Powered by
Raspberry Pi

I Author’s Note

It is with great excitement to introduce this book, "Explore STEM and Coding with EDU PICO."
This comprehensive guide is designed to accompany the EDU PICO, a product powered by
the Raspberry Pi Pico W, and brought to you by Cytron Technologies.

A special acknowledgement goes to SC Lim, our Project Manager, for steering the ship and
ensuring the successful development of both the EDU PICO kit and this accompanying guide.
Salam, the Designer of EDU PICO, for lending his expertise in shaping the technical
foundations of EDU PICO, making it a powerful tool for STEM education. Suhana, our
llustrator, for adding a creative touch to this book. Her artistic skills turned complicated ideas

into easy-to-understand visuals, making the learning experience more enjoyable.

I sincerely thank the diligent reviewers—Hairil, Cheryl, Anna, Alhamed, Poomipat, Iffah, and ET
Tan—for their meticulous assessments and valuable feedback. A heartfelt shoutout to our
Trainees—Justin, Hao Khee, Anas, and Azeem—for their dedicated assistance. Their collective

contributions have played an instrumental role in fine-tuning and enhancing the content of
this book.

| want to express my deepest thanks to the entire team for their collaborative efforts,
including everyone at Cytron Technologies, whose commitment to educational excellence has

made this project possible.

Finally, this book is dedicated to the students and educators, who will embark on this learning
journey. May EDU PICO be a gateway to discovering the wonders of programming and

electronics, sparking a lifelong passion for learning.

I look forward to seeing the awesome projects you'll create with the knowledge you gain from
these pages and EDU PICO!

Happy Learning!
Adrian Teo

Explore STEM and Coding
with EDU PICO

Project & Innovation Kit

Second Printing, March 2024

Published by CY£rom »

Copyright © 2024 Cytron Technologies

All rights reserved. No part of this book may be reproduced or distributed in any manner

without the prior written permission of the copyright owner.

The content of this publication has not been approved by the United Nations and does not
reflect the views of the United Nations or its officials or Member States. For more information
about the United Nations Sustainable Development Goals, visit here:

https: //www.un.org/sustainabledevelopment/

To request permissions, contact the publisher at supportecytron.io.

Declaration

The Author and Publisher have made every effort to ensure the accuracy of the information
in this book. However, they do not assume any liability and hereby disclaim responsibility for
any loss or damage resulting from errors or omissions in this book, whether arising from

negligence, accident, or any other cause.

Published by:

Cytron Technologies Sdn. Bhd.
1, Lorong Industri Impian 1,
Taman Industri Impian,

14000 Bukit Mertajam,
Penang, Malaysia.

Tel: +604-5480668
Fax: +604-5480669

www.cytron.io

Printed in Malaysia.

https://www.un.org/sustainabledevelopment/

Il Contents

Hello EDU PICO

Chapter 1: Programming with CircuitPython
Text-based Coding with Thonny and CircuitPython.

Chapter 2: Water Drinking Reminder

Buttons and Buzzer.

Chapter 3: Gesture Reaction Game
OLED and Gesture Sensor.

Chapter 4: Colour Detection Game
RGB LEDs and Colour Sensor.

Chapter 5: Automated Waste Bin
Servo Motor and Proximity Sensor.

Chapter 6: Noise Pollution Monitoring
PDM Sound Sensor and Potentiometer.

Chapter 7: Smart Classroom
USB Relay and DC Motor.

Chapter 8: Climate Control Greenhouse
Light Sensor and Temperature Humidity Sensor.

B Chapter Summary

Discover the EDU PICO, an all-in-one Raspberry Pi Pico W learning kit, specially designed for
beginners to venture into text-based Python programming. Unfolding across 8 chapters,

7 projects, and over 10 stimulating challenges, this kit delivers an enriching learning journey.

Design thinking is instilled through comic-style narratives that ingeniously link each project to
sustainable development goals. Let's embark on a journey where programming proficiency

merges with creative problem-solving and innovation!

Chapter 1: Programming with CircuitPython

In this chapter, we learn to:
e install Thonny IDE.
e program our first CircuitPython program using Thonny IDE.
e download program to EDU PICO.
e save, open, and edit Python .py files in EDU PICO.

Activities: CircuitPython syntax - Indentation, variables, data types, casting, comments,

operators, if.. else (conditions), for loops, while loops, functions, and string format.

Chapter 2: Water Drinking Reminder (Button and Buzzer)

In this chapter, we learn to:
e use input buttons to interact with Thonny's console.
e use a piezo buzzer to produce sound.
e create and use variables.
o use while loop.

e use a conditional if statement.

Introduction: Button and Buzzer.
Activities: Build a water drinking reminder (Hydration Companion).

Challenge: Program drinking reminder to accept user input for the duration.

Chapter 3: Gesture Reaction Game (OLED and Gesture Sensor)

In this chapter, we learn to:
o display text on the OLED display.
e use gesture sensor as input.
o program using If.. elif conditions.
¢ setup dictionaries and for loops.

e create and use functions.

Introduction: OLED and Gesture Sensor.

Activities: Build a hearing gesture reaction game with a gesture sensor and buzzer
(Do-Re-Mi-Fa Arcade).

Challenge 1: Improve game test tone by displaying notes on OLED.

Challenge 2: Program a hearing-gesture directory for better gaming experience.

Chapter 4: Colour Detection Game (RGB LEDs and Colour Sensor)

In this chapter, we learn to:
e program EDU PICO to light up RGB LEDs in different colours.
¢ read colour data with colour sensor.

e setup lists to store multiple items.

Introduction: RGB LEDs and Colour Sensor.

Activities: Build a colour detection game (Colour Blindness Tester).

Challenge 1: Program EDU PICO to avoid repeating 2 similar colour during gameplay.
Challenge 2: Program a colour hint indicator by lighting up a single RGB LEDs.

Chapter 5: Automated Waste Bin (Servo Motor and Proximity Sensor)

In this chapter, we learn to:
e control a servo motor using pulse width modulation (PWM).
 read data with Thonny's plotter.
e construct a Trashbot smart bin with card box accessories.

Introduction: Servo Motor and Proximity Sensor.
Activities: Build an Automated Waste Bin (Trashbot Smart Bin).

Challenge: Upgrade Trashbot to include light and sound, making it more interactive.

Chapter 6: Noise Pollution Monitoring System (Potentiometer and Sound Sensor)

In this chapter, we learn to:
e program EDU PICO to read analog values from a potentiometer.
e measure noise in dB with the PDM sound sensor.

e construct a physical noise level meter with a card accessory.
Introduction: Potentiometer and PDM Sound Sensor.

Activities: Build a noise pollution monitoring system (Room Environment Noise Indicator).

Challenge: Program a servo motor to serve as a sound level meter.

Chapter 7: Smart Classroom (DC Motor and Relay)

In this chapter, we learn to:
e program EDU PICO to control a DC motor - spinning direction and speed control.
e turn ON and OFF a USB switch relay.
e program EDU PICO's Raspberry Pi Pico W into a WiFi access point for loT applications.

Introduction: DC Motor and USB Relay.

Activities: Build a smart classroom integrated with a gesture sensor, USB relay, DC motor,
and OLED.

Bonus: Control the USB relay through a webpage using the Raspberry Pi Pico W acting as a
WiFi Access Point (AP).

Chapter 8: Climate Control Greenhouse (Light and Humidity Temperature Sensor)

In this chapter, we learn to:
o program light sensor to measure ambient brightness.
e program AHT20 sensor for humidity and temperature measurement.

o perform basic data logging on Raspberry Pi Pico W local storage.

Introduction: Light Sensor, Humidity and Temperature Sensor, and Data Logging.

Activities: Build a climate control greenhouse while integrating temperature and humidity
sensor, light sensor, DC and servo motor, RGB LEDs, and OLED.

Bonus 1: Introduction to the Internet of Things (loT), learn to connect the Raspberry Pi Pico W
to a router’s WiFi and control the ON/OFF switch of the USB Relay.

Bonus 2: Introduction to Data Logging, record Raspberry Pi Pico W CPU's temperature data

into the Pico’s onboard storage.

B HELLO EDU PICO

Motor Test
DC Motor Terminals Buttons Vin Terminal
Motor Status LEDs USB Relay LiPo Battery
Connector
Servo Ports
9 On/Off Switch
Log Data to Pico’s
Flash Switch Power LED
Micro SD Card
Socket Pi Pico Socket
GPIO Breakout
(Female pin headers)
Reset Button
GPIO Status
Indicator LEDs Grove Ports
Temperature &
Stereo Audio Jack :::??,g'ty Senaor
Audio/Buzzer Buttons

Switch
Piezo Buzzer

— [~

| eou prbieer & tonoyation wit tor Pica

Protoboard | OLED Display RGB LEDs

(SSD1315)

Potentiometer PDM

Microphone

(SK8812)

Proximity, Light,
Gesture &

Colour Sensor
(APDS9960)

Preparing your EDU PICO

Attach ECU PICC above
the box with the velcros.

Velcro Loops
(Furry side)

Write your
name here

Velcro Hooks

achnologies

B How To Use This Guidebook?

HEYA!
Good to meet you!
I'm Adam and I'll be your
trusty guide on this
exploration.

All programs and content discussed in this guidebook are available for download on the
EDU PICO resource hub website here: https://edupico-hub.cytron.io.

Learning Flow

Introduction CHALLENGE / BONUS ‘

= How Does This Activity Work? =

B # Code NEEEN

What the Code Does </

IMPORT NECESSARY LIBRARIES

INITIALIZE HARDWARE CO

DEFINING CUSTOM FUNTIONS

ENTERING A CONTINUOUS

Every Chapter shares a common flow to help you
fully experience learning with the EDU PICO.
Remember, this is an exploratory guide,
so don't rush, take your time and enjoy the process!

CHAPTER™

Programming with CircuitPython
1.1 Start Here - Thonny IDE e .
1.2 Introduction to CircuitPython
1.3 Hello EDU PICO
1.4 CircuitPython Syntax
* Indentation
* Variables
¢ Data Types
¢ Casting
¢ Comments
¢ Operators
e |f.. Else (Conditions)
* For Loops
* While Loops
¢ Functions

¢ String Format

THONNY IDE

I Start Here - Thonny IDE

EDU PICO is an all-in-one learning tool that allows you to practice electronics and
CircuitPython programming using the Raspberry Pi Pico W microcontroller. It's a special
board with all pre-connected sensors to help you learn more seamlessly. This means that you
can start experimenting and building projects immediately without knowing a lot about

electronics.

— What You Need to Start?

Step 1: Connect the EDU PICO to your computer.

1.Raspberry Pi Pico W Microcontroller
2.EDU PICO Board

3.Micro B USB cable
4.Computer (Laptop / Desktop)

You will
need these four
main components
to complete the
whole book.

THONNY IDE

Step 3: Download and install Thonny IDE on your computer.

thonny.org
https:/fthonny.org =

Thonny, Python IDE for beginner

web Easy to get started. Thonny comes with Py

Th

10 built in, 50 just one simple installer is

needed and you're ready to learn pregramming. (You can also use a separate Python ..

Download version g.i.3 for
s = Mag +

Thonny

Pvthon IDE for beginners

File Edit View FRun Tock Help

DEFEH 0% a3 @
factorial py Warisbles
def facuinl: Name Value
16 = 82
returs 1 P et
else: , " 3
return fact{o-1) = n ~ .
Official downloads for Windows
B & Let{input(“Enter » satursl pusbes
[
erienorts factorial 107, RO foct Installer with 64-bit Python 3.10, requires 64-bit Windows 81 /10 /11
o factiayz | | thonny-4.1,2.exe (21 MB) = recommended for you
IF moss @ def FRetin): = 5 - . .
retur 1 0 s 2 Installer with 32-bit Python 3.8, suitable for all Windows versions since 7
e e thonny-py38-d.13.cx0 (20 MB)
= fectiEed) . - -
—————— Portable variant with 64-bit Python 3.10
hel thonny=4.13-windows-portable.zip (31 ME)
L Local variables Locul varkabies Portable variant with 32-bit Python 3.8
=== === Hame Vahue thonny-py38-4.13-windows-portable.zip (20 ME)
Haene Value
= : 5 1 Re-using an existing Python installation (for advanced users)
- pip fnstall thosy

Step 4: Let's configure Thonny IDE’s theme and font so that it matches the theme of the
guidebook. This will make sure you can go through the guidebook smoothly later.

Select Tools > Options > Theme & Font as shown in the figure below. Adjust the O font,
Ul theme, Syntax theme, and Editor font accordingly.

Th Thenny - <unsited= @ 1:1 Th Thonny apticns

*
File Edd “orw Run Tooks Help
Manage packages.. Genral | Inberpester | Editor Theene & Fort Run & Debug | Tervinal | Shell | Assistant
+ r.—.il M ' Open system shell... e B o e
cuntitled> X Open Thenny progeam feider. Symitax thems: | Dofault Light v i0font Courler New M
Open Thanny dats folder—.
1 Priview

Mlanage plug-ind...

Step 5: Select OK, and restart Thonny to

make sure the style elements take effect.

Now you're all set for your first program!

def foo{bar):
if bar is Neone:
print('The answer is', 33)

5 unclesed_string = "blah, blaH

b

Enter an intege.

r: 2.5
E alid

MBI Some style elements change only after restarting Thenny!

o i Cancel

THONNY IDE

Thonny Integrated Development Environment (IDE)

Run Code
S
ave Stop Code
Cpen
T Thdpny | <unftleds @ 1:1 = a x]
File it Miew JRun Tools Help
New File —d p3 1§y Q@ (m]

<untitled > X

1

Script Editor

Shell / Console

Interpreter

Local Python 3 + Thonny's Python =

Why Thonny IDE?

Thonny IDE runs on systems including Windows, MacOS, and Linux. It provides a dedicated
mode meant for MicroPython, which includes CircuitPython that we will be using throughout
this module.

Thonny IDE is also created specifically for beginners where its interface has intentionally

removed extra features that might be overwhelming or distracting to new learners.

Syntax errors are a common issue for beginners, which is why Thonny IDE makes it easy for

learners to highlight and identify these errors easily.

Lastly, Thonny IDE was originally designed for teaching Python and emphasizes learning and
understanding code. Hence why it is an excellent choice for educators and students to

practice programming microcontrollers with Python.

B Introduction to CircuitPython

CircuitPython is a programming language based on Python. Specifically designed to simplify
for experimenting and learning to code with microcontroller boards. In this module,
we will learn CircuitPython programming with EDU PICO and Raspberry Pi Pico W.

Why CircuitPython?

o Easy & Beginner Friendly: Create, edit, save, and run your code without compiling,

downloading, or uploading needed. Perfect for learning text-based programming.

¢ File Storage: Internal storage designed for data-logging, playing audio clips, and file

interaction. It also allows you to edit your code anytime since it is stored on the disk drive.

o Strong Hardware Support: Built-in features like audio 1/O, digital I/O pins, hardware buses
(12C, SPI, UART), and supports over 280+ libraries all written in Python.

o Python: CircuitPython is based on Python, the fastest-growing programming language.
It simply adds hardware support to all of Python's amazing features.

Python-based

Internal
File Storage

Quick & Easy

Libraries

Preparing EDU PICO CircuitPython Firmware ————

Step 1: Launch Thonny IDE and make sure your computer has internet connection.

Th Thonny - <untitled> @ 1:1
Fle i View Run Tooks Help
duE O o
<untitied> %
i

IMPORTANT: E
Skip to Page 18 |
Hello EDU PICO
activity if your
kit comes with
the Raspberry Pi
Pico W by
default.

Raspberry
Pi Pico W

‘Shell + g@Wi-Fi off | REPL | 8.2.9%

Local Python 3 + Thonmy's Python = \

INTRODUCTION TO CIRCUITPYTHON

Step 2: Press and hold the reset (RST) and BOOTSEL buttons, then release the RST button,
but continue to hold the BOOTSEL button until the RPI-RP2 drive appears.

RPI-RPZ (D) Appear on your computer, like how
a USB thumb drive would appear.

127 MB free of 127 MB < /

Step 3: Click on the bar at the bottom right corner and select Install CircuitPython

from the drop-down menu.

Th Thonny - <untitied> @ 1:1 - o »
File Edit View FRun Tool Help

Ty OB (]

<untitled= %

1

¥ Lacal Pythan 3 - Thonay's Pythan

X
Shell install MicroPythen,.
Install CircuitPython...
rry Configure interpreter._ \

Local Pythan 3« Thonny's Python

Step 4: Select RPI-RP2 for the target volume, and Cytron Technologies - EDU PICO

for the variant. Then select the latest stable version and Click Install.

T Install or update CircuitPythan (UF2) e

Here you can install or update CircuitPython for devices having an UF2 bootloader
(this inchudes most boards meant for beginners).

1. Put your device into bootloader mode:
- some devices have to be plugged in while holding the BOOTSEL button,
- some requing double-tapping the RESET button with proper nthm.

2. 'Wait for couple of seconds until the target volume appears.

3. Select desined variant and version,

4. Click “Install’ and wait for some seconds until done.

5. Close the dialog and start programming!

Target volume | RPI-RP2 (Dx) e
family RP2

CircuitPython family RP2 -

variant | Cytron Technologies = EDU PICO for Pico W -

rion N -

info hitps/fdrautpython.erg/board/cyiran edu pico w/

=

Step 5: Wait for the download and installation to be done. Close all the pop-up windows.

INTRODUCTION TO CIRCUITPYTHON

Step 6: After successful installation, the CircuitPython drive will appear on your computer.
Click the bottom right corner of Thonny and select the CircuitPython option as shown.

This will
appear in your
computer
directory, just
like how a usb
drive would
behave.

l(_'IRl'_'UITPY (F)

Th Thonny - <untdleds @ 1:1
File Edn Veew Run Tooh Hep

*Hy O

<untitled> X

" 431 KB free of 490 KB

Shell » BWiFi ol | REPL | 3.29-4:g533610T5b-dirty X

Mafruit CircuitPythen B2, 0-4-gScI361bT8bdirty on 2024-01-17: Cytron EIU PICO ¥ with cpZOd0 |

Frz

Download EDU PICO Firmware

Alternatively, you can download the EDU PICO CircuitPython firmware from:
e https://circuitpython.org/board/cytron_edu_pico_w/

Copy the firmware into the RPI-RP2 Drive to install the firmware.
(Make sure to HOLD BOOTSEL button when connecting the Pico to your computer USB port)

HOLDC BOOTSEL
button & connect

“ A wm > ThisPC > RPIRP2 (D)

P

------ g Name
@ MDECHTM

RPI-RP2 (D:) - , INFO_UF2.TXT

127 MB free of 127 MB E M
Paste R

Firmware here
> Move te RPI-RP2 (Dv)

Go ahead and launch the Thonny IDE and you're all set for your first EDU PICO program!

https://circuitpython.org/board/cytron_edu_pico_w/

B Hello EDU PICO

Hello hello, do you read me EDU PICO? Let’s write our first code to the microcontroller.

Step 1: Program the EDU PICO to print "Hello EDU PICQO" text at the shell.

Th Thenny - <untitled= & 1:24 = a b4
File Edit View FRun Tools Help

fillﬁl';'*i(..\\3 o

<untitied> * X

1 print("Hello EDU PICO"

)
K_/ Type this

Shell 3£
>
Hello EDU PICO

333 K/ Cutput

Interpreter

CircuitPython (generic) « CircuitPython CDC control @ COM3 =

Step 2: Click the Green Button o torun the code and Red Button O to stop.

Make sure

to select
the correct
interpreter

in Thonny

e
Process
5

HELLO EDU PICO

Step 3: Click Save and save your code into the CircuitPython device.

T

& &

v Run Tocl Help

o
tug o8

_ The Wheret ta? X
1 print("Hello EDU PIC R
............................... y
1
This computer E
CircuitPython device
st x Rie)
23>

Helle EDU PICO
¥

CircuitPython (generic) « CircuitPython CDC control @ COM3 =

Step 4: Name your file as Hello_EDUPICO.py, then click OK to save.

Th Save to CircuitPython device

CircuitPython device

¥ b

I boot_out.txt
& code.py

! font5x8.bin
& Hello_EDUPICO.py

File name |Hello_EDUPICO, pry]

The file name will
reflect immediately
File Edit View,

. \.o .

[Hells_EDUPICO.py] 3% |

B Ther

1 print("Helle EDU PICD")

77

Your program will be =

* | saved to the on-board =
Size (Eytes flash memory of the
- Raspberry Pi Pico W.
B460
1282 It's like a mini-USB
i stick, but with 2MB

(Megabyte) of memory.

Click 'OK’
to save.
Remember
to always
include .py at
the back of
your file
namel!

HELLO EDU PICO

Step 5: To check the code that you have already saved in your CircuitPython device,

go to View > Files.

Th Thenny - CircuitPython device = fHello_EDURICO.py @ 1: 16
File Edit View Run Tocls Help

o Assistant

L , o
[Hello EL Heap

Help

1 P Notes

Object inpector

Outline

Prograrm tree

¥ Shell

Stack

TODO

Variables

Progearn arguments

Plotier
Shell 3 Increase fent size Cirle =
233 Decrease font size Ctrle-

Eella Focus editor AR+E

Focus shell AR5

o
CircuitPython (generic) + CircuitPython CDC control @ COM3 =

Files ¥ [Hello_EDUPICO.py | 5
This computer " 1 print("Helle EDU PICO")
B i Diisk (€
B = S00GE (D)

b i CIRCUITPY (E:)

[CircuitPython device s g
b lib Shell 3¢
5 boot_out. txt
>
% codegy Helle EDU PICO
| font5x8.bin —

& Hello_EDUPICO.py %

&

() Naming your
code as code.py
will enable the
program to be
executed when
powered up or
reset.

CircuitPython (generic) + CircuitPython CDC control @ COM3 =

You will notice two sections under Files, the first is to your computer, and the second is

to the CircuitPython device that is currently connected to your computer.

This allows you to navigate your codes inside the Raspberry Pi Pico W easily; simply open

the code by double-clicking the file.

To prevent code.py from running automatically when the EDU PICO is powered on,

simply delete or rename the code.py file.

HAPT HELLO EDU PICO

**THE MORE YOU KNOW +!

Execute Code when Powered Up or Reset

Sometimes you would prefer to have your code run automatically when the EDU PICO is
powered up. To achieve that, saving the correct code file name is important.

Once the board is powered up, CircuitPython will continuously look for code files with the
following names in sequence: code.ixt, code.py, main.txt and main.py, the board will
then execute the first code it finds.

However, the file name code.py is recommended while using CircuitPython.
It is also important to keep in mind that having multiple file names mentioned earlier
would create confusion and may prevent the board from executing the correct code.

Naming Program File

In programming, it is crucial to be mindful whenever we name our code files. One of the
common mistakes that should be avoided is when naming your code with a similar name

as your library.

When you use a similar name for your code and library, it can be challenging to differentiate
between the two for your code that is calling for the particular library. This will usually result

in execution errors in your code.

Hence, it is always recommended to use a different name for your code to avoid any naming
conflicts with the CircuitPython library.

For an example, naming your file as neopixel.py will result in an error because the Neopixel

library is already being named as neopixel.mpy.

In the next section, we will learn

the basic syntax of CircuitPython.

BASIC PROGRAMMING WITH CIRCUITPYTHON

Indentation

Indentation refers to the spaces at the beginning of a code line. You have the freedom
to decide the number of spaces to use. While the most popular choice is four (4) spaces,
its essential to use at least one to ensure readability.

Good

/'$ print("3 is greater than 1")
Indentation | swell« = wi-Fi off |REPL | 8.2.0 32
(4 spaces) |, o o0 cepr CONTENT Run Codeo =

3 is greater than 1

Example with indentation

Syntax Error Example without indentation

if 3 > 1:
/‘$ print("3 is greater than 1")
No Shell « = Wi-Fi off | REPL | 2.0 3
indentation!! |, .o o e 3

Traceback (most recent call last):
File "<string>", line 2
print("3 is greater than 1")

AAAAN

IndentationError: expected an indented block after 'if' statement on line 1 =

While indentation in other programming
languages is only for readability,
in Python, it is very important.

Variables

A variable is created when you assign a value to it. In this case, the name number and x are
defined as variables.

Assigning Variables
) number = 10
Variables = { x = "Hello EDU PICO"

print(number) Type This

print(x)
Shell « mWi-Fi: off | REPL | 8.2.0 X

»»> %Run -c SEI COMNTENT |RunCode°l 1l
10

Hello EDU PICO

BASIC PROGRAMMING WITH CIRCUITPYTHON

Data Types

Understanding data types is essential in programming. Variables can store data of various
types, each with its distinct functionalities. Here are a few popular data types that are set

when you assign a value to the variable:

Gomple |otatpe |

x = “Hello EDU PICO” String

®x = 188 Integer

x = 188.5 Float

®x = True Boolean

x = [“red”, “green”, “blue”] List

x = range(5) Range

x = {1: “red”, 2: “green™} Dictionary

Casting

One way to assign specific data type to a variable is through casting.

Specify a Variable Type

x = str("Hello EDU PICO") #string

X = int(100) #integer

x = float(100.5) #float

X = bool(5) #boolean

x = list(("red", "green", "blue")) #list

x = range(5) #range

x = dict(1="red", 2="green”) #dictionary

Comments

Use comments to provide documentation within your code. Begin your comment with a #,

and Python will interpret the remainder of the line as a comment.

Comment
#This is a comment, normally used for writing notes.
print("Hello, World!")
This is a multiline
comment.
You can also comment on multiple lines by using triple quotes (""" ""') shown above.

Note that writing comments within your script does not affect the functionality of your code.

BASIC PROGRAMMING WITH CIRCUITPYTHON

Operators

Operators play an important role when executing operations on variables and values.

In this section, we will explore three main types of operators: arithmetic, assignment and

comparison.

1. Arithmetic Operator

ARITHMETIC_OPERATOR py

1 x
2y
4 print{x + y) #addition
5 print(x - ¥)
& print(x * y)
7 print{x / y) #division
8 print(x % y) #
9 print(x ** y) ntiati
16 Priﬂt(x ":": }'} #floor divisi

19 I
3

Run Code O 13
2

2. Assignment Operator

ASSIGMMENT OPERATOR py %

=

X += 3
print(x)

X == 3 #5ame
print(x)
X *= 3
print(x)
x f=3
print({x)

e I L L

[
=

3. Comparison Operator

COMPARISON_OPERATOR py *

#Greater than
#Less than

print(x > y)
print(x < y)
print(x >= y)
print(x <= y)

W oo~ U b wh =

<

x=8 Type This

#Greater than or equal to
#Less than or equal to

Shell ®

>>> %Run -c $EDITOR_CONTENT

30
E‘_’} 3.3333333333333335
1

1000

Basically,
you're building
a calculator
without even
knowing it!

 >>> %Run -c
11
=D | s
24
8.0

COMPARISON_OPERATOR 2 py X

x = 10 - i 1 x=3 ‘) Flip the x and y value and you will
y=3 2y =10 receive a different set of output.
print(x == y) #Equal print(x == y)
print(x !=y) #Not equal print(x != y)

print(x > y)
print(x < y)
print(x »= y)
print(x <= y)

> 1 »

[Ts - - ICA . T, Y T X

%dX‘ Shall=
>»> %Run COMPARISON_oPERATOR | RUR c°de0 33> %Run COMPARISON_OPERAT

False False
True True
True False
False True
True False
False True

BASIC PROGRAMMING WITH CIRCUITPYTHON

If.. Else (Conditions)

Now that you have learned about operators, it's time to put them into action. Conditions are
used in various ways, with the most common being if statements and loops. In the following

example, we use two variables x and y, to check whether x is greater than y.

If_Else.py % Example for if.. else If_ENif_Else.py Example for elif
1 x =10 3 i 1 x=3 I
oy - 3 Type This 2 y=10
f if A 4 if x > y:

LI) 5 print("x is greater than y")
5 print("x is greater than y") & elif x ==
& else: print("x is equal to y")
7 print("x is not greater than y") 8 else:
by print("y is greater than x") J

Shell = Shell =

55 in If El Run Code P, | 555 : i

¥ is greater than y y is greater than x

In the first example, if x is greater than y, the code will print "x is greater than y" in the shell.

The second example uses if.. elif.. else to check the first two conditions. As a result,

it prints "y is greater than x" in the shell since both conditions were not met.

Don't forget to indent the
statement blocks below the
if...elif...else conditions to
prevent syntax error.

For Loop —

A for loop is a control flow statement that allows you to execute a block of code repeatedly
for a fixed number of times. It is commonly used to iterate over sequences such as lists, sefts,
dictionaries, and strings.

Far_Loop_1.py % Print each colour in a colour list Fer_Loop_Lpy X Print number ranging from 0 to 2
1 colours = ["red”, "green”, "blue"] i 1 for x in range(3): T
for x in colours: print{x)
— (x} > 3
Shell 3 Shell 3
— -
red RunCode(9| = 0
green (] ! I
blue 2

In the second example, the range() function returns a sequence of numbers, starting from 0
by default, and increments by 1 (by default), until it reaches a total number count of 3,

starting from 0, 1, and 2.

BASIC PROGRAMMING WITH CIRCUITPYTHON

While Loops

A while loop is a control flow statement that allows a block of code to execute repeatedly

as long as a condition is true. The following code uses a while loop to continuously check if

x is less than 4. If a condition is true, the code block inside the loop executes and prints the

value of x starting from 1 and increments it by 1 (assignment operator). This process repeats

until x is no longer less than 4.

While_Loop.py 3
-

1 x =1
while x < 4: Il

print(x)

x += 1 Type This | +
Shell X |
>33 Run Code J i

-

[RTEY

While_Loop_2.py 3 Inifinity Loop

1 x=1
while True:
print(x)

x +=1

We will be
using a lot of
while loops in
our upcoming
projects.

Functions

A function is a block of code which only runs when it is called. It is normally used to break

down a program into smaller, more manageable pieces, making it easier to read and

understand. Furthermore, you can pass data into the function for processing and return data

from the function as a result.

Function_1.py X

def print_funetien():
print{"Print from Function")

print_function()

Shaell X

>

Define and call print_function

-
-
Shell ¥
EE) Run Code S B
>
Print from Function | 2

Functien_2py ® | Call function with argument & return value

-

Type This I

-

=)

[
15 -

def multiplieation(x):
return 3 * x

print{multiplication{2))
print(multiplication(5))

The example on the right has a multiplication function with multiplication(x). When the

function is called, the values 2 and 5 are used inside the function to be multiplied by 3 and

return the result of 6 and 15.

https://www.w3schools.com/python/python_functions.asp
https://www.learnpython.org/en/Functions
https://www.learnpython.org/en/Functions

BASIC PROGRAMMING WITH CIRCUITPYTHON

String Format

When writing your code, it is important to maintain data readability when printing on the
shell console or the OLED display.

In this section, we will introduce you to the format() method which makes the printing
process simpler. To control the values, simply add placeholders (curly brackets {} in the text),
which will allow us to format and print specific parts of a string to your liking.

Below are three examples of how this works:

Print_Format.py m
1 temperature = 26
2 print(f"The temperature is {temperature
2

})

Shell =

- == == -
»>»» %Run -c $EDITOR_ CONTEN Run Code J
The temperature is 26 C |

To print more values, you can simply add more placeholder {} with the format() method.

Print_Format_2.py *

1 colour = "red" |

2 quantity = 3
3 cost = 35
4 shirt = "I have {} {} coloured shirts that cost RM{:.2f} each.”
5 print(shirt.format{quantity, colour, cost)) L
Shell 2
Run Code .
333 o

I have 3 red coloured shirts that cost BM35.00 each.

You can also use index numbers (a number within the curly brackets {0}) to guarantee that

values are accurately placed in the designated placeholders as shown below:

Print_Format_3.py *
L colour = "red" i
2 quantity = 3
4 cost = 35
4 shirt = "I have {8} {1} coloured shirts that cost RM{2:.2f} each.”

5 print(shirt.format(guantity, colour, cost))

Shell %

»>> %Run Print For I Run Code (g
I have 3 red coloured shirts that cost RM35.00 each. |

Congratulations, you're all set to embark on
your next exploration! Rest assured, I'll be
with you every step of the way.

CHAPTER2

Water Drinking Reminder

Buttons & Buzzer s ‘3

2.1 Introduction to Buttons

2.2 Introduction to Buzzer

2.3 Project: Water Drinking’ I?eminoler ggg g 8 g

® @9

Hello, Makers! Today, we're going to embark
on a fascinating journey by delving into

two fundamental electronic components:
buttons and piezo buzzer. These seemingly
ordinary devices play vital roles in our daily
lives, from the buttons on our smartphones

to buzzers that alert various events.

In this chapter, we'll learn how they work
and why they are so crucial in real-life
applications. So, buckle up and get ready to

press some buttons and create some buzz!

I Introduction to Button

Buttons are essential electronic components in modern technology that allow us to input
commands and interact with various devices. They come in all shapes and sizes,

from the tiny buttons on your calculator to the larger ones on your computer keyboard.

— = How Does This Activity Work? =’ —

@ Libraries: board, time, digitalio.

® Button Configuration: Button A (Yellow) to GPO as digital input.
® Output:

o If Button A is pressed, the code prints "Button A is pressed" at the
shell console.

Y ———]

dr View Run Took Belp

4 OB o

<uetnieds %

Thonny ICE

‘Shell « @W-F off | REPL| 8297

Button A is pressed

SHELL —

When you press

Button A, the sentence
"Button A is pressed” will
appear at the Shell.

R 2 INTRODUCTION TO BUTTON

B i Code
we OF o

BUTTON_MODULE.py

VWoONOOTUVUR_RWNLER

10
11
12

import board
import time Program Button A

import digitalio

button_A = digitalio.DigitalInOut(board.GP@)
button_A.direction = digitalio.Direction.INPUT
button_A.pull = digitalio.Pull.UP

while True:
if not button_A.value:
print("Button A is pressed")
time.sleep(©.3)

Shell » 5, Wi-Fi: off | REPL | 8.2.0 3¢

Button A is pressed

Button A is pressed
Button A is pressed
Button A is pressed

Click the Green Button 0 to run the code and Red Button O to stop.

What the Code Does </

Import Necessary Libraries

1 import board
2 import time
3 import digitalio

These lines of code are used to import the necessary modules and libraries that
enable the EDU PICO to understand the functions of button and time.
The imported modules are as follows:

Line 1: Provides a way to reference the GPIO pins on the EDU PICO.
Line 2: Provides time-related functions such as time.sleep() for introducing delays.

Line 3: Allows interaction with digital input/output pins.

Libraries

:R 2 INTRODUCTION TO BUTTON

tialize Hardware Components

Button Pin Configuration

5 button_A = digitalio.DigitalInOut(board.GPo)
6 button_A.direction = digitalio.Direction.INPUT
7 button_A.pull = digitalio.Pull.UP

Line 5: Set up a connection between the EDU PICO and a button. It specifies
pin GPO to be used for the button.

Line 6: Informs the EDU PICO whether button_A is an input or output. In this case,
it's set as input which will be used to read the state of the button, either logic
high (3.3V) or low (0V).

Line 7: Configures the internal pull-up of the button pin. This keeps the reading
at logic high (3.3V) when the button is not pressed.

Enter a Continuous Loop

Infinite Loop

9 while True:

while True initiates an infinite loop. The code inside this loop will run repeatedly as

long as the condition remains true.

Read Button Value

10 if not button_A.value:
11 print("Button A is pressed")
12 time.sleep(0.3)

Line 10 - 12: Checks the value of button A. button_A.value returns True if the button
is not pressed (logic high) and False if the button is pressed (logic low).
If the condition is True, it prints the message "Button A is pressed" and is delayed

for 0.3 seconds.

SSt! g ' continue to wait
No
Button

pressed? — Do Nothing

1 Yes

Print CButton A iSpressed”)
and wait For 0.3 seconds

continue to wait

INTRODUCTION TO BUTTON

4(**THE MORE YOU KNOW +; Buttons ———

To turn on the LED, simply
press the button to close the
circuit. Releasing the button
opens the circuit and turns
of f the LED.

71

NOT | |
PRESSED PRESSED
Metal
d h /?Inte\

S
6_____!‘121’."4______9
Contact

Ping

Variables

A variable is like a box that can hold different values. Think of it like a container that can
store numbers, words, or anything else. You can give this box a name, like x or button,

and then put different information inside it as needed.

dings from button.value let you relod
what's inside the box!

Value red

B Introduction to Buzzer

Want to make some noise with your EDU PICO? In this section, you will learn how to activate
your EDU PICO built-in piezo buzzer. While you're at it, go ahead and hook up the EDU PICO

to a headset or a speaker at the buzzer module too!

Time

— = How Does This Activity Work? = —

® Libraries: board, simpleio.
® Audio / Buzzer Configuration: Buzzer to GP2I.
@ Output: When the code is executed, the EDU PICO buzzer module will

continuously beep at a 2 second interval with a frequency of 440 Hz.

Voltage @

) = 440 Hz

I No beep I I No beep

(Second) Os 2s 4s 6s 8s 10s

@ Action Required: Flip the buzzer module switch downwards to enable

buzzer output (Method Tillustration as shown below).

2 Methods to use the Audio Buzzer Module

Method 1

Audio Jack

INTRODUCTION TO BUZZER

B i Code
ey OB (m)

BUZZER_MODULE.py

1 import board
import simpleio

You will need to
import simpleio
library for the code

buzzer_pin = board.GP21
to work!

while True:
simpleio.tone(buzzer_pin, 440, 1)
simpleio.tone(buzzer_pin, 0, 2)

ONOOUVhA_WN

Click the Green Button o forun the code and Red Button O to stop.

What the Code Does </>

Libraries

2 import simpleio

The simpleio module offers a set of functions that simplify the input and output
operations for the EDU PICO, making it easier to work with hardware components.
In this case, it allows the user to generate various tones with the EDU PICO's buzzer.

Buzzer Pin
4 buzzer_pin = board.GP21

Line 4: Assigns GP2] to the variable buzzer_pin to control the buzzer module.

Tone Frequency

6 while True:
7 simpleio.tone(buzzer_pin, 440, 1)
8 simpleio.tone(buzzer_pin, 0, 2)

Line 6 - 8: Generates a tone on the buzzer pin at a frequency of 440 Hz
(which corresponds to the musical note A4) for a duration of 1second and generates

a "silent" tone (0 Hz) on the buzzer for 2 seconds. The code will run continuously.

INTRODUCTION TO BUZZER

**THE MORE YOU KNOW +!

You can program
EDU PICO to play other
songs by following
music notes.

62
294
330
350
392
440
494
513
587
659
648
784
880
q8s8
1047
175
1319
1397
1568
1760
1976
1093

c4|D|EJF|{G|AIBJCS|DJEJF|G|A[BJCEIDIEJFIGJA B |CT

The placement of a musical note along the vertical lines indicates the specific tone to be
played. As the note is positioned higher, the pitch or frequency of the sound increases.

Piezo Buzzer

A piezo buzzer is frequently used to generate ~ Sound Hole)
Piezo Element,
sound through the vibration of a piezo \. /

element when an electric signal flows across | R 7 |

é.tasz

it. By altering the frequency of the electric
signal, the rate of vibrations adjusts

accordingly. As a result, the piezo buzzer
generates sound with a distinct tone. I

j Do~ J7 ﬁ Re~ J7

GND Sv GND

GOOD HEALTH
AND WELL-BEING

Hey Adam, it
seems like you
need a glass of

Water? Nah,
| drank enough.

Dehydration can
make you feel tired
easily you know.

doesn't see a
problem.

Let's find a way
to make Adam

be more aware
of his drinking

Adam is so busy he
may not be aware that he
needs to drink more water.

How about we use the EDU
PICO and a buzzer to keep
Adam constantly notified?

| know a way to program
it with CircuitPython.

GOOD HEALTH
AND WELL-BEING

Hey Mia, Anna,
what's going on?

Oh, hey Adam! We are
working on a hydration
reminder.

It's a water bottle coaster
that constantly notifies the
user to stay hydrated.

Yes, and you will have
to push the button to
stop the buzzer.

The EDU PICO will initiate
a countdown and send
signals to the buzzer.

So it will
nudge me
to drink?

Time for a
simple demo.

GOOD HEALTH
AND WELL-BEING

Sure, doesn’t seem too
difficult, all | need to do
is press this button.

Adam, would you
like to take it for a
test run?

| wonder what's
for dinner..

Oh! That's right!
Time for a glass of water.

| guess | do
need a glass of
water.

GOOD HEALTH
(RIDUTEIRELE PROLOGUE: UIATER DRINKING REMINDER III I

You looked more
refreshed lately,

P / Yeabh, it's all thanks
X to the both of you.
--'/ The hydration
companion really
does the trick!

Don’t mention it!

Sometimes, we just

need a subtle nudge

in the right direction
at the right time!

Water Drinking Reminder
Hydration Companion

Have an Adam in your life? Let's help them solve their dehydration issue by building a water
drinking reminder with EDU PICO! Don’t worry, we will keep your first project simple.

Ultimately, you will learn how to combine codes from multiple components. Let's go!

— = How Does This Activity Work? =(C —

@® Libraries: board, digitalio, time, simpleio.
@® Butions Configuration: Button A (Yellow) = GPO, Button B (Blue) = GPI.
® |Input:
e Press Button A to activate the 5 second (default) countdown.
e Press Button B to reset the buzzer.
® Output:
e The buzzer will start beeping once the countdown reaches zero.

e The program will print the reminder text and timer status to the user

at the shell console.

Make sure the buzzer switch
is flipped downwards.

Press Button A

il | | - O = to start the
J ' : ORI countdown.
The buzzer will : %)2 =

start beeping once &&=
the timer is up.

: r Press Button B
EDU Preject & Innovation Kit for Pico W - to stop the

buzzing.

WATER DRINKING REMINDER

B i Code
ey OB (m

PROJECT_WATER_DRINKING _REMINDER.py
1 import board, digitalio, time, simpleio

2

3 button_start = digitalio.DigitalInOut(board.GP9)

4 button_start.direction = digitalio.Direction.INPUT
5 button_start.pull = digitalio.Pull.UP

6

7 button_stop = digitalio.DigitalInOut(board.GP1)

8 button_stop.direction = digitalio.Direction.INPUT
9 button_stop.pull = digitalio.Pull.UP
10

11 buzzer_pin = board.GP21
12 buzzer_status = False

13

14 print("Press Button A to start")

15

16 while True:

17 if not button_start.value:

18 duration = 5

19 end_time = time.monotonic() + duration
20 print("You have activated the water drinking reminder")
21

22 while time.monotonic() < end_time:

23 pass

24

25 print("Reminder to Drink Water! Press Button B to reset")
26 buzzer_status = True

27

28 if not button_stop.value:

29 print("Timer reset")

30 buzzer_status = False

31 time.sleep(©0.3)

32 print("Press Button A to start")

33

34 if buzzer_status:

35 simpleio.tone(buzzer_pin, 800, 0.5)

36 simpleio.tone(buzzer_pin, 0, ©.5)

Shell » =, Wi-Fi: off | REPL | 8.2.0 3¢

Press Button A to start

You have activated the water drinking reminder
Reminder to Drink Water! Press Button B to reset
Timer reset

Press Button A to start

Click the Green Button o forun the code and Red Button O to stop.

2 WATER DRINKING REMINDER

—— What the Code Does </

Import Necessary Libraries

Libraries

2 import board, digitalio, time, simpleio

This line imports the necessary libraries for the code to utilize buttons, time and

sound functions.

itialize Hardware Components

Buttons

button_start = digitalio.DigitalInOut(board.GPQ)
button_start.direction = digitalio.Direction.INPUT
button_start.pull = digitalio.Pull.UP

button_stop = digitalio.DigitalInOut(board.GP1)
button_stop.direction = digitalio.Direction.INPUT
button_stop.pull = digitalio.Pull.UP

WoONOGOOUVh~W

Line 3 - 5: Initialize button_start (Yellow Button) for starting the reminder.

Line 7 - 9: Initialize button_stop (Blue Button) for stopping or resetting the alarm.

Buzzer

11 buzzer_pin = board.GP21
12 buzzer_status = False

Line 11 - 12: Prepares the buzzer to make sounds and sets the variable buzzer_status

to false, which means the buzzer is off at the beginning of the code.

Initial Message

14 print("Press Button A to start")

Line 14: Print an initial message to the console: "Press Button A to start”

2 WATER DRINKING REMINDER

Enter a Continuous Loop

button_start

16 while True:

17 if not button_start.value:

18 duration = 5

19 end_time = time.monotonic() + duration

20 print("You have activated the water drinking reminder")
21

22 while time.monotonic() < end_time:

23 pass

24

25 print("Reminder to Drink Water! Press Button B to reset")
26 buzzer_status = True

Line 17: Check if Button A button_start is pressed.

Line 18 - 19: If the button is pressed, set a duration of 5 seconds for the reminder
timer and calculate the end_time by adding duration to the current time using

time.monotonic().
Line 20: Print "You have activated the water drinking reminder".

Line 22 - 23: Enter an inner loop that continues until the current time is less than

end_time. This inner loop effectively waits for the reminder duration to pass.

Line 25: After the reminder duration has passed, print "Reminder to Drink Water!

Press Button B to reset".

Line 26: Set buzzer_status variable to True.

button_stop

28 if not button_stop.value:

29 print("Timer reset")

30 buzzer_status = False

31 time.sleep(9.3)

32 print("Press Button A to start")

Line 28 - 31: Check if Button B button_stop is pressed. If it is, reset the timer and set
buzzer_status to False. A brief delay of 0.3 seconds is introduced to prevent multiple

rapid button presses, this is also known as the switch bounce effect.

Line 32: Prints "Press Button A to start" to indicate the timer waiting for user input.

WATER DRINKING REMINDER

buzzer_on
34 if buzzer_status:
35 simpleio.tone(buzzer_pin, 800, 0.5)
36 simpleio.tone(buzzer_pin, 0, 0.5)

Line 34 - 36: If buzzer_status is True, activate the buzzer using simpleio.tone()
to produce an 800 Hz tone for 0.5 seconds, followed by a 0 Hz (silent) tone for

0.5 seconds. This alarm is used to signal the user when its time to drink water.

What's Next?

Once you're done with the example code, it's time we turn this project into a real-life
application! Before doing that, let’s list out all the facts about drinking water healthily.

According to the World Health Organization (WHO), we should drink 2 to 3 litres
(8 to 12 cups) of water per day. Say that we have to drink 8 cups in a day, to spread out

across 12 hours in a day, the timer duration can be calculated this way:

12 hours / 8 cups = 1.5 hours (90 minutes = 5,400 seconds)

button_start
16 while True:

17 if not button_start.value:

18 duration = 5400

19 end_time = time.monotonic() + duration

20 print("You have activated the water drinking reminder™)

Let's take it one step further to identify the amount of water we should drink per intake.
We can use this formula to identify our daily water intake:

Caily water intake (in millilitres) = Body weight (in kilograms) x 33

For example, if you weigh 50 kilograms, you should drink between 1,650 to 3,300 millilitres of
water per day. It's important to note that the amount of water intake required by an individual
can vary depending on their body’s needs and the environment they are in. It is also important

to drink consistently throughout the day and not wait until you feel thirsty.

2 WATER DRINKING REMINDER

CHALLENGE - USER INPUT DURATION

In the original code, the timer runs for only 5 seconds by default. In this challenge, you are
required to modify the code to allow the user to customize the duration of the water-

drinking reminder. Check out the hint below to guide you with the modification.

if not button_start.value:
user_input = input("Enter the reminder duration (in seconds): ")
user_duration = int(user_input)
if user_duration >= 1:
duration = user_duration
print(f"Reminder duration set to {duration} seconds")
else:
print("Reminder to Drink Water! Press Button B to reset")
buzzer_status = False
continue

end_time = time.monotonic() + duration
print("You have activated the water drinking reminder")

while time.monotonic() < end_time:
pass

print("Reminder to Drink Water! Press Button B to reset")
buzzer_status = True

This code allows you to
set the duration manually.
The code runs when
Button A is pressed.

=/

CHAPTER 3

Gesture

/
/
f

/

®©000 ®
od%®ens
® @9

Hi Makers! In this chapter, we are about to explore
these two amazing electronic components: gesture
sensor and OLED display. These are very useful tools
that can make our devices respond to our
movements and bring vivid images to life on

screens.

Imagine a world where you could control things just
by waving your hand, or where your TV or watch
could display brilliant, colourful images with perfect
clarity. Well, today, we're going to explore the
science and technology that make these wonders

possible.

So, get ready to wave, swipe, and see the magic
happen before your eyes as we discover the
incredible world of gesture sensors and OLED

displays.

-~
%,

Reaction Game

OLED & Gesture Sensor

° .
Introduction to OLED Display 3.1

Introduction to Gesture Sensor 3.2

Project: Gesture Reaction Game 3.3

I Introduction to OLED

You can think of the OLED display as a very small, electronic billboard. Its like the display on
your smartphone but much smaller. Like an electronic billboard, you can choose what to
show on it. In this activity, we will learn how to code and print on the EDU PICO'’s OLED
display module.

— = How Does This Activity Work? =’ —

® Libraries: board, busio, time, adafruit_ssd1305, font5x8.bin <~

® OLED I2C Pins Configuration: SCL - GPSand SDA - G4, _ocated in
CircuitPython

@® Output: Root Directory
o Invert OLED display at initialization with a bluish-white background.
e Print "Hello EDU PICO" text in the middle of the OLED in black
colour:
o "Hello" with a coordinate of x = 50, y = 20.
o "World" with a coordinate of x = 40, y = 35.

I2C (Inter-integrated Circuit) is a communication method that lets electronic components
talk to each other by sharing a common connection and unique addresses.

We will use the
12C protocol to
connect the oled
module with the
EDU PICO.

T S0GE (]

I = CRCUNTPY (£

Navigating font5x8.bin ————— | Zmeoims coser

It is vital to make sure your CircuitPython root
CircuitPython device
directory contains the font5x8.bin file. 5 boot_out bt e

The file is a binary file that contains a bitmap >
font used by the framebuf library to render WHeROEDURICE e

text on the OLED display.

>y

PT 3 INTRODUCTION TO OLED

B i Code
ey OB (m]

OLED_MODULE py |

R R

ROWVWOONOGOURAWNER

import board, busio, time
import adafruit_ssd13e6

i2c = busio.I2C(board.GP5, board.GP4)
oled = adafruit_ssd1306.SSD1306_I2C(128, 64, i2c)

oled.fill(®)

oled.invert(True)
oled.text("Hello", 50, 20, 1)
oled.text("EDU PICO!", 4@, 35, 1)
oled.show()

Click the Green Button o to run the code and Red Button D to stop.

Import Necessary Libraries

What the Code Does </>

adafruit_ssdi306 enables operation with SSD1306 OLED displays.

Libraries

1 import adafruit_ssd1306

itialize Hardware Components

Line 4: Initialize I2C communication bus using the busio.l2C class and assign GPS
for SCL (Serial Clock Line) and GP4 for SDA (Serial Data Line).

Line 5: Configures the OLED display with a resolution of 128x64 pixels while forming
the connection through 12C communication.

Configure OLED [2C Pins

4 i2c = busio.I2C(board.GP5, board.GP4)
5 oled = adafruit_ssd1306.SSD1306_I12C(128, 64, i2c)

INTRODUCTION TO OLED

Enter a Continuous Loop

Configure OLED Pins

7 oled.fill(e)

8 oled.invert(True) 2

9 oled.text("Hello", 50, 25, 1) = m
10 oled.text("EDU PICO!", 40, 40, 1) ?‘ﬁ
11 oled.show()

Line 7: Clears the OLED display by filling it with black (O represents black font).
Line 8: Inverts the background colour to appear in white and text in black.

Line 9: Displays the text "Hello" in white with the coordinates of x = 50 and y = 25.
Line 10: Displays the text "EDU PICO!" with the coordinates of x = 40 and y = 40.

Line 11: Updates the OLED display to show the changes made.

The ssd130€ OLED
display have 128
pixels from left to
right (X) and 64
pixels from top to
bottom ().

In summary, this code initializes the OLED display and prints "Hello EDU PICO!" text in
black font continuously.

MINI ACTIVITY

Modify the code to allow the user to type their name in the shell console and print the name
on the OLED. Replace the original code from line 7 to 11 with the code provided below:

T

while True:
oled.fill(9)
oled.text("My name is", 35, 25, 1)
user_input = input(“"Name: ")
oled.text(user_input, 40, 40, 1)
oled.show()

INTRODUCTION TO OLED

**THE MORE YOU KNOW +!

OLED Pixel

OLED (Organic Light-Emitting Diodes) are becoming the most common display technology in
our devices. Most smartphones and many TVs today use OLED displays.

The name OLED originates from the organic compounds in its pixels. These compounds are
primarily made of carbon and hydrogen, and form organic emitters that emit light when

excited by an electrical current.

€
Cloyy Filte, ™3

The organic emitters emit white
light initially, which passes
through a filter to create
colours (Red, Green, or Blue).
By adjusting the electrical
current in each organic emitter,
we can control the colour of a

single OLED pixel.

Note: The CLED display included with the
ECU PICC can only emit in blue colour.

Now imagine all
this in a single pixel..
and each pixel is at around
40um wide.

B Introduction to Gesture Sensor

In this section, we'll explore how APDS9960 sensor can be used to detect hand gestures. The
APDS9940 is a tiny electronic device that can "see" hand gestures and measure the amount

of light around it. It's like having a tiny robot eye!

— = How Does This Activity Work? ={C —

@® Libraries: board, busio, adafruit_apds?960. m

APDS9960 I12C Pins Configuration: APDS9960
SCL = GP5 and SDA = GP4. Gesture Sensor

® Input: By performing various hand gestures in front of
the sensor, the code will print the corresponding
direction to the shell console:
o "left" when moving from right to left.
e "right" when moving from left to right.
e "up" when moving from down to up.

¢ "down" when moving from up to down.

® Output:

Shell « 2 Wi-Fi: off | REPL | 8.2.0 3¢
>>>

left
right
up
down

Best gestwure
Detection distance

Y Move your hand
across the sensor
slowly to ensure

the sensor can
detect the
gesture.

INTRODUCTION TO GESTURE SENSOR

B i Code
=y OB Q

GESTURE_SENSOR_MODULE.py |

1 import board, busio
from adafruit_apds9960.apds9960 import APDS9960

2

3

4 i2c = busio.I2C(board.GP5, board.GP4)
5 apds = APDS9960(i2c)

6 apds.enable_proximity = True

7 apds.enable_gesture = True

8

9

while True:

10 gesture_value = apds.gesture()
11 if gesture_value ==
12 print("up")
13 elif gesture_value == 2:
14 print("down")
15 elif gesture_value == 3:
16 print("left")
17 elif gesture_value == 4:
18 print("right")
Shell » = Wi-Fi: off | REPL | 8.2.0 3¢
FY
left
right
up
down

Click the Green Button o forun the code and Red Button O to stop.

—— What the Code Does </

Libraries

1 import board, busio
2 from adafruit_apds9960.apds9960 import APDS9960

Line 2: Imports the APDS9940 class from
adafruit_apds9960.apds9960 module
that corresponds to the APDS9960 sensor

which is commonly used for gesture and

Import your library _
U

this way will help
you shorten and
improve your code!

proximity sensing.

INTRODUCTION TO GESTURE SENSOR

APDS Functions

4 i2c = busio.I2C(board.GP5, board.GP4)
5 apds = APDS9960(i2c)

6 apds.enable_proximity = True

7 apds.enable_gesture = True

Line 5: Initializes an 12C communication bus with pins GPS (SCL - Serial Clock)
and GP4 (SDA - Serial Data), then create an instance that represents the APDS9960

sensor to allow the user to interact with it.

Line 6 - 7: Enable the proximity and gesture detection features of the APDS9960
sensor. Setting these properties to True activates the sensor's ability to detect when

an object is nearby (proximity) and be able to recognize specific hand gestures.

Main Loop
9 while True:
10 gesture_value = apds.gesture()
11 if gesture_value == 1:
12 print("up")
13 elif gesture_value == 2:
14 print("down")
15 elif gesture_value == 3:
16 print("left")
17 elif gesture_value == 4:
18 print("right")

Line 10: Calls the gesture() method to detect a hand gesture. The method returns a

numeric value representing the detected gesture.

Line 11 - 18: Check the value of the gesture and print a corresponding message
depending on the detected gesture. The APDS9940 library assigns specific numeric
codes (e.g., 1 for "up", 2 for "down", 3 for "left", 4 for "right") to different gestures.

INTRODUCTION TO GESTURE SENSOR

**THE MORE YOU KNOW +!

APDS9960 Gesture Sensor

Imagine the APDS9960 as a little camera with tiny sensors that can detect infrared light
(which we can't see with our eyes). When you move your hand or an object in front of the
sensor, the invisible light reflects on the object, allowing the sensor to detect the reflected

infrared light, almost like a secret handshake that can’t be seen through our naked eye.

Gesture detection is
made possible using the
four photodiodes that
reflect IR radiation from
the built=in IR LED.

Dark Room rBrighf Room The sensitivity of the sensor
can be influenced by the

Emitter

room's brightness. In a well-lit

Emitter
.)’)) D room, there is a higher level of

light reflection, which can be

Receiver detected by the receiver.

Infrared light is invisible to the
naked eye, however, you can view
infrared light by simply looking at
the infrared LED through a

phone’s rear camera. This is

especially useful when you need
to check whether the APDS9960
sensor is still functioning properly.

GOOD HEALTH
ANDIELEBENG PROLOGUE: GESTURE REACTION GAME lI I I

Anna? Can you
hear me?

Anna, your music is a little
too loud. We're worried
about your hearing.

Mia, did you notice?
Anna doesn't see her
hearing as a problem.

What's wrong with that?
| love my music LOUD!

That's what worries me.
Her hearing might be at risk,
and she's not aware.

GOOD HEALTH
AND WELL-BEING

I I II PROLOGUE: GESTURE REACTION GAME

If only there's a
way to help her be
more aware of her

Oh, sorry | didn't hearing.
hear you, Mia.

What's your
idea, Mia?

We have to do
something, Adam.
Anna needs our help.

Here's the plan,
let's build a hearing The buzzer will play a random
reaction game using tone and Anna have to react
the EDU PICO. with a specific hand gestures.

How can EDU PICO
detect the hand gesture?

GOOD HEALTH
RIDNELSENS PROLOGUE: GESTURE REACTION GAME lI I I
—M/\v

If Anna gets it right, the
OLED will show 'Good Job' with
an exciting beep else it'll
-~ produce a sad beep.

1-3cm . .i-.

Anna, we've got this

cool new game to Sounds interesting.
show youl! _ I'min!

\

So, what's the
results?

GOOD HEALTH
AND WELL-BEING

I I ll PROLOGUE: GESTURE REACTION GAME

Anna, we wanted to
be sure. It turns out
your hearing needs
some attention.

Really?
| had no idea..

No stress, Anna.
This can still be fixed, or
maybe you'll have to ease
up on blasting the tunes,
you know?

Now l've realized the
importance of taking care
of my hearing.

| won't be listening to
loud volumes anymore.
It's time to prioritize my
hearing health.

That's a wise
choice, Anna.
We're here for you
all the way.

Gesture Reaction Game
Do-Re-Mi-Fa Arcade

Let's build our first arcade game. But this won't be your typical game, instead, this is going
to help players improve their hand-eye coordination. In this project, we'll learn to integrate
OLED display, buzzer, and APDS9960 gesture sensor, so be prepared for a slight increase in
difficulty. Ready? Let's get started!

— = How Does This Activity Work? =’ —

® Libraries: board, digitalio, time, simpleio, busio, adafruit_apds9940
adafruit_ssd1306, random, font5x8.bin.

® OLED & APDS9960 12C Pins Configuration: SCL = GP5 and SDA = GP4.
Audio / Buzzer Configuration: Buzzer to GP2I.

® Bution Configuration:
o button_tone (Yellow) to GPO as digital input.
e button_start (Blue) to GPI as digital input.

® Input:
e Pressing Button A will activate the test tone, playing

Do Re Mi Fa in sequence.

e Pressing Button B will start the game with a "Ready" Play

and "Go" countdown. Game

e The player has to react to the random tone with either
UP, DOWN, LEFT or RIGHT hand gestures.

Button A: Test Tone
Button B: Play Game

e The buzzer will play a random game tone, either DO, RE, MI, or FA.

e The OLED will print "Try again" with a sad beep if the player gives a
wrong answer.

o Getting the correct tone gesture will produce an exciting beep with
a "Good Job" displayed on the OLED.

B i Code

e J

PROJECT_HEARING_REACTION_GAME.py

import board, digitalio, time, simpleio, busio
from adafruit_apds9960.apds9960 import APDS9960

35
36
37
38
39
40
41
42
43
44
45

import a

=

dafruit_ssd1306

import random
FREQ_DO = 261
FREQ RE = 293
FREQ_MI = 329
FREQ_FA = 349

GESTURE REACTION GAME

tone_map = {1: FREQ DO, 2: FREQ RE, 3: FREQ MI, 4: FREQ_FA}

buzzer =

board.GP21

button_tone = digitalio.DigitalInOut(board.GPo)
button_start = digitalio.DigitalInOut(board.GP1)
one.direction = digitalio.Direction.INPUT

button_t

button_start.direction = digitalio.Direction.INPUT
i2c = busio.I2C(board.GP5, board.GP4)

apds = APDS9960(i2c)

apds.enable_proximity = True

apds.enable_gesture = True

oled = adafruit_ssd1306.SSD1306_I2C(128, 64, i2c)

def gamestart():

oled.

oled

oled.
time.
oled.
oled.

while Tr
oled

oled.text("Button A: Test Tone", 10, 25, 1)
oled.text("Button B: Play Game", 10, 40, 1)

oled

Single

———if n

Tab

fill(e)

.text("Ready", 50, 25, 1)
show()

sleep(0.5)

text("Go!", 50, 40, 1)
show()

ue:
.fil1(0)
.show()

ot button_tone.value:
oled.fill(©)

Keep it up!
The code from
line € to 24
configures all
the necessary
stuff to make
your project
work!

oled.text("Playing Test Tone", 15, 35, 1)

oled.show()

for tone_freq in (FREQ DO, FREQ RE, FREQ MI, FREQ FA):
simpleio.tone(buzzer, tone_freq, 9.3)

GESTURE REACTION GAME

47 if not button_start.value:

48 gamestart()

49 tone_code = random.randint(1, 4)

50 selected_tone = tone_map[tone_code]

51 simpleio.tone(buzzer, selected_tone, 1)
52

53 Double while True:

54 Tab gesture_value = apds.gesture()

55 oled.fill(9@)

56 if gesture_value == tone_code:

57 oled.text("Good Job!", 35, 30, 1)
58 oled.show()

59 for i in range(3):

60 simpleio.tone(buzzer, 1100, ©.1)
61 simpleio.tone(buzzer, 0, 0.1)
62 break

63 elif gesture_value != 0:

64 oled.text("Try Again!", 35, 30, 1)
65 oled.show()

66 for i in range(3):

67 simpleio.tone(buzzer, 100, 0.1)
68 simpleio.tone(buzzer, 0, 0.1)

Click the Green Button P, to run the code and Red Button O to stop.

—— What the Code Does </>

Libraries

4 import random

To generate a random sequence of DO RE MI FA tones, you'll need to use the

random library. This library enables you to generate random numbers for your code.

Constant Variable and Dictionary

6 FREQ DO = 261
7 FREQ RE = 293
8 FREQ MI = 329
9 FREQ_FA = 349

10

11 tone_map = {1: FREQ DO, 2: FREQ RE, 3: FREQ MI, 4: FREQ FA}

Line 6 - 9: Define each DO RE MI FA musical tone as a constant variable.
Line 11: Create a dictionary and assign numbers from 1to 4 to their corresponding

musical tones where each frequency has already been defined in line 6 to 9.

CHAPTER 3 GESTURE REACTION GAME

Define a Custom Function

27
28
29
30
31
32

26 def gamestart():
.fill(e)
.text("Ready", 50, 25, 1)
.show()
time.

oled
oled
oled

oled

Line 26 - 32: A function that initializes and displays a "Ready" message on the OLED
display followed by a "Go!" message after a brief delay.

.text("Go!", 50, 40, 1)
oled.

gamestart() function

sleep(1)

show()

Enter a Continuous Loop

35
36
37
38

40
41
42
43

34 while True:

oled.fill(@)

oled.text("Button A: Test Tone", 10, 25, 1)
oled.text("Button B: Play Game", 10, 40, 1)
oled.

Line 35: oled.fill(0) clears the OLED display by filling it with black (0).

Line 36 - 37: oled.text(" ", x, y, colour) displays text on the OLED display at
coordinates (x, y). The text colour can be either filled with white (1) or black (0).
Line 38: oled.show() updates the OLED display to make the text visible.

if not button_tone.value:
oled.fill(0)
oled.text("Playing Test Tone", 15, 35, 1)
oled.show()

Line 40 - 43: Checks if the button connected to button_tone is pressed. If the
button is pressed, this line clears the OLED display and prints "Playing Test Tone".

Main Loop

show()

button_tone (Button A)

GESTURE REACTION GAME

button_tone (Button A)

44 for tone_freq in (FREQ DO, FREQ RE, FREQ MI, FREQ FA):
45 simpleio.tone(buzzer, tone_freq, 0.3)

Line 44 - 45: Starts a loop that iterates through a list of musical tone frequencies
DO RE MI FA with a 0.3 second delay after each tone.

What is for..loop?

A for loop is used to iterate or repeat over a sequence (in the example below, we

have a list of 4 musical tones). This also means that the loop will iterate 4 times.

for tone_freq in [FREQ_DO, FREQ_RE, FREQ_MI, FREQ_FA]:

© ® ©® ©

FREQ_DO =261 Hz FREQ_MI = 329 Hz
FREQ_RE = 293 Hz FREQ_FA = 349 Hz

simpleio.tone(buzzer, tone_freq, 0.3)

During the first iteration, tone_freq will take on the value FREQ_DO = 261 Hz.

To put it simply, the values in the code should look like this in the first iteration,
[simpleio.tone(buzzer, 261, 0.3)]. Then the second iteration, with FREQ_RE = 293 Hz,
third with FREQ_MI = 329 Hz, and lastly FREQ_FA = 349 Hz.

Check if Start Button (Button B) is Pressed

47 if not button_start.value:

48 gamestart()

49 tone_code = random.randint(1, 4)

50 selected_tone = tone_map[tone_code]

51 simpleio.tone(buzzer, selected_tone, 1)

Line 47: Checks if Button B is pressed. If it's pressed, it calls the gamestart()
function (defined at line 26 - 32) to display "Ready" and "Go!" messages.

Line 49: Stores a randomly generated number ranging from 1to 4 in variable

random_tone_code.

Line 50 - 51: tone_map array values were defined at Line 11. The code selects a
single frequency from tone_map array based on the random tone_code value

and plays a corresponding frequency. For an example:

selected_tone = tone_map[2] - FREQ_RE = 293

GESTURE REACTION GAME

Continuous Game Loop - Correct Gesture

53 while True:

54 gesture_value = apds.gesture()

55 oled.fill(®)

56 if gesture_value == tone_code:

57 oled.text("Good Job!", 35, 30, 1)

58 oled.show()

59 for i in range(3):

60 simpleio.tone(buzzer, 1100, 0.1)
61 simpleio.tone(buzzer, 0, 0.1)

62 break

Line 53 - 58: This game loop is triggered when Button B is pressed. It continuously
checks for gestures detected by the APDS9960 sensor. If the detected
gesture_value matches the tone_code (random number between 110 4), the OLED
will then display "Good Job!".

Line 59 - 60: Plays a success tone sequence before exiting the for loop. The loop will

repeat 3 cycles, running line 60 and 61 code for 3 times.

Gesture sensor value Gesture direction Tone assigned
0 No gesture detected .
1 Up Do
2 Down Re
3 Left Mi
4 Right Fa

Every gesture detected by the APDS9960 sensor will produce a value as shown
above, for example: "If a random tone code of 2 is generated, the tone it produced
will be RE, hence the player will have to swipe Down on the gesture sensor to get the
correct answer." The program compares the gesture sensor value with the tone code

to validate whether the answer provided by the player is correct.

Continuous Game Loop - Wrong Gesture

63 elif gesture_value != 0:

64 oled.text("Try Again!", 35, 30, 1)
65 oled.show()

66 for i in range(3):

67 simpleio.tone(buzzer, 100, 0.1)
68 simpleio.tone(buzzer, 0, 0.1)

If a non-zero gesture (other than the expected one) is detected, it displays

"Try Again!" and plays a failure tone sequence through a for loop of range(3).

GESTURE REACTION GAME

WHAT'S NEXT?

Pitch Ear Training

One effective way to develop your ear for recognizing notes is through pitch ear training.
Simply play the same note repeatedly, and to make it more challenging, modify the tone for
each repetition based on the table below. The closer each tone is, the more difficult it

becomes for the player to distinguish. J? Q
[—)

Difficulty Tone Frequencies (Hz) J J
Easy DO =262, MI = 330, SO = 392, Tl - 494

Turn this
project into a
melody pattern
recognition
game by adding
2 tones for
each gesture!

Intermediate | DO =262, RE = 294, MI = 330, FA = 350

Hearing Pure-tone Test

We tend to ignore our hearing health until it's too late. This project will allow us to perform a

common hearing test known as the pure-tone test. Here's how we run the test:

Step 1: Locate a quiet spot to perform the test (ideally in a soundproof room).
Step 2: Press button A to test play the tone, and button B to produce a random tone.

Step 3: After hearing the tone, refer to the gesture directory to decide which correct hand
gesture you should swipe above the sensor.

Step 4: Record your result on each turn to calculate your hearing accuracy as shown below.

Step 5: Repeat steps 3 - 5 for 10 rounds minimum.

Press
Butron A ‘
Round Results Name: Anna

I

Test q

Al Tones

Press
Button B

e
|~
Play

Random Tone

~Nw o
SSS
5

A block
diagramis a
useful tool for
explaining a
project flow
to othersina

Record

Correct

Disclaimer: This hearing test is intended for
informational and educational purposes only. It is not a F'edl‘ and
medical diagnosis, and the results obtained from this simple way.

test should not be considered as such.

GESTURE REACTION GAME

CHALLENGES

#1'DO RE MI FA" TONE TESTER

Since we are building a reaction arcade game with an OLED display, why not challenge

ourselves to make it even better? Let's provide the player with more information about the

) QUICK
if ng;eg?iﬁgzgt))ne.value: TlFS =

oled.text("Playing Test Tune", 10, 10, 1)
oled.show()

test tones when they press button A.

oled.text("D0O", 20, 55, 1)
oled.show()
simpleio.tone(buzzer, FREQ_DO, 0.3)

oled.text("RE", 40, 45, 1)
oled.show()
simpleio.tone(buzzer, FREQ_RE, 0.3)

oled.text("MI", 60, 35, 1)
oled.show()
simpleio.tone(buzzer, FREQ_MI, 0.3)

oled.text("FA", 80, 25, 1)
oled.show()
simpleio.tone(buzzer, FREQ_FA, 0.3)

continue to wait l \)
e Burt s Repeat for
p\'u::;g — l Play Do’ tone I -—PI Print "Do" on OLED I ol e
AT

t]

#2 - PLAYER'S EXPERIENCE

After playing for a few rounds, it can become frustrating if you don’t know which gesture
direction represents which tone. To enhance the gaming experience, consider implementing
a straightforward gesture directory to guide the player while they guess the gesture as

shown in the image below.

QUICK: , .
0 (5 Dt S

oled.'F111(0) DO: Up
oled.text("DO:Up", 50, 25, 1) ML e
oled.text("RE:Down", 45, 55, 1)
oled.text("MI:Left", 5, 40, 1)
oled.text("FA:Right", 75, 40, 1)
oled. show()

CHAPTER 4

Colour Detection Game
RGB LEDs & Colour Sensor

4.1 Introduction to RGB LEDs

4.2 Introduction to Colour Sensor @@ e () O @
4.3 Project: Colour Detection Game @@ & @@ @
- @P

In this chapter, we will be exploring these two
incredible components: RGB LEDs and the
APDS9960 colour sensor module with EDU PICO.

Imagine creating a game

that can detect colours and
respond with dazzling light
displays. Yes, you heard it right!
By the end of this chapter, you'll
have the knowledge and skills
to design and build your very

own colour detection game.

We'll start by understanding what
RGB LEDs are and how they can be
programmed to produce a mesmerizing
rainbow of colours. Then, we'll
introduce you to the APDS9960 colour
sensor, a powerful tool that can "see"

colours just like you do.

I Introduction to RGB LEDs

In this introduction, you will learn how to control the RGB LEDs module to create dazzling
displays of colour and patterns! Once you're done with the sample code, make sure to check

out the last section where you will learn how to mix various colours on the RGB LEDs.

— = How Does This Activity Work? =’ —

® Libraries: board, time, neopixel.
® RGB LEDs Configuration: num_pixels = 5, pixel_pin = GPI4.

® Output:
o The RGB LEDs will repeatedly turn all LEDs on (blue colour) and off,

with a 1second interval.

Here we have 5 colourful

RGB LEDs. Each is assigned with an
identification number (0-4) for you
to program individually.

You will learn to
control its colours
from a mix of Red,
Green, and Blue.

CFF for
1 second

Identification number
from O to 4

ON for ebje 4

1 second

RED. GREEW, BLUE
0,0,255 I

2 4 INTRODUCTION TO RGB LEDs

B i Code
#u OB

'RGBLEDs_MODULE.py |
import board, time, neopixel

Don’t forget to
import neopixel
library for the
code to work!

num_pixels = 5
pixel_pin = board.GP14
pixels = neopixel.NeoPixel(pixel pin, num_pixels, brightness=0.2)

while True:
pixels.fill((9,0,255))
time.sleep(1)
pixels.fill((9,0,0))
time.sleep(1)

RPOWVWONOGOUEAWNER

[

Click the Green Button o to run the code and Red Button D to stop.

What the Code Does </>

Import Necessary Libraries

Libraries

1 import board, time, neopixel

neopixel library provides functionality to control RGB LEDs or WS2812 RGB LED

modules. It is a must to have to complete this activity.

itialize Hardware Components

RGB LEDs Pin Configuration

3 num_pixels = 5
4 pixel_pin = board.GP14
5 pixels = neopixel.NeoPixel(pixel_pin, num_pixels, brightness=0.2)

Line 5: Initializes the RGB LEDs object to pixel_pin (GPI4), num_pixels to 5,
and the brightness parameter to 0.2 (20% brightness).

2 4 INTRODUCTION TO RGB LEDs

Enter a Continuous Loop

Light Up Pixel Continuously
7 while True:

8 pixels.fill((©,0,255))
9 time.sleep(1)
10 pixels.fill((0,0,0))
11 time.sleep(1)

The pixels.fill((0, 0, 255)) is used to fill all the LEDs with a specific colour. In this

case, (0, 0, 255) represents full blue and (0, 0, 0) represents black or no colour.

**THE MORE YOU KNOW +!

The RGB LEDs, or in technical terms, the WS2812 integrated light source, is a full red, green,
and blue LED that is integrated with a driver chip within each LED. This allows the RGB LEDs
to be individually addressable, allowing us to program each LED according to the
identification number.

[} #FFO000 285,0,0 .,
.
[] #OOFFOO 0,255,0
[] #FOOOOFF 0,0, 255
[] FCO3092B 192, 57, 43
- #ETACIC 231, 76, 60
RGE: 255, 255, 255
] 7985986 155, 89, 182 *va,, Hex : WFFFFFF
143, 68,
- FEEAAAD 2.68,173 Rk 58 3500
[] #2980B9 41, 128, 185 Hex': #FFFFOD
[#3498D8 52,152,219+ RGE: 255, 0, 255
30 £03, 0, £5
[] H1ABCOC 26, 188, 156 Hex : #FFOOFF
[] 16085 22,160, 133
| #278860 39,174, 96 **° . Fons 8000000
[] #2ECCT 46, 204, 113 RGB colour model
#FICA0F 241,198, 15
[] FO5ASAG 1489, 165, 166
[] #TFECED 127, 140, 141 [| #F38CI2 243, 156, 18
| | #34495E 52,73, 94 [| HEBTE2Z 230,126, 34
- #2CIESO 44, 62, 80] #D35400 211, 84, 0
#FFEFFF 255, 258, 255 FECFOF1 236, 240, 241
[] #000000 0.0.0 #BDCICT 189, 195, 199

You can mix Red, Green and Blue to
get the colour you want according to
the colour code. Combining all 3 will
create White light! Cool right?

I Introduction to Colour Sensor

In the previous chapter, we explored the APDS9940 sensor, which was initially used to detect
gestures. However, you might be surprised to learn that this sensor is not limited to just

detecting gestures. It can also be used to identify and distinguish different colours!

— = How Does This Activity Work? =T —

® Libraries: board, time, busio, neopixel, adafruit_apds?940.
® RGB LEDs Configuration: num_pixels = 5, pixel_pin = GPI4.
® APDS9960 I2C Pins Configuration: SCL = GP5 and SDA = GP4.
® Input:
e Hold the colour cards above the colour sensor.
® Output:

o RGB LEDs light up in white colour at 20% brightness.
¢ The colour sensor reads and prints the amount of red (r), green (g),

blue (b), and clear (c) light values with a 1second interval.

Best Colour
Detection Distance

555

Keep in mind
that the
brightness
of your
surrounding
can influence
the outcome.

#4u OH o
Cetected Red with
the highest value

"~ red: 7201
green: 5708

blue: 3688

clear: 11802 \

Clear represents the
brightness of the surrounding

Place the
colour card
above the
sensor here!

INTRODUCTION TO COLOUR SENSOR

B i Code
=y OB Q

COLOUR_SENSOR_MODULE.py

1 import board, time, busio, neopixel
from adafruit_apds9960.apds9960 import APDS9960

2
3
4 num_pixels = 5

5 pixel_pin = board.GP14

6 pixels = neopixel.NeoPixel(pixel_pin, num_pixels, brightness=0.2)
7

8

9

i2c = busio.I2C(board.GP5, board.GP4)
apds = APDS9960(i2c)
10 apds.enable_color = True

11
12 while True:
13 pixels.fill((255,255,255))
14 r, g, b, ¢ = apds.color_data
15 print(f"red: {r}, green: {g}, blue: {b}, clear: {c}")
16 time.sleep(1)
Shell 3
reaq: sooo0, green. JSo0Y¥, DLlue. s¥od, Clear. 1li¥f -

red: 36898, greem: 3659, blue: 3987, clear: 28388
red: 14229, green: 8307, blue: 6874, clear: 28087
red: 14406, green: 7708, blue: 6201, clear: 26476
red: 13014, green: 6541, blue: 5252, clear: 23395
red: 12065, green: G881, blue: 4713, clear: 17321
ved: 7662, green: 4867, blue: 4462, clear: 11802
red: 3695, green: 3663, blue: 3989, clear: 11802

Click the Green Button o forun the code and Red Button D to stop.

—— What the Code Does </

Libraries

1 import board, time, busio, neopixel
2 from adafruit_apds9960.apds9960 import APDS9960

adafruit_apds9960.apds9960 provides functionality to work with the APDS9960

colour sensor.

INTRODUCTION TO COLOUR SENSOR

RGB LEDs and APDS99640 Initialization

num_pixels = 5
pixel_pin = board.GP14
pixels = neopixel.NeoPixel(pixel_pin, num_pixels, brightness=0.2)

i2c = busio.I2C(board.GP5, board.GP4)
apds = APDS9960(i2c)
apds.enable_color = True

®© LWoKONOUV b

Line 4 - 6: Sets up the RGB LEDs strip with 5 LEDs connected to GPIO pin GPI4. The
brightness of the RGB LEDs is set to 20% (0.2).

Line 8 - 9: The script initializes the I2C communication using pins GP5 and GP4.
An instance of the APDS9960 colour sensor is created.

Line 10: This line enables colour detection on the APDS9960 sensor.

Main Loop
12 while True:
13 pixels.fill((255,255,255))
14 r, g, b, ¢ = apds.color_data
15 print(f"red: {r}, green: {g}, blue: {b}, clear: {c}")
16 time.sleep(1)

Line 13: Light up the RGB LEDs in white. By doing so, it creates a bright surrounding
next to the APDS9960 sensor which will allow the sensor to detect the object's

colour clearly and more accurately.

Line 14: apds.colour_data retrieves colour information from the APDS9960 sensor,

providing separate variables for red (r), green (g), blue (b), and clear (c) channels.

Line 15: Prints the RGB values in a formatted string (f-string) making it more human-
readable. In this case, the {r}, {g}, {b}, and {c} are the placeholders within the
f-string. They are used to indicate where the values of the variablesr, g, b and, ¢
should be inserted within the text.

INTRODUCTION TO COLOUR SENSOR

MINI ACTIVITY

Modify the code to be able to compare and identify between red, green, or blue by using
the if..elif..else statement. While you're at it, make use of the AND logical operator to

QUICK.
Tl\”S

determine the most prominent colour in the data.

while True:

pixels.fill((255,255,255))
r, g, b, ¢ = apds.color_data
print(f"red: {r}, green: {g}, blue: {b}, clear: {c}")
if r > gand r > b:

print("Red Detected")
elif g > r and g > b:

print("Green Detected")
else:

print("Blue Detected")
time.sleep(1)

**THE MORE YOU KNOW +;

Colour sensing with the APDS9960 has diverse applications. For instance, it can be used in
colour sorting machines, where objects are categorized based on their colours. Additionally,
the colour data from the sensor can also be used to calculate ambient light levels (i.e. Lux),

which will be covered in a later chapter.

Remember the
four photodiodes
used for gesture
detection?
Each of them
actually has a
blocking filter
that allows it to
detect colours!

GOOD HEALTH
AND WELL-BEING

Mia, you look sad.
What's bothering you?

Adam, Anna, can we
talk about something
important?

g

=
’ \ Of course,
,‘ Mia. What's

on your mind? _ I've noticed something
about Noah.

I think he might have
trouble seeing colours
correctly.

| am currently
working on a colour
detection game using the
EDU PICO. It could help us

determine if Noah has colour
vision difficulties. {

GOOD HEALTH
AND WELL-BEING

It's a colour recognition
game. The OLED displays
a random colour.

How does this
colour detection
game work,

Adam?

The EDU PICO then activates a
5-second countdown. Noah must
quickly place the correct colour
card on the sensor.

happens
That's a fantastic after the
idea. Let's try it out

on Noah.

When Noah gets the colour right,
the buzzer cheers, when the
answer is wrong, the buzzer

produce a sad beep trice.

A new game?
| want to play!

Noah, we've created a
fantastic game, and we want
you to be the first one to try it.

GOOD HEALTH
AND WELL-BEING

You did it, Noah!
But remember, we're
just having fun.

| did it!
| got it
right!

Thisl is fun! During the game, it became obvious that
Let's Plf‘)' Noah had a tough time recognizing colours.
more!

Round Colour Result
1 Green »
i v NOme:
vellow v~ Noah
x

2
3
4 Red

| think we've seen enough. .
Noah is struggling to distinguish Adam! Planning to talk to
red and green. I'm getting really my parents about Noah's

concerned. color vision. Might consult
‘ : an expert if needed.

It's no problem, Mia. I'm
happy that the game helped
raise awareness.

Thanks for the game,

Colour Detection Game
Colour Blindness Tester

Did you know that approximately 300 million people worldwide have colour vision
deficiency, also known as colour blindness? This condition can make it difficult to distinguish
between colours, affecting a person's education, academic performance, and even career
choices. In this project, we will learn how to build a basic colour detection game by

integrating colour sensor, RGB LEDs, buzzer, button and OLED display.

— = How Does This Activity Work? =T —

@ Libraries: board, digitalio, time, simpleio, neopixel, busio, random,
adafruit_ssd1306, adafruit_apds9960, font5x8.bin.

OLED & APDS9960 I12C Pins Configuration: SCL = GP5 and SDA = GP4.
Audio / Buzzer Configuration: Buzzer to GP2I.
RGB LEDs Configuration: num_pixels = 5, pixel_pin = GPI4.

Buttons Configuration: button_start (Yellow) to GPO as digital input.

Input:
e Press Button A to start the game with a 5 second countdown.
o The player must quickly place the correct colour card above the

colour sensor once the RGB LEDs white light turns on.

@® Output:
o The OLED will print a random colour to the player.
e If the player gets the colour correct, the buzzer will play an exciting
tone with a "Well Done!" message printed on the OLED.
o If the player got it wrong, the buzzer would beep 3 times and the
OLED would proceed to print "Try Again".
e The RGB LEDs will turn off after the countdown of 5 second ends.

A Detected: Green
Find this colour:

Try Again.
Red

E Press Ato
Time left:5 seconds | S start a New Game

COLOUR DETECTION GAME

B i Code

+8 0 OB o

PROJECT_COLOUR_DETECTION_GAME.py

1

LoOoNGOULA,WN

10

import board, digitalio, time, simpleio, neopixel, busio, random
from adafruit_apds9960.apds9960 import APDS9960
import adafruit_ssd1306

i2c = busio.I2C(board.GP5, board.GP4)
apds = APDS9960(i2c)
apds.enable_color = True
apds.enable_proximity = True

buzzer = board.GP21
oled = adafruit_ssd1306.SSD1306_I12C(128, 64, i2c)

button_start = digitalio.DigitalInOut(board.GPo)
button_start.direction = digitalio.Direction.INPUT

num_pixels = 5
pixel pin = board.GP14
pixels = neopixel.NeoPixel(pixel_pin, num_pixels, brightness=0.2)

MELODY_NOTE = [523, 659, 784, @, 659, 784]
MELODY_DURATION = [0.12, ©.12, ©0.12, 0.1, 0.12, 0.2]

colours = ["Red", "Green", "Blue", "Yellow", "Purple"]

oled.fill(9)

oled.text("Press A to", 35, 25, 1)
oled.text("Start a New Game", 15, 35, 1)
oled.show()

while True:
pixels.fill((0,0,0))
while button_start.value:
pass
oled.fill(9)
oled.show()
random_colour = random.choice(colours)
oled.text("Find this colour:", 10, 10, 1)
oled.text(f"{random_colour}", 20, 25, 1)
oled.show()
time.sleep(2)
pixels.fill((255,255,255))
oled.text("Time left: seconds", 5, 50, 1)

COLOUR DETECTION GAME

44 for countdown in range(5, -1, -1):

45 oled.fill rect(70, 50, 10, 7, 0)

46 oled.text(f"{countdown}", 70, 50, 1)

47 oled.show()

48 time.sleep(1)

49

50 if apds.proximity < 10:

51 oled.fill(@)

52 oled.text("No object detected", 10, 15, 1)
53 oled.text("Press A to", 35, 35, 1)

54 oled.text("Start a New Game", 15, 45, 1)

55 oled.show()

56 for i in range(3):

57 simpleio.tone(buzzer, 100, 0.1)

58 simpleio.tone(buzzer, 0, 0.1)

59 else:

60 r, g, b, c = apds.color_data

61 print(f"red: {r}, green: {g}, blue: {b}, clear: {c}")
62 if r > g and r > b:

63 if g > b:

64 detected_colour = "Yellow"

65 else:

66 detected_colour = "Red"

67 elif b > r and b > g:

68 if r > g:

69 detected_colour = "Purple"

70 else:

71 detected_colour = "Blue"

72 elif g > r and g > b:

73 detected_colour = "Green"

74

75 oled.fill(0)

76 oled.text(f"Detected: {detected_colour}", 20, 5, 1)
77 oled.show()

78

79 if detected_colour == random_colour:

80 oled.text("Well Done!", 35, 25, 1)

81 oled.text("Press A to", 35, 45, 1)

82 oled.text("Start a New Game", 15, 55, 1)
83 oled.show()

84 for i in range(len(MELODY_NOTE)):

85 simpleio.tone(buzzer, MELODY_NOTE[i], MELODY_DURATION[i])
86 else:

87 oled.text("Try Again.", 35, 25, 1)

88 oled.text("Press A to", 35, 45, 1)

89 oled.text("Start a New Game", 15, 55, 1)
90 oled.show()

91 for i in range(3):

92 simpleio.tone(buzzer, 100, 0.1)

93 simpleio.tone(buzzer, 0, 0.1)

Click the Green Button o forun the code and Red Button O to stop.

—— What the Code Does </

ER 4 COLOUR DETECTION GAME

Import Necessary Libraries

1
2
3

Import a total of 9 libraries for the following project to work. Libraries include
APDS9960 for colour sensor, adafruit_ssd1306 for OLED display, neopixel,

and random for generating a random number.

Libraries

import board, digitalio, time, simpleio, neopixel, busio, random
from adafruit_apds9960.apds9960 import APDS9960
import adafruit_ssd1306

itialize Hardware Components

19
20
21
22
23
24
25
26
27
28

Line 20: Defines a sequence of musical notes in frequency (Hz) for a melody.

The melody will be played with the player guessing the correct colour.

Line 21: The array defines the duration of each note in the corresponding position in
the MELODY_NOTE array. For example: 0.12 means that a note is played for
0.12 second.

Line 23: The colours array contains the names of different colours used in the game.

Line 25 - 28: Produce an initial message to instruct the player to press button A to
start a new game.

Initialization

Line 4 - 19: Initializes APDS9960 sensor, OLED display, buzzer (GP2I),
button A (GPO) and RGB LEDs module (GPI4).

i
i
I
i
I
i
I
i
I
.

MELODY_NOTE = [523, 659, 784, 0, 659, 784]
MELODY_DURATION = [0.12, ©.12, 0.12, 0.1, 0.12, 0.2]

colours = ["Red", "Green", "Blue", "Yellow", "Purple"]

oled.fill(®)

oled.text("Press A to", 35, 25, 1)
oled.text("Start a New Game", 15, 35, 1)
oled.show()

COLOUR DETECTION GAME

Enter a Continuous Loop

Prepare the Game

30 while True:

31 pixels.fill((©,0,0))

32 while button_start.value:

33 pass

34 oled.fill(®)

35 oled. show()

36 random_colour = random.choice(colours)

37 oled.text("Find this colour:", 10, 10, 1)
38 oled.text(f"{random_colour}", 20, 25, 1)
39 oled. show()

40 time.sleep(2)

41 pixels.fill((255,255,255))

42 oled.text("Time left: seconds", 5, 50, 1)

Line 31: Clear the RGB LEDs strip (turn off all pixels).

Line 32: Wait for button_start (Button A) to be pressed to start the game.
Line 34: Clear the OLED display to prepare for the game.

Line 36: Randomly selects a colour from the colours array defined at line 23.

Line 38: Prints the randomly selected colour (stored in the random_colour variable)
on the OLED display.

Line 41: Light up all RGB LEDs in white to indicate the start of the game.
Line 42: Prints "Time left: seconds”, where the blank space will be replaced with

the seconds value in the later code.

Starting the Game - The Countdown

44 for countdown in range(5, -1, -1):

45 oled.fill_rect(70, 50, 10, 7, 0)

46 oled.text(f"{countdown}", 70, 50, 1)
47 oled.show()

48 time.sleep(1)

Line 44: The for loop iterates through a range of numbers from 5 down to 0.

Line 45: This line clears a rectangular region on the OLED display at the coordinates
of (70, 50), and with a size of (10 x 7). The cleared space will be used to update the
duration value in seconds located in between "Time left: { } seconds".

Line 46: This line displays the current value of the countdown as text on the OLED.

Line 48: This line introduces a 1 second interval to synchronize with the countdown.

ER 4 COLOUR DETECTION GAME

Check the Proximity Value

Detect Object Presence

50 if apds.proximity < 10:

51 oled.fill(®)

52 oled.text("No object detected", 10, 15, 1)
53 oled.text("Press A to", 35, 35, 1)

54 oled.text("Start a New Game", 15, 45, 1)
55 oled. show()

56 for i in range(3):

57 simpleio.tone(buzzer, 100, 0.1)

58 simpleio.tone(buzzer, 0, 0.1)

Line 50: If the proximity value is less than 10, it indicates that there

is no object detected (e.g: colour card) above the proximity sensor.

Line 51- 58: If no object is detected, the OLED prints the message shown in the
illustration above, followed by 3 beeps on the buzzer indicating the input on the
APDS9960 sensor is invalid.

Check the Colour Data Value

Detect Colour

59 else:

60 r, g, b, ¢ = apds.color_data

61 print(f"red: {r}, green: {g}, blue: {b}, clear: {c}")
62 if r > gand r > b:

63 if g > b:

64 detected_colour = "Yellow"

65 else: , N
66 detected_colour = "Red" Degﬁ;fg:;me
67 elif b > r and b > g:

68 if r > g:

69 detected_colour = "Purple"

70 else:

71 detected_colour = "Blue"

72 elif g > r and g > b:

73 detected_colour = "Green"

Line 60 - 61: Read colour data and print the red, green, blue, and clear values

to the shell console.

Line 62 - 73: The following lines determine the detected colour based on the RGB

values by comparing them to one another.

COLOUR DETECTION GAME

Compare Colour

79 if detected_colour == random_colour:

80 oled.text("Well Done!", 35, 25, 1)

81 oled.text("Press A to", 35, 45, 1)

82 oled.text("Start a New Game", 15, 55, 1)

83 oled.show()

84 for i in range(len(MELODY_NOTE)):

85 simpleio.tone(buzzer, MELODY_NOTE[i], MELODY_DURATION[i])
86 else:

87 oled.text("Try Again.", 35, 25, 1)

88 oled.text("Press A to", 35, 45, 1)

89 oled.text("Start a New Game", 15, 55, 1)

90 oled.show()

91 for i in range(3): D”%mwgmm
92 simpleio.tone(buzzer, 100, 0.1) :Wbmw
93 simpleio.tone(buzzer, 0, 0.1) Smn;%tAm

W Game

Line 79: This condition checks if the detected colour is equal

to the random colour chosen at the beginning of the game.

Line 80 - 85: If the detected colour matches the random colour,
the OLED prints the text shown on the right, followed by a melody
iterating through MELODY_NOTE and MELODY_DURATION arrays.

Line 86 - 93: If the detected colour doesn’t match the random colour,

the OLED will print "Try Again" and the buzzer will beep 3 times.

WHATS NEXT?

Type of Colour Blindness
Bring awareness to colour blindness by letting your friends Jpe o
Normal Vision Tritanopia@

5

Protano pia@ Deuteranopia @

experience the project! If the player is colour blind, this

project will allow them to vaguely identify the type of colour
blindness they are in. Collect the results as shown below.
The more mistakes made for either green and red, or blue
and yellow, the easier it is to identify which type of colour

blindness category you're in.

Round Colours Results ‘

1 Green X
2 Blue w4 Name:
3 Yellow w4 Adam
4 Red X

Deuteranopia
individuals have
difficulty in perceiving
green colour.

Disclaimer: This colour blindness test is intended for
informational and educational purposes only. It is not
a medical diagnosis, and the results obtained from
this test should not be considered as such.

COLOUR DETECTION GAME

CHALLENGES

#1 IMPROVE GAMING EXPERIENCE

It can be frustrating as a player to receive three identical colours in a row.

Unfortunately, using the random function means there’s still a chance that will happen.

We can include a "check-

code" before generating a def get_random_colour():

random colour to eliminate colours = ["Red", "Green", "Blue", "Yellow", "Purple"]
oo . x = random.choice(colours)
the possibility of repeating while x == prev_colour:
the same colours. While we x = random.choice(colours)
’ return x
are at it, let's build a .
while True:
function to generate the pixels.fill((0,0,0))

. . while button_start.value:
random colour, this will

pass
help us keep the code neat oled.fill(e) QUICK
oled.show() =
too. random_colour = get_random_colour() I '?S =

prev_colour = random_colour

#2 COLOUR HINT INDICATOR

You probably wonder what else can be done for our fellow gamers. For one, we can
improve the game by providing hints to the player. Here's how it works, the flow of the
game will still be the same, but instead of lighting up all RGB LEDs in white, the first RGB
LEDs ID:0 will light up according to the same random colour. This will allow the user to

colour match and increase their chance of getting the right answer too. Give it a try!

T'?S e if random_colour == "Red": pixels[O]

pixels[@] = (255, 0, @) # Red

elif random_colour == "Green": .
pixels[@] = (@, 255, @) # Green pixels(1]
elif random_colour == "Blue":
pixels[@] = (@, @, 255) # Blue
elif random_colour == "Yellow": White
pixels[@] = (255, 255,) # Yellow Light
elif random_colour == "Purple":

pixels[@] = (128, 0, 128) # Purple

for countdown in range(5, -1, -1):
oled.fill rect(70, 50, 10, 7, 9)
oled.text(f"{countdown}", 70, 50, 1)
oled.show()
time.sleep(1)

CHAPTER'S

@/% Automated Waste Bin
o —F Servo Motor & Proximity Sensor

Introduction to Servo Motor 5.1
Introduction to Proximity Sensor 5.2

Project: Automated Waste Bin 5.3
=

1=

{] R]
.'.'.:['e =l
I I

1y 1
- Ly

— ~

This.chapter introduces two key components: the

servo motor and the APDS9960 proximity sensor.
The servo motor is a crucial component in the
creation of robotic beings. It enables the
positioning of solar panels and the automation of

doors, among other applications.

The APDS9960 comes with various built-in
functionality, one of them is to measure proximity
for detecting nearby objects. It empowers
machines to perceive the world around them,
much like how our senses do for us. With its ability
to detect the proximity of objects, it can create
innovative solutions like touchless switches and

gesture-controlled devices.

By learning to harness the power of the servo
motor and APDS9960, you will be able to gain
insight into crafting responsive and intelligent

systems.

I Introduction to Servo Motor

Servo motors are essential components in the world of robotics and automation. They allow
precise control over the angular position of a shaft, making them ideal for applications like
controlling robotic arms, steering mechanisms, or even opening and closing doors. In this
activity, you will learn how to connect and control the servo motor to specific angles with
the EDU PICO.

— = How Does This Activity Work? =T —

@ Libraries: board, time, servo, pwmio, adafruit_motor.

@® Servo Motor Configuration:

e Attach and screw the horn to the servo motor.

& Horn

«

e GPé6 with orange wire connected to S, red to (+) and brown to (-),
as shown in the illustration below.

The servo motor wires come in
3 colours: /

+ red

-: brown / black

@ Output: The servo rotates to each angle position from 0 to 45, 90, 135,
and 180 degrees repetitively.

0° 7 45° 7™ q0° 7™ 135"~ 180°

INTRODUCTION TO SERVO MOTOR

B i Code

= OB o

SERVO_MODULE py |

1 import board, time

2 from pwmio import PWMOut

3 from adafruit_motor import servo

4

5 PWM_Servo = PWMOut(board.GP6, frequency=50)
6 servo = servo.Servo(PWM_Servo, min_pulse=500, max_pulse=2500)
7

8 position = [0, 45, 90, 135, 180]

9
10 while True:
11 for angle in position:
12 servo.angle = angle
13 print("servo moving to", angle)
14 time.sleep(2)

Shell* |

servo moving to 0

servo moving to 45
servo moving to 90
servo moving to 135
servo moving to 180

A —

Click the Green Button o to run the code and Red Button D to stop.

What the Code Does </>

Import Necessary Libraries

Libraries

2 from pwmio import PWMOut
3 from adafruit_motor import servo

Line 2: PWMOut is a class from the pwmio module that allows you to create a
PWM (Pulse Width Modulation) output on a specific pin.

Line 3: adafruit_motor module allows a high-level interface (allow programmer to

write code in a shorter amount of time) for controlling a servo motor.

INTRODUCTION TO SERVO MOTOR

itialize Hardware Components

Configure Servo Pins & Rotation Sequence

5 PWM_Servo = PWMOut(board.GP6, frequency=50)

6 servo = servo.Servo(PWM_Servo, min_pulse=500, max_pulse=2500)
7

8 position = [0, 45, 90, 135, 180]

Line 5: Initializes GP6 pin as output with the PWM frequency parameter set to 50 Hz.

Line 6: Specify PNM_Servo as the PAWM output for controlling the servo.

The min_pulse is set to 500, which represents the minimum pulse width for the servo
motor's rotation, and max_pulse is set to 2500, which represents the maximum
pulse width for the servo motor's rotation. These values define the range of motion

for the servo.

Line 8: Create a list with a variable named pesition that contains a sequence of
angles [0, 45, 90, 135, 180]. These angles represent the positions to which the servo

motor will be moved.

Enter a Continuous Loop

Main Loop
10 while True:
11 for angle in position:
12 servo.angle = angle
13 print("servo moving to", angle)
14 time.sleep(2)

Line 11: Initiates a for loop that iterates through each value in the position list:
[0, 45, 90, 135, 180].

Line 12: Sets the angle of the servo motor to the value stored in the angle variable
in every iteration; this command also controls the servo motor's position by

specifying the angle it should move.
Line 13: Prints the angle the servo motor is currently located.

Line 14: Remain at the same angle for 2 seconds before iterating to the next loop.

——— Pulse Width Modulation (PWM)

INTRODUCTION TO SERVO MOTOR

**THE MORE YOU KNOW +!

Serve Horn

. . Potemtiometer
A servo motor typically consists of a DC motor, gears, a Gears

potentiometer (position sensor), and a control circuit. The
built-in controller translates commands in the form of b over
pulses to rotate the servo motor in degrees. Unlike a DC \-»
motor that rotates continuously (Chapter 8), we can control

a servo motor rotation to an assigned angle between the o

range of 0 to 180 degrees. Ciremit

vee

Modern RC servos rely on pulse-width Center
I | ‘ ootk

modulation to determine the angle of ov osition

o . Pul idth = Period =
mechanical rotation. Although a standard °** ™" = =eek T

RC servo expects a pulse every 20ms vee _“\ l'-l
rag
(milliseconds), the duration of this pulse ~ ov ke

pom—

can vary significantly across different Pulse width = 20005 Period = 20ms
servos. In EDU PICO's case, we are using vcc ‘\ H
-90°
a pulse of 20ms where a PWM frequency i
of 50Hz is set (1/50 = 20ms) Pulse width = 1000p$ Period = 20ms

Servos have traditionally been limited to a pulse width range of 1000 - 2000us,
offering a 90° range of motion. However, modern servos have a much wider range of

motion, typically 170° - 180°, which requires pulse widths outside of the standard range.

5 servo = servo.Servo(PWM_Servo, min_pulse= , max_pulse=)
?)
If your servo doesn't rotate from 0° o 180° correctly, H 1
. . \ !
you may need to adjust the min_pulse and v v
o
max_pulse values to calibrate the range of movement. ") T4 0°

If you hear a buzzing noise coming from the servo, the |

value(s) you set may be too low or too high, causing the
servo mechanism to hit the end stop. Re-adjust the

values carefully to find a safe range of movement. [\

I Introduction to Proximity Sensor

The proximity sensor detects the presence or absence of objects using the reflection of
infrared light (IR) without physical contact. They are used in various applications, such as
touchless switches in public restrooms, automatic faucets, and smartphones. Proximity
sensors are also important in industrial automation, robotics, and automotive systems for

tasks like object detection and machine safety features.

— = How Does This Activity Work? = —

Libraries: board, time, busio, adafruit_apds?960.
Proximity Sensor I12C Pins Configuration: SCL = GP5 and SDA = GP4.

Input: Move your hand up and down above the proximity sensor.

Output:
e The proximity sensor will continuously read and print the proximity
values to the shell console.
e The closer the obstacle to the sensor, the greater the proximity
value.
e The code will continuously update and display the proximity value

at an interval of 0.1 second.

® Action Required: Enable the plotter function in Thonny IDE to have a

better visual on the proximity value.

Shell 3

Froxamaty: 1U -

;roxn:w 11 300 x
roximity: 14 . H

Proxinity: 11 Thonny: View > Plotter
Proxamity 23

Proximity: 30

Proxinity: 39

Proximity: 49

Proximity: 5 Miew | Fun Tost Hep
Proximity: §1 Enutent
Proximity: 102 [
Proximity: 129 200 Fibm

Proximity: 172
Proximity: 193
Proximity: 222 Moo
Proximity- 230 Objact impachor
Proximity: 241 Cutine
Proximity: 253 Brogramitie
Proximity: 255 - Shel
Proximity: 255 E
Proximity: 265 oo
Proximity- 255 Ly 7

Proximity: 255
Proximity: 255
Proximity- 255

Proxamaty: 259

Proximity: 255 Ircrene fort s .
Prox l:,n‘_'t,y 255 Checreane fork uoe Ciles
Proximity: 255 Facans aslar pror
= ALy 205 Focus shall e

Graphing data is a powerful tool i el
that simplifies complex information.
It also makes it easier to identify
patterns and trends.

INTRODUCTION TO PROXIMITY SENSOR

B i Code

File Edit View Run Tools Help

+0 OB o

PROXIMITY_MODULE.py |

1 import board, time, busio
2 from adafruit_apds9960.apds9960 import APDS9960
3
4 i2c = busio.I2C(board.GP5, board.GP4)
5 apds = APDS9960(i2c)
6 apds.enable_proximity = True
7
8 while True:
9 proximity = apds.proximity
10 print("Proximity:", proximity)
11 time.sleep(0.1)
Shell
ELWALIILGY « FA -
Proximity: 138 300 Thonny: View > Plotter - *

Proximity: 73
Proximity: 43

Proximity: 17 200
Proximity: 8 ;

Proximity: 4 Y100 /
Proximity: 4 /
Proximity: 3 \J

] Proximity: « —

Click the Green Button o forun the code and Red Button D to stop.

—— What the Code Does </

APDS9960 Initialization

4 i2c = busio.I2C(board.GP5, board.GP4)
5 apds = APDS9960(i2c)
6 apds.enable_proximity = True

Line 4 - 5: Initializes the 12C communication bus for the APDS9940 sensor for the
user to interact with it. The configuration is similar to when using the gesture and

colour sensor.

Line 6: Enables the proximity feature of the APDS9940 sensor. It allows the sensor

to detect objects or the proximity of objects in front of it.

INTRODUCTION TO PROXIMITY SENSOR

Main Loop
8 while True:
9 proximity = apds.proximity
10 print(f"Proximity:{proximity}")

Line 9: Reads the proximity value from the APDS9960 sensor and assigns it to the
proximity variable. The proximity value represents how close an object is to the

sensor. The nearer the object, the greater the value.

Line 10: Prints the current proximity value along with the string "Proximity:" text to

the shell console, allowing you to monitor and see the proximity value as it changes.

When you place your
smartphone next to your
ear and the display turn
off automatically, that's

actually triggered by using
this similar sensor.

\l
* ~§\l} Proximity = O
\l
o —
% Proximity =1
\
‘_‘% Proximity = 125

\
—
ﬁ % Proximity = 255

MINI ACTIVITY

Let's turn this activity into an obstacle-detection beeping device! First, import simpleio

library so that we can initialize the buzzer's GP2] pin.

QUICK:
Tl\”S

while True:
proximity = apds.proximity
duration = 1 - proximity / 255
print(f"Proximity: {proximity}, duration: {duration} sec")
simpleio.tone(buzzer, 440, 0.1)

time.sleep(duration)

INTRODUCTION TO PROXIMITY SENSOR

**THE MORE YOU KNOW +!

APDS9960 - Proximity Sensor

The APDS9940 proximity sensor works by emitting and detecting infrared light to determine
the distance of an object or obstacle. The sensor includes an IR photodiode that is placed
adjacent to the IR LED.

Target
[»|

Reflected

—
. ~——~ IR Light
IR Light —_—
_—

& /7////r,

IR LED
@ Emitter

IR Photodiode

o IR LED (Emitter): Active IR sensors consist of an IR LED (Infrared Light Emitting Diode)
that emits infrared light (around 950 nanometers) when powered on.

¢ IR Photodiode (Receiver): The IR photodetector (usually known as a photodiode or a
phototransistor) is placed adjacent to the IR LED. It is sensitive to the same infrared light
that the IR LED emits. The intensity of the reflected infrared light is used to determine the
proximity of the object!

Target Target Take note that the IR
O sensor may not work
—_ — as exp.'ected under
_— — these circumstances.
P ——
= =
L
) 0@ 0
0] D]
Object has black Cbject too small.

or dark surface

PROLOGUE: AUTOMATED WASTE BIN Ill I

Ugh, this trash can is
always overflowing! lt's
such a pain to open the lid

and throw things away.

|l|‘}9.. ‘

’ _[374’:-.1.!‘0; vi

| know, right?
Sometimes it discourages
me to even use the

| read online about trash
can that can open it’s lid
just by using sensors.
What do you say we try
making one?

We can use the
EDU PICO's IR sensor to detect
our hands and makes the servo
motor rotate to open the lid.

Don't worry.
That | can

I'm in! But we might
need some help with the
mechanical stuff.

I I II PROLOGUE: AUTOMATED WASTE BIN

Well, it uses an
IR sensor to detect the
presence of an object.
We can program it to open
the lid when it detects an

I object nearby.

So, how the
EDU PICO"s IR
sensor work,
Anna? Its working!
~ | Thisis going to
be so handy!

lid open for 5
seconds before
closing.

In the near future, we
can add a sensor inside to check
if it's already full. That way, it
won't open if it's stuffed.

remember
that for
our next

= ~ upgrade.
-
That's a cool ideal
It'l stop spills and make

it work even better.

Automated Waste Bin
TrashBot Smart Bin

Time to build your very own TrashBot! Equipped with an IR sensor and a servo motor,
it detects the presence of your hand (or any object) and automatically opens its lid,
eliminating the need for physical contact. This makes using it more convenient and hygienic,

reducing the risk of germs spreading.

— = How Does This Activity Work? =’ —

® Libraries: board, time, busio, adafruit_ssd1306, adafruit_motor, pwmio,
adafruit_apds?960, font5x8.bin.

Proximity Sensor and OLED Configuration: SCL = GP5 and SDA = GP4.

@ Servo Motor Configuration: GP6 with orange wire connected to (S),

red to (+), and brown to (-), as shown in the illustration below.

@ Input: Place your hand (or any object) roughly 1 cm above the proximity

sensor to activate the servo motor.

® Output:
o If an object is detected by the proximity sensor, the servo motor will
rotate from 70 to 150 degrees, opening the lid of the trashbin.
e The OLED will print the status of the lid from "Status: Lid Close" to
"Status: Lid Open" once the sensor is triggered.

e The lid remains open for 5 second before closing.

Status: Lid Open a i

Please throw
the rubbish into the
bin.

Status: Lid Close | | After 5
Place hand above Second

proximity sensor
to open lid.

B i Code

b

1

VLoNGOUA_WN

35

37
38
39
40
41
42
43

AUTOMATED WASTE BIN

= o

PROJECT_AUTOMATED_WASTE_BIN.py

import board, time, busio, adafruit_ssd1306
from adafruit_apds9960.apds9960 import APDS9960
from adafruit_motor import servo

from pwm

i2c = bu
apds = A
apds.ena

io import PWMOut

sio.I2C(board.GP5, board.GP4)
PDS9960(i2c)
ble_proximity = True

oled = adafruit_ssd1306.SSD1306_I2C(128, 64, i2c)

PWM_Serv
servo =
servo.an

o = PWMOut(board.GP6, frequency=50)
servo.Servo(PWM_Servo, min_pulse=500, max_pulse=2500)

gle = 70

def show_lid_close():

oled
oled
oled
oled
oled
oled

def show
oled
oled
oled
oled
oled
oled

show_1lid

while Tr
prox

if p

.Fill(e)

.text("Status: Lid Close", 10,

.text("Place hand above", 10,
.text("proximity sensor", 10,
.text("to open lid.", 10, 50,
.show()

1lid_open():

.fill(o)

.text("Status: Lid Open", 10,
.text("Please throw", 10, 30,
.text("the rubbish into", 10,
.text("the bin.", 10, 50, 1)
.show()

close()

ue:
imity = apds.proximity

roximity > 20:
servo.angle = 150
show_1id_open()
time.sleep(5)

servo.angle = 70
show_1lid_close()

10, 1)
30, 1)
40, 1)
1)

10, 1)

40, 1)

’TER 5 AUTOMATED WASTE BIN

—— What the Code Does </>

Import Necessary Libraries

Libraries

1 import board, time, busio, adafruit_ssd1306

2 from adafruit_apds9960.apds9960 import APDS9960
3 from adafruit_motor import servo

4 from pwmio import PWMOut

Line 1: adafruit_ssd1306 is used for controlling the OLED display.
Line 2: adafruit_apds9960 is used for controlling the APDS9940 proximity sensor.

Line 3 - 4: adafruit_motor and pwmio are used for control of the servo motor.

tialize Hardware Components

Hardware Initialization

6 i2c = busio.I2C(board.GP5, board.GP4)
7 apds = APDS9960(i2c)
8 apds.enable_proximity = True

10 oled = adafruit_ssd1306.SSD1306_I2C(128, 64, i2c)

12 PWM_Servo = PWMOut(board.GP6, frequency=50)
13 servo = servo.Servo(PWM_Servo, min_pulse=500, max_pulse=2500)
14 servo.angle = 70

Line 6: Initialize 12C communication on GPIO pins GP5 and GP4.

Line 7 - 8: Create an instance of the APDS9960 proximity sensor and enable

proximity sensing.
Line 10: Initialize SSD1306 OLED display with a resolution of 128x64 pixels.

Line 12: Create a PWMOut instance for controlling a servo on GPIO pin GP6 with a
PWM frequency of 50 Hz.

Line 13: Create an instance (servo) using the servo.Servo class, specifying the
PWMOut instance and pulse width limits.

Line 14: Initialize the servo motor by rotating it to 70 degrees.

’TER 5 AUTOMATED WASTE BIN

Define a Custom Function

16 def show_lid_close():

17 oled.fill(®@)

18 oled.text("Status: Lid Close", 10, 10, 1)
19 oled.text("Place hand above", 10, 30, 1)
20 oled.text("proximity sensor", 10, 40, 1)
21 oled.text("to open 1lid.", 10, 50, 1)

22 oled.show()

23

24 def show_lid_open():

25 oled.fill(@)

26 oled.text("Status: Lid Open", 10, 10, 1)
27 oled.text("Please throw", 10, 30, 1)

28 oled.text("the rubbish into", 10, 40, 1)
29 oled.text("the bin.", 10, 50, 1)

30 oled.show()

show_lid_close() function is called to display information
when the lid is in the closed position. show_lid_open function

displays information when the lid is in the open position.

Enter a Continuous Loop

Main Loop
34 while True:
35 proximity = apds.proximity
36
37 if proximity > 20:
38 servo.angle = 150
39 show_1id_open()
40 time.sleep(5)
41
42 servo.angle = 70
43 show_1id_close()

Line 35: Read proximity data from the APDS9960 sensor using apds.proximity and

store it in the proximity variable.

Line 37: A proximity value greater than 20 indicates that an object is close to the

proximity sensor.

Line 38 - 43: When the proximity sensor detects an object, the servo motor will
rotate and remain at 150 degrees for 5§ second. After 5 second, the servo motor

returns to its original state at 70 degrees, closing the lid of the trash bin.

—— B. Box

’TER 5 AUTOMATED WASTE BIN

WHAT'S NEXT?

TRASHBOT ACCESSORY

Let's build our very own Trashbot! You will need these materials to accomplish this project.

Worry not, all the materials are already included in the EDU PICO set.

Step 1 Step 2 Step 3 Step y
i ; Servo
11 / motor
Bl i)
i : / Servo / <
4srmm Fold screw Qe

i Cable tie with

// servo horn
—>

Fold the Trashbot box accessory as shown below.

Step 1 Step 2

CHAPTER 5 AUTOMATED WASTE BIN

Fold the Trashbot's body.
Step 3: Step 4: Step s

Fold the Trashbot's head.

Step 6: Step 7: Step 8: Step 9:

L

Step 10:
Fold the top of the Trashbot downwards, and then it's complete!

LT

AUTOMATED WASTE BIN

Step 11: Step 12:
Attach the velcro's hook above the loop and attach Slide the cable through
the servo motor to the inner back of the Trashbot. the back of the box.

Step 13:
Connect Servo Motor Cable to EDU PICO board at GPe.

Step 14:
Test the Trashbot's servo motor's angle.

AUTOMATED WASTE BIN

CHALLENGE

Now that we've got the Trashbot running, why don't we introduce two more elements into the
project? The first element, let's light up the RGB LEDs in green when an obstacle is detected
and remain red when there are no obstacles. After that, the RGB LEDs starts a countdown to
indicate how much time is left before the lid of the bin closes.

The next element we will introduce is sound; let’s add a soothing buzz tone when the lid
returns to its closed state. The tone will indicate to the user that the Trashbot's work is done.

Ready? Let's give it a try!

Red LED Light Up

Continue to wait

obstacle
detected?

Yes l

Buzzevr Triggeved Servo Motor Close Lid
200HZ For 1 second 1

!

Buzzer Triggered
Green LED Light Up 8ooHz Fov 1 second
You will
Servo Motov Open Lid Red LED Light Up need to include
l T the codes
highlighted in

Turn each LED to Red in every second For 5 seconds red boxes.

[Hint: Use Fovr.. l\oop For s interations]

CHAPTER'6

Noise Pollution Monitoring System
Potentiometer & PDM Sound Sensor

6.1 Introduction to Potentiometer

6.2 Introduction to PDM Sound Sensor

®eCosd @

6.3 Project: Room Noise Monitoring System @@ o @@
- ®

® @P
L

Hello Makers! In this chapter, we will cover
both Potentiometer and the PDM Sound
Sensor. These may not sound as futuristic as
gesture sensors or OLED displays,

but they hold the power to bring your

projects to life in amazing ways.

Imagine being able to control the brightness
of an LED or the speed of a motor with
simple twist on the potentiometer, or by
reacting to the sound around you.

Well, that's exactly what the Potentiometer
and PDM Sound Sensor are here for!

So, grab your EDU PICO, and let's embark on

another exciting journey as we uncover the
potential of the potentiometer and PDM
Sound Sensor. Let’s go!

@

B Introduction to Potentiometer

In this lesson, you will learn to interpret analog signal voltage while manipulating
a variable resistor or a potentiometer (pot). This is also one of the more popular projects
created for beginners to learn how to control electrical output by using a simple analog

input device.

— = How Does This Activity Work? =’ —

@® Libraries: board, time, Analogin.

@® Potentiometer Configuration: GP28 with analog input.

® Input:
o Turning the potentiometer knob will alter the output flow of
electricity.
e Turning the knob clockwise will increase the voltage, and anti-
clockwise will reduce the voltage.
® Output:
o The code continuously reads the voltage from the analog pin GP28
(connected to the EDU PICO potentiometer) and prints the voltage
value to the shell console at an interval of 0.1 second.

AW WL Ah bkl

Clockwise Anti-clockwise

Shell = 5 Wi-Fi: off Shell = 2 Wi-Fi: off

G, 29990 U ULLatas
3. 29995 0. 0112793
3. 29985 0. 0112793
3. 29995 0.0

3. 29985 0. 0104736
3. 299595 0. 0104736

\ Voltage

Reading

INTRODUCTION TO POTENTIOMETER

B i Code

=0 OB

POTENTIOMETER_MODULE.py |

Remember
to assign the
potentiometer to
GP28 analog pin.

1 import time, board
2 from analogio import AnalogIn
8
4 potentio = AnalogIn(board.GP28)
5
6 while True:
7 voltage = (potentio.value * 3.3) / 65535
8 print(voltage)
9 time.sleep(0.1)
Shell X
e TPHLIT
3. 16218 =
2. 53361
1. 63907
1. 38766
1. 33851
1. 3377
13377

Click the Green Button o to run the code and Red Button O to stop.

What the Code Does </

Import Necessary Libraries

Libraries
1 import time, board
2 from analogio import AnalogIn

Line 2: analogio library enables interaction with analog pins, typically used for

reading analog output voltage values through components like the potentiometer.

itialize Hardware Components

4 potentio = AnalogIn(board.GP28)

Line 4: Create an Analogln instance named potentio and assign it to pin GP28. This

prepares the pin to read analog voltage.

INTRODUCTION TO POTENTIOMETER

Enter a Continuous Loop

6 while True:

7 voltage = (potentio.value * 3.3) / 65535
8 print(voltage)

9 time.sleep(0.1)

Line 7: Read the analog voltage from the potentiometer using potentio.value.
This value is an integer ranging from 0 to 65535 (216 - 1), which represents the
voltage level across the potentiometer. The raw analog value is then converted to
voltage by scaling it from the range [0, 65535] to [0, 3.3] volts.

Line 8: Print the calculated voltage to the shell console.

Line 9: Add a small delay of 0.1 second using time.sleep(0.1) to limit the rate of

voltage readings.

**THE MORE YOU KNOW +!

Potentiometer
Wiper A potentiometer, often referred to as a "pot," is a type
of variable resistor used to control electrical signals. It
Knob cONSists of a resistive element with a movable contact
called a wiper. If you have a 10kQ potentiometer,
Resistive) . .
Stri turning the knob allows you to adjust the resistance
r value between 0Q) to 10,000Q).
Less Resistance More Resistance Pot are commonly
e —— — used in audio devices
for volume & balance
control too!
Resistance
TKRIN UT K IN
¥ ouT K s "’0 X

\‘—é Indicate Current Flow

B Introduction to Sound Sensor

A PDM microphone, or Pulse-Densitiy Modulation microphone, is a type of microphone that
converts sound waves into a digital signal. Unlike our traditional microphones that use
analog signals, the digital signals produced by PDM microphones are more resistant to noisy
environments, making them ideal for applications such as smart home voice commands,

noise level monitoring, or even sound analysis.

— = How Does This Activity Work? =C —

@® Libraries: board, time, array, math, audiobusio.
@® PDM microphone configuration: Data (DAT) = GP2, Clock (CLK) = GP3.
® Output:

¢ The sensor will measure sound level in voltage (magnitude) and
convert it to sound level in decibels (dB).

o If the magnitude is greater than 0, the code prints the sound level
in decibels (dB) at the shell console with an interval of 0.1 second.

e If the magnitude is less than 0, the code prints "Magnitude is too

small to calculate dB." at the shell console.

Thonny: Vie /

Make sure
to place the Y g o ; - Ol
EDUPICOona £} _— [J cytron> W bams J
stable surface. —_ el R
& Any vibration or
I movement will
create a false
reading!

INTRODUCTION TO SOUND SENSOR

B i Code

File Edit View Run Tools Help

B

1 OB = o

PDM_SOUND_MODULE.py |

import board, time, array, math, audiobusio

mic

= audiobusio.PDMIn(board.GP3, board.GP2, sample_rate=16000, bit_depth=16)

samples = array.array('H', [0] * 6000)

def

1
2
3
4
5
6
7
8
9 def
10
11
12
13

log10(x):
return math.log(x) / math.log(10)

normalized_rms(values):

minbuf = sum(values) / len(values)

samples_sum = sum(float(sample - minbuf) * (sample - minbuf)for sample in values)
return math.sqrt(samples_sum / len(values))

14 while True:

Shell X |

Sound Level
Sound Level
Sound Level
Sound Level
Sound Level
Seumd Lewal
Sound Lewel
Sound Level
Soumd Level
Soumd Level
Sound Level
Sound Level
Seund Level
Seund Lewval

Sound Level (dB

mic.record(samples, len(samples))
magnitude = normalized_rms(samples)
if magnitude > ©@:
sound_level_dB = 20 * logl@(magnitude)
print(f"Sound Level (dB): {sound_level dB:.2f}")
else:
print("Magnitude is too small to calculate dB.")
time.sleep(0.1)

S o

@ 3321 Thonng: View > Plotter
(dB): 32,03

(dB): 32,66 &

(dB): 32,41

(dB): 33.27

(dB): 40.76

(dB): 3344

(dB): 3345 35

(dB): 32,23

(dB): 3288

(dB): 31,83

(dB): 3378

1% Sound Level (dB): »

Click the Green Button D to run the code and Red Button O to stop.

What the Code Does </>

Import Necessary Libraries

1 import board, time, array, math, audiobusio

math: Provides mathematical functions.

audiobusio: Provides audio input and output functionality.

Libraries

CHAPTER 6 INTRODUCTION TO SOUND SENSOR

Initialize Hardware Components

Initialize Microphone

3 mic = audiobusio.PDMIn(board.GP3, board.GP2, sample_rate=16000, bit_depth=16)
4 samples = array.array('H', [0] * 6000)

Line 3: Configures the microphone to use GPIO pins GP3 and GP2 for audio input
and sets the sample rate to 16,000 samples per second with bit depth set to 16 bits.

Line 4: An array named samples is created to collect and store 6,000 audio

samples per cycle.

Defining Custom Functions

Functions
6 def logl@(x):
7 return math.log(x) / math.log(10)
8
9 def normalized_rms(values):
10 minbuf = sum(values) / len(values)
11 samples_sum = sum(float(sample - minbuf) * (sample - minbuf)for sample in values)
12 return math.sqrt(samples_sum / len(values))

Line 6 - 7: Defines a function logl0(x) to calculate the base-10 logarithm of value x.

This is used to convert the sound magnitude to decibels.

Line 9 - 12: This function calculates the normalized root mean square (RMS)

of the audio samples. The variable values is an array of audio samples measured
from the PDM microphone. It calculates the RMS by subtracting the mean value
(minbuf) from each sample, squaring the result, and then taking the square root of

the average of the squared values.

What is sample rate? Think of it as how often you
take pictures. With a higher sample rate, you take
more pictures per second, like a fast camera. ——

INTRODUCTION TO SOUND SENSOR

Enter a Continuous Loop

Main Loop
14 while True:
15 mic.record(samples, len(samples))
16 magnitude = normalized_rms(samples)
17 if magnitude > 0:
18 sound_level _dB = 20 * logl@(magnitude)
19 print(f"Sound Level (dB): {sound_level_dB:.2f}")
20 else:
21 print("Magnitude is too small to calculate dB.")
22 time.sleep(0.1)

Line 15: Record audio samples from the microphone into the samples array using

mic.record.

Line 16: Calculate the magnitude of the audio signal using the normalized_rms

function.

Line 17 - 19: If the magnitude is greater than 0 (indicating that there is some sound),
calculate the sound level in decibels (dB) using the log10 function and print it to the

shell console.

Line 20 - 21: Else if the magnitude is less than or equal to 0, a message is printed

indicating that the magnitude is too small to be calculated.

—[**THE MORE YOU KNOW +; Sound Sensor ——

Sound is generated through the vibrations of objects, such as when a drum is struck.

These vibrations set the surrounding air molecules (the medium) into motion, resulting in the

formation of sound waves.

operation
of a sound
sensor is
similar to
that of our
ears.

Tf\ A /\\“'““
UV \

'/ Loud Sound

Sound sensors are now integrated into almost all of our daily devices.

For example, smartphones utilize voice recognition technology, enabling

users to interact with virtual assistants simply by speaking commands or queries.

PROLOGUE: NOISE POLLUTION MONITORING II I I

Please lower your e —
voice. We're in a § Back to order
library.

Sigh... these
kids just never listen.
If only there’s a way to
get them to be more
mindful of others.

We need to address this
noise issue. It's affecting
everyone.

| overheard the
librarian expressing
frustration about the
noise in the library.

Agreed. Let's find a
solution that works for
everyone.

I I II PROLOGUE: NOISE POLLUTION MONITORING

We can use the PDM
microphone in our EDU PICO
to sense the noise levels

e

—
What if we create something \|
to help Ms. Ara? Like a Noise
Monitoring System?

-

That sounds like a
great idea. But how
can we make one?

Alright, let's divide
and conquer. Adam,
you're on coding duty.

I'm setting up the
code to trigger the alert. Anna,
can you check if the LEDs light up

correctly? : .

It kinda works now.
Let's demonstrate it to
the librarian.

Let's test it.

Make some noise
near the PDM
microphone.

If the noise is above the
threshold, the LED turns red;
if it's quiet, it turns green.

PROLOGUE: NOISE POLLUTION MONITORING II I I

Hey Miss Ara, we've been
working on a Noise Monitoring
System to help keep the
library quiet. Mind if we do a

quick demo?

= =

L

Let's try to play
some music and see how
the system react.

Oh, that sounds 7
interesting. Go
ahead, give it a try..

It works!
The system detected
" the noise and gave a
little alert.

That's quite clever!
| can't wait for this to be
deployed in the library.

whisper
Hey, guys, we need to
keep it down. The library's
guardian is watching.

ng green light

Ilt's working like a charm!
Our library now has a silent
guardian.

And we can even adjust
the alert threshold to adapt to
different environments too.

B Noise Pollution Monitoring System

Noise pollution is a critical issue that often goes unnoticed in our ever-expanding urban
society, ultimately affecting our overall well-being and quality of life. Fortunately, we can
address this problem with the help of PDM microphone and EDU PICO. By learning how to
use these tools, we can effectively measure and analyze the noise levels in our environment.
Through this section, we will program a fully functional noise monitoring system that allows
users to input an acceptable noise limit. In no time, you'll be able to deploy your EDU PICO

for accurate noise measurement in your classroom or local library!

— = How Does This Activity Work? =T —

® Libraries: board, time, Analogln, neopixel, busio, array, audiobusio,
math, adafruit_ssd1306.

PDM Microphone Configuration: GP2 and GP3.
OLED I12C Configuration: SCL = GP5 and SDA = GP4.

Potentiometer Configuration: GP28 with analog input.

Input:
e Ambient noise (The louder the noise, the higher the decibel (dB)).

o Adjust potentiometer value to adjust noise threshold.

® Output:

e If noise received from the PDM microphone exceeds the threshold
value set by the potentiometer, the RGB LEDs will light up in red,
indicating the space is too noisy.

e If noise is below the threshold, RGB LEDs will light up in green,

indicating a safe noise level.

Adjust noise

Simulate threshold value

noise
by playing
audio from

your mobile o Sound ove a8

Threshold: 43.0 dB

phone or \ = 7 - i SOUND LEVEL LOW!
oo

NOISE POLLUTION MONITORING SYSTEM

B i Code
vl OB o

PROJECT_ROOM_NOISE_MONITORING.py

1 import board, time, neopixel, busio, array, math, audiobusio, adafruit_ssd13e6
from analogio import AnalogIn

i2c = busio.I2C(board.GP5, board.GP4)
oled = adafruit_ssd1306.5SSD1306_I2C(128, 64, i2c)
potentiometer = AnalogIn(board.GP28)

pixels = neopixel.NeoPixel(board.GP14, 5, brightness=0.2)
pixels.fill(0)

VWoOoNGOTUVTAWN

11 mic = audiobusio.PDMIn(board.GP3, board.GP2, sample_rate=16000, bit_depth=16)
12 samples = array.array('H', [0] * 6000)

14 sound_min = 30
15 sound_max = 80

16

17 def logle(x):

18 return math.log(x) / math.log(10)

19

20 def normalized_rms(values):

21 minbuf = sum(values) / len(values)

22 samples_sum = sum((sample - minbuf) ** 2 for sample in values)
23 return math.sqrt(samples_sum / len(values))

24

25 def calculate_sound_level_dB(samples):

26 magnitude = normalized_rms(samples)

27 sound_level_dB = 20 * logl@(magnitude)

28 return sound_level_dB

29

30 while True:

31 oled.fill(0)

32 mic.record(samples, len(samples))

33 sound_level_dB = calculate_sound_level_dB(samples)
34 pot_value = potentiometer.value / 65535 * (sound_max - sound_min) + sound_min
35

36 oled.text("Sound Level (dB):", 15, 5, 1)

37 oled.text(f"{sound_level dB:.2f} dB", 40, 20, 1)
38 oled.text(f"Threshold: {pot_value:.1f} dB", 10, 35, 1)
39

40 if sound_level_dB > pot_value:

41 pixels.fill((255, @, 9))

42 oled.text("SOUND LEVEL HIGH!", 15, 50, 1)

43 else:

44 pixels.fill((©, 255, 9))

45 oled.text("SOUND LEVEL LOW!", 20, 50, 1)

46 time.sleep(9.1)

47 oled.show()

Click the Green Button P, to run the code and Red Button O to stop.

CHAPTER 6 NOISE POLLUTION MONITORING SYSTEM

— What the Code Does </>

Import Necessary Libraries

Libraries

1 import board, time, neopixel, busio, array, math, audiobusio, adafruit_ssd13e6
2 from analogio import AnalogIn

Line 1: Imports various libraries and modules, such as board for pin definitions,
time for delays, neopixel for controlling RGB LEDs, busio for 1I2C communication,
array for creating arrays, math for mathematical operations, audiobusio for audio
input, and adafruit_ssdi306 for the SSD1306 OLED display.

Line 2: Imports Analogln from analogio module for reading analog input.

Initialize Hardware Components

Hardware Initialization

11 mic = audiobusio.PDMIn(board.GP3, board.GP2, sample_rate=16000, bit_depth=16)
12 samples = array.array('H', [0] * 6000)

13

14 sound_min
15 sound_max

30
80

Line 11-12: Initializes audio input using the PDM (Pulse-Density Modulation) method
from the microphone connected to pins GP3 and GP2. It sets the sample rate to
16,000 samples per second and a bit depth of 16. It also initializes an array variable

to store the audio samples.

Line 14 - 15: sound_min and sound_max determine the minimum and maximum

sound level thresholds (in decibels) that will be adjusted using the potentiometer.

CHAPTER 6 NOISE POLLUTION MONITORING SYSTEM

Define Custom Functions

Calculate Sound in Decibel (dB)
17 def logle(x):

18 return math.log(x) / math.log(19)

19

20 def normalized_rms(values):

21 minbuf = sum(values) / len(values)

22 samples_sum = sum((sample - minbuf) ** 2 for sample in values)
23 return math.sqrt(samples_sum / len(values))
24

25 def calculate_sound_level dB(samples):

26 magnitude = normalized_rms(samples)

27 sound_level dB = 20 * logl@(magnitude)

28 return sound_level dB

Line 17 - 18: This function calculates the base 10 logarithm of a given number x. In
many scientific and engineering applications, sound levels are expressed in decibels

(dB), and the logarithm base 10 is commonly used to calculate these levels.

Line 20 - 23: This function calculates the Root Mean Square (RMS) value of a set of

audio samples. The RMS value is used to quantify the magnitude of an audio signal.

Line 25 - 28: The calculate_sound_level_dB function calculates the sound level in
dB by first finding the RMS magnitude of the audio signal and then converting it to a
logarithmic scale with a scaling factor, making it @ common method for expressing

audio levels in a more human-readable form.

Enter a Continuous Loop

Record & Process Audio Sample

30 while True:

31 oled.fill(@)
32 mic.record(samples, len(samples))
33 sound_level dB = calculate_sound_level dB(samples)

Line 32: Records audio samples from the microphone using the miec.record method.
It captures a number of samples specified by len(samples) and stores them in the

samples array.

Line 33: Cadlls the calculate_sound_level_dB function to calculate and return the

sound level in decibels (dB) using the audio samples from the microphone.

CHAPTER 6 NOISE POLLUTION MONITORING SYSTEM

Reads Potentiometer Value & Setup OLED

34 pot_value = potentiometer.value / 65535 * (sound_max - sound_min) + sound_min
B85

36 oled.text("Sound Level (dB):", 15, 5, 1)

37 oled.text(f"{sound_level dB:.2f} dB", 40, 20, 1)

38 oled.text(f"Threshold: {pot_value:.1f} dB", 10, 35, 1)

Line 34: Reads the value of the potentiometer, maps it to a range between
sound_min and sound_max, and stores the result in the pot_value variable. This

value represents the threshold for determining whether the sound level is high or low.

Lines 36 - 38: Update the OLED display with text information. They display the
"Sound Level (dB)" label, the actual sound level in decibels (sound_level_dB), and

the threshold value set by the potentiometer (pot_value).

Sound Level Conditions

Check Sound Level

40 if sound_level_dB > pot_value:

41 pixels.fill((255, @, 9))

42 oled.text("SOUND LEVEL HIGH!", 15, 50, 1)
43 else:

a4 pixels.fill((@, 255, 9))

45 oled.text("SOUND LEVEL LOW!", 20, 50, 1)
46 time.sleep(0.1)

a7 oled.show()

Line 40 - 42: Here, the code checks whether the sound_level_dB is greater than
the pot_value. If it is, it fills the RGB LEDs with a red RGB value of (255, 0, 0) to
indicate a high sound level. It also displays "SOUND LEVEL HIGH!" on the OLED

screen.

Line 43 - 45: If the sound level is not greater than the threshold, it fills the RGB LEDs
with green RGB value of (0, 255, 0) to indicate a low sound level. It also displays
"SOUND LEVEL LOW!" on the OLED screen.

NOISE POLLUTION MONITORING SYSTEM

CHALLENGE - SERVO SOUND METER

Having an OLED to display noise decibels is great; however, in practical usage, the OLED
may be too small for everyone in the surroundings to notice. In this challenge, we will solve
this problem by integrating a servo motor as a noise indicator, reflecting the values

displayed on the OLED, but in a physical form with a larger view.

The code below should help get you started. Fill in the missing code with the appropriate

information based on the description given:

A: Include necessary libraries here to run a servo motor.

B: Initialize the servo motor pin and perform a servo test by sweeping the motor through its

range from 0 to 180 degrees.

C: Calculate the angle for the servo motor based on sound level in decibels (dB).

Check the angle to make sure it's within 0 to 180 degrees before rotating the servo motor.

import board, time, neopixel, busio, array, math, audiobusio, adafruit_ssd1306
from analogio import AnalogIn

I | A
i2c¢ = busio.I2C(board.GP5, board.GP4)

oled = adafruit_ssd1306.SSD1306_I2C(128, 64, i2c)
potentiometer = AnalogIn(board.GP28)

pixels = neopixel.NeoPixel(board.GP14, 5, brightness=0.2)
pixels.fill(0)

mic = audiobusio.PDMIn(board.GP3, board.GP2, sample_rate=16000, bit_depth=16)
samples = array.array('H', [0] * 6000)

. &/ Adjust sample size for better
sound_min = 30 accuracy & remove sudden spike.
sound_max = 80
| | B
while True:

oled.fill(0)

mic.record(samples, len(samples))

sound_level_dB = calculate_sound_level_dB(samples)

pot_value = potentiometer.value / 65535 * (sound_max - sound_min) + sound_min

oled.text(“Sound Level (dB):”, 15, 5, 1)
oled.text(f"{sound_level_dB:.2f} dB", 40, 20, 1)
oled.text(f"Threshold: {pot_value:.1f} dB", 10, 35, 1)

if sound_level_dB > pot_value:
pixels.fill((255, @, ©))
oled.text(“SOUND LEVEL HIGH!”, 15, 5@, 1)
else:
pixels.fill((@, 255, 0))
oled.text(“SOUND LEVEL LOW!”, 20, 508, 1)
time.sleep(0.1)
oled.show()

NOISE POLLUTION MONITORING SYSTEM

CHALLENGES

SERVO SOUND METER ACCESSORY

(o]
180 Servo B“;;Zm

Step 1:

Screw the servo meter

motor

pointer and servo horn to Hovn
the sevvo. Make sure the
servo horn can tuvrn 180 /

/ —~ 4

2N servo metev pointer
&

degrees as shown.

Step 2: Step 3:
Push through the middle to make Plug in the servo motor from the front
a hole on the card accessory. of the card.

Step 4: Step s
The assembled piece will Slot the card into the slit on the
\ook like this. EDU PICO's box.

Step e:
Connect Servo Motor Cable to EDU PICO board at GPe and now you've ready!

OAY3S

NOISE POLLUTION MONITORING SYSTEM

WHAT'S NEXT?

Once you're done with the program, here’s what you can do to make this project more
exciting. Take a walk with your EDU PICO with the noise monitoring program still running.
Try to identify the noise level in each location indicated below. Is the measured noise level
within the safe range as shown in the graph? If not, what action can be taken to reduce the
noise level in the area?

Common Sound Level Common
Outdoor Noises Indoor Noises

OD

(Decibels)

Threshold of Pain

RART&

Rock Band (At 15 Feet)

— 90 —}— Food Blender (At 3 Feet) o)

/ /

Jet Flyover (1,000 Feet)

Gas Lawn Mower (3 Feet)
Piesel Truck (so Feet)

Urban Daytime Garvbage Disposal (At 3 Feet)

Gas Lawn Mower (100 Feet) vacwum Cleaner (At 1o Feet)
Normal Speech (At 3 Feet)
Heary Tvaffic (300 Feet) —f—— 60 —f—

" : {o] Dishwasher (Next R)
Typical Urban Daytime = ! = e G
, Urban Nighttime 4o Library
Bedroom
Rural Nighttime (At Night)
whisper

Threshold OfF Hearing

Sound is perceived differently
by every individual.
The PDM microphone helps
to narrow that gap.

CHAPTER'7

Smart Classroom

on ;—:_f’f
y ."« DC Motor & Relay
7.1 Introduction to DC Motor
7.2 Introduction to Relay
7.3 Project: Smart Classroom
@ QO 7.4 Bonus: Wireless Network (AP-Mode)

Imagine having the power to move things at your
command. DC motors are here to do just that.

It is the main component that acts like muscles behind
Room co::o:l-ty tlpax

automated systems. They're responsible for making

things spin, rotate, and move!

Relay switches, on the other hand, act as the traffic o~ <= =
directors, allowing you to control high-power electrical

devices using a low-power signal from your EDU PICO.

By the end of this chapter, you'll have the knowledge
and skills needed to create an environment that
responds to your needs and preferences, ultimately
transforming an ordinary classroom into a smart

classroom.

I Introduction to DC Motor

In this lesson, we will finally get our hands on a DC motor. This particular invention serves as
the cornerstone of automation, converting electric energy into motion. lts a versatile
component that can power an array of mechanisms, from spinning wheels to robotic arms.

Consider it as a tool that can transform your ideas into reality. Let’s get this thing moving!

— = How Does This Activity Work? = —

® Libraries: board, time, busio, pwmio, adafruit_motor.

® DC Motor Configuration:
o PWM_MIA to GPIO, PANM_MIB to GPILI.
e Connect DC Motor to MIA & MIB terminals as shown below:

T erm\“a\

w epro

(]

Press the M1A & M1B buttons to test the
motor. If the motor is not spinning, make
sure the wire connection at the terminal
is secure and EDU PICO is powered on.

® Output:

e The DC motor speed will be printed on the shell console.

e It then continuously rotates at a different speed and direction
starting from reverse direction at 50% (-0.5) to 25% (-0.25), and to
a halt at 0%.

e Then it proceeds to forward direction of 25% (0.25) and 50% (0.5)
speed.

e Each speed will last for 2 second, then the cycle repeats.

25

RQVQYSE m m m

-

porward

DC motor speed
25 (seconds)

CHAPTER 7 INTRODUCTION TO DC MOTOR

B # Code
e OB HEEHOC O

DC_MOTOR_MODULE.py

import board, time
from pwmio import PWMOut
from adafruit_motor import motor

CONFIGURE De MOTOR WITH GP10 AND Py

PWM_M1A = PWMOut(board.GP10, frequency=10000)
PWM_M1B = PWMOut(board.GP11,frequency=10000)
motor = motor.DCMotor(PWM_M1A, PWM_M1B)

speed_mode = [-0.5, -0.25, 0, 0.25, 0.5, 0]

VWONOOULAWNERI

=
()

while True:
for speed in speed_mode:
print("Speed:", speed * 100)
motor.throttle = speed
time.sleep(2)

PR RR
AWNR

Click the Green Button o to run the code and Red Button D to stop.

—— What the Code Does </

Import Necessary Libraries

Libraries

1 import board, time
2 from pwmio import PWMOut
3 from adafruit_motor import motor

Line 2: pwmio module allows the control of pulse-width-modulation (PWM) output.

Line 3: adafruit_motor module provides motor control functionality.

7 INTRODUCTION TO DC MOTOR

itialize Hardware Components

Configure the DC Motor

PWM_M1A = PWMOut(board.GP10,frequency=10000)
PWM_M1B = PWMOut(board.GP11,frequency=10000)
motor = motor.DCMotor(PWM_M1A, PWM_M1B)

speed_mode = [-0.5, -0.25, 9, 0.25, 0.5, 0]

00N O WnN

Line 5 - 6: Initializes two PWM outputs to control the DC motor. PNM_MIA and
PWM_MIB, on GPIO and GPIl pins respectively. The frequency parameter is set to
10,000 Hz (10 kHz), which defines the frequency of the PWM signal.

Line 7: An instance of a DC motor is created using the motor.DCMotor class. This
instance is named motor and is configured to use the PWM_MIA and PWM_MIB
PWM outputs to control the motor.

Line 8: A list called speed_mode is created, which contains a set of speed values.
The values in this list range from -0.5 to 0.5 with a step size of 0.25. These values
represent different speed settings for the motor, ranging from 50% (-0.5) reverse
speed to 50% (0.5) forward speed.

Enter a Continuous Loop

Main Loop
10 while True:
11 for speed in speed_mode:
12 print("Speed:", speed * 100)
13 motor.throttle = speed
14 time.sleep(2)

Line 11: A for loop that iterates through the elements of the speed_mode array.

Line 12 - 14: Prints the current speed percentile to the console and sets the throttle
(speed) of the DC motor to the current speed level. For an example:

o st iteration: speed = -0.5 (Reverse 50% speed)

e 2nd iteration: speed = -0.25 (Reverse 25% speed)

e 3rd iteration: speed = 0 (Stop)
...and so on. After arriving at the final element in the array (speed = 0%), the for loop

will reiterate to speed = -0.5.

—— Fill In The Blank

INTRODUCTION TO DC MOTOR

MINI ACTIVITY

From the previous chapter, we have learned how to operate the potentiometer module on
the EDU PICO, now, it is time we make use of that knowledge in this mini-activity. Let's
program our EDU PICO to control the DC motor speed using the potentiometer. Sounds
simple right? Let’s give it a try!

import board, time

| | A
from pwmio import PWMOut

from adafruit_motor import motor

PWM_M1A = PWMOut(board.GP10,frequency=10000)
PWM_M1B = PWMOut(board.GP11,frequency=10000)
motor = motor.DCMotor(PWM_M1A, PWM_M1B)

while True: Cc
speed =| | / 65535

motor.throttle = speed
print("Speed:", speed)
time.sleep(0.1)

A: Include necessary libraries required to function the potentiometer.

B: Initialize the pin used for the potentiometer. Make sure to assign a suitable variable upon

reading the signal from the pin.

C: Call the variable value assigned from B into the following formula. Dividing the
potentiometer raw values by 65535 will provide you a value range of 0 to 1 which will then

be directly translated to the DC motor speed.

—— DC Motor

INTRODUCTION TO DC MOTOR

**THE MORE YOU KNOW +!

Electric vehicles (EVs) are becoming increasingly popular nowadays, but did you know that
the concept of an electric car with a DC motor isn't a recent innovation? The first functional

electric car was built in the early 19th century, and it was powered by a DC motor.

There are two DC motor terminals on the EDU PICO board, which means you can connect

two DC motors and control both at the same time!

CEEERSHSON

4 == -
&Py GPiz GPn &P

e (_rmoTor 2 JII(MOFOR T

[Enniat ey
LoG DATA To @| @I | l I i
PlCOBFLﬁﬂH (HERAN
maB MzA miB MiA €
=

If you haven't noticed, the EDU PICO has a
built=in motor test circuit that allows you
to check the connected DC motor in
forward or reverse direction. Give it a try!

Converting a DC motor into a vibrating haptic feedback device is one of the many popular
applications of a DC motor. Haptic feedback is a technology that enriches user experiences
by providing tactile sensations in response to digital interactions, for example, the micro-

vibration you get when typing on a smartphone.

To create a vibration from your DC motor,

V]
Ny

you must first attach the motor with an

CC Motor

&/

m{;

eccentric weight (which is required for
vibration). This is typically a small disc
or something as simple as an eraser,

easy enough that you can secure it to Eraser ;
the motor's shaft as shown on the right.

I Introduction to Relay

In this lesson, we will learn how to operate the USB relay on the EDU PICO, but more
importantly, to understand how a relay works. A relay is an electromechanical device that
acts as a switch controlled by an electrical signal. It allows a low-power circuit to control a
high-power circuit, making it an essential component in various electrical and electronic
applications. In this case, we will use the EDU PICO to control the ON / OFF of the relay,
which will control the ON / OFF of a USB LED light stick connected to the USB port!

— = How Does This Activity Work? =T —

@® Libraries: board, digitalio.

® USB Relay Configuration:
e Initialize relay to pin GP22 and set the pin direction to output.

® Output:

o The program will begin by prompting the user to input either 1 for
ON or 0 for OFF at the shell console to control the on and off of
the USB relay.

o If the input is 1, the USB relay will turn ON and you will notice the
relay LED indicator next to the USB port will light up, indicating the
relay is switched ON.

e If the input is 0, the USB relay will turn OFF.

e Connect the USB LED light stick to the USB relay to test out the USB

relay functionality.

User input: 1 /\ User input: O
Cutput: Relay CN Cutput: Relay CFF

Wh | Shell % Shell %
en areiay 1: ON, 0: OFF: 1 1: ON, 0: OFF: O
opens and Relay ON Relay OFF
closes, it LED Type This
generates a Indicator HLLLCLOOCD
noticeable —
clicking

sound.

DOHIC) || { ‘ <
CoTon 1) GF TP oo

mcL

OO0

Relay

TE INTRODUCTION TO RELAY

B i Code
*u OB ()

RELAY_MODULE.py |
import board, digitalio

relay = digitalio.DigitalInOut(board.GP22)
relay.direction = digitalio.Direction.OUTPUT

while True:
user_input = input("1: ON, ©: OFF \nYour choice: ")
state = int(user_input)

©O@VWOONOUIRA,WNER

1 if state == 0:

11 print("Relay OFF")

12 relay.value = False

13 elif state == 1:

14 print("Relay ON")

15 relay.value = True

16 else:

17 print("Invalid input. Please enter @ for OFF or 1 for ON.")

Shell

1: ON, 0: OFF I
Your cheoice: 1

Relay ON

1: oM, 0: OFF
Your cheoice: 0

Click the Green Button o to run the code and Red Button D to stop.

—— What the Code Does </

Enter a Continuous Loop

Main Loop
6 while True:
7 user_input = input("1l: ON, @: OFF \nYour choice: ")
8 state = int(user_input)

Line 7: Prompts the user to enter either 1 to turn ON or O to turn OFF the USB relay
using the input function at the shell console. "\nYour choice: " will wait for the user's
input in the next line. The input is then stored in the user_input variable as a string.

Line 8: Converts the user’s input info an integer using int(user_input) and stores the

result in a state variable.

INTRODUCTION TO RELAY

Process User Input - On / Off Relay

10 if state == 0:

11 print("Relay OFF")

12 relay.value = False

13 elif state ==

14 print("Relay ON")

15 relay.value = True

16 else:

17 print("Invalid input. Please enter @ for OFF or 1 for ON.")

Line 10 - 12: If the state is O, the "Relay OFF" text will be printed on the shell console
and the relay.value will be set to false, turning the relay off.

Line 13 - 15: If the state is 1, "Relay ON" will be printed on the shell console and the

relay.value will be set to true, turning the relay on.

Line 16 - 17: If the state is neither O nor 1, the script prints "Invalid input. Please enter
0 for OFF or 1 for ON."

—[**THE MORE YOU KNOW +; } Relay

A relay has two circuits in its body: the primary circuit and the secondary circuit.

The primary circuit mainly receives an external signal that controls the ON / OFF operation
of the relay; in this case, it's connected to EDU PICO GP22.

The secondary circuit is connected to the load or the output component; in this case, the
secondary side is connected to the USB port which is also connected to the LED stick.

When current flows through a relay's coll, it creates an electromagnetic field (like a magnet)
that attracts the movable contactor which will connect and complete the circuit on the

secondary side.

Moveable mMovasbie

Contactor

Light
OFF

Secondary

Raspbevrvy
PiPicow

Raspbervy
PiPicow

PROLOGUE: SMART CLASSROOM II I I

Can't believe
they always forget
to switch off the
fans and lights.

You know what
would be great? If
these fans and lights
could just switch off
automatically.

No one ever
turns off these lights
and fans!

Wait, like some
smart switch that
does it on its own?

Exactly, it could
That'd solve i be a game-changer
the forgetfulness problem for our energy
for surel! usage too!

I I II PROLOGUE: SMART CLASSROOM

Alright, let's write out
the idea first. We want
the lights and fans to turn on
and off automatically.

So, how can we
build something
like that?

To make the room
air better, we could set the fan to
go faster or slower depending on
how many people are there.

| think we can use
a gesture sensor on
EDU PICO to know
when someone's
in the room.

Sounds like a plan. Let's
get the project started!

Are you trying to
monitor it through your
phone's Wi-Fi?

Yup, I'm giving it a shot.
Since EDU PICO has a
dule.

PROLOGUE: SMART CLASSROOM II I I

How about we use
the OLED screen to show the
room's capacity, light, fan

status?

Great idea! | think it's
ready for a test run.
Let's give it a go.
Adam, could you walk
into the room?

Looks like it's nailing
it! Adam, how about
stepping out of the
room now?

Wow, it's working great!
Let's invite more friends to
see how it works.

Whoa, check this out!
Everything's turning on
by itself!

really works on
its own!

I I II PROLOGUE: SMART CLASSROOM

It's perfect! Our smart
classroom saves energy and
keeps the room cool too!

Nice one, team!
We've really made
our classroom
smarter and more
energy efficient!

[Caution: Never attempt to handle or modify AC power appliances on your own. Always ask

an adult or qualified professional for help to avoid the risk of electric shock or injury.]

Smart Classroom

In this project, we will learn to integrate APDS?960 gesture sensor to track students’
movement when entering and leaving the room. The goal is to create a smart classroom that
optimizes energy usage based on the number of occupants. To achieve that, we will
program the relay to turn on and off a USB LED light stick based on the presence of
students, as well as to program the DC motor fan to regulate the room'’s temperature

according to the number of occupants.

— = How Does This Activity Work? ={C —
@ Libraries: board, digitalio, busio, APDS9960, pwmio, adafruit_motor,
adafruit_ssd1306.
@® DC Motor Configuration: PAM_MIA to GPIO, PNM_MIB to GPII.
@® USB Relay Configuration: GP22.
® OLED and APDS9960 I12C Configuration: SCL = GP5 and SDA = GP4.
® Input:
¢ Swipe your hand from left to right above the gesture ™\
sensor to increase the number of students by 1.
e Swipe your hand from right to left to subtract the
number of students by 1.
® Output:
o Adjusts the fan speed based on the class

capacity. The fan speed will increase
by 20% for every one person entering
the room.

o If there is one or more people in the room, m
the relay will activate (ON), lighting up i
the LED light stick. If the room is empty, =

the relay will remain deactivated (OFF).

Swipe left to subtract

e ri oM ¢, : Fan Speed:
& swige right to add. \t:] P‘:”‘(=on%
o 2 pax = 40%

USB relay

5 pax = 100%
Cn/Cgf light status

SMART CLASSROOM

B i Code
T8 OB (m

PROJECT_SMART_CLASSROOM.py |

1

VWoOoNGOTUA,WN

PWWWWWWWWWWNNNNNNNNNNRRPRRRBRRRRRER
OVONAOAUDRWNROUOUOMNOAOAOUDNWNROWOONGOANTUDWNERO®

import board, digitalio, busio, adafruit_ssd1306
from pwmio import PWMOut

from adafruit_motor import motor

from adafruit_apds9960.apds9960 import APDS9960

i2c = busio.I2C(board.GP5, board.GP4)

apds = APDS9960(i2c)

PWM_M1A = PWMOut(board.GP10, frequency=10000)
PWM_M1B = PWMOut(board.GP11l, frequency=10000)
motor_instance = motor.DCMotor (PWM_M1A, PWM_M1B)
oled = adafruit_ssd1306.SSD1306_I2C(128, 64, i2c)
relay = digitalio.DigitalInOut(board.GP22)
relay.direction = digitalio.Direction.OUTPUT

apds.enable_gesture = True
apds.enable_proximity = True

class_num = ©
current_speed = 0.0

oled.invert(True)
oled.text("-----------cccc-un-- ", 5, 15, 1)
oled.text("-------------------- ", 5, 40, 1)

oled.text("ROOM CAPACITY: ", 5, 7, 1)
oled.text("Light:", 5, 50, 1)
oled.text("Fan:", 65, 50, 1)

oled.text("<< EXIT ENTER >>", 7, 27, 1)

def handle_gesture():
global class_num, current_speed

oled.fill rect(%0, 7, 35, 7, 0)
oled.fill rect(40, 50, 20, 7, 9)
oled.fill rect(90, 50, 35, 7, 9)
gesture = apds.gesture()

if gesture ==

class_num = max(@, class_num - 1)
elif gesture == 4:

class_num = min(5, class_num + 1)

CHAPTER 7 SMART CLASSROOM

42 current_speed = class_num * 9.2

43 motor_instance.throttle = current_speed

44 oled.text("{}%".format(current_speed * 100), 90, 50, 1)
45

46 relay.value = class_num > 0

47 oled.text("ON" if class_num > © else "OFF", 40, 50, 1)
48

49 class_status = f"{class_num} PAX" if class_num < 5 else "FULL"
50 oled.text(class_status, 90, 7, 1)

51 oled. show()

52

53 try:

54 while True:

55 handle_gesture()

56

57 finally:

58 oled.fill(1)

59 oled. show()

60 print("deinit I2C")

61 i2c.deinit()

Click the Green Button 0 to run the code and Red Button D to stop.

—— What the Code Does </

Import Necessary Libraries

Libraries

import board, digitalio, busio, adafruit_ssd13e6
from pwmio import PWMOut

from adafruit_motor import motor

from adafruit_apds9960.apds9960 import APDS9960

A WNPR

The code imports the required libraries and modules to enable the board, digital
input/output, I2C communication, OLED display, PAAM control, DC motor,
and the APDS9960 gesture sensor.

SMART CLASSROOM

Hardware Components

Initialize 12C, APDS9960 Sensor, PAM for Motor, OLED Display, and Relay

6 i2c = busio.I2C(board.GP5, board.GP4)

7 apds = APDS9960(i2c)

8 PWM_M1A = PWMOut(board.GP1@, frequency=10000)

9 PWM_M1B = PWMOut(board.GP11l, frequency=10000)
10 motor_instance = motor.DCMotor(PWM_M1A, PWM_M1B)
11 oled = adafruit_ssd1306.SSD1306_I2C(128, 64, i2c)
12 relay = digitalio.DigitalInOut(board.GP22)
13 relay.direction = digitalio.Direction.OUTPUT

These lines initialize the 12C interface, the APDS9960 sensor, PWM control for the DC
motor, OLED display, and the relay.

Line 6: Configure |12C communication to GP5 and GP4.

Line 7: Create an instance of the APDS9960 gesture sensor.

Line 8 - 10: PAWM outputs for controlling the DC motor.

Line 11: Configure the OLED display with the assigned 12C pins.

Line 12 - 13: Configure GP22 as digital output for controlling the relay.

Enable Gestures and Proximity on the APDS9960 Sensor

15 apds.enable_gesture = True
16 apds.enable_proximity = True
17

18 class_num = 0

19 current_speed = 0.0

Line 15 - 16: Enable gesture and proximity detection on the APDS9960 sensor.

Line 18 - 19: Initialize variables for class capacity and current fan speed.

Set Up the OLED Display

21 oled.invert(True)

22 oled.text("-------------------- ", 5, 15, 1)
23 oled.text("-------------------- ", 5, 40, 1)
24 oled.text("ROOM CAPACITY: ", 5, 7, 1)

25 oled.text("Light:", 5, 50, 1)

26 oled.text("Fan:", 65, 50, 1)

27 oled.text("<< EXIT ENTER >>", 7, 27, 1)

The OLED display is set up with an initial text, providing a
baseline for the user to navigate when reading information

relating to room capacity, light, and fan.

"HAPTER 7 SMART CLASSROOM

Define a Custom Function

handle_gesture Function

29 def handle_gesture():

30 global class_num, current_speed

31

32 oled.fill rect(%9, 7, 35, 7, 0)

33 oled.fill rect(40, 50, 20, 7, 0)

34 oled.fill rect(90, 50, 35, 7, 0)

35 gesture = apds.gesture()

36

37 if gesture ==

38 class_num = max(@, class_num - 1)
39 elif gesture == 4:

40 class_num = min(5, class_num + 1)

Line 30: Initializes class_num and current_speed as global variables which enable
their values to persist across different class to the handle_gesture function.
If local variables were used, their values would be re-initialized every time the

function is called.

Line 32 - 34: Clear specific areas on the OLED display where information will be

updated. It uses oled.fill_rect to clear rectangles at a specified area.

Line 35: Retrieves gesture value from the APDS9960 sensor where 3 represents a

left-to-right gesture, and 4 represents a right-to-left gesture.

Line 37 - 40: If gesture detected is equal to 3, the class_num variable will reduce
by 1 (but not below 0), and if gesture 4 is detected, it increases the class_num by 1
(but not above 5).

Adjust Fan Speed

42 current_speed = class_num * 0.2
43 motor_instance.throttle = current_speed
44 oled.text("{}%".format(current_speed * 100), 90, 50, 1)

Line 42 - 44: Adjust the fan speed current_speed based on the class capacity.
For each person entered, the fan speed will increase by 20% (class_num * 0.2).

The motor_instance.throttle property is used to set the fan speed.

The greater the number of people in the room, the faster the fan spins to ventilate

the room.

_HAPTER 7 SMART CLASSROOM

Display Information on OLED

46 relay.value = class_num > 0

47 oled.text("ON" if class_num > © else "OFF", 40, 50, 1)

48

49 class_status = f"{class_num} PAX" if class_num < 5 else "FULL"
50 oled.text(class_status, 90, 7, 1)

51 oled.show()

Line 46: Controls the state of the relay based on the value of class_num.
If class_num is greater than 0, relay.value will be set to true, turning the relay ON.

If class_num is O or less, relay.value will be set to false, turning the relay OFF.

Line 47: Updates the OLED display to show whether the relay is ON or OFF. It uses a
conditional (ternary) expression where if class_num is greater than 0, the text is set
to "ON"; otherwise, it is set to "OFF".

Line 49: Creates a string class_status that displays the current room capacity
status. If class_num is less than 5, the string shows the number of people in the

room. If class_num is 5 or more, the string displays "FULL".

Line 50 - 51: Updates the OLED display to show the room capacity status.

Enter a Continuous Loop

Main Loop, try...finally

53 try:

54 while True:

55 handle_gesture()
56

57 finally:

58 oled.fill(1)

59 oled. show()

60 print("deinit I2C")
61 i2c.deinit()

Line 53 - 55: The try block contains the main loop of the program. The while True

loop ensures that the handle_gesture function is continuously called.

Line 57 - 59: The finally block is used for cleanup operations which include resetting

the OLED screen to its original state.

Line 61: Deinitializes the |12C interface. [Note: This is important for releasing the

resources used by I12C before the program terminates.]

SMART CLASSROOM

WHAT'S NEXT?

HOUSE ACCESSORY - DC MOTOR FAN

Step 1:
Prepare the house accessory by opening it into a shape of o box.

Step 2:
Push the DC motor hole inwards and push the DC motor through the hole carvefully.

Step 3: Step 4:
Attach the DC motor Fan blade from Secure o cable tie around
the inside of the house. the DC motor.

*

cable tie A

SMART CLASSROOM

Step s:
Fold the bottom of the house with the fFollowing sequence.
This will hold the house in place.

|l

Step 6: Step 7:
Push the bigger vroof downwards so that Fold the other side of the vroof and
it keeps the voof closed by default. s\ot the sides down as shown.

Step 8:
Complete the project by connecting the DC Motor wires to the EDU PICO
terminal and position the house next to the LED light stick as shown.

I Bonus: Wireless Network (AP-Mode)

By the end of this guide, you'll be able to build your own WiFi AP network and enable EDU
PICO to communicate wirelessly with other devices. Let's start with the basics - an access
point, or "AP" serves as a central hub for wireless communication. It acts as a bridge
between the EDU PICO and other WiFi-enabled devices, like smartphones and laptops,
to enable data sharing.

This setup is incredibly helpful for various applications, including loT (Internet of Things)
projects and remote-control systems. This bonus section will guide you through the
configuration for your EDU PICO to work as an access point. This means that you can

connect to it, share data, and control it remotely, all over WiFi.

— = How Does This Activity Work? = —

® Libraries: board, digitalio, wifi, socketpool, adafruit_httpserver.

® USB Relay Configuration:
¢ Assign to GP22 and connect USB LED light stick to USB port.

— Connecting with Computer

® Output:

e The program starts the server and prints "Starting server..." followed by
"Listening on http://[IP_ADDRESS]" where [IP_ADDRESS] is the IP
address of the WiFi access point.

Shell =

2>

Starting server...
Listening on http://192.168.4.1

e You can access the control
interface by connecting to
the WiFi access point (AP)
(SSID: "EDUPICO_AP",
Password: "12345678") using
a device like a smartphone

or a computer.

e When you open a web browser with the server's IP address, you will see
a webpage with "Light On" and "Light Off" buttons.

WIRELESS NETWORK (AP-MODE)

@® Once you're on the webpage, clicking these buttons will send a signal
to the server, and the relay state will change accordingly. Messages like
"Light ON" and "Light OFF" will be printed on the shell console
when the buttons are clicked.

In this example,
the IP address is
192.168.4.1
Type this in your
browser.

Shedl %

33> %Run -c SED CONTEN Light
S'L'{Irtil'lg Server... .
Listening on http://152.168.4.1 ON
Light ON
Light OFF
Light ON
Light OFF WiFi Module Receive

‘Light ON’ Signal

USB Relay Light Control

| Light Onﬂg_ight Off |

— Connecting with Smartphone

@® To connect it to your smartphone, simply connect
the device to the same WiFi and key in the same IP T

address to your browser. USB Relay Light Control

' Use the same IP

address here to

control the EDU PICO
through your

smartphone device!

WIRELESS NETWORK (AP-MODE)

B i Code
=g OB o

BONUS_AP_RELAY.py |

1 import board, digitalio
import wifi, socketpool
from adafruit_httpserver import Server, Request, Response, POST

2
3
4
5 def setup_wifi_ap():

6 ap_ssid = "EDUPICO_AP"

7 ap_password = "12345678"

8 wifi.radio.start_ap(ssid=ap_ssid, password=ap_password)
9 pool = socketpool.SocketPool(wifi.radio)

10 return pool

11

12 def setup_relay():

13 relay = digitalio.DigitalInOut(board.GP22)
14 relay.direction = digitalio.Direction.OUTPUT
15 return relay

16

17 def light_on(relay):

18 print("Light ON")

19 relay.value = True

20

21 def light_off(relay):

22 print("Light OFF")

23 relay.value = False

24

25 def webpage():

26 html = """

27 <!DOCTYPE html>

28 <html>

29 <head>

30 <meta http-equiv="refresh" content="5">

31 <title>USB Relay Control</title>

32 </head>

33 <body>

34 <p>USB Relay Light Control</p>

35 <form accept-charset="utf-8" method="POST">
36 <button class="button" name="Light On"

37 value="1light_on" type="submit">Light On</button>
38 <button class="button" name="Light Off"

39 value="1light_off" type="submit">Light Off</button>
40 </form>

41 </body>

42 </html>

43 e

44 return html

CHAPTER 7 BONUS WIRELESS NETWORK (AP-MODE)

46 def setup_server(pool, relay):

a7 server = Server(pool, "/static")

48

49 @server.route("/")

50 def base(request: Request):

51 return Response(request, f"{webpage()}", content_type='text/html")
52

53 @server.route("/", POST)

54 def buttonpress(request: Request):

55 if request.method == POST:

56 raw_text = request.raw_request.decode("utf8")

57 if "light_on" in raw_text:

58 light_on(relay)

59 if "light_off" in raw_text:

60 light_off(relay)

61 return Response(request, f"{webpage()}", content_type="text/html")
62

63 print("Starting server...")

64 server.start(str(wifi.radio.ipv4_address_ap))

65 print("Listening on http://%s" % wifi.radio.ipv4_address_ap)
66 return server

67

68 pool = setup_wifi_ap()

69 relay = setup_relay()

70 server = setup_server(pool, relay)
71 while True:

72 server.poll()

Click the Green Button 0 to run the code and Red Button D to stop.

—— What the Code Does </>

Import Necessary Libraries

Libraries

1 import board, digitalio
2 import wifi, socketpool
3 from adafruit_httpserver import Server, Request, Response, POST

Line 2: Provides WiFi functionality and socket communication. A socket represents
one endpoint of a two-way communication link between two programs running on a

network.

Line 3: Libraries for setting up a simple HTTP server.

CHAPTER 7 BONUS WIRELESS NETWORK (AP-MODE)

Define Custom Functions

Set Up WiFi AP

5 def setup_wifi_ap():

6 ap_ssid = "EDUPICO_AP"

7 ap_password = "12345678"

8 wifi.radio.start_ap(ssid=ap_ssid, password=ap_password)
9 pool = socketpool.SocketPool(wifi.radio)

(2}

1 return pool

Line 5 - 10: This function configures the Raspberry Pi Pico W to act as a WiFi Access
Point (AP) with a specified SSID "EDUPICO_AP" and password "12345678".

[Note: If more than one EDU PICO is running as WiFi AP in the same area, it is

recommended to set up different SSIDs for each board.]

Initialize USB Relay
12 def setup_relay():

13 relay = digitalio.DigitalInOut(board.GP22)
14 relay.direction = digitalio.Direction.OUTPUT
15 return relay

16

17 def light_on(relay):

18 print("Light ON")

19 relay.value = True

20

21 def light_off(relay):

22 print("Light OFF")

23 relay.value = False

Line 12 - 15: Configure GP22 as digital output for controlling the relay. The relay is
used to control the ON and OFF of the USB light stick.

Line 17 - 23: These functions update the state of the relay and print a message to

the shell console.

WIRELESS NETWORK (AP-MODE)

Webpage HTML
25 def webpage():

26 html = """

27 <!DOCTYPE html>

28 <html>

29 <head>

30 <meta http-equiv="refresh" content="5">

31 <title>USB Relay Control</title>

32 </head>

33 <body>

34 <p>USB Relay Light Control</p>

35 <form accept-charset="utf-8" method="POST">

36 <button class="button" name="Light On"

37 value="1light _on" type="submit">Light On</button>
38 <button class="button" name="Light Off"

39 value="light_off" type="submit">Light Off</button>
40 </form>

41 </body>

42 </html>

43 e

44 return html

Line 25 - 44: This function defines the HTML webpage with a title, a paragraph of
text, and two buttons. The webpage automatically refreshes every 5 seconds.

When any button is clicked, the page will submit a POST request to the server with
the values clicked, the page will submit a POST request to the server with the values
light_on or light_off, respectively. This setup allows users to control the light
connected to the USB relay by interacting with the buttons on the webpage.

Setting Up the HTTP Server

46 def setup_server(pool, relay):

47 server = Server(pool, "/static")

48

49 @server.route("/")

50 def base(request: Request):

51 return Response(request, f"{webpage()}", content_type="'text/html")
52

53 @server.route("/", POST)

54 def buttonpress(request: Request):

55 if request.method == POST:

56 raw_text = request.raw_request.decode("utf8")

57 if "light_on" in raw_text:

58 light_on(relay)

59 if "light_off" in raw_text:

60 light_off(relay)

61 return Response(request, f"{webpage()}", content_type='text/html")
62

63 print("Starting server...")

64 server.start(str(wifi.radio.ipv4_address_ap))

65 print("Listening on http://%s" % wifi.radio.ipv4_address_ap)

66 return server

WIRELESS NETWORK (AP-MODE)

Line 46: Creates an instance of the Server class with the provided pool
(socket pool) and a static route ("/static"). The static route may be used for serving
static files like stylesheets or images.

Line 49 - 51: Generates an HTML response with the HTML content using the
webpage() function and sends it back to the client.

Line 53 - 61: The buttonpress function is called when a POST request is received. It
checks if the request contains data related to turning the light on or off and calls

the corresponding functions. It then returns an updated HTML response.

Line 64: This line starts the server, and it specifies the IPv4 address of the WiFi

connection. The server will listen for incoming requests from this address.

Enter a Continuous Loop

Main Loop

68 pool = setup_wifi_ap()

69 relay = setup_relay()

70 server = setup_server(pool, relay)
71 while True:

72 server.poll()

Line 68: Calls the setup_wifi_ap function to set up the WiFi Access Point (AP) while

configuring a specific SSID and password.

Line 69: Calls the setup_relay function to set up a digital output pin GP22 to
control the relay. The relay is used to control the ON / OFF of the USB light stick in

response to user interactions with the web interface.

Line 70: Calls the setup_server function to set up the HTTP server. It creates an
instance of the HTTPServer class, configures routes, and starts listening for incoming
HTTP requests.

Line 71-72: The main loop continuously polls the HTTP server for incoming requests. It

keeps the server running and responsive to client interactions.

CHAPTER'8

Climate Control Greenhouse
Light Sensor & Temperature Humidity Sensor

8.1 Introduction to Light Sensor
8.2 Introduction to to Temperature & Humidity Sensor

8.3 Project: Climate Control Greenhouse

8.4 Bonus: Introduction to the Internet of Things (loT)
8.5 Bonus: Introduction to Data Logging

In this chapter, we will embark on a journey to
explore two fascinating sensors - the APDS9960 light
sensor and the AHT20 temperature and humidity

sensor - as we work towards creating a climate-

controlled greenhouse using the EDU PICO.

Imagine having the power to monitor and adjust the
conditions within a greenhouse to create an ideal
environment for plants to thrive. With the APDS9960
and AHT20 sensors, we will create exactly that.
These sensors enable us to sense and react to two
critical factors that influence plant growth - light
and climate. We will control external factors such as
light, and airflow using RGB LEDs and DC motor fan.

Lastly, we are going to top it off with two bonus
activities on how you can establish a simple
dashboard through loT and logging data for analytic

purpose too!

B Introduction to Light Sensor

By now you have probably noticed the APDS?960 sensor on the EDU PICO offers several
advantages for your project. Here's one last feature we have yet to explore from this
powerful sensor, it is none other than the commonly used, light sensor. In this activity, we will
learn how to measure different levels of ambient light, allowing you to create projects that

respond to changes in lighting conditions!

— = How Does This Activity Work? =’ —

® Libraries: board, time, digitalio, adafruit_apds?960.
@® Light Sensor 12C Pins Configuration: SCL = GP5 and SDA = GP4.
® Input:

e Shine light to the light sensor to increase the brightness level.
e Block light from entering the light sensor to decrease the brightness

level.

@ Output: Print brightness percentile in shell console.

The simplest test you can perform is by simply -]
You can either shine

light on the sensor, or
light sensor. Use the serial plotter in Thonny to cast a shadow above

help better visualize the brightness data. the sensor!

casting various shadow intensities above the

INTRODUCTION TO LIGHT SENSOR

File Edit View Run Tools Help

+u 0 OB (m

LIGHT_SENSOR_MODULE.py |

import board, time, busio
from adafruit_apds9960.apds9960 import APDS9960

=

2

3

4 i2c = busio.I2C(board.GP5, board.GP4)
5 apds = APDS9960(i2c)

6 apds.enable_color = True

7 apds.color_gain = 2

8

9 while True:

10 r, g, b, c = apds.color_data

11 brightness_percentage = (c / 65535) * 100

12 print(f"Brightness: {brightness_percentage:.1f}%")
13 time.sleep(©.5)
Shell X

BELEHLEETE. G0 0w =

Erightness: 79, 100 X
Brightness: 90, 0% -

Brightnezz: 35. T4 7

Brightness: 35, T4 @0

Brightness: 31 4% ’)

Brightness: 35 1% 5 _
Brightness: 33, 9% 1, Thonny: View > Plotter Brightness: o%

Click the Green Button o forun the code and Red Button D to stop.

What the Code Does </>

e Hardware Components

6 apds.enable_color

= True
7 apds.color_gain = 2

Line 6 - 7: These lines enable colour sensing on the
APDS9960 sensor and set the color_gain to 2.

The colour gain affects the sensitivity of the colour sensors.

A higher gain value makes the sensor more sensitive to /
You can tune

the gain to

changes in colour or brightness.

adapt with
color_gain 0 | 1 1 2 | 3 different
Gain Multiplier 1x 4x 16x = 64x lighting

conditions.

INTRODUCTION TO LIGHT SENSOR

Enter a Continuous Loop

10 r, g, b, ¢ = apds.color_data
11 brightness_percentage = (¢ / 65535) * 100
12 print(f"Brightness: {brightness_percentage:.1f}%")

Line 10: Read the colour data from the APDS9940 sensor, which includes the red (r),
green (g), blue (b), and clear (c) values. The clear value represents the amount of

ambient light, which can be used to estimate brightness.

Line 11: This line calculates the brightness level as a percentage by dividing the clear
value (c) by the maximum possible clear value (65535) and then multiplying it by 100.

This conversion is used to represent the brightness in a human-readable form.

Line 12: Print the calculated brightness level to the console with one decimal point of

precision.

**THE MORE YOU KNOW +;

We have compiled a list of unique applications for light sensors that you might find intriguing!

Digital Camera:
« Digital cameras often have light sensors that automatically
adjust the appropriate exposure for a photo. These sensors
can quickly measure the ambient brightness and adjust the

camera settings to capture the best possible image.

Bill Validator:

» Vending machines, ticketing machines, and bill validators often employ light sensors to

detect the authenticity of banknotes by analyzing their optical properties and security
features.

Museum Display:
o Museums use light sensors to control the illumination of valuable artifacts to ensure the

light levels are carefully regulated to prevent damage to the exhibits.

Solar Panels:
e Solar panels use light sensors to track the sun's movement, ensuring that they are always
pointed at the sun to maximize energy generation. This process is called solar tracking.

B Introduction to Temperature &
Humidity Sensor (AHT20)

The AHT20 sensor is a powerful component that provides accurate measurements for both

humidity and temperature. Imagine having the ability to monitor and respond to changes in

your project's environment, whether its a home automation system, a weather station, or a

smart gardening project.

— = How Does This Activity Work? = —

Output:

e Print temperature in Celsius and relative humidity percentile in the
shell console.

o Enabling view > plotter in Thonny IDE will allow you to visualize the
temperature and humidity data in the same graph, making graph
analysis easier.

Libraries: board, time, digitalio, adafruit_ahtx0.

AHT20 I12C Pins Configuration: SCL = GP5 and SDA = GP4.

‘Ill Increasing

Temparaturss3d, 38
Temparaturss3d, 39
Tesparature=32, 37
Temperature=3i2, 49
Teaperature=32, 3
Teaperature=33, 2
Teaperature=33. 5
Teaperature=33, ;

T
2
2
4
Temporature=33, 92

C Humidity=685,
 Humidity=ib,
€ Humidity=65.
C Fmidity=6T.
€ Fumidity=T0.
C Humidity=T2.
C Humidity=73,
C Humidity=75,
C Humidity=76,
Teaperature=3d, 06 C Humidity=77,
Temparature=3d, 21 C Humidity=TE,
Temparatures3d, 28 C Humidity=T8,
Teaperaturesid, 39 C Humidity=g80,
Teaperatures3d, 46 C Humidity=g0,
Teaperature=34.5]1 C Fumidity=EBl.
Teaperature=34. 58 C Fumidity=Bl.
Teaperature=34. 6] C Fumidity=82,
Temporature=34. 60 C Humidity=B2,
Temperature=34, 69 C Humidity=82.
Temperature=34, 70 € Humidity=83.
Temperature=34, 74 € Humidity=83,
Temperature=34, 77 C Humidity=83,
Temperature=34, 77T € Humidity=B83,
Teaperature=34. 81 € Humidity=84.
Temperature=34. 8] C Fumidity=Ed.
Temperature=34. 82 € Fumidity=E4.

AHT20 Sensor

Temperature
and humidity
rise slowly
when finger is
in contact with
the AHT20
sensor.

The temperature drops when the sensor
is exposed to cool air. The level of
humidity is dependent on the amount
of moisture present in the air. Blowing
air from your mouth may result in a rise

in humidity and an increase in

temperature.

CHAPTER 8 INTRODUCTION TO TEMPERATURE AND HUMIDITY SENSOR

File Edit

View PRun

B i Code

Tools Help

#80 OB EEEC O

TEMP_HUMIDITY_MODULE py

while

©OUVWOoONOGOULAWNLER

=

AHT_sensor =

temperature =

True:

11 time.sleep(2)

Shell % |

import board, time, busio
import adafruit_ahtxe

i2c = busio.I2C(board.GP5, board.GP4)
adafruit_ahtx@.AHTx0(i2c)

AHT_sensor.temperature
humidity = AHT_sensor.relative_humidity
print(f"Temperature={temperature:.2f} C, Humidity={humidity:.2f} %")

Temperature=3].
Teaperature=31.
Teaperature=31.,
Temperature=3i,
Temparature=31.
Temparature=31.
Temperature=3l.
Temaperature=3l.
Temperature=31.
Teaperature=31.
Teaperature=31.
Temperature=di,
Temperature=31.
Temparature=31.
Temperature=3i.
Teaperature=3i.
Temperature=3i.
Teaperature=30.
Teaperature=310,
Temperature=3l,
Temperature=30,
Temperature=3i,

12 C Humidity=GE,
18 C Humidity=58,
24 C Humidity=59,
29 € Humidity=G0,
36 C Humidity=61,
39 C Humidity=52,
42 C Humidity=62,
46 C Humidity=63
49 C Humidity=563.
49 C Humidity=6d,
55 C Humidity=d,
47 C Humidity=53,
26 C Humidity=60,
05 C Humidity=58,
87 C Humidity=57,
73 C Humidity=56.
64 C Humidity=5d.
51 C Humidity=53,
44 C Humidity=52
36 C Humidity=6l,
29 C Humidity=50,
26 C Humidity=50,

aBEREARSRINERSRRYIHERER
BB UR R R R R R R

75 X

m///\

-

25

Thonny: View > Plotter
0 Temperature=» C Humadity=+ %

Click the Green Button 0 to run the code and Red Button D to stop.

—— What the Code Does </»

Import Necessary Libraries

1 import board, time, busio
2 import adafruit_ahtxo

Line 2: Provide support for the AHT20 temperature and humidity sensor.

CHAPTER 8 INTRODUCTION TO TEMPERATURE AND HUMIDITY SENSOR

Initialize Hardware Components

4 i2c = busio.I2C(board.GP5, board.GP4)
5 AHT_sensor = adafruit_ahtx@.AHTx0(i2c)

Line 5: Initializes I2C communication with the AHT20 sensor.

Enter a Continuous Loop

7 while True:

8 temperature = AHT_sensor.temperature

9 humidity = AHT_sensor.relative_humidity

10 print(f"Temperature={temperature:.2f} C, Humidity={humidity:.2f} %")
11 time.sleep(2)

Line 8: Reads the temperature data from the AHT sensor and stores it in the

temperature variable.

Line 9: Reads the relative humidity data from the AHT sensor and stores it in the

humidity variable.

Line 10: This line prints the temperature and humidity values in a formatted string.
The ":.2f" inside the f-string is used to format the floating-point numbers to two

decimal places.

Shell % |

Teaperature=31. 12 C Fumidaty=58. 04
Tomperature=31. 18 C Huwmidity=58. 96
Temperature=31. 24 C Humidity=59, 82
Temparatures3l. 20 C Humidity=§0, 5
Tesperature=31, 36 C Humidity=61.
Teaperature=31. 39 ¢ Humidity=62,
Temaperature=31. 42 C Fumidity=62.
Teaperature=31. 46 C Fumidity=63
Teaperature=31. 49 C Fumidity=G3.
Teaperature=31. 49 C Humidity=5d.
Tomperature=31. 56 C Humidity=Gd.
Temparature=31. 47 C Humidity=G3.
Temparature=s3l. 26 ¢ Humidity=E0,
Teaperature=31, 05 C Humidity=58, 05
Teaperature=30. 87 C Fumidity=57. 43
Teaperature=30. 73 C Fumidity=56.04 %
Teaperature=30. 64 C Mumidity=54

Teaperature=30.51 C Fumidity e
Teaperature=30. 44 C Funidity /ZSNpNian
Teaperature=30, 36 C Humida;
Temperature=30, 29 ¢ Humidy

L 2 2 k. k. b b 3 2 3 3 3 % 3
=

FEELERISY

25

Temparature=30, 256 C Humid

Ternperature=» C Humidity=» %

rinting both temperature and
humidity in the same line of code
will allow the plotter to plot both
values in the same graph.

INTRODUCTION TO TEMPERATURE AND HUMIDITY SENSOR

**THE MORE YOU KNOW +!

Understanding the environment is crucial in many electronic projects. The AHT20 sensor
allows you to gather real-time data on humidity and temperature, enabling you to make

informed decisions in your coding and design processes.

However, to achieve an accurate measurement, we must understand how the sensor module
consistently enables good ventilation to prevent the sensor from being affected by the heat
radiated from the components nearby.

Milled Slits on Printed Circuit Board (PCB)

The milled slits or white lines around the sensor decreases thermal conduction through the
printed circuit board (PCB). This is because the slits act as a thermal barrier, reducing the
amount of heat that can be conducted through the PCB.

The milled slits
around the
sensor decreases
the thermal
conduction
through the PCB,
which improves
the measurement
accuracy.

-

Printed Circuit
Board (PCB)

Milled slits

When the measurement frequency is too high, the temperature of the sensor module will
heat up, which may affect the measurement accuracy. To keep the temperature from rising,

it is recommended to include a 2 second interval for the data collection cycle.

2 second .
7 while True:

‘nterval 8 temperature = AHT_sensor.temperature

9 humidity = AHT_sensor.relative_humidity
10 print(f"Temperature={temperature:.2f} C, Humidity={humidity:.2f} %")
time.sleep(2)

PROLOGUE: CLIMATE CONTROL GREENHOUSE

Hey, Mr. Kim!
You look troubled.

What's on your mind?
Everything okay?

I'm leaving for an extended holiday
soon, and | can't shake this worry about
my plants here in the greenhouse.

Exactly, these plants need
attention, and | won't be around to
look after them. It's bothering me.

You're concerned about
leaving them without proper
care, right?

| hadn't

thought of
What if you that. How Count on us!
could monitor them can | do I'll make sure to give

you a heads up when

remotely?
it's ready, Mr. Kim.

PROLOGUE: CLIMATE CONTROL GREENHOUSE III I

Oh, that's a smart
greenhouse idea Mia's
working on.

Hey, Mia,
what's that you're
drawing?

Sounds complex.
How would all these
work together?

Yeah, we can
set up an loT system to

If it's bright around, the
LED stays off. But if it's dark,
the LED lights up in violet.

If it gets too hot, the
rooftop opens and the fan
turns on to cool it down.

of the spectrum that plants love.
It's beneficial for their growth and
helps them produce food through
photosynthesis.

Why violet light,

That's incredible! So, the
greenhouse will practically
take care of itself?

After setting up
the sensors and devices, we'll
connect them to the internet, so we
can monitor and control the
greenhouse remotely.

Yup! With this system, our
plants will thrive, even
when we're far away.

l III PROLOGUE: CLIMATE CONTROL GREENHOUSE

Awesome! That's
just what we need
for our setup.

I think it's
almost ready! Let's 7

check how it acts with glowing violet when
different lighting. A it's darker!
~ Anng, did you already

begin integrating the
sensors with EDU PICO?

Look, it's

See? We're

receiving live data
from the sensors
right here.

We can now

check and control the
devices in the greenhouse
using this webpage from

Yep, I've started
linking the sensors to

the loT platform. l

They set up the EDU'PIC'O, : Let's see if they're
connecting everything in I : sending the data to
the greenhouse. ' the website.
Should we
go get Mr. Kim to
demonstrate the

It's working!
They're sending
real-time data to
the website!

=)

functioning as
planned!

PROLOGUE: CLIMATE CONTROL GREENHOUSE III I

With this loT system,
you can control the entire
greenhouse remotely.

That's just the start,
Mr. Kim! Let me explain
how the system works.

Wow, I'm impressed
with all these sensors
and devices you've set

This is incredible! | won't have
to worry about my plants while
I'm away on my trip anymore.

T |

Ah, time to check on my
green pals. Let's see how
they're doing.

Perfect! They're
in good hands
even when I'm
not around.

Let's give them
some fresh air to
cool down a bit.

- L
Oh, it's getting
warmer in there.

B Climate Control Greenhouse

In this project, you will learn how to construct a control system that regulates the humidity
and temperature of a closed greenhouse environment. To achieve that, you are required to
integrate AHT20 temperature humidity sensor and APDS9960 light sensor as input devices;
RGB LEDs (for light), servo motor (for rooftop control), DC motor (for the fan), and OLED

screen for printing the greenhouse status.

— = How Does This Activity Work? =’ —

® Libraries: board, busio, time, adafruit_ssd1306, neopixel, PWAMOut
adafruit_ahtx0, , adafruit_motor, adafruit_ssd1306, adafruit_apds?960.

@ 12C Pins Configuration: SCL = GP5 and SDA = GP4.
e APDS9960 light sensor, AHT20 temperature humidity sensor, and
SSD1306 OLED share similar 12C pins configuration.

® Input:
¢ Shine a light on the APDS9960 light sensor to simulate surrounding
brightness in the greenhouse.
o Test the AHT20 temperature humidity sensor by placing your finger

on the sensor module. The temperature should rise gradually.

® Output:
e If the surroundings are bright, the RGB LEDs remain off; whereas if
the surroundings are dark, the RGB LEDs will light up in violet.
o If the surroundings are hot, the servo will activate to 60 degrees
(opening the rooftop), and the DC motor fan will activate to
ventilate the area to cool down the environment.

e The diagram below shows the components used in this project.

RGB LEDs Light

Derault RGB LEDs setting:)
> 100 lux - CFF RGB LECs
<101 lux - ON RGB LEDs |

m Rooftop Servo

120 degrees - Close Roof
60 degrees- Cpen Roof

Ventilation Fan
DCerault temperature setting:]

Temperak\{re
& Humidity

>= 27°C - ON Fan
< 27°C - OFF Fan

CLIMATE CONTROL GREENHOUSE

B i Code
8 OB o

PROJECT_CLIMATE_CONTROL_GREENHOUSE.py

OQOUVWOoONOTUVPA,WNER

1

import board, busio, time, adafruit_ssd1306, neopixel
import adafruit_ahtxe

from pwmio import PWMOut

from adafruit_motor import servo, motor

from adafruit_apds9960.apds9960 import APDS9960

from adafruit_apds9960 import colorutility

i2c = busio.I2C(board.GP5, board.GP4)

oled = adafruit_ssd1306.SSD1306_I2C(128, 64, i2c)
oled.invert(True)

aht20 = adafruit_ahtxe.AHTx@(i2c)

apds = APDS9960(i2c)

apds.enable_color = True

pixels = neopixel.NeoPixel(board.GP14, 5, brightness=0.2)

PWM_Servo = PWMOut(board.GP6, frequency=50)
servo = servo.Servo(PWM_Servo, min_pulse=500, max_pulse=2500)

PWM_M1A = PWMOut(board.GP10, frequency=10000)
PWM_M1B = PWMOut(board.GP11l, frequency=10000)
motor = motor.DCMotor(PWM_M1A, PWM_M1B)

def light_on():
pixels.fill([255, @, 255])
oled.text("Light Status: On", 5, 52, 1)

def light_off():
pixels.fill([9, @, ©])
oled.text("Light Status: Off", 5, 52, 1)

def servo_on():
servo.angle = 60
oled.text("Servo Status: On", 5, 15, 1)

def servo_off():
servo.angle = 120
oled.text("Servo Status: Off", 5, 15, 1)

CLIMATE CONTROL GREENHOUSE

40 def temp_control(temp_threshold):

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

temperature = aht20.temperature
oled.text("Temperature: {:.1f} C".format(temperature), 5, 3, 1)
if temperature >= temp_threshold:
servo_on()
motor.throttle = 0.25
oled.text("Fan Status: On", 5, 27, 1)
else:
servo_off()
motor.throttle = 0
oled.text("Fan Status: Off", 5, 27, 1)
def light_control(light_threshold):
while not apds.color_data_ready:
time.sleep(0.005)
r, g, b, ¢ = apds.color_data
light_lux = colorutility.calculate_lux(r, g, b)
if light_lux < light_threshold:
light_on()
else:
light_off()
oled.text("Light Lux: {:.1f} ".format(light_lux), 5, 39, 1)
try:
while True:
oled.fill(9)
temp_control(temp_threshold=27)
light_control(light_threshold=1600)
oled.show()
time.sleep(2)
finally:
oled.fill(1)
oled. show()
print("deinit I2C")
i2c.deinit()

CLIMATE CONTROL GREENHOUSE

—— What the Code Does </

Import Necessary Libraries

Libraries

import board, busio, time, adafruit_ssd1306, neopixel
import adafruit_ahtxe

from pwmio import PWMOut

from adafruit_motor import servo, motor

from adafruit_apds9960.apds9960 import APDS9960

from adafruit_apds9960 import colorutility

auhWNER

These lines import the necessary libraries and modules for working with various
hardware components which include the OLED display, temperature and humidity
sensor (AHT20), colour sensor (APDS9960), servo motor, DC motor, and RGB LEDs.

ialize Hardware Components

Hardware Initialization

8 i2c = busio.I2C(board.GP5, board.GP4)

9 oled = adafruit_ssd1306.SSD1306_I2C(128, 64, i2c)
10 oled.invert(True)

11 aht20 = adafruit_ahtx@.AHTx@(i2c)

12 apds = APDS9960(i2c)

13 apds.enable_color = True

15 pixels = neopixel.NeoPixel(board.GP14, 5, brightness=0.2)

17 PWM_Servo = PWMOut(board.GP6, frequency=50)
18 servo = servo.Servo(PWM_Servo, min_pulse=500, max_pulse=2500)

20 PWM_M1A = PWMOut(board.GP10, frequency=10000)
21 PWM_M1B = PWMOut(board.GP1l, frequency=10000)
22 motor = motor.DCMotor(PWM_M1A, PWM_M1B)

Line 8: Initializes I2C communication with GP5 for SCL and GP4 for SDA.

Line 9 - 13: Configure the OLED, temperature, humidity, and colour sensor using the
same 12C bus and pins. Line 10 inverts the OLED display, changing the background to
white and the text colour to black.

Note: When using 12C, each device has a unique address on the bus, allowing
multiple devices to communicate with the Raspberry Pi Pico W.

Line 15 - 22: Initializes RGB LEDs (GPI14), DC motor (MIA = GPIO, MIB = GPI1) and
servo motor (GPS).

CLIMATE CONTROL GREENHOUSE

Define Custom Functions

Configuring Functions for Controlling Light, and Servo
24 def light_on():

25 pixels.fill([255, @, 255])

26 oled.text("Light Status: On", 5, 52, 1)
27

28 def light_off():

29 pixels.fill([o, @, ©])

30 oled.text("Light Status: Off", 5, 52, 1)
31

32 def servo_on():

33 servo.angle = 60

34 oled.text("Servo Status: On", 5, 15, 1)
35

36 def servo_off():

37 servo.angle = 120

38 oled.text("Servo Status: Off", 5, 15, 1)

Line 24 - 30: light_on() fills the RGB LEDs with violet colour (preferable colour for
plants to perform photosynthesis), and light_off() to turn off the RGB LEDs while
updating the OLED display with the corresponding status messages.

Line 32 - 38: servo_on() function rotates the servo to 60 degrees, ideally to open
the rooftop of the greenhouse, whereas servo_off() will rotate the servo back to its

original state at 120 degrees, closing the greenhouse rooftop.

Temperature Control Function

40 def temp_control(temp_threshold):

41 temperature = aht20.temperature

42 oled.text("Temperature: {:.1f} C".format(temperature), 5, 3, 1)
43 if temperature >= temp_threshold:

44 servo_on()

45 motor.throttle = 0.25

46 oled.text("Fan Status: On", 5, 27, 1)

a7 else:

48 servo_off()

49 motor.throttle = 0

50 oled.text("Fan Status: Off", 5, 27, 1)

Line 40 - 42: The temp_control function monitors the temperature from the AHT20
sensor while displaying the data on the OLED screen.

Line 43 - 50: Activate the DC motor fan and servo motor when the temperature is

above the temp_threshold set. The temperature threshold value is set at line 66.

CLIMATE CONTROL GREENHOUSE

Light Control Function
52 def light_control(light_threshold):

53 while not apds.color_data_ready:

54 time.sleep(0.005)

55 r, g, b, ¢ = apds.color_data

56 light lux = colorutility.calculate_lux(r, g, b)

57 if light_lux < light_threshold:

58 light_on()

59 else:

60 light_off()

61 oled.text("Light Lux: {:.1f} ".format(light_lux), 5, 39, 1)

Line 53 - 54: This loop waits until colour data is ready
to be read from the APDS99640 sensor. It checks the

color_data_ready property of the sensor. The loop

Lux is a measure
of illuminance,
the total amount
of light that falls

on a surface.

pauses for 0.005 second in each iteration to avoid

unnecessary CPU load while waiting.

Line 55 - 56: Read the valuesr, g, b, and ¢ colour

data and calculate the illuminance in lux.

Line 57 - 60: Calls light_on() function when the calculated lux value is below a
preset threshold, and light_off() function if the lux value is above the threshold.

Line 61: This line updates the OLED display with the calculated light_lux value.
format(light_lux) allows "{:.1f}" to be replaced with the actual value of light_lux.

Enter a Continuous Loop

Main Loop
63 try: Adjust this temperature
64 while True: [‘ value to control the
65 oled.fill(®) output sensitivity.
66 temp_control(temp_threshold=27)
67 light_control(light_threshold=1600)
68 oled.show()
69 time.sleep(2)

Line 64 - 69: Continuously calls the temp_control function while passing a
temperature threshold of 27 degrees Celsius, the code then calls the light_control
function, passing a light threshold of 100 lux. These functions update the OLED
display with the latest data every 2 seconds and control the fan and servo motor

depending on the latest temperature and lux data measured.

CLIMATE CONTROL GREENHOUSE

Cleanup Operations

71 finally:

72 oled.fill(1)

73 oled.show()

74 print("deinit I2C")
75 i2c.deinit()

Line 71-75: The finally block ensures that cleanup operations are performed,
regardless of whether an exception occurred or not during the main program
execution. In this case, it clears the OLED display, prints a message, and deinitializes
the 12C bus. These operations are essential for maintaining the integrity of the

hardware and ensuring a clean exit of the program.

WHATS NEXT?
HOUSE ACCESSORY - SERVO ROOF

Step 1:

Locate the servo motor 9
attachment fFlaps and "_
Elip it outwards as shown. \

Step 2:
Attach the servo motor from inside out with
the cable 9oing through the box First.

Use the same sevvo
stick from Chaopter s.

CLIMATE CONTROL GREENHOUSE

Step u:

Step 3:
Give the back voof a gentle push downwards

Close the front side of the voof
back to it's original position.

and inwavrds to the box.

This step will strengthen the
spring effect on the plastic roof,
allowing it to maintain in a closed

position when not stressed.

Step s:

Connect the servo motor & DC motor
to the EDVU PICO boavrd.

OAdIS

Step 6
s \ \i
Test the servo motor horn position to open and Allows light from RGB LEDs
toenter the greenhouse

close the roof. Open roof = 60°, close roof = 120°.

PO STEM AHOD SOOI HTTY D

Final Placement

— Internet of Things (loT)

CLIMATE CONTROL GREENHOUSE

CHALLENGE

In this final chapter, we will test your programming skills, in both Python and HTML.
Set up the dashboard shown below. Your code should be able to enable Auto Mode and

Manual Mode, allowing users to take control of the system when needed.

Climate Control Greenhouse
Light: 7
Temperature: 25.81 °C
Humidity: 47.10%
Status: Disable Auto

Auto Mode
Fan On Fan Off Open Shade Close Shade Light On

Fan Speed

In the next page,
you will learn how to
connect your EDU
PICO to the internet.

o

The Internet of Things (loT) is made up of a vast network of physical devices, vehicles,
appliances, and other objects that are connected via sensors, software, and internet
connectivity. Imagine you have everyday things like your fridge or lights connected to the
internet where they can communicate and share information. It's like giving regular devices a

way to be smart and work together to make your life easier!

Connecting to
the internet
enables remote
control and
monitoring of
the greenhouse
from anywhere
in the world.

Ventilation Fan

Temgerature
Remote Management & Humidity

I Bonus: Introduction to
Internet of Things (loT)

loT stands for the Internet of Things. Imagine if everyday objects could connect to the
internet and communicate with each other. loT is all about linking things together via the
internet to make them smarter and more useful. In this activity, we will turn the EDU PICO

into an loT-enabled device by reading the Raspberry Pi Pico W onboard temperature and
controlling the EDU PICO's USB relay output through a webpage.

— = How Does This Activity Work? =’ —

@® Libraries: board, digitalio, wifi, socketpool, os, adafruit_httpserver,
microcontroller.

® USB Relay Configuration:
e Assign to GP22, and connect USB light stick to the USB port.

@® Create WiFi configuration file "settings.toml":

e Enable View > File name extensions to show the file extension.

-l = | CIRCUIMPY (E:)

= o X
r' rm & Earalrge icoms & Laige bons I] Rem check boxes =1
5 Medium icons S Smadl icons
Havigation T
pane *

3 = [#LEile mame exensions
_ Curent _\ Hide selected Opfions
i == Datails T W items itemi .
Paries Lagrsut Shawuhide

o Create a new Text Document in the CircuitPython drive and name
the Text Document as "settings.toml".

- CIRCUNTRY () w O
Vo 5
HName &p Sonby 5
Change .txt e = >
file extension edu_pace_ib Fe felder Right Gk
to .tom| * images Fite fatder ‘ =
boot_suttxt Y — Parte
e -
'Uﬂlbabmi IR e e peois 16 3| # Sheaoe

e Tert Document
07 Mecrosoht Excel Werksheet

Prepeies B WenR5 TP wckive

e Type the text below and replace "your_wifi_ssid" with your WiFi ID
and "your_wifi_password" with your WiFi password.
! settings.tom| - Notepad = u] X

File Edit Format View Help
CIRCUTTPY_WIFI_SSID = “your_wifi_ssid”

Change WiFi ID
TPY_WIFI P, == .
CIRCUITPY WIFI_PASSWORD = “your wifi_password «__~ & Password

e Save the file, you're all set!

[Note: If you want to use AP-Mode (Chapter 7 Bonus) on the Raspberry
Pi Pico W, make sure to delete the settings.toml file.]

INTRODUCTION TO INTERNET OF THINGS

@® Connect your PC to WiFi:
o Connect your PC to the same WiFi network as connected by the
Raspberry Pi Pico W.
e In this example, it's connected to "My_WIiFi_Network", which is also a
mobile WiFi hotspot.

® Output:

e The program begins by connecting to the WiFi with the SSID and
Password preset in the settings.toml file.

o Once the Raspberry Pi Pico W is connected to the WiFi, it will start
the server and print "Starting server..." followed by "Listening on
http://[IP_ADDRESS]" where [IP_ADDRESS] is the IP address of the
WiFi network.

Shell » @Wi-Fi: off | REPL | 8.2.7 %

Connecting to WiFi
Connected to WiFi

Starting server...

Listening on http://192.168.1.159
Light ON

Light OFF

o Type your IP address into your browser. The IP address is 192.168.1.159
as shown in the image below:

CPU-Temperature: 26.67 °C
USB Relay Light Control

[UGHTONPLJ UGHTOFF]

o Clicking these buttons will send a signal to either turn ON or OFF the
USB relay. Messages like "Light ON" and "Light OFF" will be printed

on the shell console when the buttons are clicked.

You can also
access the webpage
through your mobile
devices!

Shell - @@Wi-Fi: off | REPL | 8.2.7 %

Connecting to WiFi
Connected to WiFi
Starting server...
Listening on Lttp:;; g2
Light ON
Light OFF

INTRODUCTION TO INTERNET OF THINGS

B i Code
w0 OB (m]

BONUS_IOT.py

1 import board, digitalio
2 import wifi, socketpool, os, microcontroller
3 from adafruit_httpserver import Server, Request, Response, POST
4
5 def setup_wifi():
6 print("Connecting to WiFi")
7 wifi.radio.connect(os.getenv('CIRCUITPY_WIFI_SSID'),
os.getenv('CIRCUITPY_WIFI_PASSWORD'))
8 print("Connected to WiFi")
9 pool = socketpool.SocketPool(wifi.radio)
10 return pool
11
12 def setup_relay():
13 relay = digitalio.DigitalInOut(board.GP22)
14 relay.direction = digitalio.Direction.OUTPUT
15 return relay
16
17 def light_on(relay):
18 print("Light ON")
19 relay.value = True
20
21 def light_off(relay):
22 print("Light OFF")
23 relay.value = False
24
25 def pico_temp():
26 return microcontroller.cpu.temperature
27
28 def webpage():
29 Pico_Temp = pico_temp()
30 html = f"""
31 <!DOCTYPE html>
32 <html>
BS <head>
34 <meta http-equiv="refresh" content="5">
35 <title>USB Relay Control</title>
36 </head>
37 <body>
38 <p>CPU-Temperature: {Pico_Temp:.2f} ℃</p>
39 <p>USB Relay Light Control</p>
40 <form accept-charset="utf-8" method="POST">
41 <button class="button" name="Light On"
42 value="1light_on" type="submit">Light On</button>
43 <button class="button" name="Light Off"
44 value="1light_off" type="submit">Light Off</button>
45 </form>
46 </body>
47 </html>
48 e

49 return html

CH INTRODUCTION TO INTERNET OF THINGS

51 def setup_server(pool, relay):

52 server = Server(pool, "/static")

53

54 @server.route("/")

55 def base(request: HTTPRequest):

56 return Response(request, f"{webpage()}", content_type='text/html")
57

58 @server.route("/", POST)

59 def buttonpress(request: Request):

60 if request.method == POST:

61 raw_text = request.raw_request.decode("utf8")

62 if "light_on" in raw_text:

63 light_on(relay)

64 if "light_off" in raw_text:

65 light_off(relay)

66 return Response(request, f"{webpage()}", content_type="text/html")
67

68 print("Starting server...")

69 server.start(str(wifi.radio.ipv4_address))

70 print("Listening on http://%s" % wifi.radio.ipv4_address)
71 return server

72

73 pool = setup_wifi()

74 relay = setup_relay()

75 server = setup_server(pool, relay)
76 while True:

77 server.poll()

Click the Green Button o to run the code and Red Button D to stop.

What the Code Does </>

Import Necessary Libraries

Libraries

1 import board, digitalio
2 import wifi, socketpool, os, microcontroller
3 from adafruit_httpserver import Server, Request, Response, POST

Line 2: The microcontroller library provides access to Raspberry Pi Pico W on-board
features. In this case, it provides the temperature data from the microcontroller's
CPU. The OS library is used to retrieve the values of environment variables. In this
example, the program allows retrieval of the value from the 'CIRCUITPY_WIFI_SSID'
and 'CIRCUITPY_WIFI_PASSWORD' environment variables.

CHAPTER 8 BONUS INTRODUCTION TO INTERNET OF THINGS

Define Custom Functions

WiFi Setup and Connection
5 def setup_wifi():

6 print("Connecting to WiFi")

7 wifi.radio.connect(os.getenv('CIRCUITPY_WIFI_SSID'),
os.getenv('CIRCUITPY_WIFI_PASSWORD'))

8 print("Connected to WiFi")

9 pool = socketpool.SocketPool(wifi.radio)

10 return pool

Line 7: Connect the Raspberry Pi Pico W to a WiFi network using the SSID and
password specified in the settings.toml file.

Line 9: Creates and returns a socket pool for communication.

Initialize USB Relay & Pico Onboard Temperature Sensor

12 def setup_relay():

13 relay = digitalio.DigitalInOut(board.GP22)
14 relay.direction = digitalio.Direction.OUTPUT
15 return relay

16

17 def light_on(relay):

18 print("Light ON")

19 relay.value = True

20

21 def light_off(relay):

22 print("Light OFF")

23 relay.value = False

24

25 def pico_temp():

26 return microcontroller.cpu.temperature

Line 12 - 15: Initializes a digital pin GP22 for the relay and sets it as an output.

Line 17 - 19: Controls the ON / OFF of the USB light stick by setting the value of the
digital pin connected to the relay.

Line 25 - 26: Retrieve the Raspberry Pi Pico W's CPU temperature.

CHAPTER 8 BONUS INTRODUCTION TO INTERNET OF THINGS

Webpage HTML
28 def webpage():

29 Pico_Temp = pico_temp()

30 html = """

31 <!DOCTYPE html>

32 <html>

33 <head>

34 <meta http-equiv="refresh" content="5">

35 <title>USB Relay Control</title>

36 </head>

37 <body>

38 <p>CPU-Temperature: {Pico_Temp:.2f} ℃</p>
39 <p>USB Relay Light Control</p>

40 <form accept-charset="utf-8" method="POST">

41 <button class="button" name="Light On"

42 value="1light_on" type="submit">Light On</button>
43 <button class="button" name="Light Off"

44 value="1light_off" type="submit">Light Off</button>
45 </form>

46 </body>

47 </html>

48 o

49 return html

Line 28 - 49: This function generates an HTML webpage that displays the Raspberry
Pi Pico W's CPU temperature and ON / OFF buttons to control the USB relay.

Line 33 - 36

L L USB Relay Control
http://192.168.1.159

tine 38=—>CPU-Temperature: 32.76 °C

tine 33—=>UJSB Relay Light Control

| Light On || Light Off

Line 41 - 42 Line 43 - 44

CH INTRODUCTION TO INTERNET OF THINGS

Web Server Setup

51 def setup_server(pool, relay):

52 server = Server(pool, "/static")

58!

54 @server.route("/")

55 def base(request: Request):

56 retrurn Response(request, f"{webpage()}", content_type='text/html")
57

58 @server.route("/", POST)

59 def buttonpress(request: Request):

60 if request.method == POST:

61 raw_text = request.raw_request.decode("utf8")

62 if "light_on" in raw_text:

63 light_on(relay)

64 if "light_off" in raw_text:

65 light_off(relay)

66 return Response(request, f"{webpage()}", content_type="text/html")
67

68 print("Starting server...")

69 server.start(str(wifi.radio.ipv4_address))

70 print("Listening on http://%s" % wifi.radio.ipv4_address)

71 return server

Line 51 - 52: Creates an instance of the Server class with the provided pool
(socket pool) and a static route ("/static"). The static route may be used for serving

static files like stylesheets or images.

Line 54 - 56: Generates an HTML response with the HTML content using the
webpage() function and sends it back to the client.

Line 58 - 66: The buttonpress function is called when a POST request is received. It
checks if the request contains data related to turning the light on or off and calls

the corresponding functions. It then returns an updated HTML response.

Line 69: This line starts the server, and it specifies the IPv4 address of the WiFi
connection. The server will listen for incoming requests from this address.

Enter a Continuous Loop

Main Loop

73 pool = setup _wifi()

74 relay = setup_relay()

75 server = setup_server(pool, relay)
76 while True:

77 server.poll()

Line 73 - 75: Sets up the WiFi connection, relay, and HTTP server.

Line 76 - 77: Continuously polls the server to handle incoming requests. Keeping the

server running and responsive to client interactions.

I Bonus: Introduction to Data Logging

In this bonus, we will learn how to use CircuitPython to read the Raspberry Pi Pico W internal
temperature data and write it to a file on the CircuitPython drive. This will enable you to

create your own temperature data logger.

— = How Does This Activity Work? =’ —

® Libraries: boot.py, board, digitalio, time, microcontroller, os.

@® Data Logging Configuration File:
o Create a new Python script named boot.py and type in the code
provided.
e Save boot.py in the CircuitPython drive.
e Flip the 'LOG DATA TO PICO’S FLASH' switch to 'ENABLE'".
o NOTE: The CircuitPython drive will become non-writable when

data logging mode is enabled. This means you won't be able to
save, create a new file, or delete files in the CircuitPython drive.

¢ The boot_out.ixt file will appear in the CIRCUITPY drive, you will
see 'boot.py output:' inside the text file.

il boot_cut.tet - Hotepad = o =

File Edit Fomat View Help
Adafruit CircuitPython B.2.9-4.-g5c3361b75b-dirty on 2024.81-17; Cytron EDU PICO W with rp2848 »

Board ID:cytron_edu_pico_w
uID:
MAC:

oot py output)

INTRODUCTION TO DATA LOGGING

o Execute the BONUS_DATALOGGING.py code to start the data
logger. The Pico will record 1temperature data point every 1second.

@ Output: After resetting the EDU PICO, a file named temperature.csv
will appear in the CircuitPython drive.

=+ CIRCUMPY (E) v|@| | sesrchcl. A B
Mame Type -I | 24- 3 |
edu_pico_lib File folder . 1data point
£ images File felder 2 22.9 per second
T bootpy Pythen file
|| boot_out.brt Text Document 3 22.9
Th code.py Python file 4 22‘9
| fent5x8.bin BIM File
settings.toml Toml Source File 5 2219
B temperature.csv Microsoft Excel Camma Separated Values File 6 27.9

Cpen file with Excel

B i+ Code

First, you will need to remount the storage by saving the boot.py with the code shown

below. Save the code in the CircuitPython root directory drive.

—— boot.py

+u 0 OB o

boot.py

1 import board

2 import digitalio
3 import storage
4 o= * CIRCUIPY (E)
5 write_pin = digitalio.DigitalInOut(board.GP15) e B
6 write_pin.direction = digitalio.Direction.INPUT
7 write pin.pull = digitalio.Pull.UP - ;mmeJm
8 £ images
9 if not write_pin.value: 'ﬁhﬂmpy
10 storage.remount("/", readonly=False) ﬁ;zzzirﬂt
| fontScBbin

Save here settings.tom|

INTRODUCTION TO DATA LOGGING

— Main Code

BONUS_DATALOGGER.py .
1 import board, digitalio, time, microcontroller, os

N

led = digitalio.DigitalInOut(board.LED)
led.switch_to_output()

3
4
5
6 file_name = "temperature.csv"
7 max_file_size = 400000

8

9

with open(file_name, "a") as datalog:

10 while True:

11 file_size = os.stat(file_name)[6]

12 if file_size < max_file_size:

13 temp = microcontroller.cpu.temperature
14 datalog.write("{0:.1f}\n".format(temp))
15 datalog.flush()

16 led.value = not led.value

17 time.sleep(1)

18 else:

19 led.value = True

Click the Green Button o forun the code and Red Button D to stop.

—— What the Code Does </>

Configure File and LED Pin

3 led = digitalio.DigitalInOut(board.LED)
4 led.switch_to_output()

6 file_name = "temperature.csv"
7 max_file_size = 400000

Line 3 - 4: Initialize a digital output pin connected to the onboard LED of the
Raspberry Pi Pico W.

Line 6 - 7: Set up the file name for the temperature log ("temperature.csv") and

define the maximum file size in bytes (400kB).

[Note: The Raspberry Pi Pico W has a limited onboard storage, hence setting the
400kB limit will ensure the data logging doesn’t exceed 400kB.]

INTRODUCTION TO DATA LOGGING

Main Loop
9 with open(file_name, "a") as datalog:
10 while True:
11 file_size = os.stat(file_name)[6]
12 if file_size < max_file_size:
13 temp = microcontroller.cpu.temperature
14 datalog.write("{0:.1f}\n".format(temp))
15 datalog.flush()
16 led.value = not led.value
17 time.sleep(1)
18 else:
19 led.value = True

Line 9 - 10: Open the file in append mode and enter a loop for continuous logging.
Line 11 - 12: Check if the current file size is below the specified maximum size.

Line 13 - 15: If the file size is within the limit, it reads the CPU temperature, writes it
to the CSV file, and flushes the file to ensure data is written immediately.

Line 16: Toggles the state of the onboard LED, providing a visual indication that
data is being logged.

Blinks LED at a
1 second interval
when each data is

recorded.

Line 17: Introduces a 1second delay between temperature readings to control the

logging frequency.

Line 18 - 19: If the file size exceeds the limit, the LED is turned on continuously,
indicating that logging is temporarily disabled due to the file size limit being

reached.

J Guidebook Summary

Chapter 1: Programming with CircuitPython

In this chapter, we learn to:

[] install Thonny IDE.

(] program our first CircuitPython program using Thonny IDE.
[} download program to EDU PICO.

[] save, open, and edit Python .py files in EDU PICO.
[] import CircuitPython libraries.

Chapter 2: Water Drinking Reminder (Button and Buzzer)

In this chapter, we learn to:

[] use input buttons to interact with Thonny's console.
[use a piezo buzzer to produce sound.

[] create and use variables.

[] use while loop.

[] use a conditional if statement.

Chapter 3: Gesture Reaction Game (OLED and Gesture Sensor)

In this chapter, we learn to:

(] display text on the OLED display.
[] use gesture sensor as input.

(] program using If.. elif conditions.
(] setup dictionaries and for loops.

[] create and use functions.

Chapter 4: Colour Detection Game (RGB LEDs and Colour Sensor)

In this chapter, we learn to:
(] program EDU PICO to light up RGB LEDs in different colours.
(] read colour data with colour sensor.

(] setup lists to store multiple items.

Chapter 5: Automated Waste Bin (Servo Motor and Proximity Sensor)

In this chapter, we learn to:

[] control a servo motor using pulse width modulation (PWM).
[] read data with Thonny's plotter.

[] construct a Trashbot smart bin with card box accessories.

Chapter 6: Noise Pollution Monitoring System (Potentiometer and Sound Sensor)

In this chapter, we learn to:

(] program EDU PICO to read analog values from a potentiometer.
[[] measure noise in dB with the PDM sound sensor.

[] construct a physical noise level meter with a card accessory.

Chapter 7: Smart Classroom (DC Motor and Relay)

In this chapter, we learn to:

[] program EDU PICO to control a DC motor - spinning direction and speed control.
[] turn ON and OFF a USB switch relay.

[] program EDU PICO’s Raspberry Pi Pico W into a WiFi access point for loT applications.

Chapter 8: Climate Control Greenhouse (Light and Humidity Temperature Sensor)

In this chapter, we learn to:
(] program light sensor to measure ambient brightness.
(] program AHT20 sensor for humidity and temperature measurement.

[] perform basic data logging on Raspberry Pi Pico W local storage.

*Tick the check box if you've completed the learning outcome; otherwise return to the chapter to revise.

CONGRATULATIONS!

As you reach the end of this guidebook, the EDU PICO team would like to
extend our warmest congratulations to you. The journey you've undertaken is not
just about reaching the final chapter but about the skills you've acquired, the

challenges you've conquered, and the projects you're now able to create.

May this achievement be a stepping stone to a world filled with endless
possibilities. As you continue to pursue your passion for learning, experimenting,
and innovating, remember that the journey doesn't end here—it evolves into new

opportunities and discoveries.

Once again, congratulations on completing this chapter of your educational

journey and we can’t wait to see what you will be building with the EDU PICO!

Best Wishes,
Adam the astronaut & EDU PICO team

Check out the
vesource hub

FOv move Fun
projects! ‘

Update U‘W
on youy

https://edupico-hub.cytron.io/

+

