
Adafruit 2.9" eInk Display Breakouts and
FeatherWings

Created by Melissa LeBlanc-Williams

https://learn.adafruit.com/adafruit-2-9-eink-display-breakouts-and-featherwings

Last updated on 2025-12-18 02:49:36 PM UTC

©Adafruit Industries Page 1 of 94

5

9

14

19

21

24

27

28

29

35

40

Table of Contents

Overview
• 2.9" Tri-Color eInk Display and FeatherWing Revision
• We have multiple 2.9" EPD displays:
• 2.9" Tri-Color eInk Display Revision History
• 2.9" Tri-Color eInk FeatherWing Revision History

Pinouts
• 2.9" Tri-Color eInk Display and FeatherWing Revision
• eInk Breakout Friend
• Power Pins
• Data Control Pins
• FeatherWing Connections
• 2.9" Tri-Color eInk FeatherWing Revision History
• FeatherWing Buttons

EYESPI
• The EYESPI Connector and Cables
• Wiring Your EYESPI Display
• EYESPI Pins

Plugging in an EYESPI Cable

Assembly
• Assembly
• Add the E-Ink Display
• And Solder!

Wiring
• EYESPI Connector
• Breakout Wiring
• FeatherWing Connection
• Python Wiring

Usage and Expectations

Arduino Setup

Arduino Usage
• 2.9" Monochrome 296x128 Pixel Display
• 2.9" Tri-Color 296x128 Pixel Display
• 2.9" Tri-Color eInk Display and FeatherWing Revision
• 2.9" Grayscale 296x128 Pixel Display
• Configure Pins
• Configure Display Type & Size
• Upload Sketch

Arduino Bitmaps
• Tri-Color and Mono Display Demo
• GrayScale Display Demo

CircuitPython Monochrome Usage
• CircuitPython eInk displayio Library Installation

©Adafruit Industries Page 2 of 94

44

47

57

59

80

89

• Image File
• Monochrome Display Usage

CircuitPython Grayscale Usage
• CircuitPython eInk displayio Library Installation
• Image File
• Grayscale Display Usage

CircuitPython Tri-Color Usage
• 2.9" Tri-Color eInk Display and FeatherWing Revision
• CircuitPython eInk displayio Library Installation
• Image File
• Adafruit_CircuitPython_UC8151D
• UC8151D Display Usage
• Adafruit_CircuitPython_IL0373

Python Setup
• Setup Virtual Environment
• Install Adafruit_Blinka
• Python Installation of EPD Library
• Download font5x8.bin
• DejaVu TTF Font
• Pillow Library
• Chip Enable Lines

Python Usage
• 2.9" Tri-Color eInk Display and FeatherWing Revision
• Monochrome Example
• Tri-Color Example
• Full Example Code
• Bitmap Example
• Image Drawing with Pillow
• Drawing Shapes and Text with Pillow

WipperSnapper Wiring & Test
• What is WipperSnapper
• Wiring
• Usage

Downloads
• 2.9" Tri-Color eInk Display Revision History
• 2.9" Tri-Color eInk FeatherWing Revision History
• Files
• Schematic & Fabrication Prints
• 2.9" FeatherWing
• eInk Friends

©Adafruit Industries Page 3 of 94

©Adafruit Industries Page 4 of 94

Overview

Easy e-paper finally comes to microcontrollers with these breakouts, shields and
friends that are designed to make it a breeze to add a monochrome, tri-color, or
grayscale eInk display. Chances are you've seen one of those new-fangled 'e-readers'
like the Kindle or Nook. They have gigantic electronic paper 'static' displays - that
means the image stays on the display even when power is completely disconnected.
The image is also high contrast and very daylight readable. It really does look just like
printed paper!

2.9" Tri-Color eInk Display and FeatherWing Revision
As of June 20, 2025 - The tri-color display and FeatherWing have been
updated (old ones discontinued) to now use a spiffy modern SSD1680
chip - we have support in CircuitPython/Python/Arduino for it!

•

©Adafruit Industries Page 5 of 94

Adafruit has liked these displays for a long time, but they were never designed for
makers to use. Finally, we decided to make our own!

We have multiple 2.9" EPD displays:
Breakouts and Flexibles

We have a newer 296x128 Tri-Color display (http://adafru.it/1028) with the
UC8151D chipset, which has has black and red ink pixels and a white-ish
background.

•

©Adafruit Industries Page 6 of 94

https://www.adafruit.com/product/1028

The older tri-color breakout, which had the same Product ID, had the IL0373
chipset. This display is no longer offered.
The 2.9" monochrome flexible display (http://adafru.it/4262) has a resolution of
296x128 and is flexible. For this display, you will probably want to pick up an e-
Ink Breakout Friend (http://adafru.it/4224) or e-Ink Feather Friend (http://
adafru.it/4446). There is an extension cable (http://adafru.it/4230) available for
this type of connection also.

FeatherWings
The newer 296x128 Tri-Color FeatherWing (http://adafru.it/4778) with the
SSD1675 chipset.
The older tri-color FeatherWing with the IL0373 has the same display as the
older breakout. This display is also no longer offered.
The grayscale FeatherWing features 4 levels of grayscale. We have a 296x128
Grayscale FeatherWing (http://adafru.it/4777).

Using our Arduino library, you can create a 'frame buffer' with what pixels you want to
have activated and then write that out to the display. Most simple breakouts leave it at
that. But if you do the math, 296 x 128 pixels x 2-bits-per-pixel = 9.5 KBytes. Which
won't fit into many microcontroller memories. Heck, even if you do have 32KB of RAM,
why waste 9KB?

So we did you a favor and tossed a small SRAM chip on the back. This chip shares
the SPI port the eInk display uses, so you only need one extra pin. And, no more

•

•

•

•

•

©Adafruit Industries Page 7 of 94

https://www.adafruit.com/product/4262
https://www.adafruit.com/product/4224
https://www.adafruit.com/product/4224
https://www.adafruit.com/product/4446
https://www.adafruit.com/product/4230
https://www.adafruit.com/product/4778
https://www.adafruit.com/product/4777
https://www.adafruit.com/product/4777

frame-buffering! You can use the SRAM to set up whatever you want to display, then
shuffle data from SRAM to eInk when you're ready. The library we wrote does all the
work for you (https://adafru.it/BRK), you can just interface with it as if it were an
Adafruit_GFX compatible display (https://adafru.it/BRK).

For ultra-low power usages, the onboard 3.3V regulator has the Enable pin brought
out so you can shut down the power to the SRAM, MicroSD and display.

We even added on a MicroSD socket to the breakouts and FeatherWings so you can
store images, text files, whatever you like to display. Everything is 3 or 5V logic safe
so you can use it with any and all common Maker microcontrollers.

2.9" Tri-Color eInk Display Revision History
As of June 20, 2025 - The display has been updated (old ones
discontinued) to use a spiffy modern SSD1680 chip - we have support in
CircuitPython/Python/Arduino for it!
As of May 22th, 2024 – We've updated this PCB with a new EYESPI
connector along with the Adafruit Pinguin to make a lovely and legible
silkscreen.
As of November 16, 2022 - this revision has been updated to have a 2.9"
Tri-Color eInk display only with a UC8151D chipset.

•

•

•

©Adafruit Industries Page 8 of 94

https://github.com/adafruit/Adafruit_EPD
https://github.com/adafruit/Adafruit_EPD
https://github.com/adafruit/Adafruit_EPD
https://github.com/adafruit/Adafruit_EPD

Pinouts

This e-Paper display uses SPI to receive image data. Since the display is SPI, it was
easy to add two more SPI devices to share the bus - an SPI SRAM chip and SPI-driven
SD card holder. There's quite a few pins and a variety of possible combinations for
control depending on your needs

2.9" Tri-Color eInk FeatherWing Revision History
As of June 24th, 2025 – The display has been updated (old one
discontinued) it now uses a spiffy modern SSD1680 chip - we have
support in CircuitPython/Python/Arduino for it!
As of Sep 8, 2023 – we've updated this PCB with Adafruit Pinguin to
make a lovely and legible silkscreen - you may get the new PCB or the
older version with vector fonts - both are identical other than the fancy
silkscreen.

•

•

2.9" Tri-Color eInk Display and FeatherWing Revision
As of June 20, 2025 - The tri-color display and FeatherWing have been
updated (old ones discontinued) to now use a spiffy modern SSD1680
chip - we have support in CircuitPython/Python/Arduino for it!

•

©Adafruit Industries Page 9 of 94

eInk Breakout Friend
Connect a bare eInk display to this breakout to use it!

The pinouts are identical for the 2.13" and 2.9" E-Ink display!

©Adafruit Industries Page 10 of 94

Power Pins

3-5V / Vin - this is the power pin, connect to 3-5VDC - it has reverse polarity
protection but try to wire it right!
3.3V out - this is the 3.3V output from the onboard regulator, you can 'borrow'
about 100mA if you need to power some other 3.3V logic devices
GND - this is the power and signal ground pin
ENAble - This pin is all the way on the right. It is connected to the enable pin on
the onboard regulator that powers everything. If you want to really have the
lowest possible power draw, pull this pin low! Note that if you do so you will cut
power to the eInk display but also the SPI RAM (thus erasing it) and the SD card
(which means you'll have to re-initialize it when you re-power

Data Control Pins

SCK - this is the SPI clock input pin, required for e-Ink, SRAM and SD card
MISO - this is the SPI Microcontroller In Serial Out pin, its used for the SD card
and SRAM. It isn't used for the e-Ink display which is write-only, however you'll
likely be using the SRAM to buffer the display so connect this one too!
MOSI - this is the SPI Microcontroller Out Serial In pin, it is used to send data
from the microcontroller to the SD card, SRAM and e-Ink display
ECS - this is the E-Ink Chip Select, required for controlling the display
D/C - this is the e-Ink Data/Command pin, required for controlling the display
SRCS - this is the SRAM Chip Select, required for communicating with the
onboard RAM chip.

•

•

•
•

•
•

•

•
•
•

©Adafruit Industries Page 11 of 94

SDCS - this is the SD card Chip Select, required for communicating with the
onboard SD card holder. You can leave this disconnected if you aren't going to
access SD cards
RST - this is the E-Ink ReSeT pin, you may be able to share this with your
microcontroller reset pin but if you can, connect it to a digital pin.
BUSY - this is the e-Ink busy detect pin, and is optional if you don't want to
connect the pin (in which case the code will just wait an approximate number of
seconds)

FeatherWing Connections

•

•

•

2.9" Tri-Color eInk FeatherWing Revision History
As of June 24th, 2025 – The display has been updated (old one
discontinued) it now uses a spiffy modern SSD1680 chip - we have
support in CircuitPython/Python/Arduino for it!
As of Sep 8, 2023 – we've updated this PCB with Adafruit Pinguin to
make a lovely and legible silkscreen - you may get the new PCB or the
older version with vector fonts - both are identical other than the fancy
silkscreen.

•

•

©Adafruit Industries Page 12 of 94

The FeatherWing eInk Display and eInk Feather Friend are a little more compact but
have just about the same pins as the breakout

SPI MOSI/MISO/SCK are on the FeatherWing SPI connection pads

SD CS, SRAM CS, EINK CS and DC are in order after the two I2C pins. The numbers of
the pins these correspond to will differ from board to board. However, on 32u4/328p/
M0/M4/nRF52840 and many other boards you will see the following connections

SD CS to Pin D5
SRAM CS to Pin D6
EINK CS to Pin D9
EINK DC to Pin D10

If you do not plan to use the SD card, you can cut the trace to SD CS. Likewise for
SRAM CS.

The Reset pin for the E-Ink display is connected to an auto-reset circuit and also to
the Feather Reset pin, so it will reset when you press the reset button.

The Busy pin is available on a breakout pad, you can solder it to a wire and connect
to a pin if you need it - we figure most people will just use a fixed delay.

•

•
•
•
•

©Adafruit Industries Page 13 of 94

FeatherWing Buttons
The 2.9" eInk FeatherWings also feature a few buttons. The exact pin the buttons are
connected to can vary by the specific feather.

A - this is button A and is connected to Pin D11 on many Feathers, but may vary.
B - this is button B and is connected to Pin D12 on many Feathers, but may vary.
C - this is button C and is connected to Pin D13 on many Feathers, but may vary.
Reset - this button will reset the attached Feather.

EYESPI

•
•
•
•

Currently, only the 2.9" Tri-Color eInk display has been updated to have an
EYESPI connector.

©Adafruit Industries Page 14 of 94

This display now comes with an EYESPI connector. This connector allows you to
connect your display without soldering. There are EYESPI cables (https://adafru.it/
18eT) available in multiple lengths, which means you can find one to fit any project.
This is especially useful if your project requires the display to be freestanding, and
not tied directly into a breadboard. Inspired by the popularity of STEMMA QT, it
provides plug-n-play for displays!

The EYESPI Connector and Cables
The EYESPI connector is an 18 pin 0.5mm pitch FPC connector with a flip-top tab for
locking in the associated flex cable. It is designed to allow you to connect a display,
without needing to solder headers or wires to the display.

The EYESPI connector location on this display is indicated below.

©Adafruit Industries Page 15 of 94

https://www.adafruit.com/?q=eyespi+cable&sort=BestMatch

The EYESPI cables are 18 pin 0.5mm pitch flex cables. They are ~9.6mm wide, and
designed to fit perfectly into the EYESPI connector. Adafruit currently offers EYESPI
cables in three different lengths: 50mm (http://adafru.it/5462), 100mm (http://adafru.it/
5239), and 200mm (http://adafru.it/5240).

Wiring Your EYESPI Display
Wiring your EYESPI display to a microcontroller via the EYESPI connector requires the
EYESPI breakout board and an EYESPI cable.

The EYESPI connector is designed to work with 18-pin 0.5mm pitch flex
cables. Other flex cables, such as Raspberry Pi camera flex cables, will not
work!

©Adafruit Industries Page 16 of 94

https://www.adafruit.com/product/5462
https://www.adafruit.com/product/5239
https://www.adafruit.com/product/5240

Adafruit EYESPI Breakout Board - 18 Pin
FPC Connector
Our most recent display breakouts have
come with a new feature: an 18-pin "EYE
SPI" standard FPC...
https://www.adafruit.com/product/5613

EYESPI Cable - 18 Pin 100mm long Flex
PCB (FPC) A-B type
Connect this to that when a 18-pin FPC
connector is needed. This 25 cm long
cable is made of a flexible PCB. It's A-B
style which means that pin one on one
side will match...
https://www.adafruit.com/product/5239

The following example shows how to connect the 2.9" eInk display to a Feather
RP2040 using the EYESPI breakout board.

Connect the following Feather pins to the associated EYESPI breakout pins:

©Adafruit Industries Page 17 of 94

https://www.adafruit.com/product/5613
https://www.adafruit.com/product/5613
https://www.adafruit.com/product/5613
https://www.adafruit.com/product/5239
https://www.adafruit.com/product/5239
https://www.adafruit.com/product/5239

Breakout Vin to Feather Vin (red wire)
Breakout Gnd to Feather Gnd (black wire)
Breakout SCK to Feather SCK (blue wire)
Breakout MOSI to Feather MOSI (yellow
wire)
Breakout MISO to Feather MISO (green
wire)
Breakout MEMCS to Feather pin 6 (pink
wire)
Breakout TCS to Feather pin 9 (grey wire)
Breakout DC to Feather pin 10 (white
wire)
Breakout RST to Feather pin 11 (orange
wire)
Breakout BUSY to Feather pin 12 (cyan
wire)
Breakout SDCS to Feather pin 13 (purple
wire)

Finally, connect your display EYESPI connector to the breakout EYESPI connector
using an EYESPI cable. For details on using the EYESPI connector properly, visit
Plugging in an EYESPI Cable (https://adafru.it/18eU).

EYESPI Pins
Though there are 18 pins available on the EYESPI connector, many displays do not
use all available pins. This display requires the following pins:

Vin - This is the power pin. To power the board (and thus your display), connect
to the same power as the logic level of your microcontroller, e.g. for a 3V micro
like a Feather, use 3V, and for a 5V micro like an Arduino, use 5V
GND - This is common ground for power and logic
SCK - This is the SPI clock input pin
MOSI - This is the SPI MOSI (Microcontroller Out / Serial In) pin. It is used to
send data from the microcontroller to the SD card and/or display

•

•
•
•

©Adafruit Industries Page 18 of 94

https://learn.adafruit.com//assets/130260
https://learn.adafruit.com//assets/130260
https://learn.adafruit.com/adafruit-eyespi-breakout-board/plugging-in-an-eyespi-cable

MISO - This is the SPI MISO (Microcontroller In / Serial Out) pin. It's used for the
SD card. It isn't used for the display because it's write-only. It is 3.3V logic out
(but can be read by 5V logic)
TCS - eInk Chip Select pin
DC - Data/command pin
MEMCS - Memory Chip Select, required for communicating with the onboard
RAM chip
RST - This is the display reset pin. Connecting to ground resets the display! It's
best to have this pin controlled by the library so the display is reset cleanly, but
you can also connect it to the microcontroller's Reset pin, which works for most
cases. Often, there is an automatic-reset chip on the display which will reset it
on power-up, making this connection unnecessary in that case
BUSY - e-Ink busy detect pin
SDCS - This is the SD card chip select pin. This pin is required for
communicating with the SD card holder onboard the connected display

Plugging in an EYESPI Cable

You can connect an EYESPI compatible display to the EYESPI breakout board using
an EYESPI cable. An EYESPI cable is an 18 pin flexible PCB (FPC). The FPC can only
be connected properly in one orientation, so be sure to follow the steps below to
ensure that your display and breakout are plugged in properly.

•

•
•
•

•

•
•

©Adafruit Industries Page 19 of 94

Each EYESPI cable has blue stripes on
either end. On the other side of the cable,
underneath the blue stripe, are the
connector pins that make contact with the
FPC connector pins on the display or
breakout.

To begin inserting an EYESPI cable to an
FPC connector, gently lift the FPC
connector black latch up.

Then, insert the EYESPI cable into the
open FPC connector by sliding the cable
into the connector. You want to see the
blue stripe facing up towards you. This
inserts the cable pins into the FPC
connector.

©Adafruit Industries Page 20 of 94

https://learn.adafruit.com//assets/116970
https://learn.adafruit.com//assets/116970
https://learn.adafruit.com//assets/116971
https://learn.adafruit.com//assets/116971
https://learn.adafruit.com//assets/116972
https://learn.adafruit.com//assets/116972

To secure the cable, lower the FPC
connector latch onto the EYESPI cable.

Repeat this process for the FPC connector
on your display. Again, ensure that the
blue stripe on either end of the cable is
facing up.

Assembly

©Adafruit Industries Page 21 of 94

https://learn.adafruit.com//assets/116973
https://learn.adafruit.com//assets/116973
https://learn.adafruit.com//assets/116974
https://learn.adafruit.com//assets/116974

Assembly

Cut the header down to length if necessary. It will be easier to solder if you insert it
into a breadboard - long pins down

Add the E-Ink Display

Place the board over the pins so that the
short pins poke through the top of the
breakout pads

©Adafruit Industries Page 22 of 94

https://learn.adafruit.com//assets/71152
https://learn.adafruit.com//assets/71152

And Solder!

Be sure to solder all pins for reliable
electrical contact.

(For tips on soldering, be sure to check out
the Guide to Excellent Soldering (https://
adafru.it/aTk)).

OK, you're done!

©Adafruit Industries Page 23 of 94

https://learn.adafruit.com//assets/71153
https://learn.adafruit.com//assets/71153
https://learn.adafruit.com//assets/71154
https://learn.adafruit.com//assets/71154
https://learn.adafruit.com//assets/71156
https://learn.adafruit.com//assets/71156
http://learn.adafruit.com/adafruit-guide-excellent-soldering
http://learn.adafruit.com/adafruit-guide-excellent-soldering

Wiring

EYESPI Connector
If you have one of the newer breakouts with an EYESPI connector on the back, you
can use that with an 18-pin ribbon cable to connect it either directly to an adapter
board such as the EYESPI BFF for QT Py or Xiao (http://adafru.it/5772) or by using the
EYESPI Breakout (http://adafru.it/5613) and wiring that to your microcontroller. See the
EYESPI page (https://adafru.it/1a1u) for more information.

Breakout Wiring
Though it looks like a lot of connections, wiring up an eInk breakout is pretty
straightforward! Below shows using hardware SPI to connect it to an Adafruit Metro
M4.

Vin connects to the microcontroller board's 5V or 3.3V power supply pin.
GND connects to ground.
CLK connects to SPI clock. It's easiest to connect it to pin 3 of the ICSP header.
MOSI connects to SPI MOSI. It's easiest to connect it to pin 4 of the ICSP
header.
MISO connects to SPI MISO. It's easiest to connect it to pin 1 of the ICSP header.
ECS connects to our e-Ink Chip Select pin. We'll be using Digital 9.
D/C connects to our e-Ink data/command select pin. We'll be using Digital 10.

•
•
•
•

•
•
•

©Adafruit Industries Page 24 of 94

https://www.adafruit.com/product/5772
https://www.adafruit.com/product/5613
https://learn.adafruit.com/adafruit-2-9-eink-display-breakouts-and-featherwings/eyespi

SRCS connects to our SRAM Chip Select pin. We'll be using Digital 6.
RST connects to our e-Ink reset pin. We'll be using Digital 8.
BUSY connects to our e-Ink busy pin. We'll be using Digital 7.
SDCS connects to our SD Card Chip Select pin. We'll be using Digital 5.

FeatherWing Connection
FeatherWing usage is easy, simply plug your Feather board into the FeatherWing
board.

•
•
•
•

©Adafruit Industries Page 25 of 94

Python Wiring

There are many Single Board Computers (SBC) so showing them all is impractical. The
Raspberry Pi is the most common and it is shown below. Others are likely similar. The
SPI peripheral may need to be enabled on such boards.

Raspberry Pi 3.3 to display VIN
Raspberry Pi GND to display GND
Raspberry Pi SCLK to display SCK
Raspberry Pi MOSI to display MOSI
Raspberry Pi GPIO CE0 to display ECS
Raspberry Pi GPIO 22 to display D/C
Raspberry Pi GPIO 27 to display RST
Raspberry Pi GPIO 17 to display BUSY

Wiring for the eInk friend breakout is the same as the Tri-Color breakout.

•
•
•
•
•
•
•
•

©Adafruit Industries Page 26 of 94

Usage and Expectations

One thing to remember with these small e-Ink screens is that its very slow compared
to OLEDs, TFTs, or even 'memory displays'. It will take may seconds to fully erase and
replace an image

There's also a recommended limit on refeshing - you shouldn't refresh or change the
display more than every 3 minutes (180 seconds).

You don't have to refresh often, but with tri-color displays, the larger red ink dots will
slowly rise, turning the display pinkish instead of white background. To keep the
background color clear and pale, refresh once a day

Do not update more than once every 180 seconds or you may permanently
damage the display

©Adafruit Industries Page 27 of 94

Arduino Setup

To use the display, you will need to install the Adafruit_EPD library (code on our
github repository) (https://adafru.it/BRK). It is available from the Arduino library
manager so we recommend using that.

From the IDE open up the library manager...

And type in adafruit EPD to locate the library. Click Install

If you would like to draw bitmaps, do the same with adafruit ImageReader, click
Install

Do the same to install the latest adafruit GFX library, click Install

©Adafruit Industries Page 28 of 94

https://github.com/adafruit/Adafruit_EPD
https://github.com/adafruit/Adafruit_EPD

If using an earlier version of the Arduino IDE (pre-1.8.10), locate and install
Adafruit_BusIO (newer versions handle this prerequisite automatically).

Arduino Usage

2.9" Monochrome 296x128 Pixel Display
For the 296x128 Flexible Display, below is a monochrome demo.

2.9" Flexible 296x128 Monochrome eInk /
ePaper Display
Woah, the cyber-future is here! Flexible E-
Ink has been demo'd at high-tech events
for years but now you can actually get
your paws on it. This display is true E-Ink /
E-Paper,...
https://www.adafruit.com/product/4262

Open up File→Examples→Adafruit_EPD→ThinkInk_mono

Here is where the differences in the tri-color/monochrome and chipset/
dimensions start mattering. Check carefully to make sure you are running the
right example and creating the matching ThinkInk type for your display or you
won't see anything happen on the EPD (or the image may be really weird
looking).

©Adafruit Industries Page 29 of 94

https://www.adafruit.com/product/4262
https://www.adafruit.com/product/4262
https://www.adafruit.com/product/4262

2.9" Tri-Color 296x128 Pixel Display
For the 296x128 Tri-Color display, below is a tri-color demo.

Adafruit 2.9" Red/Black/White eInk
Display Breakout - THINK INK
Easy e-paper finally comes to
microcontrollers, with this breakout that's
designed to make it a breeze to add a tri-
color eInk display. Chances are you've
seen one of those...
https://www.adafruit.com/product/1028

2.9" Tri-Color eInk Display and FeatherWing Revision
As of June 20, 2025 - The tri-color display and FeatherWing have been
updated (old ones discontinued) to now use a spiffy modern SSD1680
chip - we have support in CircuitPython/Python/Arduino for it!

•

©Adafruit Industries Page 30 of 94

https://www.adafruit.com/product/1028
https://www.adafruit.com/product/1028
https://www.adafruit.com/product/1028

Adafruit 2.9" Tri-Color eInk / ePaper
Display FeatherWing
Easy e-paper comes to your Feather with
this breakout that's designed to make it a
breeze to add a tri-color eInk display.
Chances are you've seen one of those...
https://www.adafruit.com/product/4778

Open up File→Examples→Adafruit_EPD→ThinkInk_tricolor

2.9" Grayscale 296x128 Pixel Display
For the 296x128 Grayscale display, below is the grayscale demo.

The demo updates every 15 seconds which is fine for demonstrating the
functionality for a short time, but we recommend not updating more often than
180 seconds if you are planning on running any code long term.

©Adafruit Industries Page 31 of 94

https://www.adafruit.com/product/4778
https://www.adafruit.com/product/4778
https://www.adafruit.com/product/4778

Adafruit 2.9" Grayscale eInk / ePaper
Display FeatherWing
Easy e-paper comes to your Feather with
this breakout that's designed to make it a
breeze to add a monochrome eInk
display. Chances are you've seen one of
those...
https://www.adafruit.com/product/4777

Open up File→Examples→Adafruit_EPD→ThinkInk_gray4

Configure Pins

No matter what display you have, you will need to verify that your pins match your
wiring. At the top of the sketch find the lines that look like:

#define EPD_DC 10
#define EPD_CS 9
#define SRAM_CS 6

For the FeatherWing you must be sure both EPD_RESET and EPD_BUSY are
set to -1 since neither of these lines are connected or the E-Ink will not update.

©Adafruit Industries Page 32 of 94

https://www.adafruit.com/product/4777
https://www.adafruit.com/product/4777
https://www.adafruit.com/product/4777

#define EPD_RESET 8 // can set to -1 and share with microcontroller Reset!
#define EPD_BUSY 7 // can set to -1 to not use a pin (will wait a fixed delay)

If you are using the FeatherWing only: Change both EPD_RESET and EPD_BUSY to -1
since neither of these lines are connected on the FeatherWing.

If you wired the display differently than on the wiring page, adjust the pin numbers
accordingly.

Configure Display Type & Size
Find the part of the script where you can pick which display is going to be used. The
eInk displays are made up a combination of a Chipset and a Film in different sizes.
Adafruit has narrowed it down to just a few choices between the size of the display,
chipset, and film based on available combinations. In the sketch, it is sorted by size,
so it's easy to find your display.

You will need to uncomment the appropriate initializer and and leave any other type
commented:

For the 2.9" 296x128 Monochrome Flexible Display (http://adafru.it/4262), you
will use the ThinkInk_290_Mono_M06 display initializer.
For the SSD1680 chipset version of the 2.9" 296x128 Tri-Color breakout (http://
adafru.it/1028) or 2.9" 296x128 Tri-Color FeatherWing (http://adafru.it/4778), you
will use the ThinkInk_290_Tricolor_Z94 display initializer.
For the UC8151D chipset version of the 2.9" 296x128 Tri-Color breakout (http://
adafru.it/1028), you will use the ThinkInk_290_Tricolor_Z13 display
initializer.
For the IL0373 chipset version of the 2.9" 296x128 Tri-Color breakout (http://
adafru.it/1028) or 2.9" 296x128 Tri-Color FeatherWing (http://adafru.it/4778), you
will use the ThinkInk_290_Tricolor_Z10 display initializer.
For the 2.9" 296x128Grayscale breakout (http://adafru.it/4086) , you will use the
ThinkInk_290_Grayscale4_T5 display initializer.

For example, for the mono 296x128 flexible display, uncomment this line, and
comment any other line that is creating a ThinkInk display object

// 2.9" Monochrome displays with 296x128 pixels and UC8151D chipset
//ThinkInk_290_Mono_M06 display(EPD_DC, EPD_RESET, EPD_CS, SRAM_CS, EPD_BUSY);

•

•

•

•

•

©Adafruit Industries Page 33 of 94

https://www.adafruit.com/product/4262
https://www.adafruit.com/product/4262
https://www.adafruit.com/product/1028
https://www.adafruit.com/product/1028
https://www.adafruit.com/product/4778
https://www.adafruit.com/product/4778
https://www.adafruit.com/product/1028
https://www.adafruit.com/product/1028
https://www.adafruit.com/product/1028
https://www.adafruit.com/product/1028
https://www.adafruit.com/product/4778
https://www.adafruit.com/product/4778
https://www.adafruit.com/product/4086
https://www.adafruit.com/product/4086

Upload Sketch
After checking the pinouts and the display type one more time, go ahead and upload
the sketch to your board. Once it is done uploading, open the Serial Monitor.

The display should start running a series of display tests

©Adafruit Industries Page 34 of 94

Arduino Bitmaps

Not only can you draw shapes but you can also load images from the SD card, perfect
for static images!

Tri-Color and Mono Display Demo
The Tri-color and Mono demo uses a single bitmap. The Blinka bitmaps below is used
for the demonstration. Select the one that is correct for your display:

Download Flexible blinka.bmp

https://adafru.it/19f2

©Adafruit Industries Page 35 of 94

https://raw.githubusercontent.com/adafruit/Adafruit_ImageReader/master/images/E-Ink%20Flexible%202.9/blinka.bmp

Download Tri-Color blinka.bmp

https://adafru.it/19f3

Download the blinka.bmp file and place it into the base directory of a microSD card
and insert it into the microSD socket in the breakout.

Plug the MicroSD card into the display. You may want to try the SD library examples
before continuing, especially one that lists all the files on the SD card

Open the file→examples→Adafruit_ImageReader→ThinkInkDisplays example

There are just a couple of things you may need to change in this file.

If you are using the FeatherWing, set EPD_RESET and EPD_BUSY to -1 otherwise it
will wait indefinitely.

©Adafruit Industries Page 36 of 94

https://raw.githubusercontent.com/adafruit/Adafruit_ImageReader/master/images/E-Ink%20TriColor%202.9/blinka.bmp

You'll need to change the initializer for your display. These options are heavily
commented on the previous Arduino Usage page (https://adafru.it/1alq) in this guide.

Upload to your board and you should see an image of Blinka appear.

Adafruit 2.9" eInk Display Breakouts and
FeatherWings
By M. LeBlanc-Williams
 Arduino Usage

https://learn.adafruit.com/adafruit-2-9-
eink-display-breakouts-and-featherwings/
arduino-usage

GrayScale Display Demo
The 2.9" Grayscale display can show a max of 296x128 pixels. The grayscale demo
uses three bitmaps. These bitmaps may be used for fun in the demo:

©Adafruit Industries Page 37 of 94

https://learn.adafruit.com/adafruit-2-9-eink-display-breakouts-and-featherwings/arduino-usage#configure-display-type-and-size-3102374
https://learn.adafruit.com/adafruit-2-9-eink-display-breakouts-and-featherwings
https://learn.adafruit.com/adafruit-2-9-eink-display-breakouts-and-featherwings
https://learn.adafruit.com/adafruit-2-9-eink-display-breakouts-and-featherwings
https://learn.adafruit.com/adafruit-2-9-eink-display-breakouts-and-featherwings/arduino-usage
https://learn.adafruit.com/adafruit-2-9-eink-display-breakouts-and-featherwings/arduino-usage
https://learn.adafruit.com/adafruit-2-9-eink-display-breakouts-and-featherwings/arduino-usage
https://learn.adafruit.com/adafruit-2-9-eink-display-breakouts-and-featherwings/arduino-usage

Download panda_head.bmp

https://adafru.it/OdE

Download adabot_head.bmp

https://adafru.it/OdF

Download 29gray4.bmp

https://adafru.it/OdG

Rename the files to panda_head.bmp, adabot_head.bmp, and 29gray4.bmp and
place them into the base directory of a microSD card and insert it into the microSD
socket in the breakout.

Plug the MicroSD card into the display. You may want to try the SD library examples
before continuing, especially one that lists all the files on the SD card

©Adafruit Industries Page 38 of 94

https://cdn-learn.adafruit.com/assets/assets/000/096/272/original/adafruit_products_panda_head.bmp?1603484642
https://cdn-learn.adafruit.com/assets/assets/000/096/273/original/adafruit_products_adabot_head.bmp?1603484658
https://cdn-learn.adafruit.com/assets/assets/000/096/274/original/adafruit_products_29gray4.bmp?1603484677

Open the file->examples->Adafruit_ImageReader-
>EInkGray29BmpButtonDemo example

Upload to your board and press the buttons on top. You should see a different image
appear for each button.

If you want to later use your own image, use an image editing tool and crop your
image to no larger than 296 pixels wide and 128 pixels high. Save it as a 24-bit color

©Adafruit Industries Page 39 of 94

BMP file - it must be 24-bit color format to work, even if it was originally a 16-bit color
image - because of the way BMPs are stored and displayed!

CircuitPython Monochrome Usage

This page goes over how to use the 2.9" Monochrome eInk displays with
CircuitPython.

2.9" Flexible 296x128 Monochrome eInk /
ePaper Display
Woah, the cyber-future is here! Flexible E-
Ink has been demo'd at high-tech events
for years but now you can actually get
your paws on it. This display is true E-Ink /
E-Paper,...
https://www.adafruit.com/product/4262

CircuitPython eInk displayio Library Installation
To use displayio, you will need to install the appropriate library for your display.

First make sure you are running the latest version of Adafruit CircuitPython (https://
adafru.it/Amd) for your board. You will need the latest version of CircuitPython.

Next you'll need to install the necessary libraries to use the hardware--carefully follow
the steps to find and install these libraries from Adafruit's CircuitPython library
bundle (https://adafru.it/zdx). The introduction guide has a great page on how to
install the library bundle (https://adafru.it/ABU) for both Express and non-Express
boards.

You will need to copy the appropriate displayio driver from the bundle lib folder to a
lib folder on your CIRCUITPY drive. The displayio driver contains the initialization

Here is where the differences in the tri-color/monochrome and chipset/
dimensions start mattering. Check carefully to make sure you are running the
right example and creating the matching library type for your display or you
won't see anything happen on the EPD (or the image may be really weird
looking).

©Adafruit Industries Page 40 of 94

https://www.adafruit.com/product/4262
https://www.adafruit.com/product/4262
https://www.adafruit.com/product/4262
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries

codes specific to your display that are needed to for it to work. Since there is more
than one driver, you will need to copy the correct file over. Here is a list of each of the
displays and the correct driver for that display.

Adafruit_CircuitPython_UC8151D

The flexible monochrome displays use the Adafruit_CircuitPython_UC8151D library.
To easily get all the required files and libraries, you can click the Download Project
Bundle link at the top of the example code below. Just unzip, open the folder that
corresponds to the version of CircuitPython you have installed, and copy the contents
to the CIRCUITPY drive.

Image File
To show you how to use the eInk with displayio, you'll draw a bitmap onto it. First start
by downloading display-ruler.bmp

Download display-ruler.bmp

https://adafru.it/Tsa

Copy display-ruler.bmp into the root directory of your CIRCUITPY drive.

To use the eInk displays with displayio, you will need to use the latest version
of CircuitPython and a board that can fit displayio . See the Support Matrix
to determine if displayio is available on a given board: https://
circuitpython.readthedocs.io/en/latest/shared-bindings/support_matrix.html

©Adafruit Industries Page 41 of 94

https://circuitpython.readthedocs.io/en/latest/shared-bindings/support_matrix.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/support_matrix.html
https://raw.githubusercontent.com/adafruit/Adafruit_CircuitPython_IL0373/main/examples/display-ruler.bmp

Monochrome Display Usage
In the examples folder for your UC8151C displayio driver, there should be a test for
your display which is listed here:

SPDX-FileCopyrightText: 2017 Scott Shawcroft, written for Adafruit Industries
SPDX-FileCopyrightText: Copyright (c) 2021 Melissa LeBlanc-Williams for Adafruit
Industries
#
SPDX-License-Identifier: Unlicense

"""Simple test script for 2.9" 296x128 monochrome display.

Supported products:
 * Adafruit Flexible 2.9" Monochrome
 * https://www.adafruit.com/product/4262
"""
pylint: disable=no-member

import time

import board
import displayio
from fourwire import FourWire

import adafruit_uc8151d

displayio.release_displays()

This pinout works on a Feather M4 and may need to be altered for other boards.
spi = board.SPI() # Uses SCK and MOSI
epd_cs = board.D9
epd_dc = board.D10
epd_reset = board.D5
epd_busy = None

display_bus = FourWire(spi, command=epd_dc, chip_select=epd_cs, reset=epd_reset,
baudrate=1000000)
time.sleep(1)

display = adafruit_uc8151d.UC8151D(
display_bus, width=296, height=128, rotation=90, busy_pin=epd_busy

)

g = displayio.Group()

pic = displayio.OnDiskBitmap("/display-ruler.bmp")
t = displayio.TileGrid(pic, pixel_shader=pic.pixel_shader)
g.append(t)

Place the display group on the screen
display.root_group = g

Refresh the display to have it actually show the image
NOTE: Do not refresh eInk displays sooner than 180 seconds
display.refresh()
print("refreshed")

time.sleep(180)

©Adafruit Industries Page 42 of 94

Configure and Upload

You will want to change the epd_reset and epd_busy to the correct values. If you
are using the eInk Breakout Friend (http://adafru.it/4224) and wired it up as shown on
the Wiring page, you will want to change it to these values:

epd_reset = board.D8
epd_busy = board.D7

If you are using the eInk FeatherWing Friend (http://adafru.it/4446), you will want to
change both of these values to None :

epd_reset = None
epd_busy = None

Save it to your CIRCUITPY drive as code.py and it should automatically run. Your
display will look something like this:

©Adafruit Industries Page 43 of 94

https://www.adafruit.com/product/4224
https://www.adafruit.com/product/4446

CircuitPython Grayscale Usage

This page goes over how to use the 2.9" Grayscale eInk displays with CircuitPython.

Adafruit 2.9" Grayscale eInk / ePaper
Display FeatherWing
Easy e-paper comes to your Feather with
this breakout that's designed to make it a
breeze to add a monochrome eInk
display. Chances are you've seen one of
those...
https://www.adafruit.com/product/4777

CircuitPython eInk displayio Library Installation
To use displayio, you will need to install the appropriate library for your display.

First make sure you are running the latest version of Adafruit CircuitPython (https://
adafru.it/Amd) for your board. You will need the latest version of CircuitPython.

Next you'll need to install the necessary libraries to use the hardware--carefully follow
the steps to find and install these libraries from Adafruit's CircuitPython library
bundle (https://adafru.it/zdx). The introduction guide has a great page on how to
install the library bundle (https://adafru.it/ABU) for both Express and non-Express
boards.

You will need to copy the appropriate displayio driver from the bundle lib folder to a
lib folder on your CIRCUITPY drive. The displayio driver contains the initialization
codes specific to your display that are needed to for it to work. Since there is more
than one driver, you will need to copy the correct file over. Here is a list of each of the
displays and the correct driver for that display.

Here is where the differences in the tri-color/monochrome and chipset/
dimensions start mattering. Check carefully to make sure you are running the
right example and creating the matching library type for your display or you
won't see anything happen on the EPD (or the image may be really weird
looking).

©Adafruit Industries Page 44 of 94

https://www.adafruit.com/product/4777
https://www.adafruit.com/product/4777
https://www.adafruit.com/product/4777
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries

Adafruit_CircuitPython_IL0373

The GrayScale FeatherWings use the Adafruit_CircuitPython_IL0373 library. To easily
get all the required files and libraries, you can click the Download Project Bundle link
at the top of the example code below. Just unzip, open the folder that corresponds to
the version of CircuitPython you have installed, and copy the contents to
the CIRCUITPY drive.

Image File
To show you how to use the eInk with displayio, you'll draw a bitmap onto it. First start
by downloading display-ruler.bmp

Download display-ruler.bmp

https://adafru.it/Tsa

Copy display-ruler.bmp into the root directory of your CIRCUITPY drive.

To use the eInk displays with displayio, you will need to use the latest version
of CircuitPython and a board that can fit displayio . See the Support Matrix
to determine if displayio is available on a given board: https://
circuitpython.readthedocs.io/en/latest/shared-bindings/support_matrix.html

©Adafruit Industries Page 45 of 94

https://circuitpython.readthedocs.io/en/latest/shared-bindings/support_matrix.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/support_matrix.html
https://raw.githubusercontent.com/adafruit/Adafruit_CircuitPython_IL0373/main/examples/display-ruler.bmp

Grayscale Display Usage
In the examples folder for your IL0373 displayio driver, there should be a test for your
display which is listed here:

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

"""Simple test script for 2.9" 296x128 grayscale display.

Supported products:
 * Adafruit 2.9" Grayscale
 * https://www.adafruit.com/product/4777
"""

import time

import board
import busio
import displayio
import fourwire

import adafruit_il0373

displayio.release_displays()

This pinout works on a Feather M4 and may need to be altered for other boards.
spi = busio.SPI(board.SCK, board.MOSI) # Uses SCK and MOSI
epd_cs = board.D9
epd_dc = board.D10

display_bus = fourwire.FourWire(spi, command=epd_dc, chip_select=epd_cs,
baudrate=1000000)
time.sleep(1)

display = adafruit_il0373.IL0373(
display_bus,
width=296,
height=128,
rotation=270,
black_bits_inverted=False,
color_bits_inverted=False,
grayscale=True,
refresh_time=1,

)

g = displayio.Group()

pic = displayio.OnDiskBitmap("/display-ruler.bmp")
t = displayio.TileGrid(pic, pixel_shader=pic.pixel_shader)
g.append(t)

display.root_group = g

display.refresh()

print("refreshed")
time.sleep(120)

You will want to change the epd_reset and epd_busy to the correct values. If you
wired it up as shown on the Wiring page, you will want to change it to these values:

©Adafruit Industries Page 46 of 94

epd_reset = board.D8
epd_busy = board.D7

Save it to your CIRCUITPY drive as code.py and it should automatically run. Your
display will look something like this:

CircuitPython Tri-Color Usage

This page goes over how to use the 2.9" Tri-Color eInk displays with CircuitPython.

Here is where the differences in the tri-color/monochrome and chipset/
dimensions start mattering. Check carefully to make sure you are running the
right example and creating the matching library type for your display or you
won't see anything happen on the EPD (or the image may be really weird
looking).

2.9" Tri-Color eInk Display and FeatherWing Revision
As of June 20, 2025 - The tri-color display and FeatherWing have been
updated (old ones discontinued) to now use a spiffy modern SSD1680
chip - we have support in CircuitPython/Python/Arduino for it!

•

©Adafruit Industries Page 47 of 94

Adafruit 2.9" Red/Black/White eInk
Display Breakout - THINK INK
Easy e-paper finally comes to
microcontrollers, with this breakout that's
designed to make it a breeze to add a tri-
color eInk display. Chances are you've
seen one of those...
https://www.adafruit.com/product/1028

Adafruit 2.9" Tri-Color eInk / ePaper
Display FeatherWing
Easy e-paper comes to your Feather with
this breakout that's designed to make it a
breeze to add a tri-color eInk display.
Chances are you've seen one of those...
https://www.adafruit.com/product/4778

CircuitPython eInk displayio Library Installation
To use displayio, you will need to install the appropriate library for your display.

First make sure you are running the latest version of Adafruit CircuitPython (https://
adafru.it/Amd) for your board. You will need the latest version of CircuitPython.

Next you'll need to install the necessary libraries to use the hardware--carefully follow
the steps to find and install these libraries from Adafruit's CircuitPython library
bundle (https://adafru.it/zdx). The introduction guide has a great page on how to
install the library bundle (https://adafru.it/ABU) for both Express and non-Express
boards.

You will need to copy the appropriate displayio driver from the bundle lib folder to a
lib folder on your CIRCUITPY drive. The displayio driver contains the initialization
codes specific to your display that are needed to for it to work. Since there is more
than one driver, you will need to copy the correct file over. Here is a list of each of the
displays and the correct driver for that display.

©Adafruit Industries Page 48 of 94

https://www.adafruit.com/product/1028
https://www.adafruit.com/product/1028
https://www.adafruit.com/product/1028
https://www.adafruit.com/product/4778
https://www.adafruit.com/product/4778
https://www.adafruit.com/product/4778
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries

Image File
All of the examples below use the same bitmap image. You'll need the display-
ruler.bmp bitmap file on your CIRCUITPY drive.

Download display-ruler.bmp

https://adafru.it/Tsa

Copy display-ruler.bmp into the root directory of your CIRCUITPY drive.

Adafruit_CircuitPython_SSD1680

As of June 20, 2025, the 2.9" Tri-Color display and FeatherWing use the
Adafruit_CircuitPython_SSD1680 library. To easily get all the required files and
libraries, you can click the Download Project Bundle link at the top of the example
code below. Just unzip, open the folder that corresponds to the version of
CircuitPython you have installed, and copy the contents to the CIRCUITPY drive.

To use the eInk displays with displayio, you will need to use the latest version
of CircuitPython and a board that can fit displayio . See the Support Matrix
to determine if displayio is available on a given board: https://
circuitpython.readthedocs.io/en/latest/shared-bindings/support_matrix.html

As of June 20, 2025 - The displays have been updated to use the SSD1680
chip

©Adafruit Industries Page 49 of 94

https://circuitpython.readthedocs.io/en/latest/shared-bindings/support_matrix.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/support_matrix.html
https://raw.githubusercontent.com/adafruit/Adafruit_CircuitPython_IL0373/main/examples/display-ruler.bmp

Display Usage

SPDX-FileCopyrightText: 2017 Scott Shawcroft, written for Adafruit Industries
SPDX-FileCopyrightText: Copyright (c) 2023 Jose D. Montoya
#
SPDX-License-Identifier: Unlicense

"""Simple test script for Adafruit 2.9" Tri-Color eInk Display Breakout
Supported products:
 * Adafruit 2.9" Tri-Color eInk Display Breakout
 * https://www.adafruit.com/product/1028

"""

import time

import board
import displayio
from fourwire import FourWire

import adafruit_ssd1680

displayio.release_displays()

This pinout works on a Metro M4 and may need to be altered for other boards.
spi = board.SPI() # Uses SCK and MOSI
epd_cs = board.D9
epd_dc = board.D10
epd_reset = board.D5
epd_busy = board.D6

display_bus = FourWire(spi, command=epd_dc, chip_select=epd_cs, baudrate=1000000)
time.sleep(1)

display = adafruit_ssd1680.SSD1680(
display_bus,
width=296,
height=128,
highlight_color=0xFF0000,
rotation=270,

)

g = displayio.Group()

pic = displayio.OnDiskBitmap("/display-ruler-640x360.bmp")

t = displayio.TileGrid(pic, pixel_shader=pic.pixel_shader)

©Adafruit Industries Page 50 of 94

g.append(t)

display.root_group = g

display.refresh()

print("refreshed")

time.sleep(120)

For the FeatherWing, you will want to change the epd_reset and epd_busy values
to None :

epd_reset = None
epd_busy = None

Save it to your CIRCUITPY drive as code.py and it should automatically run. Your
display will look like this:

Adafruit_CircuitPython_UC8151D

Between November 16, 2022 and June 20, 2025 the 2.9" Tri-Color eInk
display used the UC8151D chipset.

©Adafruit Industries Page 51 of 94

If you purchased the 2.9" Tri-Color eInk display between of November 16, 2022 and
June 20, 2025, the display has the UC8151D chipset and uses
the Adafruit_CircuitPython_UC8151D library. To easily get all the required files and
libraries, you can click the Download Project Bundle link at the top of the example
code below. Just unzip, open the folder that corresponds to the version of
CircuitPython you have installed, and copy the contents to the CIRCUITPY drive.

UC8151D Display Usage
In the examples folder for your UC8151D displayio driver, there should be a test for
your display which is listed here:

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

"""Simple test script for Adafruit 2.9" 296x128 tri-color display
Supported products:
 * Adafruit 2.9" Tri-Color Display Breakout
 * https://www.adafruit.com/product/1028
"""

import time

import board
import displayio
from fourwire import FourWire

import adafruit_uc8151d

Used to ensure the display is free in CircuitPython
displayio.release_displays()

Define the pins needed for display use
This pinout is for a Feather M4 and may be different for other boards
spi = board.SPI() # Uses SCK and MOSI
epd_cs = board.D9
epd_dc = board.D10
epd_reset = board.D5
epd_busy = board.D6

Create the displayio connection to the display pins
display_bus = FourWire(spi, command=epd_dc, chip_select=epd_cs, reset=epd_reset,
baudrate=1000000)

©Adafruit Industries Page 52 of 94

time.sleep(1) # Wait a bit

Create the display object - the third color is red (0xff0000)
display = adafruit_uc8151d.UC8151D(

display_bus,
width=296,
height=128,
rotation=270,
busy_pin=epd_busy,
highlight_color=0xFF0000,

)

Create a display group for our screen objects
g = displayio.Group()

Display a ruler graphic from the root directory of the CIRCUITPY drive
pic = displayio.OnDiskBitmap("/display-ruler.bmp")
t = displayio.TileGrid(pic, pixel_shader=pic.pixel_shader)
g.append(t)

Place the display group on the screen
display.root_group = g

Refresh the display to have it actually show the image
NOTE: Do not refresh eInk displays sooner than 180 seconds
display.refresh()
print("refreshed")

time.sleep(180)

You will want to change the epd_reset and epd_busy to the correct values. If you
wired it up as shown on the Wiring page, you will want to change it to these values:

epd_reset = board.D8
epd_busy = board.D7

Save it to your CIRCUITPY drive as code.py and it should automatically run. Your
display will look something like this:

©Adafruit Industries Page 53 of 94

Adafruit_CircuitPython_IL0373

If you purchased the 2.9" Tri-Color eInk display before November 16, 2022, or the
FeatherWing before June 20, 2025, they used the IL0373 chipset with the
Adafruit_CircuitPython_IL0373 library. To easily get all the required files and libraries,
you can click the Download Project Bundle link at the top of the example code below.
Just unzip, open the folder that corresponds to the version of CircuitPython you have
installed, and copy the contents to the CIRCUITPY drive.

Before November 16, 2022, the 2.9" Tri-Color eInk display used the
IL0373 chipset.
Before June 24, 2025, the 2.9" Tri-Color eInk FeatherWing used the
IL0373 chipset.

•

•

©Adafruit Industries Page 54 of 94

IL0373 Display Usage

In the examples folder for your IL0373 displayio driver, there should be a test for your
display which is listed here:

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

"""Simple test script for Adafruit 2.9" 296x128 tri-color display
Supported products:
 * Adafruit 2.9" Tri-Color Display Breakout
 * https://www.adafruit.com/product/1028
"""

import time

import board
import displayio
import fourwire

import adafruit_il0373

Used to ensure the display is free in CircuitPython
displayio.release_displays()

Define the pins needed for display use
This pinout is for a Feather M4 and may be different for other boards
spi = board.SPI() # Uses SCK and MOSI
epd_cs = board.D9
epd_dc = board.D10
epd_reset = board.D5
epd_busy = board.D6

Create the displayio connection to the display pins
display_bus = fourwire.FourWire(

spi, command=epd_dc, chip_select=epd_cs, reset=epd_reset, baudrate=1000000
)
time.sleep(1) # Wait a bit

Create the display object - the third color is red (0xff0000)
display = adafruit_il0373.IL0373(

display_bus,
width=296,
height=128,
rotation=270,
busy_pin=epd_busy,
highlight_color=0xFF0000,

)

©Adafruit Industries Page 55 of 94

Create a display group for our screen objects
g = displayio.Group()

Display a ruler graphic from the root directory of the CIRCUITPY drive
pic = displayio.OnDiskBitmap("/display-ruler.bmp")
t = displayio.TileGrid(pic, pixel_shader=pic.pixel_shader)
g.append(t)

display.root_group = g

display.refresh()

print("refreshed")
time.sleep(180)

For the FeatherWing, you will want to change the epd_reset and epd_busy values
to None :

epd_reset = None
epd_busy = None

Save it to your CIRCUITPY drive as code.py and it should automatically run. Your
display will look like this:

©Adafruit Industries Page 56 of 94

Python Setup

It's easy to use eInk breakouts with Python and the Adafruit CircuitPython
EPD (https://adafru.it/BTd) library. This library allows you to easily write Python code
to control the display.

Since there are dozens of Linux computers/boards you can use, we will show wiring
for Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux
to see whether your platform is supported (https://adafru.it/BSN).

Setup Virtual Environment
If you are installing on the Bookworm version of Raspberry Pi OS or later, you will
need to install your python modules in a virtual environment. You can find more
information in the Python Virtual Environment Usage on Raspberry Pi (https://adafru.it/
19a5) guide. To Install and activate the virtual environment, use the following
commands:

sudo apt install python3-venv
python -m venv env --system-site-packages

To activate the virtual environment:

source env/bin/activate

Note this is not a kernel driver that will let you have the console appear on the
eInk. However, this is handy when you want to use the eInk display purely
from 'user Python' code!

You can only use this technique with Linux/computer devices that have
hardware SPI support, and not all single board computers have an SPI device,
so check before continuing

©Adafruit Industries Page 57 of 94

https://github.com/adafruit/Adafruit_CircuitPython_EPD
https://github.com/adafruit/Adafruit_CircuitPython_EPD
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/python-virtual-environment-usage-on-raspberry-pi

Install Adafruit_Blinka
You'll need to install the Adafruit_Blinka library that provides the CircuitPython
support in Python. This may also require enabling SPI on your platform and verifying
you are running Python 3. Since each platform is a little different, and Linux changes
often, please visit the CircuitPython on Linux guide to get your computer
ready (https://adafru.it/BSN)!

Python Installation of EPD Library
Once that's done, from your command line run the following command:

pip3 install adafruit-circuitpython-epd

If your default Python is version 3 you may need to run 'pip' instead. Just make sure
you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

If that complains about pip3 not being installed, then run this first to install it:

sudo apt-get install python3-pip

Download font5x8.bin
This library also requires a font file to run! You can download it below. Before
continuing, make sure the folder you are running scripts from contains the
font5x8.bin file.

Download font5x8.bin

https://adafru.it/Xbr

Alternatively, you can use wget to directly download the file to your pi:

wget https://github.com/adafruit/Adafruit_CircuitPython_framebuf/raw/main/examples/
font5x8.bin

DejaVu TTF Font
Raspberry Pi usually comes with the DejaVu font already installed, but in case it didn't,
you can run the following to install it:

©Adafruit Industries Page 58 of 94

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://github.com/adafruit/Adafruit_CircuitPython_framebuf/raw/main/examples/font5x8.bin

sudo apt-get install fonts-dejavu

This package was previously calls ttf-dejavu, so if you are running an older version of
Raspberry Pi OS, it may be called that.

Pillow Library
Some of the examples also use PIL, the Python Imaging Library, to allow graphics and
using text with custom fonts. There are several system libraries that PIL relies on, so
installing via a package manager is the easiest way to bring in everything:

sudo apt-get install python3-pil

Chip Enable Lines
Follow these instructions (https://adafru.it/19fg) for dealing with SPI chip enable line
issues.

That's it. You should be ready to go.

Python Usage

Note this is not a kernel driver that will let you have the console appear on the
eInk. However, this is handy when you want to use the eInk display purely
from 'user Python' code!

You can only use this technique with Linux/computer devices that have
hardware SPI support, and not all single board computers have an SPI device,
so check before continuing

©Adafruit Industries Page 59 of 94

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/spi-sensors-devices#reassigning-or-disabling-the-spi-chip-enable-lines-3097985

To demonstrate the usage of the display, we'll initialize it and draw some lines from
the Python REPL.

Run the following code to import the necessary modules and set up the pin
assignments. You set the SRAM CS pin to None because the Raspberry Pi has lots of
RAM, so you don't really need it.

import digitalio
import busio
import board
from adafruit_epd.epd import Adafruit_EPD

spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
ecs = digitalio.DigitalInOut(board.CE0)
dc = digitalio.DigitalInOut(board.D22)
rst = digitalio.DigitalInOut(board.D27)
busy = digitalio.DigitalInOut(board.D17)
srcs = None

Run the following code to initialize the 2.9" 296x128 Flexible
Monochrome display:

2.9" Flexible 296x128 Monochrome eInk /
ePaper Display
Woah, the cyber-future is here! Flexible E-
Ink has been demo'd at high-tech events
for years but now you can actually get
your paws on it. This display is true E-Ink /
E-Paper,...
https://www.adafruit.com/product/4262

from adafruit_epd.uc8151d import Adafruit_UC8151D
display = Adafruit_UC8151D(128, 296, spi, cs_pin=ecs, dc_pin=dc, sramcs_pin=srcs,
rst_pin=rst, busy_pin=busy)
display.set_black_buffer(1, True)
display.set_color_buffer(1, True)

Depending on the exact E-Ink display you're using, the driver and object
initialization will differ a bit because Python must be told what chip driver to
use and the size of the display.

©Adafruit Industries Page 60 of 94

https://www.adafruit.com/product/4262
https://www.adafruit.com/product/4262
https://www.adafruit.com/product/4262

If you have one of the older flexible displays, you can use the following code to
initialize it:

from adafruit_epd.il0373 import Adafruit_IL0373
display = Adafruit_IL0373(128, 296, spi, cs_pin=ecs, dc_pin=dc, sramcs_pin=srcs,
rst_pin=rst, busy_pin=busy)
display.set_black_buffer(1, False)
display.set_color_buffer(1, False)

For the 2.9" 296x128 Tri-Color display:

Adafruit 2.9" Red/Black/White eInk
Display Breakout - THINK INK
Easy e-paper finally comes to
microcontrollers, with this breakout that's
designed to make it a breeze to add a tri-
color eInk display. Chances are you've
seen one of those...
https://www.adafruit.com/product/1028

IL0373 Chipset:

from adafruit_epd.il0373 import Adafruit_IL0373
display = Adafruit_IL0373(128, 296, spi, cs_pin=ecs, dc_pin=dc, sramcs_pin=srcs,
rst_pin=rst, busy_pin=busy)

SSD1680 Chipset:

display = Adafruit_SSD1680(128, 296, spi, cs_pin=ecs, dc_pin=dc, sramcs_pin=srcs,
rst_pin=rst, busy_pin=busy)

2.9" Tri-Color eInk Display and FeatherWing Revision
As of June 20, 2025 - The tri-color display and FeatherWing have been
updated (old ones discontinued) to now use a spiffy modern SSD1680
chip - we have support in CircuitPython/Python/Arduino for it!

•

©Adafruit Industries Page 61 of 94

https://www.adafruit.com/product/1028
https://www.adafruit.com/product/1028
https://www.adafruit.com/product/1028

Monochrome Example
Now to clear the screen buffer and draw some shapes. Once done drawing, the code
must tell the screen to update using the display() method.

display.rotation = 3
display.fill(Adafruit_EPD.WHITE)

display.fill_rect(20, 20, 50, 60, Adafruit_EPD.BLACK)
display.hline(80, 30, 60, Adafruit_EPD.BLACK)
display.vline(80, 30, 60, Adafruit_EPD.BLACK)

display.display()

Tri-Color Example
The Tri-Color example is almost the same as the monochrome example, except
another color is added in. Once done drawing, the code needs to tell the screen to
update using the display() method.

display.rotation = 3
display.fill(Adafruit_EPD.WHITE)

display.fill_rect(20, 20, 50, 60, Adafruit_EPD.RED)
display.hline(80, 30, 60, Adafruit_EPD.BLACK)
display.vline(80, 30, 60, Adafruit_EPD.BLACK)

display.display()

Your display will look something like this:

©Adafruit Industries Page 62 of 94

That's all there is to drawing simple shapes with eInk displays and CircuitPython!

Full Example Code
Here is the full example code.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import board
import busio
import digitalio

from adafruit_epd.ek79686 import Adafruit_EK79686
from adafruit_epd.epd import Adafruit_EPD
from adafruit_epd.il0373 import Adafruit_IL0373, Adafruit_IL0373_213_Flex_Mono
from adafruit_epd.il0398 import Adafruit_IL0398
from adafruit_epd.il91874 import Adafruit_IL91874
from adafruit_epd.jd79661 import Adafruit_JD79661
from adafruit_epd.ssd1608 import Adafruit_SSD1608
from adafruit_epd.ssd1675 import Adafruit_SSD1675
from adafruit_epd.ssd1680 import Adafruit_SSD1680
from adafruit_epd.ssd1680b import Adafruit_SSD1680B
from adafruit_epd.ssd1681 import Adafruit_SSD1681
from adafruit_epd.ssd1683 import Adafruit_SSD1683
from adafruit_epd.uc8151d import Adafruit_UC8151D
from adafruit_epd.uc8179 import Adafruit_UC8179

create the spi device and pins we will need
spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
ecs = digitalio.DigitalInOut(board.D12)
dc = digitalio.DigitalInOut(board.D11)
srcs = digitalio.DigitalInOut(board.D10) # can be None to use internal memory
rst = digitalio.DigitalInOut(board.D9) # can be None to not use this pin
busy = digitalio.DigitalInOut(board.D5) # can be None to not use this pin

give them all to our drivers
print("Creating display")
display = Adafruit_JD79661(122, 150, # 2.13" Quad-color display
display = Adafruit_SSD1608(200, 200, # 1.54" HD mono display
display = Adafruit_SSD1675(122, 250, # 2.13" HD mono display
display = Adafruit_SSD1680(122, 250, # 2.13" HD Tri-color display
display = Adafruit_SSD1680B(122, 250 # 2.13" HD (Tri-color or mono) with
GDEY0213B74
display = Adafruit_SSD1681(200, 200, # 1.54" HD Tri-color display
display = Adafruit_SSD1681(200, 200, # 1.54" HD Tri-color display
display = Adafruit_IL91874(176, 264, # 2.7" Tri-color display
display = Adafruit_EK79686(176, 264, # 2.7" Tri-color display
display = Adafruit_IL0373(152, 152, # 1.54" Tri-color display
display = Adafruit_UC8151D(128, 296, # 2.9" mono flexible display
display = Adafruit_UC8179(648, 480, # 5.83" mono 648x480 display
display = Adafruit_UC8179(800, 480, # 7.5" mono 800x480 display

To run the code sample below, you will need to change the pins the same way
as you did in the Tri-color Bitmap Example.

©Adafruit Industries Page 63 of 94

display = Adafruit_IL0373(128, 296, # 2.9" Tri-color display IL0373
display = Adafruit_IL0373_213_Flex_Mono(104, 212,# 2.13" mono flex display
display = Adafruit_SSD1680(128, 296, # 2.9" Tri-color display SSD1680
display = Adafruit_SSD1683(400, 300, # 4.2" 300x400 Tri-Color display
display = Adafruit_IL0398(400, 300, # 4.2" Tri-color display
display = Adafruit_IL0373(

104,
212, # 2.13" Tri-color display
spi,
cs_pin=ecs,
dc_pin=dc,
sramcs_pin=srcs,
rst_pin=rst,
busy_pin=busy,

)
""" display = Adafruit_UC8179(800, 480, # 7.5" tricolor 800x480 display
 spi,
 cs_pin=ecs,
 dc_pin=dc,
 sramcs_pin=srcs,
 rst_pin=rst,
 busy_pin=busy,
 tri_color = True
)"""

IF YOU HAVE A 2.13" FLEXIBLE DISPLAY OR!
UC8179 5.83" or 7.5" monochrome displays
uncomment these lines!
display.set_black_buffer(1, False)
display.set_color_buffer(1, False)

IF YOU HAVE A 2.9" FLEXIBLE DISPLAY uncomment these lines!
display.set_black_buffer(1, True)
display.set_color_buffer(1, True)

display.rotation = 1
if type(display) == Adafruit_JD79661:

WHITE = Adafruit_JD79661.WHITE
BLACK = Adafruit_JD79661.BLACK
RED = Adafruit_JD79661.RED
YELLOW = Adafruit_JD79661.YELLOW

else:
WHITE = Adafruit_EPD.WHITE
BLACK = Adafruit_EPD.BLACK
RED = Adafruit_EPD.RED

clear the buffer
print("Clear buffer")
display.fill(WHITE)
display.pixel(10, 100, BLACK)

print("Draw Rectangles")
display.fill_rect(5, 5, 10, 10, RED)
display.rect(0, 0, 20, 30, BLACK)

print("Draw lines")
if type(display) == Adafruit_JD79661:

display.line(0, 0, display.width - 1, display.height - 1, YELLOW)
display.line(0, display.height - 1, display.width - 1, 0, YELLOW)

else:
display.line(0, 0, display.width - 1, display.height - 1, BLACK)
display.line(0, display.height - 1, display.width - 1, 0, RED)

print("Draw text")
display.text("hello world", 25, 10, BLACK)
display.display()

©Adafruit Industries Page 64 of 94

Bitmap Example
Here's a complete example of how to display a bitmap image on your display. Note
that any .bmp image you want to display must be exactly the size of your display.
The image below will be used on the 2.9" display. Click the button below to download
the image and save it as blinka.bmp on your Raspberry Pi. The code uses a Tri-Color
bitmap, but it should still work on a monochrome display.

Click here to download blinka for the
2.9" Tri-Color display

https://adafru.it/19f8

Save the following code to your Raspberry Pi as epd_bitmap.py.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import board
import busio
import digitalio

from adafruit_epd.ek79686 import Adafruit_EK79686
from adafruit_epd.epd import Adafruit_EPD
from adafruit_epd.il0373 import Adafruit_IL0373
from adafruit_epd.il0398 import Adafruit_IL0398
from adafruit_epd.il91874 import Adafruit_IL91874
from adafruit_epd.ssd1608 import Adafruit_SSD1608
from adafruit_epd.ssd1675 import Adafruit_SSD1675
from adafruit_epd.ssd1680 import Adafruit_SSD1680
from adafruit_epd.ssd1680b import Adafruit_SSD1680B
from adafruit_epd.ssd1681 import Adafruit_SSD1681
from adafruit_epd.ssd1683 import Adafruit_SSD1683
from adafruit_epd.uc8151d import Adafruit_UC8151D
from adafruit_epd.uc8179 import Adafruit_UC8179

create the spi device and pins we will need
spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
ecs = digitalio.DigitalInOut(board.D10)
dc = digitalio.DigitalInOut(board.D9)
srcs = digitalio.DigitalInOut(board.D7) # can be None to use internal memory
rst = digitalio.DigitalInOut(board.D11) # can be None to not use this pin
busy = digitalio.DigitalInOut(board.D12) # can be None to not use this pin

give them all to our driver
print("Creating display")
display = Adafruit_SSD1608(200, 200, # 1.54" HD mono display
display = Adafruit_SSD1675(122, 250, # 2.13" HD mono display
display = Adafruit_SSD1680(122, 250, # 2.13" HD Tri-color display
display = Adafruit_SSD1680B(122, 250 # Newer 2.13" HD (Tri-color or mono)
with GDEY0213B74
display = Adafruit_SSD1681(200, 200, # 1.54" HD Tri-color display
display = Adafruit_IL91874(176, 264, # 2.7" Tri-color display
display = Adafruit_EK79686(176, 264, # 2.7" Tri-color display
display = Adafruit_IL0373(152, 152, # 1.54" Tri-color display
display = Adafruit_UC8151D(128, 296, # 2.9" mono flexible display
display = Adafruit_UC8179(648, 480, # 5.83" mono 648x480 display
display = Adafruit_UC8179(800, 480, # 7.5" mono 800x480 display
display = Adafruit_IL0373(128, 296, # 2.9" Tri-color display IL0373

©Adafruit Industries Page 65 of 94

https://github.com/adafruit/Adafruit_ImageReader/raw/master/images/E-Ink%20TriColor%202.9/blinka.bmp

display = Adafruit_SSD1680(128, 296, # 2.9" Tri-color display SSD1680
display = Adafruit_SSD1683(400, 300, # 4.2" 300x400 Tri-Color display
display = Adafruit_IL0398(400, 300, # 4.2" Tri-color display
display = Adafruit_IL0373(

104,
212, # 2.13" Tri-color display
spi,
cs_pin=ecs,
dc_pin=dc,
sramcs_pin=srcs,
rst_pin=rst,
busy_pin=busy,

)
""" display = Adafruit_UC8179(800, 480, # 7.5" tricolor 800x480 display
 spi,
 cs_pin=ecs,
 dc_pin=dc,
 sramcs_pin=srcs,
 rst_pin=rst,
 busy_pin=busy,
 tri_color = True
)"""

IF YOU HAVE A 2.13" FLEXIBLE DISPLAY OR!
UC8179 5.83" or 7.5" displays
uncomment these lines!
display.set_black_buffer(1, False)
display.set_color_buffer(1, False)

IF YOU HAVE A 2.9" FLEXIBLE DISPLAY uncomment these lines!
display.set_black_buffer(1, True)
display.set_color_buffer(1, True)

display.rotation = 0

FILENAME = "blinka.bmp"

def read_le(s):
as of this writting, int.from_bytes does not have LE support, DIY!
result = 0
shift = 0
for byte in bytearray(s):

result += byte << shift
shift += 8

return result

class BMPError(Exception):
pass

def display_bitmap(epd, filename):
try:

f = open(filename, "rb")
except OSError:

print("Couldn't open file")
return

print("File opened")
try:

if f.read(2) != b"BM": # check signature
raise BMPError("Not BitMap file")

bmpFileSize = read_le(f.read(4))
f.read(4) # Read & ignore creator bytes

bmpImageoffset = read_le(f.read(4)) # Start of image data
headerSize = read_le(f.read(4))

©Adafruit Industries Page 66 of 94

bmpWidth = read_le(f.read(4))
bmpHeight = read_le(f.read(4))
flip = True

print(
"Size: %d\nImage offset: %d\nHeader size: %d"
% (bmpFileSize, bmpImageoffset, headerSize)

)
print("Width: %d\nHeight: %d" % (bmpWidth, bmpHeight))

if read_le(f.read(2)) != 1:
raise BMPError("Not singleplane")

bmpDepth = read_le(f.read(2)) # bits per pixel
print("Bit depth: %d" % (bmpDepth))
if bmpDepth != 24:

raise BMPError("Not 24-bit")
if read_le(f.read(2)) != 0:

raise BMPError("Compressed file")

print("Image OK! Drawing...")

rowSize = (bmpWidth * 3 + 3) & ~3 # 32-bit line boundary

for row in range(bmpHeight): # For each scanline...
if flip: # Bitmap is stored bottom-to-top order (normal BMP)

pos = bmpImageoffset + (bmpHeight - 1 - row) * rowSize
else: # Bitmap is stored top-to-bottom

pos = bmpImageoffset + row * rowSize

print ("seek to %d" % pos)
f.seek(pos)
rowdata = f.read(3 * bmpWidth)
for col in range(bmpWidth):

b, g, r = rowdata[3 * col : 3 * col + 3] # BMP files store RGB in
BGR

if r < 0x80 and g < 0x80 and b < 0x80:
epd.pixel(col, row, Adafruit_EPD.BLACK)

elif r >= 0x80 and g >= 0x80 and b >= 0x80:
pass # epd.pixel(row, col, Adafruit_EPD.WHITE)

elif r >= 0x80:
epd.pixel(col, row, Adafruit_EPD.RED)

except OSError:
print("Couldn't read file")

except BMPError as e:
print("Failed to parse BMP: " + e.args[0])

finally:
f.close()

print("Finished drawing")

clear the buffer
display.fill(Adafruit_EPD.WHITE)
display_bitmap(display, FILENAME)
display.display()

Before running it, you will need to change a few pin definitions. Find the section of
code that looks like this:

ecs = digitalio.DigitalInOut(board.D10)
dc = digitalio.DigitalInOut(board.D9)
srcs = digitalio.DigitalInOut(board.D7) # can be None to use internal memory
rst = digitalio.DigitalInOut(board.D11) # can be None to not use this pin
busy = digitalio.DigitalInOut(board.D12) # can be None to not use this pin

©Adafruit Industries Page 67 of 94

Change the pins to the following to match the wiring on the Raspberry Pi:

ecs = digitalio.DigitalInOut(board.CE0)
dc = digitalio.DigitalInOut(board.D22)
srcs = None
rst = digitalio.DigitalInOut(board.D27)
busy = digitalio.DigitalInOut(board.D17)

Next, find the section that looks like this:

display = Adafruit_SSD1608(200, 200, # 1.54" HD mono display
display = Adafruit_SSD1675(122, 250, # 2.13" HD mono display
display = Adafruit_SSD1680(122, 250, # 2.13" HD Tri-color display
display = Adafruit_SSD1681(200, 200, # 1.54" HD Tri-color display
display = Adafruit_IL91874(176, 264, # 2.7" Tri-color display
display = Adafruit_IL0373(152, 152, # 1.54" Tri-color display
display = Adafruit_UC8151D(128, 296, # 2.9" mono flexible display
display = Adafruit_IL0373(128, 296, # 2.9" Tri-color display
display = Adafruit_IL0398(400, 300, # 4.2" Tri-color display
display = Adafruit_IL0373(

104,
212, # 2.13" Tri-color display
spi,
cs_pin=ecs,
dc_pin=dc,
sramcs_pin=srcs,
rst_pin=rst,
busy_pin=busy,

)

Comment out these lines:

display = Adafruit_IL0373(
104,
212, # 2.13" Tri-color display

and uncomment the line that corresponds with your display.

Next to tell the display the rotation setting desired. This can be a value between 0-3 .
For the 2.13" displays, a value of 3 seems to work well.

display.rotation = 3

Now go to the command prompt on your Raspberry Pi and run the script with the
following command:

python3 epd_bitmap.py

©Adafruit Industries Page 68 of 94

After a few seconds, your display should show an image like this:

Image Drawing with Pillow
This example will use Pillow to resize and crop the image automatically and draw it on
the the ePaper Display. Pillow is really powerful and with it you can open and render
additional file formats such as PNG or JPG. Let's start with downloading a PNG of
blinka that has been adjusted down to 3 colors so it prints nicely on an ePaper
Display. This uses a PNG format file because it is a lossless format and won't
introduce unexpected colors on the display.

©Adafruit Industries Page 69 of 94

Make sure you save it as blinka.png and place it in the same folder as your script.
Here's the code to load onto the Raspberry Pi. Go ahead and copy it onto your
Raspberry Pi and save it as epd_pillow_image.py.

SPDX-FileCopyrightText: 2019 Melissa LeBlanc-Williams for Adafruit Industries
SPDX-License-Identifier: MIT

"""
Image resizing and drawing using the Pillow Library. For the image, check out the
associated Adafruit Learn guide at:
https://learn.adafruit.com/adafruit-eink-display-breakouts/python-code

"""

import board
import busio
import digitalio
from PIL import Image

from adafruit_epd.ek79686 import Adafruit_EK79686
from adafruit_epd.il0373 import Adafruit_IL0373
from adafruit_epd.il0398 import Adafruit_IL0398
from adafruit_epd.il91874 import Adafruit_IL91874
from adafruit_epd.jd79661 import Adafruit_JD79661
from adafruit_epd.ssd1608 import Adafruit_SSD1608
from adafruit_epd.ssd1675 import Adafruit_SSD1675
from adafruit_epd.ssd1680 import Adafruit_SSD1680
from adafruit_epd.ssd1680b import Adafruit_SSD1680B
from adafruit_epd.ssd1681 import Adafruit_SSD1681
from adafruit_epd.ssd1683 import Adafruit_SSD1683
from adafruit_epd.uc8151d import Adafruit_UC8151D
from adafruit_epd.uc8179 import Adafruit_UC8179

create the spi device and pins we will need
spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
ecs = digitalio.DigitalInOut(board.CE0)
dc = digitalio.DigitalInOut(board.D22)
srcs = None
rst = digitalio.DigitalInOut(board.D27)
busy = digitalio.DigitalInOut(board.D17)

give them all to our driver
display = Adafruit_JD79661(122, 150, # 2.13" Quad-color display
display = Adafruit_SSD1608(200, 200, # 1.54" HD mono display
display = Adafruit_SSD1675(122, 250, # 2.13" HD mono display
display = Adafruit_SSD1680(122, 250, # 2.13" HD Tri-color or mono display
display = Adafruit_SSD1680B(122, 250 # Newer 2.13" HD (Tri-color or mono)
with GDEY0213B74
display = Adafruit_SSD1681(200, 200, # 1.54" HD Tri-color display
display = Adafruit_IL91874(176, 264, # 2.7" Tri-color display
display = Adafruit_EK79686(176, 264, # 2.7" Tri-color display
display = Adafruit_IL0373(152, 152, # 1.54" Tri-color display
display = Adafruit_UC8151D(128, 296, # 2.9" mono flexible display
display = Adafruit_UC8179(648, 480, # 5.83" mono 648x480 display
display = Adafruit_UC8179(800, 480, # 7.5" mono 800x480 display
display = Adafruit_IL0373(128, 296, # 2.9" Tri-color display IL0373
display = Adafruit_SSD1680(128, 296, # 2.9" Tri-color display SSD1680
display = Adafruit_SSD1683(400, 300, # 4.2" 300x400 Tri-Color display
display = Adafruit_IL0398(400, 300, # 4.2" Tri-color display
display = Adafruit_IL0373(

104,
212, # 2.13" Tri-color display
spi,
cs_pin=ecs,
dc_pin=dc,
sramcs_pin=srcs,

©Adafruit Industries Page 70 of 94

rst_pin=rst,
busy_pin=busy,

)
""" display = Adafruit_UC8179(800, 480, # 7.5" tricolor 800x480 display
 spi,
 cs_pin=ecs,
 dc_pin=dc,
 sramcs_pin=srcs,
 rst_pin=rst,
 busy_pin=busy,
 tri_color = True
)"""

IF YOU HAVE A 2.13" FLEXIBLE DISPLAY OR!
UC8179 5.83" or 7.5" displays
uncomment these lines!
display.set_black_buffer(1, False)
display.set_color_buffer(1, False)

IF YOU HAVE A 2.9" FLEXIBLE DISPLAY uncomment these lines!
display.set_black_buffer(1, True)
display.set_color_buffer(1, True)

display.rotation = 1

image = Image.open("blinka.png")

Scale the image to the smaller screen dimension
image_ratio = image.width / image.height
screen_ratio = display.width / display.height
if screen_ratio < image_ratio:

scaled_width = image.width * display.height // image.height
scaled_height = display.height

else:
scaled_width = display.width
scaled_height = image.height * display.width // image.width

image = image.resize((scaled_width, scaled_height), Image.BICUBIC)

Crop and center the image
x = scaled_width // 2 - display.width // 2
y = scaled_height // 2 - display.height // 2
image = image.crop((x, y, x + display.width, y + display.height)).convert("RGB")

Convert to Monochrome and Add dithering
image = image.convert("1").convert("L")

if type(display) == Adafruit_JD79661:
Create a palette with the 4 colors: Black, White, Red, Yellow
The palette needs 768 values (256 colors × 3 channels)
palette = []

We'll map the 256 palette indices to our 4 colors
0-63: Black, 64-127: Red, 128-191: Yellow, 192-255: White
for i in range(256):

if i < 64:
palette.extend([0, 0, 0]) # Black

elif i < 128:
palette.extend([255, 0, 0]) # Red

elif i < 192:
palette.extend([255, 255, 0]) # Yellow

else:
palette.extend([255, 255, 255]) # White

Create a palette image
palette_img = Image.new("P", (1, 1))
palette_img.putpalette(palette)

Optional: Enhance colors before dithering for better results
from PIL import ImageEnhance

©Adafruit Industries Page 71 of 94

enhancer = ImageEnhance.Color(image)
image = enhancer.enhance(1.5) # Increase color saturation

Quantize the image using Floyd-Steinberg dithering
image = image.quantize(palette=palette_img, dither=Image.FLOYDSTEINBERG)

Convert back to RGB for the display driver
image = image.convert("RGB")

Display image.
display.image(image)
display.display()

The code starts with library imports including a couple of Pillow modules and the
ePaper display drivers.

import digitalio
import busio
import board
from PIL import Image, ImageDraw
from adafruit_epd.il0373 import Adafruit_IL0373
from adafruit_epd.il91874 import Adafruit_IL91874
from adafruit_epd.il0398 import Adafruit_IL0398
from adafruit_epd.ssd1608 import Adafruit_SSD1608
from adafruit_epd.ssd1675 import Adafruit_SSD1675
from adafruit_epd.ssd1680 import Adafruit_SSD1680
from adafruit_epd.ssd1681 import Adafruit_SSD1681
from adafruit_epd.uc8151d import Adafruit_UC8151D

That is followed by initializing the SPI bus and defining a few pins. The choices allow
you to use the same code with the EPD bonnets, if you chose to do so.

spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
ecs = digitalio.DigitalInOut(board.CE0)
dc = digitalio.DigitalInOut(board.D22)
srcs = None
rst = digitalio.DigitalInOut(board.D27)
busy = digitalio.DigitalInOut(board.D17)

These examples work on as many displays as possible with very few changes. Go
ahead and comment out the following lines:

display = Adafruit_IL0373(

 104,

 212, # 2.13" Tri-color display

and uncomment the line appropriate for your display.

#display = Adafruit_SSD1608(200, 200, # 1.54" HD mono display
#display = Adafruit_SSD1675(122, 250, # 2.13" HD mono display
#display = Adafruit_SSD1680(122, 250, # 2.13" HD Tri-color display
#display = Adafruit_SSD1681(200, 200, # 1.54" HD Tri-color display

©Adafruit Industries Page 72 of 94

#display = Adafruit_IL91874(176, 264, # 2.7" Tri-color display
#display = Adafruit_IL0373(152, 152, # 1.54" Tri-color display
#display = Adafruit_IL0373(128, 296, # 2.9" Tri-color display
#display = Adafruit_IL0398(400, 300, # 4.2" Tri-color display
display = Adafruit_IL0373(

104,
212, # 2.13" Tri-color display
spi,
cs_pin=ecs,
dc_pin=dc,
sramcs_pin=srcs,
rst_pin=rst,
busy_pin=busy

)

Next change the rotation setting to 3 .

display.rotation = 3

Next is to open the Blinka image, which is named blinka.png, and it is assumed the
file is in the same directory that you are running the script from. Feel free to change it
if it doesn't match your configuration.

image = Image.open("blinka.png")

Here's where it starts to get interesting. It is desirable to scale the image so that it
matches either the width or height of the display, depending on which is smaller, so
that there may be some of the image to chop off when it is cropped. Start by
calculating the width to height ratio of both the display and the image. If the height is
the closer of the dimensions, you want to match the image height to the display
height and let it be a bit wider than the display. Otherwise, you want to do the
opposite.

Once you've figured out how to scale it, pass in the new dimensions and using
a Bicubic rescaling method, the code reassigns the newly rescaled image back
to image . Pillow has quite a few different methods to choose from, but Bicubic does
a great job and is reasonably fast.

Nearest actually gives a little better result with the Tri-color eInks, but loses detail
with displaying a color image on the monochrome display, so this code uses the best
balance.

image_ratio = image.width / image.height
screen_ratio = display.width / display.height
if screen_ratio < image_ratio:

scaled_width = image.width * display.height // image.height
scaled_height = display.height

©Adafruit Industries Page 73 of 94

else:
scaled_width = display.width
scaled_height = image.height * display.width // image.width

image = image.resize((scaled_width, scaled_height), Image.BICUBIC)

Next to figure the starting x and y points of the image to begin cropping so that the
image ends up centered. Do that by using a standard centering function, which is
basically requesting the difference of the center of the display and the center of the
image. Just like with scaling, replace the image variable with the newly cropped
image.

x = scaled_width // 2 - display.width // 2
y = scaled_height // 2 - display.height // 2
image = image.crop((x, y, x + display.width, y + display.height)).convert("RGB")

Finally, take the image , draw it to the frame buffer and display it. At this point, the
image should have the exact same dimensions at the display and fill it completely.

display.image(image)
display.display()

Now go to the command prompt on your Raspberry Pi and run the script with the
following command:

python3 epd_pillow_image.py

After a few seconds, your display should show this image:

©Adafruit Industries Page 74 of 94

Drawing Shapes and Text with Pillow
The next example takes a look at drawing shapes and text. This is very similar to the
displayio example, but it uses Pillow instead. Go ahead and copy it onto your
Raspberry Pi and save it as epd_pillow_demo.py. Here's the code for that.

SPDX-FileCopyrightText: 2019 Melissa LeBlanc-Williams for Adafruit Industries
SPDX-License-Identifier: MIT

"""
ePaper Display Shapes and Text demo using the Pillow Library.

"""

import board
import busio
import digitalio
from PIL import Image, ImageDraw, ImageFont

from adafruit_epd.ek79686 import Adafruit_EK79686
from adafruit_epd.il0373 import Adafruit_IL0373
from adafruit_epd.il0398 import Adafruit_IL0398
from adafruit_epd.il91874 import Adafruit_IL91874
from adafruit_epd.jd79661 import Adafruit_JD79661
from adafruit_epd.ssd1608 import Adafruit_SSD1608
from adafruit_epd.ssd1675 import Adafruit_SSD1675
from adafruit_epd.ssd1680 import Adafruit_SSD1680
from adafruit_epd.ssd1680b import Adafruit_SSD1680B
from adafruit_epd.ssd1681 import Adafruit_SSD1681
from adafruit_epd.ssd1683 import Adafruit_SSD1683
from adafruit_epd.uc8151d import Adafruit_UC8151D
from adafruit_epd.uc8179 import Adafruit_UC8179

First define some color constants
WHITE = (0xFF, 0xFF, 0xFF)
BLACK = (0x00, 0x00, 0x00)
RED = (0xFF, 0x00, 0x00)

©Adafruit Industries Page 75 of 94

Next define some constants to allow easy resizing of shapes and colors
BORDER = 20
FONTSIZE = 24
BACKGROUND_COLOR = BLACK
FOREGROUND_COLOR = WHITE
TEXT_COLOR = RED

create the spi device and pins we will need
spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
ecs = digitalio.DigitalInOut(board.CE0)
dc = digitalio.DigitalInOut(board.D22)
srcs = None
rst = digitalio.DigitalInOut(board.D27)
busy = digitalio.DigitalInOut(board.D17)

give them all to our driver
display = Adafruit_JD79661(122, 150, # 2.13" Quad-color display
display = Adafruit_SSD1608(200, 200, # 1.54" HD mono display
display = Adafruit_SSD1675(122, 250, # 2.13" HD mono display
display = Adafruit_SSD1680(122, 250, # 2.13" HD Tri-color or mono display
display = Adafruit_SSD1680B(122, 250 # Newer 2.13" HD (Tri-color or mono)
with GDEY0213B74
display = Adafruit_SSD1681(200, 200, # 1.54" HD Tri-color display
display = Adafruit_IL91874(176, 264, # 2.7" Tri-color display
display = Adafruit_EK79686(176, 264, # 2.7" Tri-color display
display = Adafruit_IL0373(152, 152, # 1.54" Tri-color display
display = Adafruit_UC8151D(128, 296, # 2.9" mono flexible display
display = Adafruit_UC8179(648, 480, # 5.83" mono 648x480 display
display = Adafruit_UC8179(800, 480, # 7.5" mono 800x480 display
display = Adafruit_IL0373(128, 296, # 2.9" Tri-color display IL0373
display = Adafruit_SSD1680(128, 296, # 2.9" Tri-color display SSD1680
display = Adafruit_SSD1683(400, 300, # 4.2" 300x400 Tri-Color display
display = Adafruit_IL0398(400, 300, # 4.2" Tri-color display
display = Adafruit_IL0373(

104,
212, # 2.13" Tri-color display
spi,
cs_pin=ecs,
dc_pin=dc,
sramcs_pin=srcs,
rst_pin=rst,
busy_pin=busy,

)
""" display = Adafruit_UC8179(800, 480, # 7.5" tricolor 800x480 display
 spi,
 cs_pin=ecs,
 dc_pin=dc,
 sramcs_pin=srcs,
 rst_pin=rst,
 busy_pin=busy,
 tri_color = True
)"""

IF YOU HAVE A 2.13" FLEXIBLE DISPLAY OR!
UC8179 5.83" or 7.5" displays
uncomment these lines!
display.set_black_buffer(1, False)
display.set_color_buffer(1, False)

IF YOU HAVE A 2.9" FLEXIBLE DISPLAY uncomment these lines!
display.set_black_buffer(1, True)
display.set_color_buffer(1, True)

display.rotation = 1

image = Image.new("RGB", (display.width, display.height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

©Adafruit Industries Page 76 of 94

Draw a filled box as the background
draw.rectangle((0, 0, display.width - 1, display.height - 1), fill=BACKGROUND_COLOR)

Draw a smaller inner foreground rectangle
draw.rectangle(

(BORDER, BORDER, display.width - BORDER - 1, display.height - BORDER - 1),
fill=FOREGROUND_COLOR,

)

Load a TTF Font
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf",
FONTSIZE)

Draw Some Text
text = "Hello World!"
(font_width, font_height) = font.getsize(text)
draw.text(

(display.width // 2 - font_width // 2, display.height // 2 - font_height // 2),
text,
font=font,
fill=TEXT_COLOR,

)

Display image.
display.image(image)
display.display()

Just like in the last example, use the imports, but this time include the ImageDraw
and ImageFont Pillow modules to allow text rendering.

import digitalio
import busio
import board
from PIL import Image, ImageDraw, ImageFont
from adafruit_epd.il0373 import Adafruit_IL0373
from adafruit_epd.il91874 import Adafruit_IL91874
from adafruit_epd.il0398 import Adafruit_IL0398
from adafruit_epd.ssd1608 import Adafruit_SSD1608
from adafruit_epd.ssd1675 import Adafruit_SSD1675
from adafruit_epd.ssd1680 import Adafruit_SSD1680
from adafruit_epd.ssd1681 import Adafruit_SSD1681
from adafruit_epd.uc8151d import Adafruit_UC8151D

Next to define some colors that can be used with Pillow.

WHITE = (0xFF, 0xFF, 0xFF)
BLACK = (0x00, 0x00, 0x00)
RED = (0xFF, 0x00, 0x00)

After that, create some parameters that are easy to change. If you had a smaller
display for instance, you could reduce the FONTSIZE and BORDER parameters.
The BORDER will be the size in pixels of the green border between the edge of the
display and the inner purple rectangle. The FONTSIZE will be the size of the font in

©Adafruit Industries Page 77 of 94

points so that it can adjust easily for different displays. You could play around with the
colors as well. One thing to note is that on monochrome displays, RED will show up
as BLACK .

For the 2.9" display, a BORDER value of 20 and a FONTSIZE value of 24 looks good.

BORDER = 10
FONTSIZE = 20
BACKGROUND_COLOR = BLACK
FOREGROUND_COLOR = WHITE
TEXT_COLOR = RED

After that, the initializer and rotation sections are exactly the same as in the previous
example. Go ahead and adjust your initializer as explained in the previous example.
After that, create an image with the dimensions and use that to create a
draw object. The draw object will have all of the drawing functions.

image = Image.new('RGB', (display.width, display.height))

draw = ImageDraw.Draw(image)

Next clear whatever is on the screen by drawing a rectangle using the BACKGROUND_C
OLOR that takes up the full screen.

draw.rectangle((0, 0, display.width, display.height), fill=BACKGROUND_COLOR)

Next to draw an inner rectangle using the FOREGROUND_COLOR . Use the BORDER
parameter to calculate the size and position to draw the rectangle.

draw.rectangle((BORDER, BORDER, display.width - BORDER - 1, display.height - BORDER
- 1),

fill=FOREGROUND_COLOR)

Next to load a TTF font. The DejaVuSans.ttf font should come preloaded on your
Pi in the location in the code. This will also make use of the FONTSIZE parameter
discussed earlier.

font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf',
FONTSIZE)

©Adafruit Industries Page 78 of 94

Now to draw the text Hello World onto the center of the display. You may recognize
the centering calculation was the same one used to center crop the image in the
previous example. In this example though, the font size values are obtained using the
getsize() function of the font object.

text = "Hello World!"
(font_width, font_height) = font.getsize(text)
draw.text((display.width//2 - font_width//2, display.height//2 - font_height//2),

text, font=font, fill=TEXT_COLOR)

Finally, just like before, display the image.

display.image(image)
display.display()

Now go to the command prompt on your Raspberry Pi and run the script with the
following command:

python3 epd_pillow_demo.py

After a few seconds, your display should show this image:

©Adafruit Industries Page 79 of 94

WipperSnapper Wiring & Test

What is WipperSnapper
WipperSnapper is a firmware designed to turn any WiFi-capable board into an
Internet-of-Things device without programming a single line of code. WipperSnapper
connects to Adafruit IO (https://adafru.it/fsU), a web platform designed (by
Adafruit! (https://adafru.it/Bo5)) to display, respond, and interact with your project's
data.

Simply load the WipperSnapper firmware onto your board, add credentials, and plug it
into power. Your board will automatically register itself with your Adafruit IO account.

From there, you can add components to your board such as buttons, switches,
potentiometers, sensors, and more! Components are dynamically added to hardware,
so you can immediately start interacting, logging, and streaming the data your
projects produce without writing code.

If you've never used WipperSnapper, click below to read through the quick start guide
before continuing.

Quickstart: Adafruit IO WipperSnapper

https://adafru.it/Vfd

Wiring

EYESPI Connector

If you have one of the newer breakouts with an EYESPI connector on the back, you
can use that with an 18-pin ribbon cable to connect it either directly to an adapter
board such as the EYESPI BFF for QT Py or Xiao (http://adafru.it/5772) or by using
the EYESPI Breakout (http://adafru.it/5613) and wiring that to your microcontroller.

See the EYESPI pages (https://adafru.it/1a1u) for more information, then read the
Breakout Wiring information below, and adjust that to your setup when it comes to
configuring the pins in the New Component dialog.

If using the QTPy BFF, then it's as simple as selecting the RX pin for CS (chip select),
and TX pin for D/C.

©Adafruit Industries Page 80 of 94

https://io.adafruit.com/
https://www.adafruit.com/about
https://www.adafruit.com/about
https://learn.adafruit.com/quickstart-adafruit-io-wippersnapper
https://www.adafruit.com/product/5772
https://www.adafruit.com/product/5613
https://learn.adafruit.com/adafruit-2-9-eink-display-breakouts-and-featherwings/eyespi

FeatherWing Connection

FeatherWing usage is easy, simply plug your Feather board into the FeatherWing
board.

To match up the pin numbers for your
feather, visit the Pinout page on your
board's Product Learn Guide.

You can quickly find it via the Docs link on
the Wippersnapper devices page after
setting up your board.

The E-Ink Featherwing uses the same pin
layout as shown in the breakout wiring
below, the two required pins on the
shorter side (ECS+DC) are 4 unconnected
pins away from the non-USB end, and the
other side has a fixed layout for SPI (MOSI/
MISO/SCK) on Feathers.

If you wish to use the 3 A/B/C buttons,
then confirm the pins for those on your
board (marked C, B, A to the left of D/C on
the featherwing image).

Breakout Wiring

If you need help with soldering, then see the Assembly page (https://adafru.it/1ayb),
and this guide on how to solder header pins (https://adafru.it/RdJ).

First, wire up the E-Ink display to your board as described below. Alternatively you
may be able to use an EYESPI connector cable with a suitable socket (like on the EYE

©Adafruit Industries Page 81 of 94

https://learn.adafruit.com//assets/141687
https://learn.adafruit.com//assets/141687
https://learn.adafruit.com/adafruit-2-9-eink-display-breakouts-and-featherwings/assembly
https://learn.adafruit.com/how-to-solder-headers
https://www.adafruit.com/product/5772

SPI BFF (http://adafru.it/5772) for QT Py & XIAO boards), or directly board-to-board if
using the featherwing version. Later identify the pins by checking board+display
pinout learn guide pages.

Here is an example of the 2.13" E-Ink wired to an Adafruit ESP32 Feather V2 (http://
adafru.it/5400) on a breadboard with male Jumper wires (2.54mm Dupont
connectors) (https://adafru.it/ECb).

VIN connects to the Feather 3V pin
GND connects to Feather ground
SCK connects to SPI clock. On the Feather
ESP32v2 that's SCK.
MISO connects to SPI MISO. On the
Feather ESP32v2 that's MI
MOSI connects to SPI MOSI. On the
Feather ESP32v2 that's MO
ECS connects to the E-Ink Chip Select pin.
Use Digital 15*, the white wire.
(*or you can change this to any pin)
D/C connects to SPI data/command select
pin. Use Digital 33*, the blue wire.
The SRCS (SRAM CS pin for display), Busy
pin, and Reset pin are optional in this
setup, but can provide improved
performance and stability.

Usage
Connect your board to Adafruit IO Wippersnapper and navigate to the
WipperSnapper board list (https://adafru.it/TAu).

On that page, select the WipperSnapper board you're using to be brought to the
board's interface page.

©Adafruit Industries Page 82 of 94

https://www.adafruit.com/product/5772
https://www.adafruit.com/product/5400
https://www.adafruit.com/category/306
https://www.adafruit.com/category/306
https://learn.adafruit.com//assets/141682
https://learn.adafruit.com//assets/141682
https://io.adafruit.com/wippersnapper
https://io.adafruit.com/wippersnapper

If you do not see your board listed here - you need to connect your board to Adafruit
IO (https://adafru.it/Vfd) first.

This guide page assumes you have already installed WipperSnapper on your
board, and it is showing as "Online" on the Devices page.

If not, then follow the quick start guide linked above, or visit the New Device
page and follow the on-screen instructions.

©Adafruit Industries Page 83 of 94

https://io.adafruit.com/devices/new/
https://io.adafruit.com/devices/new/
https://learn.adafruit.com/quickstart-adafruit-io-wippersnapper
https://learn.adafruit.com/quickstart-adafruit-io-wippersnapper

On the device page, quickly check that
you're running the latest version of the
WipperSnapper firmware.

The device tile on the left indicates the
version number of the firmware running on
the connected board.

If the firmware version is green with a
checkmark - continue with this guide.
If the firmware version is red with an
exclamation mark "!" - update to the latest
WipperSnapper firmware (https://adafru.it/
Vfd) on your board before continuing.

Click the New Component button or the + button to bring up the component picker.

Adafruit IO supports a large amount of components, try searching for Display to see
all the supported displays.

©Adafruit Industries Page 84 of 94

https://learn.adafruit.com//assets/140825
https://learn.adafruit.com//assets/140825
https://learn.adafruit.com//assets/140826
https://learn.adafruit.com//assets/140826
https://learn.adafruit.com/quickstart-adafruit-io-wippersnapper
https://learn.adafruit.com/quickstart-adafruit-io-wippersnapper

To quickly find your display, type
SSD1680 into the search bar, then select
the 2.9" Grayscale eInk (SSD1680)
component.

On the component configuration page, the display's bus number and/or address
should be listed along with the components settings.

Select all the pin options that match your wiring setup (leaving any drop-downs for
any unattached pins unpopulated).

Finally choose any preferences like font size or alignment, then click Create.

Since WipperSnapper supports such a large number of components, you
can use keyword filtering. Try searching for various keywords, like:

component names: aht20 , servo , buzzer , button , neopixel ,
etc
sensor types: light , temperature , pressure , humidity , etc
interface: i2c , uart , ds18x20 , pin , display , etc (also I2C
addresses e.g. 0x44)
vendor: Adafruit , ASAIR , Infineon , Bosch , Honeywell , Sensirion ,
etc
display type / driver /
family: st7789 , ili0373 , sh1107 , seg , lcd

There are also product and documentation links for every component.
Follow the links beneath the component descriptions to be taken to the
appropriate product page, Learn Guide, or datasheet.

? Filtering and searching for
components

•

•
•

•

•

©Adafruit Industries Page 85 of 94

https://learn.adafruit.com//assets/141685
https://learn.adafruit.com//assets/141685

After adding the component, your device page should show the newly created
display component row, and the display attached to your board should refresh / turn
on when the component is added.

©Adafruit Industries Page 86 of 94

If appropriate, your display may also show a status bar with connection info
(username, connection status, WiFi strength, and battery level).

To send a message to the display, click on the Pen button at the end of the display
component row, then fill in the dialog and click Send:

©Adafruit Industries Page 87 of 94

The display component is connected to a feed, which means that you can send data
to the feed and have it immediately appear on screen.

This can be really useful when combined with automated Actions (https://adafru.it/
1axy).

It also means there is a history of messages. To view the feed data that has been
previously sent to the display, click on the graph icon at the end of the component
row.

Here you can see the feed history and edit things about the feed such as the name,
privacy, webhooks associated with the feed and more. If you want to learn more
about how feeds work, check out this page (https://adafru.it/10aZ).

To send a forced line break, use the backslash symbol (\) followed by the
letter n for new line: \n

e.g. Line1 \n Line2\nLine3

The displays do accept true line breaks too (hitting the Enter/Return key in the
text input box above, or sending \n or \r\n via JSON).

©Adafruit Industries Page 88 of 94

https://io.adafruit.com/api/docs/#data
https://learn.adafruit.com/how-to-use-blockly-for-actions-on-adafruit-io/
https://learn.adafruit.com/all-the-internet-of-things-episode-four-adafruit-io/advanced-feeds

Lastly, take note of the Settings Cog at the end of the component row, where you can
alter the components configuration.

This will show you the same dialog as when you added the display, along with any
advanced options. It's also where you can remove components.

Continue on with this guide, or maybe look at setting up an Action (https://adafru.it/
YAT) to write to the display.

Downloads

2.9" Tri-Color eInk Display Revision History
As of June 20, 2025 - The display has been updated (old ones
discontinued) to use a spiffy modern SSD1680 chip - we have support in
CircuitPython/Python/Arduino for it!
As of May 22th, 2024 – We've updated this PCB with a new EYESPI
connector along with the Adafruit Pinguin to make a lovely and legible
silkscreen.
As of November 16, 2022 - this revision has been updated to have a 2.9"
Tri-Color eInk display only with a UC8151D chipset.

•

•

•

©Adafruit Industries Page 89 of 94

https://io.adafruit.com/actions

Files
Fritzing object in Adafruit Fritzing Library (https://adafru.it/aP3)
IL0376F E-Ink interface chip datasheet (https://adafru.it/BRW)
UC8151D Datasheet (https://adafru.it/1alu)
SSD1680 Datasheet (https://adafru.it/1alt)
PCB Files on GitHub (https://adafru.it/BRX)

Schematic & Fabrication Prints

Rev C

2.9" Tri-Color eInk FeatherWing Revision History
As of June 24th, 2025 – The display has been updated (old one
discontinued) it now uses a spiffy modern SSD1680 chip - we have
support in CircuitPython/Python/Arduino for it!
As of Sep 8, 2023 – we've updated this PCB with Adafruit Pinguin to
make a lovely and legible silkscreen - you may get the new PCB or the
older version with vector fonts - both are identical other than the fancy
silkscreen.

•

•

•
•
•
•
•

©Adafruit Industries Page 90 of 94

https://github.com/adafruit/Fritzing-Library
https://cdn-learn.adafruit.com/assets/assets/000/057/648/original/IL0376F.pdf
https://cdn-learn.adafruit.com/assets/assets/000/137/964/original/UC8151d.pdf?1750877703
https://cdn-learn.adafruit.com/assets/assets/000/137/956/original/SSD1680.pdf?1750876902
https://github.com/adafruit/Adafruit-E-Paper-Display-Breakout-PCBs

Rev B

©Adafruit Industries Page 91 of 94

2.9" FeatherWing

©Adafruit Industries Page 92 of 94

eInk Friends

©Adafruit Industries Page 93 of 94

©Adafruit Industries Page 94 of 94

	Adafruit 2.9" eInk Display Breakouts and FeatherWings
	Table of Contents
	Overview
	Pinouts
	EYESPI
	Plugging in an EYESPI Cable
	Assembly
	Wiring
	Usage and Expectations
	Arduino Setup
	Arduino Usage
	Arduino Bitmaps
	CircuitPython Monochrome Usage
	CircuitPython Grayscale Usage
	CircuitPython Tri-Color Usage
	Python Setup
	Python Usage
	WipperSnapper Wiring & Test
	Downloads

	Overview
	2.9" Tri-Color eInk Display and FeatherWing Revision
	We have multiple 2.9" EPD displays:
	Breakouts and Flexibles
	FeatherWings

	2.9" Tri-Color eInk Display Revision History
	2.9" Tri-Color eInk FeatherWing Revision History

	Pinouts
	2.9" Tri-Color eInk Display and FeatherWing Revision

	eInk Breakout Friend
	Power Pins
	Data Control Pins
	FeatherWing Connections
	2.9" Tri-Color eInk FeatherWing Revision History
	FeatherWing Buttons

	EYESPI
	The EYESPI Connector and Cables
	Wiring Your EYESPI Display
	EYESPI Pins

	Plugging in an EYESPI Cable
	Assembly
	Assembly
	Add the E-Ink Display
	And Solder!

	Wiring
	EYESPI Connector
	Breakout Wiring
	FeatherWing Connection
	Python Wiring

	Usage and Expectations
	Arduino Setup
	Arduino Usage
	2.9" Monochrome 296x128 Pixel Display
	2.9" Tri-Color 296x128 Pixel Display
	2.9" Tri-Color eInk Display and FeatherWing Revision
	2.9" Grayscale 296x128 Pixel Display

	Configure Pins
	Configure Display Type & Size
	Upload Sketch
	Arduino Bitmaps
	Tri-Color and Mono Display Demo
	GrayScale Display Demo

	CircuitPython Monochrome Usage
	CircuitPython eInk displayio Library Installation
	Adafruit_CircuitPython_UC8151D

	Image File
	Monochrome Display Usage
	Configure and Upload

	CircuitPython Grayscale Usage
	CircuitPython eInk displayio Library Installation
	Adafruit_CircuitPython_IL0373

	Image File
	Grayscale Display Usage

	CircuitPython Tri-Color Usage
	2.9" Tri-Color eInk Display and FeatherWing Revision
	CircuitPython eInk displayio Library Installation
	Image File
	Adafruit_CircuitPython_SSD1680
	Display Usage

	Adafruit_CircuitPython_UC8151D
	UC8151D Display Usage
	Adafruit_CircuitPython_IL0373
	IL0373 Display Usage

	Python Setup
	Setup Virtual Environment
	Install Adafruit_Blinka
	Python Installation of EPD Library
	Download font5x8.bin
	DejaVu TTF Font
	Pillow Library
	Chip Enable Lines

	Python Usage
	Run the following code to initialize the 2.9" 296x128 Flexible Monochrome display:
	For the 2.9" 296x128 Tri-Color display:
	2.9" Tri-Color eInk Display and FeatherWing Revision
	Monochrome Example
	Tri-Color Example

	Full Example Code
	Bitmap Example
	Image Drawing with Pillow
	Drawing Shapes and Text with Pillow
	WipperSnapper Wiring & Test
	What is WipperSnapper
	Wiring
	EYESPI Connector
	FeatherWing Connection
	Breakout Wiring

	Usage
	Filtering and searching for components

	Downloads
	2.9" Tri-Color eInk Display Revision History
	2.9" Tri-Color eInk FeatherWing Revision History

	Files
	Schematic & Fabrication Prints
	Rev C
	Rev B
	2.9" FeatherWing

	eInk Friends

