
Adafruit 2.13" 250x122 Quad-Color eInk
Created by Liz Clark

https://learn.adafruit.com/adafruit-2-13-250x122-quad-color-eink

Last updated on 2025-11-11 10:20:29 PM EST

©Adafruit Industries Page 1 of 35

3

6

7

18

18

23

23

26

33

33

Table of Contents

Overview

Pinouts
• Power Pins
• Data Control Pins
• EYESPI Display Connector
• micro SD Card Slot

Arduino
• Wiring
• Library Installation
• Example Code
• Displaying Images
• Image File
• Library Installation
• ImageReader Example

Arduino Docs

CircuitPython
• CircuitPython Microcontroller Wiring
• Image File
• CircuitPython Usage
• Example Code

CircuitPython Docs

Python Setup
• Setup Virtual Environment
• Install Adafruit_Blinka
• Python Installation of EPD Library
• Download font5x8.bin
• DejaVu TTF Font
• Pillow Library
• Chip Enable Lines

Python Use
• Python Wiring
• Pillow Graphics Demo
• Pillow Image Demo

Python Docs

Downloads
• Files
• Schematic and Fab Print

©Adafruit Industries Page 2 of 35

Overview

Easy e-paper finally comes to microcontrollers with this breakout that's designed to
make it a breeze to add a quad-color eInk display. Chances are you've seen one of
those new-fangled 'e-readers' like the Kindle or Nook. They have gigantic electronic
paper 'static' displays - that means the image stays on the display even when power is
completely disconnected. The image is also high contrast and very daylight readable.
It really does look just like printed paper!

©Adafruit Industries Page 3 of 35

We've liked these displays for a long time, but breakouts were never designed for
makers to use. Finally, we decided to make our own!

This is a 2.13" quad-color (red, black, yellow and white) display. It has 250x122 black,
red and yellow ink pixels and a white-ish background. It uses the JD79661 chipset, so
make sure whatever firmware code you are planning to use has support for it. Using
our CircuitPython or Arduino libraries, you can create a 'frame buffer' with what pixels
you want to have activated and then write that out to the display. Most simple
breakouts leave it at that. But if you do the math, 250 x 122 pixels x 2 bits = 7.5
KBytes. Which won't fit into many microcontroller memories. Heck, even if you do
have 32KB of RAM, why waste 8KB?

So we did you a favor and tossed a small SRAM chip on the back. This chip shares
the SPI port the eInk display uses, so you only need one extra pin. And, no more
frame-buffering! You can use the SRAM to set up whatever you want to display, then
shuffle data from SRAM to eInk when you're ready. The library we wrote does all the
work for you (https://adafru.it/BRK), you can just interface with it as if it were an
Adafruit_GFX compatible display (https://adafru.it/BRK).

©Adafruit Industries Page 4 of 35

https://github.com/adafruit/Adafruit_EPD
https://github.com/adafruit/Adafruit_EPD
https://github.com/adafruit/Adafruit_EPD
https://github.com/adafruit/Adafruit_EPD

We even tossed on a MicroSD socket so you can store images, text files, whatever
you like to display. Everything is 3 or 5V logic safe so you can use it with any and all
microcontrollers.

For ultra-low power usages, the onboard 3.3V regulator has the Enable pin brought
out so you can shut down the power to the SRAM, MicroSD, and display.

This display breakout also features an 18-pin "EYE SPI" standard FPC connector with
flip-top connector. You can use an 18-pin 0.5mm pitch FPC cable (http://adafru.it/5239)

©Adafruit Industries Page 5 of 35

https://www.adafruit.com/product/5239

to connect to all the GPIO pins, for when you want to skip the soldering. Comes
assembled and tested, with some header. You'll need a soldering iron to attach the
header for breadboarding or installing it into your project.

Pinouts

Power Pins
VIN - this is the power pin, connect to 3-5VDC - it has reverse polarity protection
but try to wire it right!
3V3 out - this is the 3.3V output from the onboard regulator, you can 'borrow'
about 100mA if you need to power some other 3.3V logic devices
GND - this is the power and signal ground pin
ENA - this pin is all the way on the right. It is connected to the enable pin on the
onboard regulator that powers everything. If you want to really have the lowest
possible power draw, pull this pin low! Note that if you do so you will cut power
to the eInk display but also the SPI RAM (thus erasing it) and the SD card (which
means you'll have to re-initialize it when you re-power

Data Control Pins
SCK - this is the SPI clock input pin, required for e-Ink, SRAM and SD card
MISO - this is the SPI Microcontroller In Serial Out pin, its used for the SD card
and SRAM. It isn't used for the e-Ink display which is write-only, however you'll
likely be using the SRAM to buffer the display so connect this one too!
MOSI - this is the SPI Microcontroller Out Serial In pin, it is used to send data
from the microcontroller to the SD card, SRAM and e-Ink display
ECS - this is the E-Ink Chip Select, required for controlling the display
D/C - this is the e-Ink Data/Command pin, required for controlling the display
SRCS - this is the SRAM Chip Select, required for communicating with the
onboard RAM chip.

•

•

•
•

•
•

•

•
•
•

©Adafruit Industries Page 6 of 35

SDCS - this is the SD card Chip Select, required for communicating with the
onboard SD card holder. You can leave this disconnected if you aren't going to
access SD cards
RST - this is the E-Ink ReSeT pin, you may be able to share this with your
microcontroller reset pin but if you can, connect it to a digital pin.
BUSY - this is the e-Ink busy detect pin, and is optional if you don't want to
connect the pin (in which case the code will just wait an approximate number of
seconds)

EYESPI Display Connector
This connector, located on the back of the board, allows you to connect the display
using an EYESPI cable to an EYESPI breakout with no soldering or jumper wires
needed.

Adafruit EYESPI Breakout Board - 18 Pin
FPC Connector
Our most recent display breakouts have
come with a new feature: an 18-pin "EYE
SPI" standard FPC...
https://www.adafruit.com/product/5613

micro SD Card Slot
On the back of the board, on the left side, is the micro SD card slot. You can use any
micro SD card that supports SPI mode with one CS pin.

Arduino

Using the Adafruit 2.13" 250x122 Quad-Color eInk with Arduino involves wiring up
the breakout to your Arduino-compatible microcontroller, installing
the Adafruit_EPD (https://adafru.it/BRK) library, and running the provided example
code.

•

•

•

©Adafruit Industries Page 7 of 35

https://www.adafruit.com/product/5613
https://www.adafruit.com/product/5613
https://www.adafruit.com/product/5613
https://github.com/adafruit/Adafruit_EPD

Adafruit EYESPI Breakout Board - 18 Pin
FPC Connector
Our most recent display breakouts have
come with a new feature: an 18-pin "EYE
SPI" standard FPC...
https://www.adafruit.com/product/5613

EYESPI Cable - 18 Pin 100mm long Flex
PCB (FPC) A-B type
Connect this to that when a 18-pin FPC
connector is needed. This 25 cm long
cable is made of a flexible PCB. It's A-B
style which means that pin one on one
side will match...
https://www.adafruit.com/product/5239

Wiring
Wire as shown for a 5V board like an Uno. If you are using a 3V board, like an Adafruit
Feather, wire the board's 3V pin to the breakout VIN.

Here is an Adafruit Metro wired up to the display using the EYESPI breakout:

©Adafruit Industries Page 8 of 35

https://www.adafruit.com/product/5613
https://www.adafruit.com/product/5613
https://www.adafruit.com/product/5613
https://www.adafruit.com/product/5239
https://www.adafruit.com/product/5239
https://www.adafruit.com/product/5239

Metro 5V to breakout Vin (red wire)
Metro GND to breakout Gnd (black wire)
Metro SCK/D13 to breakout SCK (yellow
wire)
Metro MISO/D12 to breakout MISO (blue
wire)
Metro MOSI/D11 to breakout MOSI (green
wire)
Metro D5 to breakout SDCS (cyan wire)
Metro D6 to breakout MEMCS (brown
wire)
Metro D7 to breakout BUSY (white wire)
Metro D8 to breakout RST (orange wire)
Metro D9 to breakout TCS (pink wire)
Metro D10 to breakout DC (purple wire)

Attach the eInk display to the EYESPI
breakout with an EYESPI cable as
described on the Plugging in an EYESPI
Cable (https://adafru.it/18eU) page.

Here is an Adafruit Metro wired up using a solderless breadboard:

Metro 5V to breakout Vin (red wire)
Metro GND to breakout Gnd (black wire)
Metro SCK/D13 to breakout SCK (yellow
wire)
Metro MISO/D12 to breakout MISO (blue
wire)
Metro MOSI/D11 to breakout MOSI (green
wire)
Metro D5 to breakout SDCS (cyan wire)
Metro D6 to breakout SRCS (brown wire)
Metro D7 to breakout BUSY (white wire)
Metro D8 to breakout RST (orange wire)
Metro D9 to breakout ECS (pink wire)
Metro D10 to breakout D/C (purple wire)

©Adafruit Industries Page 9 of 35

https://learn.adafruit.com//assets/138812
https://learn.adafruit.com//assets/138812
https://learn.adafruit.com/adafruit-eyespi-breakout-board/plugging-in-an-eyespi-cable
https://learn.adafruit.com/adafruit-eyespi-breakout-board/plugging-in-an-eyespi-cable
https://learn.adafruit.com//assets/138811
https://learn.adafruit.com//assets/138811

Library Installation
You can install the Adafruit_EPD library for Arduino using the Library Manager in the
Arduino IDE.

Click the Manage Libraries ... menu item, search for Adafruit_EPD, and select the
Adafruit EPD library:

If asked about dependencies, click "Install all".

©Adafruit Industries Page 10 of 35

If the "Dependencies" window does not come up, then you already have the
dependencies installed.

Example Code
// SPDX-FileCopyrightText: 2025 Liz Clark for Adafruit Industries
//
// SPDX-License-Identifier: MIT

/***
 Adafruit invests time and resources providing this open source code,
 please support Adafruit and open-source hardware by purchasing
 products from Adafruit!

 Written by Limor Fried/Ladyada for Adafruit Industries.
 MIT license, all text above must be included in any redistribution
 **/

#include "Adafruit_ThinkInk.h"

#ifdef ARDUINO_ADAFRUIT_FEATHER_RP2040_THINKINK // detects if compiling for
// Feather RP2040 ThinkInk

#define EPD_DC PIN_EPD_DC // ThinkInk 24-pin connector DC
#define EPD_CS PIN_EPD_CS // ThinkInk 24-pin connector CS
#define EPD_BUSY PIN_EPD_BUSY // ThinkInk 24-pin connector Busy
#define SRAM_CS -1 // use onboard RAM
#define EPD_RESET PIN_EPD_RESET // ThinkInk 24-pin connector Reset
#define EPD_SPI &SPI1 // secondary SPI for ThinkInk
#else
#define EPD_DC 10
#define EPD_CS 9
#define EPD_BUSY 7 // can set to -1 to not use a pin (will wait a fixed delay)
#define SRAM_CS 6
#define EPD_RESET 8 // can set to -1 and share with microcontroller Reset!
#define EPD_SPI &SPI // primary SPI
#endif

// 2.13" Quadcolor EPD with JD79661 chipset
ThinkInk_213_Quadcolor_AJHE5 display(EPD_DC, EPD_RESET, EPD_CS, SRAM_CS, EPD_BUSY,

EPD_SPI);

void setup() {
Serial.begin(115200);
while (!Serial) {

delay(10);
}
Serial.println("Adafruit EPD full update test in red/yellow/black/white");
display.begin(THINKINK_QUADCOLOR);

}

void loop() {
Serial.println("Banner demo");
display.clearBuffer();

If the dependencies are already installed, you must make sure you update
them through the Arduino Library Manager before loading the example!

©Adafruit Industries Page 11 of 35

display.setTextSize(3);
display.setCursor((display.width() - 144) / 2, (display.height() - 24) / 2);
String text = "QuadColor";
uint16_t colors[] = {EPD_BLACK, EPD_RED, EPD_YELLOW};

for (int i = 0; i < text.length(); i++) {
// Change color for every character (0: BLACK, 1: RED, 2: YELLOW, 3: BLACK,

etc.)
display.setTextColor(colors[i % 3]);
display.print(text.charAt(i));

}
display.display();

delay(15000);

Serial.println("Color quadrant demo");
display.clearBuffer();
// Top-left quadrant - EPD_BLACK
display.fillRect(0, 0, display.width() / 2, display.height() / 2, EPD_BLACK);
// Top-right quadrant - EPD_RED
display.fillRect(display.width() / 2, 0, display.width() / 2, display.height() /

2, EPD_RED);
// Bottom-left quadrant - EPD_YELLOW
display.fillRect(0, display.height() / 2, display.width() / 2, display.height() /

2, EPD_YELLOW);
// Bottom-right quadrant - assume you have a 4th color like EPD_WHITE or another

color
display.fillRect(display.width() / 2, display.height() / 2, display.width() / 2,

display.height() / 2, EPD_WHITE);

display.display();

delay(15000);

Serial.println("Text demo");
// large block of text
display.clearBuffer();
display.setTextSize(1);
testdrawtext(

"Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur "
"adipiscing ante sed nibh tincidunt feugiat. Maecenas enim massa, "
"fringilla sed malesuada et, malesuada sit amet turpis. Sed porttitor "
"neque ut ante pretium vitae malesuada nunc bibendum. Nullam aliquet "
"ultrices massa eu hendrerit. Ut sed nisi lorem. In vestibulum purus a "
"tortor imperdiet posuere. ",
EPD_BLACK);

display.display();

delay(15000);

display.clearBuffer();
for (int16_t i = 0; i < display.width(); i += 4) {

display.drawLine(0, 0, i, display.height() - 1, EPD_BLACK);
}
for (int16_t i = 0; i < display.height(); i += 4) {

display.drawLine(display.width() - 1, 0, 0, i, EPD_RED);
}
for (int16_t i = 0; i < display.width(); i += 4) {

display.drawLine(display.width()/2, display.height()-1, i, 0,
EPD_YELLOW);

}

display.display();

delay(15000);
}

void testdrawtext(const char *text, uint16_t color) {
display.setCursor(0, 0);

©Adafruit Industries Page 12 of 35

display.setTextColor(color);
display.setTextWrap(true);
display.print(text);

}

Upload the sketch to your board and open up the Serial Monitor (Tools -> Serial
Monitor) at 115200 baud. You'll see the display recognized over SPI. Then, as different
demos are sent to the display, you'll see the demo name print to the Serial Monitor.

Displaying Images
You can also load images from a microSD card to show on the display using the
Adafruit_ImageReader (https://adafru.it/1aoJ) library.

©Adafruit Industries Page 13 of 35

https://github.com/adafruit/Adafruit_imagereader

512MB micro SD Memory Card
Add storage in a jiffy using this 512MB
microSD card. Preformatted to FAT32, so
it works out of the packaging with our
projects. Works great with any device in
the...
https://www.adafruit.com/product/5252

Image File
Download the .BMP file below and place it into the base directory of a microSD card
and insert it into the microSD socket on the back of the display.

Library Installation
Click the Manage Libraries ... menu item, search for Adafruit_ImageReader, and
select the Adafruit ImageReader library:

©Adafruit Industries Page 14 of 35

https://www.adafruit.com/product/5252
https://www.adafruit.com/product/5252

If asked about dependencies, click "Install all".

If the "Dependencies" window does not come up, then you already have the
dependencies installed.

ImageReader Example
// SPDX-FileCopyrightText: 2025 Liz Clark for Adafruit Industries
//
// SPDX-License-Identifier: MIT

// Adafruit_ImageReader test for Adafruit E-Ink Breakouts.
// Demonstrates loading images from SD card or flash memory to the screen,
// to RAM, and how to query image file dimensions.
// Requires BMP file in root directory of QSPI Flash:
// blinka.bmp.

#include <Adafruit_GFX.h> // Core graphics library
#include "Adafruit_ThinkInk.h"
#include <SdFat_Adafruit_Fork.h> // SD card & FAT filesystem library
#include <Adafruit_SPIFlash.h> // SPI / QSPI flash library
#include <Adafruit_ImageReader_EPD.h> // Image-reading functions

// Comment out the next line to load from SPI/QSPI flash instead of SD card:

If the dependencies are already installed, you must make sure you update
them through the Arduino Library Manager before loading the example!

©Adafruit Industries Page 15 of 35

#define USE_SD_CARD

#define EPD_DC 10
#define EPD_CS 9
#define EPD_BUSY 7 // can set to -1 to not use a pin (will wait a fixed delay)
#define SRAM_CS 6
#define EPD_RESET 8 // can set to -1 and share with microcontroller Reset!
#define EPD_SPI &SPI // primary SPI
#define SD_CS 5 // SD card chip select

// 2.13" Quadcolor EPD with JD79661 chipset
ThinkInk_213_Quadcolor_AJHE5 display(EPD_DC, EPD_RESET, EPD_CS, SRAM_CS, EPD_BUSY,

EPD_SPI);

#if defined(USE_SD_CARD)
SdFat SD; // SD card filesystem
Adafruit_ImageReader_EPD reader(SD); // Image-reader object, pass in SD filesys

#else

// SPI or QSPI flash filesystem (i.e. CIRCUITPY drive)
#if defined(__SAMD51__) || defined(NRF52840_XXAA)

Adafruit_FlashTransport_QSPI flashTransport(PIN_QSPI_SCK, PIN_QSPI_CS,
PIN_QSPI_IO0, PIN_QSPI_IO1, PIN_QSPI_IO2, PIN_QSPI_IO3);

#else
#if (SPI_INTERFACES_COUNT == 1 || defined(ADAFRUIT_CIRCUITPLAYGROUND_M0))

Adafruit_FlashTransport_SPI flashTransport(SS, &SPI);
#else

Adafruit_FlashTransport_SPI flashTransport(SS1, &SPI1);
#endif

#endif
Adafruit_SPIFlash flash(&flashTransport);
FatVolume filesys;
Adafruit_ImageReader_EPD reader(filesys); // Image-reader, pass in flash filesys

#endif

Adafruit_Image_EPD img; // An image loaded into RAM
int32_t width = 0, // BMP image dimensions

height = 0;

void setup(void) {

ImageReturnCode stat; // Status from image-reading functions

Serial.begin(115200);
while(!Serial); // Wait for Serial Monitor before continuing

display.begin();
display.setRotation(3);

// The Adafruit_ImageReader constructor call (above, before setup())
// accepts an uninitialized SdFat or FatVolume object. This MUST
// BE INITIALIZED before using any of the image reader functions!
Serial.print(F("Initializing filesystem..."));
// SPI or QSPI flash requires two steps, one to access the bare flash
// memory itself, then the second to access the filesystem within...

#if defined(USE_SD_CARD)
// SD card is pretty straightforward, a single call...
if(!SD.begin(SD_CS, SD_SCK_MHZ(10))) { // Breakouts require 10 MHz limit due to

longer wires
Serial.println(F("SD begin() failed"));
for(;;); // Fatal error, do not continue

}
#else

// SPI or QSPI flash requires two steps, one to access the bare flash
// memory itself, then the second to access the filesystem within...
if(!flash.begin()) {

Serial.println(F("flash begin() failed"));
for(;;);

}

©Adafruit Industries Page 16 of 35

if(!filesys.begin(&flash)) {
Serial.println(F("filesys begin() failed"));
for(;;);

}
#endif

Serial.println(F("OK!"));

// Load full-screen BMP file 'blinka.bmp' at position (0,0) (top left).
// Notice the 'reader' object performs this, with 'epd' as an argument.
Serial.print(F("Loading blinka.bmp to canvas..."));
stat = reader.drawBMP((char *)"/blinka.bmp", display, 0, 0);
reader.printStatus(stat); // How'd we do?
display.display();

// Query the dimensions of image 'blinka.bmp' WITHOUT loading to screen:
Serial.print(F("Querying blinka.bmp image size..."));
stat = reader.bmpDimensions("blinka.bmp", &width, &height);
reader.printStatus(stat); // How'd we do?
if(stat == IMAGE_SUCCESS) { // If it worked, print image size...

Serial.print(F("Image dimensions: "));
Serial.print(width);
Serial.write('x');
Serial.println(height);

}

delay(30 * 1000); // Pause 30 seconds before continuing because it's eInk

}

void loop() {

}

Upload the sketch to your board and open up the Serial Monitor (Tools -> Serial
Monitor) at 115200 baud. You'll see the microSD card recognized over SPI. Then,
you'll see the image show on your display.

©Adafruit Industries Page 17 of 35

Arduino Docs

Arduino Docs (https://adafru.it/BST)

CircuitPython

This page goes over how to use the Adafruit 2.13" 250x122 Quad-Color eInk displays
with CircuitPython.

You'll need to use CircuitPython 10.0.0-beta.2 or later with this display.

©Adafruit Industries Page 18 of 35

https://adafruit.github.io/Adafruit_EPD/html/index.html
https://blog.adafruit.com/2025/07/30/circuitpython-10-0-0-beta-2-released/

Adafruit EYESPI Breakout Board - 18 Pin
FPC Connector
Our most recent display breakouts have
come with a new feature: an 18-pin "EYE
SPI" standard FPC...
https://www.adafruit.com/product/5613

EYESPI Cable - 18 Pin 100mm long Flex
PCB (FPC) A-B type
Connect this to that when a 18-pin FPC
connector is needed. This 25 cm long
cable is made of a flexible PCB. It's A-B
style which means that pin one on one
side will match...
https://www.adafruit.com/product/5239

CircuitPython Microcontroller Wiring
First wire up the display to your board exactly as follows. The following is the display
connected to a Feather RP2040 using the EYESPI connector:

©Adafruit Industries Page 19 of 35

https://www.adafruit.com/product/5613
https://www.adafruit.com/product/5613
https://www.adafruit.com/product/5613
https://www.adafruit.com/product/5239
https://www.adafruit.com/product/5239
https://www.adafruit.com/product/5239

Feather 3.3V to breakout Vin (red wire)
Feather GND to breakout Gnd (black wire)
Feather SCK to breakout SCK (blue wire)
Feather MO to breakout MOSI (yellow
wire)
Feather MI to breakout MISO (green wire)
Feather D10 to breakout DC (orange wire)
Feather D9 to breakout TCS (white wire)
Feather D6 to breakout RST (cyan wire)
Feather D5 to breakout BUSY (pink wire)

Attach the TFT screen to the EYESPI
breakout with an EYESPI cable as
described on the Plugging in an EYESPI
Cable (https://adafru.it/18eU) page.

The following is the breakout wired to a Feather RP2040 using a solderless
breadboard:

Feather 3.3V to breakout VIN (red wire)
Feather GND to breakout GND (black
wire)
Feather SCK to breakout SCK (blue wire)
Feather MO to breakout MOSI (yellow
wire)
Feather MI to breakout MISO (green wire)
Feather D10 to breakout D/C (orange
wire)
Feather D9 to breakout ECS (white wire)
Feather D6 to breakout RST (cyan wire)
Feather D5 to breakout BUSY (pink wire)

Image File
The example below uses a bitmap image. You'll need the display-ruler-640x360.bmp
bitmap file on your CIRCUITPY drive.

©Adafruit Industries Page 20 of 35

https://learn.adafruit.com//assets/138598
https://learn.adafruit.com//assets/138598
https://learn.adafruit.com/adafruit-eyespi-breakout-board/plugging-in-an-eyespi-cable
https://learn.adafruit.com/adafruit-eyespi-breakout-board/plugging-in-an-eyespi-cable
https://learn.adafruit.com//assets/138599
https://learn.adafruit.com//assets/138599

CircuitPython Usage

To use with CircuitPython, you need to first install
the Adafruit_CircuitPython_JD79661 library, and its dependencies, into the lib folder
on your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download
Project Bundle button below to download the necessary libraries and the code.py file
in a zip file. Extract the contents of the zip file, and copy the entire lib folder and
the code.py file to your CIRCUITPY drive.

Your CIRCUITPY/lib folder should contain the following folders and file:

adafruit_jd79661.mpy•

©Adafruit Industries Page 21 of 35

Example Code
SPDX-FileCopyrightText: 2025 Scott Shawcroft, written for Adafruit Industries
#
SPDX-License-Identifier: Unlicense

"""Simple test script for 2.13" Quad Color Display"""

import time

import board
import displayio
from fourwire import FourWire

import adafruit_jd79661

displayio.release_displays()

spi = board.SPI()
epd_cs = board.D9
epd_dc = board.D10
epd_reset = board.D6
epd_busy = board.D5

display_bus = FourWire(spi, command=epd_dc, chip_select=epd_cs, reset=epd_reset,
baudrate=1000000)
time.sleep(1)

display = adafruit_jd79661.JD79661(
display_bus,
width=250,
height=122,
busy_pin=epd_busy,
rotation=270,
colstart=0,
highlight_color=0x00FF00,
highlight_color2=0xFF0000,

)

g = displayio.Group()

pic = displayio.OnDiskBitmap("/display-ruler-640x360.bmp")
t = displayio.TileGrid(pic, pixel_shader=pic.pixel_shader)
g.append(t)

display.root_group = g

display.refresh()

print("refreshed")

time.sleep(display.time_to_refresh + 5)
Always refresh a little longer. It's not a problem to refresh
a few seconds more, but it's terrible to refresh too early
(the display will throw an exception when if the refresh
is too soon)
print("waited correct time")

Keep the display the same
while True:

time.sleep(10)

©Adafruit Industries Page 22 of 35

Once everything is saved to the CIRCUITPY drive, the code will begin running. Your
display will look like this:

CircuitPython Docs

CircuitPython Docs (https://adafru.it/1aoH)

Python Setup

It's easy to use eInk breakouts with Python and the Adafruit CircuitPython
EPD (https://adafru.it/BTd) library. This library allows you to easily write Python code
to control the display.

Since there are dozens of Linux computers/boards you can use, we will show wiring
for Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux
to see whether your platform is supported (https://adafru.it/BSN).

Note this is not a kernel driver that will let you have the console appear on the
eInk. However, this is handy when you want to use the eInk display purely
from 'user Python' code!

©Adafruit Industries Page 23 of 35

https://docs.circuitpython.org/projects/jd79661/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_EPD
https://github.com/adafruit/Adafruit_CircuitPython_EPD
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Setup Virtual Environment
If you are installing on the Bookworm version of Raspberry Pi OS or later, you will
need to install your python modules in a virtual environment. You can find more
information in the Python Virtual Environment Usage on Raspberry Pi (https://adafru.it/
19a5) guide. To Install and activate the virtual environment, use the following
commands:

sudo apt install python3-venv
python -m venv env --system-site-packages

To activate the virtual environment:

source env/bin/activate

Install Adafruit_Blinka
You'll need to install the Adafruit_Blinka library that provides the CircuitPython
support in Python. This may also require enabling SPI on your platform and verifying
you are running Python 3. Since each platform is a little different, and Linux changes
often, please visit the CircuitPython on Linux guide to get your computer
ready (https://adafru.it/BSN)!

Python Installation of EPD Library
Once that's done, from your command line run the following command:

pip3 install adafruit-circuitpython-epd

If your default Python is version 3 you may need to run 'pip' instead. Just make sure
you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

If that complains about pip3 not being installed, then run this first to install it:

You can only use this technique with Linux/computer devices that have
hardware SPI support, and not all single board computers have an SPI device,
so check before continuing

©Adafruit Industries Page 24 of 35

https://learn.adafruit.com/python-virtual-environment-usage-on-raspberry-pi
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

sudo apt-get install python3-pip

Download font5x8.bin
This library also requires a font file to run! You can download it below. Before
continuing, make sure the folder you are running scripts from contains the
font5x8.bin file.

Download font5x8.bin

https://adafru.it/Xbr

Alternatively, you can use wget to directly download the file to your pi:

wget https://github.com/adafruit/Adafruit_CircuitPython_framebuf/raw/main/examples/
font5x8.bin

DejaVu TTF Font
Raspberry Pi usually comes with the DejaVu font already installed, but in case it didn't,
you can run the following to install it:

sudo apt-get install fonts-dejavu

This package was previously calls ttf-dejavu, so if you are running an older version of
Raspberry Pi OS, it may be called that.

Pillow Library
Some of the examples also use PIL, the Python Imaging Library, to allow graphics and
using text with custom fonts. There are several system libraries that PIL relies on, so
installing via a package manager is the easiest way to bring in everything:

sudo apt-get install python3-pil

Chip Enable Lines
Follow these instructions (https://adafru.it/19fg) for dealing with SPI chip enable line
issues.

©Adafruit Industries Page 25 of 35

https://github.com/adafruit/Adafruit_CircuitPython_framebuf/raw/main/examples/font5x8.bin
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/spi-sensors-devices#reassigning-or-disabling-the-spi-chip-enable-lines-3097985

That's it. You should be ready to go.

Python Use

After you've followed the steps on the Python Setup page (https://adafru.it/1aoK), you
can get started with using the 2.13" 250x122 Quad-Color eInk display with the
Adafruit CircuitPython EPD library and a Raspberry Pi single-board computer.

Adafruit 2.13" 250x122 Quad-Color eInk
By Liz Clark

Python Setup

https://learn.adafruit.com/
adafruit-2-13-250x122-quad-color-eink/
python-setup

Note this is not a kernel driver that will let you have the console appear on the
eInk. However, this is handy when you want to use the eInk display purely
from 'user Python' code!

You can only use this technique with Linux/computer devices that have
hardware SPI support, and not all single board computers have an SPI device,
so check before continuing

©Adafruit Industries Page 26 of 35

https://learn.adafruit.com/adafruit-2-13-250x122-quad-color-eink/python-setup
https://learn.adafruit.com/adafruit-2-13-250x122-quad-color-eink
https://learn.adafruit.com/adafruit-2-13-250x122-quad-color-eink
https://learn.adafruit.com/adafruit-2-13-250x122-quad-color-eink
https://learn.adafruit.com/adafruit-2-13-250x122-quad-color-eink/python-setup
https://learn.adafruit.com/adafruit-2-13-250x122-quad-color-eink/python-setup
https://learn.adafruit.com/adafruit-2-13-250x122-quad-color-eink/python-setup
https://learn.adafruit.com/adafruit-2-13-250x122-quad-color-eink/python-setup

Adafruit EYESPI Pi Beret - Buttons, EYESPI
and STEMMA QT
Raspberry Pi's make for handy lil
computers, but they're really wonderful
when you can connect all sorts of nifty
hardware to them: color TFT or E-Ink
displays, and sensors are...
https://www.adafruit.com/product/5783

EYESPI Cable - 18 Pin 100mm long Flex
PCB (FPC) A-B type
Connect this to that when a 18-pin FPC
connector is needed. This 25 cm long
cable is made of a flexible PCB. It's A-B
style which means that pin one on one
side will match...
https://www.adafruit.com/product/5239

Python Wiring
The following is the display connected to a Raspberry Pi with an EYESPI Pi Beret
using the EYESPI connector:

©Adafruit Industries Page 27 of 35

https://www.adafruit.com/product/5783
https://www.adafruit.com/product/5783
https://www.adafruit.com/product/5783
https://www.adafruit.com/product/5239
https://www.adafruit.com/product/5239
https://www.adafruit.com/product/5239

Plug the EYESPI Pi Beret into the
Raspberry Pi 2x20 header. It has the
following pin connections:

Pi 3.3V to breakout Vin
Pi GND to breakout Gnd
Pi SCK to breakout SCK
Pi MOSI to breakout MOSI
Pi MISO to breakout MISO
Pi GPIO 27 to breakout RST
Pi GPIO 25 to breakout DC
Pi GPIO CE0 to breakout CS
Pi GPIO 17 to breakout BUSY

Attach the eInk display to the EYESPI
breakout with an EYESPI cable as
described on the Plugging in an EYESPI
Cable (https://adafru.it/18eU) page.

The following is the breakout wired to a Raspberry Pi using a solderless breadboard:

Pi 3.3V to breakout Vin (red wire)
Pi GND to breakout Gnd (black wire)
Pi SCK to breakout SCK (yellow wire)
Pi MOSI to breakout MOSI (blue wire)
Pi MISO to breakout MISO (green wire)
Pi GPIO 27 to breakout RST (orange wire)
Pi GPIO 25 to breakout DC (pink wire)
Pi GPIO CE0 to breakout CS (purple wire)
Pi GPIO 17 to breakout BUSY (white wire)

Pillow Graphics Demo
The great part about using a display on a Raspberry Pi is that you can use Pillow
graphics alongside the CircuitPython driver.

©Adafruit Industries Page 28 of 35

https://learn.adafruit.com//assets/138805
https://learn.adafruit.com//assets/138805
https://learn.adafruit.com/adafruit-eyespi-breakout-board/plugging-in-an-eyespi-cable
https://learn.adafruit.com/adafruit-eyespi-breakout-board/plugging-in-an-eyespi-cable
https://learn.adafruit.com//assets/138806
https://learn.adafruit.com//assets/138806

The following example uses Pillow for text and drawing shapes. Copy or download
the following example to your computer, and run the following, replacing code.py with
whatever you named the file:

python3 code.py

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT
"""Blinka EPD Demo for the Quad Color eInk"""
import board
import digitalio
from PIL import Image, ImageDraw, ImageFont

from adafruit_epd.epd import Adafruit_EPD
from adafruit_epd.jd79661 import Adafruit_JD79661

create the spi device and pins we will need
spi = board.SPI()
ecs = digitalio.DigitalInOut(board.CE0)
dc = digitalio.DigitalInOut(board.D25)
srcs = None
rst = digitalio.DigitalInOut(board.D27) # can be None to not use this pin
busy = digitalio.DigitalInOut(board.D17) # can be None to not use this pin

display = Adafruit_JD79661(122, 250, spi,
cs_pin=ecs, dc_pin=dc, sramcs_pin=srcs,
rst_pin=rst, busy_pin=busy)

display.rotation = 3
width = display.width
height = display.height
image = Image.new("RGB", (width, height))

WHITE = (0xFF, 0xFF, 0xFF)
YELLOW = (0xFF, 0xFF, 0x00)
RED = (0xFF, 0x00, 0x00)
BLACK = (0x00, 0x00, 0x00)

clear the buffer
display.fill(Adafruit_EPD.WHITE)

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)
empty it
draw.rectangle((0, 0, width, height), fill=WHITE)

Draw an outline box
draw.rectangle((1, 1, width - 2, height - 2), outline=BLACK, fill=WHITE)

Draw some shapes.
First define some constants to allow easy resizing of shapes.
padding = 5
shape_width = 30
top = padding
bottom = height - padding
Move left to right keeping track of the current x position for drawing shapes.
x = padding
Draw an ellipse.
draw.ellipse((x, top, x + shape_width, bottom), outline=YELLOW, fill=WHITE)
x += shape_width + padding
Draw a rectangle.
draw.rectangle((x, top, x + shape_width, bottom), outline=RED, fill=BLACK)
x += shape_width + padding
Draw a triangle.
draw.polygon(

[(x, bottom), (x + shape_width / 2, top), (x + shape_width, bottom)],

©Adafruit Industries Page 29 of 35

outline=BLACK,
fill=RED,

)
x += shape_width + padding
Draw an X.
draw.line((x, bottom, x + shape_width, top), fill=YELLOW)
draw.line((x, top, x + shape_width, bottom), fill=YELLOW)
x += shape_width + padding

Load default font.
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 20)

draw.text((x, top), "Hello", font=font, fill=YELLOW)
draw.text((x, top + 20), "World!", font=font, fill=YELLOW)

Display image.
display.image(image)

display.display()

Pillow Image Demo
Pillow is really useful for displaying image files as well.

The following example uses Pillow to display a .PNG file. The image is available to
download here or via the Project Bundle with the code.py file.

©Adafruit Industries Page 30 of 35

Copy or download the following example to your computer, and run the following,
replacing code.py with whatever you named the file:

python3 code.py

SPDX-FileCopyrightText: 2019 Melissa LeBlanc-Williams for Adafruit Industries
SPDX-License-Identifier: MIT
"""
Image resizing and drawing using the Pillow Library for Quad Color eInk
"""
import board
import digitalio
from PIL import Image, ImageEnhance
from adafruit_epd.jd79661 import Adafruit_JD79661

create the spi device and pins we will need
spi = board.SPI()
ecs = digitalio.DigitalInOut(board.CE0)
dc = digitalio.DigitalInOut(board.D25)
srcs = None
rst = digitalio.DigitalInOut(board.D27) # can be None to not use this pin
busy = digitalio.DigitalInOut(board.D17) # can be None to not use this pin

give them all to our driver
display = Adafruit_JD79661(122, 250, # 2.13" Quad-color display

spi,
cs_pin=ecs,
dc_pin=dc,
sramcs_pin=srcs,
rst_pin=rst,
busy_pin=busy,

)
display.rotation = 3

image = Image.open("blinka.png")

Scale the image to the smaller screen dimension
image_ratio = image.width / image.height
screen_ratio = display.width / display.height
if screen_ratio < image_ratio:

scaled_width = image.width * display.height // image.height

©Adafruit Industries Page 31 of 35

scaled_height = display.height
else:

scaled_width = display.width
scaled_height = image.height * display.width // image.width

image = image.resize((scaled_width, scaled_height), Image.BICUBIC)

Crop and center the image
x = scaled_width // 2 - display.width // 2
y = scaled_height // 2 - display.height // 2
image = image.crop((x, y, x + display.width, y + display.height)).convert("RGB")

quad_colors = [
(0, 0, 0), # Black
(255, 255, 255), # White
(255, 0, 0), # Red
(255, 255, 0), # Yellow

]
palette_image = Image.new('P', (1, 1))

Create palette data - PIL expects 768 values (256 colors * 3 channels)
palette_data = []
for color in quad_colors:

palette_data.extend(color)
Fill remaining palette entries with black
for i in range(4, 256):

palette_data.extend([0, 0, 0])

palette_image.putpalette(palette_data)

enhancer = ImageEnhance.Color(image)
image = enhancer.enhance(1.5)

temp_image = image.quantize(palette=palette_image,
dither=Image.Dither.FLOYDSTEINBERG)

pixels = temp_image.load()
width, height = temp_image.size

final_palette = Image.new('P', (1, 1))
final_palette.putpalette(palette_data)
final_image = Image.new('P', (width, height))
final_pixels = final_image.load()

Copy pixels, ensuring they use indices 0-3
for y in range(height):

for x in range(width):
Clamp pixel values to 0-3 range
final_pixels[x, y] = min(pixels[x, y], 3)

final_image.putpalette(palette_data)

Convert back to RGB for display
image = final_image.convert('RGB')

Display image.
display.image(image)
display.display()

©Adafruit Industries Page 32 of 35

Python Docs

Python Docs (https://adafru.it/1aoI)

Downloads

Files
JD79661 Chipset Datasheet (https://adafru.it/1aoL)
EagleCAD PCB files on GitHub (https://adafru.it/BRX)
3D models on GitHub (https://adafru.it/1aoM)
Fritzing object in the Adafruit Fritzing Library (https://adafru.it/1aoN)

•
•
•
•

©Adafruit Industries Page 33 of 35

https://docs.circuitpython.org/projects/epd/en/latest/
https://cdn-learn.adafruit.com/assets/assets/000/138/563/original/JD79661AA_V1.0.4_20230720_spec.pdf?1753363004
https://github.com/adafruit/Adafruit-E-Paper-Display-Breakout-PCBs
https://github.com/adafruit/Adafruit_CAD_Parts/tree/main/6366%202.13in%20Tri-Color%20eInk
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%202.13in%20eInk%20Breakout%20Rev%20D.fzpz

Schematic and Fab Print

©Adafruit Industries Page 34 of 35

©Adafruit Industries Page 35 of 35

	Adafruit 2.13" 250x122 Quad-Color eInk
	Table of Contents
	Overview
	Pinouts
	Arduino
	Arduino Docs
	CircuitPython
	CircuitPython Docs
	Python Setup
	Python Use
	Python Docs
	Downloads

	Overview
	Pinouts
	Power Pins
	Data Control Pins
	EYESPI Display Connector
	micro SD Card Slot

	Arduino
	Wiring
	Library Installation
	Example Code
	Displaying Images
	Image File
	Library Installation
	ImageReader Example

	Arduino Docs
	CircuitPython
	CircuitPython Microcontroller Wiring
	Image File
	CircuitPython Usage
	Example Code

	CircuitPython Docs
	Python Setup
	Setup Virtual Environment
	Install Adafruit_Blinka
	Python Installation of EPD Library
	Download font5x8.bin
	DejaVu TTF Font
	Pillow Library
	Chip Enable Lines

	Python Use
	Python Wiring
	Pillow Graphics Demo
	Pillow Image Demo

	Python Docs
	Downloads
	Files
	Schematic and Fab Print

