMEL

Use Data structure which holds the Register configuration information for QMatrix

This structure contains the data fields that correspond to specific fields in different registers. For a
more detailed explanation of the register fields, refer to the device datasheet.

For example, CHLEN field of MCCFGO is 8 bits wide (bit 8-15 of MGCFGO register). The user
needs to set values from 0 to 255 (OxFF) in the chlen field of this structure. The library will take
care of writing this to the appropriate bit position of MCCFGO register.

Fields Tvpe Corresponds to Reqister Reaister Field
div uintl6 t MGCEGO0 DIV

chlen uint8 t MGCEGO0 CHLEN
selen uint8 t MGCEGO0 SELEN
dishift uint8 t MGCEG1 DISHIFT
svnc uint8 t MGCEG1 SYNC
spread uint8 t MGCEG1 SPREAD
dilen uint8 t MGCEG1 DILEN

max uintl6 t MGCFEG1 MAX

acctrl uint8 t MGCFG?2 ACCTRL
consen uint8 t MGCFG2 CONSEN
cxdilen uint8 t MGCFG?2 CXDILEN
svnctim uint16 t MGCFG2 SYNCTIM
fsources uint8 t DICS FSOURCES
alen uint8 t DICS GLEN
intvrefsel uint8 t DICS INTVREFSEL
Intrefsel uint8 t DICS INTREFSEL
trim uint8 t DICS TRIM
sources uint8 t DICS SOURCES
shival0 uintl6 t ACSHIOQ SHIVAL
shivall uintl6 t ACSHI1 SHIVAL
shival2 uintl6 t ACSHI2 SHIVAL
shival3 uintl6 t ACSHI3 SHIVAL
shival4 uintl6 t ACSHI4 SHIVAL
shival5 uintl6 t ACSHI5 SHIVAL
shival6 uintl6 t ACSHI6 SHIVAL
shival7 uintl6 t ACSHI7 SHIVAL

touch_at reg t

structure touch_at reg t
Input / Output Input to the library
Use Data structure which holds the Register configuration information for

Autonomous QTouch

This structure contains the data fields that correspond to specific fields in different registers. For a
more detailed explanation of the register fields, refer to the device datasheet.

For example, DISHIFT field of ATCFGL1 is 2 bits wide (bit 28-29 of ATCFG1 register). The user
needs to set values from 0 to 3 in the dishift field of this structure. The library will take care of
writing this to the appropriate bit position of ATCFG1 register.

Fields | Tvpe | Corresponds to Readister | Reaister Field

150 8207K-AT42-09/11

div uint16 t ATCFGO DIV

chlen uint8 t ATCFEGO CHLEN

selen uint8 t ATCFEGO SELEN

dishift uint8 t ATCFG1 DISHIFT

svnc uint8 t ATCEG1 SYNC

spread uint8 t ATCEG1 SPREAD

dilen uint8 t ATCFEG1 DILEN

max uintl6 t ATCFEG1 MAX

at_param touch_at_param_t Autonomous Touch Sensor FILTER, OUTSENS,
parameters corresponding to | SENSE, PTHR,

ATCFG2 and ATCFG3.

PDRIFT, NDRIFT

touch_qt reg t

structure
Input / Output
Use

touch_qt reg_t
Input to the library

Data structure which holds the Register configuration information for QTouch

Group A/B.
Fields Tvpe Corresponds to Reaister Reaister Field
div uintl6 t TGxCFGO DIV
chlen uint8 t TGxCFEGO CHLEN
selen uint8 t TGxCFEGO SELEN
dishift uint8 t TGxCFG1 DISHIFT
svnc uint8 t TGxCFG1 SYNC
spread uint8 t TGxCFG1 SPREAD
dilen uint8 t TGxCFG1 DILEN
max uint16 t TGxCFG1 MAX

touch_gm_config_t

structure
Input / Output
Use

touch_gm_config_t
Input to the library

Data structure which holds all configuration information pertaining to QMatrix

Fields Type Comment

num_channels uint8 t Indicates the number of QMatrix channels
required by the user

num_sensors uint8_t Indicates the number of QMatrix sensors
required by the user.

num_rotors_and_slider | uint8 t Indicates the number of QMatrix rotors /

S sliders required by the user.

num_x_lines uint8_t Number of QMatrix X lines required by the
user.

num_y lines uint8_t Number of QMatrix Y lines required by the
user.

num_x_sp uint8_t Number of X sense pairs used. This is a
private variable to the Touch library. The user
must provide
PRIV_QM_NUM_X_SENSE_PAIRS for this
input field.

bl write count uint8_t Burst length write count. This is a private

AIMEL

&

151

AIMEL

&

variable to the Touch library. The user must
provide the
PRIV_QM_BURST_LENGTH_WRITE_COUN
T macro for this input field.

pin touch_gm_pin_t Holds the QMatrix Pin configuration
information as filled by the user.
reg touch_gm_reg_t Holds the QMatrix register configuration

information as filled by the user.

global_param

touch_global _param_
t

Holds the global parameters for QMatrix as
filled by the user.

p data blk uint8_t* Pointer to the data block allocated by the user

buffer_size uintlé_t Size of the data block pointed to by
p_data_blk. The user must provide the
PRIV_QM_DATA_BLK_SIZE macro for this
input field.

p_burst_length uint8_t* Pointer to an array of 8-bit Burst lengths,

where each 8-bit value correspond to the burst
length of each channel starting from channel O
to number of channels.

filter_callback

Pointer to a function

Pointer to callback function that will be called
before processing the signals

touch_at_config_t

structure touch_at_config_t
Input / Output Input to the library
Use Data structure which holds the configuration parameters & register values for

autonomous QTouch acquisition

Fields Type Comment

pin touch_at pin_t | Holds the autonomous QTouch
configuration information as filled by the
user.

reg touch_at reg t | Holds the autonomous QTouch register

configuration information as filled by the
user.

touch_at_status_change_callback | Pointer to a

Pointer to callback function that will be

function called by the library whenever there is a
touch status change in the autonomous
QTouch sensor
touch_qt_config_t
structure touch_gm_config_t
Input / Output Input to the library
Use Data structure which holds all configuration information pertaining to QMatrix
Fields Type Comment
num_channels uint8_t Indicates the number of QTouch Group A/B
channels required by the user
num_sensors uint8_t Indicates the number of QTouch Group A/B
sensors required by the user.
num_rotors_and_sliders | uint8_t Indicates the number of QTouch Group A/B

rotors / sliders required by the user.

152

8207K-AT42-09/11

pin touch_qt_pin_t Holds the QTouch Group A/B Pin
configuration information as filled by the user.

reg touch_qt reg t Holds the QTouch Group A/B register
configuration information as filled by the user.

global_param touch_global_param_t | Holds the global parameters for QTouch
Group A/B as filled by the user.

p_data blk uint8 t* Pointer to the data block allocated by the user

buffer_size uintl6_t Size of the data block pointed to by

p_data_blk. The user must provide the
PRIV_QTA_DATA_BLK_SIZE or
PRIV_QTB_DATA_BLK_SIZE macro for this
input field.

filter_callback Pointer to a function Pointer to callback function that will be called
before processing the signals

touch_general_config_t

structure touch_general_config_t
Input / Output Input to the library
Use Data structure which holds the configuration parameters & register values

common to all acquisition methods.

Fields Type Comment

sync_pin | general_pin_options_t | Specify one of the following values indicating the pin to be
assigned as SYNC pin. Refer to the device datasheet for
more details.

USE_NO_PIN

USE_PIN_PA15_AS_SYNC
USE_PIN_PA18_AS_SYNC
USE_PIN_PA19_AS_SYNC
USE_PIN_PB08_AS_SYNC
USE_PIN_PB12_AS_SYNC

maxdev | uint8_t Corresponds to MAXDEYV field of SSCFG register that
indicates the maximum deviation when spread spectrum is
enabled.

Ensure that maxdev is always less than or equal to (2*div +

1).
div represents div field in touch_gm_reg_t & touch_at_reg_t
structures.
csares uint32_t Corresponds to RES field of CSARES register.
csbres uint32_t Corresponds to RES field of CSBRES register.
touch_config_t
structure touch_config_t
Input / Output Input to the library
Use Pointer to this structure is passed as input to touch_gm_sensors_init &

touch_at_sensor_init APIs

Fields Type Comment
p_gm_config touch_gm_config_t* Pointer to the QMatrix configuration structure.
p_at_config touch_at config_t* Pointer to the autonomous QTouch configuration

A IIIEL 153

&

AIMEL

structure.

p_qgta_config touch_qt_config_t* Pointer to the QTouch Group A configuration
structure.

p_qtb_config touch_qt_config_t* Pointer to the QTouch Group B configuration
structure.

p_general_config | touch general config t* | Pointer to the general configuration structure.

touch_info_t

structure touch_info_t

Input / Output Output from the library

Use Pointer to this structure is passed as input to touch_gm_get_libinfo &
touch_at_get_libinfo APIs

Fields Type Comment

num_channels in_use uint8_t | Number of channels in use

num_sensors_in_use uint8 t | Number of sensors in use

num_rotors_sliders in_use uint8_t | Number of rotor/sliders in use

max_channels_per_rotor_slider | uint8_t | Maximum number of channels per rotor/slider
allowed by the library

hw_version uint32_t | CAT module hardware revision as per VERSION
register in CAT module.
fw_version uintlé_t | QTouch Library version with MSB indicating the

major version & LSB indicating the minor version.

Public Functions of QTouch Library for UC3L

This section lists the public functions available in the QTouch™ libraries for AT32UC3L devices.

QMatrix API

This section lists the functions that are specific to QMatrix method of acquisition.

touch_gm_sensors_init

touch_ret_ttouch_gm_sensors_init (touch_config_t *p_touch_config)

Arguments Type Comment

p_touch_config | touch_config_t* | Pointer to Touch Library input configuration structure. The
touch_gm_config_t and touch_general_config_t members of
the Structure should be non-NULL.

e This API initializes the Touch library for QMatrix method acquisition. This APl has to be
called before calling any other QMatrix API.

e Based on the input parameters, the CAT module is initialized with QMatrix method Pin
and Register configuration.

e The Analog comparators necessary for QMatrix operation are initialized by this API.

e Both p_gm_config & p_general_config members of the input configuration structure must
point to valid configuration data.

154 8207K-AT42-09/11

e The General configuration data provided by the p_general_config pointer is common to
both QMatrix, QTouch Group A, QTouch Group B and Autonomous Touch sensors.

touch_gm_sensor_config

touch_ret_ttouch_gm_sensor_config(

sensor_type_t sensor_type,
channel_t from_channel,
channel_t to_channel,
aks_group_t aks_group,
threshold_t detect_threshold,
hysteresis_t detect_hysteresis,
resolution_t position_resolution,
uint8_t position_hysteresis,
sensor_id_t *p_sensor_id)

Arguments

Type

Comment

sensor_type

sensor_type_t

Specifies sensor type — SENSOR_TYPE_KEY or
SENSOR_TYPE_ROTOR or
SENSOR_TYPE_SLIDER.

The SENSOR_TYPE_UNASSIGNED enum is not a valid
input to this API.

from_channel channel_t Start channel of the Sensor (rotor, slider or key).

to_channel channel_t End channel of the Sensor (rotor, slider or key). For a key,
the start and end channels must be the same.

aks_group aks group t | AKS group of this sensor.

detect_threshold threshold t Touch Detect threshold level for Sensor.

detect hysteresis hysteresis_t Value for detection hysteresis.

position_resolution | resolution t Position resolution when configuring rotor / slider

position_hysteresis | uint8 t Position hysteresis when configuring rotor / slider

p_sensor_id sensor_id_t* [The Sensor ID is updated by the Touch Library upon

successful sensor configuration. The Sensor ID starts with
0.

e This API configures a single QMatrix Key, Rotor or Slider.

e The user must provide all the sensor specific settings as input to this API.

e Rotor/ Slider sensor will occupy contiguous channels from from_channel to to_channel.

e For QMatrix acquisition method, 3 to 8 Touch channels per rotor / slider are supported.
Keys are always formed using 1 Touch channel.

touch_gm_sensor_update_config

touch_ret_t touch_gm_sensor_update_config(

sensor_id_t sensor_id,
touch_gm_param_t *p_touch_sensor_param)

Arguments

Type

Comment

sensor_id

sensor_id_t Sensor ID for which the configuration

needs to be updated.

A IIIEL 155

&

AIMEL

&

p_touch_sensor_param touch_gm_param_t* Pointer to the user sensor configuration

structure.

This API updates the configuration of a QMatrix sensor with values different from the
ones initialized by the touch_gm_sensor_config API. If the sensor was not configured
already, the API will return error.

The user must populate the structure pointed by p_touch_sensor_param with required
settings before calling this API.

touch_gm_sensor_get_config

touch_ret_t touch_gm_sensor_get_config(
sensor_id_t sensor_id,
touch_gm_param_t *p_touch_sensor_param)

Arguments Type Comment

sensor_id sensor_id_t Sensor ID for which the configuration

needs to be updated.

p_touch_sensor_param touch_sensor_param_t* Pointer to the user sensor configuration

structure.

This API copies the current configuration of a QMatrix sensor into the user configuration
structure.

touch_gm_channel_udpate_burstlen

touch_ret_ttouch_gm_channel_udpate _burstlen(
channel_t channel,
touch_bl_t gm_burst_length)

Arguments Type Comment

channel

uint8 t Channel number for which the burst length is to be set.

gm_burst_length touch_bl t QMatrix burst length. The burst length value can be 1 to

255. A value of 1 can be used to disable bursting on
a given channel.

156

This API updates the burst length of the specified QMatrix channel
This API can also be used to disable Touch measurement on a Sensor.

In order to disable a Sensor, the burst length value of all the channels corresponding to
the Sensor must be setto 1. A Sensor can then be re-enabled by setting the appropriate
burst length for all channels using this API.

Note: When disabling a sensor care must be taken such that all channels of the Sensor
are set to 1. If any of the channels are missed out, it will result in undesired behavior of
the Sensor. Similarly when re-enabling a Sensor, if one or more channels are left
disabled with a burst length value of 1, it will result in undesired behavior of the Sensor.

8207K-AT42-09/11

e The touch_gm_sensors_calibrate APl needs to be called whenever burst length is
updated for one or more channels before starting a new Touch measurement using the
touch_gm_sensors_start_acquisition API.

touch_gm_update_global param

touch_ret_t touch_gm_update_global_param(touch_global_param_t *p_global_param)

Arguments Type Comment
p_global_param | touch_global_param_t | Pointer to user global parameters structure for
QMatrix.

e This API can be used to update the QMatrix global parameters, with values different from
the ones initialized using touch_gm_sensors_init API.

touch_gm_get _global _param

touch_ret_ttouch_gm_get global_param(touch_global_param_t *p_global_param)

Arguments Type Comment
p_global_param | touch_global_param_t | Pointer to user global parameters structure for
QMatrix.

e This API can be called to retrieve the QMatrix global parameters.

touch_gm_sensors_calibrate

touch_ret_ttouch _gm_sensors_calibrate(void)

Arguments Type Comment

Void -

e This API can be used to calibrate all configured Sensors.

e Calibration of all Sensors must be performed when —

o All the Sensors have been configured using touch_sensor_config API after
initialization of the Touch Library.

0 A sensor or a group of Sensors have been disabled or re-enabled.

touch_gm_sensors_start_acquisition

touch_ret_t touch_gm_sensors_start_acquisition(
touch_time_t current_time_ms,
touch_gm_dma_t *p_touch_dma,
touch_acq_mode_t gm_acq_mode,
void (*measure_complete_callback)(touch_measure_data_t *p_measure_data))

| Arguments | Type | Comment

A IIIEL 157

AIMEL

&

current_time _ms touch_time t Current time in ms

p_touch_dma touch_gm_dma_t* DMA channels to be

used for transfer to burst
length & acquisition
count

gm_acqg_mode touch_acq_mode t Specify whether Normal

acquisition mode or
Raw acquisition mode
should be done.

void void QMatrix Measure
(*measure_complete_callback)((*measure_complete_callback)(| complete callback
void) touch_measure_data t function pointer

*p_measure_data)

This API initiates a capacitive measurement on all enabled QMatrix sensors.

When normal acquisition mode is used, once the Touch measurement is completed on all
the QMatrix sensors, before processing the raw acquisition data (channel_signals), a
filter_callback function is optionally called by the Touch Library.

Once the filter_callback is completed, the signal values will be processed by the Touch
Library. The measure_complete_callback function is then called with touch data
(channel_signals, channel_references, sensor_states, sensors structure) as well as the
Touch Status (sensor_states) and Rotor/Slider position (rotor_slider_values).

The touch_event_dispatcher APl needs to be called as frequently as possible for the
Touch Library to process the raw acquisition data.

When raw data acquisition mode is used, once the raw acquisition data is available from
the CAT module for all the sensors, the measure_complete callback function is
immediately called with acquisition data (channel_signals). The channel_references,
sensor_states and rotor_slider_values data are not updated by the Touch Library in this
mode.

This API will return error if a Touch measurement is already in progress.

Two peripheral DMA channels must be provided using p_touch_dma for QMatrix
operation.

touch_gm_get_libinfo

touch_ret_ttouch_gm_get_libinfo(touch_info_t *p_touch_info)

Arguments | Type Comment

P_

touch_info_t* | User passes the memory address at which the library information

touch_info is to be stored by the library.

158

The touch_info_t structure is filled by the library with information like number of QMatrix
channels, number of QMatrix sensors, number of QMatrix rotors/slider, CAT hardware
version, and library version.

The QMatrix number of channels, sensors and rotors/slider indicate the total number of
channels, sensors and rotor/slider in use irrespective of Touch measured being disabled

8207K-AT42-09/11

or enabled. (Disabling and Re-enabling of a Sensor using the
touch_gm_sensor_upate_burstlen API does not alter these values).

touch_gm_sensor_get_delta

touch_ret_t touch_gm_sensor_get_delta(
sensor_id_t sensor_id,
touch_delta_t *p_delta)

Arguments | Type Comment
sensor_id sensor_id t Sensor ID for which the delta needs to be retrieved.
p_delta touch delta t* | Pointer to Delta variable, that will be update by the Touch Library

This API retrieves the delta information associated with a specific QMatrix sensor. Delta
is the difference between the current signal value and reference value.

The user must provide the sensor ID whose delta is sought along with a valid pointer to a
Delta variable.

The API updates the delta variable associated with the requested sensor.

QTouch Group A and QTouch Group B API

This section lists the functions that are specific to QTouch Group A/B method of acquisition.

touch_qgt_sensors_init

touch_ret_ttouch_qt sensors_init (touch_qt_grp_t touch_qt_grp,
touch_config_t *p_touch_config)

Arguments Type Comment

touch_qt_grp touch_qgt_grp_t | Specify if the operation is to be performed on Group A

Sensors or Group B Sensors.

p_touch_config | touch_config_t* | Pointer to Touch Library input configuration structure. The

p_qta_config/p_qtb_config (based on whether Group A is
used or Group B is used) and p_general_config members of
the Structure should be non-NULL.

This API initializes the Touch library for QTouch Group A or QTouch Group B method
acquisition. This API has to be called before calling any other QTouch API.

Based on the input parameters, the CAT module is initialized with QTouch method Pin
and Register configuration.

The p_gta_config/p_gta_config (based on whether Group A is used or Group B is used)
and p_general_config members of the input configuration structure must point to valid
configuration data.

The General configuration data provided by the p_general_config pointer is common to
both QMatrix, QTouch Group A, QTouch Group B and Autonomous Touch sensors.

touch_qt_sensor_config

A IIIEL 159

AIMEL

&

touch_ret_t touch_qt_sensor_config(touch_qt_grp_t touch_qt_grp,
sensor_type_t sensor_type,
channel_t from_channel,
channel_t to_channel,
aks_group_t aks_group,
threshold_t detect_threshold,

hysteresis_t detect_hysteresis,

resolution_t position_resolution
sensor_id_t *p_sensor_id)

Arguments Type Comment

touch_qt_grp touch_qt_grp_t | Specify if the operation is to be performed on Group A
Sensors or Group B Sensors.

sensor_type sensor_type t | Specifies sensor type — SENSOR_TYPE_KEY or

SENSOR_TYPE_ROTOR or
SENSOR_TYPE_SLIDER.

The SENSOR_TYPE_UNASSIGNED enum is not a valid
input to this API.

from_channel channel t Start channel of the Sensor (rotor, slider or key).

to_channel channel_t End channel of the Sensor (rotor, slider or key). For a
key, the start and end channels must be the same.

aks_group aks group t AKS group of this sensor.

detect threshold threshold t Touch Detect threshold level for Sensor.

detect hysteresis hysteresis_t Value for detection hysteresis.

position_resolution | resolution t Position resolution when configuring rotor / slider

p_sensor_id sensor_id_t* The Sensor ID is updated by the Touch Library upon
successful sensor configuration. The Sensor ID starts with
0.

e This API configures a single QTouch Key, Rotor or Slider.
e The user must provide all the sensor specific settings as input to this API.
e Rotor/ Slider sensor will occupy contiguous channels from from_channel to to_channel.

e For QTouch acquisition method, 3 Touch channels per rotor / slider are supported. Keys
are always formed using 1 Touch channel.

touch_qgt_sensor_update_config

touch_ret_ttouch_qt sensor_update_config(touch_qt_grp_t touch_qgt_grp,
sensor_id_t sensor_id,
touch_qgt_param_t *p_touch_sensor_param)

Arguments Type Comment

touch_qt_grp touch_qt_grp_t Specify if the operation is to be
performed on Group A Sensors or
Group B Sensors.

sensor_id sensor_id_t Sensor ID for which the configuration
needs to be updated.

p_touch_sensor_param touch_gt_param_t * Pointer to the user sensor configuration
structure.

160 8207K-AT42-09/11

e This API updates the configuration of a QTouch sensor with values different from the
ones initialized by the touch_qt_sensor_config API. If the sensor was not configured
already, the API will return error.

e The user must populate the structure pointed by p_touch_sensor_param with required
settings before calling this API.

touch_qgt_sensor_get_config

touch_ret_t touch_qt_sensor_get_config(touch_qt_grp_t touch_qt_grp,
sensor_id_t sensor_id,
touch_qgt_param_t *p_touch_sensor_param)

Arguments Type Comment

touch_qt_grp touch_qt grp_t Specify if the operation is to be
performed on Group A Sensors or
Group B Sensors.

sensor_id sensor_id_t Sensor ID for which the configuration
needs to be updated.

p_touch_sensor_param touch_qgt_param_t* Pointer to the user sensor configuration
structure.

e This API copies the current configuration of a QTouch sensor into the user configuration
structure.

touch_qt_update _global param

touch_ret_ttouch_qt update global_param(touch_qt_grp_ttouch_qt_grp,
touch_global_param_t *p_global_param)

Arguments Type Comment

touch_qt_grp touch_qt grp_t Specify if the operation is to be performed on Group A
Sensors or Group B Sensors.

p_global_param | touch_global _param_t | Pointer to user global parameters structure for
QTouch Group A/B.

e This API can be used to update the QTouch A or QTouch B global parameters, with
values different from the ones initialized using touch_qt_sensors_init API.

touch_qt_get_global _param

touch_ret_t touch_qt_get global_param(touch_qt_grp_t touch_qt_grp,
touch_global_param_t *p_global_param)

Arguments Type Comment

touch_qt_grp touch_qt grp_t Specify if the operation is to be performed on Group A
Sensors or Group B Sensors.

p_global_param | touch_global _param_t | Pointer to user global parameters structure for
QTouch Group A/B.

e This API can be called to retrieve the QTouch Group A or Group B global parameters.

A IIIEL 161

&

AIMEL

&

touch_qt_sensors_calibrate

touch ret ttouch gt sensors calibrate(touch qt grp ttouch qt grp)

Arguments Type Comment

touch_qt_grp touch_qt_grp_t Specify if the operation is to be
performed on Group A Sensors or
Group B Sensors.

e This API can be used to calibrate all configured Sensors.

e Calibration of all Sensors must be performed when —

o All the Sensors have been configured using touch_sensor_config API after
initialization of the Touch Library.

0 A sensor or a group of Sensors have been disabled or re-enabled.

touch_qt_sensors_start_acquisition

touch_ret_ttouch_qgt sensors_start acquisition(touch_qt_grp_t touch_qgt_grp,
touch_time_t current_time_ms,
touch_qgt_dma_t *p_touch_dma,
touch_acq_mode_t gt_acq_mode,
void (*measure_complete_callback)(touch_measure_data_t *p_measure_data))

Arguments Type Comment

touch_qt_grp touch_qt grp_t Specify if the operation
is to be performed on
Group A Sensors or
Group B Sensors.

current_time_ms touch_time t Current time in ms

p_touch_dma touch_qgt dma_t* DMA channels to be
used for transfer to burst
length & acquisition
count

gt_acg_mode touch_acq_mode_t Specify whether Normal
acquisition mode or
Raw acquisition mode
should be done.

void void QTouch Group A or

(*measure_complete_callback)((*measure_complete_callback)(| Group B Measure

void) touch_measure_data t complete callback
*p_measure_data) function pointer

e This API initiates a capacitive measurement on all enabled QTouch Group A or Group B
sensors depending on the touch_qgt_grp specified.

e When normal acquisition mode is used, once the Touch measurement is completed on all
the QTouch sensors, before processing the raw acquisition data (channel_signals), a
filter_callback function is optionally called by the Touch Library.

e Once the filter_callback is completed, the signal values will be processed by the Touch
Library. The measure_complete_callback function is then called with touch data

162 8207K-AT42-09/11

(channel_signals, channel_references, sensor_states, sensors structure) as well as the
Touch Status (sensor_states) and Rotor/Slider position (rotor_slider_values).

The touch_event_dispatcher APl needs to be called as frequently as possible for the
Touch Library to process the raw acquisition data.

When raw data acquisition mode is used, once the raw acquisition data is available from
the CAT module for all the sensors, the measure _complete callback function is
immediately called with acquisition data (channel_signals). The channel_references,
sensor_states and rotor_slider_values data are not updated by the Touch Library in this
mode.

This API will return error if a Touch measurement is already in progress.

One peripheral DMA channels must be provided using p_touch_dma for QTouch
operation.

touch_qt _sensor_ disable

touch_ret_t touch_qt_sensor_disable(touch_qt_grp_t touch_qgt_grp,
sensor_id_t sensor_id)

Arguments | Type Comment

touch_qt_grp | touch_qt_grp_t | Specify if the operation is to be performed on Group A Sensors

or Group B Sensors.

sensor_id sensor_id_t Sensor ID of the Sensor to be disabled.

This API can be used to disable Touch measurement on a QTouch Sensor.

The touch_qgt_sensors_calibrate API needs to be called whenever one or more Sensors
are disabled before starting a new Touch measurement wusing the
touch_qt_sensors_start_acquisition API.

Note: Care must be taken such that a valid Sensor ID corresponding to a QTouch Group
A sensor or QTouch Group B Sensor is provided.

touch_qt _sensor_reenable

touch_ret_ttouch_qt _sensor_reenable(touch_qt_grp_ttouch_qt_grp,
sensor_id_t sensor_id)

Arguments | Type Comment

touch_qt_grp | touch_qt_grp_t | Specify if the operation is to be performed on Group A Sensors

or Group B Sensors.

sensor_id sensor_id t Sensor ID of the Sensor to be disabled.

This API can be used to reenable a disabled QTouch Sensor.

The touch_qgt_sensors_calibrate API needs to be called whenever one or more Sensors
are reenabled before starting a new Touch measurement using the
touch_qt_sensors_start_acquisition API.

Note: Care must be taken such that a valid Sensor ID corresponding to a QTouch Group
A sensor or QTouch Group B Sensor is provided.

ATMEL 163

AIMEL

touch_qt_get_libinfo

touch_ret_t touch_qt_get_libinfo(touch_qt_grp_t touch_qt_grp,
touch_info_t *p_touch_info)

Arguments | Type Comment

touch_qgt _grp | touch_qt_grp_t | Specify if the operation is to be performed on Group A Sensors

or Group B Sensors.

P_

touch_info_t* User passes the memory address at which the library

touch_info information is to be stored by the library.

The touch_info_t structure is filled by the library with the Group specific (based on
touch_qt_grp input) information like number of QTouch channels, number of QTouch
sensors, number of QTouch rotors/slider, CAT hardware version, and library version.

The QTouch number of channels, sensors and rotors/slider indicate the total number of
channels, sensors and rotor/slider in use irrespective of Touch measured being disabled
or enabled. (Disabling and Re-enabling of a Sensor using the touch_qt_sensor_disable
and touch_qt_sensor_reenable API does not alter these values).

touch_qt_sensor_get_delta

touch_ret_t touch_qt_sensor_get_delta(touch_qt_grp_t touch_gt_grp,
sensor_id_t sensor_id,
touch_delta_t *p_delta)

Arguments | Type Comment
sensor_id sensor_id t Sensor ID for which the delta needs to be retrieved.
p_delta touch delta t* | Pointer to Delta variable, that will be update by the Touch Library

This API retrieves the delta information associated with a specific QTouch sensor. Delta
is the difference between the current signal value and reference value.

The user must provide the sensor ID whose delta is sought along with a valid pointer to a
Delta variable.

The API updates the delta variable associated with the requested sensor.

Autonomous touch API

This section lists the functions that are specific to Autonomous QTouch sensor.

touch_at_sensor_init

touch_ret_ttouch_at sensor_init(touch_config_t *p_touch_config)

Arguments Type Comment

p_touch_config | touch_config_t* | Pointer to Touch Library input configuration structure. The

p_at_config and p_general_config members of the input
configuration structure must be non-NULL.

164

8207K-AT42-09/11

This API initializes the touch library Autonomous touch sensor. This API has to be called
before calling any other Autonomous touch API function.

Based on the input parameters, the CAT module is initialized with Autonomous Sensor
Pin and Register configuration.

The General configuration data provided by the p_general_config pointer is common to
both QMatrix, QTouch Group A, QTouch Group B and Autonomous Touch sensors.

touch_at_sensor_enable

touch_ret_ttouch_at sensor_enable(void)

Arguments

Type Comment

void
(*touch_at_status_change_interrupt_
callback) (touch_at_status

*p_at status)

void

Autonomous

(*touch_at_status_change_interrupt | QTouch Callback
_callback) (touch_at_status function.

*p_at status)

This APl enables the autonomous touch sensor and initiates continuous Touch
measurement on the Autonomous QTouch sensor.

When there is a change in the autonomous QTouch sensor status, the callback function
as specified in touch_at_status_change_interrupt_callback will be called. The callback
function lets the user know whether the autonomous QTouch sensor is currently in touch
or out of touch.

Note that this callback function will be called from an interrupt service routine. Hence it is

recommended to have as minimal code as possible in the callback function.

e This API should be called only after touch_at_sensor_init API is called.

touch_at _sensor_disable

touch_ret_t touch_at_sensor_disable(void)

Arguments

Type

Comment

void

e This API disables the Touch measurement on the Autonomous QTouch sensor. The
status change callback function is not called when the Sensor is disabled.

touch_at_sensor_update_config

touch_ret_t touch_at_sensor_update_config(touch_at_param_t *p_at param)

Arguments | Type Comment

p_at_param | touch_at param_t* | Pointer to autonomous QTouch sensor configuration

structure.

AIMEL

165

AIMEL

e This API updates the configuration of autonomous QTouch sensor with a setting that is
different from the one configured by calling touch_at_sensor_init API.

e The user must populate the structure pointed by p_at param with required settings
before calling this API.

touch_at_sensor_get_config

touch_ret_t touch_at_sensor_get_config(touch_at_param_t *p_at _param)

Arguments | Type Comment
p_at_param | touch_at param_t* | Pointer to autonomous QTouch sensor configuration
structure.

e This API retrieves the current configuration of the autonomous QTouch sensor.

touch_at_get_libinfo
touch_ret_t touch_at_get_libinfo(touch_info_t *p_touch_info)

Arguments | Type Comment

p_touch_info | touch_info_t* | User passes the memory address at which the library information
is to be updated.

e The touch_info_t structure is filled by the library with information on the number of
autonomous QTouch channels (Fixed value of 1), number of autonomous QTouch
sensors (Fixed value of 1), number of autonomous QTouch rotors/slider (Fixed value of
0), CAT hardware version and library version.

Common API

This section lists the functions that are common to QMatrix, QTouch Group A/B and Autonomous
QTouch acquisition methods.

touch_event_dispatcher
void touch_event_dispatcher (void)

Arguments Type Comment

Void -

e This API needs to be called by the user application to allow the library to process the raw
acquisition data from the sensors.

e Once touch_gm_sensors_start_acquisition is called, touch_event_dispatcher API needs
to be called as frequently as possible by the Host application.

e The signals_callback and measure_complete_callback functions are called from the
touch_event_dispatcher API context.

touch_deinit
void touch_deinit (void)

Arguments Type Comment

void -

166 8207K-AT42-09/11

e This API can be used to de-initalize the Touch Library and disable the CAT module.

e Calling this API de-initializes the Touch Library for Sensors corresponding to all methods
of acquisition (QMatrix, QTouch Group A, QTouch Group B and Autonomous QTouch).

Integrating QTouch libraries for AT32UC3L in your application

This section illustrates the key steps required in integrating the QTouch™ library in your
application.

a. For your design, you would need the following information to select the correct library
variant
e Device to be used for the design — Current library supports AT32UC3L064,
AT32UC3L032, AT32UC3L016 device variants.
e Compiler platform you intend to use to integrate the libraries.
b. Copy the library variant that was selected in step one to your project’s working directory
or update your project to point to the library selected.
c. Include touch_api_at32uc3l.h & touch_config_at32uc3l.h header files of the QTouch™
library in your application. The header files can be found in the library installation folder.
d. Initialize/create and use the Touch APIs in your application
e Set the various configuration options using the touch_config_at32uc3l.h file.
e |nitialize and configure the sensors in the Host application.
e The Host application also has to provide the required timing so as to perform
Touch measurement at regular intervals.
e. General application notes
e Ensure that there are no conflicts between the resources used by the Touch
library and the host application
e Ensure that the stack size is adjusted to factor in the stack depth required for the
operation of the touch libraries.

MISRA Compliance Report of QTouch Library for UC3L

This section lists the compliance and deviations for MISRA standards of coding practice for the
UC3L QTouch libraries.

What is covered

The MISRA compliance covers the QTouch library for AT32UC3L devices. The Example projects
and associated code provided is not guaranteed to be MISRA compliant.

Target Environment

Development Environment | IAR Embedded Workbench for Atmel AVR32

MISRA Checking software The MISRA C Compliance has been performed for the library
using MISRA C 2004 Rules in IAR Workbench for Atmel AVR32

MISRA Rule set applied MISRAC 2004 Rule Set, All including advisory

Deviations from MISRA C Standards

The QTouch library was subjected to the above mentioned MISRA compliance rules. The
following table lists the exceptions in the AT32UC3L QTouch library source code and also
provides explanation for these exceptions.

Apart from these, there were many exceptions in the standard header files supplied by the tool
chain and those are not captured here.

A IIIEL 167

&

AIMEL

&

Rule Rule Description Advisory/ | Exception noted / How it is
Required | addressed
1.1 All code shall conform to ISO 9899 | Required | This Rule is not supported as the
standard C, with no extensions library implementation requires IAR
permitted. extensions like __interrupt. These
intrinsic functions relate to device
hardware functionality, and cannot
practically be avoided.
5.4 A tag name shall be a unique Required This is violated as for the reason that
identifier enumerated types are mixed with
other types. This is caused by
integers being assigned to
enumerated types in some places to
save code space
6.3 The basic types of char, int, short, | Advisory The type bool supported by the
long, float, and double should not compiler violate this rule.
be used, but specific-length
equivalents should be typedef'd for
the specific compiler, and these
type names used in the code
10.3 The value of a complex expression | Required This is required in the code to do
of integer type shall only be cast to align some pointers in the data block
a type that is not wider and of the memory. Cannot be avoided.
same signedness as the
underlying type of the expression
11.3 A cast should not be done Advisory This is required in the code to do
between a pointer type and an align some pointers in the data block
integral type memory. Cannot be avoided.
17.4 Array indexing shall be the only Required Pointer increment has been done in
allowed form of pointer arithmetic some places for sequential access of
signals, references, etc.
19.13 | The # and ## preprocessor Advisory This is required for implementation of
operators should not be used a macro for ease of use &
abstraction

Known Issues with QTouch Library for UC3L

168

When the IAR Example Project is build, the IAR32 compiler reports the following Warning

- Warning[Pe047]: incompatible

redefinition of macro

"AVR32_PM_PPCR_MASK"

(declared at line 607 of "C:\Program Files\IAR Systems\Embedded C:\Program Files\IAR

Systems\Embedded Workbench
5.6\avr32\INC\avr32/uc3l064.h").

5.6\avr32\INC\avr32\pm_400.h

467 Workbench

In order to avoid this, this warning (Pe047) has been disabled using the Diagnostics

option in the IAR32 Project.

8207K-AT42-09/11

QTouch Library for ATtiny20 device

ATMEL QTouch Library for ATtiny20 can be used for embedding capacitive touch buttons
functionality into ATtiny20 device application.

This Section describes the QTouch Library Application Programming APl and Configuration
interface for QTouch method acquisition using the ATtiny20 devices.

Salient Features of QTouch Library for ATtiny20

QTouch method sensor
e 1 Physical pin per Touch Button.
e 1to 5 Touch Buttons can be configured.

¢ Individual Sensor Threshold, Sensor Hysteresis and Sensor Global acquisition
parameters can be configured.

e Adjacent Key Supression (AKS) support.
e QTouch Studio support for Touch data analysis.

e ‘'C’ Programming interface for easy inclusion of User application.

Compiler tool chain support for ATtiny20

The QTouch libraries for ATtiny20 devices are supported for the following compiler tool chains.

Tool Version

IAR Embedded Workbench for Atmel AVR.

IAR Compiler. 55

Table 17 Compiler tool chains support for ATtiny20 QTouch Library

Overview of QTouch Library for ATtiny20

For an overview of QTouch method based capacitive touch acquisition, refer Section 5.2.1
QTouch Acquistion method.

The QTouch Library for ATtiny20 device allows for Sensor configuration and Sensor Acquisition
parameter setting. Based on the input Sensor configuration, the QTouch Library takes care of the
capacitive touch acquisition data capture operations on the external capacitive touch sensors.
The captured Touch Data and Touch Button ON/OFF Status information is then available for user
application.

The diagram below indicates a Typical Sensor arrangement using the Tiny20 device. The
QTouch Library uses the ATtiny20 ADC Module to peform capacitive Touch measurements. The
ADC module must be enabled by the Host Application and configured in Free running mode for
QTouch Library to function correctly. The PAO pin must be configured as Output pin and should
be in HIGH state before the gt_measure_sensors API is called. Port pins PAl to PA7 can be
used to support upto 5 Touch Buttons. The Touch Buttons must be connected to sequential Port
pins. However, it is not necessary to start the first Touch Button on Port pin PA1. For Example,
when 3 Touch Buttons are required, they can by connected to pins PA5, PA6 and PA7.

The Sensor numbering is always in the increasing order of Port pin.

ATMEL 169

&

AIMEL

&

VCC
PAO ————X No Connection
PAl
PA2
1Kohm
R Touch Button 1
ATtiny20 PA3 O
1Kohm
PA4 I Q Touch Button 2
1Kohm
PAS5 E— Q Touch Button 3
1Kohm
PA6 7 O Touch Button 4
1Kohm
PA7 I Q Touch Button 5
GND

Figure 48 Schematic overview of QTouch on Tiny20

API Flow diagram for ATtiny20

For the QTouch Libraries, the timing information is provided by the Host Application by updating
the ‘time_current_ms’ variable in the Timer ISR. The QTouch Library uses this variable to
calculate the necessary timing for Max ON Duration, Drift and Recalibration functionality. Before
using the QTouch Libraries, the Timer ISR must be configured appropriately. Also, the Timer
Interrupt is used to update the ‘time_to_measure_touch’ variable inorder to start a capacitive
touch measurement. It is recommended to call gt_measure_sensors within 100ms each time to
avoid error in QTouch Library timing.

The touch_config_tiny20.h configuration header file can be used to set the desired number of
Touch Sensors (Buttons) as well as individual sensor Threshold, Hysteresis and Recalibration
parameters. The Sensor Global Configuration parameters must be specified using the IAR Linker
define options.

Figure 49 Linker configuration options for Tiny20

170 8207K-AT42-09/11

Setup the desired device clock using the init_system() in main.c
Using the init_timer(), setup the Timer ISR such that the Timer Interrupt occurs every
20ms . Enable the ADC and configure in Free running mode.

!

Using the touch_config_tiny20.h configuration file,

1. Set the desired number of Sensors.

2. Set the Individual sensor Threshold, Hysteresis, Recalibration Threshold and Delay
cycle values.

3. Set the desired Sensor Global acquisition parameters using the

IAR Project->Linker options.

4. The DEF_QT_ADC_CHANNEL_START_INDEX Linker option can be used to set

the starting ADC Channel.
Add any Host Application

(a Sample LED application is available with the Tin20 EK IAR Example project).

C gt_init_sensing())

—>

time_to_

measure_touch
Callin loop %
< gt_measure_sensors() > ________ »@easured data and Touch StatuD

C Host Application code)

Figure 50 QTouch method for Tiny20 API Flow diagram

A IIIEL 171

AIMEL

o
&

QTouch Library configuration parameters for ATtiny20

The Table below describes the various configuration parameters corresponding to the ATtiny20.

Parameter

Description

DEF_QT_QDEBUG_ENABLE

Enable/Disable QDebug debug data communication to QTouch
Studio.

DEF_QT_NUM_SENSORS

QTouch number of Sensors.
Range: 1u to 5u.

DEF_QT_SENSOR_0_THRESHOLD,
DEF_QT_SENSOR_1_THRESHOLD,
DEF_QT_SENSOR_2_THRESHOLD,
DEF_QT_SENSOR_3_THRESHOLD,
DEF_QT_SENSOR_4_THRESHOLD

Sensor detection threshold value.
Range: 1u to 255u.

DEF_QT_SENSOR_0_HYSTERESIS,
DEF_QT_SENSOR_1_HYSTERESIS,
DEF_QT_SENSOR_2_HYSTERESIS,
DEF_QT_SENSOR_3 HYSTERESIS,
DEF_QT_SENSOR_4 HYSTERESIS

Sensor detection hysteresis value. Refer hysteresis_t in
touch_api_tiny20.h

HYST_50 = (50% of Sensor detection threshold value)
HYST_25 = (25% of Sensor detection threshold value)
HYST_12_5 = (12.5% of Sensor detection threshold value)
HYST_6_25 = (6.25%, but value is hardlimited to 2)

DEF_QT_SENSOR_0_RECAL_THRESHOLD,
DEF_QT_SENSOR_1_RECAL_THRESHOLD,
DEF_QT_SENSOR_2_RECAL_THRESHOLD,
DEF_QT_SENSOR_3_RECAL_THRESHOLD,
DEF_QT_SENSOR_4 RECAL_THRESHOLD

Sensor recalibration threshold value. Refer recal_threshold_t in
touch_api_tiny20.h

RECAL_100 = (100% of Sensor detection threshold value)
RECAL_50 = (50% of Sensor detection threshold value)
RECAL_25 = (25% of Sensor detection threshold value)
RECAL_12 5 = (12.5% of Sensor detection threshold value)
RECAL_6_25 = (6.25%, but value is hardlimited to 4)

DEF_QT_DELAY_CYCLES

Delay cycles that determine the capacitance charge transfer time.
Range: 1, 2, 4, 8 or 10 internal System Clock cycles.

DEF_QT_ADC_CHANNEL_START_INDEX

ADC Channel starting index.
Range: 1u to 7u.

DEF_QT_AKS_ENABLE

Enable/Disable Adjacent Key suppression (AKS) on all channels.

DEF_QT _DI

Sensor detect integration (DI) limit.Range: Ou to 255u.
Refer Section 5.3 and Section 5.4 for more info.

DEF_QT_NEG_DRIFT_RATE*(See Note 1)

Sensor negative drift rate. Units: 100ms, Range: 1u to 127u.
Refer Section 5.3 and Section 5.4 for more info.

DEF_QT_POS_DRIFT_RATE*(See Note 1)

Sensor positive drift rate. Units: 100ms, Range: 1u to 127u.
Refer Section 5.3 and Section 5.4 for more info.

DEF_QT_MAX_ON_DURATION

Sensor maximum on duration. Units: 100ms, Range: Ou to 255u.
Refer Section 5.3 and Section 5.4 for more info.

DEF_QT_DRIFT_HOLD_TIME

Sensor drift hold time. Units: 100ms, Range: 1u to 255u.
Refer Section 5.3 and Section 5.4 for more info.

DEF_QT_POS_RECAL_DELAY

Positive Recalibration delay. Range: 1u to 255u.
Refer Section 5.3 and Section 5.4 for more info.

DEF_QT_NUM_SENSORS_SYM

QTouch number of Sensors Symbol for QTouch Library.
MUST be the same as DEF_QT_NUM_SENSORS.

DEF_QT_BURST_LENGTH

Specifies the no:of burst sequence required for a sensor. Multiple
burst for adjusting sensitivity by increasing the resolution of the Signal
measured.Use higher value for increasing sensitivity.

Values: 1u, 4u and 16u

172

8207K-AT42-09/11

Table 18 QTouch Library for ATtiny20 Configuration parameters

Notel:

For the case of ATtiny20 devices, a ‘touch’ causes the Signal value measured on the Sensor to
increase above the Sensor Reference value (In the case of Generic Library devices, a ‘touch’
causes the Signal value to decrease below the Reference value).

However, the Negative drift rate and Positive drift rate functionality for the case of Tiny20 devices
shall be consistent with the Generic Library case.

So, it is recommended to have a ‘Slower’ Negative Drift rate (4 seconds is the default setting) and
a ‘Faster’ Positive Drift rate (1 second is the default setting) for the Tiny20 device.

QTouch Library ATtiny20 Example projects

The QTouch method IAR Example project for the Tiny20 Evaluation Kit can be found in the
following path.

\Device_Specific_Libraries\8bit AVR\AVR_Tiny_Mega XMega\ATtiny20\
tiny20_ek_iar_qt_example
The Example projects demonstrate the 5 button sensor configuration with a Sample LED

application. The Example projects also support QDebug data transfer to QTouch Studio — Touch
Analyzer PC Application.

It is possible to configure the number of Sensors in the Example project from 1 to 5 for testing on
the ATtiny20 Evaluation Kkit.
QTouch Library ATtiny20 code and data memory requirements

The code and data memory requirements for QTouch Library for ATtiny20 devices is captured in
the Table below. The Table indicates these values for the standalone library and not for the
entire Example Project application.

Library Number of Code Memory Data CStack/RStack
Sensors memory

CStack= 0x1C bytes
libtiny20-5qt-k- 1231 + 15 bytes 70 RStack= 10
Ors Const data (16 bytes) is the

Recommended setting.

CStack= 0x1C bytes

libtiny20-5qt-k- 1231 + 12 bytes RStack= 10

Ors 4 Const data 60 (16 bytes) is the
Recommended setting.
CStack= 0x1C bytes

libtiny20-5qt-k- 3 1231 + 9 bytes 50 RStack= 10

Ors Const data (16 bytes) is the
Recommended setting.
CStack= 0x1C bytes

libtiny20-5qt-k- 2 1231+ 6 bytes 40 RStack= 10

Ors Const data (16 bytes) is the
Recommended setting.

CStack= 0x1C bytes
libtiny20-5qt-k- 1 1231+ 3oytes |30 RStack= 10
Ors (16 bytes) is the

A IIIEL 173

&

AIMEL

&

| | | | Recommended setting. |

Table 19 QTouch Library for ATtiny20 Memory requirements

Data memory for ATtiny20 QTouch Library include the following.
10. QTouch Library data memory — 19 bytes, allocated inside the Library.
11. channel_signals — 2 bytes per Sensor, allocated in main.c
12. channel_references — 2 bytes per Sensor, allocated in main.c
13. sensor_delta — 2 bytes per Sensor, allocated in main.c
14. sensor_general_counter — 2 bytes per Sensor, allocated in main.c
15. sensor_state — 1 byte per Sensor, allocated in main.c
16. sensor_ndil_counter — 1 byte per Sensor, allocated in main.c
17. sensor_states — 1 byte, allocated in main.c
Const Data memory for ATtiny20 QTouch Library include the following.
1. sensor_threshold, 1 byte per Sensor, allocated in main.c
2. sensor_hyst threshold, 1 byte per Sensor, allocated in main.c

3. sensor_recal_threshold, 1 byte per Sensor, allocated in main.c

QTouch Library for ATtiny40 device

ATMEL QTouch Library for ATtiny40 can be used for embedding capacitive touch buttons
functionality into ATtiny40 device application.

This Section describes the QTouch Library Application Programming APl and Configuration
interface for QTouch method acquisition using the ATtiny40 devices.

Salient Features of QTouch Library for ATtiny40

QTouch method sensor
e One Physical pin per Touch Button.
e 1to 12 Touch Buttons can be configured.

e Individual Sensor Threshold, Sensor Hysteresis and Sensor Global acquisition
parameters can be configured.

e Signal resolution can be configured.

e Charge Share Delay can be configured.

e Adjacent Key Supression (AKS) support.

e QTouch Studio support for Touch data analysis.

e ‘'C’ Programming interface for easy inclusion of User application.

174 8207K-AT42-09/11

Compiler tool chain support for ATtiny40

The QTouch libraries for ATtiny40 devices are supported for the following compiler tool chains.

Tool Version

IAR Embedded Workbench for Atmel AVR.

IAR Compiler. 551

Table 20 Compiler tool chains support for ATtiny40 QTouch Library

Overview of QTouch Library for ATtiny40

For an overview of QTouch method based capacitive touch acquisition, refer Section 5.2.1
QTouch Acquistion method.

The QTouch Library for ATtiny40 device allows for Sensor configuration and Sensor Acquisition
parameter setting. Based on the input Sensor configuration, the QTouch Library takes care of the
capacitive touch acquisition data capture operations on the external capacitive touch sensors.
The captured Touch Data and Touch Button ON/OFF Status information is then available for user
application.

The diagram below indicates a Typical Sensor arrangement using the Tiny40 device. For one
channel configuration, two ADC pins are used for acquisition. For number of touch buttons
greater than one, no extra ADC pins are used. Port pins PAO to PA7 and PBO to PB3 can be
used to support upto 12 Touch Buttons. The Touch Buttons may be connected anywhere on the
said port pins.

The Sensor numbering is always in the increasing order of Port pin.

VCC
—|; PAO 1Kohm Q Touch Button 0
1Kohm
PAl m—m—m—M8™ Touch Button 1
1Kohm
PA2 Q Touch Button 2
1Kohm
PA3 | —Q ouch Button 3
1Kohm
PA4 Q Touch Button 4
1Kohm
PA5 mmm8¥ 1 Touch Button 5
ATtiny40
y PA6 lKohm Q Touch Button 6
lKohm
PA7 44— ————————1 Touch Button 7
1Kohm
PBO Q Touch Button 8
1Kohm
PBl M4m—m—————{ Touch Button 9
1Kohm
PB2 Touch Button 10
PB3 lKohm h
{1} Touch Button 11
GND

A IIIEL 175

AIMEL

&

Figure 51 Schematic overview of QTouch on Tiny40

API Flow diagram for ATtiny40

For the QTouch Libraries, the timing information is provided by the Host Application by updating
the ‘time_current_ms’ variable in the Timer ISR. The QTouch Library uses this variable to
calculate the necessary timing for Max ON Duration, Drift and Recalibration functionality. Before
using the QTouch Libraries, the Timer ISR must be configured appropriately. Also, the Timer
Interrupt is used to update the ‘time_to_measure_touch’ variable inorder to start a capacitive
touch measurement.

The touch_config_dp.h configuration header file must be used to set the number of channels
based on the library used. For example, if the library used is a 12 channel library then
QT_NUM_CHANNELS must be specified as 12 in the touch_config_dp.h. This information must
be provided irrespective of the number of channels actually used.

The desired number of touch buttons used can be enabled using the gt_enable_key() routine.
The channel numbers are sequential from Port A through Port B. Also, individual sensor
Threshold, Hysteresis, AKS group and Recalibration parameters can be set using this function
call. The Sensor Global Configuration parameters can also be set by the user by directly
accessing the global configuration data structure.

When developing a Host application for ATtiny40 device, ensure that the ADC prescalar is set in
such a way that it is in the range of 50 KHz to 250 KHz. For example, if the main clock is running
at 8MHz then set the ADC prescalar to 32 or more. This must be done to ensure proper touch
sensing acquisition.

176 8207K-AT42-09/11

qt_enable xxx(}

Tha host application calls “qi_anabls_key |°
as raquired to configure the louch sensors

gt_init_sensing()

The host application calls gi_init_sensingi) 1o calibrate all the
configured channels and prepere the sensors for capacitive

W rreasuremant

qt_set_parameters()

The host application gt_sel_paramabers() bo inilialize the thrashald
parametars for the library. If the user needs 10 change the thresholdg,
T edit the global data structure qi_config_date priar to calling this AFI

init_timer_isr()

The host applcation nitializes the fimer module required for
capadiive measurameni

If ADC value is modified by th
configure_adc() s valug iz modi v the

v

gt_measure_sensors()

The host application periodically cals

“gl_rmeasure_sensors{ [o make capacilive measuremeants.

T o Part of host application
TIFI'IE—EI'IT.IEE' I'IOET which cannat wait il mulipls

application code | measurements are complete (should

be as minimel as possible)

check gt_touch_status
l check the global status variabke “gt_touch_statug” to saa if any

sEns0rs &e in datect

Non-Time critical host application code
| Hast applicatien which can be execuled after

the completion of multiple measurements
for all the channals

Figure 52 QTouch method for Tiny40 API Flow diagram

AIMEL

&

177

AIMEL

&

QTouch Library configuration parameters for ATtiny40

The Table below describes the various configuration parameters corresponding to the ATtiny40
QTouch Library.

Parameter Description

Sensor detect integration (DI) limit.Range: Ou to 255u.

DEF_QT_DI Refer Section 5.3 and Section 5.4 for more info.

Sensor negative drift rate. Units: 100ms, Range: 1u to 127u.

DEF_QT_NEG_DRIFT_RATE*(See Note 1 -))
QT - - () Refer Section 5.3 and Section 5.4 for more info.

Sensor positive drift rate. Units: 100ms, Range: 1u to 127u.

*
DEF_QT_POS_DRIFT_RATE*(See Note 1) Refer Section 5.3 and Section 5.4 for more info.

Sensor maximum on duration. Units: 100ms, Range: Ou to 255u.

DEF_QT_MAX_ON_DURATION Refer Section 5.3 and Section 5.4 for more info.

Sensor drift hold time. Units: 100ms, Range: 1u to 255u.

DEF_QT_DRIFT_HOLD_TIME Refer Section 5.3 and Section 5.4 for more info.

Positive Recalibration delay. Range: 1u to 255u.

DEF_QT_POS_RECAL_DELAY Refer Section 5.3 and Section 5.4 for more info.

Burst Length. Range: 10u — 13u. Proper function for values more
DEF_QT_BERST_LENGTH than 13u is not guaranteed.This parameter helps in increasing the
signal resolution.

Charge Share Delay. Range: Ou — 255u. This value needs to be
DEF_QT_CHARGE_SHARE_DELAY increased if we use high value of series resistor on sensor pin to
ensure proper charge time.

Table 21 QTouch Library for ATtiny40 Configuration parameters

Notel:

For the case of ATtiny40 devices, a ‘touch’ causes the Signal value measured on the Sensor to
increase above the Sensor Reference value (In the case of Generic Library devices, a ‘touch’
causes the Signal value to decrease below the Reference value).

However, the Negative drift rate and Positive drift rate functionality for the case of Tiny40 devices
shall be consistent with the Generic Library case.

So, it is recommended to have a ‘Slower’ Negative Drift rate (4 seconds is the default setting) and
a ‘Faster’ Positive Drift rate (1 second is the default setting) for the Tiny40 device.
QTouch Library ATtiny40 Example projects

The QTouch method IAR Example project for the Tiny40 Evaluation Kit can be found in the
following path.

\Device_Specific_Libraries\8bit AVR\AVR_Tiny _Mega_XMega\ATtiny40\tiny40_qt_example_iar

The Example projects demonstrate the 12 button sensor configuration. The Example projects
also support QDebug data transfer to QTouch Studio — Touch Analyzer PC Application.

It is possible to configure the number of Sensors in the Example project from 1 to 12 for testing
on the ATtiny40 Evaluation kit.

178 8207K-AT42-09/11

QTouch Library ATtiny40 code and data memory requirements

The code and data memory requirements for QTouch Library for ATtiny40 devices is captured in
the Table below. The Table indicates these values for the standalone library and not for the
entire Example Project application.

Library Number of | Code Memory Data CStack/RStack

Sensors memory
libtiny40 4t k Ors 4 2200 135 2322'.22 2421 Eﬁii
libtiny40_8qt_k_Ors 8 2200 175 gg::ﬁtz gzzt ﬁﬁii
libtiny40_12qt_k Ors 12 2300 216 CR:ng::: gi Ei/,ttgz

Table 22 QTouch Library for ATtiny40 Memory requirements

Generic QTouch Libraries for 2K Devices

Introduction

This section provides information about the QTouch library Acquisition Support for Tiny devices
with 2K Flash memory. These libraries have the same API's as Generic libraries, except for a few
which are not supported.Information about the API's are provided in touch_api_2kdevice.h file
which is placed at location mentioned in section 5.6.10.1

A IIIEL 179

&

AIMEL

&

Devices supported

The list of different devices that are supported by the QTouch library for 2K devices is given
below:

1. ATtiny2313A
2. ATtiny261A
3. ATtiny24A
4. ATtiny25A

Complete information is available in Library_Selection_Guide.xls.

Salient Features of QTouch Library for 2K Devices

1 to 4 Touch Buttons can be configured. Supports maximum of 4 Buttons.

Libraries in variants of 1, 2 and 4 channels are provided.

2K device libraries are supported only for IAR.

Library API's are same as Generic QTouch libraries.

Support for more than one pair of SNS and SNSK ports are not available for 2K tiny
devices.

NOTE:
No AKS, no Power Optimization and no pin configurability support in case of 2K device
libraries.
The change information like library status flags which reflects if there is any change in
Reference values, rotor slider position change status flags etc are not part of the 2K device
libraries except burst again flag.

Library Variants

For Different library variants available for 2K Devices, please refer Library_Selection_Guide.xls

QTouch API for 2K Devices and Usage

This section describes the different API's used during touch sensing. Using the API, Touch
sensors and the associated channels can be defined. Once touch sensing has been initiated by
the user, the host application can use the API to make touch measurements and determine the
status of the sensors.Refer section 5.6.6 and Figure 5.6 for APl usage

touch_api_2kdevice.h - public header file

The touch_api_2kdevice.h header file is the public header file which needs to be included in
user’s application. The type definitions and function prototypes of the API's listed in sections 5.6.3
,5.6.4and 5.6.5

The touch_api_2kdevice.h header file is located in the library distribution in the following
directory.

e _\Atmel _QTouch_Libraries_4.x\Generic_QTouch_Libraries\include

The constant/symbol definitions can be placed in any of the following.

180 8207K-AT42-09/11

= Defined user’s project options. All the constants/symbols must be defined for both the
compiler and assembler preprocessing definitions.

= As an alternative, it is also declared in the touch_qt_config_2kdevice.h file. The user
may modify these defined values based on the requirements.

Global settings common to all sensors and sensor specific settings are listed in sections 5.3 and
5.4 respectively

Sequence of Operations and Using the API

Figure 5-6 illustrates the sequence of operations required to be performed to add touch to an end
application. By using the simple API's as illustrated in the sequence flowchart, the user can add
touch sensing in his design.

Channel Numbering

e 1-channel library — supports 1 channel using 1 consecutive pins on different SNS and
SNSK ports (or) supports 1 channel using 2 consecutive pins on the same port used for
both SNS and SNSK lines. This library requires 1 or 2 port.

e 2-channel library — supports up to 2 channels using 2 consecutive pins on different SNS
and SNSK ports (or) supports up to 2 channels using 4 consecutive pins on the same
port used for both SNS and SNSK lines. This library requires 1 or 2 ports.

e 4-channel library — supports up to 4 channels using 4 consecutive pins on different SNS
and SNSK ports (or) supports up to 4 channels using 8 consecutive pins on the same
port used for both SNS and SNSK lines. This library requires 1 or 2 ports.

Channel numbering when routing SNS and SNSK pins to different ports

When SNS and SNSK pins are available on different ports, the channel numbering follows the pin
numbering in the ports selected.

e The channel numbers follow the pin numbers starting with the LSB (pin 0 is channel 0
and pin 3 is channel 3).

e Since the channel numbers are fixed to the pins of the SNS and SNSK ports, if the
design calls for use of a subset of the pins available in the SNS and SNSK ports, the user
has to skip the channel numbers of the unused SNS and SNSK pins.

For example, on a 4 channel configuration using SNS and SNSK ports, if pin 2 is not
used for touch sensing (on both SNS and SNSK ports), channel number 2 is
unavailable and care should be taken while configuring the channels and sensors to
avoid using this channel. Also, the SNS and SNSK masks are assigned properly as
explained in section 7.5.2.2

Channel numbering when routing SNS and SNSK pins to the same port
When SNS and SNSK pins are connected to the same port, the even pin numbers will be used as
SNS pins and the odd pins will be used as the SNSK pins.

e The number of channels supported will be limited 4 channels

e For e.g., for a 4 channel configuration where the SNS and SNSK pins are connected to
Port B, the port pins 0&1 are used for channel 0.

A IIIEL 181

&

AIMEL

&

e The channel number is derived from the position of the pins used for SNS and SNSK
lines for any channel.

channel number = floor([SNS(or SNSK) pin number]/ 2)

o For e.g., pins 4 and 5 are connected to a SNS/SNSK pair and the channel humber
associated with the SNS/SNSK pin is 2.

Rules For Configuring SNS and SNSK masks for 2K Devices

The libraries internally need SNS_array and SNSK_array masks. These masks need to be
defined under Macro QTOUCH_STUDIO_MASKS as per the following rules given below:

1. In case of Interport, SNS_array[0] and SNSK_array[0] mask is used for configuring the
Channel0 and Channel2.And SNS_array[1] and SNSK_array[1] mask is used for configuring the
Channell and Channel3.And In case of Intraport SNS_array[0] and SNSK-array[0] are used for
all the four channels configured based on enabled bits in SNS_array[0] and SNSK-array[0].

2. The channel numbers are allocated based on enabled SNS pins starting from LSBBit.

In case of Interport, Keys on adjacent channels should be placed on different masks. ChannelO
and Channell should be on different SNS/SNSK masks ie channelO on
SNS_array[0]/SNSK_array[0] and channell on SNS_array[1]/ SNSK_array[1].

But in case of Intraport, Keys on adjacent channels should be placed on same masks. ChannelQ
and Channel2 should be on same mask ie SNS_array[0]/SNSK_array[0] and Channell and
Channel3 on SNS_array[1)/ SNSK_array[1].

Configuring SNS and SNSK masks in case of Interport:

1. Enable the Bit0 in SNS_array[0] and Bit0 in SNSK_array[0] mask when enabling ChannelO.
2. Enable the Bitl in SNS_array[1] and Bitl in SNSK_array[1] mask when enabling Channell.
3. Enable the Bit2 in SNS_array[0] and Bit2 in SNSK_array[0] mask when enabling Channel2.
4. Enable the Bit3 in SNS_array[1] and Bit3 in SNSK_array[1] mask when enabling Channel3.

Example 1:

In a 4 channel library, two keys on channel 0 and 3 are enabled.SNS on Port A and SNSK on
Port B .Channel0 will AOBO and Channel3 will be A3B3.

The SNS and SNSK masks will be

SNS_array[0]=0x01;

SNS_array[1]=0x08;

SNSK_array[0]=0x01;

SNSK_array[1]=0x08;

Configuring SNS and SNSK masks in case of Intraport:
1. Enable the Bit0 in SNS_array[0] and Bitl in SNSK_array[0] mask when enabling ChannelO.
2. Enable the Bit2 in SNS_array[0] and Bit3 in SNSK_array[0] mask when enabling Channell.

3. Enable the Bit4 in SNS_array[0] and Bit5 in SNSK_array[0] mask when enabling Channel2.
4. Enable the Bit6 in SNS_array[0] and Bit7 in SNSK_array[0] mask when enabling Channel3.

Example 1:

182 8207K-AT42-09/11

In a 4 channel library, two keys on channel 0 and 3 are enabled.SNS and SNSK on Port B
.Channel0 will BOB1 and Channel3 will be B6B7.

The SNS and SNSK masks will be

SNS_array[0]=0x41,;

SNS_array[1]=0x00;

SNSK_array[0]=0x82;

SNSK_array[1]=0x00;

Integrating QTouch libraries for 2K Devices in your application

In order to Integrate QTouch libraries for 2K devices, the constants and symbol names listed in
Table 1 below need to be defined in the user application. These can be defined in either the
compiler/assembler preprocessing definitions or in the touch_t_config_2kdegice.h file. Example
projects are provided for all the four devices supported.Refer 5.6.10.1 for directory structure of all
the files.

Table 1: Constant and symbol name definitions required to use the QTouch
acquisition method libraries for 2K device libraries

Symbol / Constant name Range of values Comments
QTOUCH This macro has to be defined in order to
use QTouch libraries.
SNS & SNSK Refer to library selection guide.
_SNS_SNSK_SAME_PORT_ | Comment/uncomment define To be enabled if the

same port is used for
SNSK and SNS pins
for QTouch. If SNSK
and SNS pins are on
different ports then
this definition is not

required.
QT_NUM_CHANNELS 1,2 and 4 for 2K device libraries.
QT _DELAY_CYCLES 1to 255 Please refer to section
5.6.8.
QTOUCH_STUDIO_MASKS | This macro has to be defined in order to | SNS_array and
use QTouch libraries for 2K devices. SNSK_array masks

variablesare initialized
under this Macro in
main file.Refer section
75.2.2

The following files are to be added along with the touch library and user application
before compilation:
e For ATtiny 2K devices - touch_api_2kdevice.h, touch_qt_config_2kdevice.h and
gt_asm_tiny_mega_ 2kdevice.S

ATMEL 183

&

AIMEL

&

MISRA Compliance Report

This section lists the compliance and deviations for MISRA standards of coding practice for the
QTouch acquisition method libraries for 2K devices

What is covered

The QTouch acquisition method libraries for 2K devices adhere to the MISRA standards. The
additional reference code provided in the form of sample applications is not guaranteed to be
MISRA compliant.

Target Environment

Development Environment | IAR Embedded Workbench

MISRA Checking software The MISRA C Compliance has been performed for the library
using MISRA C 2004 Rules in IAR Workbench development

environment.

MISRA Rule set applied MISRAC 2004 Rule Set

Deviations from MISRA C Standards

QTouch acquisition method libraries for 2K devices

The QTouch acquisition method libraries were subject to the above mentioned MISRA
compliance rules. The following exceptions have not been fixed as they are required for the
implementation of the library.

Applicable | QTouch libraries

Release

Rule No Rule Description Exception noted / How it is addressed

11 Rule states that all code This Rule is not supported as the library
shall conform to ISO 9899 implementation requires IAR extensions like
standard C, with no __interrupt. These intrinsic functions relate to
extensions permitted. device hardware functionality, and cannot

practically be avoided.

10.1 Rule states that implicit The library uses macros to combine symbol
conversion from Underlying definitions to form a unique expanded symbol
long to unsigned long name and in this, the usage of unsigned qualifiers

for numeric constants (e.g. 98u) causes name
mangling. This is the only occurrence of this error
in the library.

10.6 This Rule says that a 'U’ The library uses macros to combine symbol
suffix shall be applied to all definitions to form a unique expanded symbol
constants of 'unsigned' type | name and in this, the usage of unsigned qualifiers

for numeric constants (e.g. 98u) causes name
mangling. This is the only occurrence of this error
in the library.

14.4 Rule states that go-to The library uses conditional jump instructions to
statement should not be reduce the code footprint at a few locations and
used. this is localized to small snippets of code. Hence

this rule is not supported.
Rule states that In the There is one instance where the library breaks this
definition of a function-like rule where two macro definitions are combined to

19.10 macro, each instance of a form a different symbol name. Usage of
parameter shall be enclosed | parenthesis cannot be used in this scenario.
in parenthesis

184

8207K-AT42-09/11

19.12

Rule states that there shall
be at most one occurrence
of the # or ## preprocessor
operator in a single macro

definition

There is one instance in the library where this rule
is violated where the library concatenates two
macro definitions to arrive at a different definition.

Revision History

The table below lists the revision history for chapters in the user guide.

QTouch Library User guide Revision History

Date/Version | Chapter Change notes
May 2009 All 2" release of QTouch library users guide
Ver2.0
Sep 2009 All Re-structured user guide with new and expanded sections
Ver. 3.0
Nov 2009 6.3,6.9,6.10, |e Updated API changes
Ver. 3.1 7,10 e Updated new libraries and device support information
e Updated debug interface information supported by the
QTouch libraries
e Updated known issues table
Dec 2009 6.10.4,7.1.2, | e Added section about configuring unused pins in user
Ver. 3.2 7.1.5,7.1.6, application
10, e Added more information to some sections to clear
7.24.2.2, ambiguity
7.24.3.7, e Updated Memory footprint information for IAR and GCC
7.2.4.3.2, compiled QTouch libraries.
7.2.4.3.5, ¢ Updated known issues table
7.2.4.3.7, e Added the device support, port combinations, memory
requirements
e QMatrix IAR and GCC libraries to support ATmega325P,
ATmega645, and ATtiny167.
e Modified port combinations for the 165P for QMatrix
libraries.
e Few Port combinations added in case of ATmega88
libraries.
Feb 2010 All chapters e A separate library selection guide is provided external to
Ver 4.0 changed the user guide. All sections included in the library selection
guide have been removed from the user guide.
e All sections have been updated to account for the improved
configurability of the libraries.
Apr 2010 e Added sections related to Positive Recalibration Delay,
Ver 4.1 Position Hysteresis, and Position Resolution.

e Device support extended for QMatrix for the release has
been added in section 5.7.2.4.1 and 5.7.2.3

e In case of QMatrix, 4 (4x1) channel has been added
wherever needed and in case of ATxmega devices 56
(8x7) channel has been added according to the changes

e QTouch Library for UC3L API Device Specific Libraries

185

AIMEL

&

AIMEL

&

Section has been added.

May 2010 e Qtouch acquisition libraries support will be available for
Ver 4.2 ATSAM3U and ATSAMS3S devices.
e Qdebug protocol support will be extended for all example
projects.
e Analog comparator usage and burst length setting
recommendation Note added for UC3L QMatrix method.
e QMatrix device support added for AT90USB82 / 162 / 646 /
647 /1286
July 2010 Section 5.8, e Device support added for Tiny44/84/461/861
Ver 4.3 Section 5.7.2.4 | « Added the details on Pin configuration support for both
QTouch and QMatrix libraries.
e Added section related to the usage of the pin configurator
tool on QTouch Studio.(section 5.8)
e Added sections for Tiny20 and Tiny40 Devices.
Jan 2011 Chapter 7, e Device support added for QTouch 2K devices
5.6.11.2.1, e Added Chapter 7 on 2K Device libraries.
Section e QTouch Support added for UC3C family devices.
57.11.2.1 e QTouch Support added for ATtiny87 device
e Tiny20 code memory requirement section updated.
Feb 2011 Chapter 2 e Added Feature Comparison Table
Ver 4.4 Section e Section 5.6.10 changed and updated for Support for
5.6.10.3 QMatrix AT32UC3C0512 Device
Section 6.5 e Section 6.5 changed and updated for ATtiny40 libraries
Section 5.5.3 Section 5.5.3 added for Guard Channel

186

8207K-AT42-09/11

AIMEL

Y)

Headquarters

International

ATMEL Corporation

ATMEL Asia

ATMEL Europe

ATMEL Japan

2325 Orchard Unit 1-5 & 16, 19/F Le Krebs 9F, Tonetsu Shinkawa Bldg.
Parkway BEA Tower, Millennium 8, Rue Jean-Pierre 1-24-8 Shinkawa

San Jose, CA 95131 City 5 Timbaud Chuo-ku, Tokyo 104-0033
USA 418 Kwun Tong Road BP 309 Japan

Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

78054 Saint-Quentin-en-
Yvelines Cedex

France

Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Tel: (81) 3-3523-3551

Kwun Tong, Kowloon
9 Fax: (81) 3-3523-7581

Hong Kong
Tel: (852) 2245-6100
Fax: (852) 2722-1369

Product Contact

Web Site
http://www.atmel.com/

Sales Contact
www.atmel.com/contacts

Technical Support
AVR Libraries:
touch@atmel.com

SAM Libraries:
at91lsupport@atmel.com
Literature Request

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with ATMEL products. No license, express or implied, by
estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of ATMEL products.
EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL
ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING
TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS
OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS
DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. ATMEL makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to
make changes to specifications and product descriptions at any time without notice. ATMEL does not make any commitment to update
the information contained herein. Unless specifically provided otherwise, ATMEL products are not suitable for, and shall not be used in,
automotive applications. ATMEL'’s products are not intended, authorized, or warranted for use as components in applications intended to
support or sustain life.

© 2011 ATMEL Corporation. All rights reserved. ATMEL®, ATMEL logo and combinations thereof, AVR®, AVR
Studio®, XMEGA®, megaAVR®, tinyAVR®, QTouch®, QMatrix®, and others are registered trademarks or trademarks
of ATMEL Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

A IIIEL 187

&

http://www.atmel.com/�
mailto:touch@atmel.com�
mailto:at91support@atmel.com�
http://www.atmel.com/contacts�
http://www.atmel.com/literature�

	Table of Contents
	Preface
	Introduction
	Overview
	Abbreviations and Definitions
	Definitions

	Generic QTouch Libraries
	Introduction
	Acquisition Methods
	QTouch acquisition method
	Sensor schematics for a QTouch acquisition method design

	QMatrix acquisition method
	Sensor schematics for a QMatrix acquisition method design

	Global settings common to all sensors of a specific acquisition method
	Recalibration Threshold
	Detect Integration
	Drift Hold Time
	Maximum ON Duration
	Positive / Negative Drift
	Positive Recalibration Delay

	Sensor specific settings
	Detect threshold
	Hysteresis
	Position Resolution
	Position Hysteresis
	Adjacent Key Suppression (AKS)

	Using the Sensors
	Avoiding Cross-talk
	Multiple measurements
	Guard Channel

	QTouch API and Usage
	QTouch Library API
	touch_api.h - public header file
	Type Definitions and enumerations used in the library
	Typedefs
	Enumerations
	sensor_type_t
	aks_group_t
	channel_t
	hysteresis_t
	resolution_t
	recal_threshold_t

	Data structures
	qt_touch_status_t
	qt_touch_lib_config_data_t
	qt_touch_lib_measure_data_t
	qt_burst_lengths
	tag_sensor_t
	qt_lib_siginfo_t

	Public Functions
	qt_set_parameters
	qt_enable_key
	qt_enable_rotor
	qt_enable_slider
	qt_init_sensing
	qt_measure_sensors
	qt_calibrate_sensing
	qt_reset_sensing
	qt_get_sensor_delta
	qt_get_library_sig

	Sequence of Operations and Using the API
	Channel Numbering
	Channel numbering when using QTouch acquisition method
	Channel numbering when routing SNS and SNSK pins to different ports
	Channel numbering when routing SNS and SNSK pins to different ports with pin configurability
	Channel numbering when routing SNS and SNSK pins to the same port
	Channel numbering when routing SNS and SNSK pins to the same port with pin configurability

	Channel numbering when using QMatrix acquisition method

	Sensor Numbering
	Filtering Signal Measurements
	Allocating unused Port Pins for User Application
	Disabling and Enabling of Pull-up for AVR devices

	Constraints
	QTouch acquisition method constraints
	QMatrix acquisition method constraints
	Design Guidelines for QMatrix acquisition method systems

	Frequency of operation (Vs) Charge cycle/dwell cycle times:
	Interrupts
	Integrating QTouch libraries in your application
	Directory structure of the library files
	Integrating QTouch acquisition method libraries in your application
	Example for 8bit AVR
	Example for ATSAM
	Checklist of items for integrating QTouch acquisition method libraries

	Integrating QMatrix acquisition method libraries in your application
	Example for 8bit AVR
	Example
	Resources used by QMatrix acquisition method libraries

	Example for 32bit AVR
	Resources used by QMatrix acquisition method libraries for 32 Bit device

	Checklist of items for integrating QMatrix Capacitive sensing libraries

	Common checklist items
	Configuring the stack size for the application

	Example project files
	Using the Sample projects
	Example applications for QTouch acquisition method libraries
	Selecting the right configuration
	Changing the settings to match your device
	Processor settings

	Changing the library configuration parameters
	Using the example projects

	Example applications for QMatrix acquisition method libraries
	Selecting the right configuration
	Changing the library configuration parameters
	Using the example projects

	Adjusting the Stack size when using IAR IDE
	Optimization levels
	Debug Support in Example applications
	Debug Support in the sample applications for EVK2080 and QT600 boards
	How to turn on the debug option
	Debug Interface if USB Bridge board is not available

	Library Variants
	QTouch Acquisition method library variants
	Introduction
	Support for different compiler tool chains
	QTouch Acquisition method library naming conventions
	Naming convention for libraries to be used with GCC tool chain
	Naming convention for libraries to be used with IAR Embedded Workbench

	QTouch acquisition method library variants
	Port combinations supported for SNS and SNSK pin configurations
	Tips on pin assignments for the sensor design using one pair of SNS/SNSK ports
	Port combinations supported for two port pair SNS and SNSK pin configurations
	Tips on pin assignments for the sensor design using two pairs of SNS / SNSK ports

	Sample applications and Memory requirements for QTouch acquisition method libraries

	QMatrix acquisition method library variants
	Introduction
	Support for different compiler tool chains
	QMatrix Acquisition method library naming conventions
	QMatrix acquisition method library variants
	Devices supported for QMatrix Acquisition

	PIN Configuration for QTouch Libraries
	Pin Configuration for QTouch Acquisition Method
	Rules for configurable SNS-SNSK Mask Generation
	Example for 8 channel interport mask Calculation with one port pair
	Example for 8 channel intraport mask Calculation with two port pairs
	Example for 12 channel intraport-interport mask Calculation with two port pairs
	Example for 16 channel intreport-interport mask Calculation with two port pairs

	How to Use QTouch Studio For Pin Configurability

	Pin Configuration for QMatrix Acquisition Method
	Configuration Rules:
	How to use QTouch Studio for Pin Configurability:

	MISRA Compliance Report
	What is covered
	Target Environment
	Deviations from MISRA C Standards
	QTouch acquisition method libraries
	QMatrix acquisition method libraries

	Known Issues
	Checklist

	Device Specific Libraries
	Introduction
	Devices supported
	QTouch Library for AT32UC3L devices
	Salient Features of QTouch Library for UC3L
	QMatrix method sensor
	QTouch method sensor
	Autonomous QTouch sensor
	Additional Features

	Device variants supported for UC3L
	Compiler tool chain support for UC3L
	Table 8 Compiler tool chains support for UC3L QTouch Library

	Overview of QTouch Library API for UC3L
	Figure 35 Overview diagram of QTouch Library for UC3L

	Acquisition method support for UC3L
	Table 9 Acquisition method specific API

	API State machine for UC3L
	Figure 36 State Diagram of QTouch Library for UC3L

	QMatrix method sensor operation for UC3L
	QMatrix method pin selection for UC3L
	Table 10 QMatrix Resistive drive pin option

	QMatrix method Schematic for UC3L
	Internal Discharge mode
	External Discharge mode
	SMP Discharge Mode
	VDIVEN Voltage Divider Enable option
	SYNC pin option
	Figure 37 QMatrix method schematic

	QMatrix method hardware resource requirement for UC3L
	QMatrix method Channel and Sensor numbering for UC3L
	Figure 38 QMatrix channel numbering for UC3L

	QMatrix method API Flow for UC3L
	Figure 39 QMatrix API Flow diagram for UC3L

	QMatrix method Disable and Re-enable Sensor for UC3L

	QTouch Group A/B method sensor operation for UC3L
	QTouch Group A/B method pin selection for UC3L
	Table 11 QTouch Resistive drive pin option

	QTouch Group A/B method Schematic for UC3L
	Resistive Drive option
	SYNC pin option
	Figure 40 QTouch Group A/B and Autonomous QTouch schematic arrangement

	QTouch Group A/B method hardware resource requirement for UC3L
	QTouch Group A/B method Channel and Sensor numbering for UC3L
	Figure 41 QTouch method Channel/Sensor numbering
	Figure 42 QTouch method Channel/Sensor numbering when Group A and B are used together

	QTouch Group A/B method API Flow for UC3L
	Figure 43 QTouch method API Flow diagram

	QTouch Group A/B method Disable and Re-enable Sensor for UC3L

	Autonomous QTouch sensor operation for UC3L
	Autonomous QTouch Sensor pin selection for UC3L
	Autonomous QTouch sensor Schematic for UC3L
	Autonomous QTouch method hardware resource requirement for UC3L
	Table 12 Sleep mode support for Autonomous QTouch

	Autonomous QTouch Sensor API Flow for UC3L
	Figure 44 Autonomous QTouch API Flow diagram

	Autonomous QTouch method Enable and Disable Sensor for UC3L

	Raw acquisition mode support for UC3L
	Figure 45 Raw acquisition mode API Flow diagram

	Library Configuration parameters for UC3L
	Table 13 QTouch Library for UC3L Configuration parameters

	Example projects for QTouch Library for UC3L
	Example Project usage
	Figure 46 GNU Example project usage with AVR32 Studio
	Figure 47 IAR Example project usage with IAR Embedded Workbench for AVR32

	QMatrix Example Project
	QTouch Group A Example Project
	Autonomous QTouch Example Project

	Code and Data Memory requirements for UC3L
	QMatrix method memory requirement
	Table 14 Typical Code and Data memory for Standalone QMatrix operation

	QTouch Group A/B method memory requirement
	Table 15 Typical Code and Data memory for Standalone QTouch Group A/B operation

	Autonomous QTouch memory requirement
	Table 16 Minimum Code and Data for Standalone Autonomous QTouch sensor

	Public header files of QTouch Library for UC3L
	Type Definitions and enumerations used in the library
	Typedefs
	touch_acq_status_t
	touch_qt_grp_t

	Enumerations
	touch_ret_t
	touch_lib_state_t
	touch_acq_mode_t
	sensor_type_t
	aks_group_t
	hysteresis_t
	recal_threshold_t
	resolution_t
	at_status_change_t
	x_pin_options_t
	y_pin_options_t
	qt_pin_options_t
	general_pin_options_t

	Data structures
	sensor_t
	touch_global_param_t
	touch_filter_data_t
	touch_measure_data_t
	touch_qm_param_t
	touch_at_param_t
	touch_qt_param_t
	touch_at_status
	touch_qm_dma_t
	touch_qm_pin_t
	touch_at_pin_t
	touch_qt_pin_t
	touch_qm_reg_t
	touch_at_reg_t
	touch_qt_reg_t
	touch_qm_config_t
	touch_at_config_t
	touch_qt_config_t
	touch_general_config_t
	touch_config_t
	touch_info_t

	Public Functions of QTouch Library for UC3L
	QMatrix API
	touch_qm_sensors_init
	touch_qm_sensor_config
	touch_qm_sensor_update_config
	touch_qm_sensor_get_config
	touch_qm_channel_udpate_burstlen
	touch_qm_update_global_param
	touch_qm_get_global_param
	touch_qm_sensors_calibrate
	touch_qm_sensors_start_acquisition
	touch_qm_get_libinfo
	touch_qm_sensor_get_delta

	QTouch Group A and QTouch Group B API
	touch_qt_sensors_init
	touch_qt_sensor_config
	touch_qt_sensor_update_config
	touch_qt_sensor_get_config
	touch_qt_update_global_param
	touch_qt_get_global_param
	touch_qt_sensors_calibrate
	touch_qt_sensors_start_acquisition
	touch_qt _sensor_ disable
	touch_qt _sensor_ reenable
	touch_qt_get_libinfo
	touch_qt_sensor_get_delta

	Autonomous touch API
	touch_at_sensor_init
	touch_at_sensor_enable
	touch_at_sensor_disable
	touch_at_sensor_update_config
	touch_at_sensor_get_config
	touch_at_get_libinfo
	Common API
	touch_event_dispatcher
	touch_deinit

	Integrating QTouch libraries for AT32UC3L in your application
	MISRA Compliance Report of QTouch Library for UC3L
	What is covered
	Target Environment
	Deviations from MISRA C Standards
	Known Issues with QTouch Library for UC3L

	QTouch Library for ATtiny20 device
	Salient Features of QTouch Library for ATtiny20
	QTouch method sensor

	Compiler tool chain support for ATtiny20
	Table 17 Compiler tool chains support for ATtiny20 QTouch Library

	Overview of QTouch Library for ATtiny20
	Figure 48 Schematic overview of QTouch on Tiny20

	API Flow diagram for ATtiny20
	Figure 49 Linker configuration options for Tiny20
	Figure 50 QTouch method for Tiny20 API Flow diagram

	QTouch Library configuration parameters for ATtiny20
	Table 18 QTouch Library for ATtiny20 Configuration parameters

	QTouch Library ATtiny20 Example projects
	QTouch Library ATtiny20 code and data memory requirements
	Table 19 QTouch Library for ATtiny20 Memory requirements

	QTouch Library for ATtiny40 device
	Salient Features of QTouch Library for ATtiny40
	QTouch method sensor

	Compiler tool chain support for ATtiny40
	Table 20 Compiler tool chains support for ATtiny40 QTouch Library

	Overview of QTouch Library for ATtiny40
	Figure 51 Schematic overview of QTouch on Tiny40

	API Flow diagram for ATtiny40
	Figure 52 QTouch method for Tiny40 API Flow diagram

	QTouch Library configuration parameters for ATtiny40
	Table 21 QTouch Library for ATtiny40 Configuration parameters

	QTouch Library ATtiny40 Example projects
	QTouch Library ATtiny40 code and data memory requirements
	Table 22 QTouch Library for ATtiny40 Memory requirements

	Generic QTouch Libraries for 2K Devices
	Introduction
	Devices supported
	Salient Features of QTouch Library for 2K Devices
	Library Variants
	QTouch API for 2K Devices and Usage
	touch_api_2kdevice.h - public header file
	Sequence of Operations and Using the API
	Channel Numbering
	Channel numbering when routing SNS and SNSK pins to different ports
	Channel numbering when routing SNS and SNSK pins to the same port

	Rules For Configuring SNS and SNSK masks for 2K Devices
	Configuring SNS and SNSK masks in case of Interport:
	Configuring SNS and SNSK masks in case of Intraport:

	Integrating QTouch libraries for 2K Devices in your application

	MISRA Compliance Report
	What is covered
	Target Environment
	Deviations from MISRA C Standards
	QTouch acquisition method libraries for 2K devices

	Revision History
	Disclaimer

