
Adafruit PCM5122 I2S DAC
Created by Liz Clark

https://learn.adafruit.com/adafruit-pcm5122-i2s-dac

Last updated on 2025-09-26 02:27:19 PM EDT

©Adafruit Industries Page 1 of 25

3

5

9

11

13

13

15

22

22

24

Table of Contents

Overview

Pinouts
• Power Pins
• I2S Pins
• Audio Output
• Control Mode Selection
• Hardware Control Pins
• I2C Control Pins
• I2C Address Pins
• SPI Control Pins
• Clock Direction Jumper

CircuitPython - Hardware Mode
• CircuitPython Microcontroller Wiring
• Example Code

CircuitPython - I2C Mode
• CircuitPython Microcontroller Wiring
• CircuitPython Usage
• Example Code

Python Docs

Arduino - Hardware Mode
• Wiring
• Example Code

Arduino - I2C Mode
• Wiring
• Library Installation
• Example Code

Arduino Docs

Raspberry Pi
• Wiring
• Prerequisite Pi Setup!
• Update the Raspberry Pi
• Add Device Tree Overlay
• Testing the DAC

Downloads
• Files
• Schematic and Fab Print

©Adafruit Industries Page 2 of 25

Overview

For converting digital I2S audio from your ESP32/RP2350 or Raspberry Pi, you'll need
a digital-to-analog-converter (DAC). And the Adafruit PCM5122 I2S DAC is both
powerful and easy to use - with excellent audio quality! It's got clean, high-quality,
stereo audio and does not need any MCLK signal, or I2C configuration. Literally just
pipe some I2S audio in and it'll just work.

The default hardware mode is excellent for quick starts, and, for those who do want
configurability, such as volume control / software mute / EQ / filters, it's also easy to
set up the chip for I2C or SPI interfacing with the two MODE pins.

The PCM5122 has excellent audio specs, with 112dB signal-to-noise/dynamic range,
and -93 dB THD.

©Adafruit Industries Page 3 of 25

This breakout makes I2S digital audio easy: all you need to do is power it with
3~5VDC, and provide BCLK (bit clock), WSEL (left/right word select), and DIN (data in).
The data lines are 3.3V logic only. By default it's configured for I2S but you can also
do Left-Justified by toggling the Format pin. Audio can be 16, 24 or 32-bit wide, the
chip will automagically determine the right format from the WSEL / BCLK ratio. No
MCLK pin is needed, the chip will auto-generate it internally from the bit clock - or you
can provide it on the MCLK input if you want.

For hardware (not I2C/SPI config) mode, the other breakout pads provide:

Filtering (change from normal to low-latency by pulling high)
De-emphasis

•
•

©Adafruit Industries Page 4 of 25

Mute (pull low to quickly set the outputs to ground), and de-emphasis for 44.1khz
audio (default is off)
Three ATTenuation/gain pins that can be used for changing the gain from -6dB
to +15dB. See the datasheet's Table 3 for the pin-to-gain settings.

For I2C/SPI configuration mode, gain/volume, filtering and de-emphasis is done over
digital register commands. The hardware Mute pin still works as expected.

The audio outputs are also available on breakout pads if you want to wire directly
without using the 3.5mm jack. Audio output is not AC-coupled because it is centered
on ground: you can plug it into anything that is either AC coupled or has the same
ground reference. Note that this is a line-level output, it cannot drive headphones -
the output is for no less than 1K ohm loads!

Each order comes with one I2S Stereo DAC breakout and some header you can
solder on for breadboard usage.

Pinouts

•

•

©Adafruit Industries Page 5 of 25

The default I2C address is 0x4C.

Power Pins
VIN - this is the power pin. It can be powered with 3.3 to 5VDC, however, the
data lines are 3.3V logic only.
GND - common ground for power and logic

I2S Pins
WSEL (Word Select or Left/Right Clock) - this is the pin that tells the DAC when
the data is for the left channel and when it's for the right channel.
DIN (Data In) - This is the pin that has the actual data coming in, both left and
right data are sent on this pin, the WSEL pin indicates when left or right is being
transmitted.
BCK (Bit Clock) - This is the pin that tells the amplifier when to read data on the
data pin.
MCK (Main clock, optional) - This pin is optional for the PCM5122 because it will
auto-generate the main clock internally from BCK.

Audio Output
The audio output from this breakout is line-level. It is not AC-coupled because it is
centered on ground. You can plug it into anything that is either AC coupled or has the
same ground reference.

Lout - This is the left channel audio output
Rout - This is the right channel audio output
GND - This is a clean analog ground signal for the audio output
3.5mm output jack - This is the onboard output audio jack. Note that it cannot
drive headphones - the output is for no less than 1K ohm loads!

•

•

The data lines are 3.3V logic level only

•

•

•

•

•
•
•
•

Note that it cannot drive headphones - the output is for no less than 1K ohm
loads!

©Adafruit Industries Page 6 of 25

Control Mode Selection
The PCM5122 can be controlled via hardware, I2C or SPI. The control mode is
determined by pulling pins MOD1 and MOD2 high or low. By default, hardware mode
is enabled with both MOD1 and MOD2 open. The table below shows the possible
combinations to enable the different modes.

Note that in SPI mode, the MOD2 pin is also the CS pin, so it does not need to be
pulled specifically high or low.

Hardware Control Pins
These pins can be used in hardware control mode (not I2C/SPI config mode) to affect
the DAC.

DEEM - This is the de-emphasis pin for 44.1khz audio. By default it is off.
FILT - This is the filter pin. You can change the filter from normal to low-latency
by pulling the pin high.
FMT - This is the format pin. You can change the format from I2S to Left justified
by pulling the pin high.
AGN - This is the analog gain selector. When the pin is low, the gain is set to 0
dB. When it is pulled high, the gain is set to -6 dB.
ATT0, ATT1 (SCL) and ATT2 (SDA) - These are the gain and attenuation control
pins. Note that ATT1 is labeled SCL on the board silk and ATT2 is labeled SDA
on the board silk. They set the output level by being pulled high or low. The
table below shows the possible combinations to set the different gain levels:

•
•

•

•

•

©Adafruit Industries Page 7 of 25

The MUTE pin can be used to mute the DAC in all modes.

MUTE - This is the mute pin. You can pull this pin low to set the outputs to
ground.

I2C Control Pins
These pins are used to control the DAC via I2C.

SDA - the I2C data pin, connect to your microcontroller's I2C data line.
SCL - the I2C clock pin, connect to your microcontroller's I2C clock line.

I2C Address Pins
On the front of the board are two address pins, labeled A1 and A2. These pins allow
you to change the I2C address to connect multiple boards by connecting them to VIN.

The default I2C address is 0x4C. The other address options can be calculated by
"adding" the A1/A2 to the base of 0x4C.

A1 sets the lowest bit with a value of 1 and A2 sets the next bit with a value of 2. The
final address is 0x4C + A2 + A1 which would be 0x4F.

If only A1 is pulled high, the address is 0x4C + 1 = 0x4D

•

•
•

©Adafruit Industries Page 8 of 25

If only A2 is pulled high, the address is 0x4C + 2 = 0x4E

The table below shows all possible addresses, and whether the pin(s) should be high
or low.

SPI Control Pins
These pins are used to control the DAC via SPI.

A1 (MISO) - Labeled A1 on the board silk, this is the SPI Microcontroller In Serial
Out pin.
SDA (MOSI) - Labeled SDA on the board silk, this is the SPI Microcontroller Out
Serial In pin.
SCL (SCK) - Labeled SCL on the board silk, this is the SPI clock input pin.
MOD2 (CS) - Labeled MOD2 on the board silk, this is the chip select pin.

Clock Direction Jumper
CLK Dir Set - On the back of the board is the I2S clock mode jumper. By default,
it is open and expects a clock input from your microcontroller (secondary mode).
When soldered closed, it sets the pin high and generates its own clock with a
main clock source (primary mode).

CircuitPython - Hardware Mode
It's easy to use the PCM5122 in hardware mode with CircuitPython and the the
builtin audiobusio module. This module allows you to easily write Python code to
play audio.

•

•

•
•

•

©Adafruit Industries Page 9 of 25

If you want to use this DAC with its I2C driver, you can reference the CircuitPython -
I2C Mode (https://adafru.it/1asM) page.

CircuitPython Microcontroller Wiring
First wire up the I2S DAC to your board exactly as follows. The following is the DAC
wired to a Feather RP2040 with the headphone output:

Board 3.3V to DAC VIN (red wire)
Board GND to DAC GND (black wire)
Board D9 to DAC BCK (green wire)
Board D10 to DAC WSEL (white wire)
Board D11 to DAC DIN (orange wire)

Example Code
Click the Download Project Bundle button below to download the code.py file in a zip
file. Extract the contents of the zip, and copy the code.py file to
your CIRCUITPY drive.

SPDX-FileCopyrightText: Copyright (c) 2025 Liz Clark for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""
Sine tone playback test for the PCM5122 I2S DAC in hardware mode.
"""

import array
import math
import time

import audiobusio
import audiocore
import board

audio = audiobusio.I2SOut(board.D9, board.D10, board.D11)

tone_volume = 0.5 # Increase this to increase the volume of the tone.
frequency = 440 # Set this to the Hz of the tone you want to generate.

No additional libraries are required for this example.

©Adafruit Industries Page 10 of 25

https://learn.adafruit.com/adafruit-pcm5122-i2s-dac/circuitpython-i2c
https://learn.adafruit.com/adafruit-pcm5122-i2s-dac/circuitpython-i2c
https://learn.adafruit.com//assets/140015
https://learn.adafruit.com//assets/140015

length = 8000 // frequency
sine_wave = array.array("h", [0] * length)
for i in range(length):

sine_wave[i] = int((math.sin(math.pi * 2 * i / length)) * tone_volume * (2**15 -
1))
sine_wave_sample = audiocore.RawSample(sine_wave)

while True:
audio.play(sine_wave_sample, loop=True)
time.sleep(1)
audio.stop()
time.sleep(1)

Once the code starts running, you'll begin hearing a one second 440Hz tone, every
other second.

CircuitPython - I2C Mode
It's easy to use the PCM5122 in I2C mode with CircuitPython, and the
Adafruit_CircuitPython_PCM51xx (https://adafru.it/1asD) module. This module allows
you to easily write Python code to configure this I2S DAC.

If you want to get up and running quickly without I2C, you can use this DAC in
hardware mode as shown on the CircuitPython - Hardware Mode page (https://
adafru.it/1asK).

CircuitPython Microcontroller Wiring
First wire up the I2S DAC to your board exactly as follows. The following is the DAC
wired to a Feather RP2040 with the headphone output:

Board 3.3V to DAC VIN (red wire)
Board GND to DAC GND (black wire)
Board SCL to DAC SCL (yellow wire)
Board SDA to DAC SDA (blue wire)
Board D9 to DAC BCK (green wire)
Board D10 to DAC WSEL (white wire)
Board D11 to DAC DIN (orange wire)
Board 3.3V to DAC MOD2 (pink wire)

CircuitPython Usage
To use with CircuitPython, you need to first install the
Adafruit_CircuitPython_PCM51xx library, and its dependencies, into the lib folder on
your CIRCUITPY drive. Then you need to update code.py with the example script.

©Adafruit Industries Page 11 of 25

https://github.com/adafruit/Adafruit_CircuitPython_PCM51xx
https://learn.adafruit.com/adafruit-pcm5122-i2s-dac/circuitpython-hw
https://learn.adafruit.com//assets/139959
https://learn.adafruit.com//assets/139959

Thankfully, we can do this in one go. In the example below, click the Download
Project Bundle button below to download the necessary libraries and the code.py file
in a zip file. Extract the contents of the zip file, and copy the entire lib folder and the
code.py file to your CIRCUITPY drive.

Your CIRCUITPY/lib folder should contain the following folder and file:

adafruit_bus_device/
adafruit_pcm51xx.mpy

Example Code
SPDX-FileCopyrightText: Copyright (c) 2025 Liz Clark for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""
Sine tone playback test for the PCM5122 I2S DAC.
"""

import array
import math
import time

import audiobusio
import audiocore
import board
import busio

import adafruit_pcm51xx

Initialize I2C
i2c = board.I2C()

Initialize PCM5122
print("Initializing PCM5122...")
pcm = adafruit_pcm51xx.PCM51XX(i2c)
print("Found PCM5122!")

Set volume to -5dB on both channels
print("\nSetting volume to -5dB")
pcm.volume_db = (-5.0, -5.0)
left_db, right_db = pcm.volume_db
print(f"Volume set to: L={left_db}dB, R={right_db}dB")

Unmute the DAC

•
•

©Adafruit Industries Page 12 of 25

print("\nUnmuting DAC")
pcm.mute = False
print(f"Muted: {pcm.mute}")

audio = audiobusio.I2SOut(board.D9, board.D10, board.D11)

tone_volume = 0.5 # Increase this to increase the volume of the tone.
frequency = 440 # Set this to the Hz of the tone you want to generate.
length = 8000 // frequency
sine_wave = array.array("h", [0] * length)
for i in range(length):

sine_wave[i] = int((math.sin(math.pi * 2 * i / length)) * tone_volume * (2**15 -
1))
sine_wave_sample = audiocore.RawSample(sine_wave)

while True:
audio.play(sine_wave_sample, loop=True)
time.sleep(1)
audio.stop()
time.sleep(1)

Once the code starts running, you'll begin hearing a one second 440Hz tone, every
other second.

Python Docs
Python Docs (https://adafru.it/1asv)

Arduino - Hardware Mode
Using the PCM5122 breakout in hardware mode with Arduino involves wiring up the
breakout to your Arduino-compatible microcontroller and running the provided
example code.

If you want to use this DAC with its I2C driver, you can reference the Arduino - I2C
Mode (https://adafru.it/1asN) page.

Wiring
You can power the I2S DAC with 3.3 to 5VDC, however, the data lines are 3.3V logic
only. You'll want to use a 3.3V logic level board.

Here is an Adafruit Metro RP2040 wired up to the DAC for hardware control mode:

©Adafruit Industries Page 13 of 25

https://docs.circuitpython.org/projects/pcm51xx/en/latest/
https://learn.adafruit.com/adafruit-pcm5122-i2s-dac/arduino-i2c
https://learn.adafruit.com/adafruit-pcm5122-i2s-dac/arduino-i2c

Board 3.3V to DAC VIN (red wire)
Board GND to DAC GND (black wire)
Board D9 to DAC BCK (green wire)
Board D10 to DAC WSEL (white wire)
Board D11 to DAC DIN (orange wire)

Example Code
// SPDX-FileCopyrightText: 2025 Ladyada for Adafruit Industries
//
// SPDX-License-Identifier: MIT

#include <I2S.h>
#include <math.h>

#define pBCLK D9 // BITCLOCK - I2S clock
#define pWS D10 // LRCLOCK - Word select
#define pDOUT D11 // DATA - I2S data

// Create I2S port
I2S i2s(OUTPUT);

const int frequency = 440; // frequency of square wave in Hz
const int amplitude = 500; // amplitude of square wave
const int sampleRate = 16000; // 16 KHz is a good quality

const int halfWavelength = (sampleRate / frequency); // half wavelength of square
wave

int16_t sample = amplitude; // current sample value
int count = 0;

void setup() {
Serial.begin(115200);
while (!Serial) delay(10);

Serial.println(F("Adafruit PCM51xx Hardware Mode Test"));

// Initialize I2S peripheral
Serial.println("Initializing I2S...");
i2s.setBCLK(pBCLK);
i2s.setDATA(pDOUT);
i2s.setBitsPerSample(16);

// Start I2S at the sample rate

No additional libraries are needed for this example.

©Adafruit Industries Page 14 of 25

https://learn.adafruit.com//assets/140020
https://learn.adafruit.com//assets/140020

if (!i2s.begin(sampleRate)) {
Serial.println("Failed to initialize I2S!");

}

}

void loop() {
if (count % halfWavelength == 0) {

// invert the sample every half wavelength count multiple to generate square
wave

sample = -1 * sample;
}

// write the same sample twice, once for left and once for the right channel
i2s.write(sample);
i2s.write(sample);

// increment the counter for the next sample
count++;

}

Upload the sketch to your board and open up the Serial Monitor (Tools -> Serial
Monitor) at 115200 baud. You'll see the I2S peripheral initialized. In the loop, a sine
tone will play through the 3.5 mm jack output.

Arduino - I2C Mode
Using the PCM5122 breakout in I2C Mode with Arduino involves wiring up the
breakout to your Arduino-compatible microcontroller, installing
the Adafruit_PCM51xx (https://adafru.it/1asE) library, and running the provided
example code.

If you want to get up and running quickly without I2C, you can use this DAC in
hardware mode as shown on the Arduino - Hardware Mode page (https://adafru.it/
1asL).

©Adafruit Industries Page 15 of 25

https://github.com/adafruit/Adafruit_PCM51xx
https://learn.adafruit.com/adafruit-pcm5122-i2s-dac/arduino-hw

Wiring
You can power the I2S DAC with 3.3 to 5VDC, however, the data lines are 3.3V logic
only. You'll want to use a 3.3V logic level board.

Here is an Adafruit Metro RP2040 wired up to the DAC for I2C control mode:

Board 3.3V to DAC VIN (red wire)
Board GND to DAC GND (black wire)
Board SCL to DAC SCL (yellow wire)
Board SDA to DAC SDA (blue wire)
Board D9 to DAC BCK (green wire)
Board D10 to DAC WSEL (white wire)
Board D11 to DAC DIN (orange wire)
Board 3.3V to DAC MOD2 (pink wire)

Library Installation
You can install the Adafruit_PCM51xx library for Arduino using the Library Manager in
the Arduino IDE.

Click the Manage Libraries ... menu item, search for Adafruit_PCM51xx, and select
the Adafruit PCM51xx library:

©Adafruit Industries Page 16 of 25

https://learn.adafruit.com//assets/139965
https://learn.adafruit.com//assets/139965

If asked about dependencies, click "Install all".

If the "Dependencies" window does not come up, then you already have the
dependencies installed.

Example Code
// SPDX-FileCopyrightText: 2025 Ladyada for Adafruit Industries
//
// SPDX-License-Identifier: MIT

/*!
 *
 * Basic test example for the Adafruit PCM5122
 *
 * Written by Limor 'ladyada' Fried with assistance from Claude Code
 * for Adafruit Industries.
 *
 * MIT license, all text here must be included in any redistribution.
 */

#include <Adafruit_PCM51xx.h>
#include <I2S.h>
#include <math.h>

Adafruit_PCM51xx pcm;

#define pBCLK D9 // BITCLOCK - I2S clock
#define pWS D10 // LRCLOCK - Word select
#define pDOUT D11 // DATA - I2S data

// Create I2S port
I2S i2s(OUTPUT);

const int frequency = 440; // frequency of square wave in Hz
const int amplitude = 500; // amplitude of square wave
const int sampleRate = 16000; // 16 KHz is a good quality

const int halfWavelength = (sampleRate / frequency); // half wavelength of square
wave

If the dependencies are already installed, you must make sure you update
them through the Arduino Library Manager before loading the example!

©Adafruit Industries Page 17 of 25

int16_t sample = amplitude; // current sample value
int count = 0;

void setup() {
Serial.begin(115200);
while (!Serial) delay(10);

Serial.println(F("Adafruit PCM51xx Test"));

// I2C mode (default)
if (!pcm.begin()) {

Serial.println(F("Could not find PCM51xx, check wiring!"));
while (1) delay(10);

}

// Hardware SPI mode (uncomment to use)
// if (!pcm.begin(10, &SPI)) { // CS pin 10
// Serial.println(F("Could not find PCM51xx over SPI, check wiring!"));
// while (1) delay(10);
// }

// Software SPI mode (uncomment to use)
// if (!pcm.begin(10, 11, 12, 13)) { // CS, MOSI, MISO, SCLK
// Serial.println(F("Could not find PCM51xx over software SPI, check wiring!"));
// while (1) delay(10);
// }

Serial.println(F("PCM51xx initialized successfully!"));

// Set I2S format to I2S
Serial.println(F("Setting I2S format"));
pcm.setI2SFormat(PCM51XX_I2S_FORMAT_I2S);

// Read and display current format
pcm51xx_i2s_format_t format = pcm.getI2SFormat();
Serial.print(F("Current I2S format: "));
switch (format) {

case PCM51XX_I2S_FORMAT_I2S:
Serial.println(F("I2S"));
break;

case PCM51XX_I2S_FORMAT_TDM:
Serial.println(F("TDM/DSP"));
break;

case PCM51XX_I2S_FORMAT_RTJ:
Serial.println(F("Right Justified"));
break;

case PCM51XX_I2S_FORMAT_LTJ:
Serial.println(F("Left Justified"));
break;

default:
Serial.println(F("Unknown"));
break;

}

// Set I2S word length to 32-bit
Serial.println(F("Setting I2S word length"));
pcm.setI2SSize(PCM51XX_I2S_SIZE_16BIT);

// Read and display current word length
pcm51xx_i2s_size_t size = pcm.getI2SSize();
Serial.print(F("Current I2S word length: "));
switch (size) {

case PCM51XX_I2S_SIZE_16BIT:
Serial.println(F("16 bits"));
break;

case PCM51XX_I2S_SIZE_20BIT:
Serial.println(F("20 bits"));
break;

©Adafruit Industries Page 18 of 25

case PCM51XX_I2S_SIZE_24BIT:
Serial.println(F("24 bits"));
break;

case PCM51XX_I2S_SIZE_32BIT:
Serial.println(F("32 bits"));
break;

default:
Serial.println(F("Unknown"));
break;

}

// Set error detection bits
if (!pcm.ignoreFSDetect(true) || !pcm.ignoreBCKDetect(true) || !

pcm.ignoreSCKDetect(true) ||
!pcm.ignoreClockHalt(true) || !pcm.ignoreClockMissing(true) || !

pcm.disableClockAutoset(false) ||
!pcm.ignorePLLUnlock(true)) {

Serial.println(F("Error detection failed to configure"));
}

// Enable PLL
Serial.println(F("Enabling PLL"));
pcm.enablePLL(true);

// Check PLL status
bool pllEnabled = pcm.isPLLEnabled();
Serial.print(F("PLL enabled: "));
Serial.println(pllEnabled ? F("Yes") : F("No"));

// Set PLL reference to BCK
Serial.println(F("Setting PLL reference"));
pcm.setPLLReference(PCM51XX_PLL_REF_BCK);

// Read and display current PLL reference
pcm51xx_pll_ref_t pllRef = pcm.getPLLReference();
Serial.print(F("Current PLL reference: "));
switch (pllRef) {

case PCM51XX_PLL_REF_SCK:
Serial.println(F("SCK"));
break;

case PCM51XX_PLL_REF_BCK:
Serial.println(F("BCK"));
break;

case PCM51XX_PLL_REF_GPIO:
Serial.println(F("GPIO"));
break;

default:
Serial.println(F("Unknown"));
break;

}

// Set DAC clock source to PLL
Serial.println(F("Setting DAC source"));
pcm.setDACSource(PCM51XX_DAC_CLK_PLL);

// Read and display current DAC source
pcm51xx_dac_clk_src_t dacSource = pcm.getDACSource();
Serial.print(F("Current DAC source: "));
switch (dacSource) {

case PCM51XX_DAC_CLK_MASTER:
Serial.println(F("Master clock (auto-select)"));
break;

case PCM51XX_DAC_CLK_PLL:
Serial.println(F("PLL clock"));
break;

case PCM51XX_DAC_CLK_SCK:
Serial.println(F("SCK clock"));
break;

case PCM51XX_DAC_CLK_BCK:

©Adafruit Industries Page 19 of 25

Serial.println(F("BCK clock"));
break;

default:
Serial.println(F("Unknown"));
break;

}

// Test auto mute (default turn off)
Serial.println(F("Setting auto mute"));
pcm.setAutoMute(false);

// Read and display current auto mute status
bool autoMuteEnabled = pcm.getAutoMute();
Serial.print(F("Auto mute: "));
Serial.println(autoMuteEnabled ? F("Enabled") : F("Disabled"));

// Test mute (default do not mute)
Serial.println(F("Setting mute"));
pcm.mute(false);

// Read and display current mute status
bool muteEnabled = pcm.isMuted();
Serial.print(F("Mute: "));
Serial.println(muteEnabled ? F("Enabled") : F("Disabled"));

// Check DSP boot status and power state
Serial.print(F("DSP boot done: "));
Serial.println(pcm.getDSPBootDone() ? F("Yes") : F("No"));

pcm51xx_power_state_t powerState = pcm.getPowerState();
Serial.print(F("Power state: "));
switch (powerState) {

case PCM51XX_POWER_POWERDOWN:
Serial.println(F("Powerdown"));
break;

case PCM51XX_POWER_WAIT_CP_VALID:
Serial.println(F("Wait for CP voltage valid"));
break;

case PCM51XX_POWER_CALIBRATION_1:
case PCM51XX_POWER_CALIBRATION_2:

Serial.println(F("Calibration"));
break;

case PCM51XX_POWER_VOLUME_RAMP_UP:
Serial.println(F("Volume ramp up"));
break;

case PCM51XX_POWER_RUN_PLAYING:
Serial.println(F("Run (Playing)"));
break;

case PCM51XX_POWER_LINE_SHORT:
Serial.println(F("Line output short / Low impedance"));
break;

case PCM51XX_POWER_VOLUME_RAMP_DOWN:
Serial.println(F("Volume ramp down"));
break;

case PCM51XX_POWER_STANDBY:
Serial.println(F("Standby"));
break;

default:
Serial.println(F("Unknown"));
break;

}

// Check PLL lock status
bool pllLocked = pcm.isPLLLocked();
Serial.print(F("PLL locked: "));
Serial.println(pllLocked ? F("Yes") : F("No"));

// Set volume to -6dB on both channels
Serial.println(F("Setting volume"));

©Adafruit Industries Page 20 of 25

pcm.setVolumeDB(-6.0, -6.0);

// Read and display current volume
float leftVol, rightVol;
pcm.getVolumeDB(&leftVol, &rightVol);
Serial.print(F("Current volume - Left: "));
Serial.print(leftVol, 1);
Serial.print(F("dB, Right: "));
Serial.print(rightVol, 1);
Serial.println(F("dB"));

// Initialize I2S peripheral
Serial.println("Initializing I2S...");
i2s.setBCLK(pBCLK);
i2s.setDATA(pDOUT);
i2s.setBitsPerSample(16);

// Start I2S at the sample rate
if (!i2s.begin(sampleRate)) {

Serial.println("Failed to initialize I2S!");
}

}

void loop() {
if (count % halfWavelength == 0) {

// invert the sample every half wavelength count multiple to generate square
wave

sample = -1 * sample;
}

// write the same sample twice, once for left and once for the right channel
i2s.write(sample);
i2s.write(sample);

// increment the counter for the next sample
count++;

}

Upload the sketch to your board and open up the Serial Monitor (Tools -> Serial
Monitor) at 115200 baud. You'll see the PCM5122 recognized over I2C. Then, you'll
see the setup parameters print out to the Serial Monitor. In the loop, a sine tone will
play through the 3.5 mm jack output.

©Adafruit Industries Page 21 of 25

Arduino Docs
Arduino Docs (https://adafru.it/1asw)

Raspberry Pi
You can use a device tree overlay (dtoverlay) in Raspberry Pi OS to use the
PCM5122 as the audio output device for your Raspberry Pi. The device tree overlay
being used is the iqaudio-dac overlay (https://adafru.it/1asF), which uses the same
PCM5122 DAC on the default I2C address of 0x4C.

Wiring
Here's the Raspberry Pi wired up to the DAC:

Pi 3V to DAC VIN (red wire)
Pi GND to DAC GND (black wire)
Pi SDA to DAC SDA (blue wire)
Pi SCL to DAC SCL (yellow wire)
Pi GPIO19 to DAC WSEL (white wire)
Pi GPIO21 to DAC DIN (orange wire)
Pi GPIO18 to DAC BCK (green wire)
Pi 3V to DAC MOD2 (pink wire)

©Adafruit Industries Page 22 of 25

https://adafruit.github.io/Adafruit_PCM51xx/html/index.html
https://github.com/raspberrypi/linux/blob/rpi-4.9.y/arch/arm/boot/dts/overlays/iqaudio-dac-overlay.dts
https://github.com/raspberrypi/linux/blob/rpi-4.9.y/arch/arm/boot/dts/overlays/iqaudio-dac-overlay.dts
https://learn.adafruit.com//assets/139998
https://learn.adafruit.com//assets/139998

Prerequisite Pi Setup!
In this page, it's assumed that you have already gotten your Raspberry Pi up and
running and can log into the command line.

Here's the quick-start for people with some experience:

Download the latest Raspberry Pi OS or Raspberry Pi OS Lite (https://adafru.it/
Pf5) to your computer
Burn the OS image to your MicroSD card (https://adafru.it/dDL) using your
computer
Re-plug the SD card into your computer (don't use your Pi yet!) and set up your
wifi connection by editing supplicant.conf (https://adafru.it/yuD)
Activate SSH support (https://adafru.it/yuD)
Plug the SD card into the Pi
If you have an HDMI monitor we recommend connecting it so you can see that
the Pi is booting OK
Plug in power to the Pi - you will see the green LED flicker a little. The Pi will
reboot while it sets up so wait a good 10 minutes
If you are running Windows on your computer, install Bonjour support so you can
use .local names, you'll need to reboot Windows after installation (https://
adafru.it/lPE)
You can then ssh into raspberrypi.local (https://adafru.it/jvB)

The Pi Foundation has tons of guides as well (https://adafru.it/BJY).

Update the Raspberry Pi
After loading your fresh install, run the standard updates:

sudo apt-get update
sudo apt-get upgrade
sudo reboot

Add Device Tree Overlay
Edit your Pi configuration file with:

sudo nano /boot/firmware/config.txt

At the top of the file, uncomment these lines to enable I2C and I2S:

dtparam=i2c_arm=on
dtparam=i2s=on

Then, at the bottom of the file, add this line:

1.

2.

3.

4.
5.
6.

7.

8.

9.

©Adafruit Industries Page 23 of 25

https://www.raspberrypi.org/software/operating-systems/
https://learn.adafruit.com/adafruit-raspberry-pi-lesson-1-preparing-and-sd-card-for-your-raspberry-pi
https://learn.adafruit.com/raspberry-pi-zero-creation/text-file-editing
https://learn.adafruit.com/raspberry-pi-zero-creation/text-file-editing
https://learn.adafruit.com/raspberry-pi-zero-creation/text-file-editing
https://learn.adafruit.com/bonjour-zeroconf-networking-for-windows-and-linux#microsoft-windows
https://learn.adafruit.com/bonjour-zeroconf-networking-for-windows-and-linux#microsoft-windows
https://learn.adafruit.com/bonjour-zeroconf-networking-for-windows-and-linux#microsoft-windows
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-6-using-ssh
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-6-using-ssh
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-6-using-ssh
https://projects.raspberrypi.org/en/projects/raspberry-pi-getting-started

dtoverlay=iqaudio-dac

To save the config, press Ctrl+X and then Y to save your changes. Then press Enter to
exit the file.

Reboot the Pi with:

sudo reboot

Testing the DAC
After rebooting, you can test the audio output in the terminal with:

speaker-test -c2

You should hear white noise coming from the output. If you do, then all of that setup
worked and you can start to use the DAC as the audio output for your Raspberry Pi.

Downloads
Files

PCM5122 Datasheet (https://adafru.it/1asG)
EagleCAD PCB Files on GitHub (https://adafru.it/1asH)
3D models on GitHub (https://adafru.it/1asI)
Fritzing object in the Adafruit Fritzing Library (https://adafru.it/1asJ)

Schematic and Fab Print

•
•
•
•

©Adafruit Industries Page 24 of 25

https://cdn-learn.adafruit.com/assets/assets/000/139/692/original/pcm5122.pdf?1758045292
https://github.com/adafruit/Adafruit-PCM5122-I2S-DAC-PCB
https://github.com/adafruit/Adafruit_CAD_Parts/tree/main/6421%20PCM5122%20I2S%20DAC
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20PCM5122%20I2S%20DAC%20with%20Line%20Level%20Output.fzpz

©Adafruit Industries Page 25 of 25

	Adafruit PCM5122 I2S DAC
	Table of Contents
	Overview
	Pinouts
	CircuitPython - Hardware Mode
	CircuitPython - I2C Mode
	Python Docs
	Arduino - Hardware Mode
	Arduino - I2C Mode
	Arduino Docs
	Raspberry Pi
	Downloads

	Overview
	Pinouts
	Power Pins
	I2S Pins
	Audio Output
	Control Mode Selection
	Hardware Control Pins
	I2C Control Pins
	I2C Address Pins
	SPI Control Pins
	Clock Direction Jumper

	CircuitPython - Hardware Mode
	CircuitPython Microcontroller Wiring
	Example Code

	CircuitPython - I2C Mode
	CircuitPython Microcontroller Wiring
	CircuitPython Usage
	Example Code

	Python Docs
	Arduino - Hardware Mode
	Wiring
	Example Code

	Arduino - I2C Mode
	Wiring
	Library Installation
	Example Code

	Arduino Docs
	Raspberry Pi
	Wiring
	Prerequisite Pi Setup!
	Update the Raspberry Pi
	Add Device Tree Overlay
	Testing the DAC

	Downloads
	Files
	Schematic and Fab Print

