

Author’s Note

It is with great excitement to introduce this book, "Explore STEM and Coding with EDU PICO."

This comprehensive guide is designed to accompany the EDU PICO, a product powered by

the Raspberry Pi Pico W, and brought to you by Cytron Technologies.

A special acknowledgement goes to SC Lim, our Project Manager, for steering the ship and

ensuring the successful development of both the EDU PICO kit and this accompanying guide.

Salam, the Designer of EDU PICO, for lending his expertise in shaping the technical

foundations of EDU PICO, making it a powerful tool for STEM education. Suhana, our

Illustrator, for adding a creative touch to this book. Her artistic skills turned complicated ideas

into easy-to-understand visuals, making the learning experience more enjoyable.

I sincerely thank the diligent reviewers—Hairil, Cheryl, Anna, Alhamed, Poomipat, Iffah, and ET

Tan—for their meticulous assessments and valuable feedback. A heartfelt shoutout to our

Trainees—Justin, Hao Khee, Anas, and Azeem—for their dedicated assistance. Their collective

contributions have played an instrumental role in fine-tuning and enhancing the content of

this book.

I want to express my deepest thanks to the entire team for their collaborative efforts,

including everyone at Cytron Technologies, whose commitment to educational excellence has

made this project possible.

Finally, this book is dedicated to the students and educators, who will embark on this learning

journey. May EDU PICO be a gateway to discovering the wonders of programming and

electronics, sparking a lifelong passion for learning.

I look forward to seeing the awesome projects you'll create with the knowledge you gain from

these pages and EDU PICO!

Happy Learning!

Adrian Teo

Explore STEM and Coding
with EDU PICO

Project & Innovation Kit

Published by

Second Printing, March 2024

Copyright © 2024 Cytron Technologies

All rights reserved. No part of this book may be reproduced or distributed in any manner

without the prior written permission of the copyright owner.

The content of this publication has not been approved by the United Nations and does not

reflect the views of the United Nations or its officials or Member States. For more information

about the United Nations Sustainable Development Goals, visit here:

https://www.un.org/sustainabledevelopment/

To request permissions, contact the publisher at support@cytron.io.

Published by:

Cytron Technologies Sdn. Bhd.
1, Lorong Industri Impian 1,
Taman Industri Impian,
14000 Bukit Mertajam,
Penang, Malaysia.

Tel: +604-5480668
Fax: +604-5480669

www.cytron.io

Printed in Malaysia.

Declaration

The Author and Publisher have made every effort to ensure the accuracy of the information

in this book. However, they do not assume any liability and hereby disclaim responsibility for

any loss or damage resulting from errors or omissions in this book, whether arising from

negligence, accident, or any other cause.

https://www.un.org/sustainabledevelopment/

Hello EDU PICO

Chapter 1: Programming with CircuitPython
Text-based Coding with Thonny and CircuitPython.

Chapter 2: Water Drinking Reminder
Buttons and Buzzer.

Chapter 3: Gesture Reaction Game
OLED and Gesture Sensor.

Chapter 4: Colour Detection Game
RGB LEDs and Colour Sensor.

Chapter 5: Automated Waste Bin
Servo Motor and Proximity Sensor.

Chapter 6: Noise Pollution Monitoring
PDM Sound Sensor and Potentiometer.

Chapter 7: Smart Classroom
USB Relay and DC Motor.

Chapter 8: Climate Control Greenhouse
Light Sensor and Temperature Humidity Sensor.

Contents

Chapter 1: Programming with CircuitPython

In this chapter, we learn to:

install Thonny IDE.

program our first CircuitPython program using Thonny IDE.

download program to EDU PICO.

save, open, and edit Python .py files in EDU PICO.

Activities: CircuitPython syntax - Indentation, variables, data types, casting, comments,

operators, if.. else (conditions), for loops, while loops, functions, and string format.

Chapter 2: Water Drinking Reminder (Button and Buzzer)

In this chapter, we learn to:

use input buttons to interact with Thonny’s console.

use a piezo buzzer to produce sound.

create and use variables.

use while loop.

use a conditional if statement.

Introduction: Button and Buzzer.

Activities: Build a water drinking reminder (Hydration Companion).

Challenge: Program drinking reminder to accept user input for the duration.

Discover the EDU PICO, an all-in-one Raspberry Pi Pico W learning kit, specially designed for

beginners to venture into text-based Python programming. Unfolding across 8 chapters,

7 projects, and over 10 stimulating challenges, this kit delivers an enriching learning journey.

Design thinking is instilled through comic-style narratives that ingeniously link each project to

sustainable development goals. Let's embark on a journey where programming proficiency

merges with creative problem-solving and innovation!

Chapter Summary

6

Chapter 4: Colour Detection Game (RGB LEDs and Colour Sensor)

In this chapter, we learn to:

program EDU PICO to light up RGB LEDs in different colours.

read colour data with colour sensor.

setup lists to store multiple items.

Introduction: RGB LEDs and Colour Sensor.

Activities: Build a colour detection game (Colour Blindness Tester).

Challenge 1: Program EDU PICO to avoid repeating 2 similar colour during gameplay.

Challenge 2: Program a colour hint indicator by lighting up a single RGB LEDs.

Chapter 5: Automated Waste Bin (Servo Motor and Proximity Sensor)

In this chapter, we learn to:

control a servo motor using pulse width modulation (PWM).

read data with Thonny’s plotter.

construct a Trashbot smart bin with card box accessories.

Introduction: Servo Motor and Proximity Sensor.

Activities: Build an Automated Waste Bin (Trashbot Smart Bin).

Challenge: Upgrade Trashbot to include light and sound, making it more interactive.

Chapter 3: Gesture Reaction Game (OLED and Gesture Sensor)

In this chapter, we learn to:

display text on the OLED display.

use gesture sensor as input.

program using If.. elif conditions.

setup dictionaries and for loops.

create and use functions.

Introduction: OLED and Gesture Sensor.

Activities: Build a hearing gesture reaction game with a gesture sensor and buzzer

(Do-Re-Mi-Fa Arcade).

Challenge 1: Improve game test tone by displaying notes on OLED.

Challenge 2: Program a hearing-gesture directory for better gaming experience.

7

Chapter 8: Climate Control Greenhouse (Light and Humidity Temperature Sensor)

In this chapter, we learn to:

program light sensor to measure ambient brightness.

program AHT20 sensor for humidity and temperature measurement.

perform basic data logging on Raspberry Pi Pico W local storage.

Introduction: Light Sensor, Humidity and Temperature Sensor, and Data Logging.

Activities: Build a climate control greenhouse while integrating temperature and humidity

sensor, light sensor, DC and servo motor, RGB LEDs, and OLED.

Bonus 1: Introduction to the Internet of Things (IoT), learn to connect the Raspberry Pi Pico W

to a router’s WiFi and control the ON/OFF switch of the USB Relay.

Bonus 2: Introduction to Data Logging, record Raspberry Pi Pico W CPU’s temperature data

into the Pico’s onboard storage.

Chapter 7: Smart Classroom (DC Motor and Relay)

In this chapter, we learn to:

program EDU PICO to control a DC motor - spinning direction and speed control.

turn ON and OFF a USB switch relay.

program EDU PICO’s Raspberry Pi Pico W into a WiFi access point for IoT applications.

Introduction: DC Motor and USB Relay.

Activities: Build a smart classroom integrated with a gesture sensor, USB relay, DC motor,

and OLED.

Bonus: Control the USB relay through a webpage using the Raspberry Pi Pico W acting as a

WiFi Access Point (AP).

Chapter 6: Noise Pollution Monitoring System (Potentiometer and Sound Sensor)

In this chapter, we learn to:

program EDU PICO to read analog values from a potentiometer.

measure noise in dB with the PDM sound sensor.

construct a physical noise level meter with a card accessory.

Introduction: Potentiometer and PDM Sound Sensor.

Activities: Build a noise pollution monitoring system (Room Environment Noise Indicator).

Challenge: Program a servo motor to serve as a sound level meter.

8

Preparing your EDU PICO

HELLO EDU PICO

Attach EDU PICO above

the box with the velcros.Velcro Loops
(Furry side)

Velcro Hooks

Write your
name here Adam

9

Every Chapter shares a common flow to help you
fully experience learning with the EDU PICO.

Remember, this is an exploratory guide,
so don’t rush, take your time and enjoy the process!

Adam the
astronaut

HEYA!
Good to meet you!

 I'm Adam and I'll be your
trusty guide on this

exploration.

How To Use This Guidebook?

Learning Flow

How Does This Activity Work?

All programs and content discussed in this guidebook are available for download on the

EDU PICO resource hub website here: https://edupico-hub.cytron.io.

10

1.1 Start Here - Thonny IDE

1.2 Introduction to CircuitPython

1.3 Hello EDU PICO

1.4 CircuitPython Syntax

Indentation

Variables

Data Types

Casting

Comments

Operators

If.. Else (Conditions)

For Loops

While Loops

Functions

String Format

Programming with CircuitPython

Raspberry Pi Pico W Microcontroller1.

EDU PICO Board2.

Micro B USB cable3.

Computer (Laptop / Desktop)4.

Start Here - Thonny IDE

Step 2: Flip the ON/OFF switch (downwards) to turn it ON.

4

You will
need these four

main components
to complete the

whole book.

3

2

Step 1: Connect the EDU PICO to your computer.

1

EDU PICO is an all-in-one learning tool that allows you to practice electronics and

CircuitPython programming using the Raspberry Pi Pico W microcontroller. It's a special

board with all pre-connected sensors to help you learn more seamlessly. This means that you

can start experimenting and building projects immediately without knowing a lot about

electronics.

PWR LED Lights Up

What You Need to Start?

CHAPTER 1 THONNY IDE

12

Step 3: Download and install Thonny IDE on your computer.

Step 5: Select OK, and restart Thonny to

make sure the style elements take effect.

Now you’re all set for your first program!

Step 4: Let’s configure Thonny IDE’s theme and font so that it matches the theme of the

guidebook. This will make sure you can go through the guidebook smoothly later.

Select Tools > Options > Theme & Font as shown in the figure below. Adjust the IO font,

UI theme, Syntax theme, and Editor font accordingly.

CHAPTER 1 THONNY IDE

13

Thonny Integrated Development Environment (IDE)

Run Code

Stop Code
Save

Open

New File

Script Editor

Shell / Console
Interpreter

Why Thonny IDE?

Thonny IDE runs on systems including Windows, MacOS, and Linux. It provides a dedicated

mode meant for MicroPython, which includes CircuitPython that we will be using throughout

this module.

Thonny IDE is also created specifically for beginners where its interface has intentionally

removed extra features that might be overwhelming or distracting to new learners.

Syntax errors are a common issue for beginners, which is why Thonny IDE makes it easy for

learners to highlight and identify these errors easily.

Lastly, Thonny IDE was originally designed for teaching Python and emphasizes learning and

understanding code. Hence why it is an excellent choice for educators and students to

practice programming microcontrollers with Python.

CHAPTER 1 THONNY IDE

14

Quick & Easy

280+
Libraries

Internal
File Storage

Data Code

Python-based

Why CircuitPython?

Preparing EDU PICO CircuitPython Firmware
Step 1: Launch Thonny IDE and make sure your computer has internet connection.

IMPORTANT:
Skip to Page 18
Hello EDU PICO
activity if your
kit comes with

the Raspberry Pi
Pico W by
default.

Raspberry
Pi Pico W

Introduction to CircuitPython

Easy & Beginner Friendly: Create, edit, save, and run your code without compiling,

downloading, or uploading needed. Perfect for learning text-based programming.

File Storage: Internal storage designed for data-logging, playing audio clips, and file

interaction. It also allows you to edit your code anytime since it is stored on the disk drive.

Strong Hardware Support: Built-in features like audio I/O, digital I/O pins, hardware buses

(I2C, SPI, UART), and supports over 280+ libraries all written in Python.

Python: CircuitPython is based on Python, the fastest-growing programming language.

It simply adds hardware support to all of Python’s amazing features.

CircuitPython is a programming language based on Python. Specifically designed to simplify

for experimenting and learning to code with microcontroller boards. In this module,

we will learn CircuitPython programming with EDU PICO and Raspberry Pi Pico W.

15

Step 3: Click on the bar at the bottom right corner and select Install CircuitPython
from the drop-down menu.

Step 2: Press and hold the reset (RST) and BOOTSEL buttons, then release the RST button,

but continue to hold the BOOTSEL button until the RPI-RP2 drive appears.

Step 4: Select RPI-RP2 for the target volume, and Cytron Technologies - EDU PICO
for the variant. Then select the latest stable version and Click Install.

Step 5: Wait for the download and installation to be done. Close all the pop-up windows.

Appear on your computer, like how
a USB thumb drive would appear.

CHAPTER 1 INTRODUCTION TO CIRCUITPYTHON

16

Step 6: After successful installation, the CircuitPython drive will appear on your computer.

Click the bottom right corner of Thonny and select the CircuitPython option as shown.

This will
appear in your

computer
directory, just
like how a usb

drive would
behave.

Paste
Firmware here

Alternatively, you can download the EDU PICO CircuitPython firmware from:

https://circuitpython.org/board/cytron_edu_pico_w/

Copy the firmware into the RPI-RP2 Drive to install the firmware.

(Make sure to HOLD BOOTSEL button when connecting the Pico to your computer USB port)

Go ahead and launch the Thonny IDE and you’re all set for your first EDU PICO program!

Download EDU PICO Firmware

CHAPTER 1 INTRODUCTION TO CIRCUITPYTHON

HOLD BOOTSEL
button & connect

17

https://circuitpython.org/board/cytron_edu_pico_w/

Step 2: Click the Green Button to run the code and Red Button to stop.

Type this

Output
Interpreter

Hello hello, do you read me EDU PICO? Let’s write our first code to the microcontroller.

Step 1: Program the EDU PICO to print ''Hello EDU PICO'' text at the shell.

Hello EDU PICO

Print
‘Hello EDU PICO’

Run Code

Make sure
to select

the correct
interpreter

in Thonny

1

3

Process
code.. 2

18

Step 4: Name your file as Hello_EDUPICO.py, then click OK to save.

Your program will be
saved to the on-board

flash memory of the
Raspberry Pi Pico W.

It’s like a mini-USB
stick, but with 2MB

(Megabyte) of memory.

2

1

Step 3: Click Save and save your code into the CircuitPython device.

The file name will
reflect immediately

in Thonny IDE.

Click ‘OK’
to save.

Remember
to always

include .py at
the back of

your file
name!

CHAPTER 1 HELLO EDU PICO

19

Naming your
code as code.py
will enable the
program to be
executed when
powered up or

reset.

You will notice two sections under Files, the first is to your computer, and the second is

to the CircuitPython device that is currently connected to your computer.

This allows you to navigate your codes inside the Raspberry Pi Pico W easily; simply open

the code by double-clicking the file.

To prevent code.py from running automatically when the EDU PICO is powered on,

simply delete or rename the code.py file.

Step 5: To check the code that you have already saved in your CircuitPython device,

go to View > Files.

CHAPTER 1 HELLO EDU PICO

20

Sometimes you would prefer to have your code run automatically when the EDU PICO is

powered up. To achieve that, saving the correct code file name is important.

Once the board is powered up, CircuitPython will continuously look for code files with the

following names in sequence: code.txt, code.py, main.txt and main.py, the board will

then execute the first code it finds.

However, the file name code.py is recommended while using CircuitPython.

It is also important to keep in mind that having multiple file names mentioned earlier

would create confusion and may prevent the board from executing the correct code.

Execute Code when Powered Up or Reset

In programming, it is crucial to be mindful whenever we name our code files. One of the

common mistakes that should be avoided is when naming your code with a similar name

as your library.

When you use a similar name for your code and library, it can be challenging to differentiate

between the two for your code that is calling for the particular library. This will usually result

in execution errors in your code.

Hence, it is always recommended to use a different name for your code to avoid any naming

conflicts with the CircuitPython library.

For an example, naming your file as neopixel.py will result in an error because the Neopixel

library is already being named as neopixel.mpy.

Naming Program File

In the next section, we will learn
the basic syntax of CircuitPython.

CHAPTER 1 HELLO EDU PICO

21

3 is greater than 1

Example with indentation

if 3 > 1:
 print("3 is greater than 1")

Good

Indentation
(4 spaces)

Example without indentation

if 3 > 1:
print("3 is greater than 1")

Syntax Error

Traceback (most recent call last):
 File "<string>", line 2
 print("3 is greater than 1")
 ^^^^^
IndentationError: expected an indented block after 'if' statement on line 1

No
indentation!!

Assigning Variables

number = 10
x = "Hello EDU PICO"

print(number)
print(x)

10
Hello EDU PICO

Variables

Indentation

Variables

Indentation refers to the spaces at the beginning of a code line. You have the freedom

to decide the number of spaces to use. While the most popular choice is four (4) spaces,

its essential to use at least one to ensure readability.

A variable is created when you assign a value to it. In this case, the name number and x are

defined as variables.

While indentation in other programming
languages is only for readability,

in Python, it is very important.

CHAPTER 1 BASIC PROGRAMMING WITH CIRCUITPYTHON

Type This

Run Code

Type This

Run Code

22

Use comments to provide documentation within your code. Begin your comment with a #,

and Python will interpret the remainder of the line as a comment.

You can also comment on multiple lines by using triple quotes (""" """) shown above.

Note that writing comments within your script does not affect the functionality of your code.

Understanding data types is essential in programming. Variables can store data of various

types, each with its distinct functionalities. Here are a few popular data types that are set

when you assign a value to the variable:

One way to assign specific data type to a variable is through casting.

Specify a Variable Type

x = str("Hello EDU PICO") #string
x = int(100) #integer
x = float(100.5) #float
x = bool(5) #boolean
x = list(("red", "green", "blue")) #list
x = range(5) #range
x = dict(1="red", 2=”green”) #dictionary

Comment

#This is a comment, normally used for writing notes.
print("Hello, World!")

"""
This is a multiline
comment.
"""

Data Types

Casting

Comments

CHAPTER 1 BASIC PROGRAMMING WITH CIRCUITPYTHON

23

Flip the x and y value and you will
receive a different set of output.

3. Comparison Operator

Run Code

Operators play an important role when executing operations on variables and values.

In this section, we will explore three main types of operators: arithmetic, assignment and

comparison.

1. Arithmetic Operator

2. Assignment Operator

Operators

Basically,
you're building

a calculator
without even

knowing it!

Run Code

CHAPTER 1 BASIC PROGRAMMING WITH CIRCUITPYTHON

Type This

Type This

Type This

Run Code Run Code

24

Now that you have learned about operators, it's time to put them into action. Conditions are

used in various ways, with the most common being if statements and loops. In the following

example, we use two variables x and y, to check whether x is greater than y.

Print number ranging from 0 to 2

Example for elifExample for if.. else

If.. Else (Conditions)

For Loop

Print each colour in a colour list

In the first example, if x is greater than y, the code will print "x is greater than y" in the shell.

The second example uses if.. elif.. else to check the first two conditions. As a result,

it prints "y is greater than x" in the shell since both conditions were not met.

A for loop is a control flow statement that allows you to execute a block of code repeatedly

for a fixed number of times. It is commonly used to iterate over sequences such as lists, sets,

dictionaries, and strings.

In the second example, the range() function returns a sequence of numbers, starting from 0
by default, and increments by 1 (by default), until it reaches a total number count of 3,

starting from 0, 1, and 2.

Don't forget to indent the
statement blocks below the

if...elif...else conditions to
prevent syntax error.

CHAPTER 1 BASIC PROGRAMMING WITH CIRCUITPYTHON

Type This

Run Code

Type This

Run Code

25

Call function with argument & return value

A while loop is a control flow statement that allows a block of code to execute repeatedly

as long as a condition is true. The following code uses a while loop to continuously check if

x is less than 4. If a condition is true, the code block inside the loop executes and prints the

value of x starting from 1 and increments it by 1 (assignment operator). This process repeats

until x is no longer less than 4.

A function is a block of code which only runs when it is called. It is normally used to break

down a program into smaller, more manageable pieces, making it easier to read and

understand. Furthermore, you can pass data into the function for processing and return data

from the function as a result.

The example on the right has a multiplication function with multiplication(x). When the

function is called, the values 2 and 5 are used inside the function to be multiplied by 3 and

return the result of 6 and 15.

While Loops

Functions

We will be
using a lot of
while loops in
our upcoming

projects.

Inifinity Loop

CHAPTER 1 BASIC PROGRAMMING WITH CIRCUITPYTHON

Type This

Run Code

Define and call print_function

Type This

Run Code

Type This

Run Code

26

https://www.w3schools.com/python/python_functions.asp
https://www.learnpython.org/en/Functions
https://www.learnpython.org/en/Functions

Type This

Run Code

Congratulations, you're all set to embark on
your next exploration! Rest assured, I'll be

with you every step of the way.

You can also use index numbers (a number within the curly brackets {0}) to guarantee that

values are accurately placed in the designated placeholders as shown below:

To print more values, you can simply add more placeholder {} with the format() method.

When writing your code, it is important to maintain data readability when printing on the

shell console or the OLED display.

In this section, we will introduce you to the format() method which makes the printing

process simpler. To control the values, simply add placeholders (curly brackets {} in the text),

which will allow us to format and print specific parts of a string to your liking.

Below are three examples of how this works:

String Format

CHAPTER 1 BASIC PROGRAMMING WITH CIRCUITPYTHON

Type This

Run Code

Type This

Run Code

27

Water Drinking Reminder
Buttons & Buzzer

Hello, Makers! Today, we're going to embark

on a fascinating journey by delving into

two fundamental electronic components:

buttons and piezo buzzer. These seemingly

ordinary devices play vital roles in our daily

lives, from the buttons on our smartphones

to buzzers that alert various events.

In this chapter, we'll learn how they work

and why they are so crucial in real-life

applications. So, buckle up and get ready to

press some buttons and create some buzz!

2.1 Introduction to Buttons

2.2 Introduction to Buzzer

2.3 Project: Water Drinking Reminder

Introduction to Button

How Does This Activity Work?

When you press
Button A, the sentence

“Button A is pressed” will
appear at the Shell.

Button Configuration: Button A (Yellow) to GP0 as digital input.

Output:
If Button A is pressed, the code prints "Button A is pressed" at the

shell console.

Libraries: board, time, digitalio.

Buttons are essential electronic components in modern technology that allow us to input

commands and interact with various devices. They come in all shapes and sizes,

from the tiny buttons on your calculator to the larger ones on your computer keyboard.

Button A is pressed

Thonny IDE

29

SHELL

BUTTON_MODULE.py

Bu﻿tton A is pressed
Bu﻿tton A is pressed
Bu﻿tton A is pressed
Bu﻿tton A is pressed

1
2
3
4
5
6
7
8
9
10
11
12

import board
import time
import digitalio

button_A = digitalio.DigitalInOut(board.GP0)
button_A.direction = digitalio.Direction.INPUT
button_A.pull = digitalio.Pull.UP

while True:
 if not button_A.value:
 print("Button A is pressed")
 time.sleep(0.3)

Program Button A using GP0

Code

These lines of code are used to import the necessary modules and libraries that

enable the EDU PICO to understand the functions of button and time.

The imported modules are as follows:

Line 1: Provides a way to reference the GPIO pins on the EDU PICO.

Line 2: Provides time-related functions such as time.sleep() for introducing delays.

Line 3: Allows interaction with digital input/output pins.

Import Necessary Libraries

Libraries

import board
import time
import digitalio

1
2
3

CHAPTER 2 INTRODUCTION TO BUTTON

30

Click the Green Button to run the code and Red Button to stop.

while True initiates an infinite loop. The code inside this loop will run repeatedly as

long as the condition remains true.

Initialize Hardware Components

Enter a Continuous Loop

Line 5: Set up a connection between the EDU PICO and a button. It specifies

pin GP0 to be used for the button.

Line 6: Informs the EDU PICO whether button_A is an input or output. In this case,

it’s set as input which will be used to read the state of the button, either logic

high (3.3V) or low (0V).

Line 7: Configures the internal pull-up of the button pin. This keeps the reading

at logic high (3.3V) when the button is not pressed.

Line 10 - 12: Checks the value of button A. button_A.value returns True if the button

is not pressed (logic high) and False if the button is pressed (logic low).

If the condition is True, it prints the message "Button A is pressed" and is delayed

for 0.3 seconds.

Button Pin Configuration

button_A = digitalio.DigitalInOut(board.GP0)
button_A.direction = digitalio.Direction.INPUT
button_A.pull = digitalio.Pull.UP

5
6
7

Infinite Loop

while True:9

Psst! Flowchartcan help youvisualize your code better.

Read Button Value

 if not button_A.value:
 print("Button A is pressed")
 time.sleep(0.3)

10
11
12

CHAPTER 2 INTRODUCTION TO BUTTON

31

A variable is like a box that can hold different values. Think of it like a container that can

store numbers, words, or anything else. You can give this box a name, like x or button,

and then put different information inside it as needed.

To turn on the LED, simply
press the button to close the
circuit. Releasing the button
opens the circuit and turns

off the LED.

Value readings from

Pin GP0
High (1) or Low (0)

button.value let you read

what’s inside the box!

Buttons

Variables

CHAPTER 2 INTRODUCTION TO BUTTON

32

Introduction to Buzzer

Action Required: Flip the buzzer module switch downwards to enable

buzzer output (Method 1 illustration as shown below).

2s 4s 6s 8s 10s0s
Time

(Second)

No beep No beep

Voltage = 440 Hz

Libraries: board, simpleio.

Audio / Buzzer Configuration: Buzzer to GP21.

Output: When the code is executed, the EDU PICO buzzer module will

continuously beep at a 2 second interval with a frequency of 440 Hz.

Want to make some noise with your EDU PICO? In this section, you will learn how to activate

your EDU PICO built-in piezo buzzer. While you’re at it, go ahead and hook up the EDU PICO

to a headset or a speaker at the buzzer module too!

2 Methods to use the Audio Buzzer Module

How Does This Activity Work?

33

Code

BUZZER_MODULE.py

1
2
3
4
5
6
7
8

import board
import simpleio

buzzer_pin = board.GP21

while True:
 simpleio.tone(buzzer_pin, 440, 1)
 simpleio.tone(buzzer_pin, 0, 2)

Line 4: Assigns GP21 to the variable buzzer_pin to control the buzzer module.

Buzzer Pin

buzzer_pin = board.GP214

The simpleio module offers a set of functions that simplify the input and output

operations for the EDU PICO, making it easier to work with hardware components.

In this case, it allows the user to generate various tones with the EDU PICO’s buzzer.

import simpleio
Libraries

2

Line 6 - 8: Generates a tone on the buzzer pin at a frequency of 440 Hz

(which corresponds to the musical note A4) for a duration of 1 second and generates

a "silent" tone (0 Hz) on the buzzer for 2 seconds. The code will run continuously.

Tone Frequency

while True:
 simpleio.tone(buzzer_pin, 440, 1)
 simpleio.tone(buzzer_pin, 0, 2)

6
7
8

CHAPTER 2 INTRODUCTION TO BUZZER

34

Click the Green Button to run the code and Red Button to stop.

You will need to
import simpleio

library for the code
to work!

A piezo buzzer is frequently used to generate
sound through the vibration of a piezo
element when an electric signal flows across
it. By altering the frequency of the electric
signal, the rate of vibrations adjusts
accordingly. As a result, the piezo buzzer
generates sound with a distinct tone.

You can program
EDU PICO to play other

songs by following
music notes.

The placement of a musical note along the vertical lines indicates the specific tone to be
played. As the note is positioned higher, the pitch or frequency of the sound increases.

Piezo Buzzer

CHAPTER 2 INTRODUCTION TO BUZZER

35

Adam is so busy he
may not be aware that he
needs to drink more water.

Let’s find a way
to make Adam
be more aware
of his drinking

habit.

How about we use the EDU
PICO and a buzzer to keep
Adam constantly notified? I know a way to program

it with CircuitPython.

36

Water? Nah,
I drank enough.

Hey Adam, it
seems like you
need a glass of

water.

Dehydration can
make you feel tired

easily you know. But he
doesn’t see a

problem.

Oh, hey Adam! We are
working on a hydration

reminder.

So it will
nudge me
to drink?

Yes, and you will have
to push the button to

stop the buzzer.

37

Hey Mia, Anna,
what’s going on?

It’s a water bottle coaster
that constantly notifies the

user to stay hydrated.

The EDU PICO will initiate
a countdown and send
signals to the buzzer.

Time for a
simple demo.

Cool! It works! Nice!

Buzz Buzz

38

Adam, would you
like to take it for a

test run?

Sure, doesn’t seem too
difficult, all I need to do

is press this button.

I wonder what’s
for dinner..

Buzz

Buzz

Oh! That’s right!
Time for a glass of water.

I guess I do
need a glass of

water.

39

You looked more
refreshed lately,

Adam!

Yeah, it’s all thanks
to the both of you.

The hydration
companion really

does the trick!

Don’t mention it!
Sometimes, we just

need a subtle nudge
in the right direction

at the right time!

Make sure the buzzer switch
is flipped downwards.

Step 2

Step 1

Press Button A
to start the
countdown.

Step 3

Press Button B
to stop the

buzzing.

The buzzer will
start beeping once

the timer is up.

Water Drinking Reminder
Hydration Companion

Have an Adam in your life? Let’s help them solve their dehydration issue by building a water

drinking reminder with EDU PICO! Don’t worry, we will keep your first project simple.

Ultimately, you will learn how to combine codes from multiple components. Let’s go!

Buttons Configuration: Button A (Yellow) = GP0, Button B (Blue) = GP1.

Input:
Press Button A to activate the 5 second (default) countdown.

Press Button B to reset the buzzer.

Libraries: board, digitalio, time, simpleio.

Output:
The buzzer will start beeping once the countdown reaches zero.

The program will print the reminder text and timer status to the user

at the shell console.

How Does This Activity Work?

40

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

PROJECT_WATER_DRINKING_REMINDER.py

import board, digitalio, time, simpleio

button_start = digitalio.DigitalInOut(board.GP0)
button_start.direction = digitalio.Direction.INPUT
button_start.pull = digitalio.Pull.UP

button_stop = digitalio.DigitalInOut(board.GP1)
button_stop.direction = digitalio.Direction.INPUT
button_stop.pull = digitalio.Pull.UP

buzzer_pin = board.GP21
buzzer_status = False

print("Press Button A to start")

while True:
 if not button_start.value:
 duration = 5
 end_time = time.monotonic() + duration
 print("You have activated the water drinking reminder")

 while time.monotonic() < end_time:
 pass

 print("Reminder to Drink Water! Press Button B to reset")
 buzzer_status = True

 if not button_stop.value:
 print("Timer reset")
 buzzer_status = False
 time.sleep(0.3)
 print("Press Button A to start")

 if buzzer_status:
 simpleio.tone(buzzer_pin, 800, 0.5)
 simpleio.tone(buzzer_pin, 0, 0.5)

CHAPTER 2 WATER DRINKING REMINDER

41

Click the Green Button to run the code and Red Button to stop.

This line imports the necessary libraries for the code to utilize buttons, time and

sound functions.

Initialize Hardware Components

Line 3 - 5: Initialize button_start (Yellow Button) for starting the reminder.

Line 7 - 9: Initialize button_stop (Blue Button) for stopping or resetting the alarm.

Line 11 - 12: Prepares the buzzer to make sounds and sets the variable buzzer_status
to false, which means the buzzer is off at the beginning of the code.

Import Necessary Libraries

Line 14: Print an initial message to the console: "Press Button A to start"

2

Libraries

import board, digitalio, time, simpleio

3
4
5
6
7
8
9

Buttons

button_start = digitalio.DigitalInOut(board.GP0)
button_start.direction = digitalio.Direction.INPUT
button_start.pull = digitalio.Pull.UP

button_stop = digitalio.DigitalInOut(board.GP1)
button_stop.direction = digitalio.Direction.INPUT
button_stop.pull = digitalio.Pull.UP

11
12

Buzzer

buzzer_pin = board.GP21
buzzer_status = False

14

Initial Message

print("Press Button A to start")

CHAPTER 2 WATER DRINKING REMINDER

42

Enter a Continuous Loop

Line 17: Check if Button A button_start is pressed.

Line 18 - 19: If the button is pressed, set a duration of 5 seconds for the reminder

timer and calculate the end_time by adding duration to the current time using

time.monotonic().

Line 20: Print "You have activated the water drinking reminder".

Line 22 - 23: Enter an inner loop that continues until the current time is less than

end_time. This inner loop effectively waits for the reminder duration to pass.

Line 25: After the reminder duration has passed, print "Reminder to Drink Water!

Press Button B to reset".

Line 26: Set buzzer_status variable to True.

Line 28 - 31: Check if Button B button_stop is pressed. If it is, reset the timer and set

buzzer_status to False. A brief delay of 0.3 seconds is introduced to prevent multiple

rapid button presses, this is also known as the switch bounce effect.

Line 32: Prints "Press Button A to start" to indicate the timer waiting for user input.

16
17
18
19
20
21
22
23
24
25
26

button_start

while True:
 if not button_start.value:
 duration = 5
 end_time = time.monotonic() + duration
 print("You have activated the water drinking reminder")

 while time.monotonic() < end_time:
 pass

 print("Reminder to Drink Water! Press Button B to reset")
 buzzer_status = True

28
29
30
31
32

button_stop

 if not button_stop.value:
 print("Timer reset")
 buzzer_status = False
 time.sleep(0.3)
 print("Pre﻿ss Button A to start")

CHAPTER 2 WATER DRINKING REMINDER

43

16
17
18
19
20

button_start

while True:
 if not button_start.value:
 duration = 5400
 end_time = time.monotonic() + duration
 print("You have activated the water drinking reminder")

Once you’re done with the example code, it’s time we turn this project into a real-life

application! Before doing that, let’s list out all the facts about drinking water healthily.

According to the World Health Organization (WHO), we should drink 2 to 3 litres

(8 to 12 cups) of water per day. Say that we have to drink 8 cups in a day, to spread out

across 12 hours in a day, the timer duration can be calculated this way:

What’s Next?

Line 34 - 36: If buzzer_status is True, activate the buzzer using simpleio.tone()
to produce an 800 Hz tone for 0.5 seconds, followed by a 0 Hz (silent) tone for

0.5 seconds. This alarm is used to signal the user when its time to drink water.

12 hours / 8 cups = 1.5 hours (90 minutes = 5,400 seconds)

34
35
36

buzzer_on

 if buzzer_status:
 simpleio.tone(buzzer_pin, 800, 0.5)
 simpleio.tone(buzzer_pin, 0, 0.5)

CHAPTER 2 WATER DRINKING REMINDER

Let’s take it one step further to identify the amount of water we should drink per intake.

We can use this formula to identify our daily water intake:

Daily water intake (in millilitres) = Body weight (in kilograms) x 33

For example, if you weigh 50 kilograms, you should drink between 1,650 to 3,300 millilitres of

water per day. It’s important to note that the amount of water intake required by an individual

can vary depending on their body’s needs and the environment they are in. It is also important

to drink consistently throughout the day and not wait until you feel thirsty.

44

if not button_start.value:
 user_input = input("Enter the reminder duration (in seconds): ")
 user_duration = int(user_input)
 if user_duration >= 1:
 duration = user_duration
 print(f"Reminder duration set to {duration} seconds")
 else:
 print("Reminder to Drink Water! Press Button B ﻿to reset")
 buzzer_status = False
 continue

 end_time = time.monotonic() + duration
 print("You have activated the water drinking reminder")

 while time.monotonic() < end_time:
 pass

 print("Reminder to Drink Water! Press Button B to reset")
 buzzer_status = True

In the original code, the timer runs for only 5 seconds by default. In this challenge, you are

required to modify the code to allow the user to customize the duration of the water-

drinking reminder. Check out the hint below to guide you with the modification.

Challenge - user input duration

This code allows you to
set the duration manually.

The code runs when
Button A is pressed.

CHAPTER 2 WATER DRINKING REMINDER

45

Gesture Reaction Game
OLED & Gesture Sensor

Hi Makers! In this chapter, we are about to explore

these two amazing electronic components: gesture

sensor and OLED display. These are very useful tools

that can make our devices respond to our

movements and bring vivid images to life on

screens.

Imagine a world where you could control things just

by waving your hand, or where your TV or watch

could display brilliant, colourful images with perfect

clarity. Well, today, we're going to explore the

science and technology that make these wonders

possible.

So, get ready to wave, swipe, and see the magic

happen before your eyes as we discover the

incredible world of gesture sensors and OLED

displays.

Introduction to OLED Display 3.1

Introduction to Gesture Sensor 3.2

Project: Gesture Reaction Game 3.3

We will use the
I2C protocol to

connect the oled
module with the

EDU PICO.

Introduction to OLED

How Does This Activity Work?

I2C (Inter-integrated Circuit) is a communication method that lets electronic components
talk to each other by sharing a common connection and unique addresses.

Libraries: board, busio, time, adafruit_ssd1305, font5x8.bin

Output:
Invert OLED display at initialization with a bluish-white background.

Print "Hello EDU PICO" text in the middle of the OLED in black

colour:

"Hello" with a coordinate of x = 50, y = 20.

"World" with a coordinate of x = 40, y = 35.

OLED I2C Pins Configuration: SCL = GP5 and SDA = GP4.

Navigating font5x8.bin
It is vital to make sure your CircuitPython root

directory contains the font5x8.bin file.

The file is a binary file that contains a bitmap

font used by the framebuf library to render

text on the OLED display.

You can think of the OLED display as a very small, electronic billboard. Its like the display on

your smartphone but much smaller. Like an electronic billboard, you can choose what to

show on it. In this activity, we will learn how to code and print on the EDU PICO’s OLED

display module.

Located in
CircuitPython
Root Directory

47

Code

1
2
3
4
5
6
7
8
9
10
11

OLED_MODULE.py

import board, busio, time
import adafruit_ssd1306

i2c = busio.I2C(board.GP5, board.GP4)
oled = adafruit_ssd1306.SSD1306_I2C(128, 64, i2c)

oled.fill(0)
oled.invert(True)
oled.text("Hello", 50, 20, 1)
oled.text("EDU PICO!", 40, 35, 1)
oled.show()

Import Necessary Libraries

adafruit_ssd1306 enables operation with SSD1306 OLED displays.

1

Libraries

import adafruit_ssd1306

Initialize Hardware Components

Line 4: Initialize I2C communication bus using the busio.I2C class and assign GP5
for SCL (Serial Clock Line) and GP4 for SDA (Serial Data Line).

Line 5: Configures the OLED display with a resolution of 128x64 pixels while forming

the connection through I2C communication.

4
5

Configure OLED I2C Pins

i2c = busio.I2C(board.GP5, board.GP4)
oled = adafruit_ssd1306.SSD1306_I2C(128, 64, i2c)

CHAPTER 3 INTRODUCTION TO OLED

48

Click the Green Button to run the code and Red Button to stop.

7
8
9
10
11

Configure OLED Pins

oled.fill(0)
oled.invert(True)
oled.text("Hello", 50, 25, 1)
oled.text("EDU PICO!", 40, 40, 1)
oled.show()

while True:
 oled.fill(0)
 oled.text("My name is", 35, 25, 1)
 user_input = input("Name: ")
 oled.text(user_input, 40, 40, 1)
 oled.show()

Line 7: Clears the OLED display by filling it with black (0 represents black font).

Line 8: Inverts the background colour to appear in white and text in black.

Line 9: Displays the text "Hello" in white with the coordinates of x = 50 and y = 25.

Line 10: Displays the text "EDU PICO!" with the coordinates of x = 40 and y = 40.

Line 11: Updates the OLED display to show the changes made.

Enter a Continuous Loop

In summary, this code initializes the OLED display and prints "Hello EDU PICO!" text in

black font continuously.

Modify the code to allow the user to type their name in the shell console and print the name

on the OLED. Replace the original code from line 7 to 11 with the code provided below:

mini activity

The ssd1306 OLED
display have 128

pixels from left to
right (X) and 64

pixels from top to
bottom (Y).

CHAPTER 3 INTRODUCTION TO OLED

49

That’s about

as wide as a

single human

red blood cell!

The name OLED originates from the organic compounds in its pixels. These compounds are

primarily made of carbon and hydrogen, and form organic emitters that emit light when

excited by an electrical current.

The organic emitters emit white

light initially, which passes

through a filter to create

colours (Red, Green, or Blue).

By adjusting the electrical

current in each organic emitter,

we can control the colour of a

single OLED pixel.

OLED (Organic Light-Emitting Diodes) are becoming the most common display technology in

our devices. Most smartphones and many TVs today use OLED displays.

Note: The OLED display included with the
EDU PICO can only emit in blue colour.

Now imagine all
this in a single pixel..

and each pixel is at around
40µm wide.

OLED Pixel

CHAPTER 3 INTRODUCTION TO OLED

50

Input: By performing various hand gestures in front of

the sensor, the code will print the corresponding

direction to the shell console:

"left" when moving from right to left.

"right" when moving from left to right.

"up" when moving from down to up.

"down" when moving from up to down.

Libraries: board, busio, adafruit_apds9960.

Output:

APDS9960
Gesture Sensor

PROXIMITY LIGHTGESTURE COLOUR

APDS9960 I2C Pins Configuration:
SCL = GP5 and SDA = GP4.

In this section, we'll explore how APDS9960 sensor can be used to detect hand gestures. The

APDS9960 is a tiny electronic device that can "see" hand gestures and measure the amount

of light around it. It's like having a tiny robot eye!

Introduction to Gesture Sensor

How Does This Activity Work?

Move your hand
across the sensor
slowly to ensure
the sensor can

detect the
gesture.

51

Line 2: Imports the APDS9960 class from

adafruit_apds9960.apds9960 module

that corresponds to the APDS9960 sensor

which is commonly used for gesture and

proximity sensing.

Code

1
2

Libraries

import board, busio
from adafruit_apds9960.apds9960 import APDS9960

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

GESTURE_SENSOR_MODULE.py

import board, busio
from adafruit_apds9960.apds9960 import APDS9960

i2c = busio.I2C(board.GP5, board.GP4)
apds = APDS9960(i2c)
apds.enable_proximity = True
apds.enable_gesture = True

while True:
 gesture_value = apds.gesture()
 if gesture_value == 1:
 print("up")
 elif gesture_value == 2:
 print("down")
 elif gesture_value == 3:
 print("left")
 elif gesture_value == 4:
 print("right")

"from X import Y"
Import your library
this way will help
you shorten and

improve your code!

CHAPTER 3 INTRODUCTION TO GESTURE SENSOR

52

Click the Green Button to run the code and Red Button to stop.

1

Line 5: Initializes an I2C communication bus with pins GP5 (SCL - Serial Clock)

and GP4 (SDA - Serial Data), then create an instance that represents the APDS9960

sensor to allow the user to interact with it.

Line 6 - 7: Enable the proximity and gesture detection features of the APDS9960

sensor. Setting these properties to True activates the sensor's ability to detect when

an object is nearby (proximity) and be able to recognize specific hand gestures.

Line 10: Calls the gesture() method to detect a hand gesture. The method returns a

numeric value representing the detected gesture.

Line 11 - 18: Check the value of the gesture and print a corresponding message

depending on the detected gesture. The APDS9960 library assigns specific numeric

codes (e.g., 1 for "up", 2 for "down", 3 for "left", 4 for "right") to different gestures.

4
5
6
7

APDS Functions

i2c = busio.I2C(board.GP5, board.GP4)
apds = APDS9960(i2c)
apds.enable_proximity = True
apds.enable_gesture = True

9
10
11
12
13
14
15
16
17
18

Main Loop

while ﻿True:
 gesture_value = apds.gesture()
 if gesture_value == 1:
 print("up")
 elif gesture_value == 2:
 print("down")
 elif gesture_value == 3:
 print("left")
 elif gesture_value == 4:
 print("right")

CHAPTER 3 INTRODUCTION TO GESTURE SENSOR

53

Imagine the APDS9960 as a little camera with tiny sensors that can detect infrared light

(which we can't see with our eyes). When you move your hand or an object in front of the

sensor, the invisible light reflects on the object, allowing the sensor to detect the reflected

infrared light, almost like a secret handshake that can’t be seen through our naked eye.

Infrared light is invisible to the

naked eye, however, you can view

infrared light by simply looking at

the infrared LED through a

phone’s rear camera. This is

especially useful when you need

to check whether the APDS9960

sensor is still functioning properly.

The sensitivity of the sensor

can be influenced by the

room's brightness. In a well-lit

room, there is a higher level of

light reflection, which can be

detected by the receiver.

APDS9960 Gesture Sensor

Gesture detection is
made possible using the
four photodiodes that

reflect IR radiation from
the built-in IR LED.

CHAPTER 3 INTRODUCTION TO GESTURE SENSOR

54

ANNA!

I’m back!

Anna? Can you
hear me?

Huh?
What's up?

Anna, your music is a little
too loud. We're worried

about your hearing.

What's wrong with that?
I love my music LOUD!

Mia, did you notice?
Anna doesn't see her
hearing as a problem.

That's what worries me.
 Her hearing might be at risk,

and she's not aware.

55

Oh, sorry I didn’t
 hear you, Mia.

ANNA!

Hey Anna!

What's your
idea, Mia?

Thinking

Here's the plan,
let’s build a hearing
reaction game using

the EDU PICO.

We have to do
something, Adam.

Anna needs our help.

If only there’s a
way to help her be
more aware of her

hearing.

The buzzer will play a random
tone and Anna have to react
with a specific hand gestures.

How can EDU PICO
detect the hand gesture?

56

Anna, we've got this
cool new game to

show you!
Sounds interesting.

I'm in!

Anna doing the Hearing Test
So, what’s the

results?

57

If Anna gets it right, the
OLED will show 'Good Job' with

an exciting beep else it'll
produce a sad beep.

58

Really?
I had no idea..

No stress, Anna.
This can still be fixed, or

maybe you'll have to ease
up on blasting the tunes,

you know?

I won't be listening to
loud volumes anymore.
It's time to prioritize my

hearing health.

That's a wise
choice, Anna.

We're here for you
all the way.

Anna, we wanted to
be sure. It turns out
your hearing needs

some attention.

Now I've realized the
importance of taking care

of my hearing.

Input:
Pressing Button A will activate the test tone, playing

Do Re Mi Fa in sequence.

Pressing Button B will start the game with a "Ready"

and "Go" countdown.

The player has to react to the random tone with either

UP, DOWN, LEFT or RIGHT hand gestures.

Output:
The buzzer will play a random game tone, either DO, RE, MI, or FA.

The OLED will print "Try again" with a sad beep if the player gives a

wrong answer.

Getting the correct tone gesture will produce an exciting beep with

a "Good Job" displayed on the OLED.

Libraries: board, digitalio, time, simpleio, busio, adafruit_apds9960
adafruit_ssd1306, random, font5x8.bin.

OLED & APDS9960 I2C Pins Configuration: SCL = GP5 and SDA = GP4.

Audio / Buzzer Configuration: Buzzer to GP21.

Button Configuration:
button_tone (Yellow) to GP0 as digital input.

button_start (Blue) to GP1 as digital input.

Button A: Test Tone
Button B: Play Game

Test
Tone

Play
Game

Gesture Reaction Game
Do-Re-Mi-Fa Arcade

Let's build our first arcade game. But this won't be your typical game, instead, this is going

to help players improve their hand-eye coordination. In this project, we'll learn to integrate

OLED display, buzzer, and APDS9960 gesture sensor, so be prepared for a slight increase in

difficulty. Ready? Let's get started!

How Does This Activity Work?

59

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

PROJECT_HEARING_REACTION_GAME.py

import board, digitalio, time, simpleio, busio
from adafruit_apds9960.apds9960 import APDS9960
import adafruit_ssd1306
import random

FREQ_DO = 261
FREQ_RE = 293
FREQ_MI = 329
FREQ_FA = 349

tone_map = {1: FREQ_DO, 2: FREQ_RE, 3: FREQ_MI, 4: FREQ_FA}

buzzer = board.GP21
button_tone = digitalio.DigitalInOut(board.GP0)
button_start = digitalio.DigitalInOut(board.GP1)
button_tone.direction = digitalio.Direction.INPUT
button_start.direction = digitalio.Direction.INPUT

i2c = busio.I2C(board.GP5, board.GP4)
apds = APDS9960(i2c)
apds.enable_proximity = True
apds.enable_gesture = True

oled = adafruit_ssd1306.SSD1306_I2C(128, 64, i2c)

def gamestart():
 oled.fill(0)
 oled.text("Ready", 50, 25, 1)
 oled.show()
 time.sleep(0.5)
 oled.text("Go!", 50, 40, 1)
 oled.show()

while True:
 oled.fill(0)
 oled.text("Button A: Test Tone", 10, 25, 1)
 oled.text("Button B: Play Game", 10, 40, 1)
 oled.show()

 if not button_tone.value:
 oled.fill(0)
 oled.text("Playing Test Tone", 15, 35, 1)
 oled.show()
 for tone_freq in (FREQ_DO, FREQ_RE, FREQ_MI, FREQ_FA):
 simpleio.tone(buzzer, tone_freq, 0.3)

Code

CHAPTER 3 GESTURE REACTION GAME

60

Keep it up!
The code from

line 6 to 24
configures all
the necessary
stuff to make
your project

work!

Single
Tab

To generate a random sequence of DO RE MI FA tones, you'll need to use the

random library. This library enables you to generate random numbers for your code.

Line 6 - 9: Define each DO RE MI FA musical tone as a constant variable.

Line 11: Create a dictionary and assign numbers from 1 to 4 to their corresponding

musical tones where each frequency has already been defined in line 6 to 9.

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

 if not button_start.value:
 gamestart()
 tone_code = random.randint(1, 4)
 selected_tone = tone_map[tone_code]
 simpleio.tone(buzzer, selected_tone, 1)

 while True:
 gesture_value = apds.gesture()
 oled.fill(0)
 if gesture_value == tone_code:
 oled.text("Good Job!", 35, 30, 1)
 oled.show()
 for i in range(3):
 simpleio.tone(buzzer, 1100, 0.1)
 simpleio.tone(buzzer, 0, 0.1)
 break
 elif gesture_value != 0:
 oled.text("Try Again!", 35, 30, 1)
 oled.show()
 for i in range(3):
 simpleio.tone(buzzer, 100, 0.1)
 simpleio.tone(buzzer, 0, 0.1)

4

Libraries

import random

6
7
8
9
10
11

Constant Variable and Dictionary

FREQ_DO = 261
FREQ_RE = 293
FREQ_MI = 32﻿9
FREQ_FA = 349

tone_map = {1: FREQ_DO, 2: FREQ_RE, 3: FREQ_MI, 4: FREQ_FA}

CHAPTER 3 GESTURE REACTION GAME

61

Click the Green Button to run the code and Red Button to stop.

Double
Tab

Line 35: oled.fill(0) clears the OLED display by filling it with black (0).

Line 36 - 37: oled.text(" ", x, y, colour) displays text on the OLED display at

coordinates (x, y). The text colour can be either filled with white (1) or black (0).

Line 38: oled.show() updates the OLED display to make the text visible.

Line 26 - 32: A function that initializes and displays a "Ready" message on the OLED

display followed by a "Go!" message after a brief delay.

Define a Custom Function

Enter a Continuous Loop

Line 40 - 43: Checks if the button connected to button_tone is pressed. If the

button is pressed, this line clears the OLED display and prints "Playing Test Tone".

26
27
28
29
30
31
32

gamestart() function

def gamestart():
 oled.fill(0)
 oled.text("Ready", 50, 25, 1)
 oled.show()
 time.sleep(1)
 oled.text("Go!", 50, 40, 1)
 oled.show()

34
35
36
37
38

Main Loop

while True:
 oled.fill(0)
 oled.text("Button A: Test Tone", 10, 25, 1)
 oled.text("Button B: Play Game", 10, 40, 1)
 oled.show()

40
41
42
43

button_tone (Button A)

 if not button_tone.value:
 oled.fill(0)
 oled.text("Playing Test Tone", 15, 35, 1)
 oled.show()

CHAPTER 3 GESTURE REACTION GAME

62

for tone_freq in [FREQ_DO, FREQ_RE, FREQ_MI, FREQ_FA]:

1 2 3 4

simpleio.tone(buzzer, tone_freq, 0.3)

FREQ_DO = 261 Hz
FREQ_RE = 293 Hz

FREQ_MI = 32﻿9 Hz
FREQ_FA = 349 Hz

During the first iteration, tone_freq will take on the value FREQ_DO = 261 Hz.

To put it simply, the values in the code should look like this in the first iteration,

[simpleio.tone(buzzer, 261, 0.3)]. Then the second iteration, with FREQ_RE = 293 Hz,

third with FREQ_MI = 329 Hz, and lastly FREQ_FA = 349 Hz.

Line 44 - 45: Starts a loop that iterates through a list of musical tone frequencies

DO RE MI FA with a 0.3 second delay after each tone.

What is for..loop?

A for loop is used to iterate or repeat over a sequence (in the example below, we

have a list of 4 musical tones). This also means that the loop will iterate 4 times.

Line 47: Checks if Button B is pressed. If it’s pressed, it calls the gamestart()
function (defined at line 26 - 32) to display "Ready" and "Go!" messages.

Line 49: Stores a randomly generated number ranging from 1 to 4 in variable

random_tone_code.

Line 50 - 51: tone_map array values were defined at Line 11. The code selects a

single frequency from tone_map array based on the random tone_code value

and plays a corresponding frequency. For an example:

selected_tone = tone_map[2] = FREQ_RE = 293

44
45

button_tone (Button A)

 for tone_freq in (FREQ_DO, FREQ_RE, FREQ_MI, FREQ_FA):
 simpleio.tone(buzzer, tone_freq, 0.3)

47
48
49
50
51

Check if Start Button (Button B) is Pressed

 if not button_start.value:
 gamestart()
 tone_code = random.randint(1, 4)
 selected_tone = tone_map[tone_code]
 simpleio.tone(buzzer, selected_tone, 1)

CHAPTER 3 GESTURE REACTION GAME

63

Line 53 - 58: This game loop is triggered when Button B is pressed. It continuously

checks for gestures detected by the APDS9960 sensor. If the detected

gesture_value matches the tone_code (random number between 1 to 4), the OLED

will then display "Good Job!".

Line 59 - 60: Plays a success tone sequence before exiting the for loop. The loop will

repeat 3 cycles, running line 60 and 61 code for 3 times.

If a non-zero gesture (other than the expected one) is detected, it displays

"Try Again!" and plays a failure tone sequence through a for loop of range(3).

Every gesture detected by the APDS9960 sensor will produce a value as shown

above, for example: "If a random tone code of 2 is generated, the tone it produced

will be RE, hence the player will have to swipe Down on the gesture sensor to get the

correct answer." The program compares the gesture sensor value with the tone code

to validate whether the answer provided by the player is correct.

53
54
55
56
57
58
59
60
61
62

Continuous Game Loop - Correct Gesture

 while True:
 gesture_value = apds.gesture()
 oled.fill(0)
 if gesture_value == tone_code:
 oled.text("Good Job!", 35, 30, 1)
 oled.show()
 for i in range(3):
 simpleio.tone(buzzer, 1100, 0.1)
 simpleio.tone(buzzer, 0, 0.1)
 break

63
64
65
66
67
68

Continuous Game Loop - Wrong Gesture

 elif gesture_value != 0:
 oled.text("Try Again!", 35, 30, 1)
 oled.show()
 for i in range(3):
 simpleio.tone(buzzer, 100, 0.1)
 simpleio.tone(buzzer, 0, 0.1)

CHAPTER 3 GESTURE REACTION GAME

64

Disclaimer: This hearing test is intended for
informational and educational purposes only. It is not a
medical diagnosis, and the results obtained from this
test should not be considered as such.

We tend to ignore our hearing health until it’s too late. This project will allow us to perform a

common hearing test known as the pure-tone test. Here’s how we run the test:

Step 1: Locate a quiet spot to perform the test (ideally in a soundproof room).

Step 2: Press button A to test play the tone, and button B to produce a random tone.

Step 3: After hearing the tone, refer to the gesture directory to decide which correct hand

gesture you should swipe above the sensor.

Step 4: Record your result on each turn to calculate your hearing accuracy as shown below.

Step 5: Repeat steps 3 - 5 for 10 rounds minimum.

Easy

Intermediate

Difficulty

DO = 262, MI = 330, SO = 392, TI = 494

Tone Frequencies (Hz)

DO = 262, RE = 294, MI = 330, FA = 350

One effective way to develop your ear for recognizing notes is through pitch ear training.

Simply play the same note repeatedly, and to make it more challenging, modify the tone for

each repetition based on the table below. The closer each tone is, the more difficult it

becomes for the player to distinguish.

Pitch Ear Training

Turn this
project into a

melody pattern
recognition

game by adding
2 tones for

each gesture!

Round
1
2
3
4

Results
x

3
4

75%

Name: Anna

Hearing Pure-tone Test

What’s next?

A block
diagram is a

useful tool for
explaining a
project flow

to others in a
clear and

simple way.

CHAPTER 3 GESTURE REACTION GAME

65

Random Tone
Play

After playing for a few rounds, it can become frustrating if you don’t know which gesture

direction represents which tone. To enhance the gaming experience, consider implementing

a straightforward gesture directory to guide the player while they guess the gesture as

shown in the image below.

 if not button_tone.value:
 oled.fill(0)
 oled.text("Playing Test Tune", 10, 10, 1)
 oled.show()

 oled.text("DO", 20, 55, 1)
 oled.show()
 simpleio.tone(buzzer, FREQ_DO, 0.3)

 oled.text("RE", 40, 45, 1)
 oled.show()
 simpleio.tone(buzzer, FREQ_RE, 0.3)

 oled.text("MI", 60, 35, 1)
 oled.show()
 simpleio.tone(buzzer, FREQ_MI, 0.3)

 oled.text("FA", 80, 25, 1)
 oled.show()
 simpleio.tone(buzzer, FREQ_FA, 0.3)

 while True:
 gesture = apds.gesture()
 oled.fill(0)
 oled.text("DO:Up", 50, 25, 1)
 oled.text("RE:Down", 45, 55, 1)
 oled.text("MI:Left", 5, 40, 1)
 oled.text("FA:Right", 75, 40, 1)
 oled.show()

Try Again!

DO: Up

RE: Down
MI: Left FA: Right

Since we are building a reaction arcade game with an OLED display, why not challenge

ourselves to make it even better? Let’s provide the player with more information about the

test tones when they press button A.

Playing Test Tune

DO RE MI
FA

Challenges

#2 - player‘s experience

#1 “DO RE MI FA” Tone tester

CHAPTER 3 GESTURE REACTION GAME

66

In this chapter, we will be exploring these two

incredible components: RGB LEDs and the

APDS9960 colour sensor module with EDU PICO.

RGB LEDs & Colour Sensor
Colour Detection Game

Imagine creating a game

that can detect colours and

respond with dazzling light

displays. Yes, you heard it right!

By the end of this chapter, you'll

have the knowledge and skills

to design and build your very

own colour detection game.

We'll start by understanding what

RGB LEDs are and how they can be

programmed to produce a mesmerizing

rainbow of colours. Then, we'll

introduce you to the APDS9960 colour

sensor, a powerful tool that can "see"

colours just like you do.

4.1 Introduction to RGB LEDs

4.2 Introduction to Colour Sensor

4.3 Project: Colour Detection Game

Introduction to RGB LEDs

How Does This Activity Work?

Here we have 5 colourful
RGB LEDs. Each is assigned with an
identification number (0-4) for you

to program individually.

You will learn to
control its colours
from a mix of Red,

Green, and Blue.

Output:
The RGB LEDs will repeatedly turn all LEDs on (blue colour) and off,

with a 1 second interval.

Libraries: board, time, neopixel.

RGB LEDs Configuration: num_pixels = 5, pixel_pin = GP14.

In this introduction, you will learn how to control the RGB LEDs module to create dazzling

displays of colour and patterns! Once you’re done with the sample code, make sure to check

out the last section where you will learn how to mix various colours on the RGB LEDs.

OFF for
1 second

Identification number
from 0 to 4

ON for
1 second

68

Line 5: Initializes the RGB LEDs object to pixel_pin (GP14), num_pixels to 5,
and the brightness parameter to 0.2 (20% brightness).

neopixel library provides functionality to control RGB LEDs or WS2812 RGB LED

modules. It is a must to have to complete this activity.

Import Necessary Libraries

Initialize Hardware Components

Code

1
2
3
4
5
6
7
8
9
10
11

RGB LEDs_MODULE.py

import board, time, neopixel

num_pixels = 5
pixel_pin = board.GP14
pixels = neopixel.NeoPixel(pixel_pin, num_pixels, brightness=0.2)

while True:
 pixels.fill((0,0,255))
 time.sleep(1)
 pixels.fill((0,0,0))
 time.sleep(1)

1

Libraries

import board, time, neopixel

3
4
5

RGB LEDs Pin Configuration

num_pixels = 5
pixel_pin = board.GP14
pixels = neopixel.NeoPixel(pixel_pin, num_pixels, brightness=0.2)

Don’t forget to
import neopixel
library for the
code to work!

CHAPTER 4 INTRODUCTION TO RGB LEDs

69

Click the Green Button to run the code and Red Button to stop.

RGB colour model

Hex

Hex

Hex

Hex

Hex

The RGB LEDs, or in technical terms, the WS2812 integrated light source, is a full red, green,

and blue LED that is integrated with a driver chip within each LED. This allows the RGB LEDs

to be individually addressable, allowing us to program each LED according to the

identification number.

1

Enter a Continuous Loop

The pixels.fill((0, 0, 255)) is used to fill all the LEDs with a specific colour. In this

case, (0, 0, 255) represents full blue and (0, 0, 0) represents black or no colour.

7
8
9
10
11

Light Up Pixel Continuously

while True:
 pixels.fill((0,0,255))
 time.sleep(1)
 pixels.fill((0,0,0))
 time.sleep(1)

You can mix Red, Green and Blue to
get the colour you want according to
the colour code. Combining all 3 will

create White light! Cool right?

CHAPTER 4 INTRODUCTION TO RGB LEDs

70

How Does This Activity Work?

Keep in mind
that the

brightness
of your

surrounding
can influence
the outcome.

Place the
colour card
above the

sensor here!

Output:
RGB LEDs light up in white colour at 20% brightness.

The colour sensor reads and prints the amount of red (r), green (g),

blue (b), and clear (c) light values with a 1 second interval.

Libraries: board, time, busio, neopixel, adafruit_apds9960.

RGB LEDs Configuration: num_pixels = 5, pixel_pin = GP14.

APDS9960 I2C Pins Configuration: SCL = GP5 and SDA = GP4.

Input:
Hold the colour cards above the colour sensor.

Introduction to Colour Sensor

Best Colour
Detection Distance

In the previous chapter, we explored the APDS9960 sensor, which was initially used to detect

gestures. However, you might be surprised to learn that this sensor is not limited to just

detecting gestures. It can also be used to identify and distinguish different colours!

red: 7201
green: 5708
blue: 3688
clear: 11802

Detected Red with
the highest value

71

Clear represents the
brightness of the surrounding

adafruit_apds9960.apds9960 provides functionality to work with the APDS9960

colour sensor.

Code

1
2

Libraries

import board, time, busio, neopixel
from adafruit_apds9960.apds9960 import APDS9960

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

COLOUR_SENSOR_MODULE.py

import board, time, busio, neopixel
from adafruit_apds9960.apds9960 import APDS9960

num_pixels = 5
pixel_pin = board.GP14
pixels = neopixel.NeoPixel(pixel_pin, num_pixels, brightness=0.2)

i2c = busio.I2C(board.GP5, board.GP4)
apds = APDS9960(i2c)
apds.enable_color = True

while True:
 pixels.fill((255,255,255))
 r, g, b, c = apds.color_data
 print(f"red: {r}, green: {g}, blue: {b}, clear: {c}")
 time.sleep(1)

CHAPTER 4 INTRODUCTION TO COLOUR SENSOR

72

Click the Green Button to run the code and Red Button to stop.

Line 4 - 6: Sets up the RGB LEDs strip with 5 LEDs connected to GPIO pin GP14. The

brightness of the RGB LEDs is set to 20% (0.2).

Line 8 - 9: The script initializes the I2C communication using pins GP5 and GP4.

An instance of the APDS9960 colour sensor is created.

Line 10: This line enables colour detection on the APDS9960 sensor.

4
5
6
7
8
9
10

RGB LEDs and APDS9960 Initialization

num_pixels = 5
pixel_pin = board.GP14
pixels = neopixel.NeoPixel(pixel_pin, num_pixels, brightness=0.2)

i2c = busio.I2C(board.GP5, board.GP4)
apds = APDS9960(i2c)
apds.enable_color = True

Line 13: Light up the RGB LEDs in white. By doing so, it creates a bright surrounding

next to the APDS9960 sensor which will allow the sensor to detect the object's

colour clearly and more accurately.

Line 14: apds.colour_data retrieves colour information from the APDS9960 sensor,

providing separate variables for red (r), green (g), blue (b), and clear (c) channels.

Line 15: Prints the RGB values in a formatted string (f-string) making it more human-

readable. In this case, the {r}, {g}, {b}, and {c} are the placeholders within the

f-string. They are used to indicate where the values of the variables r, g, b and, c

should be inserted within the text.

12
13
14
15
16

Main Loop

while True:
 pixels.fill((255,255,255))
 r, g, b, c = apds.color_data
 print(f"red: {r}, green: {g}, blue: {b}, clear: {c}")
 time.sleep(1)

CHAPTER 4 INTRODUCTION TO COLOUR SENSOR

73

while True:
 pixels.fill((255,255,255))
 r, g, b, c = apds.color_data
 print(f"red: {r}, green: {g}, blue: {b}, clear: {c}")
 if r > g and r > b:
 print("Red Detected")
 elif g > r and g > b:
 print("Green Detected")
 else:
 print("Blue Detected")
 time.sleep(1)

Colour sensing with the APDS9960 has diverse applications. For instance, it can be used in

colour sorting machines, where objects are categorized based on their colours. Additionally,

the colour data from the sensor can also be used to calculate ambient light levels (i.e. Lux),

which will be covered in a later chapter.

Modify the code to be able to compare and identify between red, green, or blue by using

the if..elif..else statement. While you’re at it, make use of the AND logical operator to

determine the most prominent colour in the data.

Mini Activity

Remember the
four photodiodes
used for gesture

detection?
Each of them
actually has a
blocking filter

that allows it to
detect colours!

CHAPTER 4 INTRODUCTION TO COLOUR SENSOR

74

Mia, you look sad.
What's bothering you?

Adam, Anna, can we
talk about something

important?

Of course,
Mia. What's

on your mind? I've noticed something
about Noah.

I think he might have
trouble seeing colours

correctly.

I am currently
working on a colour

detection game using the
EDU PICO. It could help us

determine if Noah has colour
vision difficulties.

75

How does this
colour detection

game work,
Adam?

It's a colour recognition
game. The OLED displays

a random colour.

The EDU PICO then activates a
5-second countdown. Noah must
quickly place the correct colour

card on the sensor.

That's a fantastic
idea. Let's try it out

on Noah.

What
happens
after the
game?

When Noah gets the colour right,
the buzzer cheers, when the
answer is wrong, the buzzer
produce a sad beep trice.

Noahhh..~~

Noah, we've created a
fantastic game, and we want
you to be the first one to try it.

Hi
Noah!

A new game?
I want to play!

76

77

You did it, Noah!
But remember, we're

just having fun.

 I did it!
I got it
right!

This is fun!
Let's play

more!

During the game, it became obvious that
Noah had a tough time recognizing colours.

It's no problem, Mia. I'm
happy that the game helped

raise awareness.

Thanks for the game,
Adam! Planning to talk to
my parents about Noah's
color vision. Might consult

an expert if needed.

Noah playing the colour detection game.

I think we've seen enough.
Noah is struggling to distinguish
red and green. I'm getting really

concerned.

Colour Detection Game
Colour Blindness Tester
Did you know that approximately 300 million people worldwide have colour vision

deficiency, also known as colour blindness? This condition can make it difficult to distinguish

between colours, affecting a person's education, academic performance, and even career

choices. In this project, we will learn how to build a basic colour detection game by

integrating colour sensor, RGB LEDs, buzzer, button and OLED display.

Output:
The OLED will print a random colour to the player.

If the player gets the colour correct, the buzzer will play an exciting

tone with a "Well Done!" message printed on the OLED.

If the player got it wrong, the buzzer would beep 3 times and the

OLED would proceed to print "Try Again".

The RGB LEDs will turn off after the countdown of 5 second ends.

 Find this colour:

 Red

Time left: 5 seconds

Detected: Green

Try Again.

Press A to

Start a New Game

Buzzer

Press A toStart a New Game

Colour
Sensor

RG
B

LE
D

s
Libraries: board, digitalio, time, simpleio, neopixel, busio, random,
adafruit_ssd1306, adafruit_apds9960, font5x8.bin.

RGB LEDs Configuration: num_pixels = 5, pixel_pin = GP14.

Input:
Press Button A to start the game with a 5 second countdown.

The player must quickly place the correct colour card above the

colour sensor once the RGB LEDs white light turns on.

OLED & APDS9960 I2C Pins Configuration: SCL = GP5 and SDA = GP4.

Audio / Buzzer Configuration: Buzzer to GP21.

Buttons Configuration: button_start (Yellow) to GP0 as digital input.

How Does This Activity Work?

78

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

PROJECT_COLOUR_DETECTION_GAME.py

import board, digitalio, time, simpleio, neopixel, busio, random
from adafruit_apds9960.apds9960 import APDS9960
import adafruit_ssd1306

i2c = busio.I2C(board.GP5, board.GP4)
apds = APDS9960(i2c)
apds.enable_color = True
apds.enable_proximity = True

buzzer = board.GP21
oled = adafruit_ssd1306.SSD1306_I2C(128, 64, i2c)

button_start = digitalio.DigitalInOut(board.GP0)
button_start.direction = digitalio.Direction.INPUT

num_pixels = 5
pixel_pin = board.GP14
pixels = neopixel.NeoPixel(pixel_pin, num_pixels, brightness=0.2)

MELODY_NOTE = [523, 659, 784, 0, 659, 784]
MELODY_DURATION = [0.12, 0.12, 0.12, 0.1, 0.12, 0.2]

colours = ["Red", "Green", "Blue", "Yellow", "Purple"]

oled.fill(0)
oled.text("Press A to", 35, 25, 1)
oled.text("Start a New Game", 15, 35, 1)
oled.show()

while True:
 pixels.fill((0,0,0))
 while button_start.value:
 pass
 oled.fill(0)
 oled.show()
 random_colour = random.choice(colours)
 oled.text("Find this colour:", 10, 10, 1)
 oled.text(f"{random_colour}", 20, 25, 1)
 oled.show()
 time.sleep(2)
 pixels.fill((255,255,255))
 oled.text("Time left: seconds", 5, 50, 1)

CHAPTER 4 COLOUR DETECTION GAME

79

Click the Green Button to run the code and Red Button to stop.

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

 for countdown in range(5, -1, -1):
 oled.fill_rect(70, 50, 10, 7, 0)
 oled.text(f"{countdown}", 70, 50, 1)
 oled.show()
 time.sleep(1)

 if apds.proximity < 10:
 oled.fill(0)
 oled.text("No object detected", 10, 15, 1)
 oled.text("Press A to", 35, 35, 1)
 oled.text("Start a New Game", 15, 45, 1)
 oled.show()
 for i in range(3):
 simpleio.tone(buzzer, 100, 0.1)
 simpleio.tone(buzzer, 0, 0.1)
 else:
 r, g, b, c = apds.color_data
 print(f"red: {r}, green: {g}, blue: {b}, clear: {c}")
 if r > g and r > b:
 if g > b:
 detected_colour = "Yellow"
 else:
 detected_colour = "Red"
 elif b > r and b > g:
 if r > g:
 detected_colour = "Purple"
 else:
 detected_colour = "Blue"
 elif g > r and g > b:
 detected_colour = "Green"

 oled.fill(0)
 oled.text(f"Detected: {detected_colour}", 20, 5, 1)
 oled.show()

 if detected_colour == random_colour:
 oled.text("Well Done!", 35, 25, 1)
 oled.text("Press A to", 35, 45, 1)
 oled.text("Start a New Game", 15, 55, 1)
 oled.show()
 for i in range(len(MELODY_NOTE)):
 simpleio.tone(buzzer, MELODY_NOTE[i], MELODY_DURATION[i])
 else:
 oled.text("Try Again.", 35, 25, 1)
 oled.text("Press A to", 35, 45, 1)
 oled.text("Start a New Game", 15, 55, 1)
 oled.show()
 for i in range(3):
 simpleio.tone(buzzer, 100, 0.1)
 simpleio.tone(buzzer, 0, 0.1)

CHAPTER 4 COLOUR DETECTION GAME

80

Import a total of 9 libraries for the following project to work. Libraries include

APDS9960 for colour sensor, adafruit_ssd1306 for OLED display, neopixel,
and random for generating a random number.

Import Necessary Libraries

1
2
3

Libraries

import board, digitalio, time, simpleio, neopixel, busio, random
from adafruit_apds9960.apds9960 import APDS9960
import adafruit_ssd1306

Initialize Hardware Components

Line 20: Defines a sequence of musical notes in frequency (Hz) for a melody.

The melody will be played with the player guessing the correct colour.

Line 21: The array defines the duration of each note in the corresponding position in

the MELODY_NOTE array. For example: 0.12 means that a note is played for

0.12 second.

Line 23: The colours array contains the names of different colours used in the game.

Line 25 - 28: Produce an initial message to instruct the player to press button A to

start a new game.

4
.
.
19
20
21
22
23
24
25
26
27
28

Initialization

MELODY_NOTE = [523, 659, 784, 0, 659, 784]
MELODY_DURATION = [0.12, 0.12, 0.12, 0.1, 0.12, 0.2]

colours = ["Red", "Green", "Blue", "Yellow", "Purple"]

oled.fill(0)
oled.text("Press A to", 35, 25, 1)
oled.text("Start a New Game", 15, 35, 1)
oled.show()

Line 4 - 19: Initializes APDS9960 sensor, OLED display, buzzer (GP21),
button A (GP0) and RGB LEDs module (GP14).

CHAPTER 4 COLOUR DETECTION GAME

81

30
31
32
33
34
35
36
37
38
39
40
41
42

Prepare the Game

while True:
 pixels.fill((0,0,0))
 while button_start.value:
 pass
 oled.fill(0)
 oled.show()
 random_colour = random.choice(colours)
 oled.text("Find this colour:", 10, 10, 1)
 oled.text(f"{random_colour}", 20, 25, 1)
 oled.show()
 time.sleep(2)
 pixels.fill((255,255,255))
 oled.text("Time left: seconds", 5, 50, 1)

Line 31: Clear the RGB LEDs strip (turn off all pixels).

Line 32: Wait for button_start (Button A) to be pressed to start the game.

Line 34: Clear the OLED display to prepare for the game.

Line 36: Randomly selects a colour from the colours array defined at line 23.

Line 38: Prints the randomly selected colour (stored in the random_colour variable)

on the OLED display.

Line 41: Light up all RGB LEDs in white to indicate the start of the game.

Line 42: Prints "Time left: seconds", where the blank space will be replaced with

the seconds value in the later code.

Enter a Continuous Loop

Line 44: The for loop iterates through a range of numbers from 5 down to 0.

Line 45: This line clears a rectangular region on the OLED display at the coordinates

of (70, 50), and with a size of (10 x 7). The cleared space will be used to update the

duration value in seconds located in between "Time l﻿eft: { } seconds".

Line 46: This line displays the current value of the countdown as text on the OLED.

Line 48: This line introduces a 1 second interval to synchronize with the countdown.

44
45
46
47
48

Starting the Game - The Countdown

 for countdown in range(5, -1, -1):
 oled.fill_rect(70, 50, 10, 7, 0)
 oled.text(f"{countdown}", 70, 50, 1)
 oled.show()
 time.sleep(1)

CHAPTER 4 COLOUR DETECTION GAME

82

 Find this colour:
 Red

Time left: 5 seconds

50
51
52
53
54
55
56
57
58

Detect Object Presence

 if apds.proximity < 10:
 oled.fill(0)
 oled.text("No object detected", 10, 15, 1)
 oled.text("Press A to", 35, 35, 1)
 oled.text("Start a New Game", 15, 45, 1)
 oled.show()
 for i in range(3):
 simpleio.tone(buzzer, 100, 0.1)
 simpleio.tone(buzzer, 0, 0.1)

Line 60 - 61: Read colour data and print the red, green, blue, and clear values

to the shell console.

Line 62 - 73: The following lines determine the detected colour based on the RGB

values by comparing them to one another.

Check the Proximity Value

Check the Colour Data Value

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

Detect Colour

 else:
 r, g, b, c = apds.color_data
 print(f"red: {r}, green: {g}, blue: {b}, clear: {c}")
 if r > g and r > b:
 if g > b:
 detected_colour = "Yellow"
 else:
 detected_colour = "Red"
 elif b > r and b > g:
 if r > g:
 detected_colour = "Purple"
 else:
 detected_colour = "Blue"
 elif g > r and g > b:
 detected_colour = "Green"

Best Colour
Detection Distance

Line 50: If the proximity value is less than 10, it indicates that there

is no object detected (e.g: colour card) above the proximity sensor.

Line 51 - 58: If no object is detected, the OLED prints the message shown in the

illustration above, followed by 3 beeps on the buzzer indicating the input on the

APDS9960 sensor is invalid.

CHAPTER 4 COLOUR DETECTION GAME

83

No object detectedPress A toStart a New Game

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

Compare Colour

 if detected_colour == random_colour:
 oled.text("Well Done!", 35, 25, 1)
 oled.text("Press A to", 35, 45, 1)
 oled.text("Start a New Game", 15, 55, 1)
 oled.show()
 for i in range(len(MELODY_NOTE)):
 simpleio.tone(buzzer, MELODY_NOTE[i], MELODY_DURATION[i])
 else:
 oled.text("Try Again.", 35, 25, 1)
 oled.text("Press A to", 35, 45, 1)
 oled.text("Start a New Game", 15, 55, 1)
 oled.show()
 for i in range(3):
 simpleio.tone(buzzer, 100, 0.1)
 simpleio.tone(buzzer, 0, 0.1)

Line 79: This condition checks if the detected colour is equal

to the random colour chosen at the beginning of the game.

Line 80 - 85: If the detected colour matches the random colour,

the OLED prints the text shown on the right, followed by a melody

iterating through MELODY_NOTE and MELODY_DURATION arrays.

Line 86 - 93: If the detected colour doesn’t match the random colour,

the OLED will print "Try Again" and the buzzer will beep 3 times.

Disclaimer: This colour blindness test is intended for
informational and educational purposes only. It is not
a medical diagnosis, and the results obtained from
this test should not be considered as such.

Bring awareness to colour blindness by letting your friends

experience the project! If the player is colour blind, this

project will allow them to vaguely identify the type of colour

blindness they are in. Collect the results as shown below.

The more mistakes made for either green and red, or blue

and yellow, the easier it is to identify which type of colour

blindness category you’re in.

Round
1
2
3
4

Results

Name:
Adam

Green
Blue

Yellow
Red

x

x

Colours

What’s Next?
Type of Colour Blindness

Deuteranopia
individuals have

difficulty in perceiving
green colour.

CHAPTER 4 COLOUR DETECTION GAME

84

Detected: GreenWell Done!
Press A toStart a New Game

while True:
 pixels.fill((0,0,0))
 while button_start.value:
 pass
 oled.fill(0)
 oled.show()
 random_colour = get_random_colour()
 prev_colour = random_colour

def get_random_colour():
 colours = ["Red", "Green", "Blue", "Yellow", "Purple"]
 x = random.choice(colours)
 while x == prev_colour:
 x = random.choice(colours)
 return x

It can be frustrating as a player to receive three identical colours in a row.

Unfortunately, using the random function means there’s still a chance that will happen.

You probably wonder what else can be done for our fellow gamers. For one, we can

improve the game by providing hints to the player. Here’s how it works, the flow of the

game will still be the same, but instead of lighting up all RGB LEDs in white, the first RGB

LEDs ID:0 will light up according to the same random colour. This will allow the user to

colour match and increase their chance of getting the right answer too. Give it a try!

We can include a ''check-

code'' before generating a

random colour to eliminate

the possibility of repeating

the same colours. While we

are at it, let's build a

function to generate the

random colour, this will

help us keep the code neat

too.

 if random_colour == "Red":
 pixels[0] = (255, 0, 0) # Red
 elif random_colour == "Green":
 pixels[0] = (0, 255, 0) # Green
 elif random_colour == "Blue":
 pixels[0] = (0, 0, 255) # Blue
 elif random_colour == "Yellow":
 pixels[0] = (255, 255, 0) # Yellow
 elif random_colour == "Purple":
 pixels[0] = (128, 0, 128) # Purple

 for countdown in range(5, -1, -1):
 oled.fill_rect(70, 50, 10, 7, 0)
 oled.text(f"{countdown}", 70, 50, 1)
 oled.show()
 time.sleep(1)

White Light

pixels[0]

pixels[1]

Challenges

#1 Improve Gaming Experience

#2 Colour Hint Indicator

CHAPTER 4 COLOUR DETECTION GAME

85

Automated Waste Bin
Servo Motor & Proximity Sensor

Introduction to Servo Motor 5.1

Introduction to Proximity Sensor 5.2

Project: Automated Waste Bin 5.3

This chapter introduces two key components: the

servo motor and the APDS9960 proximity sensor.

The servo motor is a crucial component in the

creation of robotic beings. It enables the

positioning of solar panels and the automation of

doors, among other applications.

The APDS9960 comes with various built-in

functionality, one of them is to measure proximity

for detecting nearby objects. It empowers

machines to perceive the world around them,

much like how our senses do for us. With its ability

to detect the proximity of objects, it can create

innovative solutions like touchless switches and

gesture-controlled devices.

By learning to harness the power of the servo

motor and APDS9960, you will be able to gain

insight into crafting responsive and intelligent

systems.

G
P9

G
P8

G
P7

G
P6

S
ERV

O

s
+
-

The servo motor wires come in
3 colours: s: orange / yellow

+: red
-: brown / black

Servo motors are essential components in the world of robotics and automation. They allow

precise control over the angular position of a shaft, making them ideal for applications like

controlling robotic arms, steering mechanisms, or even opening and closing doors. In this

activity, you will learn how to connect and control the servo motor to specific angles with

the EDU PICO.

Introduction to Servo Motor

Servo Motor Configuration:
Attach and screw the horn to the servo motor.

GP6 with orange wire connected to S, red to (+) and brown to (-),
as shown in the illustration below.

Libraries: board, time, servo, pwmio, adafruit_motor.

Output: The servo rotates to each angle position from 0 to 45, 90, 135,

and 180 degrees repetitively.

How Does This Activity Work?

87

Horn

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14

SERVO_MODULE.py

import board, time
from pwmio import PWMOut
from adafruit_motor import servo

PWM_Servo = PWMOut(board.GP6, frequency=50)
servo = servo.Servo(PWM_Servo, min_pulse=500, max_pulse=2500)

position = [0, 45, 90, 135, 180]

while True:
 for angle in position:
 servo.angle = angle
 print("servo moving to", angle)
 time.sleep(2)

Line 2: PWMOut is a class from the pwmio module that allows you to create a

PWM (Pulse Width Modulation) output on a specific pin.

Line 3: adafruit_motor module allows a high-level interface (allow programmer to

write code in a shorter amount of time) for controlling a servo motor.

Import Necessary Libraries

2
3

Libraries

from pwmio import PWMOut
from adafruit_motor import servo

CHAPTER 5 INTRODUCTION TO SERVO MOTOR

88

Click the Green Button to run the code and Red Button to stop.

Initialize Hardware Components

Line 5: Initializes GP6 pin as output with the PWM frequency parameter set to 50 Hz.

Line 6: Specify PWM_Servo as the PWM output for controlling the servo.

The min_pulse is set to 500, which represents the minimum pulse width for the servo

motor's rotation, and max_pulse is set to 2500, which represents the maximum

pulse width for the servo motor's rotation. These values define the range of motion

for the servo.

Line 8: Create a list with a variable named position that contains a sequence of

angles [0, 45, 90, 135, 180]. These angles represent the positions to which the servo

motor will be moved.

Line 11: Initiates a for loop that iterates through each value in the position list:
[0, 45, 90, 135, 180].

Line 12: Sets the angle of the servo motor to the value stored in the angle variable

in every iteration; this command also controls the servo motor’s position by

specifying the angle it should move.

Line 13: Prints the angle the servo motor is currently located.

Line 14: Remain at the same angle for 2 seconds before iterating to the next loop.

Enter a Continuous Loop

5
6
7
8

Configure Servo Pins & Rotation Sequence

PWM_Servo = PWMOut(board.GP6, frequency=50)
servo = servo.Servo(PWM_Servo, min_pulse=500, max_pulse=2500)

position = [0, 45, 90, 135, 180]

10
11
12
13
14

Main Loop

while True:
 for angle in position:
 servo.angle = angle
 print("servo moving to", angle)
 time.sleep(2)

CHAPTER 5 INTRODUCTION TO SERVO MOTOR

89

180° 0°

servo = servo.Servo(PWM_Servo, min_pulse=______, max_pulse=_____)

If your servo doesn't rotate from 0° to 180° correctly,

you may need to adjust the min_pulse and

max_pulse values to calibrate the range of movement.

If you hear a buzzing noise coming from the servo, the

value(s) you set may be too low or too high, causing the

servo mechanism to hit the end stop. Re-adjust the

values carefully to find a safe range of movement.

Modern RC servos rely on pulse-width

modulation to determine the angle of

mechanical rotation. Although a standard

RC servo expects a pulse every 20ms

(milliseconds), the duration of this pulse

can vary significantly across different

servos. In EDU PICO’s case, we are using

a pulse of 20ms where a PWM frequency

of 50Hz is set (1/50 = 20ms).

Pulse Width Modulation (PWM)

Servos have traditionally been limited to a pulse width range of 1000 - 2000us,

offering a 90° range of motion. However, modern servos have a much wider range of

motion, typically 170° - 180°, which requires pulse widths outside of the standard range.

A servo motor typically consists of a DC motor, gears, a

potentiometer (position sensor), and a control circuit. The

built-in controller translates commands in the form of

pulses to rotate the servo motor in degrees. Unlike a DC

motor that rotates continuously (Chapter 8), we can control

a servo motor rotation to an assigned angle between the

range of 0 to 180 degrees.

CHAPTER 5 INTRODUCTION TO SERVO MOTOR

90

The proximity sensor detects the presence or absence of objects using the reflection of

infrared light (IR) without physical contact. They are used in various applications, such as

touchless switches in public restrooms, automatic faucets, and smartphones. Proximity

sensors are also important in industrial automation, robotics, and automotive systems for

tasks like object detection and machine safety features.

Proximity Sensor I2C Pins Configuration: SCL = GP5 and SDA = GP4.

Libraries: board, time, busio, adafruit_apds9960.

Output:
The proximity sensor will continuously read and print the proximity

values to the shell console.

The closer the obstacle to the sensor, the greater the proximity

value.

The code will continuously update and display the proximity value

at an interval of 0.1 second.

Action Required: Enable the plotter function in Thonny IDE to have a

better visual on the proximity value.

Input: Move your hand up and down above the proximity sensor.

Introduction to Proximity Sensor

How Does This Activity Work?

Thonny: View > Plotter

Graphing data is a powerful tool
that simplifies complex information.

It also makes it easier to identify
patterns and trends.

91

Code

Line 4 - 5: Initializes the I2C communication bus for the APDS9960 sensor for the

user to interact with it. The configuration is similar to when using the gesture and

colour sensor.

Line 6: Enables the proximity feature of the APDS9960 sensor. It allows the sensor

to detect objects or the proximity of objects in front of it.

4
5
6

APDS9960 Initialization

i2c = busio.I2C(board.GP5, board.GP4)
apds = APDS9960(i2c)
apds.enable_proximity = True

CHAPTER 5 INTRODUCTION TO PROXIMITY SENSOR

Plotter

1
2
3
4
5
6
7
8
9
10
11

PROXIMITY_MODULE.py

import board, time, busio
from adafruit_apds9960.apds9960 import APDS9960

i2c = busio.I2C(board.GP5, board.GP4)
apds = APDS9960(i2c)
apds.enable_proximity = True

while True:
 proximity = apds.proximity
 print("Proximity:", proximity)
 time.sleep(0.1)

Thonny: View > Plotter

92

Click the Green Button to run the code and Red Button to stop.

while True:
 proximity = apds.proximity
 duration = 1 - proximity / 255
 print(f"Proximity: {proximity}, duration: {duration} sec")
 simpleio.tone(buzzer, 440, 0.1)
 time.sleep(duration)

Let’s turn this activity into an obstacle-detection beeping device! First, import simpleio
library so that we can initialize the buzzer’s GP21 pin.

Line 9: Reads the proximity value from the APDS9960 sensor and assigns it to the

proximity variable. The proximity value represents how close an object is to the

sensor. The nearer the object, the greater the value.

Line 10: Prints the current proximity value along with the string "Proximity:" text to

the shell console, allowing you to monitor and see the proximity value as it changes.

mini activity

When you place your
smartphone next to your
ear and the display turn
off automatically, that’s

actually triggered by using
this similar sensor.

Proximity = 0

Proximity = 1

Proximity = 125

Proximity = 255

8
9
10

Main Loop

while True:
 proximity = apds.proximity
 print(f"Proximity:{proximity}")

CHAPTER 5 INTRODUCTION TO PROXIMITY SENSOR

93

IR Light

Target

Reflected
IR Light

IR LED
Emitter

APDS9960 - Proximity Sensor

Take note that the IR
sensor may not work

as expected under
these circumstances.

Target

Object too small.

Target

Object has black
or dark surface

IR Photodiode

The APDS9960 proximity sensor works by emitting and detecting infrared light to determine

the distance of an object or obstacle. The sensor includes an IR photodiode that is placed

adjacent to the IR LED.

IR LED (Emitter): Active IR sensors consist of an IR LED (Infrared Light Emitting Diode)

that emits infrared light (around 950 nanometers) when powered on.

IR Photodiode (Receiver): The IR photodetector (usually known as a photodiode or a

phototransistor) is placed adjacent to the IR LED. It is sensitive to the same infrared light

that the IR LED emits. The intensity of the reflected infrared light is used to determine the

proximity of the object!

CHAPTER 5 INTRODUCTION TO PROXIMITY SENSOR

94

I know, right?
Sometimes it discourages

me to even use the
trash can.

I read online about trash
can that can open it’s lid

just by using sensors.
What do you say we try

making one?

I'm in! But we might
need some help with the

mechanical stuff.

Don't worry.
That I can

help!

They begin working on the TrashBot.

Ugh, this trash can is
always overflowing! It's

such a pain to open the lid
and throw things away.

We can use the
EDU PICO's IR sensor to detect
our hands and makes the servo
motor rotate to open the lid.

95

So, how the
EDU PICO’'s IR
sensor work,

Anna? Its working!
This is going to
be so handy!

And it's
more

hygienic
too.

That's a cool idea!
It'll stop spills and make

it work even better.

Well, it uses an
IR sensor to detect the
presence of an object.

We can program it to open
the lid when it detects an

object nearby.

In the near future, we
can add a sensor inside to check

if it's already full. That way, it
won't open if it's stuffed.

Let's
remember

that for
our next
upgrade.

Let’s keep the
lid open for 5

seconds before
closing.

96

Output:
If an object is detected by the proximity sensor, the servo motor will

rotate from 70 to 150 degrees, opening the lid of the trashbin.

The OLED will print the status of the lid from "Status: Lid Close" to

"Status: Lid Open" once the sensor is triggered.

The lid remains open for 5 second before closing.

How Does This Activity Work?

Proximity Sensor and OLED Configuration: SCL = GP5 and SDA = GP4.

Libraries: board, time, busio, adafruit_ssd1306, adafruit_motor, pwmio,
adafruit_apds9960, font5x8.bin.

Servo Motor Configuration: GP6 with orange wire connected to (S),

red to (+), and brown to (-), as shown in the illustration below.

Input: Place your hand (or any object) roughly 1 cm above the proximity

sensor to activate the servo motor.

Automated Waste Bin
TrashBot Smart Bin
Time to build your very own TrashBot! Equipped with an IR sensor and a servo motor,

it detects the presence of your hand (or any object) and automatically opens its lid,

eliminating the need for physical contact. This makes using it more convenient and hygienic,

reducing the risk of germs spreading.

Clos
e a

t 7
0°

Open at
 150°

After 5
second

Status: Lid Open

Please throw
the rubbish into the
bin.

Status: Lid Close

Place hand above
proximity sensor
to open lid.

G
P9

G
P8

G
P7

G
P6

S
ERV

O

s
+
-

97

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

PROJECT_AUTOMATED_WASTE_BIN.py

import board, time, busio, adafruit_ssd1306
from adafruit_apds9960.apds9960 import APDS9960
from adafruit_motor import servo
from pwmio import PWMOut

i2c = busio.I2C(board.GP5, board.GP4)
apds = APDS9960(i2c)
apds.enable_proximity = True

oled = adafruit_ssd1306.SSD1306_I2C(128, 64, i2c)

PWM_Servo = PWMOut(board.GP6, frequency=50)
servo = servo.Servo(PWM_Servo, min_pulse=500, max_pulse=2500)
servo.angle = 70

def show_lid_close():
 oled.fill(0)
 oled.text("Status: Lid Close", 10, 10, 1)
 oled.text("Place hand above", 10, 30, 1)
 oled.text("proximity sensor", 10, 40, 1)
 oled.text("to open lid.", 10, 50, 1)
 oled.show()

def show_lid_open():
 oled.fill(0)
 oled.text("Status: Lid Open", 10, 10, 1)
 oled.text("Please throw", 10, 30, 1)
 oled.text("the rubbish into", 10, 40, 1)
 oled.text("the bin.", 10, 50, 1)
 oled.show()

show_lid_close()

while True:
 proximity = apds.proximity

 if proximity > 20:
 servo.angle = 150
 show_lid_open()
 time.sleep(5)

 servo.angle = 70
 show_lid_close()

CHAPTER 5 AUTOMATED WASTE BIN

98

Line 1: adafruit_ssd1306 is used for controlling the OLED display.

Line 2: adafruit_apds9960 is used for controlling the APDS9960 proximity sensor.

Line 3 - 4: adafruit_motor and pwmio are used for control of the servo motor.

Import Necessary Libraries

1
2
3
4

Libraries

import board, time, busio, adafruit_ssd1306
from adafruit_apds9960.apds9960 import APDS9960
from adafruit_motor import servo
from pwmio import PWMOut

Line 6: Initialize I2C communication on GPIO pins GP5 and GP4.

Line 7 - 8: Create an instance of the APDS9960 proximity sensor and enable

proximity sensing.

Line 10: Initialize SSD1306 OLED display with a resolution of 128x64 pixels.

Line 12: Create a PWMOut instance for controlling a servo on GPIO pin GP6 with a

PWM frequency of 50 Hz.

Line 13: Create an instance (servo) using the servo.Servo class, specifying the

PWMOut instance and pulse width limits.

Line 14: Initialize the servo motor by rotating it to 70 degrees.

Initialize Hardware Components

6
7
8
9
10
11
12
13
14

Hardware Initialization

i2c = busio.I2C(board.GP5, board.GP4)
apds = APDS9960(i2c)
apds.enable_proximity = True

oled = adafruit_ssd1306.SSD1306_I2C(128, 64, i2c)

PWM_Servo = PWMOut(board.GP6, frequency=50)
servo = servo.Servo(PWM_Servo, min_pulse=500, max_pulse=2500)
servo.angle = 70

CHAPTER 5 AUTOMATED WASTE BIN

99

Define a Custom Function

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

def show_lid_close():
 oled.fill(0)
 oled.text("Status: Lid Close", 10, 10, 1)
 oled.text("Place hand above", 10, 30, 1)
 oled.text("proximity sensor", 10, 40, 1)
 oled.text("to open lid.", 10, 50, 1)
 oled.show()

def show_lid_open():
 oled.fill(0)
 oled.text("Status: Lid Open", 10, 10, 1)
 oled.text("Please throw", 10, 30, 1)
 oled.text("the rubbish into", 10, 40, 1)
 oled.text("the bin.", 10, 50, 1)
 oled.show()

show_lid_close() function is called to display information

when the lid is in the closed position. show_lid_open function

displays information when the lid is in the open position.

Enter a Continuous Loop

Line 35: Read proximity data from the APDS9960 sensor using apds.proximity and

store it in the proximity variable.

Line 37: A proximity value greater than 20 indicates that an object is close to the

proximity sensor.

Line 38 - 43: When the proximity sensor detects an object, the servo motor will

rotate and remain at 150 degrees for 5 second. After 5 second, the servo motor

returns to its original state at 70 degrees, closing the lid of the trash bin.

34
35
36
37
38
39
40
41
42
43

Main Loop

while True:
 proximity = apds.proximity

 if proximity > 20:
 servo.angle = 150
 show_lid_open()
 time.sleep(5)

 servo.angle = 70
 show_lid_close()

CHAPTER 5 AUTOMATED WASTE BIN

100

Status: Lid ClosePlace hand above
proximity sensor

to open lid.

Status: Lid OpenPlease throwthe rubbish into
the bin.

A. Servo Stick

Cable tie with
servo horn

Close

45
m

m

Step 1

45mm

Step 3

Servo
screw

Step 2

Fold

Step 4

Servo
motor

Let’s build our very own Trashbot! You will need these materials to accomplish this project.

Worry not, all the materials are already included in the EDU PICO set.

Open

What’s Next?

Trashbot accessory

B. Box

Step 1

Fold the Trashbot box accessory as shown below.

Step 2

CHAPTER 5 AUTOMATED WASTE BIN

101

Step 3: Step 4: Step 5:

Step 6: Step 7: Step 8: Step 9:

Step 10:
Fold the top of the Trashbot downwards, and then it’s complete!

Fold the Trashbot’s body.

Fold the Trashbot’s head.

CHAPTER 5 AUTOMATED WASTE BIN

102

Close

Open

70°150°

Loop

Hook

Step 11:
Attach the velcro’s hook above the loop and attach

the servo motor to the inner back of the Trashbot.

Step 12:
Slide the cable through

the back of the box.

Step 13:
Connect Servo Motor Cable to EDU PICO board at GP6.

Step 14:
Test the Trashbot’s servo motor’s angle.

CHAPTER 5 AUTOMATED WASTE BIN

103

1s

Buzzzzz

Now that we've got the Trashbot running, why don't we introduce two more elements into the

project? The first element, let’s light up the RGB LEDs in green when an obstacle is detected

and remain red when there are no obstacles. After that, the RGB LEDs starts a countdown to

indicate how much time is left before the lid of the bin closes.

The next element we will introduce is sound; let’s add a soothing buzz tone when the lid

returns to its closed state. The tone will indicate to the user that the Trashbot's work is done.

Ready? Let's give it a try!

You will
need to include

the codes
highlighted in

red boxes.

4s 3s 2s 0s

RGB LEDs Countdown

Challenge

CHAPTER 5 AUTOMATED WASTE BIN

Buzzer Triggered
200Hz for 1 second

Green LED Light Up

Servo Motor Open Lid Red LED Light Up

Buzzer Triggered
800Hz for 1 second

Servo Motor Close Lid

Obstacle
detected?

Yes

No

Continue to wait

Red LED Light Up

Turn each LED to Red in every second for 5 seconds
[Hint: Use For.. loop for 5 interations]

104

Noise Pollution Monitoring System
Potentiometer & PDM Sound Sensor

Hello Makers! In this chapter, we will cover

both Potentiometer and the PDM Sound

Sensor. These may not sound as futuristic as

gesture sensors or OLED displays,

but they hold the power to bring your

projects to life in amazing ways.

Imagine being able to control the brightness

of an LED or the speed of a motor with a

simple twist on the potentiometer, or by

reacting to the sound around you.

Well, that's exactly what the Potentiometer

and PDM Sound Sensor are here for!

So, grab your EDU PICO, and let's embark on

another exciting journey as we uncover the

potential of the potentiometer and PDM

Sound Sensor. Let’s go!

6.1 Introduction to Potentiometer

6.2 Introduction to PDM Sound Sensor

6.3 Project: Room Noise Monitoring System

In this lesson, you will learn to interpret analog signal voltage while manipulating

a variable resistor or a potentiometer (pot). This is also one of the more popular projects

created for beginners to learn how to control electrical output by using a simple analog

input device.

Anti-clockwiseClockwise

Voltage
Reading

Output:
The code continuously reads the voltage from the analog pin GP28
(connected to the EDU PICO potentiometer) and prints the voltage

value to the shell console at an interval of 0.1 second.

Input:
Turning the potentiometer knob will alter the output flow of

electricity.

Turning the knob clockwise will increase the voltage, and anti-

clockwise will reduce the voltage.

Potentiometer Configuration: GP28 with analog input.

Libraries: board, time, AnalogIn.

Introduction to Potentiometer

How Does This Activity Work?

106

1
2
3
4
5
6
7
8
9

POTENTIOMETER_MODULE.py

import time, board
from analogio import AnalogIn

potentio = AnalogIn(board.GP28)

while True:
 voltage = (potentio.value * 3.3) / 65535
 print(voltage)
 time.sleep(0.1)

Code

Import Necessary Libraries

Line 2: analogio library enables interaction with analog pins, typically used for

reading analog output voltage values through components like the potentiometer.

Libraries

1
2

import time, board
from analogio import AnalogIn

Line 4: Create an AnalogIn instance named potentio and assign it to pin GP28. This

prepares the pin to read analog voltage.

Initialize Hardware Components

4 potentio = AnalogIn(board.GP28)

CHAPTER 6 INTRODUCTION TO POTENTIOMETER

107

Click the Green Button to run the code and Red Button to stop.

Remember
to assign the

potentiometer to
GP28 analog pin.

Enter a Continuous Loop

A potentiometer, often referred to as a "pot," is a type

of variable resistor used to control electrical signals. It

consists of a resistive element with a movable contact

called a wiper. If you have a 10kΩ potentiometer,

turning the knob allows you to adjust the resistance

value between 0Ω to 10,000Ω.

Line 7: Read the analog voltage from the potentiometer using potentio.value.

This value is an integer ranging from 0 to 65535 (2^16 - 1), which represents the

voltage level across the potentiometer. The raw analog value is then converted to

voltage by scaling it from the range [0, 65535] to [0, 3.3] volts.

Line 8: Print the calculated voltage to the shell console.

Line 9: Add a small delay of 0.1 second using time.sleep(0.1) to limit the rate of

voltage readings.

6
7
8
9

while True:
 voltage = (potentio.value * 3.3) / 65535
 print(voltage)
 time.sleep(0.1)

Pot are commonly
used in audio devices
for volume & balance

control too!

Potentiometer

CHAPTER 6 INTRODUCTION TO POTENTIOMETER

108

How Does This Activity Work?

Make sure
 to place the

EDU PICO on a
stable surface.
Any vibration or
movement will
create a false

reading!

PDM Microphone

Output:
The sensor will measure sound level in voltage (magnitude) and

convert it to sound level in decibels (dB).

If the magnitude is greater than 0, the code prints the sound level

in decibels (dB) at the shell console with an interval of 0.1 second.

If the magnitude is less than 0, the code prints "Magnitude is too

small to calculate dB." at the shell console.

PDM microphone configuration: Data (DAT) = GP2, Clock (CLK) = GP3.

Libraries: board, time, array, math, audiobusio.

A PDM microphone, or Pulse-Densitiy Modulation microphone, is a type of microphone that

converts sound waves into a digital signal. Unlike our traditional microphones that use

analog signals, the digital signals produced by PDM microphones are more resistant to noisy

environments, making them ideal for applications such as smart home voice commands,

noise level monitoring, or even sound analysis.

Introduction to Sound Sensor

109

Code

math: Provides mathematical functions.

audiobusio: Provides audio input and output functionality.

Import Necessary Libraries

Libraries

1 import board, time, array, math, audiobusio

CHAPTER 6 INTRODUCTION TO SOUND SENSOR

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

PDM_SOUND_MODULE.py

import board, time, array, math, audiobusio

mic = audiobusio.PDMIn(board.GP3, board.GP2, sample_rate=16000, bit_depth=16)
samples = array.array('H', [0] * 6000)

def log10(x):
 return math.log(x) / math.log(10)

def normalized_rms(values):
 minbuf = sum(values) / len(values)
 samples_sum = sum(float(sample - minbuf) * (sample - minbuf)for sample in values)
 return math.sqrt(samples_sum / len(values))

while True:
 mic.record(samples, len(samples))
 magnitude = normalized_rms(samples)
 if magnitude > 0:
 sound_level_dB = 20 * log10(magnitude)
 print(f"Sound Level (dB): {sound_level_dB:.2f}")
 else:
 print("Magnitude is too small to calculate dB.")
 time.sleep(0.1)

Thonny: View > Plotter

110

Click the Green Button to run the code and Red Button to stop.

Line 6 - 7: Defines a function log10(x) to calculate the base-10 logarithm of value x.

This is used to convert the sound magnitude to decibels.

Line 9 - 12: This function calculates the normalized root mean square (RMS)

of the audio samples. The variable values is an array of audio samples measured

from the PDM microphone. It calculates the RMS by subtracting the mean value

(minbuf) from each sample, squaring the result, and then taking the square root of

the average of the squared values.

Initialize Hardware Components

Line 3: Configures the microphone to use GPIO pins GP3 and GP2 for audio input

and sets the sample rate to 16,000 samples per second with bit depth set to 16 bits.

Line 4: An array named samples is created to collect and store 6,000 audio

samples per cycle.

Initialize Microphone

3
4

mic = audiobusio.PDMIn(board.GP3, board.GP2, sample_rate=16000, bit_depth=16)
samples = array.array('H', [0] * 6000)

Defining Custom Functions

def log10(x):
 return math.log(x) / math.log(10)

def normalized_rms(values):
 minbuf = sum(values) / len(values)
 samples_sum = sum(float(sample - minbuf) * (sample - minbuf)for sample in values)
 return math.sqrt(samples_sum / len(values))

6
7
8
9
10
11
12

Functions

What is sample rate? Think of it as how often you
take pictures. With a higher sample rate, you take

more pictures per second, like a fast camera.

CHAPTER 6 INTRODUCTION TO SOUND SENSOR

111

Line 15: Record audio samples from the microphone into the samples array using

mic.record.

Line 16: Calculate the magnitude of the audio signal using the normalized_rms
function.

Line 17 - 19: If the magnitude is greater than 0 (indicating that there is some sound),

calculate the sound level in decibels (dB) using the log10 function and print it to the

shell console.

Line 20 - 21: Else if the magnitude is less than or equal to 0, a message is printed

indicating that the magnitude is too small to be calculated.

Enter a Continuous Loop

Sound is generated through the vibrations of objects, such as when a drum is struck.

These vibrations set the surrounding air molecules (the medium) into motion, resulting in the

formation of sound waves.

Sound sensors are now integrated into almost all of our daily devices.

For example, smartphones utilize voice recognition technology, enabling

users to interact with virtual assistants simply by speaking commands or queries.

Sound Sensor

14
15
16
17
18
19
20
21
22

Main Loop

while True:
 mic.record(samples, len(samples))
 magnitude = normalized_rms(samples)
 if magnitude > 0:
 sound_level_dB = 20 * log10(magnitude)
 print(f"Sound Level (dB): {sound_level_dB:.2f}")
 else:
 print("Magnitude is too small to calculate dB.")
 time.sleep(0.1)

The
operation
of a sound
sensor is
similar to

that of our
ears.

CHAPTER 6 INTRODUCTION TO SOUND SENSOR

112

Please lower your
voice. We're in a

library.

Overheard

Sigh... these
kids just never listen.

If only there’s a way to
get them to be more

mindful of others.

Agreed. Let's find a
solution that works for

everyone.

We need to address this
noise issue. It's affecting

everyone.

113

Back to order

A few moment later...

I overheard the
librarian expressing
frustration about the
noise in the library.

What if we create something
to help Ms. Ara? Like a Noise

Monitoring System?

That sounds like a
great idea. But how
can we make one?

We can use the PDM
microphone in our EDU PICO

to sense the noise levels

Alright, let's divide
and conquer. Adam,

you're on coding duty.

Got it.

Let's test it.
Make some noise

near the PDM
microphone.

Like
this?

It kinda works now.
Let's demonstrate it to

the librarian.

If the noise is above the
threshold, the LED turns red;

if it's quiet, it turns green.

I'm setting up the
code to trigger the alert. Anna,

can you check if the LEDs light up
correctly?

114

Sure, Adam. Looks
good so far.

Hey Miss Ara, we've been
working on a Noise Monitoring

System to help keep the
library quiet. Mind if we do a

quick demo?

Oh, that sounds
interesting. Go

ahead, give it a try..

Let's try to play
some music and see how

the system react.

That's quite clever!
I can't wait for this to be
deployed in the library.

It works!
The system detected
the noise and gave a

little alert.
Alert showing red light

Alert showing green light

It's working like a charm!
Our library now has a silent

guardian.
And we can even adjust

the alert threshold to adapt to
different environments too.

Hey, guys, we need to
keep it down. The library's

guardian is watching.

whisper

115

How Does This Activity Work?

Simulate
noise

by playing
audio from
your mobile

phone or
laptop!

Libraries: board, time, AnalogIn, neopixel, busio, array, audiobusio,

math, adafruit_ssd1306.

PDM Microphone Configuration: GP2 and GP3.

OLED I2C Configuration: SCL = GP5 and SDA = GP4.

Potentiometer Configuration: GP28 with analog input.

Input:
Ambient noise (The louder the noise, the higher the decibel (dB)).

Adjust potentiometer value to adjust noise threshold.

Output:
If noise received from the PDM microphone exceeds the threshold

value set by the potentiometer, the RGB LEDs will light up in red,

indicating the space is too noisy.

If noise is below the threshold, RGB LEDs will light up in green,

indicating a safe noise level.

Noise pollution is a critical issue that often goes unnoticed in our ever-expanding urban

society, ultimately affecting our overall well-being and quality of life. Fortunately, we can

address this problem with the help of PDM microphone and EDU PICO. By learning how to

use these tools, we can effectively measure and analyze the noise levels in our environment.

Through this section, we will program a fully functional noise monitoring system that allows

users to input an acceptable noise limit. In no time, you'll be able to deploy your EDU PICO

for accurate noise measurement in your classroom or local library!

Sound Level (dB):
40.50 dB

Threshold: 43.0 dB
SOUND LEVEL LOW!

Noise Pollution Monitoring System

Adjust noise
threshold value

116

Code

CHAPTER 6 NOISE POLLUTION MONITORING SYSTEM

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

PROJECT_ROOM_NOISE_MONITORING.py

import board, time, neopixel, busio, array, math, audiobusio, adafruit_ssd1306
from analogio import AnalogIn

i2c = busio.I2C(board.GP5, board.GP4)
oled = adafruit_ssd1306.SSD1306_I2C(128, 64, i2c)
potentiometer = AnalogIn(board.GP28)

pixels = neopixel.NeoPixel(board.GP14, 5, brightness=0.2)
pixels.fill(0)

mic = audiobusio.PDMIn(board.GP3, board.GP2, sample_rate=16000, bit_depth=16)
samples = array.array('H', [0] * 6000)

sound_min = 30
sound_max = 80

def log10(x):
 return math.log(x) / math.log(10)

def normalized_rms(values):
 minbuf = sum(values) / len(values)
 samples_sum = sum((sample - minbuf) ** 2 for sample in values)
 return math.sqrt(samples_sum / len(values))

def calculate_sound_level_dB(samples):
 magnitude = normalized_rms(samples)
 sound_level_dB = 20 * log10(magnitude)
 return sound_level_dB

while True:
 oled.fill(0)
 mic.record(samples, len(samples))
 sound_level_dB = calculate_sound_level_dB(samples)
 pot_value = potentiometer.value / 65535 * (sound_max - sound_min) + sound_min

 oled.text("Sound Level (dB):", 15, 5, 1)
 oled.text(f"{sound_level_dB:.2f} dB", 40, 20, 1)
 oled.text(f"Threshold: {pot_value:.1f} dB", 10, 35, 1)

 if sound_level_dB > pot_value:
 pixels.fill((255, 0, 0))
 oled.text("SOUND LEVEL HIGH!", 15, 50, 1)
 else:
 pixels.fill((0, 255, 0))
 oled.text("SOUND LEVEL LOW!", 20, 50, 1)
 time.sleep(0.1)
 oled.show()

117

Click the Green Button to run the code and Red Button to stop.

Line 1: Imports various libraries and modules, such as board for pin definitions,

time for delays, neopixel for controlling RGB LEDs, busio for I2C communication,

array for creating arrays, math for mathematical operations, audiobusio for audio

input, and adafruit_ssd1306 for the SSD1306 OLED display.

Line 2: Imports AnalogIn from analogio module for reading analog input.

Import Necessary Libraries

import board, time, neopixel, busio, array, math, audiobusio, adafruit_ssd1306
from analogio import AnalogIn

1
2

Libraries

Line 11 - 12: Initializes audio input using the PDM (Pulse-Density Modulation) method

from the microphone connected to pins GP3 and GP2. It sets the sample rate to

16,000 samples per second and a bit depth of 16. It also initializes an array variable

to store the audio samples.

Line 14 - 15: sound_min and sound_max determine the minimum and maximum

sound level thresholds (in decibels) that will be adjusted using the potentiometer.

Initialize Hardware Components

11
12
13
14
15

Hardware Initialization

mic = audiobusio.PDMIn(board.GP3, board.GP2, sample_rate=16000, bit_depth=16)
samples = array.array('H', [0] * 6000)

sound_min = 30
sound_max = 80

CHAPTER 6 NOISE POLLUTION MONITORING SYSTEM

118

Enter a Continuous Loop

Define Custom Functions

Line 17 - 18: This function calculates the base 10 logarithm of a given number x. In

many scientific and engineering applications, sound levels are expressed in decibels

(dB), and the logarithm base 10 is commonly used to calculate these levels.

Line 20 - 23: This function calculates the Root Mean Square (RMS) value of a set of

audio samples. The RMS value is used to quantify the magnitude of an audio signal.

Line 25 - 28: The calculate_sound_level_dB function calculates the sound level in

dB by first finding the RMS magnitude of the audio signal and then converting it to a

logarithmic scale with a scaling factor, making it a common method for expressing

audio levels in a more human-readable form.

Line 32: Records audio samples from the microphone using the mic.record method.

It captures a number of samples specified by len(samples) and stores them in the

samples array.

Line 33: Calls the calculate_sound_level_dB function to calculate and return the

sound level in decibels (dB) using the audio samples from the microphone.

17
18
19
20
21
22
23
24
25
26
27
28

def log10(x):
 return math.log(x) / math.log(10)

def normalized_rms(values):
 minbuf = sum(values) / len(values)
 samples_sum = sum((sample - minbuf) ** 2 for sample in values)
 return math.sqrt(samples_sum / len(values))

def calculate_sound_level_dB(samples):
 magnitude = normalized_rms(samples)
 sound_level_dB = 20 * log10(magnitude)
 return sound_level_dB

Calculate Sound in Decibel (dB)

30
31
32
33

Record & Process Audio Sample

while True:
 oled.fill(0)
 mic.record(samples, len(samples))
 sound_level_dB = calculate_sound_level_dB(samples)

CHAPTER 6 NOISE POLLUTION MONITORING SYSTEM

119

Line 34: Reads the value of the potentiometer, maps it to a range between

sound_min and sound_max, and stores the result in the pot_value variable. This

value represents the threshold for determining whether the sound level is high or low.

Lines 36 - 38: Update the OLED display with text information. They display the

"Sound Level (dB)" label, the actual sound level in decibels (sound_level_dB), and

the threshold value set by the potentiometer (pot_value).

Sound Level Conditions

Line 40 - 42: Here, the code checks whether the sound_level_dB is greater than

the pot_value. If it is, it fills the RGB LEDs with a red RGB value of (255, 0, 0) to

indicate a high sound level. It also displays "SOUND LEVEL HIGH!" on the OLED

screen.

Line 43 - 45: If the sound level is not greater than the threshold, it fills the RGB LEDs

with green RGB value of (0, 255, 0) to indicate a low sound level. It also displays

"SOUND LEVEL LOW!" on the OLED screen.

34
35
36
37
38

Reads Potentiometer Value & Setup OLED

 pot_value = potentiometer.value / 65535 * (sound_max - sound_min) + sound_min

 oled.text("Sound Level (dB):", 15, 5, 1)
 oled.text(f"{sound_level_dB:.2f} dB", 40, 20, 1)
 oled.text(f"Threshold: {pot_value:.1f} dB", 10, 35, 1)

40
41
42
43
44
45
46
47

Check Sound Level

 if sound_level_dB > pot_value:
 pixels.fill((255, 0, 0))
 oled.text("SOUND LEVEL HIGH!", 15, 50, 1)
 else:
 pixels.fill((0, 255, 0))
 oled.text("SOUND LEVEL LOW!", 20, 50, 1)
 time.sleep(0.1)
 oled.show()

CHAPTER 6 NOISE POLLUTION MONITORING SYSTEM

120

import board, time, neopixel, busio, array, math, audiobusio, adafruit_ssd1306
from analogio import AnalogIn

i2c = busio.I2C(board.GP5, board.GP4)
oled = adafruit_ssd1306.SSD1306_I2C(128, 64, i2c)
potentiometer = AnalogIn(board.GP28)

pixels = neopixel.NeoPixel(board.GP14, 5, brightness=0.2)
pixels.fill(0)

mic = audiobusio.PDMIn(board.GP3, board.GP2, sample_rate=16000, bit_depth=16)
samples = array.array('H', [0] * 6000)

sound_min = 30
sound_max = 80

while True:
 oled.fill(0)
 mic.record(samples, len(samples))
 sound_level_dB = calculate_sound_level_dB(samples)
 pot_value = potentiometer.value / 65535 * (sound_max - sound_min) + sound_min

 oled.text(“Sound Level (dB):”, 15, 5, 1)
 oled.text(f"{sound_level_dB:.2f} dB", 40, 20, 1)
 oled.text(f"Threshold: {pot_value:.1f} dB", 10, 35, 1)

 if sound_level_dB > pot_value:
 pixels.fill((255, 0, 0))
 oled.text(“SOUND LEVEL HIGH!”, 15, 50, 1)
 else:
 pixels.fill((0, 255, 0))
 oled.text(“SOUND LEVEL LOW!”, 20, 50, 1)
 time.sleep(0.1)
 oled.show()

A

B

C

Adjust sample size for better
accuracy & remove sudden spike.

Having an OLED to display noise decibels is great; however, in practical usage, the OLED

may be too small for everyone in the surroundings to notice. In this challenge, we will solve

this problem by integrating a servo motor as a noise indicator, reflecting the values

displayed on the OLED, but in a physical form with a larger view.

The code below should help get you started. Fill in the missing code with the appropriate

information based on the description given:

Challenge - Servo Sound Meter

A: Include necessary libraries here to run a servo motor.

B: Initialize the servo motor pin and perform a servo test by sweeping the motor through its

range from 0 to 180 degrees.

C: Calculate the angle for the servo motor based on sound level in decibels (dB).

Check the angle to make sure it’s within 0 to 180 degrees before rotating the servo motor.

CHAPTER 6 NOISE POLLUTION MONITORING SYSTEM

121

Top

Servo
motor

Horn

180°

Step 2:

Step 1:
Screw the servo meter

pointer and servo horn to

the servo. Make sure the

servo horn can turn 180

degrees as shown.

Push through the middle to make

a hole on the card accessory.

Step 5: Step 4:

Step 3:
Plug in the servo motor from the front

of the card.

Slot the card into the slit on the

EDU PICO’s box.

The assembled piece will

look like this.

Challenges

Servo sound meter accessory

Step 6:
Connect Servo Motor Cable to EDU PICO board at GP6 and now you’re ready!

CHAPTER 6 NOISE POLLUTION MONITORING SYSTEM

servo meter pointer

122

Sound is perceived differently
by every individual.

The PDM microphone helps
to narrow that gap.

Once you’re done with the program, here’s what you can do to make this project more

exciting. Take a walk with your EDU PICO with the noise monitoring program still running.

Try to identify the noise level in each location indicated below. Is the measured noise level

within the safe range as shown in the graph? If not, what action can be taken to reduce the

noise level in the area?

What’s Next?

CHAPTER 6 NOISE POLLUTION MONITORING SYSTEM

123

Imagine having the power to move things at your

command. DC motors are here to do just that.

It is the main component that acts like muscles behind

automated systems. They're responsible for making

things spin, rotate, and move!

Relay switches, on the other hand, act as the traffic

directors, allowing you to control high-power electrical

devices using a low-power signal from your EDU PICO.

By the end of this chapter, you'll have the knowledge

and skills needed to create an environment that

responds to your needs and preferences, ultimately

transforming an ordinary classroom into a smart

classroom.

7.1 Introduction to DC Motor

7.2 Introduction to Relay

7.3 Project: Smart Classroom

7.4 Bonus: Wireless Network (AP-Mode)

Smart Classroom
DC Motor & Relay

In this lesson, we will finally get our hands on a DC motor. This particular invention serves as

the cornerstone of automation, converting electric energy into motion. Its a versatile

component that can power an array of mechanisms, from spinning wheels to robotic arms.

Consider it as a tool that can transform your ideas into reality. Let’s get this thing moving!

M2B M2A M1B M1A

Libraries: board, time, busio, pwmio, adafruit_motor.

DC Motor Configuration:
PWM_M1A to GP10, PWM_MIB to GP11.
Connect DC Motor to M1A & M1B terminals as shown below:

Output:
The DC motor speed will be printed on the shell console.

It then continuously rotates at a different speed and direction

starting from reverse direction at 50% (-0.5) to 25% (-0.25), and to

a halt at 0%.

Then it proceeds to forward direction of 25% (0.25) and 50% (0.5)

speed.

Each speed will last for 2 second, then the cycle repeats.

How Does This Activity Work?

Reverse

Motor 1Motor 2

Terminal

GP12

Press the M1A & M1B buttons to test the
motor. If the motor is not spinning, make
sure the wire connection at the terminal

is secure and EDU PICO is powered on.

M
1A

M
1B

M
2A

M
2B

GP13 GP11 GP10

Introduction to DC Motor

125

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14

DC_MOTOR_MODULE.py

import board, time
from pwmio import PWMOut
from adafruit_motor import motor

PWM_M1A = PWMOut(board.GP10,frequency=10000)
PWM_M1B = PWMOut(board.GP11,frequency=10000)
motor = motor.DCMotor(PWM_M1A, PWM_M1B)
speed_mode = [-0.5, -0.25, 0, 0.25, 0.5, 0]

while True:
 for speed in speed_mode:
 print("Speed:", speed * 100)
 motor.throttle = speed
 time.sleep(2)

Configure DC MOTOR with gp10 and gp11

Import Necessary Libraries

Line 2: pwmio module allows the control of pulse-width-modulation (PWM) output.

Line 3: adafruit_motor module provides motor control functionality.

Libraries

import board, time
from pwmio import PWMOut
from adafruit_motor import motor

1
2
3

CHAPTER 7 INTRODUCTION TO DC MOTOR

126

Click the Green Button to run the code and Red Button to stop.

The script initializes two PWM outputs, PWM_M1A and PWM_M1B,
on GPIO pins GP10 and GP11, respectively.

The frequency parameter is set to 10,000 Hz (10 kHz), which defines
the frequency of the PWM signal.

Initialize Hardware Components

Line 5 - 6: Initializes two PWM outputs to control the DC motor. PWM_M1A and

PWM_M1B, on GP10 and GP11 pins respectively. The frequency parameter is set to

10,000 Hz (10 kHz), which defines the frequency of the PWM signal.

Line 7: An instance of a DC motor is created using the motor.DCMotor class. This

instance is named motor and is configured to use the PWM_M1A and PWM_M1B
PWM outputs to control the motor.

Line 8: A list called speed_mode is created, which contains a set of speed values.

The values in this list range from -0.5 to 0.5 with a step size of 0.25. These values

represent different speed settings for the motor, ranging from 50% (-0.5) reverse

speed to 50% (0.5) forward speed.

Configure the DC Motor

PWM_M1A = PWMOut(board.GP10,frequency=10000)
PWM_M1B = PWMOut(board.GP11,frequency=10000)
motor = motor.DCMotor(PWM_M1A, PWM_M1B)
speed_mode = [-0.5, -0.25, 0, 0.25, 0.﻿5, 0]

5
6
7
8

Enter a Continuous Loop

Line 11: A for loop that iterates through the elements of the speed_mode array.

Line 12 - 14: Prints the current speed percentile to the console and sets the throttle

(speed) of the DC motor to the current speed level. For an example:

1st iteration: speed = -0.5 (Reverse 50% speed)

2nd iteration: speed = -0.25 (Reverse 25% speed)

3rd iteration: speed = 0 (Stop)

...and so on. After arriving at the final element in the array (speed = 0%), the for loop

will reiterate to speed = -0.5.

Main Loop

while True:
 for speed in speed_mode:
 pri﻿nt("Speed:", speed * 100)
 motor.throttle = speed
 time.sleep(2)

10
11
12
13
14

CHAPTER 7 INTRODUCTION TO DC MOTOR

127

From the previous chapter, we have learned how to operate the potentiometer module on

the EDU PICO, now, it is time we make use of that knowledge in this mini-activity. Let’s

program our EDU PICO to control the DC motor speed using the potentiometer. Sounds

simple right? Let’s give it a try!

Mini Activity

import board, time
from analogio import AnalogIn
from pwmio import PWMOut
from adafruit_motor import motor

PWM_M1A = PWMOut(board.GP10,frequency=10000)
PWM_M1B = PWMOut(board.GP11,frequency=10000)
motor = motor.DCMotor(PWM_M1A, PWM_M1B)

potentio = AnalogIn(board.GP28)

while True:
 speed = potentio.value / 65535
 motor.throttle = speed
 print("Speed:", speed)
 time.sleep(0.1)

Fill In The Blank

A

B

C

A: Include necessary libraries required to function the potentiometer.

B: Initialize the pin used for the potentiometer. Make sure to assign a suitable variable upon

reading the signal from the pin.

C: Call the variable value assigned from B into the following formula. Dividing the

potentiometer raw values by 65535 will provide you a value range of 0 to 1 which will then

be directly translated to the DC motor speed.

CHAPTER 7 INTRODUCTION TO DC MOTOR

128

Eraser

DC Motor

DC Motor

Electric vehicles (EVs) are becoming increasingly popular nowadays, but did you know that

the concept of an electric car with a DC motor isn't a recent innovation? The first functional

electric car was built in the early 19th century, and it was powered by a DC motor.

There are two DC motor terminals on the EDU PICO board, which means you can connect

two DC motors and control both at the same time!

Converting a DC motor into a vibrating haptic feedback device is one of the many popular

applications of a DC motor. Haptic feedback is a technology that enriches user experiences

by providing tactile sensations in response to digital interactions, for example, the micro-

vibration you get when typing on a smartphone.

To create a vibration from your DC motor,

you must first attach the motor with an

eccentric weight (which is required for

vibration). This is typically a small disc

or something as simple as an eraser,

easy enough that you can secure it to

the motor's shaft as shown on the right.

If you haven’t noticed, the EDU PICO has a
built-in motor test circuit that allows you

to check the connected DC motor in
forward or reverse direction. Give it a try!

CHAPTER 7 INTRODUCTION TO DC MOTOR

129

Output:
The program will begin by prompting the user to input either 1 for

ON or 0 for OFF at the shell console to control the on and off of

the USB relay.

If the input is 1, the USB relay will turn ON and you will notice the

relay LED indicator next to the USB port will light up, indicating the

relay is switched ON.

If the input is 0, the USB relay will turn OFF.

Connect the USB LED light stick to the USB relay to test out the USB

relay functionality.

Introduction to Relay

How Does This Activity Work?

When a relay
opens and
closes, it

generates a
noticeable

clicking
sound.

USB Relay Configuration:
Initialize relay to pin GP22 and set the pin direction to output.

Libraries: board, digitalio.

User input: 1
Output: Relay ON

Relay

User input: 0
Output: Relay OFF

Type This

In this lesson, we will learn how to operate the USB relay on the EDU PICO, but more

importantly, to understand how a relay works. A relay is an electromechanical device that

acts as a switch controlled by an electrical signal. It allows a low-power circuit to control a

high-power circuit, making it an essential component in various electrical and electronic

applications. In this case, we will use the EDU PICO to control the ON / OFF of the relay,

which will control the ON / OFF of a USB LED light stick connected to the USB port!

LED
Indicator

130

Code

RELAY_MODULE.py

import board, digitalio

relay = digitalio.DigitalInOut(board.GP22)
relay.direction = digitalio.Direction.OUTPUT

while True:
 user_input = input("1: ON, 0: OFF \nYour choice: ")
 state = int(user_input)

 if state == 0:
 print("Relay OFF")
 relay.value = False
 elif state == 1:
 print("Relay ON")
 relay.value = True
 else:
 print("Invalid input. Please enter 0 for OFF or 1 for ON.")

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Line 7: Prompts the user to enter either 1 to turn ON or 0 to turn OFF the USB relay
using the input function at the shell console. "\nYour choice: " will wait for the user’s
input in the next line. The input is then stored in the user_input variable as a string.

Line 8: Converts the user’s input into an integer using int(user_input) and stores the
result in a state variable.

Main Loop

while True:
 user_input = input("1: ON, 0: OFF \nYour choice: ")
 state = int(user_input)

6
7
8

Enter a Continuous Loop

CHAPTER 7 INTRODUCTION TO RELAY

131

Click the Green Button to run the code and Red Button to stop.

Relay

A relay has two circuits in its body: the primary circuit and the secondary circuit.

The primary circuit mainly receives an external signal that controls the ON / OFF operation
of the relay; in this case, it’s connected to EDU PICO GP22.

The secondary circuit is connected to the load or the output component; in this case, the
secondary side is connected to the USB port which is also connected to the LED stick.

When current flows through a relay's coil, it creates an electromagnetic field (like a magnet)
that attracts the movable contactor which will connect and complete the circuit on the
secondary side.

Line 10 - 12: If the state is 0, the "Relay OFF" text will be printed on the shell console
and the relay.value will be set to false, turning the relay off.

Line 13 - 15: If the state is 1, "Relay ON" will be printed on the shell console and the
relay.value will be set to true, turning the relay on.

Line 16 - 17: If the state is neither 0 nor 1, the script prints "Invalid input. Please enter
0 for OFF or 1 for ON."

Process User Input - On / Off Relay

 if state == 0:
 print("Relay OFF")
 relay.value = False
 elif state == 1:
 print("Relay ON")
 relay.value = True
 else:
 print("Invalid input. Please enter 0 for OFF or 1 for ON.")

10
11
12
13
14
15
16
17

CHAPTER 7 INTRODUCTION TO RELAY

P
ri

m
a

ry

Se
co

n
d

a
ry

Light
ON

P
ri

m
a

ry

Se
co

n
d

a
ry Light

OFF

Raspberry
Pi Pico W

USB
Switch

Raspberry
Pi Pico W

USB
Switch

132

Can't believe
they always forget
to switch off the
fans and lights.

What's bugging
you, Anna?

No one ever
turns off these lights

and fans!

You know what
would be great? If

these fans and lights
could just switch off

automatically.

Wait, like some
smart switch that

does it on its own?

That'd solve
the forgetfulness problem

for sure!

Exactly, it could
be a game-changer

for our energy
usage too!

133

So, how can we
build something

like that?

Alright, let's write out
the idea first. We want

the lights and fans to turn on
and off automatically.

To make the room
air better, we could set the fan to
go faster or slower depending on

how many people are there.

Sounds like a plan. Let’s
get the project started!

Are you trying to
monitor it through your

phone's Wi-Fi?

Yup, I'm giving it a shot.
Since EDU PICO has a
built-in WiFi module.

I think we can use
a gesture sensor on
EDU PICO to know
when someone's

in the room.

134

Wow, it's working great!
Let's invite more friends to

see how it works.

Looks like it’s nailing
it! Adam, how about
stepping out of the

room now?

Great idea! I think it’s
ready for a test run.

Let's give it a go.
Adam, could you walk

into the room?

How about we use
the OLED screen to show the

room's capacity, light, fan
status?

Whoa, check this out!
Everything's turning on

by itself!

No way, it
really works on

its own!

135

It's perfect! Our smart
classroom saves energy and

keeps the room cool too!

Nice one, team!
 We've really made

our classroom
smarter and more
energy efficient!

Later, class ended and everyone starts leaving..

Fans and lights shut off automatically

136

[Caution: Never attempt to handle or modify AC power appliances on your own. Always ask

an adult or qualified professional for help to avoid the risk of electric shock or injury.]

Input:
Swipe your hand from left to right above the gesture

sensor to increase the number of students by 1.
Swipe your hand from right to left to subtract the

number of students by 1.

DC Motor Configuration: PWM_M1A to GP10, PWM_MIB to GP11.

OLED and APDS9960 I2C Configuration: SCL = GP5 and SDA = GP4.

RIGHT TO +1LEFT TO -1

ROOM CAPACITY:1PAX

<< EXIT ENTER>>

LIGHT:ON FAN:20%

ROOM CAPACITY:1PAX
<< EXIT ENTER>>

------------------LIGHT:ON FAN:20%

Swipe left to subtract
& swipe right to add. Fan Speed:

1 pax = 20%
2 pax = 40%

...
5 pax = 100%USB relay

On/Off light status

Smart Classroom
In this project, we will learn to integrate APDS9960 gesture sensor to track students’

movement when entering and leaving the room. The goal is to create a smart classroom that

optimizes energy usage based on the number of occupants. To achieve that, we will

program the relay to turn on and off a USB LED light stick based on the presence of

students, as well as to program the DC motor fan to regulate the room’s temperature

according to the number of occupants.

Output:
Adjusts the fan speed based on the class

capacity. The fan speed will increase

by 20% for every one person entering

the room.

If there is one or more people in the room,

the relay will activate (ON), lighting up

the LED light stick. If the room is empty,

the relay will remain deactivated (OFF).

Libraries: board, digitalio, busio, APDS9960, pwmio, adafruit_motor,

adafruit_ssd1306.

USB Relay Configuration: GP22.

How Does This Activity Work?

137

Code

CHAPTER 7 SMART CLASSROOM

138

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

PROJECT_SMART_CLASSROOM.py

import board, digitalio, busio, adafruit_ssd1306
from pwmio import PWMOut
from adafruit_motor import motor
from adafruit_apds9960.apds9960 import APDS9960

i2c = busio.I2C(board.GP5, board.GP4)
apds = APDS9960(i2c)
PWM_M1A = PWMOut(board.GP10, frequency=10000)
PWM_M1B = PWMOut(board.GP11, frequency=10000)
motor_instance = motor.DCMotor(PWM_M1A, PWM_M1B)
oled = adafruit_ssd1306.SSD1306_I2C(128, 64, i2c)
relay = digitalio.DigitalInOut(board.GP22)
relay.direction = digitalio.Direction.OUTPUT

apds.enable_gesture = True
apds.enable_proximity = True

class_num = 0
current_speed = 0.0

oled.invert(True)
oled.text("--------------------", 5, 15, 1)
oled.text("--------------------", 5, 40, 1)
oled.text("ROOM CAPACITY: ", 5, 7, 1)
oled.text("Light:", 5, 50, 1)
oled.text("Fan:", 65, 50, 1)
oled.text("<< EXIT ENTER >>", 7, 27, 1)

def handle_gesture():
 global class_num, current_speed

 oled.fill_rect(90, 7, 35, 7, 0)
 oled.fill_rect(40, 50, 20, 7, 0)
 oled.fill_rect(90, 50, 35, 7, 0)
 gesture = apds.gesture()

 if gesture == 3:
 class_num = max(0, class_num - 1)
 elif gesture == 4:
 class_num = min(5, class_num + 1)

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

Import Necessary Libraries

The code imports the required libraries and modules to enable the board, digital

input/output, I2C communication, OLED display, PWM control, DC motor,

and the APDS9960 gesture sensor.

 current_speed = class_num * 0.2
 motor_instance.throttle = current_speed
 oled.text("{}%".format(current_speed * 100), 90, 50, 1)

 relay.value = class_num > 0
 oled.text("ON" if class_num > 0 else "OFF", 40, 50, 1)

 class_status = f"{class_num} PAX" if class_num < 5 else "FULL"
 oled.text(class_status, 90, 7, 1)
 oled.show()

try:
 while True:
 handle_gesture()

finally:
 oled.fill(1)
 oled.show()
 print("deinit I2C")
 i2c.deinit()

Libraries

1
2
3
4

import board, digitalio, busio, adafruit_ssd1306
from pwmio import PWMOut
from adafruit_motor import motor
from adafruit_apds9960.apds9960 import APDS9960

CHAPTER 7 SMART CLASSROOM

139

Click the Green Button to run the code and Red Button to stop.

Initialize Hardware Components

These lines initialize the I2C interface, the APDS9960 sensor, PWM control for the DC

motor, OLED display, and the relay.

Line 6: Configure I2C communication to GP5 and GP4.

Line 7: Create an instance of the APDS9960 gesture sensor.

Line 8 - 10: PWM outputs for controlling the DC motor.

Line 11: Configure the OLED display with the assigned I2C pins.

Line 12 - 13: Configure GP22 as digital output for controlling the relay.

The OLED display is set up with an initial text, providing a

baseline for the user to navigate when reading information

relating to room capacity, light, and fan.

Line 15 - 16: Enable gesture and proximity detection on the APDS9960 sensor.

Line 18 - 19: Initialize variables for class capacity and current fan speed.

Set Up the OLED Display

21
22
23
24
25
26
27

oled.invert(True)
oled.text("--------------------", 5, 15, 1)
oled.text("--------------------", 5, 40, 1)
oled.text("ROOM CAPACITY: ", 5, 7, 1)
oled.text("Light:", 5, 50, 1)
oled.text("Fan:", 65, 50, 1)
oled.text("<< EXIT ENTER >>", 7, 27, 1)

Initialize I2C, APDS9960 Sensor, PWM for Motor, OLED Display, and Relay

6
7
8
9
10
11
12
13

i2c = busio.I2C(board.GP5, board.GP4)
apds = APDS9960(i2c)
PWM_M1A = PWMOut(board.GP10, frequency=10000)
PWM_M1B = PWMOut(board.GP11, frequency=10000)
motor_instance = motor.DCMotor(PWM_M1A, PWM_M1B)
oled = adafruit_ssd1306.SSD1306_I2C(128, 64, i2c)
relay = digitalio.DigitalInOut(board.GP22)
relay.direction = digitalio.Direction.OUTPUT

Enable Gestures and Proximity on the APDS9960 Sensor

15
16
17
18
19

apds.enable_gesture = True
apds.enable_proximity = True

class_num = 0
current_speed = 0.0

CHAPTER 7 SMART CLASSROOM

140

ROOM CAPACITY:<< EXIT ENTER>>

LIGHT: FAN:

Define a Custom Function

Line 30: Initializes class_num and current_speed as global variables which enable

their values to persist across different class to the handle_gesture function.

If local variables were used, their values would be re-initialized every time the

function is called.

Line 32 - 34: Clear specific areas on the OLED display where information will be

updated. It uses oled.fill_rect to clear rectangles at a specified area.

Line 35: Retrieves gesture value from the APDS9960 sensor where 3 represents a

left-to-right gesture, and 4 represents a right-to-left gesture.

Line 37 - 40: If gesture detected is equal to 3, the class_num variable will reduce

by 1 (but not below 0), and if gesture 4 is detected, it increases the class_num by 1
(but not above 5).

Line 42 - 44: Adjust the fan speed current_speed based on the class capacity.

For each person entered, the fan speed will increase by 20% (class_num * 0.2).

The motor_instance.throttle property is used to set the fan speed.

The greater the number of people in the room, the faster the fan spins to ventilate

the room.

handle_gesture Function

29
30
31
32
33
34
35
36
37
38
39
40

def handle_gesture():
 global class_num, current_speed

 oled.fill_rect(90, 7, 35, 7, 0)
 oled.fill_rect(40, 50, 20, 7, 0)
 oled.fill_rect(90, 50, 35, 7, 0)
 gesture = apds.gesture()

 if gesture == 3:
 class_num = max(0, class_num - 1)
 elif gesture == 4:
 class_num = min(5, class_num + 1)

Adjust Fan Speed

42
43
44

 current_speed = class_num * 0.2
 motor_instance.throttle = current_speed
 oled.text("{}%".format(current_speed * 100), 90, 50, 1)

CHAPTER 7 SMART CLASSROOM

141

Enter a Continuous Loop

Line 46: Controls the state of the relay based on the value of class_num.

If class_num is greater than 0, relay.value will be set to true, turning the relay ON.

If class_num is 0 or less, relay.value will be set to false, turning the relay OFF.

Line 47: Updates the OLED display to show whether the relay is ON or OFF. It uses a

conditional (ternary) expression where if class_num is greater than 0, the text is set

to "ON"; otherwise, it is set to "OFF".

Line 49: Creates a string class_status that displays the current room capacity

status. If class_num is less than 5, the string shows the number of people in the

room. If class_num is 5 or more, the string displays "FULL".

Line 50 - 51: Updates the OLED display to show the room capacity status.

Line 53 - 55: The try block contains the main loop of the program. The while True
loop ensures that the handle_gesture function is continuously called.

Line 57 - 59: The finally block is used for cleanup operations which include resetting

the OLED screen to its original state.

Line 61: Deinitializes the I2C interface. [Note: This is important for releasing the

resources used by I2C before the program terminates.]

Display Information on OLED

46
47
48
49
50
51

 relay.value = class_num > 0
 oled.text("ON" if class_num > 0 else "OFF", 40, 50, 1)

 class_status = f"{class_num} PAX" if class_num < 5 else "FULL"
 oled.text(class_status, 90, 7, 1)
 oled.show()

Main Loop, try...finally

53
54
55
56
57
58
59
60
61

try:
 while True:
 handle_gesture()

finally:
 oled.fill(1)
 oled.show()
 print("deinit I2C")
 i2c.deinit()

CHAPTER 7 SMART CLASSROOM

142

What’s Next?

House accessory - DC Motor Fan

Step 1:
Prepare the house accessory by opening it into a shape of a box.

Step 2:
Push the DC motor hole inwards and push the DC motor through the hole carefully.

Step 3:
Attach the DC motor fan blade from

the inside of the house.

Cable tie

Step 4:
Secure a cable tie around

the DC motor.

CHAPTER 7 SMART CLASSROOM

143

Complete the project by connecting the DC Motor wires to the EDU PICO

terminal and position the house next to the LED light stick as shown.

Step 5:
Fold the bottom of the house with the following sequence.

This will hold the house in place.

Step 6:
Push the bigger roof downwards so that

it keeps the roof closed by default.

Step 8:

Step 7:
Fold the other side of the roof and

slot the sides down as shown.

CHAPTER 7 SMART CLASSROOM

144

Bonus: Wireless Network (AP-Mode)

Output:
The program starts the server and prints "Starting server..." followed by

"Listening on http://[IP_ADDRESS]" where [IP_ADDRESS] is the IP

address of the WiFi access point.

When you open a web browser with the server's IP address, you will see

a webpage with "Light On" and "Light Off" buttons.

Libraries: board, digitalio, wifi, socketpool, adafruit_httpserver.

USB Relay Configuration:
Assign to GP22 and connect USB LED light stick to USB port.

How Does This Activity Work?

Connecting with Computer

You can access the control

interface by connecting to

the WiFi access point (AP)

(SSID: "EDUPICO_AP",

Password: "12345678") using

a device like a smartphone

or a computer.

By the end of this guide, you'll be able to build your own WiFi AP network and enable EDU

PICO to communicate wirelessly with other devices. Let's start with the basics – an access

point, or "AP" serves as a central hub for wireless communication. It acts as a bridge

between the EDU PICO and other WiFi-enabled devices, like smartphones and laptops,

to enable data sharing.

This setup is incredibly helpful for various applications, including IoT (Internet of Things)

projects and remote-control systems. This bonus section will guide you through the

configuration for your EDU PICO to work as an access point. This means that you can

connect to it, share data, and control it remotely, all over WiFi.

145

In this example,
the IP address is

192.168.4.1
Type this in your

browser.

To connect it to your smartphone, simply connect
the device to the same WiFi and key in the same IP
address to your browser.

Once you’re on the webpage, clicking these buttons will send a signal
to the server, and the relay state will change accordingly. Messages like
"Light ON" and "Light OFF" will be printed on the shell console
when the buttons are clicked.

WiFi Module Receive
‘Light ON’ Signal

Light
ON

Connecting with Smartphone

192.168.4.1

Use the same IP
address here to

control the EDU PICO
through your

smartphone device!

CHAPTER 7 BONUS WIRELESS NETWORK (AP-MODE)

146

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

BONUS_AP_RELAY.py

import board, digitalio
import wifi, socketpool
from adafruit_httpserver import Server, Request, Response, POST

def setup_wifi_ap():
 ap_ssid = "EDUPICO_AP"
 ap_password = "12345678"
 wifi.radio.start_ap(ssid=ap_ssid, password=ap_password)
 pool = socketpool.SocketPool(wifi.radio)
 return pool

def setup_relay():
 relay = digitalio.DigitalInOut(board.GP22)
 relay.direction = digitalio.Direction.OUTPUT
 return relay

def light_on(relay):
 print("Light ON")
 relay.value = True

def light_off(relay):
 print("Light OFF")
 relay.value = False

def webpage():
 html = """
 <!DOCTYPE html>
 <html>
 <head>
 <meta http-equiv="refresh" content="5">
 <title>USB Relay Control</title>
 </head>
 <body>
 <p>USB Relay Light Control</p>
 <form accept-charset="utf-8" method="POST">
 <button class="button" name="Light On"
 value="light_on" type="submit">Light On</button>
 <button class="button" name="Light Off"
 value="light_off" type="submit">Light Off</button>
 </form>
 </body>
 </html>
 """
 return html

CHAPTER 7 BONUS WIRELESS NETWORK (AP-MODE)

147

Line 2: Provides WiFi functionality and socket communication. A socket represents

one endpoint of a two-way communication link between two programs running on a

network.

Line 3: Libraries for setting up a simple HTTP server.

Libraries

1
2
3

import board, digitalio
import wifi, socketpool
from adafruit_httpserver import Server, Request, Response, POST

Import Necessary Libraries

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

def setup_server(pool, relay):
 server = Server(pool, "/static")

 @server.route("/")
 def base(request: Request):
 return Response(request, f"{webpage()}", content_type='text/html')

 @server.route("/", POST)
 def buttonpress(request: Request):
 if request.method == POST:
 raw_text = request.raw_request.decode("utf8")
 if "light_on" in raw_text:
 light_on(relay)
 if "light_off" in raw_text:
 light_off(relay)
 return Response(request, f"{webpage()}", content_type='text/html')

 print("Starting server...")
 server.start(str(wifi.radio.ipv4_address_ap))
 print("Listening on http://%s" % wifi.radio.ipv4_address_ap)
 return server

pool = setup_wifi_ap()
relay = setup_relay()
server = setup_server(pool, relay)
while True:
 server.poll()

CHAPTER 7 BONUS WIRELESS NETWORK (AP-MODE)

148

Click the Green Button to run the code and Red Button to stop.

Define Custom Functions

Line 12 - 15: Configure GP22 as digital output for controlling the relay. The relay is

used to control the ON and OFF of the USB light stick.

Line 17 - 23: These functions update the state of the relay and print a message to

the shell console.

Line 5 - 10: This function configures the Raspberry Pi Pico W to act as a WiFi Access

Point (AP) with a specified SSID "EDUPICO_AP" and password "12345678".

[Note: If more than one EDU PICO is running as WiFi AP in the same area, it is

recommended to set up different SSIDs for each board.]

Set Up WiFi AP

5
6
7
8
9
10

def setup_wifi_ap():
 ap_ssid = "EDUPICO_AP"
 ap_password = "12345678"
 wifi.radio.start_ap(ssid=ap_ssid, password=ap_password)
 pool = socketpool.SocketPool(wifi.radio)
 return pool

Initialize USB Relay

12
13
14
15
16
17
18
19
20
21
22
23

def setup_relay():
 relay = digitalio.DigitalInOut(board.GP22)
 relay.direction = digitalio.Direction.OUTPUT
 return relay

def light_on(relay):
 print("Light ON")
 relay.value = True

def light_off(relay):
 print("Light OFF")
 relay.value = False

CHAPTER 7 BONUS WIRELESS NETWORK (AP-MODE)

149

Line 25 - 44: This function defines the HTML webpage with a title, a paragraph of

text, and two buttons. The webpage automatically refreshes every 5 seconds.

When any button is clicked, the page will submit a POST request to the server with

the values clicked, the page will submit a POST request to the server with the values

light_on or light_off, respectively. This setup allows users to control the light

connected to the USB relay by interacting with the buttons on the webpage.

Webpage HTML

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

def webpage():
 html = """
 <!DOCTYPE html>
 <html>
 <head>
 <meta http-equiv="refresh" content="5">
 <title>USB Relay Control</title>
 </head>
 <body>
 <p>USB Relay Light Control</p>
 <form accept-charset="utf-8" method="POST">
 <button class="button" name="Light On"
 value="light_on" type="submit">Light On</button>
 <button class="button" name="Light Off"
 value="light_off" type="submit">Light Off</button>
 </form>
 </body>
 </html>
 """
 return html

Setting Up the HTTP Server

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

def setup_server(pool, relay):
 server = Server(pool, "/static")

 @server.route("/")
 def base(request: Request):
 return Response(request, f"{webpage()}", content_type='text/html')

 @server.route("/", POST)
 def buttonpress(request: Request):
 if request.method == POST:
 raw_text = request.raw_request.decode("utf8")
 if "light_on" in raw_text:
 light_on(relay)
 if "light_off" in raw_text:
 light_off(relay)
 return Response(request, f"{webpage()}", content_type='text/html')

 print("Starting server...")
 server.start(str(wifi.radio.ipv4_address_ap))
 print("Listening on http://%s" % wifi.radio.ipv4_address_ap)
 return server

CHAPTER 7 BONUS WIRELESS NETWORK (AP-MODE)

150

Enter a Continuous Loop

Line 68: Calls the setup_wifi_ap function to set up the WiFi Access Point (AP) while

configuring a specific SSID and password.

Line 69: Calls the setup_relay function to set up a digital output pin GP22 to

control the relay. The relay is used to control the ON / OFF of the USB light stick in

response to user interactions with the web interface.

Line 70: Calls the setup_server function to set up the HTTP server. It creates an

instance of the HTTPServer class, configures routes, and starts listening for incoming

HTTP requests.

Line 71 -﻿ 72: The main loop continuously polls the HTTP server for incoming requests. It

keeps the server running and responsive to client interactions.

Main Loop

68
69
70
71
72

pool = setup_wifi_ap()
relay = setup_relay()
server = setup_server(pool, relay)
while True:
 server.poll()

Line 46: Creates an instance of the Server class with the provided pool

(socket pool) and a static route ("/static"). The static route may be used for serving

static files like stylesheets or images.

Line 49 - 51: Generates an HTML response with the HTML content using the

webpage() function and sends it back to the client.

Line 53 - 61: The buttonpress function is called when a POST request is received. It

checks if the request contains data related to turning the light on or off and calls

the corresponding functions. It then returns an updated HTML response.

Line 64: This line starts the server, and it specifies the IPv4 address of the WiFi

connection. The server will listen for incoming requests from this address.

CHAPTER 7 BONUS WIRELESS NETWORK (AP-MODE)

151

Climate Control Greenhouse
Light Sensor & Temperature Humidity Sensor

In this chapter, we will embark on a journey to

explore two fascinating sensors - the APDS9960 light

sensor and the AHT20 temperature and humidity

sensor - as we work towards creating a climate-

controlled greenhouse using the EDU PICO.

Imagine having the power to monitor and adjust the

conditions within a greenhouse to create an ideal

environment for plants to thrive. With the APDS9960

and AHT20 sensors, we will create exactly that.

These sensors enable us to sense and react to two

critical factors that influence plant growth - light

and climate. We will control external factors such as

light, and airflow using RGB LEDs and DC motor fan.

Lastly, we are going to top it off with two bonus

activities on how you can establish a simple

dashboard through IoT and logging data for analytic

purpose too!

8.1 Introduction to Light Sensor

8.2 Introduction to to Temperature & Humidity Sensor

8.3 Project: Climate Control Greenhouse

8.4 Bonus: Introduction to the Internet of Things (IoT)

8.5 Bonus: Introduction to Data Logging

Thonny: View > Plotter

Introduction to Light Sensor

How Does This Activity Work?

Near

The simplest test you can perform is by simply

casting various shadow intensities above the

light sensor. Use the serial plotter in Thonny to

help better visualize the brightness data.

By now you have probably noticed the APDS9960 sensor on the EDU PICO offers several

advantages for your project. Here’s one last feature we have yet to explore from this

powerful sensor, it is none other than the commonly used, light sensor. In this activity, we will

learn how to measure different levels of ambient light, allowing you to create projects that

respond to changes in lighting conditions!

Brightness: ~50%

Brightness: ~10%

Far

Light Sensor I2C Pins Configuration: SCL = GP5 and SDA = GP4.

Output: Print brightness percentile in shell console.

Input:
Shine light to the light sensor to increase the brightness level.

Block light from entering the light sensor to decrease the brightness

level.

Libraries: board, time, digitalio, adafruit_apds9960.

You can either shine
light on the sensor, or
cast a shadow above

the sensor!

Cast shadow

153

Code

Import necessary libraries

Line 6 - 7: These lines enable colour sensing on the

APDS9960 sensor and set the color_gain to 2.

The colour gain affects the sensitivity of the colour sensors.

A higher gain value makes the sensor more sensitive to

changes in colour or brightness.
You can tune
the gain to
adapt with
different
lighting

conditions.

apds.enable_color = True
apds.color_gain = 2

Initialize Hardware Components

6
7

CHAPTER 8 INTRODUCTION TO LIGHT SENSOR

154

Click the Green Button to run the code and Red Button to stop.

1
2
3
4
5
6
7
8
9
10
11
12
13

LIGHT_SENSOR_MODULE.py

import board, time, busio
from adafruit_apds9960.apds9960 import APDS9960

i2c = busio.I2C(board.GP5, board.GP4)
apds = APDS9960(i2c)
apds.enable_color = True
apds.color_gain = 2

while True:
 r, g, b, c = apds.color_data
 brightness_percentage = (c / 65535) * 100
 print(f"Brightness: {brightness_percentage:.1f}%")
 time.sleep(0.5)

Thonny: View > Plotter

Enter a Continuous Loop

Line 10: Read the colour data from the APDS9960 sensor, which includes the red (r),

green (g), blue (b), and clear (c) values. The clear value represents the amount of

ambient light, which can be used to estimate brightness.

Line 11: This line calculates the brightness level as a percentage by dividing the clear

value (c) by the maximum possible clear value (65535) and then multiplying it by 100.

This conversion is used to represent the brightness in a human-readable form.

Line 12: Print the calculated brightness level to the console with one decimal point of

precision.

Museum Display:
Museums use light sensors to control the illumination of valuable artifacts to ensure the

light levels are carefully regulated to prevent damage to the exhibits.

We have compiled a list of unique applications for light sensors that you might find intriguing!

Digital Camera:
Digital cameras often have light sensors that automatically

adjust the appropriate exposure for a photo. These sensors

can quickly measure the ambient brightness and adjust the

camera settings to capture the best possible image.

Bill Validator:
Vending machines, ticketing machines, and bill validators often employ light sensors to

detect the authenticity of banknotes by analyzing their optical properties and security

features.

Solar Panels:
Solar panels use light sensors to track the sun's movement, ensuring that they are always
pointed at the sun to maximize energy generation. This process is called solar tracking.

 r, g, b, c = apds.color_data
 brightness_percentage = (c / 65535) * 100
 print(f"Brightness: {brightness_percentage:.1f}%")

10
11
12

CHAPTER 8 INTRODUCTION TO LIGHT SENSOR

155

In
cr

ea
sin

g

The AHT20 sensor is a powerful component that provides accurate measurements for both

humidity and temperature. Imagine having the ability to monitor and respond to changes in

your project's environment, whether its a home automation system, a weather station, or a

smart gardening project.

AHT20 Sensor

Introduction to Temperature &
Humidity Sensor (AHT20)

AHT20 I2C Pins Configuration: SCL = GP5 and SDA = GP4.

Libraries: board, time, digitalio, adafruit_ahtx0.

Output:
Print temperature in Celsius and relative humidity percentile in the

shell console.

Enabling view > plotter in Thonny IDE will allow you to visualize the

temperature and humidity data in the same graph, making graph

analysis easier.

The temperature drops when the sensor

is exposed to cool air. The level of

humidity is dependent on the amount

of moisture present in the air. Blowing

air from your mouth may result in a rise

in humidity and an increase in

temperature.

How Does This Activity Work?

Temperature
and humidity

rise slowly
when finger is

in contact with
the AHT20

sensor.

156

Import Necessary Libraries

Line 2: Provide support for the AHT20 temperature and humidity sensor.

Code

import board, time, busio
import adafruit_ahtx0

1
2

CHAPTER 8 INTRODUCTION TO TEMPERATURE AND HUMIDITY SENSOR

1
2
3
4
5
6
7
8
9
10
11

TEMP_HUMIDITY_MODULE.py

import board, time, busio
import adafruit_ahtx0

i2c = busio.I2C(board.GP5, board.GP4)
AHT_sensor = adafruit_ahtx0.AHTx0(i2c)

while True:
 temperature = AHT_sensor.temperature
 humidity = AHT_sensor.relative_humidity
 print(f"Temperature={temperature:.2f} C, Humidity={humidity:.2f} %")
 time.sleep(2)

Thonny: View > Plotter

157

Click the Green Button to run the code and Red Button to stop.

Initialize Hardware Components

i2c = busio.I2C(board.GP5, board.GP4)
AHT_sensor = adafruit_ahtx0.AHTx0(i2c)

Line 5: Initializes I2C communication with the AHT20 sensor.

Enter a Continuous Loop

Line 8: Reads the temperature data from the AHT sensor and stores it in the

temperature variable.

Line 9: Reads the relative humidity data from the AHT sensor and stores it in the

humidity variable.

Line 10: This line prints the temperature and humidity values in a formatted string.

The ":.2f" inside the f-string is used to format the floating-point numbers to two

decimal places.

4
5

while True:
 temperature = AHT_sensor.temperature
 humidity = AHT_sensor.relative_humidity
 print(f"Temperature={temperature:.2f} C, Humidity={humidity:.2f} %")
 time.sleep(2)

7
8
9
10
11

Printing both temperature and
humidity in the same line of code
will allow the plotter to plot both

values in the same graph.

CHAPTER 8 INTRODUCTION TO TEMPERATURE AND HUMIDITY SENSOR

158

while True:
 temperature = AHT_sensor.temperature
 humidity = AHT_sensor.relative_humidity
 print(f"Temperature={temperature:.2f} C, Humidity={humidity:.2f} %")
 time.sleep(2)

7
8
9
10
11

2 second
interval

Milled slits

Printed Circuit
Board (PCB)

When the measurement frequency is too high, the temperature of the sensor module will

heat up, which may affect the measurement accuracy. To keep the temperature from rising,

it is recommended to include a 2 second interval for the data collection cycle.

The milled slits or white lines around the sensor decreases thermal conduction through the

printed circuit board (PCB). This is because the slits act as a thermal barrier, reducing the

amount of heat that can be conducted through the PCB.

Understanding the environment is crucial in many electronic projects. The AHT20 sensor

allows you to gather real-time data on humidity and temperature, enabling you to make

informed decisions in your coding and design processes.

However, to achieve an accurate measurement, we must understand how the sensor module

consistently enables good ventilation to prevent the sensor from being affected by the heat

radiated from the components nearby.

Milled Slits on Printed Circuit Board (PCB)

The milled slits
around the

sensor decreases
the thermal
conduction

through the PCB,
which improves

the measurement
accuracy.

CHAPTER 8 INTRODUCTION TO TEMPERATURE AND HUMIDITY SENSOR

159

Hey, Mr. Kim!
You look troubled.

What's on your mind?
Everything okay?

 You're concerned about
leaving them without proper

care, right?

Exactly, these plants need
attention, and I won't be around to
look after them. It's bothering me.

What if you
could monitor them

remotely?

I hadn't
thought of
that. How
can I do

that?

Count on us!
I'll make sure to give
you a heads up when

it’s ready, Mr. Kim.

Oh, hi, Mia.
I'm leaving for an extended holiday

soon, and I can't shake this worry about
my plants here in the greenhouse.

160

Hey, Mia,
what's that you're

drawing?

Yeah, we can
set up an IoT system to
control the greenhouse

remotely.

Sounds complex.
How would all these

work together?

If it's bright around, the
LED stays off. But if it's dark,
the LED lights up in violet.

If it gets too hot, the
rooftop opens and the fan
turns on to cool it down.

Why violet light,
though?

Violet light is part
of the spectrum that plants love.

It's beneficial for their growth and
helps them produce food through

photosynthesis.

After setting up
the sensors and devices, we'll

connect them to the internet, so we
can monitor and control the

greenhouse remotely.

That's incredible! So, the
greenhouse will practically

take care of itself?

Oh, that's a smart
greenhouse idea Mia's

working on.

Yup! With this system, our
plants will thrive, even
when we're far away.

161

How's it going,
Adam?

I think it's
almost ready! Let's

check how it acts with
different lighting.

Look, it's
glowing violet when

it's darker!

Awesome! That's
just what we need

for our setup.

Yep, I've started
linking the sensors to

the IoT platform.

Anna, did you already
begin integrating the

sensors with EDU PICO?

We can now
check and control the

devices in the greenhouse
using this webpage from

anywhere.

See? We're
receiving live data
from the sensors

right here.

They set up the EDU PICO,
connecting everything in

the greenhouse.

Let's see if they're
sending the data to

the website.

Everything's
functioning as

planned!

It's working!
They're sending

real-time data to
the website!

Should we
go get Mr. Kim to
demonstrate the

changes?

I'll go get him!!

162

Wow, I'm impressed
with all these sensors
and devices you've set

up in here!

That's just the start,
Mr. Kim! Let me explain
how the system works.

With this IoT system,
you can control the entire

greenhouse remotely.

This is incredible! I won't have
to worry about my plants while
I'm away on my trip anymore.

Later at the airport…

Ah, time to check on my
green pals. Let's see how

they're doing.

Oh, it's getting
warmer in there.

Let's give them
some fresh air to
cool down a bit.

Perfect! They're
in good hands
even when I'm
not around.

163

In this project, you will learn how to construct a control system that regulates the humidity

and temperature of a closed greenhouse environment. To achieve that, you are required to

integrate AHT20 temperature humidity sensor and APDS9960 light sensor as input devices;

RGB LEDs (for light), servo motor (for rooftop control), DC motor (for the fan), and OLED

screen for printing the greenhouse status.

Libraries: board, busio, time, adafruit_ssd1306, neopixel, PWMOut

adafruit_ahtx0, , adafruit_motor, adafruit_ssd1306, adafruit_apds9960.

I2C Pins Configuration: SCL = GP5 and SDA = GP4.

APDS9960 light sensor, AHT20 temperature humidity sensor, and

SSD1306 OLED share similar I2C pins configuration.

Input:
Shine a light on the APDS9960 light sensor to simulate surrounding

brightness in the greenhouse.

Test the AHT20 temperature humidity sensor by placing your finger

on the sensor module. The temperature should rise gradually.

Output:
If the surroundings are bright, the RGB LEDs remain off; whereas if

the surroundings are dark, the RGB LEDs will light up in violet.

If the surroundings are hot, the servo will activate to 60 degrees

(opening the rooftop), and the DC motor fan will activate to

ventilate the area to cool down the environment.

The diagram below shows the components used in this project.

Temperature
& Humidity

Light
Sensor

Rooftop Servo
120 degrees - Close Roof
60 degrees- Open Roof

OLED Screen

Temperature: 31.7C

Servo Status: On

Fan Status: On

Light Lux: 359.0

Light Status: Off

RGB LEDs Light
Default RGB LEDs setting:
> 100 lux - OFF RGB LEDs
< 101 lux - ON RGB LEDs

Ventilation Fan
Default temperature setting:

>= 27°C - ON Fan
< 27°C - OFF Fan

Climate Control Greenhouse

How Does This Activity Work?

164

Code

import board, busio, time, adafruit_ssd1306, neopixel
import adafruit_ahtx0
from pwmio import PWMOut
from adafruit_motor import servo, motor
from adafruit_apds9960.apds9960 import APDS9960
from adafruit_apds9960 import colorutility

i2c = busio.I2C(board.GP5, board.GP4)
oled = adafruit_ssd1306.SSD1306_I2C(128, 64, i2c)
oled.invert(True)
aht20 = adafruit_ahtx0.AHTx0(i2c)
apds = APDS9960(i2c)
apds.enable_color = True

pixels = neopixel.NeoPixel(board.GP14, 5, brightness=0.2)

PWM_Servo = PWMOut(board.GP6, frequency=50)
servo = servo.Servo(PWM_Servo, min_pulse=500, max_pulse=2500)

PWM_M1A = PWMOut(board.GP10, frequency=10000)
PWM_M1B = PWMOut(board.GP11, frequency=10000)
motor = motor.DCMotor(PWM_M1A, PWM_M1B)

def light_on():
 pixels.fill([255, 0, 255])
 oled.text("Light Status: On", 5, 52, 1)

def light_off():
 pixels.fill([0, 0, 0])
 oled.text("Light Status: Off", 5, 52, 1)

def servo_on():
 servo.angle = 60
 oled.text("Servo Status: On", 5, 15, 1)

def servo_off():
 servo.angle = 120
 oled.text("Servo Status: Off", 5, 15, 1)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

PROJECT_CLIMATE_CONTROL_GREENHOUSE.py

CHAPTER 8 CLIMATE CONTROL GREENHOUSE

165

Click the Green Button to run the code and Red Button to stop.

def temp_control(temp_threshold):
 temperature = aht20.temperature
 oled.text("Temperature: {:.1f} C".format(temperature), 5, 3, 1)
 if temperature >= temp_threshold:
 servo_on()
 motor.throttle = 0.25
 oled.text("Fan Status: On", 5, 27, 1)
 else:
 servo_off()
 motor.throttle = 0
 oled.text("Fan Status: Off", 5, 27, 1)

def light_control(light_threshold):
 while not apds.color_data_ready:
 time.sleep(0.005)
 r, g, b, c = apds.color_data
 light_lux = colorutility.calculate_lux(r, g, b)
 if light_lux < light_threshold:
 light_on()
 else:
 light_off()
 oled.text("Light Lux: {:.1f} ".format(light_lux), 5, 39, 1)

try:
 while True:
 oled.fill(0)
 temp_control(temp_threshold=27)
 light_control(light_threshold=100)
 oled.show()
 time.sleep(2)

finally:
 oled.fill(1)
 oled.show()
 print("deinit I2C")
 i2c.deinit()

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

CHAPTER 8 CLIMATE CONTROL GREENHOUSE

166

Import Necessary Libraries

These lines import the necessary libraries and modules for working with various

hardware components which include the OLED display, temperature and humidity

sensor (AHT20), colour sensor (APDS9960), servo motor, DC motor, and RGB LEDs.

Initialize Hardware Components

Line 8: Initializes I2C communication with GP5 for SCL and GP4 for SDA.

Line 9 - 13: Configure the OLED, temperature, humidity, and colour sensor using the

same I2C bus and pins. Line 10 inverts the OLED display, changing the background to

white and the text colour to black.

Line 15 - 22: Initializes RGB LEDs (GP14), DC motor (M1A = GP10, M1B = GP11) and

servo motor (GP6).

Note: When using I2C, each device has a unique address on the bus, allowing
multiple devices to communicate with the Raspberry Pi Pico W.

Libraries

import board, busio, time, adafruit_ssd1306, neopixel
import adafruit_ahtx0
from pwmio import PWMOut
from adafruit_motor import servo, motor
from adafruit_apds9960.apds9960 import APDS9960
from adafruit_apds9960 import colorutility

1
2
3
4
5
6

Hardware Initialization

i2c = busio.I2C(board.GP5, board.GP4)
oled = adafruit_ssd1306.SSD1306_I2C(128, 64, i2c)
oled.invert(True)
aht20 = adafruit_ahtx0.AHTx0(i2c)
apds = APDS9960(i2c)
apds.enable_color = True

pixels = neopixel.NeoPixel(board.GP14, 5, brightness=0.2)

PWM_Servo = PWMOut(board.GP6, frequency=50)
servo = servo.Servo(PWM_Servo, min_pulse=500, max_pulse=2500)

PWM_M1A = PWMOut(board.GP10, frequency=10000)
PWM_M1B = PWMOut(board.GP11, frequency=10000)
motor = motor.DCMotor(PWM_M1A, PWM_M1B)

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

CHAPTER 8 CLIMATE CONTROL GREENHOUSE

167

Define Custom Functions

Line 24 - 30: light_on() fills the RGB LEDs with violet colour (preferable colour for

plants to perform photosynthesis), and light_off() to turn off the RGB LEDs while

updating the OLED display with the corresponding status messages.

Line 32 - 38: servo_on() function rotates the servo to 60 degrees, ideally to open

the rooftop of the greenhouse, whereas servo_off() will rotate the servo back to its

original state at 120 degrees, closing the greenhouse rooftop.

Line 40 - 42: The temp_control function monitors the temperature from the AHT20

sensor while displaying the data on the OLED screen.

Line 43 - 50: Activate the DC motor fan and servo motor when the temperature is

above the temp_threshold set. The temperature threshold value is set at line 66.

Configuring Functions for Controlling Light, and Servo

def light_on():
 pixels.fill([255, 0, 255])
 oled.text("Light Status: On", 5, 52, 1)

def light_off():
 pixels.fill([0, 0, 0])
 oled.text("Light Status: Off", 5, 52, 1)

def servo_on():
 servo.angle = 60
 oled.text("Servo Status: On", 5, 15, 1)

def servo_off():
 servo.angle = 120
 oled.text("Servo Status: Off", 5, 15, 1)

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

def temp_control(temp_threshold):
 temperature = aht20.temperature
 oled.text("Temperature: {:.1f} C".format(temperature), 5, 3, 1)
 if temperature >= temp_threshold:
 servo_on()
 motor.throttle = 0.25
 oled.text("Fan Status: On", 5, 27, 1)
 else:
 servo_off()
 motor.throttle = 0
 oled.text("Fan Status: Off", 5, 27, 1)

Temperature Control Function

40
41
42
43
44
45
46
47
48
49
50

CHAPTER 8 CLIMATE CONTROL GREENHOUSE

168

Line 57 - 60: Calls light_on() function when the calculated lux value is below a

preset threshold, and light_off() function if the lux value is above the threshold.

Line 61: This line updates the OLED display with the calculated light_lux value.

.format(light_lux) allows "{:.1f}" to be replaced with the actual value of light_lux.

Main Loop

try:
 while True:
 oled.fill(0)
 temp_control(temp_threshold=27)
 light_control(light_threshold=100)
 oled.show()
 time.sleep(2)

63
64
65
66
67
68
69

Enter a Continuous Loop

Line 64 - 69: Continuously calls the temp_control function while passing a

temperature threshold of 27 degrees Celsius, the code then calls the light_control
function, passing a light threshold of 100 lux. These functions update the OLED

display with the latest data every 2 seconds and control the fan and servo motor

depending on the latest temperature and lux data measured.

Adjust this temperature
value to control the
output sensitivity.

Line 53 - 54: This loop waits until colour data is ready

to be read from the APDS9960 sensor. It checks the

color_data_ready property of the sensor. The loop

pauses for 0.005 second in each iteration to avoid

unnecessary CPU load while waiting.

Line 55 - 56: Read the values r, g, b, and c colour

data and calculate the illuminance in lux.

def light_control(light_threshold):
 while not apds.color_data_ready:
 time.sleep(0.005)
 r, g, b, c = apds.color_data
 light_lux = colorutility.calculate_lux(r, g, b)
 if light_lux < light_threshold:
 light_on()
 else:
 light_off()
 oled.text("Light Lux: {:.1f} ".format(light_lux), 5, 39, 1)

Light Control Function

52
53
54
55
56
57
58
59
60
61

Lux is a measure
of illuminance,

the total amount
of light that falls

on a surface.

CHAPTER 8 CLIMATE CONTROL GREENHOUSE

169

Line 71 - 75: The finally block ensures that cleanup operations are performed,

regardless of whether an exception occurred or not during the main program

execution. In this case, it clears the OLED display, prints a message, and deinitializes

the I2C bus. These operations are essential for maintaining the integrity of the

hardware and ensuring a clean exit of the program.

What’s Next?
House accessory - Servo roof

Step 1:
Locate the servo motor

attachment flaps and

flip it outwards as shown.

Step 2:
Attach the servo motor from inside out with

the cable going through the box first.

Use the same servo

stick from Chapter 5.

finally:
 oled.fill(1)
 oled.show()
 print("deinit I2C")
 i2c.deinit()

Cleanup Operations

71
72
73
74
75

CHAPTER 8 CLIMATE CONTROL GREENHOUSE

170

Allows light from RGB LEDs

to enter the greenhouse

60°120°

Step 5:
Connect the servo motor & DC motor

to the EDU PICO board.

Step 3:
Close the front side of the roof

back to it’s original position.

Step 4:
Give the back roof a gentle push downwards

and inwards to the box.

Step 6:
Test the servo motor horn position to open and

close the roof. Open roof = 60°, close roof = 120°.

Final Placement

Box

This step will strengthen the
spring effect on the plastic roof,
allowing it to maintain in a closed

position when not stressed.

CHAPTER 8 CLIMATE CONTROL GREENHOUSE

171

Clo
sed

Op
en

ed

In this final chapter, we will test your programming skills, in both Python and HTML.

Set up the dashboard shown below. Your code should be able to enable Auto Mode and

Manual Mode, allowing users to take control of the system when needed.

The Internet of Things (IoT) is made up of a vast network of physical devices, vehicles,

appliances, and other objects that are connected via sensors, software, and internet

connectivity. Imagine you have everyday things like your fridge or lights connected to the

internet where they can communicate and share information. It’s like giving regular devices a

way to be smart and work together to make your life easier!

Challenge

Internet of Things (IoT)

Internet

Remote Management

Light

Temperature
& Humidity

Light
Sensor

Rooftop Servo

Ventilation FanConnecting to
the internet

enables remote
control and

monitoring of
the greenhouse
from anywhere

in the world.

In the next page,
you will learn how to

connect your EDU
PICO to the internet.

CHAPTER 8 CLIMATE CONTROL GREENHOUSE

172

 Create WiFi configuration file "settings.toml":
Enable View > File name extensions to show the file extension.

Create a new Text Document in the CircuitPython drive and name

the Text Document as "settings.toml".

Type the text below and replace "your_wifi_ssid" with your WiFi ID

and "your_wifi_password" with your WiFi password.

Save the file, you’re all set!

[Note: If you want to use AP-Mode (Chapter 7 Bonus) on the Raspberry

Pi Pico W, make sure to delete the settings.toml file.]

Change .txt
file extension

to .toml
Right Click

 USB Relay Configuration:

Assign to GP22, and connect USB light stick to the USB port.

Libraries: board, digitalio, wifi, socketpool, os, adafruit_httpserver,

microcontroller.

Change WiFi ID
& Password

IoT stands for the Internet of Things. Imagine if everyday objects could connect to the

internet and communicate with each other. IoT is all about linking things together via the

internet to make them smarter and more useful. In this activity, we will turn the EDU PICO

into an IoT-enabled device by reading the Raspberry Pi Pico W onboard temperature and

controlling the EDU PICO’s USB relay output through a webpage.

Bonus: Introduction to
Internet of Things (IoT)

How Does This Activity Work?

173

Output:
The program begins by connecting to the WiFi with the SSID and

Password preset in the settings.toml file.

Once the Raspberry Pi Pico W is connected to the WiFi, it will start

the server and print "Starting server..." followed by "Listening on

http://[IP_ADDRESS]" where [IP_ADDRESS] is the IP address of the

WiFi network.

192.168.1.159

You can also
access the webpage
through your mobile

devices!

Clicking these buttons will send a signal to either turn ON or OFF the

USB relay. Messages like "Light ON" and "Light OFF" will be printed

on the shell console when the buttons are clicked.

Type your IP address into your browser. The IP address is 192.168.1.﻿159

as shown in the image below:

CHAPTER 8 BONUS INTRODUCTION TO INTERNET OF THINGS

Connect your PC to WiFi:
Connect your PC to the same WiFi network as connected by the

Raspberry Pi Pico W.

In this example, it’s connected to "My_WiFi_Network", which is also a

mobile WiFi hotspot.

Light OFF

174

Code

CHAPTER 8 BONUS INTRODUCTION TO INTERNET OF THINGS

175

1
2
3
4
5
6
7

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

BONUS_IOT.py
import board, digitalio
import wifi, socketpool, os, microcontroller
from adafruit_httpserver import Server, Request, Response, POST

def setup_wifi():
 print("Connecting to WiFi")
 wifi.radio.connect(os.getenv('CIRCUITPY_WIFI_SSID'),
 os.getenv('CIRCUITPY_WIFI_PASSWORD'))
 print("Connected to WiFi")
 pool = socketpool.SocketPool(wifi.radio)
 return pool

def setup_relay():
 relay = digitalio.DigitalInOut(board.GP22)
 relay.direction = digitalio.Direction.OUTPUT
 return relay

def light_on(relay):
 print("Light ON")
 relay.value = True

def light_off(relay):
 print("Light OFF")
 relay.value = False

def pico_temp():
 return microcontroller.cpu.temperature

def webpage():
 Pico_Temp = pico_temp()
 html = f"""
 <!DOCTYPE html>
 <html>
 <head>
 <meta http-equiv="refresh" content="5">
 <title>USB Relay Control</title>
 </head>
 <body>
 <p>CPU-Temperature: {Pico_Temp:.2f} ℃</p>
 <p>USB Relay Light Control</p>
 <form accept-charset="utf-8" method="POST">
 <button class="button" name="Light On"
 value="light_on" type="submit">Light On</button>
 <button class="button" name="Light Off"
 value="light_off" type="submit">Light Off</button>
 </form>
 </body>
 </html>
 """
 return html

Line 2: The microcontroller library provides access to Raspberry Pi Pico W on-board

features. In this case, it provides the temperature data from the microcontroller's

CPU. The OS library is used to retrieve the values of environment variables. In this

example, the program allows retrieval of the value from the 'CIRCUITPY_WIFI_SSID'

and 'CIRCUITPY_WIFI_PASSWORD' environment variables.

Import Necessary Libraries

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

def setup_server(pool, relay):
 server = Server(pool, "/static")

 @server.route("/")
 def base(request: HTTPRequest):
 return Response(request, f"{webpage()}", content_type='text/html')

 @server.route("/", POST)
 def buttonpress(request: Request):
 if request.method == POST:
 raw_text = request.raw_request.decode("utf8")
 if "light_on" in raw_text:
 light_on(relay)
 if "light_off" in raw_text:
 light_off(relay)
 return Response(request, f"{webpage()}", content_type='text/html')

 print("Starting server...")
 server.start(str(wifi.radio.ipv4_address))
 print("Listening on http://%s" % wifi.radio.ipv4_address)
 return server

pool = setup_wifi()
relay = setup_relay()
server = setup_server(pool, relay)
while True:
 server.poll()

Libraries

import board, digitalio
import wifi, socketpool, os, microcontroller
from adafruit_httpserver import Server, Request, Response, POST

1
2
3

CHAPTER 8 BONUS INTRODUCTION TO INTERNET OF THINGS

176

Click the Green Button to run the code and Red Button to stop.

Line 12 - 15: Initializes a digital pin GP22 for the relay and sets it as an output.

Line 17 - 19: Controls the ON / OFF of the USB light stick by setting the value of the

digital pin connected to the relay.

Line 25 - 26: Retrieve the Raspberry Pi Pico W’s CPU temperature.

Define Custom Functions

Line 7: Connect the Raspberry Pi Pico W to a WiFi network using the SSID and

password specified in the settings.toml file.

Line 9: Creates and returns a socket pool for communication.

WiFi Setup and Connection

def setup_wifi():
 print("Connecting to WiFi")
 wifi.radio.connect(os.getenv('CIRCUITPY_WIFI_SSID'),
 os.getenv('CIRCUITPY_WIFI_PASSWORD'))
 print("Connected to WiFi")
 pool = socketpool.SocketPool(wifi.radio)
 return pool

5
6
7

8
9
10

Initialize USB Relay & Pico Onboard Temperature Sensor

def setup_relay():
 relay = digitalio.DigitalInOut(board.GP22)
 relay.direction = digitalio.Direction.OUTPUT
 return relay

def light_on(relay):
 print("Light ON")
 relay.value = True

def light_off(relay):
 print("Light OFF")
 relay.value = False

def pico_temp():
 return microcontroller.cpu.temperature

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

CHAPTER 8 BONUS INTRODUCTION TO INTERNET OF THINGS

177

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

def webpage():
 Pico_Temp = pico_temp()
 html = f"""
 <!DOCTYPE html>
 <html>
 <head>
 <meta http-equiv="refresh" content="5">
 <title>USB Relay Control</title>
 </head>
 <body>
 <p>CPU-Temperature: {Pico_Temp:.2f} ℃</p>
 <p>USB Relay Light Control</p>
 <form accept-charset="utf-8" method="POST">
 <button class="button" name="Light On"
 value="light_on" type="submit">Light On</button>
 <button class="button" name="Light Off"
 value="light_off" type="submit">Light Off</button>
 </form>
 </body>
 </html>
 """
 return html

Line 28 - 49: This function generates an HTML webpage that displays the Raspberry

Pi Pico W’s CPU temperature and ON / OFF buttons to control the USB relay.

Webpage HTML

CHAPTER 8 BONUS INTRODUCTION TO INTERNET OF THINGS

USB Relay Control

Line 38

Line 33 - 36

Line 39

Line 41 - 42 Line 43 - 44

http://192.168.1.159

178

Line 51 - 52: Creates an instance of the Server class with the provided pool

(socket pool) and a static route ("/static"). The static route may be used for serving

static files like stylesheets or images.

Line 54 - 56: Generates an HTML response with the HTML content using the

webpage() function and sends it back to the client.

Line 58 - 66: The buttonpress function is called when a POST request is received. It

checks if the request contains data related to turning the light on or off and calls

the corresponding functions. It then returns an updated HTML response.

Line 69: This line starts the server, and it specifies the IPv4 address of the WiFi

connection. The server will listen for incoming requests from this address.

Web Server Setup

def setup_server(pool, relay):
 server = Server(pool, "/static")

 @server.route("/")
 def base(request: Request):
 retrurn Response(request, f"{webpage()}", content_type='text/html')

 @server.route("/", POST)
 def buttonpress(request: Request):
 if request.method == POST:
 raw_text = request.raw_request.decode("utf8")
 if "light_on" in raw_text:
 light_on(relay)
 if "light_off" in raw_text:
 light_off(relay)
 return Response(request, f"{webpage()}", content_type='text/html')

 print("Starting server...")
 server.start(str(wifi.radio.ipv4_address))
 print("Listening on http://%s" % wifi.radio.ipv4_address)
 return server

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

Enter a Continuous Loop

Line 73 - 75: Sets up the WiFi connection, relay, and HTTP server.

Line 76 - 77: Continuously polls the server to handle incoming requests. Keeping the

server running and responsive to client interactions.

pool = setup_wifi()
relay = setup_relay()
server = setup_server(pool, relay)
while True:
 server.poll()

Main Loop

73
74
75
76
77

CHAPTER 8 BONUS INTRODUCTION TO INTERNET OF THINGS

179

Data Logging Configuration File:
Create a new Python script named boot.py and type in the code

provided.

Save boot.py in the CircuitPython drive.

Flip the 'LOG DATA TO PICO’S FLASH' switch to 'ENABLE'.
NOTE: The CircuitPython drive will become non-writable when

data logging mode is enabled. This means you won’t be able to

save, create a new file, or delete files in the CircuitPython drive.

Restart your EDU PICO by pressing the Reset (RST) button.

The boot_out.txt file will appear in the CIRCUITPY drive, you will

see 'boot.py output:' inside the text file.

How Does This Activity Work?

In this bonus, we will learn how to use CircuitPython to read the Raspberry Pi Pico W internal

temperature data and write it to a file on the CircuitPython drive. This will enable you to

create your own temperature data logger.

Bonus: Introduction to Data Logging

Libraries: boot.py, board, digitalio, time, microcontroller, os.

180

Code

1
2
3
4
5
6
7
8
9

10

boot.py

import board
import digitalio
import storage

write_pin = digitalio.DigitalInOut(board.GP15)
write_pin.direction = digitalio.Direction.INPUT
write_pin.pull = digitalio.Pull.UP

if not write_pin.value:
 storage.remount("/", readonly=False)

Save here

First, you will need to remount the storage by saving the boot.py with the code shown

below. Save the code in the CircuitPython root directory drive.

boot.py

Output: After resetting the EDU PICO, a file named temperature.csv
will appear in the CircuitPython drive.

1 data point
per second

Execute the BONUS_DATALOGGING.py code to start the data

logger. The Pico will record 1 temperature data point every 1 second.

CHAPTER 8 BONUS INTRODUCTION TO DATA LOGGING

Open file with Excel

181

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

BONUS_DATALOGGER.py

import board, digitalio, time, microcontroller, os

led = digitalio.DigitalInOut(board.LED)
led.switch_to_output()

file_name = "temperature.csv"
max_file_size = 400000

with open(file_name, "a") as datalog:
 while True:
 file_size = os.stat(file_name)[6]
 if file_size < max_file_size:
 temp = microcontroller.cpu.temperature
 datalog.write("{0:.1f}\n".format(temp))
 datalog.flush()
 led.value = not led.value
 time.sleep(1)
 else:
 led.value = True

Click the Green Button to run the code and Red Button to stop.

Main Code

Line 3 - 4: Initialize a digital output pin connected to the onboard LED of the

Raspberry Pi Pico W.

Line 6 - 7: Set up the file name for the temperature log ("temperature.csv") and

define the maximum file size in bytes (400kB).

[Note: The Raspberry Pi Pico W has a limited onboard storage, hence setting the

400kB limit will ensure the data logging doesn’t exceed 400kB.]

led = digitalio.DigitalInOut(board.LED)
led.switch_to_output()

file_name = "temperature.csv"
max_file_size = 400000

Configure File and LED Pin

3
4
5
6
7

CHAPTER 8 BONUS INTRODUCTION TO DATA LOGGING

182

Line 9 - 10: Open the file in append mode and enter a loop for continuous logging.

Line 11 - 12: Check if the current file size is below the specified maximum size.

Line 13 - 15: If the file size is within the limit, it reads the CPU temperature, writes it

to the CSV file, and flushes the file to ensure data is written immediately.

Line 16: Toggles the state of the onboard LED, providing a visual indication that

data is being logged.

Line 17: Introduces a 1 second delay between temperature readings to control the

logging frequency.

Line 18 - 19: If the file size exceeds the limit, the LED is turned on continuously,

indicating that logging is temporarily disabled due to the file size limit being

reached.

with open(file_name, "a") as datalog:
 while True:
 file_size = os.stat(file_name)[6]
 if file_size < max_file_size:
 temp = microcontroller.cpu.temperature
 datalog.write("{0:.1f}\n".format(temp))
 datalog.flush()
 led.value = not led.value
 time.sleep(1)
 else:
 led.value = True

Main Loop

9
10
11
12
13
14
15
16
17
18
19

Blinks LED at a
1 second interval
when each data is

recorded.

CHAPTER 8 BONUS INTRODUCTION TO DATA LOGGING

183

Chapter 2: Water Drinking Reminder (Button and Buzzer)

In this chapter, we learn to:

use input buttons to interact with Thonny’s console.

use a piezo buzzer to produce sound.

create and use variables.

use while loop.

use a conditional if statement.

184

Guidebook Summary

In this chapter, we learn to:

install Thonny IDE.

program our first CircuitPython program using Thonny IDE.

download program to EDU PICO.

save, open, and edit Python .py files in EDU PICO.

import CircuitPython libraries.

Chapter 1: Programming with CircuitPython

Chapter 3: Gesture Reaction Game (OLED and Gesture Sensor)

In this chapter, we learn to:

display text on the OLED display.

use gesture sensor as input.

program using If.. elif conditions.

setup dictionaries and for loops.

create and use functions.

Chapter 4: Colour Detection Game (RGB LEDs and Colour Sensor)

In this chapter, we learn to:

program EDU PICO to light up RGB LEDs in different colours.

read colour data with colour sensor.

setup lists to store multiple items.

185

Chapter 5: Automated Waste Bin (Servo Motor and Proximity Sensor)

In this chapter, we learn to:

control a servo motor using pulse width modulation (PWM).

read data with Thonny’s plotter.

construct a Trashbot smart bin with card box accessories.

Chapter 8: Climate Control Greenhouse (Light and Humidity Temperature Sensor)

In this chapter, we learn to:

program light sensor to measure ambient brightness.

program AHT20 sensor for humidity and temperature measurement.

perform basic data logging on Raspberry Pi Pico W local storage.

Chapter 7: Smart Classroom (DC Motor and Relay)

In this chapter, we learn to:

program EDU PICO to control a DC motor - spinning direction and speed control.

turn ON and OFF a USB switch relay.

program EDU PICO’s Raspberry Pi Pico W into a WiFi access point for IoT applications.

Chapter 6: Noise Pollution Monitoring System (Potentiometer and Sound Sensor)

In this chapter, we learn to:

program EDU PICO to read analog values from a potentiometer.

measure noise in dB with the PDM sound sensor.

construct a physical noise level meter with a card accessory.

*Tick the check box if you’ve completed the learning outcome; otherwise return to the chapter to revise.

As you reach the end of this guidebook, the EDU PICO team would like to

extend our warmest congratulations to you. The journey you've undertaken is not

just about reaching the final chapter but about the skills you've acquired, the

challenges you've conquered, and the projects you're now able to create.

May this achievement be a stepping stone to a world filled with endless

possibilities. As you continue to pursue your passion for learning, experimenting,

and innovating, remember that the journey doesn't end here—it evolves into new

opportunities and discoveries.

Once again, congratulations on completing this chapter of your educational

journey and we can’t wait to see what you will be building with the EDU PICO!

 Best Wishes,

 Adam the astronaut & EDU PICO team

CONGRATULATIONS!

edupico-hub.cytron.io

Check out the
resource hub
for more fun

projects!

Update us
on your

progress!

186

https://edupico-hub.cytron.io/

