RP2350 A microcontroller by Raspberry Pi

RP2350 Datasheet
A microcontroller
by Raspberry Pi

]
Raspberry Pi Ltd

RP2350 Datasheet

Colophon

Copyright © 2023-2024 Raspberry Pi Ltd

The documentation of the RP2350 microcontroller is licensed under a Creative Commons Attribution-NoDerivatives 4.0
International (CC BY-ND).

Portions Copyright © 2019 Synopsys, Inc.

All rights reserved. Used with permission. Synopsys & DesignWare are registered trademarks of Synopsys, Inc.
Portions Copyright © 2000-2001, 2005, 2007, 2009, 2011-2012, 2016 Arm Limited.

All rights reserved. Used with permission.

build-date: 2024-08-08
build-version: cOacc5b-clean

About the SDK

Throughout the text "the SDK" refers to our Raspberry Pi Pico SDK. More details about the SDK can be
found in the Raspberry Pi Pico-series C/C++ SDK book. Source code included in the documentation is
Copyright © 2023-2024 Raspberry Pi Ltd (formerly Raspberry Pi (Trading) Ltd.) and licensed under the 3-
Clause BSD license.

Legal disclaimer notice

TECHNICAL AND RELIABILITY DATA FOR RASPBERRY PI PRODUCTS (INCLUDING DATASHEETS) AS MODIFIED FROM
TIME TO TIME (“RESOURCES") ARE PROVIDED BY RASPBERRY PI LTD (“RPL") "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW IN NO
EVENT SHALL RPL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THE RESOURCES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

RPL reserves the right to make any enhancements, improvements, corrections or any other modifications to the
RESOURCES or any products described in them at any time and without further notice.

The RESOURCES are intended for skilled users with suitable levels of design knowledge. Users are solely responsible for
their selection and use of the RESOURCES and any application of the products described in them. User agrees to
indemnify and hold RPL harmless against all liabilities, costs, damages or other losses arising out of their use of the
RESOURCES.

RPL grants users permission to use the RESOURCES solely in conjunction with the Raspberry Pi products. All other use
of the RESOURCES is prohibited. No licence is granted to any other RPL or other third party intellectual property right.

HIGH RISK ACTIVITIES. Raspberry Pi products are not designed, manufactured or intended for use in hazardous
environments requiring fail safe performance, such as in the operation of nuclear facilities, aircraft navigation or
communication systems, air traffic control, weapons systems or safety-critical applications (including life support
systems and other medical devices), in which the failure of the products could lead directly to death, personal injury or
severe physical or environmental damage (“High Risk Activities”). RPL specifically disclaims any express or implied
warranty of fitness for High Risk Activities and accepts no liability for use or inclusions of Raspberry Pi products in High
Risk Activities.

Raspberry Pi products are provided subject to RPL's Standard Terms. RPL’s provision of the RESOURCES does not
expand or otherwise modify RPL's Standard Terms including but not limited to the disclaimers and warranties

]
Legal disclaimer notice 1

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://github.com/raspberrypi/pico-sdk
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://www.raspberrypi.com/terms-conditions-sale/
https://www.raspberrypi.com/terms-conditions-sale/

RP2350 Datasheet
|

expressed in them.

. __|
Legal disclaimer notice 2

RP2350 Datasheet

Table of contents

Colophon - oo 1
Legal disclaimer notice 1
T.oINtrodUucCtion. . 13
T The Chip . oo 14
1.2, Pinout Reference. 15
T.2.0. PinLocationso 15
1.2.2. Pin DescCriplionso 16
1.2.3.GPIO Functions (Bank 0). 17
1.2.4. GPIO Functions (Bank 1). 21
1.3. Why is the chip called RP23507 22
2. System BUS . . oo 24
2.0 Bus Fabric .. 24
2710 BUS PriOrity . o 25
2.1.2.Bus Security Filtering. 25
2.1.3. Atomic Register ACCESS 26
214 APB BHAge . . 26
2.1.5. Narrow 10 Register Writes. o 27
2.1.6. Global Exclusive Monitor 28
2.1.7.Bus Performance COUNTErS 30
2.2 Address Map 30
2,20 ROM . i 30
2.2, 2 XIP 30
2.2.3. SRAM . 31
224 APB Registers. . ..o 31
2.2.5. AHB Registerso 33
2.2.6. Core-local Peripherals (SI0) 33
2.2.7. Cortex-M33 Private Peripherals 34

3. Processor Subsystem 35
B0 SI0 36
3.1.7.Secure and Non-secure SIO 37
32 CPUID i 38
31.3.GPIO Control. . . 39
3.1.4. Hardware Spinlocks. 41
3.1.5. Inter-processor FIFOs (Mailboxes) 42
3.1.6. Doorbells. . 42
317, Integer Divider ... 43
3.1.8.RISC-V Platform Timer 43
3.9 TMDS Encoder 44
31700 Interpolator. 44
31T Listof Registers. oo 54

3 2 INterrUPYS oo 82
3.2.1. Non-maskable Interrupt (NMI) 83
3.2.2. Further Reading on Interrupts. 83
3.3.Event Signals (Arm)o 84
3.4.Event Signals (RISC-V) 84
3 5. DEbUG . . 84
3.5.1. Connectingto the SW-DP i 85
3.5.2. Arm Debug . i 86
3.5.3.RISC-V DEDUG 86
3.5.4. Debug POwer DOMAINS 87
3.5.5. Software control of SWD PINS 87
3.5.6. Self-hosted Debug 87
3.0 7.TraCe - i 88
3.6.8.Rescue Reseto 90
3.5.9. SeCUrtyo 91

Table of contents

RP2350 Datasheet

3 510, RP-AP oo 92
3.6. Cortex-M33 COPrOCESSOIS. 100
3.6.1. GPIO Coprocessor (GPIOC) 101
3.6.2. Double-precision Coprocessor (DCP) 104
3.6.3. Redundancy Coprocessor (RCP) 112
3.6.4. Floating Point Unit. 123
3.7.Cortex-M33 ProCeSSOr i 123
370 Features .o 123
3.7.2. Configuration 124
3.7.3.Compliance 128
3.7.4. Programmer's model. 131
3.7.5. Listof Registers. 141
3.8. Hazard3 ProCeSSOr. 226
3.8.1. Instruction Set Reference 226
3.8.2. MEMOrY ACCESS - 271
3.8.3. Memory Protection 272
3.8.4. Interrupts and EXCeptions. 275
3.8.5.DEbUg . 278
3.8.6. Custom EXtensions 279
3.8.7. Instruction Cycle COUNtS. 289
3.8.8. Configuration 295
3.8.9. Control and Status Registers 297
3.9. Arm/RISC-V Architecture Switching 328
3.9.1. Automatic Switching 328
3.9.2. Mixed Architecture Combinations. 329

A MEMOTY . . i 330
A ROM 330
A2, SRAM 330
4.2.1. Other On-chip Memory 331
4.3. BOOt RAM . . 332
4.3, Listof Registers. 332
4.4. External Flash and PSRAM (XIP). 333
4470 XIP Cache . .. 334
4.4.2.QSPI Memory Interface (QMI) 338
4.4.3. Streaming DMA Interface 338
4.4.4. Performance COUNTErs 339
4.4.5. List of XIP_CTRL Registers. 339
4.4.6. List of XIP_AUX Registers. 343

A 5. O P . 345
5. BOOtrOM o 346
5.1.Bootrom CONCEPTS i 347
5.1.1.Secure and NON-SECUIE. 347
5.1.2. Partition Tables 347
5.1.3. Flash Permissions 348
5.1.4.lmage Definitions. 348
5.1.5. Blocks And BIock LOOPS 349
5.1.6. Block VErsioning 350
517 A/BVErSIONS ..ol 350
5.1.8. Hashingand Signing 350
5.1.9.Load Maps 351
5.1.10. Packaged Binaries. 351
5.1.117. Anti-rollback Protection 352
5.1.12. Flash Image Boot. 352
5.1.13. Flash Partition Boot. 353
5.1.14. Partition-Table-in-lmage Boot 353
5.1.15. Flash Boot Slots. 353
5.1.16. Flash Update Boot and Version Downgrade. 354
5.1.17.Try Before You Buy 355
5118 UF2 Targetingo 355
5.1.19. Address Translation 356

Table of contents

RP2350 Datasheet
]

5.1.20. Automatic Architecture Switching. 357
5.2. Processor-Controlled Boot Sequence 357
5.2.1.B00t OUICOMES i 358
5.2.2.8€QUENCE . . . i 358
5.2.3. POWMAN Boot Vector i 363
5.2.4. Watchdog Boot Vector 364
5.2.5.RAM Image BoOot 365
5.2.6. OTP BOOt.o 365
5.2.7.Flash BoOt. il 365
5.2.8. BOOTSEL (USB/UART) BOOt.o 367
5.2.9. Boot Configuration (OTP) 368
5.3. Launching Code On Processor Core 1. 368
5.4. BoOtrom APIS . .. oo 369
5.4.1. Locating The API FUNCHIONS 369
5.4.2. APl Function Availability 370
5.4.3. APl Function Return Codes. 371
5.4.4. APl Functions And Exclusive ACCeSS 372
5.4.5.SDK Access To The APl . . 372
5.4.6. Categorised List Of APl Functionsand ROM Data. 373
5.4.7. Alphabetical List Of APl Functionsand ROM Data 375
5.4.8. APl Function Listings i 376
5.5.USB Mass Storage Interface 391
5.5.1. The RP2350 DriVe 391
5.5.2.UF2 Format Details 392
5.5.3. UF2 Targeting Rules 393
5.6.USB PICOBOOT Interface. 395
5.6.1. Identifying The Device. 395
5.6.2. Identifying The Interface. 396
5.6.3. Identifying The Endpoints. 396
5.6.4. PICOBOOT COMMAaNdS 396
5.6.5. Control ReqUeSTS 401
5.7.USB White-Labelling 403
5.7.1.USB Device DeSCriptor i 404
5.7.2.USB Device StNGS 404
5.7.3. USB Configuration Descriptor 404
5.7.4.MSD Drive 404
5.7.5. UF2 INDEX.HTM File. . . oo 404
5.7.6. UF2 INFO_UF2.TXT File. 405
5.7.7.SCSLINQUINY .. 405
5.7.8. Volume Label Simple Example. 405
5.7.9. Volume Label In-Depth Example 406
5.8 UART BOOt.o 407
5.8.1. Baud Rate and Clock Requirements 407
5.8.2. UART Boot Shell Protocol 407
5.8.3. UART Boot Programming Flow 408
5.8.4. Recovering from a Stuck Interface 408
5.8.5. Requirements for UART Boot Binaries 409
5.9. Metadata Block Details 409
5.9.1.Blocks And block loops. 409
5.9.2. Common Block Items 410
5.9.3.Image Definition [tems 412
5.9.4. Partition Table ltems. 416
5.9.5. Minimum Viable Image Metadata 419
5.10. Example Boot SCenarios 420
5.10.T.Secure BoOt il 420
5.10.2.Signed iMmages 421
5.10.3. Packaged Binaries. 423
5.10.4. A/BBOOLING 424
5.10.5. A/B Booting with Owned Partitions. 425
5.10.6. Custom Bootloader. 427

Table of contents 5

RP2350 Datasheet
]

5.10.7.0TP Bootloader 429
5.10.8. Rollback Versions And Bootloaders 430

6. POWT o oo 431
6.7. Power Supplieso 431
6.1.1. Digital 10 Supply (TOVDD). 431
6.1.2. QSP110 Supply (QSPT_TOVDD). oo 431
6.1.3. Digital Core Supply (DVDD) -o 431
6.1.4. USB PHY and OTP Supply (USB_OTP_VDD) - 432
6.1.5. ADC Supply (ADC_AVDD)o 432
6.1.6. Core Voltage Regulator Input Supply (VREG_VIN) 432
6.1.7. On-Chip Voltage Regulator Analogue Supply (VREG_AVDD) i 432
6.1.8. Power Supply Sequencing 433
6.2. Power Management 433
6.2.1. Core Power DOMains. 433
6.2.2. Power States 434
6.2.3. Power State Transitions 435
6.3. Core Voltage Regulator o 438
6.3.1. Operating Modes 438
6.3.2. Software Control 439
6.3.3. Power Manager Control 439
6.3.4. Status 440
6.3.5. Current Limit. . 440
6.3.6. Over Temperature Protection. 440
6.3.7. Application Circuit e 440
6.3.8. External Components and PCB layout requirements 441
6.3.9. Listof Registers. 446
6.4. Power Management (POWMAN) RegiSters. 446
6.5. Power Reduction Strategies 477
6.5.1. Top-level Clock Gates 478
6.5.2. SLEEP State 478
6.5.3. DORMANT State 478
6.5.4. Memory Periphery Power Down. 479
6.5.5. Full Memory Power DOWN. 479
6.5.6. Programmer’'s Model. 480

T RESEtS L i 483
T A OVEIVIEW oo 483
7.2.Changes from RP2040 i 483
7.3.Chip Level Resets 484
7.3.1.Chip-Level Reset table. 484
7.3.2. Chip-level Reset Destinations. 485
7.3.3. Chip-level Reset SoUrCes 485
7.4. System Resets (Power-on State Machine) 486
741, Reset SeqUENCE 487
7.4.2.Register Control. 488
7.4.3. Interaction with Watchdog 488
744 Listof Registers. 488
7.5.8ubsystem Resets 492
7.5 0 0VeIVIEW « oo 492
7.5.2. Programmer’'s Model. 492
7.5.3. Listof Registers. 494
7.6. Power-on Reset & Brownout Detection 497
7.6.1. Power-on Reset (POR). 498
7.6.2. Brownout Detection (BOD) 498
7.6.3.Supply MONItOr. . .. 501
7.6.4. Listof Registers. 501

8. ClOCKS . . . il 502
8.1 OVeIVIEW . i 502
8.1.1. CloCk SOUrCeS. 503
8.1.2. Clock Generators 507
8.1.3. Frequency COUNter 510

Table of contents 6

RP2350 Datasheet

8. 1.4 RESUS. . . 511
8.1.5. Programmer’'s Model. 511
8.1.6. Listof Registers. 518
8.2. Crystal Oscillator (XOSC) 543
8.2.1. OVEIVIEW . . .o 543
8.2.2. Changes from RP2040 544
8.2.3.Usage . . .o 545
8.2.4. Startup Delay 545
8.2.5. XOSC COUNTEr i 545
8.2.6. DORMANT MOde 545
8.2.7. Programmer’'s Model. 546
8.2.8. Listof Registers. 547
8.3. Ring Oscillator (ROSC) 549
8.3 1. OVEIVIEW . - o o 550
8.3.2. Changes from RP2040 550
8.3.3. ROSC/XOSC trade-offs 550
8.3.4. Modifying the frequency 551
8.3.5. Randomising the frequency 551
8.3.6. ROSC divider. 552
8.3.7. Random Number Generator 552
8.3.8. ROSC COoUNtEr 552
8.3.9. DORMANT MOdE 552
8.3.10. List of Registers. 553
8.4. Low Power Oscillator (LPOSC) 557
8.4.1. Frequency Accuracy and Calibration. 558
8.4.2. Using an External Low Power Clock 558
8.4.3. Listof Registers. 558
8.5. Tick Generators. 558
8.5 1. OVEIVIEWo 558
8.5.2. Listof Registers. 559
8.6. PLL . 563
8.6. 1. OVEIVIEW 563
8.6.2. Changes from RP2040 564
8.6.3. Calculating PLL parameters. 564
8.6.4. Configuration 569
8.6.5. Listof Registers. 571

0. GO, 575
0.1, OVEIVIEW . . oo 575
9.2.Changes from RP2040 576
0.3 Reset State 576
9.4. Function Select 577
0.5 INterrUPtS - . il 582
0.6. Pads 583
9.7.Pad Isolation Latches. 584
9.8. Processor GPIO Controls (SI0) 584
9.9. GPIO Coprocessor POrt 585
9.10. Software Examples. 585
9.10.7. Selectan 10 function. 585
9.10.2. Enable a GPIO interrupt. 590
9.11. List of Registers 592
9.11.7.10-User Bank. 592
9.11.2.10-QSPIBank 746
9.11.3. Pad Control -User Bank 771
9.11.4. Pad Control - QSPI Bank 798
T0. SCUNItY - - i 802
T0.1.0verview (AMM) ..o 802
T0.1.T.Secure BOOt .« . . oo oo 802
10.1.2. Encrypted Boot 803
10.1.3. Isolating Trusted and Untrusted Software 804
10.2. Processor Security Features (Arm) 805

Table of contents

RP2350 Datasheet

11.

Table of contents

10.2.7.Background ... 805
10.2.2. IDAU Address Map 806
10.3. Overview (RISC-V). . .o 807
10.4. Processor Security Features (RISC-V) 807
10.5. Secure Boot Enable Procedure 808
T0.6. Access CONTrolo i 808
10.6.1. GPIO Access CONtrol. i 809
10.6.2. Bus Access CoNtrol. 810
10.6.3. Listof Registers. 812
T0.7. DM A 853
10.7.1. Channel Security Attributes 854
10.7.2. Memory Protection Unit 854
10.7.3. DREQ Attributes 854
10.7.4. IRQ Attributes. 854
T0.8. O P 855
10.9. Glitch Detector i 855
10.9.1. Theory of Operation 856
10.9.2. Trigger ReSPONSE 856
10.9.3. Listof Registers. 857
10.10. Factory Test JTAGo 860
10.17. DeCOmMMISSIONING -o 860
Pl 862
TTT OVEIVIEW o 862
11.1.1. Changes from RP2040 863
11.2. Programmer's Model 864
T1.2.1.PIO Programs.o 865
T11.2.2. Control FIOWo 865
T1.2.3. RegiSters. . oo 867
T1.2.4. Autopull. - o 867
11.2.5.Stalling - . 870
T11.2.6. PIn Mapping 870
T1.2.7IRQFIAQS 870
11.2.8. Interactions Between State Machines 871
11.3. PIO Assembler (Pioasm) 871
T1.3.0. Directives . . ool 871
T1.3.2.Values . oo 873
TT.3.30 EXPresSioNS « . ..o 873
T1.3.4. ComMENTS - ..ol 874
T1.3.5. Labels . .ol 874
T1.3.6. INStructions i 874
11.3.7. Pseudoinstructions 875
TT.4. Instruction Set. 875
TTAT SUMMATY 875
114, 2. IMP . 876
T4 3 WAL 877
R 878
1145, OUT 879
T0.4.6. PUSH . 880
T1.4.7. PULL - 881
11.4.8. MOV (10 RX) .- 882
11.4.9. MOV (from RX). - .. 883
T1.400. MOV 884
T4 IRQ. 886
10402, SET 887
11.5. Functional Details. 888
1151, Side-set. . i 888
11.5.2. Program Wrapping i 889
T1.5.3. FIFO JOINING . - . 891
11.5.4. Autopush and Autopull . . 892
11.5.5. Clock DIVIders 897

RP2350 Datasheet
]

11.5.6. GPIO Mapping 897
11.5.7. Forced and EXEC'd Instructions 899
T1.6. EXamples . . 901
T1.6.7. Duplex SPI i 901
T1.6.2. WS28T12 LEDS. . . 905
T1.6.3. UART TX . 907
T1.6.4. UART RX . . 909
11.6.5. Manchester Serial TX and RX. 912
11.6.6. Differential Manchester (BMC) TX and RX. 914
T0.6.7. 12 . 917
T11.6.8. PWIM . 921
17.6.9. Addition 923
11.6.10. Further Examples 924
11.7. Listof Registers i 925
12. Peripherals . .. 947
T2 UART 947
1200, OVEIVIEW . - 947
12.1.2. Functional description 948
T2.1.3.0peration 950
12.1.4. UART hardware flow control 952
12.1.5. UART DMA Interface 953
T2.0.6. Interrupts - . 955
12.1.7. Programmer's Model 956
12.1.8. Listof Registers. 958
122,120 969
1220 Features 970
12.2.2. 1P Configuration. 970
T12.2.3.12C OVerVIEW .ol 971
12.2.4.12CTerminology 973
12.2.5.12C Behaviour. 974
12.2.6.12C Protocols . . . 975
12.2.7. TX FIFO Management and START, STOP and RESTART Generation 979
12.2.8. Multiple Master Arbitration 981
12.2.9. Clock Synchronization 981
12.2.10. Operation Modes. 982
12.2.17. Spike SUPPressioN. 987
12.2.12. Fast Mode Plus Operation 988
12.2.13.Bus Clear Feature 988
12.2.14. I1C_CLK Frequency Configuration. 989
12.2.15. DMA Controller Interface 993
12.2.16. Operation of Interrupt Registers 994
12.2.17. Listof Registers. 994
123, S Pl 1032
12.3.1.Changes from RP2040 1033
T2.3.2.0VeIVIEW . . o 1033
12.3.3. Functional Description 1033
T12.3.4.0peration 1036
12.3.5. Listof Registers. 1046
12.4. ADC and Temperature SENSOTr 1052
12.4.1. Changes from RP2040 1054
12.4.2. ADC controller 1055
T2.4.3.SARADC . . . 1055
12.4.4. ADCENOB 1059
1245 INLand DNL. ..o 1059
12.4.6. Temperature SENSOr 1059
12.4.7. Listof Registers. 1059
T2 8 PWIM. 1062
T2.5.7.0VerVIEW . . oo 1063
12.5.2. Programmer's Model 1063
12.5.3. Listof Registers. 1072

]
Table of contents 9

RP2350 Datasheet

12.6. DA 1080
12.6.1. Changes from RP2040 1081
12.6.2. Configuring Channels 1082
12.6.3. Triggering Channels 1084
12.6.4. Data Request (DREQ) 1086
T2.6.5. INterrupts « . o 1088
T2.6.6. SeCUrity. . . .o 1088
12.6.7.Bus Error Handling 1091
12.6.8. Additional Features. 1093
12.6.9. Example Use Cases 1094
12.6.10. List of RegiSters 1098

12,7 USB. 1127
T2.7.0.0VeIVIEW . . 1127
12.7.2. Changes from RP2040 1128
12.7.3. Architecture 1130
12.7.4. Programmer's Model 1141
12.7.5. Listof Registers. 1145

12.8.System TIMers 1168
T2.8.1. OVEIVIEW . . .o 1168
12.8.2. CoUNTer. . ..o 1169
T2.8.3. Alarms .o 1169
12.8.4. Programmer's Model 1169
12.8.5. Listof Registers. 1173

12.9. Watchdog o 1178
T2.9.T.0VerVIEW . . . 1179
12.9.2. Changes from RP2040 1179
12.9.3. Watchdog Counter 1179
12.9.4. Control Watchdog Reset Levels 1179
12.9.5. Scratch Registers 1179
12.9.6. Programmer's Model 1180
12.9.7. Listof Registers. 1181

12.10. Always-On TiMer 1183
T2.70.T. OVEIVIEW. .o 1183
12.10.2. Changes from RP2040 1184
12.10.3. Accessingthe AON Timer 1184
12.10.4. Using the Alarm 1184
12.10.5. Selecting the AON Timer Tick Source. 1185
12.10.6. Synchronising the AON Timer to an External THz Clock 1186
12.10.7. Using an external clock or tick from GPIO 1187
12.10.8. Using a Tick Fasterthan Tms 1187
12.10.9. List of ReQiSters 1188

T2 T HS T X 1188
12170, Data FIFO . o 1189
12.11.2. Output Shift Register 1189
12113 Bit Crossbar. 1190
12.17.4. Clock Generator. 1191
12.11.5. Command Expander. 1192
12.11.6. PIO-to-HSTX Coupled Mode. 1194
12.11.7. List of Control Registers. 1194
12.11.8. Listof FIFO Registers 1198

T202.TRNG oo 1198
T2.02.0. OVEIVIEW. .o 1198
12.12.2. Configuration. 1199
T12.12.3.0perationo 1199
T2.12.4. Caveats. oo 1200
12.12.5. List of RegiSters 1201

12.13. SHA-256 Accelerator 1207
12.13.1. Message Padding 1208
12.13.2. Throughput .. 1208
12.13.3. Data Size and Endianness 1208

Table of contents 10

RP2350 Datasheet
]

12.13.4. DMADREQ Interface. 1208
12.13.5. Listof Registers 1209
12.14. QSPI Memory Interface (QMI). 1212
T2T40. OVEIVIEW. . oo 1212
12.14.2. QSPITransfers 1214
T2143.TIMING. 1217
12.14.4. Address Translation 1220
12.14.5.Direct Modeo 1221
12.714.6. List of RegiSters 1222
12.15. System Control Registers 1235
12150 SYSINFO . oo 1235
T2.15.2.SYSCFG - . oo 1237
T12.15.3. TBMAN . . 1240
T2.15.4. BUSCTRL . ..o 1241
T3 0T P 1254
13.1.0TP Address Map 1254
13.1.71. Guarded Reads 1255
13.2. Background: OTP IP Details 1255
13.3. Background: OTP Hardware Architecture 1256
1331, Lock Shim. .« oo 1256
13.3.2. External Interfaces 1257
13.3.3. OTP Boot Oscillator. 1258
13.3.4. Power-up State Machine 1258
13.4.Critical Flags 1259
13.5. Page Locks 1260
13.5.7. Lock Progression 1260
13.5.2.0TP Access KeYS o 1261
13.5.3. Lock Encoding in OTP. 1261
13.5.4.Special Pages 1262
13.5.5. Permissions of Blank Devices 1262
13.6. Error Correction Code (ECC) 1263
13.6.1. Bit repair by polarity (BRP) 1263
13.6.2. Modified Hamming ECC 1264
13.7. Device Decommissioning (RMA) 1264
13.8. Listof Registers 1265
13.9. Predefined OTP Data Locations 1277
14. Electrical and Mechanical. 1312
T4T.QFN-60 Package.o 1312
14.1.1. Thermal characteristics 1313
14.1.2. Recommended PCB Footprint. 1313
T4.2.QFN-80 Package. 1313
14.2.1. Thermal characteristics 1314
14.2.2. Recommended PCB Footprint. 1314
T4.3.Flashin Package 1315
14.4. Package Markings 1316
14.5. Storage conditions 1316
14.6. Solder profile. 1316
TA.7.ComplianCe 1318
TA.8.PINOUL. . 1318
T4.8.1. PinLocations 1318
14.8.2. Pin Definitions 1320
14.9. Electrical Specifications 1323
14.9.1. Absolute Maximum Ratings. 1323
14.9.2. ESD Performance 1324
14.9.3. Thermal Performance. 1324
14.9.4.10 Electrical Characteristics. 1324
T4.9.5. Power SUpplies 1328
14.9.6. Core Voltage Regulator. 1329
14.9.7. Power CoNSUMPLION o 1330
Appendix A: Register Field Types. 1334

]
Table of contents 1

RP2350 Datasheet
]

Changes from RP2040 1334
Standard types 1334
RN 1334

RO 1334
WO o 1334
Clear types ... oo 1334
0 1334
W oo 1334
FIFO Ay pes . i 1335
R 1335
RE 1335
W 1335
Appendix B: Units Used in This Document 1336
Memory and Storage Capacity 1336
Transfer Rate . . . 1336
Physical Quantities 1336
Scale PrefiXes. . .o 1338
Digit Separatorso 1338
Appendix E: Errata 1339
ACCESSCTRL . . . 1339
RP2350-E3 . 1339
BOOtrOM o 1339
RP2350-E10 . . . 1339
DM A 1340
RP2350-E5 . 1340
RP2350-E8 . . . 1340
GO, 1341
RP2350-E0 . . 1341
Hazard3. . 1342
RP2350-E4 . . 1342
RP2350-E6o 1342
RP2350-E7 . 1343
SIO 1343
RP2350-ET 1343
RP2350-E2 . . 1344
Appendix H: Documentation Release History. 1345
August 8 2024 . i 1345

]
Table of contents 12

RP2350 Datasheet

Chapter 1. Introduction

RP2350 is a new family of microcontrollers from Raspberry Pi that offers significant enhancements over RP2040. Key
features include:

® Dual Cortex-M33 or Hazard3 processors at 150 MHz

® 520 kB on-chip SRAM, in 10 independent banks

® Extended low-power sleep states with optional SRAM retention: as low as 10 pA DVDD

® 8 kB of one-time-programmable storage (OTP)

® Up to 16 MB of external QSPI flash/PSRAM via dedicated QSPI bus
o Additional 16 MB flash/PSRAM accessible via optional second chip-select

® On-chip switched-mode power supply to generate core voltage

o Low-quiescent-current LDO mode can be enabled for sleep states

® 2x on-chip PLLs for internal or external clock generation

® GPIOs are 5 V-tolerant (powered), and 3.3 V-failsafe (unpowered)

® Secu

o Optional boot signing, enforced by on-chip mask ROM, with key fingerprint in OTP

]

o

[e]
® Perip

o

o

rity features:

Protected OTP storage for optional boot decryption key

Global bus filtering based on Arm or RISC-V security/privilege levels

Peripherals, GPIOs and DMA channels individually assignable to security domains

Hardware mitigations for fault injection attacks

Hardware SHA-256 accelerator
herals:

2x UARTs

2x SPI controllers

2x 12C controllers

24x PWM channels

USB 1.1 controller and PHY, with host and device support

12x PIO state machines

1x HSTX peripheral

The RP2350 family of devices is shown in table Table 1, showing options for QFN-80 (10 x 10 mm) and QFN-60 (7 x
7 mm) packages, with and without flash-in-package.

Table 1. RP2350 Product Package Internal Flash GPIO Analogue Inputs
device family

RP2350A QFN-60 None 30 4

RP2350B QFN-80 None 48 8

RP2354A QFN-60 2 MB 30 4

RP2354B QFN-80 2 MB 48 8

Chapter 1. Introduction

13

RP2350 Datasheet

1.1. The Chip

Dual Cortex-M33 or Hazard3 processors access RP2350's memory and peripherals via AHB and APB bus fabric.

Figure 1. A system

overview of the

RP2350 chip 10s Clock RP2350
eneration Lt
9 oscillator Processor subsystem
« P Crystal
- o " PLL
ProcO Proc1
< »| swp ' N
DMA
Peripherals
SPI x2
B pus rebre
UART x2
AON Timer PIO Memory
12€ x2 PIO0| PIOT | PIO2 é"z’h/e ROM USB >
ADC & TS
. o —_—
T &
SRAM
Watchdog
SRAM(|SRAM
HSTX
—t
I Core Supply Regulator|
——1 (Switcher and low [<€—>
power LDO)
< » QsPl SI0

Code may execute directly from external memory through a dedicated QSPI memory interface in the execute-in-place
subsystem (XIP). The cache improves XIP performance significantly. Both flash and RAM can attach via this interface.

Debug is available via the SWD interface. This allows an external host to load, run, halt and inspect software running on
the system, or configure the execution trace output.

Internal SRAM can contain code or data. It is addressed as a single 520 kB region, but physically partitioned into 10
banks to allow simultaneous parallel access from different managers. All SRAM supports single-cycle access.

A high-bandwidth system DMA offloads repetitive data transfer tasks from the processors.

GPIO pins can be driven directly via single-cycle 10 (SIO), or from a variety of dedicated logic functions such as the
hardware SPI, 12C, UART and PWM. Programmable 10 controllers (PIO) can provide a wider variety of 10 functions, or
supplement the number of fixed-function peripherals.

A USB controller with embedded PHY provides FS/LS Host or Device connectivity under software control.
Four or eight ADC inputs (depending on package size) are shared with GPIO pins.

Two PLLs provide a fixed 48 MHz clock for USB or ADC, and a flexible system clock up to 150 MHz. A crystal oscillator
provides a precise reference for the PLLs.

An internal voltage regulator supplies the core voltage, so you need generally only supply the 10 voltage. It operates as a

]
1.1. The Chip 14

RP2350 Datasheet
]

Figure 2. RP2350
Pinout for QFN-60
7x7mm (reduced ePad
size)

switched mode buck converter when the system is awake, providing up to 200 mA at a variable output voltage, and can
switch to a low-quiescent-current LDO mode when the system is asleep, providing up to 1 mA for state retention.

The system features low-power states where unused logic is powered off, supporting wakeup from timer or 10 events.
The amount of SRAM retained during power-down is configurable.

The internal 8 kB one-time-programmable storage (OTP) contains chip information such as unique identifiers, can be
used to configure hardware and bootrom security features, and can be programmed with user-supplied code and data.

The built-in bootrom implements direct boot from flash or OTP, and serial boot from USB or UART. Code signature
enforcement is supported for all boot media, using a key fingerprint registered in internal OTP storage. OTP can also
store decryption keys for encrypted boot, preventing flash contents from being read externally.

RISC-V architecture support is implemented by dynamically swapping the Cortex-M33 (Armv8-M) processors with
Hazard3 (RV32IMAC+) processors. Both architectures are available on all RP2350-family devices. The RISC-V cores
support debug over SWD, and can be programmed with the same SDK as the Arm cores.

1.2. Pinout Reference

This section provides a quick reference for pinout and pin functions. Full details, including electrical specifications and
package drawings, can be found in Chapter 14.

1.2.1. Pin Locations

1.2.1.1. QFN-60 (RP2350A)

a
Q
ool e 8> = HE

JEEEECEEPE

212/8/2/2/28 82825 sgls

[6059]58]57|56]55] 54|53 52| 51]50]49] 48] 47] 46|
1ovDD | 1 45/ 10vDD
GPI0O | 2 44| ADC_AVDD
GPIOT | 3 43| GPI029_ADC3
GPIO2 | 4 42| GPI028_ADC2
GPIO3 | 5 41| GPI027_ADC1
DVDD | 6 40| GPI026_ADCO
GPIO4 | 7 39| DVDD
GPIOS | 8 GND 38| 10vDD
GPIO6 | 9 37| GPI025
GPI07 [10 36| GPI024
10vDD |11 35| GPI023
GPI08 [12 34| GPI022
GPIO9 |13 TOP VIEW 33| GP1021
GPI010 [14 32| GPI020
GPIO11 15 31| GPIO19

16]17]18[19]20]21]22]23]24]25] 26]27]28[29]30

Sieixieiafzis(afxiolfsoj~)e)q
SRS E EREEEREEE
oo a|x|e XO;?, olaalo
ol|lo|o|o (2] o|lOo|Oo

1.2. Pinout Reference 15

RP2350 Datasheet
]

Figure 3. RP2350
Pinout for QFN-80
10x70mm (reduced
ePad size)

Table 2. The function
of each pin is briefly
described here. Full
electrical
specifications can be
found in Chapter 14.

1.2.1.2. QFN-80 (RP2350B)

Q
I 28

38 a8 aldldZlZI2122 222 elela|afa

P A A

6686 6288888883383 2225%

[80]79]78]77]76]75]74[73]72]71]70]69] 68 67[66|65 64] 63 62[61]
GPIO4 [1 60| 10VDD
GPIOS | 2 59| ADC_AVDD
GPIO6 | 3 58| GPI047_ADC7
GPIO7 [4 57| GPI046_ADC6
10VDD | 5 56| GPI045_ADC5
GPIOS8 | 6 55| GPI044_ADC4
GPI09 [7 54| GPI043_ADC3
GPIO10 | 8 53| GPI042_ADC2
GPIO11 | 9 52| GPI041_ADC1
DVDD |10 GND 51| DVDD
GPI012 [11 50| 10VvDD
GPI013 [12 49| GPI040_ADCO
GPIO14 [13 48| GPI039
GPIO15 |14 47| GPI038
10VDD |15 TOP VIEW 46| GPI037
GPIO16 |16 45| GPI036
GPI017 [17 44| GPI035
GPIO18 |18 43| GPI034
GPI019 [19 42| GPI033
GPI020 |20 41| 10vDD

21(22[23[24[25[26[27(28[29]30[31[32[33[34[35]36[37]38]39[40

N HEHNENNEHEEEE HREEEE

AHEEEEEEEN R EHE HEEEE

1.2.2. Pin Descriptions

Name Description

GPIOx General-purpose digital input and output. RP2350 can connect one of a number of internal
peripherals to each GPIO, or control GPIOs directly from software.

GP10x/ADCy General-purpose digital input and output, with analogue-to-digital converter function. The RP2350
ADC has an analogue multiplexer which can select any one of these pins, and sample the voltage.

QSPIx Interface to a SPI, Dual-SPI or Quad-SPI flash or PSRAM device, with execute-in-place support.
These pins can also be used as software-controlled GPIOs, if they are not required for flash
access.

USB_DM and USB controller, supporting Full Speed device and Full/Low Speed host. A 27Q series termination

USB_DP resistor is required on each pin, but bus pullups and pulldowns are provided internally. These pins
can be used as software-controlled GPIOs, if USB is not required.

XIN and XOUT Connect a crystal to RP2350’s crystal oscillator. XIN can also be used as a single-ended CMOS
clock input, with XOUT disconnected. The USB bootloader defaults to a 172MHz crystal or 172MHz
clock input, but this can be configured via OTP.

RUN Global asynchronous reset pin. Reset when driven low, run when driven high. If no external reset is
required, this pin can be tied directly to IOVDD.

SWCLK and Access to the internal Serial Wire Debug multi-drop bus. Provides debug access to both

SWDIO processors, and can be used to download code.

GND Single external ground connection, bonded to a number of internal ground pads on the RP2350 die.

1.2. Pinout Reference

16

RP2350 Datasheet

Description

I0VDD

Power supply for digital GPIOs, nominal voltage 1.8V to 3.3V

USB_OTP_VDD

Power supply for internal USB Full Speed PHY and OTP storage, nominal voltage 3.3V

ADC_AVDD

Power supply for analogue-to-digital converter, nominal voltage 3.3V

QSPI_IOVDD

Power supply for QSPI 10s, nominal voltage 1.8V to 3.3V

VREG_AVDD

Analogue power supply for internal core voltage regulator, nominal voltage 3.3V

VREG_PGND

Power-ground connection for internal core voltage regulator, tie to ground externally

VREG_LX

Switched-mode output for internal core voltage regulator, connected to external inductor. Max
current 200 mA, nominal voltage 1.1V after filtering.

VREG_VIN

Power input for internal core voltage regulator, nominal voltage 2.7V to 5.5V

VREG_FB

Voltage feedback for internal core voltage regulator, connect to filtered VREG output (e.g. to DVDD,
if the regulator is used to supply DVDD)

DVDD

Digital core power supply, nominal voltage 1.1V. Must be connected externally, either to the
voltage regulator output, or an external board-level power supply.

1.2.3. GPIO Functions (Bank 0)

Each individual GPIO pin can be connected to an internal peripheral via the GPIO functions defined below. Some internal
peripheral connections appear in multiple places to allow some system level flexibility. SIO, PIOO, PIOT and PIO2 can
connect to all GPIO pins and are controlled by software (or software controlled state machines) so can be used to
implement many functions.

1.2. Pinout Reference

17

RP2350 Datasheet

Table 3. General
Purpose Input/Output
(GPIO) Bank 0
Functions

GPIO FO F1 F2 E3 F4 FS F6 F7 F8 F9 F10 F11

0 SPI0 RX UARTO TX 12C0 SDA PWMO A SI0 PI00 PIO1 P102 QMICS1n USB OVCUR DET

1 SPI0O CSn UARTO RX 12C0 SCL PWMO0 B SIO PIO0 PI1O1 P102 TRACECLK USB VBUS DET

2 SPI0 SCK UARTO CTS 12C1 SDA PWM1 A SIO PIO0 PI101 P102 TRACEDATAO USB VBUS EN UARTO TX
3 SPI0O TX UARTO RTS 12C1 SCL PWM1 B SI0 PIO0 PIO1 P102 TRACEDATA1 USB OVCUR DET UARTO RX
4 SPI0 RX UART1 TX 12C0 SDA PWM2 A SI0 PIO0 PIO1 P102 TRACEDATA2 USB VBUS DET

5 SPI0O CSn UART1 RX 12C0 SCL PWM2 B SIO PIO0 PI1O1 P102 TRACEDATA3 USB VBUS EN

6 SPI0 SCK UART1 CTS 12C1 SDA PWM3 A SIO PIO0 PI101 P102 USB OVCUR DET UART1 TX
7 SPI0O TX UART1RTS 12C1 SCL PWM3 B SIO PIO0 PIO1 P102 USB VBUS DET UART1 RX
8 SPIT RX UART1 TX 12C0 SDA PWM4 A SIO PIO0 PI1O1 P102 QMI CS1n USB VBUS EN

9 SPIT CSn UART1 RX 12C0 SCL PWM4 B SIO PIOO PI1O1 P102 USB OVCUR DET

10 SPIT SCK UART1 CTS 12C1 SDA PWMS5 A SIO PIO0 PI1O1 P102 USB VBUS DET UART1 TX
11 SPITTX UART1RTS 12C1 SCL PWM5 B SI0o PIO0 PIO1 P102 USB VBUS EN UART1 RX
12 HSTX SPIT RX UARTO TX 12C0 SDA PWM6 A SIO PI00 PI1O1 P102 CLOCK GPINO USB OVCUR DET

13 HSTX SPIT CSn UARTO RX 12C0 SCL PWM6 B SIO PIO0 PI1O1 P102 CLOCK GPOUTO USB VBUS DET

14 HSTX SPIT SCK UARTO CTS 12C1 SDA PWM7 A SIO PIO0 PI101 P102 CLOCK GPIN1 USB VBUS EN UARTO TX
15 HSTX SPIT TX UARTO RTS 12C1 SCL PWM7 B SI0 PIO0 PIO1 P102 CLOCK GPOUT1 USB OVCUR DET UARTO RX
16 HSTX SPI0 RX UARTO TX 12C0 SDA PWMO A SIO PIO0 PI1O1 P102 USB VBUS DET

17 HSTX SPI0O CSn UARTO RX 12C0 SCL PWMO0 B SIO PIO0 PI101 P102 USB VBUS EN

18 HSTX SPI0 SCK UARTO CTS 12C1 SDA PWM1 A SI0 PIO0 PIO1 P102 USB OVCUR DET UARTO TX
19 HSTX SPIO TX UARTO RTS 12C1 SCL PWM1 B SI0 PIO0 PIO1 P102 QMICS1n USB VBUS DET UARTO RX
20 SPI0 RX UART1 TX 12C0 SDA PWM2 A SIO PIO0 PI1O1 P102 CLOCK GPINO USB VBUS EN

21 SPIO CSn UART1 RX 12C0 SCL PWM2 B SIO PIO0 PI101 P102 CLOCK GPOUTO USB OVCUR DET

22 SPI0 SCK UART1 CTS 12C1 SDA PWM3 A SIO PI0O0 PIO1 P102 CLOCK GPIN1 USB VBUS DET UART1 TX

18

1.2. Pinout Reference

RP2350 Datasheet

GPIO FO F1 F2 ES F4 F5 Fé6 F7 F8 F9 F10 F11

23 SPIO TX UART1 RTS 12C1 SCL PWM3 B SIO P100 P1O1 P102 CLOCK GPOUT1 USB VBUS EN UARTT RX
24 SPIT RX UART1 TX 12C0 SDA PWM4 A SIO PI0O0 PIO1 P102 CLOCK GPOUT2 USB OVCUR DET

25 SPIT1 CSn UART1T RX 12C0 SCL PWM4 B SIO P100 P1O1 P102 CLOCK GPOUT3 USB VBUS DET

26 SPIT SCK UART1 CTS 12C1 SDA PWM5 A SIo PIOO PIO1 PIO2 USB VBUS EN UART1 TX
27 SPIT TX UART1 RTS 12C1 SCL PWMS5 B SIo P100 P101 P102 USB OVCUR DET UARTT RX
28 SPIT RX UARTO TX 12C0 SDA PWM6 A SIO PIO0 PIO1 P102 USB VBUS DET

29 SPIT1 CSn UARTO RX 12C0 SCL PWM6 B SIO P100 P101 P102 USB VBUS EN

GPI0s 30 through 47 are QFN-80 only:

30 SPIT SCK UARTO CTS 12C1 SDA PWM7 A SIO PI0O0 PIO1 P102 USB OVCUR DET UARTO TX
31 SPIT TX UARTO RTS 12C1 SCL PWM7 B SIO PIO0 PIO1 P102 USB VBUS DET UARTO RX
32 SPIO RX UARTO TX 12C0 SDA PWM8 A SIO P100 P101 P102 USB VBUS EN

33 SPI0 CSn UARTO RX 12C0 SCL PWM8 B SIO P100 P1O1 P102 USB OVCUR DET

34 SPI0 SCK UARTO CTS 12C1 SDA PWM9 A SIO PI00 PIO1 P102 USB VBUS DET UARTO TX
35 SPIO TX UARTO RTS 12C1 SCL PWM9 B SIO P100 P101 P102 USB VBUS EN UARTO RX
36 SPIO RX UART1 TX 12C0 SDA PWM10 A SIO P100 P101 P102 USB OVCUR DET

37 SPIO CSn UART1 RX 12C0 SCL PWM10 B SIO P100 P1O1 P102 USB VBUS DET

38 SPI0 SCK UART1 CTS 12C1 SDA PWM11 A SIO PI00 PIO1 P102 USB VBUS EN UART1 TX
39 SPIO TX UART1 RTS 12C1 SCL PWM11B SIO PI00 PIO1 P102 USB OVCUR DET UART1 RX
40 SPIT RX UART1 TX 12C0 SDA PWM8 A SIo PIOO PIO1 PIO2 USB VBUS DET

41 SPI1 CSn UART1 RX 12C0 SCL PWM8 B SIo P100 P101 P102 USB VBUS EN

42 SPIT SCK UART1 CTS 12C1 SDA PWM9 A SIO PI0O0 PIO1 P102 USB OVCUR DET UART1 TX
43 SPIT TX UART1 RTS 12C1 SCL PWM9 B SIO PIO0 PIO1 P102 USB VBUS DET UART1 RX
44 SPIT RX UARTO TX 12C0 SDA PWM10 A SIO P100 PIO1 P102 USB VBUS EN

19

1.2. Pinout Reference

RP2350 Datasheet

45 SPI1 CSn UARTO RX 12C0 SCL PWM10 B SI0 PIO0 PIO1 P102 USB OVCUR DET
46 SPIT SCK UARTO CTS 12C1 SDA PWM11 A SIO PIO0 PI1O1 P102 USB VBUS DET UARTO TX
47 SPITTX UARTO RTS 12C1 SCL PWM11B SIO PIO0 PI101 P102 QMICS1n USB VBUS EN UARTO RX

20

1.2. Pinout Reference

RP2350 Datasheet
]

Table 4. GPIO bank 0

) - Function Name Description
function descriptions

SPIx Connect one of the internal PL022 SPI peripherals to GPIO

UARTX Connect one of the internal PL011 UART peripherals to GPIO

12Cx Connect one of the internal DW I12C peripherals to GPIO

PWMx A/B Connect a PWM slice to GPIO. There are twelve PWM slices, each with two output
channels (A/B). The B pin can also be used as an input, for frequency and duty cycle
measurement.

[e] Software control of GPIO, from the single-cycle 10 (SIO) block. The SIO function (F5)

must be selected for the processors to drive a GPIO, but the input is always connected,
so software can check the state of GPIOs at any time.

PIOx Connect one of the programmable 10 blocks (PI0) to GPIO. PIO can implement a wide
variety of interfaces, and has its own internal pin mapping hardware, allowing flexible
placement of digital interfaces on bank 0 GPIOs. The PIO function (F6, F7, F8) must be
selected for PIO to drive a GPIO, but the input is always connected, so the PIOs can
always see the state of all pins.

HSTX Connect the high-speed transmit peripheral (HSTX) to GPIO

CLOCK GPINx General purpose clock inputs. Can be routed to a number of internal clock domains on
RP2350, e.g. to provide a THz clock for the AON Timer, or can be connected to an
internal frequency counter.

CLOCK GPOUTx General purpose clock outputs. Can drive a number of internal clocks (including PLL
outputs) onto GPIOs, with optional integer divide.

TRACECLK, TRACEDATAX CoreSight TPIU execution trace output from Cortex-M33 processors (Arm-only)

USB OVCUR DET/VBUS USB power control signals to/from the internal USB controller
DET/VBUS EN
QMI CS1n Aucxiliary chip select for QSPI bus, to allow execute-in-place from an additional flash or

PSRAM device

© NOTE

GPIOs 0 through 29 are available in all package variants. GPIOs 30 through 47 are available only in QFN-80
(RP2350B) package.

© NoTE

Analogue input is available on GPIOs 26 through 29 in the QFN-60 package (RP2350A), for a total of four inputs, and
on GPIOs 40 through 47 in the QFN-80 package (RP2350B), for a total of eight inputs.

1.2.4. GPIO Functions (Bank 1)

GPIO functions are also available on the six dedicated QSPI pins, which are usually used for flash execute-in-place, and
on the USB DP/DM pins. These may become available for general-purpose use depending on the use case, for example,
QSPI pins may not be needed for code execution if RP2350 is booting from internal OTP storage, or being controlled
externally via SWD.

Table 5. GPIO Bank 1
Functions

Pin FO F1 F2 F3 F4 FS F6 F7 F8 F9 F10 F11

USB DP UART1 TX 12C0 SDA SI0

1.2. Pinout Reference 21

RP2350 Datasheet
]

Pin FO F1 F2 E3 F4 F5 Fé F7 F8 F9 F10 F11

USB DM UART1 RX 12C0 SCL SI0

QSPISCK | QMI SCK UART1 CTS |12C1 SDA SIO UART1 TX
QSPICSn | QMICSOn UART1TRTS |12C1 SCL SIO UART1 RX
QSPISDO | QMI SDO UARTO TX 12C0 SDA SIO

QSPISD1 | QMI SD1 UARTO RX 12C0 SCL SIO

QSPISD2 | QMI SD2 UARTO CTS |12C1 SDA SIO UARTO TX
QSPISD3 | QMI SD3 UARTORTS |12C1 SCL SIO UARTO RX

Table 6. GPIO bank 1

Function Name | Description
function descriptions

UARTX Connect one of the internal PLO11 UART peripherals to GPIO
12Cx Connect one of the internal DW 12C peripherals to GPIO
(o] Software control of GPIO, from the single-cycle 10 (SIO) block. The SIO function (F5) must be selected

for the processors to drive a GPIO, but the input is always connected, so software can check the state
of GPIOs at any time.

QMI QSPI memory interface peripheral, used for execute-in-place from external QSPI flash or PSRAM
memory devices.

1.3. Why is the chip called RP2350?

Figure 4. An
explanation for the

name of the RP2350 D
chip.

A A
floor(log2(nonvolatile / 128 kB))
floor(log2(RAM / 16 kB))
Type of core (e.g. Cortex-M33)

Number of cores

Raspberry Pi

The post-fix numeral on RP2350 comes from the following,
1. Number of processor cores
o 2indicates a dual-core system
2. Loosely which type of processor

o 3indicates Cortex-M33 or Hazard3

3. Internal memory capacity: logzl%J

o 5indicates at least 2°x 16 kB = 512 kB

o RP2350 has 520 kB of main system SRAM

lmmvolatilej

4. Internal storage capacity: log,| TRiB

(or 0 if no onboard nonvolatile storage)

]
1.3. Why is the chip called RP2350? 22

RP2350 Datasheet
]

o RP2350 uses external flash

o RP2354 has 2* x 128 kB = 2 MB of internal flash

]
1.3. Why is the chip called RP2350? 23

RP2350 Datasheet

Chapter 2. System Bus

2.1. Bus Fabric

The RP2350 bus fabric routes addresses and data across the chip.

Figure 5 shows the high-level structure of the bus fabric. The main AHB5 crossbar routes addresses and data between
its 6 upstream ports and 17 downstream ports, with up to six bus transfers taking place each cycle. All data paths are
32 bits wide. Memories connect to multiple dedicated ports on the main crossbar, for the best possible memory
bandwidth. High-bandwidth AHB peripherals share a port on the crossbar. An APB bridge provides access to system
control registers and lower-bandwidth peripherals. The SIO peripherals are accessed via a dedicated path from each

processor.
Figure 5. RP2350 bus
fabric overview.
DMA Core 0 Core 1
R w ! D ! D Exclusive Query/
l I ' ' Response
Global Exclusivity
AHB5 Crossbar)
Monitor
SRAM Write Kill
T | — I — T CREMCS)
XIP Cache
AHBS SRAMO-3 4x 64 kB SRAM4-7 4x 64 kB SRAM8-9
fo— 16 kB WBack ROM 32 kB -)
PortD to APB Word-striped Word-striped 2x 4 kB
onty Zway Zbank [[1
core 1 [
Port D
only
Arbiter APB Splitter AHBS Splitter
UsB

QSPI Memory i Other DMA XIP Trace
- et B - - - e - e

The bus fabric connects 6 AHB5 managers, i.e. bus ports which generate addresses:

® Core 0: Instruction port (instruction fetch), and Data port (load/store access)
® Core 1: Instruction port (instruction fetch), and Data port (load/store access)
® DMA controller: Read port, Write port
The following 13 downstream ports are symmetrically accessible from all 6 upstream ports:
® Boot ROM (1 port)
® XIP (2 ports, striped)
® SRAM (10 ports, striped)
Additionally, the following 2 ports are accessible for processor load/store and DMA read/write only:

® 1 shared port for fast AHB5 peripherals: PIOO, PIO1, PI02, USB, DMA control registers, XIP DMA FIFOs, HSTX FIFO,
CoreSight trace DMA FIFO

* 1 port for the APB bridge, to all APB peripherals and control registers

2.1. Bus Fabric 24

RP2350 Datasheet

O NoTE

Instruction fetch from peripherals is physically disconnected, to avoid this IDAU-Exempt region ever becoming both
Non-secure-writable and Secure-executable. This includes USB RAM, OTP and boot RAM. See Section 10.2.2.

The SIO block, which was connected to the Cortex-M0+ IOPORT on RP2040, provides two AHB ports, each dedicated to
load/store access from one core.

The six managers can access any six different crossbar ports simultaneously. So, at a system clock of 150 MHz, the
maximum sustained bus bandwidth is 3.6 GB/s.

2.1.1. Bus Priority
The main AHB5 crossbar implements a two-level bus priority scheme. Priority levels are configured separately for core
0, core 1, DMA read and DMA write, using the BUS_PRIORITY register in the BUSCTRL register block.

When a downstream subordinate receives multiple simultaneous access requests, the port serves high-priority (priority
level 1) managers before serving any requests from low-priority (priority 0) managers. If all requests come from
managers with the same priority level, the port applies a round-robin tie break, granting access to each manager in turn.

O NoTE

Priority arbitration only applies when multiple managers attempt to access the same subordinate on the same cycle.
When multiple managers access different subordinates, e.g. different SRAM banks, the requests proceed
simultaneously.

A subordinate with zero wait states can be accessed once per system clock cycle. When accessing a subordinate with
zero wait states (e.g. SRAM), high-priority managers never experience delays caused by accesses from low-priority
managers. This guarantees latency and throughput for real-time use cases. However, it also means that low-priority
managers may stall until there is a free cycle.

2.1.2. Bus Security Filtering
Every point where the fabric connects to a downstream AHB or APB peripheral is interposed by a bus security filter,
which enforces the following access control lists as defined by the ACCESSCTRL registers (Section 10.6):

® Alist of who can access the port: core 0, core 1, DMA, debugger

* A list of the security states from which the port can be accessed: the four combinations of Secure/Non-secure and
Privileged/Unprivileged.

Accesses which fail either check are prevented from accessing the downstream port, and return a bus error upstream.

There are three exceptions, which do not implement bus security filters because they implement their own security
filtering internally:

® The ACCESSCTRL block itself, which is always world-readable, but filters writes on security and privilege
® Boot RAM, which is hardwired to Secure access only
® The single-cycle 10 subsystem (SI0), which is internally banked over Secure and Non-secure

The Cortex-M Private Peripheral Bus (PPB) registers also lack ACCESSCTRL permissions because they are internal to
the processors, not accessed through the system bus. The PPB registers are internally banked over Secure and Non-
secure.

]
2.1. Bus Fabric 25

RP2350 Datasheet
]

2.1.3. Atomic Register Access
Each peripheral register block is allocated 4 kB of address space, with registers accessed using one of 4 methods,
selected by address decode.

® Addr + 0x0000 : normal read write access

® Addr + 0x1000 : atomic XOR on write

® Addr + 0x2000 : atomic bitmask set on write

® Addr + 0x3000 : atomic bitmask clear on write

This allows software to modify individual fields of a control register without performing a read-modify-write sequence.
Instead, the peripheral itself modifies its contents in-place. Without this capability, it is difficult to safely access 10
registers when an interrupt service routine is concurrent with code running in the foreground, or when the two
processors run code in parallel.

The four atomic access aliases occupy a total of 16 kB. Native atomic writes take the same number of clock cycles as
normal writes. Most peripherals on RP2350 provide this functionality natively, but some peripherals (12C, UART, SPI and
SSI) add this functionality using a bus interposer. The bus interposer translates upstream atomic writes into
downstream read-modify-write sequences at the boundary of the peripheral, at the cost of additional clock cycles.
Atomic writes that use a bus interposer take two additional clock cycles compared to normal writes.

The following registers do not support atomic register access:
® SIO (Section 3.1), though some individual registers (e.g. GPIO) have set, clear, and XOR aliases

® Any register accessed through the self-hosted CoreSight window, including Arm Mem-APs and the RISC-V Debug
Module

e Standard Arm control registers on the Cortex-M33 private peripheral bus (PPB), except for Raspberry Pi-specific
registers on the EPPB

® OTP programming registers accessed through the SBPI bridge

2.1.4. APB Bridge

The APB bridge provides an interface between the high-speed main AHB5 interconnect and the lower-bandwidth
peripherals. Unlike the AHBS5 fabric, which offers zero-wait-state accesses everywhere, APB accesses take a minimum
of three cycles for a read, and four cycles for a write.

As a result, the throughput of the APB portion of the bus fabric is lower than the AHBS5 portion. However, there is more
than sufficient bandwidth to saturate the APB serial peripherals.

The following APB ports contain asynchronous bus crossings, which insert additional stall cycles on top of the typical
cost of a read or write in the APB bridge:

e ADC

® HSTX_CTRL
* OTP

* POWMAN

The APB bridge implements a fixed timeout for stalled downstream transfers. The downstream bus may stall
indefinitely, such as when accessing an asynchronous bus crossing when the destination clock is stopped, or deadlock
conditions when accessing system APB registers through Mem-APs in the self-hosted debug window (Section 3.5.6).
When an APB transfer exceeds 65,535 cycles the APB bridge abandons the transfer and returns a bus fault. This keeps
the system bus available so that software or the debugger can diagnose the reason for the overly long transfer.

]
2.1. Bus Fabric 26

RP2350 Datasheet

2.1.5. Narrow 10 Register Writes

The majority of memory-mapped 10 registers on RP2350 ignore the width of bus read/write accesses. They treat all
writes as though they were 32 bits in size. This means software cannot use byte or halfword writes to modify part of an
10 register: any write to an address where the 30 address MSBs match the register address affects the contents of the
entire register.

To update part of an 10 register without a read-modify-write sequence, the best solution on RP2350 is atomic
set/clear/XOR (see Section 2.1.3). This is more flexible than byte or halfword writes, as any combination of fields can be
updated in one operation.

Upon a 8-bit or 16-bit write (such as a strb instruction on the Cortex-M33), the narrow value is replicated multiple times
across the 32-bit data bus, so that it is broadcast to all 8-bit or 16-bit segments of the destination register:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/system/narrow_io_write/narrow_io_write.c Lines 19 - 62

19 int main() {

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62 }

stdio_init_all();

// We'll use WATCHDOG_SCRATCHO as a convenient 32 bit read/write register

// that we can assign arbitrary values to

io_rw_32 *scratch32 = &watchdog_hw->scratch[0];

// Alias the scratch register as two halfwords at offsets +0x0 and +0x2
volatile uint16_t *scratch16 = (volatile uint16_t *) scratch32;

// Alias the scratch register as four bytes at offsets +0x0, +0x1, +0x2, +0x3:
volatile uint8_t *scratch8 = (volatile uint8_t *) scratch32;

// Show that we can read/write the scratch register as normal:
printf("Writing 32 bit value\n");

*scratch32 = Oxdeadbeef;

printf("Should be Bxdeadbeef: 8x%08x\n", *scratch32);

// We can do narrow reads just fine -- IO registers treat this as a 32 bit
// read, and the processor/DMA will pick out the correct byte lanes based
// on transfer size and address LSBs

printf("\nReading back 1 byte at a time\n");

// Little-endian!

printf("Should be ef be ad de: %02x ", scratch8[e]);

printf("%02x ", scratch8[1]);

printf("%@2x ", scratch8[2]);

printf("%02x\n", scratch8[3]);

// Byte writes are replicated four times across the 32-bit bus, and IO
// registers usually sample the entire write bus.

printf("\nWriting 8 bit value ©6xa5 at offset 0\n");

scratch8[@] = @xa5;

// Read back the whole scratch register in one go

printf("Should be Bxa5a5a5a5: 8x%08x\n", *scratch32);

// The IO register ignores the address LSBs [1:0] as well as the transfer
// size, so it doesn't matter what byte offset we use

printf("\nWriting 8 bit value at offset 1\n");

scratch8[1] = 0x3c;

printf("Should be 8x3c3c3c3c: Bx%08x\n", *scratch32);

// Halfword writes are also replicated across the write data bus
printf("\nWriting 16 bit value at offset @\n");

scratch16[@] = oxfeed;

printf("“Should be Oxfoedfeed: 6x%@8x\n", *scratch32);

To disable this behaviour on RP2350, set bit 14 of the address by accessing the peripheral at an offset of +0x4000. This

2.1. Bus Fabric

27

https://github.com/raspberrypi/pico-examples/blob/master/system/narrow_io_write/narrow_io_write.c#L19-L62

RP2350 Datasheet

causes invalid byte lanes to be driven to zero, rather than being driven with replicated data. In some situations, such as
DMA of 8-bit values to the PWM peripheral, the default replication behaviour is not desirable.

2.1.6. Global Exclusive Monitor

The Global Exclusive Monitor enables standard Arm and RISC-V atomic instructions to safely access shared variables in
SRAM from both cores. This underpins software libraries for manipulating shared variables, such as stdatomic.h in C11.
For detailed rules governing the monitor’s operation, see the Armv8-M Architecture Reference Manual.

Arm describes exclusive monitor interactions in terms of a processing element, PE, which performs a sequence of bus
accesses. For RP2350 purposes, this is one AHB5 manager out of the following three: core 0 load/store, core 1
load/store, and DMA write. The DMA does not itself perform exclusive accesses, but its writes are monitored with
respect to exclusive sequences on either processor. No distinction is made between debugger and non-debugger
accesses from a processor.

The monitor observes all transfers on SRAM initiated by the DMA write and processor load/store ports, and pays
particular attention to two types of transfer:

® AHBS5 exclusive reads: Arm ldrex* instructions, RISC-V 1r.w instructions, and the read phase of RISC-V AMOs (The
Hazard3 cores on RP2350 implement AMOs as an exclusive read/write pair which retries until the write succeeds)

® AHBS5 exclusive writes: Arm strex* instructions, RISC-V sc.w instructions, and the writeback phase of RISC-V AMOs

Based on these observations, the monitor enforces that an atomic read-modify-write sequence (formed of an exclusive
read followed by a successful exclusive write by the same PE) is not interleaved with another PE’s successful write
(exclusive or not) to the same reservation granule. A reservation granule is any 16-byte, naturally aligned area of SRAM.
An exclusive write succeeds when all of the following are true:

® |tis preceded by an exclusive read by the same PE

® No other exclusive writes were performed by this PE since that exclusive read
® The exclusive read was to the same reservation granule

® The exclusive read was of the same size (byte/halfword/word)

® The exclusive read was from the same security and privilege state

* No other PEs successfully wrote to the same granule since that exclusive read

If the above conditions are not met, the Global Exclusive Monitor shoots down the exclusive write before SRAM can
commit the write data. The failure is reported to the originating PE, for example by a non-zero return value from an Arm
strex instruction.

This implementation of the Armv8-M Global Exclusive Monitor also meets the requirements for RISC-V 1r/sc and amo*
instructions, with the caveat that the RsrvEventual PMA is not supported. (In practice, whilst it is quite easy to come up
with contrived examples of starvation such as the DMA writing to a shared variable on every single cycle, bounded
LR/SC and AMO sequences will generally complete quickly.)

A cAuTION

Secure software should avoid shared variables in Non-secure-accessible memory. Such variables are vulnerable to
deliberate starvation from exclusive accesses by repeatedly performing non-exclusive writes.

Exclusive accesses are only supported on SRAM. The system treats exclusive accesses to other memory regions as
normal reads and writes, reporting exclusivity failure to the originating PE, for example by a non-zero return value from
an Arm strex instruction.

2.1. Bus Fabric

28

https://developer.arm.com/documentation/ddi0553/latest/

RP2350 Datasheet
]

2.1.6.1. Implementation-defined Monitor Behaviour

The Armv8-M Architecture Reference Manual leaves several aspects of the Global Exclusive Monitor up to the
implementation. For completeness, the RP2350 implementation defines them as follows:

® The reservation granule size is fixed at 16 bytes

® A single reservation is tracked per PE

® The Arm clrex instruction does not affect global monitor state

® Any exclusive write by a PE clears that PE’s global reservation

® A non-exclusive write by a PE does not clear that PE’s global reservation, no matter the address
Only the following updates a PE’s reservation tag, setting its reservation state to Exclusive:

® An exclusive read on SRAM
Only the following changes a PE’s reservation state from Exclusive to Open:

® A successful exclusive write from another PE to this PE’s reservation

* A non-exclusive write from another PE to this PE's reservation

® Any exclusive write by this PE

® An exclusive read by this PE, not on SRAM

A reservation granule can span multiple SRAM banks, so multiple operations on the same reservation granule may
complete on the same cycle. This can result in the following problematic situations:

® Multiple exclusive writes to the same reservation granule, reserved on each PE: in this case the lowest-numbered
PE succeeds (in the order DMA < core 0 < core 1), and all others fail.

* A mixture of non-exclusive and exclusive writes to the same reservation granule on the same cycle: in this case,
the exclusive writes fail.

® One PE x can write to a reservation granule on the same cycle that another PE y attempts to reserve the same
reservation granule via exclusive load: in this case, y's reservation is granted (i.e. the write takes place logically
before the load).

® One PE x can write to a reservation granule reserved by another PE y, on the same cycle that PE y makes a new
reservation on a different reservation granule: in this case, again, y's reservation is granted.

These rules can be summarised by a logical ordering of all possible events on a reservation granule that can occur on
the same cycle: first all normal writes in arbitrary order, then all exclusive writes in ascending PE order (DMA, core 0,
core 1), then all loads in arbitrary order.

2.1.6.2. Regions Without Exclusives Support

The Global Exclusive monitor only supports exclusive transactions on certain address ranges. The main system SRAM
supports exclusive transactions throughout its entire range: 0x20000000 through 0x20082000. Within ranges that support
exclusive transactions, the Global Exclusive monitor:

® tracks exclusive sequences across all participating PEs
e drives the exclusive success/failure response correctly based on the observed ordering
* shoots down failing exclusive writes so that they have no effect

Exclusive transactions are not supported outside of this range: all exclusive accesses report exclusive failure (both
exclusive reads and exclusive writes), and exclusive writes will not be suppressed.

Outside of regions with exclusive transaction support, load/store exclusive loops run forever while still affecting SRAM
contents. This applies to both Arm processors performing exclusive reads/writes and RISC-V processors performing
1r.w/sc.w instructions. However, an amo*.w instruction on Hazard3 will result in a Store/AMO Fault, as the hardware

]
2.1. Bus Fabric 29

https://developer.arm.com/documentation/ddi0553/latest/

RP2350 Datasheet
]

Table 7. Address Map
Summary

Table 8. Address map
for ROM bus

detects the failed exclusive read and bails out to avoid an infinite loop.

It is recommended not to perform exclusive accesses on regions outside of main SRAM. Shared variables outside of
main SRAM can be protected using either lock variables in main SRAM, the SIO spinlocks, or a locking protocol that
does not require exclusive accesses, such as a lock-free queue.

2.1.7. Bus Performance Counters
Bus performance counters automatically count accesses to the main AHBS crossbar arbiters. These counters can help
diagnose high-traffic performance issues.

There are four performance counters, starting at PERFCTRO. Each is a 24-bit saturating counter. Counter values can be
read from BUSCTRL_PERFCTRx and cleared by writing any value to BUSCTRL_PERFCTRx. Each counter can count one of the 20
available events at a time, as selected by BUSCTRL_PERFSELx. For more information, see Section 12.15.4.

2.2. Address Map

The address map for the device is split into sections as shown in Table 7. Details are shown in the following sections.
Unmapped address ranges raise a bus error when accessed.

Each link in the left-hand column of Table 7 goes to a detailed address map for that address range. The detailed
address maps have a link for each address to the relevant documentation for that address.

Rough address decode is first performed on bits 31:28 of the address:

Bus Segment Base Address
ROM 0x00000000
XIP 0x10000000
SRAM 0x20000000
APB Peripherals 0x40000000
AHB Peripherals 0x50000000
Core-local Peripherals (SIO) 0xd0000000
Cortex-M33 private registers 0xe0000000
2.2.1. ROM

ROM is accessible to DMA, processor load/store, and processor instruction fetch. It is located at address zero, which is
the starting point for both Arm processors when the device is reset.

Bus Endpoint Base Address
ROM_BASE 0x00000000
2.2.2. XIP

XIP is accessible to DMA, processor load/store, and processor instruction fetch. This address range contains various
mirrors of a 64 MB space which is mapped to external memory devices. On RP2350 the lower 32 MB is occupied by the
QSPI Memory Interface (QMI), and the remainder is reserved. QMI controls are in the APB register section.

]
2.2. Address Map 30

RP2350 Datasheet
]

Table 9. Address map
for XIP bus segment

Table 10. Address
map for SRAM bus
segment, SRAMO-7
(striped)

Table 11. Address
map for SRAM bus
segment, SRAM8-9
(non-striped)

Table 12. Address
map for APB bus
segment

Bus Endpoint Base Address

XIP_BASE 0x10000000

XIP_NOCACHE_NOALLOC_BASE 0x14000000

XIP_MAINTENANCE_BASE 0x18000000

XIP_NOCACHE_NOALLOC_NOTRANSLATE_BASE 0x1c000000
© NoTE

XIP_SRAM_BASE no longer exists as a separate address range. Cache-as-SRAM is now achieved by pinning cache lines
within the cached XIP address space.

2.2.3. SRAM

SRAM is accessible to DMA, processor load/store, and processor instruction fetch.

SRAMO-3 and SRAM4-7 are always striped on bits 3:2 of the address:

Bus Endpoint Base Address
SRAM_BASE 0x20000000
SRAM_STRIPED_BASE 0x20000000
SRAMO_BASE 0x20000000
SRAM4_BASE 0x20040000
SRAM_STRIPED_END 0x20080000

There are two striped regions, each 256 kB in size, and each striped over 4 SRAM banks. SRAMO-3 are in the SRAMO
power domain, and SRAM4-7 are in the SRAM1 power domain.

SRAM 8-9 are always non-striped:

Bus Endpoint Base Address
SRAM8_BASE 0x20080000
SRAM9_BASE 0x20081000
SRAM_END 0x20082000

These smaller blocks of SRAM are useful for hoisting high-bandwidth data structures like the processor stacks. They
are in the SRAM1 power domain.

2.2.4. APB Registers

APB peripheral registers are accessible to processor load/store and DMA only. Instruction fetch will always fail.

The APB peripheral segment provides access to control and configuration registers, as well as data access for lower-
bandwidth peripherals. APB writes cost a minimum of four cycles, and APB reads a minimum of three.

Bus Endpoint Base Address
SYSINFO_BASE 0x40000000
SYSCFG_BASE 0x40008000

]
2.2. Address Map 31

RP2350 Datasheet

CLOCKS_BASE 0x40010000
PSM_BASE 0x40018000
RESETS_BASE 0x40020000
I0_BANKO_BASE 0x40028000
I0_QSPI_BASE 0x40030000
PADS_BANKO_BASE 0x40038000
PADS_QSPI_BASE 0x40040000
XOSC_BASE 0x40048000
PLL_SYS_BASE 0x40050000
PLL_USB_BASE 0x40058000
ACCESSCTRL_BASE 0x40060000
BUSCTRL_BASE 0x40068000
UARTO_BASE 0x40070000
UART1_BASE 0x40078000
SPIO_BASE 0x40080000
SPIT1_BASE 0x40088000
12CO_BASE 0x40090000
I12C1_BASE 0x40098000
ADC_BASE 0x400a0000
PWM_BASE 0x400a8000
TIMERO_BASE 0x400b0000
TIMER1_BASE 0x400b8000
HSTX_CTRL_BASE 0x400c0000
XIP_CTRL_BASE 0x400c8000
XIP_QMI_BASE 0x400d0000
WATCHDOG_BASE 0x400d8000
BOOTRAM_BASE 0x40000000
ROSC_BASE 0x400e8000
TRNG_BASE 0x40010000
SHA256_BASE 0x40018000
POWMAN_BASE 0x40100000
TICKS_BASE 0x40108000
OTP_BASE 0x40120000
OTP_DATA_BASE 0x40130000
OTP_DATA_RAW_BASE 0x40134000
OTP_DATA_GUARDED_BASE 0x40138000

]
2.2. Address Map 32

RP2350 Datasheet
]

Bus Endpoint Base Address
OTP_DATA_RAW_GUARDED_BASE 0x4013c000
CORESIGHT_PERIPH_BASE 0x40140000
CORESIGHT_ROMTABLE_BASE 0x40140000
CORESIGHT_AHB_AP_COREOQ_BASE 0x40142000
CORESIGHT_AHB_AP_CORE1_BASE 0x40144000
CORESIGHT_TIMESTAMP_GEN_BASE 0x40146000
CORESIGHT_ATB_FUNNEL_BASE 0x40147000
CORESIGHT_TPIU_BASE 0x40148000
CORESIGHT_CTI_BASE 0x40149000
CORESIGHT_APB_AP_RISCV_BASE 0x40143000
GLITCH_DETECTOR_BASE 0x40158000
TBMAN_BASE 0x40160000
2.2.5. AHB Registers

AHB peripheral registers are accessible to processor load/store and DMA only. Instruction fetch will always fail.

The AHB peripheral segment provides access to higher-bandwidth peripherals. The minimum read/write cost is one
cycle, and peripherals may insert up to one wait state.

Table 13. Address

Bus Endpoint Base Address
map for AHB
peripheral bus DMA_BASE 0x50000000
segment
USBCTRL_BASE 0x50100000
USBCTRL_DPRAM_BASE 0x50100000
USBCTRL_REGS_BASE 0x50110000
PIO0_BASE 0x50200000
PIO1_BASE 0x50300000
PIO2_BASE 0x50400000
XIP_AUX_BASE 0x50500000
HSTX_FIFO_BASE 0x50600000
CORESIGHT_TRACE_BASE 0x50700000

2.2.6. Core-local Peripherals (SI10)

SIO is accessible to processor load/store only. It contains registers which need single-cycle access from both cores
concurrently, such as the GPIO registers. Access is always zero-wait-state.

]
2.2. Address Map 33

RP2350 Datasheet
]

Table 14. Address
map for SI0 bus
segment

Table 15. Address
map for PPB bus
segment

Bus Endpoint Base Address
SIO_BASE 0xd0000000
SIO_NONSEC_BASE 0xd0020000

2.2.7. Cortex-M33 Private Peripherals

The PPB is accessible to processor load/store only.

The PPB region contains standard control registers defined by Arm, Non-secure aliases of some of those registers, and
a handful of other core-local registers defined by Raspberry Pi (the EPPB).

These addresses are only accessible to Arm processors: RISC-V processors will return a bus fault.

Bus Endpoint Base Address
PPB_BASE 0xe0000000
PPB_NONSEC_BASE 0xe0020000
EPPB_BASE 0xe0080000

]
2.2. Address Map

34

RP2350 Datasheet

Figure 6. The RP2350
processor subsystem
connects two
processors to the
system bus, peripheral
interrupts, GPIOs, and
a Serial Wire Debug
(SWD) connection
from an external
debug host. It also
contains closely-
coupled peripherals,
and peripherals used
for synchronisation
and communication,
which are collectively
referred to as the
single-cycle 10
subsystem (SI0).

Chapter 3. Processor Subsystem

SWD from Rebug Host

SW-DP
AHB-AP APB-AP AHB-AP
Core -0 RISC-V Core -1

A ¢ A

Debug Module

Debug Complex

r 4 A ; y y
IRQ Debug IRQ Debug IRQ Debug IRQ Debug
Arm RISC-V Arm RISC-V
Cortex-M33 Hazard3 Cortex-M33 Hazard3
| D | D D | D |
X f| |8 X 1
Mux Mux Mux Mux
A Core 0 A Core 1 A
Dual-core Complex
4
Split Split
Single-cycle 10
System System Bus: System Bus: (48 + 8) x GPIO System Bus: System Bus:
interrupts Core 0 Core 0 To the Outside Core 0 Core 1
Instruction Data Data Instruction

RP2350 is a symmetric dual-core system. Two cores operate simultaneously and independently, offering high
processing throughput and the ability to route interrupts to different cores to improve throughput and latency of
interrupt handling. The two cores have a symmetric view of the system bus; all memory resources on RP2350 are
accessible equally on both cores, with the same performance.

Each core has a pair of 32-bit AHB5 links to the system bus. One is used exclusively for instruction fetch, the other
exclusively for load or store instructions and debugger access. Each core can perform one instruction fetch and one
load or store access per cycle, provided there are no conflicts on the downstream bus ports.

There are two sockets for cores to attach to the system bus, referred to as core 0 and core 1 throughout this datasheet.
(They may synonymously be referred to as core0, corel, procO and proc1 in register documentation.) The processor
plugged into each socket is selectable at boot time:

® A Cortex-M33 processor, implementing the Armv8-M Main instruction set, plus extensions
® A Hazard3 processor, implementing the RV32IMAC instruction set, plus extensions

Cortex-M33 is the default option. Whichever processor is unused is held in reset with its clock gated at the top level.
Unused processors use zero dynamic power. See Section 3.9 for information about the architecture selection hardware.

The two Cortex-M33 instances are identical. They are configured with the Security, DSP and FPU extensions, as well as
8x SAU regions, 8x Secure MPU regions and 8x Non-secure MPU regions. Section 3.7 documents the Cortex-M33
processor as well as the specific configuration used on RP2350. The two Hazard3 instances are also identical to one
another; see Section 3.8 for the features and operation of the Hazard3 processors.

Chapter 3. Processor Subsystem

35

RP2350 Datasheet
]

3.1.SIO

The Cortex-M33 implementation of the Armv8-M Security extension (also known as TrustZone-M) isolates trusted and
untrusted software running on-device. RP2350 extends the strict partitioning of the Arm Secure and Non-secure states
throughout the system, including the ability to assign peripherals, GPIOs and DMA channels to each security domain.
See Section 10.2 for a high-level overview of Armv8-M Security extension features in the context of the RP2350 security
architecture.

Not shown on Figure 6 are the coprocessors for the Cortex-M33. These are closely coupled to the core, offering a
transfer rate of 64 bits per cycle in and out of the Arm register file. You may consider them to be inside the Cortex-M33
block on the diagram. RP2350 equips each Cortex-M33 with the following coprocessors:

® Coprocessor 0: GPIO coprocessor (GPIOC), described in Section 3.6.1

® Coprocessors 4 and 5: Secure and Non-secure instances of the double-precision coprocessor (DCP), described in
Section 3.6.2

® Coprocessor 7: redundancy coprocessor (RCP), described in Section 3.6.3
An external debug host can access both cores over a Serial Wire Debug (SWD) bus. The host can:
® run, halt and reset the cores
* inspect internal core state such as registers
® access memory from the core’s point of view
* |oad code onto the device and run it
Section 3.5 describes the debug hardware in addition to the instruction trace hardware available on the Arm processors.

Peripherals throughout the system assert interrupt requests (IRQs) to demand attention from the processors. For
example, a UART peripheral asserts its interrupt when it has received a character, so the processor can collect it from
the receive FIFO. All interrupts route to both cores, and the core’s internal interrupt controller selects the interrupt
signals it wishes to subscribe to. Section 3.2 defines the system-level IRQ numbering as well as details of the Arm non-
maskable interrupt (NMI).

The event signals described in Section 3.3 are a mechanism for processors to sleep when waiting for other processors
in the system to complete a task or free up some resource. Each processor sees events emitted by the other processor.
They also see exclusivity events generated by the Global Exclusive Monitor described in Section 2.1.6, which is the piece
of hardware that allows the processors to safely manipulate shared variables using atomic read-modify-write
sequences.

3.1. SIO

The Single-cycle 10 subsystem (SIO) contains peripherals that require low-latency, deterministic access from the
processors. It is accessed via the AHB Fabric. The SIO has a dedicated bus interface for each processor, as shown in
Figure 7.

36

RP2350 Datasheet

Figure 7. The single-
cycle 10 block
contains registers
which processors
must access quickly.
FIFOs, doorbells and
spinlocks support
message passing and
synchronisation
between the two
cores. The shared
GPIO registers provide
fast, direct access to
GPI0-capable pins.
Interpolators can
accelerate common
software tasks. Most
SI0 hardware is
banked (duplicated)
for Secure and Non-
secure access. Grey
arrows show bus
connections for Non-
secure access.

3.1.SIO

Core 0
Load/Store

Core 1

Load/Store

| Non-secure SIO

Secure SIO

<—| CPUID O | | CPUID 1
—>| FIFO 4 x32b
<—| FIFO 4 x32b

Bus)
<—>| Hardware Spinlockx 32
Interface

Doorbellsx 8 Each Way

RISC-V Platform Timer

gl
et 3P

Bus
Interface

Bus

of.
erfact

YV VYV VYV V¥ vy ¥

InterpO) |Interp1| | TMDS || TMDS | |Interp1| |Interp0
(S/NS)| |(S/NS)| | (S/NS)||(S/NS)||(S/NS)| |(S/NS)

’ GPIO Registers (Shared S + NS)

GPIOx48+8

To |0 Muxing

The SIO contains:

® CPUID registers which read as 0/1 on core 0/1 (Section 3.1.2)

* Mailbox FIFOs for passing ordered messages between cores (Section 3.1.5)

® Doorbells for interrupting the opposite core on cumulative and unordered events (Section 3.1.6)

® Hardware spinlocks for implementing critical sections without using exclusive bus accesses (Section 3.1.4)
* Interpolators (Section 3.1.10) and TMDS encoders (Section 3.1.9)

e Standard RISC-V 64-bit platform timer (Section 3.1.8) which is usable by both Arm and RISC-V software

® GPIO registers for fast software bitbanging (Section 3.1.3), with shared access from both cores

Most SIO hardware is duplicated for Secure/Non-secure access. Non-secure access to the FIFO registers will see a
physically different FIFO than Secure access to the same address, so that messages belonging to Secure and Non-

secure software are not mixed: Section 3.1.71 describes this Secure/Non-secure banking in more detail.

3.1.1. Secure and Non-secure SIO

To allow isolation of Secure and Non-secure software, whilst keeping a consistent programming model for software
written to run in either domain, the SIO is duplicated into a Secure and a Non-secure bank. Most hardware is duplicated

between the two banks, including:
® Mailbox FIFOs

® Doorbell registers

37

RP2350 Datasheet
]

® Interrupt outputs to processors
® Spinlocks

For example, Non-secure code on core 0 can pass messages to Non-secure code on core 1 through the Non-secure
instance of the mailbox FIFO. In turn, this message will generate a Non-secure interrupt, which is separate from the
Secure FIFO interrupt line. This does not interfere with any Secure message passing which may be going on at the same
time, and Non-secure code can not snoop Secure messages because it does not have access to the Secure mailboxes.
The software running in the Secure and Non-secure domain can be identical, and the processors' bus accesses to the
SIO will automatically be routed to the Secure or Non-secure version of the mailbox registers.

The following hardware is not duplicated:

® The GPIO registers are shared, and Non-secure accesses are filtered on a per-GPIO basis by the Non-secure GPIO
mask defined in the ACCESSCTRL GPIO_NSMASKO and GPIO_NSMASKT registers

® The RISC-V standard platform timer (MTIME, MTIMEH), which is also usable by Arm processors, is present only in
the Secure SIO, as it is a Machine-mode peripheral on RISC-V

® The interpolator and TMDS encoder peripherals are assignable to either the Secure or Non-secure SIO using the
PERI_NONSEC register

Accesses to the SIO register address range, starting at 0xd0000000 (SIO_BASE), are mapped to the SIO bank which
matches the security attribute of the bus access. This means accesses from the Arm Secure state, or RISC-V Machine
mode, will access the Secure SIO bank, and accesses from the Arm Non-secure state, or RISC-V User mode, will access
the Non-secure SIO bank.

Additionally, Secure accesses can use the mirrored address range starting at 0xd8020000 (SIO_NONSEC_BASE) to access
the Non-secure view of SIO, for example, using the Non-secure doorbells to interrupt Non-secure code running on the
other core. Attempting to access this address range from Non-secure code will generate a bus fault.

© NOTE

The 0x20000 offset of the Secure-to-Non-secure mirror matches the PPB mirrors at 0xe0000000 (PPB_BASE) and
0xe0020000 (PPB_NONSEC_BASE), which function similarly.

© NOTE

Debug access is mapped to the Secure/Non-secure SIO using the security attribute of the debugger's bus access,
which may differ from the security state that the core was halted in.

3.1.2. CPUID

The CPUID SIO register returns a value of 0 when read by core 0, and 1 when read by core 1. This helps software identify
the core running the current application. The initial boot sequence also relies on this check: both cores start running
simultaneously, core 1 goes into a deep sleep state, and core 0 continues the main boot sequence.

O IMPORTANT

Don't confuse the SIO CPUID register with the Cortex-M33 CPUID register on each processor's internal Private
Peripheral Bus, which lists the processor’s part number and version.

3.1.SIO 38

RP2350 Datasheet

© NOTE

Reading the MHARTID CSR on each Hazard3 core returns the same values as CPUID: 0 on core 0, and 1 on core 1.

3.1.3. GPIO Control
The SIO GPIO registers control GPIOs which have the SIO function selected (function 5). This function is supported on
the following pins:

® all user GPIOs (GPIOs 0 through 29, or 0 through 47, depending on package option)

® QSPI pins

® USB DP/DM pins

All SIO GPIO control registers come in pairs. The lower-addressed register in each pair (e.g. GPIO_IN) is connected to
GPIOs 0 through 31, and the higher-addressed register in each pair (e.g. GPIO_HI_IN) is connected to GPIOs 32 through
47, the QSPI pins, and the USB DP/DM pins.

© NOTE

To drive a pin with the SIO’s GPIO registers, the GPIO multiplexer for this pin must first be configured to select the
SIO GPIO function. See Table 643.

These GPIO registers are shared between the two cores: both cores can access them simultaneously. There are three
groups of registers:

® Qutput registers, GPIO_OUT and GPIO_HI_OUT set the output level of the GPIO. 0 for low output, 1 for high output.

® Qutput enable registers, GPIO_OE and GPIO_HI_OE, are used to enable the output driver. 0 for high-impedance, 1
for drive high or low based on GPIO_OUT and GPIO_HI_OUT.

* Input registers, GPIO_IN and GPIO_HI_IN, allow the processor to sample the current state of the GPIOs.

Reading GPIO_IN returns up to 32 input values in a single read, and software then masks out individual pins it is
interested in.

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h Lines 859 - 869

859 static inline bool gpio_get(uint gpio) {
860 #ifdef NUM_BANKO_GPIOS <= 32

861 return sio_hw->gpio_in & (1u << gpio);

862 #else

863 if (gpio < 32) {

864 return sio_hw->gpio_in & (1u << gpio);

865 } else {

866 return sio_hw->gpio_hi_in & (1u << (gpio - 32));
867 }

868 #endif

869 }

The 0UT and OE registers also have atomic SET, CLR, and XOR aliases. This allows software to update a subset of the pins in
one operation. This ensures safety for concurrent GPIO access, both between the two cores and between a single core’s
interrupt handler and foreground code.

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h Lines 908 - 914

908 static inline void gpio_set_mask(uint32_t mask) {
909 #ifdef PICO_USE_GPIO_COPROCESSOR
910 gpioc_lo_out_set(mask);

I
3.1.SIO 39

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h#L859-L869
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h#L908-L914

RP2350 Datasheet

911 #else

912 sio_hw->gpio_set = mask;
913 #endif

914 }

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h Lines 955 - 961

955 static inline void gpio_clr_mask(uint32_t mask) {
956 #ifdef PICO_USE_GPIO_COPROCESSOR

957 gpioc_lo_out_clr(mask);
958 #else

959 sio_hw->gpio_clr = mask;
960 #endif

961 }

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h Lines 1145- 1170

1145 static inline void gpio_put(uint gpio, bool value) {
1146 #ifdef PICO_USE_GPIO_COPROCESSOR

1147 gpioc_bit_out_put(gpio, value);
1148 #elif NUM_BANKO_GPIOS <= 32

1149 uint32_t mask = 1ul << gpio;

1150 if (value)

1151 gpio_set_mask(mask) ;

1152 else

1153 gpio_clr_mask(mask) ;

1154 #else

1155 uint32_t mask = 1ul << (gpio & @x1fu);
1156 if (gpio < 32) {

1157 if (value) {

1158 sio_hw->gpio_set = mask;
1159 } else {

1160 sio_hw->gpio_clr = mask;
1161 }

1162 } else {

1163 if (value) {

1164 sio_hw->gpio_hi_set = mask;
1165 } else {

1166 sio_hw->gpio_hi_clr = mask;
1167 }

1168 }

1169 #endif

1170 }

If both processors write to an 0UT or OE register (or any of its SET/CLR/XOR aliases) on the same clock cycle, the result is as
though core 0 wrote first, then core 1 wrote immediately afterward. For example, if core 0 SETs a bit and core 1 XORs it
on the same clock cycle, the bit ends up with a value of o.

3.1.SIO

40

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h#L955-L961
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h#L1145-L1170

RP2350 Datasheet

3.1.SIO

© NOTE

This is a conceptual model for the result produced when two cores write to a GPIO register simultaneously. The
register never contains the intermediate values at any point. In the previous example, if the pin is initially 0, and core
0 performs a SET while core 1 performs a X0R, the GPIO output remains low throughout the clock cycle.

As well as being shared between cores, the GPIO registers are also shared between security domains. The Secure and
Non-secure SIO offer alternative views of the same GPIO registers, which are always mapped as GPIO function 5.
However, the Non-secure SIO can only access pins which are enabled in the GPIO Non-secure mask configured by the
ACCESSCTRL registers GPIO_NSMASKO and GPIO_NSMASKT1. The layout of the NSMASK registers matches the layout
of the SIO registers — for example, QSPI_SCK is bit 26 in both GPIO_HI_IN and GPIO_NSMASK1.

When a pin is not enabled in Non-secure code:
® writes to the corresponding GPIO registers from a Non-secure context have no effect
* reads from a Non-secure context return zeroes
® reads and writes from a Secure context function as usual using the Secure bank

The GPIO coprocessor port (Section 3.6.1) provides dedicated instructions for accessing the SIO GPIO registers from
the Cortex-M33 processors. This includes the ability to read and write 64 bits in a single operation.

3.1.4. Hardware Spinlocks

The SIO provides 32 hardware spinlocks, which can be used to manage mutually-exclusive access to shared software
resources. Each spinlock is a one-bit flag, mapped to a different address (from SPINLOCKO to SPINLOCK31). Software
interacts with each spinlock with one of the following operations:

® Read: Attempt to claim the lock. Read value is non-zero if the lock was successfully claimed, or zero if the lock had
already been claimed by a previous read.

® Write (any value): Release the lock. The next attempt to claim the lock will succeed.
If both cores try to claim the same lock on the same clock cycle, core 0 succeeds.

Generally software will acquire a lock by repeatedly polling the lock bit ("spinning” on the lock) until it is successfully
claimed. This is inefficient if the lock is held for long periods, so generally the spinlocks should be used to protect short
critical sections of higher-level primitives such as mutexes, semaphores and queues.

For debugging purposes, the current state of all 32 spinlocks can be observed via SPINLOCK_ST.

© NoOTE

RP2350 has separate spinlocks for Secure and Non-secure SIO banks because sharing these registers would allow
Non-secure code to deliberately starve Secure code that attempts to acquire a lock. See Section 3.1.1.

© NoTE

The processors on RP2350 support standard atomic/exclusive access instructions which, in concert with the global
exclusive monitor (Section 2.1.6), allow both cores to safely share variables in SRAM. The SIO spinlocks are still
included for compatibility with RP2040.

41

RP2350 Datasheet

O NoTE

Due to RP2350-E2, writes to new SIO registers above an offset of +0x180 alias the spinlocks, causing spurious lock
releases. The SDK by default uses atomic memory accesses to implement the hardware_sync_spin_lock API, as a
workaround on RP2350 A2.

3.1.5. Inter-processor FIFOs (Mailboxes)

The SIO contains two FIFOs for passing data, messages or ordered events between the two cores. Each FIFO is 32 bits
wide and four entries deep. One of the FIFOs can only be written by core 0 and read by core 1. The other can only be
written by core 1 and read by core 0.

Each core writes to its outgoing FIFO by writing to FIFO_WR and reads from its incoming FIFO by reading from FIFO_RD.
A status register, FIFO_ST, provides the following status signals:

® Incoming FIFO contains data (VLD).

® Qutgoing FIFO has room for more data (RDY).

® The incoming FIFO was read from while empty at some point in the past (ROE).
® The outgoing FIFO was written to while full at some point in the past (WOF).

Writing to the outgoing FIFO while full, or reading from the incoming FIFO while empty, does not affect the FIFO state.
The current contents and level of the FIFO is preserved. However, this does represent some loss of data or reception of
invalid data by the software accessing the FIFO, so a sticky error flag is raised (ROE or WOF).

The SIO has a FIFO IRQ output for each core to notify the core that it has received FIFO data. This is a core-local
interrupt, mapped to the same IRQ number on each core (SI0_IRQ_FIF0, interrupt number 25). Non-secure FIFO interrupts
use a separate interrupt line, (SI0_IRQ_FIFO_NS, interrupt number 27). It is not possible to interrupt on the opposite core’s
FIFO.

Each IRQ output is the logical OR of the VLD, ROE and WOF bits in that core’s FIFO_ST register: that is, the IRQ is asserted if
any of these three bits is high, and clears again when they are all low. To clear the ROE and WOF flags, write any value to
FIFO_ST. To clear the VLD flag, read data from the FIFO until it is empty.

If the corresponding interrupt line is enabled in the processor’s interrupt controller, the processor takes an interrupt
each time data appears in its FIFO, or if it has performed some invalid FIFO operation (read on empty, write on full).

© NoTE

ROE and WOF only become set if software misbehaves in some way. Generally, the interrupt handler triggers when data
appears in the FIFO, raising the VLD flag. Then, the interrupt handler clears the IRQ by reading data from the FIFO until
VLD goes low once more.

The inter-processor FIFOs and the Event signals are used by the bootrom (Chapter 5) wait_for_vector routine, where core
1 remains in a sleep state until it is woken, and provided with its initial stack pointer, entry point and vector table through
the FIFO.

© NoOTE

RP2350 has separate FIFOs and interrupts for Secure and Non-secure SIO banks. See Section 3.1.1

3.1.6. Doorbells

The doorbell registers raise an interrupt on the opposite core. There are 8 doorbell flags in each direction, combined into
a single doorbell interrupt per core. This is a core-local interrupt: the same interrupt number on each core (SI0_IRQ_BELL,
interrupt number 26) notifies that core of incoming doorbell interrupts.

3.1.SIO 42

RP2350 Datasheet
]

Whereas the mailbox FIFOs are used for cross-core events whose count and order is important, doorbells are used for
events which are accumulative (i.e. may post multiple times, but only answered once) and which can be responded to in
any order.

Writing a non-zero value to the DOORBELL_OUT_SET register raises the opposite core’s doorbell interrupt. The interrupt
remains raised until all bits are cleared. Generally, the opposite core enters its doorbell interrupt handler, reads its
DOORBELL_IN_CLR register to get the mask of active doorbell flags, and then writes back to acknowledge and clear the
interrupt.

The DOORBELL_IN_SET register allows a processor to ring its own doorbell. This is useful when the routine which rings
a doorbell can be scheduled on either core. Likewise, for symmetry, a processor can clear the opposite core’s doorbell
flags using the DOORBELL_OUT_CLR register: this is useful for setup code, but should be avoided in general because of
the potential for race conditions when acknowledging interrupts meant for the opposite core.

At any time, a core can read back its DOORBELL_OUT_SET or DOORBELL_OUT_CLR register (they return the same
result) to see the status of doorbell interrupts posted to the opposite core. Likewise, reading either DOORBELL_IN_SET
or DOORBELL_IN_CLR returns the status of doorbell interrupts posted to this core.

© NoOTE

RP2350 has separate per-core doorbell interrupt signals and doorbell registers for Secure and Non-secure SIO
banks. Non-secure doorbells are posted on SI0_IRQ_BELL_NS, interrupt number 28. See Section 3.1.1.

3.1.7. Integer Divider

RP2040’s memory-mapped integer divider peripheral is not present on RP2350, since the processors support divide
instructions. The address space previously allocated for the divider registers is now reserved.

3.1.8. RISC-V Platform Timer

This 64-bit timer is a standard peripheral described in the RISC-V privileged specification, usable equally by the Arm and
RISC-V processors on RP2350. It drives the per-core SI0_IRQ_MTIMECMP system-level interrupt (Section 3.2), as well as the
mip.mtip timer interrupt on the RISC-V processors.

There is a single 64-bit counter, shared between both cores. The low and high half can be accessed through the MTIME
and MTIMEH SIO registers. Use the following procedure to safely read the 64-bit time using 32-bit register accesses:

1. Read the upper half, MTIMEH.

2. Read the lower half, MTIME.

3. Read the upper half again.

4. Loop if the two upper-half reads returned different values.

This is similar to the procedure for reading RP2350 system timers (Section 12.8). The loop should only happen once,
when the timer is read at exactly the instant of a 32-bit rollover, and even this is only occasional. If you require constant-
time operation, you can instead zero the lower half when the two upper-half reads differ.

Timer interrupts are generated based on a per-core 64-bit time comparison value, accessed through the MTIMECMP
and MTIMECMPH SIO registers. Each core gets its own copy of these registers, accessed at the same address. The per-
core interrupt is asserted whenever the current time indicated in the MTIME registers is greater than or equal to that
core’s MTIMECMP. Use the following sequence to write a new 64-bit timer comparison value without causing spurious
interrupts:

1. Write all-ones to MTIMECMP (guaranteed greater than or equal to the old value, and the lower half of the target
value).

2. Write the upper half of the target value to MTIMECMPH (combined 64-bit value is still greater than or equal to the
target value).

3.1.SIO

43

RP2350 Datasheet

3.1.SIO

3. Write the lower half of the target value to MTIMECMP.

The RISC-V timer can count either ticks from the system-level tick generator (Section 8.5), or system clock cycles,
selected by the MTIME_CTRL register. Use a 1 microsecond time base for compatibility with most RISC-V software.

3.1.9. TMDS Encoder

Each core is equipped with an implementation of the TMDS encode algorithm described in chapter 3 of the DVI 1.0
specification. In general, the HSTX peripheral (Section 12.11) supports lower processor overhead for DVI-D output as
well as a wider range of pixel formats, but the SIO TMDS encoders are included for use with non-HSTX-capable GPIOs.

The TMDS_CTRL register allows configuration of a number of input pixel formats, from 16-bit RGB down to 1-bit
monochrome. Once the encoder has been set up, the processor writes 32 bits of colour data at a time to TMDS_WDATA,
and then reads TMDS data symbols from the output registers. Depending on the pixel format, there may be multiple
TMDS symbols read for each write to TMDS_WDATA. There are no stalls: encoding is limited entirely by the processor’s
load/store bandwidth, up to one 32-bit read or write per cycle per core.

To allow for framebuffer/scanbuffer resolution lower than the display resolution, the output registers have both peek
and pop aliases (e.g. TMIDS_PEEK_SINGLE and TMDS_POP_SINGLE). Reading either register advances the encoder’s DC
balance counter, but only the pop alias shifts the colour data in TMDS_WDATA so that multiple correctly-DC-balanced
TMDS symbols can be generated from the same input pixel.

The TMDS encoder peripherals are not duplicated over security domains. They are assigned to the Secure SIO at reset,
and can be reassigned to the Non-secure SIO using the PERI_NONSEC register.

3.1.10. Interpolator

Each core is equipped with two interpolators (INTERPO and INTERP1) which can accelerate tasks by combining certain pre-
configured operations into a single processor cycle. Intended for cases where the pre-configured operation repeats
many times, interpolators result in code which uses both fewer CPU cycles and fewer CPU registers in time-critical
sections.

The interpolators already accelerate audio operations within the SDK. Their flexible configuration makes it possible to
optimise many other tasks, including:

® quantization

e dithering

* table lookup address generation
* affine texture mapping

® decompression

® |inear feedback

44

RP2350 Datasheet

Figure 8. An
interpolator. The two
accumulator registers
and three base
registers have single-
cycle read/write
access from the
processor. The
interpolator is
organised into two
lanes, which perform
masking, shifting and
sign-extension
operations on the two
accumulators. This
produces three
possible results, by
adding the
intermediate
shift/mask values to
the three base
registers. From left to
right, the multiplexers
on each lane are
controlled by the
following flags in the
CTRL registers:
CROSS_RESULT,
CROSS_INPUT, SIGNED,
and ADD_RAW.

3.1.SIO

Base 0
Result 0 0 Si]
Accumulator 0 Right Shift ——» Mask 'gr-exten Result 0
fromMask
Result 1 1
Accumulator 1
Base 2 Result 2
Accumulator 0
Result 0 1 si -
Accumulator 1 Right Shift ——» Mask 'gn-exten Result 1
fromMask
Result 1 0
Base 1

The processor can write or read any interpolator register in one cycle, and the results are ready on the next cycle. The
processor can also perform an addition on one of the two accumulators ACCUM@ or ACCUMT by writing to the corresponding
ACCUMx_ADD register.

The three results are available in the read-only locations PEEK®, PEEK1, PEEK2. Reading from these locations does not
change the state of the interpolator. The results are also aliased at the locations P0OPe, POP1, POP2; reading from a POPx alias
returns the same result as the corresponding PEEKx, and simultaneously writes back the lane results to the
accumulators. Use the POPx aliases to advance the state of interpolator each time a result is read.

You can adjust interpolator behaviour with the following operational modes:
e fractional blending between two values
® clamping values to restrict them within a given range.

The following example shows a trivial example of popping a lane result to produce simple iterative feedback.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c Lines 11 - 23

11 void times_table() {

12 puts("9 times table:");

13

14 // Initialise lane @ on interp@ on this core
15 interp_config cfg = interp_default_config();
16 interp_set_config(interp®, 0, &cfg);

17

18 interp@->accum[@] = @;

19 interp@->base[B8] = 9;

20

21 for (int i = @; i < 10; ++i)

22 printf("%d\n", interp@->pop[@]);

23 }

3.1.10.1. Lane Operations

45

https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c#L11-L23

RP2350 Datasheet

Figure 9. Each lane of
each interpolator can
be configured to
perform mask, shift
and sign-extension on
one of the
accumulators. This is
fed into adders which
produce final results,
which may optionally
be fed back into the
accumulators with
each read. The
datapath can be
configured using a
handful of 32-bit
multiplexers. From left
to right, these are
controlled by the
following CTRL flags:
CROSS_RESULT,
CROSS_INPUT, SIGNED,
and ADD_RAW.

Result 0

Result 1

Accumulator 0

Accumulator 1

» Right Shift

—»

Mask

Add to BASE1
(for PEEKO/POPO)

Sign-extend
fromMask

Each lane performs these three operations, in sequence:

e Aright shift by CTRL_LANEx_SHIFT (O to 31 bits)

Add to BASE2
(forms part of
PEEK2/POP2)

® A mask of bits from CTRL_LANEx_MASK_LSB to CTRL_LANEx_MASK_MSB inclusive (each ranging from bit 0 to bit 31)

* A sign extension from the top of the mask, i.e. take bit CTRL_LANEx_MASK_MSB and OR it into all more-significant bits, if

CTRL_LANEx_SIGNED is set

For example, if:

® ACCUMO = @xdeadbeef

® (CTRL_LANE@_SHIFT =8

® (TRL_LANE@_MASK_LSB = 4

® (CTRL_LANE@_MASK_MSB =7

® (TRL_SIGNED =1

Then lane 0 would produce the following results at each stage:

® Right shift by 8 to produce 0x00deadbe

® Mask bits 7 to 4 to produce 0x00deadbe & 0x000000f0 = 0x000000b0

® Sign-extend up from bit 7 to produce oxffffffbo

In software:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c Lines 25 - 46

25 void moving_mask() {

26 interp_config cfg = interp_default_config();

27 interp@->accum[@] = 0x1234abcd;

28

29 puts("Masking:");

30 printf("ACCUMB = %08x\n", interp@->accum[0]);

31 for (int i = @; i < 8; ++i) {

32 // LSB, then MSB. These are inclusive, so 0,31 means "the entire 32 bit register"”

33 interp_config_set_mask(&cfg, i * 4, i * 4 + 3);

34 interp_set_config(interp®, 0, &cfg);

85} // Reading from ACCUMx_ADD returns the raw lane shift and mask value, without BASEx
added

36 printf("Nibble %d: %@8x\n", i, interp®@->add_raw[@]);

37 }

38

39 puts("Masking with sign extension:");

40 interp_config_set_signed(&cfg, true);

41 for (int i = @; i < 8; ++i) {

42 interp_config_set_mask(&cfg, i * 4, i * 4 + 3);

43 interp_set_config(interp@, 0, &cfg);

44 printf("Nibble %d: %@8x\n", i, interp@->add_raw[@]);

45 }

46 }

The above example should print the following:

3.1.SIO

46

https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c#L25-L46

RP2350 Datasheet
]

ACCUMB = 1234abcd

Nibble ©: ©000000d
Nibble 1: 600000CO
Nibble 2: 00000b0O
Nibble 3: 00002000
Nibble 4: 00040000
Nibble 5: 063060000
Nibble 6: 62000000
Nibble 7: 10000000
Masking with sign extension:
Nibble @: fffffffd
Nibble 1: ffffffce
Nibble 2: fffffbeo
Nibble 3: ffffa000
Nibble 4: 00040000
Nibble 5: 663060000
Nibble 6: 02000000
Nibble 7: 10000000

Changing the result and input multiplexers can create feedback between the accumulators. This is useful for audio
dithering.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c Lines 48 - 66

48 void cross_lanes() {

49 interp_config cfg = interp_default_config();
50 interp_config_set_cross_result(&cfg, true);
51 // ACCUMO gets lane 1 result:

52 interp_set_config(interp®, 0, &cfg);

53 // ACCUM1 gets lane 0 result:

54 interp_set_config(interp®, 1, &cfg);

55|

56 interp@->accum[0] = 123;

57 interp@->accum[1] = 456;

58 interp@->base[B8] = 1;

59 interp@->base[1] = 0;

60 puts("Lane result crossover:");

61 for (int i = @; i < 10; ++i) {

62 uint32_t peek® = interp@->peek[0];

63 uint32_t popl = interp@->pop[1];

64 printf("PEEK®, POP1: %d, %d\n", peek®, popl);
65 }

66 }

This should print the following :

PEEK@, POP1: 124, 456
PEEK@, POP1: 457, 124
PEEK@, POP1: 125, 457
PEEK@, POP1: 458, 125
PEEK@, POP1: 126, 458
PEEK@, POP1: 459, 126
PEEK@, POP1: 127, 459
PEEK@, POP1: 460, 127
PEEK@, POP1: 128, 460
PEEK®@, POP1: 461, 128

3.1.SIO a7

https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c#L48-L66

RP2350 Datasheet
]

3.1.SIO

3.1.10.2. Blend Mode

Blend mode is available on INTERP@ on each core, and is enabled by the CTRL_LANE@_BLEND control flag. It performs linear
interpolation, which we define as follows:

x = xo+ a(x; — xp), for0 < a<1
Where xg is the register BASE®, ¥ is the register BASE1, and a is a fractional value formed from the least significant 8 bits
of the lane 1 shift and mask value.
Blend mode differs from normal mode in the following ways:

® PEEKQ, POPO return the 8-bit alpha value (the 8 LSBs of the lane 1 shift and mask value), with zeroes in result bits 31
down to 24.

® PEEK1, POP1 return the linear interpolation between BASE@ and BASE1
® PEEK2, POP2 do not include lane 1 result in the addition (i.e. it is BASE2 + lane 0 shift and mask value)

The result of the linear interpolation is equal to BASEG when the alpha value is 0, and equal to BASE® + 255/256 * (BASE1 -
BASE0) when the alpha value is all-ones.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c Lines 68 - 87

68 void simple_blend1() {

69 puts("Simple blend 1:");

70

71 interp_config cfg = interp_default_config();
72 interp_config_set_blend(&cfg, true);

73 interp_set_config(interp@, 0, &cfg);

74

75 cfg = interp_default_config();

76 interp_set_config(interp®, 1, &cfg);

77

78 interp@->base[0] = 500;

79 interp@->base[1] = 1000;

80

81 for (int i = @; i <= 6; i++) {

82 // set fraction to value between 0 and 255
83 interp@->accum[1] = 255 * i / 6;

84 // = 500 + (1000 - 500) * i / 6;

85 printf("%d\n", (int) interp@->peek[1]);
86 }

87 }

This should print the following (note the 255/256 resulting in 998 not 1000):

500
582
666
748
832
914
998

CTRL_LANET_SIGNED controls whether BASE@ and BASE1 are sign-extended for this interpolation (this sign extension is required
because the interpolation produces an intermediate product value 40 bits in size). CTRL_LANE@_SIGNED continues to control
the sign extension of the lane 0 intermediate result in PEEK2, POP2 as normal.

48

https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c#L68-L87

RP2350 Datasheet
]

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c Lines 90 - 121

90 void print_simple_blend2_results(bool is_signed) {

91 // lane 1 signed flag controls whether base 6/1 are treated as signed or unsigned
92 interp_config cfg = interp_default_config();
93 interp_config_set_signed(&cfg, is_signed);
94 interp_set_config(interp®, 1, &cfg);

95

96 for (int i = @; 1 <= 6; i++) {

97 interp@->accum[1] = 255 * i / 6;

98 if (is_signed) {

99 printf("%d\n", (int) interp®->peek[1]);
100 } else {

101 printf("@x%@8x\n", (uint) interp®@->peek[1]);
102 }

103 }

104 }

105

106 void simple_blend2() {

107 puts("Simple blend 2:");

108

109 interp_config cfg = interp_default_config();
110 interp_config_set_blend(&cfg, true);

111 interp_set_config(interp8, 0, &cfg);

112

113 interp@->base[B8] = (uint32_t) -1000;

114 interp@->base[1] = 1000;

115

116 puts("signed:");

117 print_simple_blend2_results(true);

118

119 puts("unsigned:");

120 print_simple_blend2_results(false);

121 }

This should print the following:

signed:
-1000

-672

-336

-8

328

656

992
unsigned:
oxfffffc18
oxd5fffd6e
Oxaafffebd
ox80fffff8
0x56000148
0x2c000290
0x010003e0

Finally, in blend mode when using the BASE_1AND® register to send a 16-bit value to each of BASE@ and BASE1 with a single
32-bit write, the sign-extension of these 16-bit values to full 32-bit values during the write is controlled by
CTRL_LANET_SIGNED for both bases, as opposed to non-blend-mode operation, where CTRL_LANE@_SIGNED affects extension
into BASE@ and CTRL_LANE1_SIGNED affects extension into BASE1.

3.1.SIO 49

https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c#L90-L121

RP2350 Datasheet

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c Lines 124 - 145

124 void simple_blend3() {

125 puts("Simple blend 3:");

126

127 interp_config cfg = interp_default_config();
128 interp_config_set_blend(&cfg, true);

129 interp_set_config(interp@, 0, &cfg);

130

131 cfg = interp_default_config();

132 interp_set_config(interp®, 1, &cfg);

133

134 interp@->accum[1] = 128;

135 interp@->base@1 = 0x30005000;

136 printf("0x%08x\n", (int) interp@->peek[1]);
137 interp@->based1 = 0xe000f000;

138 printf("0x%08x\n", (int) interp@->peek[1]);
139

140 interp_config_set_signed(&cfg, true);

141 interp_set_config(interp®, 1, &cfg);

142

143 interp@->base@1 = 0xe000f000;

144 printf("0x%08x\n", (int) interp@->peek[1]);
145 }

This should print the following:

0x00004000
0x0000e800
oxffffe800

3.1.10.3. Clamp Mode

Clamp mode is available on INTERP1 on each core. To enable clamp mode, set the CTRL_LANE@_CLAMP control flag to high. In
clamp mode, the PEEK@/POPO result is the lane value (shifted, masked, sign-extended Accung) clamped between BASE@ and
BASE1. In other words, if the lane value is less than BASE®, a value of BASE® is produced; if greater than BASE1, a value of BASE1
is produced; otherwise, the value passes through. No addition is performed. The signedness of these comparisons is

controlled by the CTRL_LANE@_SIGNED flag.

Other than this, the interpolator behaves the same as in normal mode.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c Lines 193 - 211

193 void clamp() {

194 puts("Clamp:");

195 interp_config cfg = interp_default_config();

196 interp_config_set_clamp(&cfg, true);

197 interp_config_set_shift(&cfg, 2);

198 // set mask according to new position of sign bit..
199 interp_config_set_mask(&cfg, 0, 29);

200 // ...so that the shifted value is correctly sign extended
201 interp_config_set_signed(&cfg, true);

202 interp_set_config(interp1, 0, &cfg);

203

204 interpl->base[8] = 0;

205 interpl->base[1] = 255;

206

207 for (int i = -1024; i <= 1024; i += 256) {

3.1.SIO

50

https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c#L124-L145
https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c#L193-L211

RP2350 Datasheet

208
209
210
211 }

interpl->accum[0] = i;
printf("%d\t%d\n", i, (int) interpl->peek[8]);

This should print the following:

-1024
-768
=312
-256

256
512
768
1024

0o 0 0 ®

128
192
255

3.1.10.4. Sample Use Case: Linear Interpolation

Linear interpolation combines blend mode with other interpolator functionality. In this example, AccuMe tracks a fixed-
point (integer/fraction) position within a list of values to be interpolated. Lane 0 is used to produce an address into the
value array for the integer part of the position. The fractional part of the position is shifted to produce a value from 0-
255 for the blend. The blend is performed between two consecutive values in the array.

Finally the fractional position is updated via a single write to ACCUM@_ADD_RAW.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c Lines 147 - 191

147 void linear_interpolation() {

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

puts("Linear interpolation:");
const int uv_fractional_bits = 12;

// for lane @

// shift and mask XXXX XXXX XXXX XXXX XXXX FFFF FFFF FFFF (accum @)
// to 0000 0000 POOX XXXX XXXX XXXX XXXX XXXO

// i.e. non fractional part times 2 (for uintl6_t)

interp_config cfg = interp_default_config();
interp_config_set_shift(&cfg, uv_fractional_bits - 1);
interp_config_set_mask(&cfg, 1, 32 - uv_fractional_bits);
interp_config_set_blend(&cfg, true);

interp_set_config(interp@, 0, &cfg);

// for lane 1
// shift XXXX XXXX XXXX XXXX XXXX FFFF FFFF FFFF (accum @ via cross input)
// to 0000 XXXX XXXX XXXX XXXX FFFF FFFF FFFF

cfg = interp_default_config();

interp_config_set_shift(&cfg, uv_fractional_bits - 8);
interp_config_set_signed(&cfg, true);
interp_config_set_cross_input(&cfg, true); // signed blending
interp_set_config(interp®, 1, &cfg);

int16_t samples[] = {0, 10, -20, -1000, 500};

// step is 1/4 in our fractional representation
uint step = (1 << uv_fractional_bits) / 4;

interp@->accum[@] = @; // initial sample_offset;

3.1.SIO

51

https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c#L147-L191

RP2350 Datasheet
]

177 interp@->base[2] = (uintptr_t) samples;

178 for (int 1 = 0; i < 16; i++) {

179 // result2 = samples + (lane@ raw result)

180 // i.e. ptr to the first of two samples to blend between
181 int16_t *sample_pair = (int16_t *) interp@->peek[2];
182 interp@->base[@B] = sample_pair[0];

183 interp@->base[1] = sample_pair[1];

184 uint32_t peekl = interp@->peek[1];

185 uint32_t add_rawl = interp@->add_raw[1];

186 printf("%d\t(%d%% between %d and %d)\n", (int) peekT,
187 100 * (add_rawl & @xff) / exff,

188 sample_pair[@], sample_pair[1]);

189 interp@->add_raw[0] = step;

190 }

191 }

This should print the following:

(8% between 0 and 10)

(25% between @ and 10)

(50% between @ and 10)

(75% between @ and 10)
0 (8% between 10 and -20)

(25% between 10 and -20)
=5 (50% between 10 and -20)
-13 (75% between 10 and -20)
-20 (8% between -20 and -1000)
-265 (25% between -20 and -1000)
-510 (50% between -206 and -1000)
-755 (75% between -206 and -1000)
-1000 (0% between -1000 and 500)
-625 (25% between -1000 and 500)
-250 (50% between -1000 and 560)
125 (75% between -1000 and 500)

N =2 N o N e

This method is used for fast approximate audio upscaling in the SDK.

3.1.10.5. Sample Use Case: Simple Affine Texture Mapping

Simple affine texture mapping can be implemented by using fixed-point arithmetic for texture coordinates, and stepping
a fixed amount in each coordinate for every pixel in a scanline. The integer parts of the texture coordinates form an
address into the texture. Reading from POP2 adds the offset to the texture base pointer. The processor loads the
resulting address to sample a pixel colour from the texture.

By using two lanes, all three base values, and the CTRL_LANEx_ADD_RAW flag, you can use the interpolator to reduce an
expensive CPU operation to a single cycle iteration.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c Lines 214 - 272

214 void texture_mapping_setup(uint8_t *texture, uint texture_width_bits, uint
texture_height_bits,

215 uint uv_fractional_bits) {

216 interp_config cfg = interp_default_config();

217 // set add_raw flag to use raw (un-shifted and un-masked) lane accumulator value when
adding

218 // it to the the lane base to make the lane result

219 interp_config_set_add_raw(&cfg, true);

220 interp_config_set_shift(&cfg, uv_fractional_bits);

I
3.1.SIO 52

https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c#L214-L272

RP2350 Datasheet
]

221 interp_config_set_mask(&cfg, 0, texture_width_bits - 1);

222 interp_set_config(interp@, 0, &cfg);

223

224 interp_config_set_shift(&cfg, uv_fractional_bits - texture_width_bits);

225 interp_config_set_mask(&cfg, texture_width_bits, texture_width_bits +
texture_height_bits - 1);

226 interp_set_config(interp®, 1, &cfg);

227

228 interp@->base[2] = (uintptr_t) texture;

229 }

230

231 void texture_mapped_span(uint8_t *output, uint32_t u, uint32_t v, uint32_t du, uint32_t dv,
uint count) {

232 // u, v are texture coordinates in fixed point with uv_fractional_bits fractional bits

233 // du, dv are texture coordinate steps across the span in same fixed point.

234 interp@->accum[@] = u;

235 interp@->base[08] = du;

236 interp@->accum[1] = v;

237 interp@->base[1] = dv;

238 for (uint i = @; i < count; i++) {

239 // equivalent to

240 // uint32_t sm_result@ = (accum@ >> uv_fractional_bits) & (1 << (texture_width_bits -
1);

241 // uint32_t sm_resultl = (accuml >> uv_fractional_bits) & (1 << (texture_height_bits -
1);

242 // uint8_t *address = texture + sm_result® + (sm_resultl << texture_width_bits);

243 // output[i] = *address;

244 // accum@ = du + accum@;

245 // accum1 = dv + accuml;

246

247 // result2 is the texture address for the current pixel;

248 // popping the result advances to the next iteration

249 output[i] = *(uint8_t *) interp®->pop[2];

250 }

251 }

252

253 void texture_mapping() {

254 puts("Affine Texture mapping (with texture wrap):");

255

256 uint8_t texture[] = {

257 0x008, 0x01, 0x02, 0x03,

258 0x10, Ox11, 0x12, 0x13,

259 0x20, 0x21, 0x22, 0x23,

260 0x30, 0x31, 0x32, 0x33,

261 };

262 // 4x4 texture

263 texture_mapping_setup(texture, 2, 2, 16);

264 uint8_t output[12];

265 uint32_t du = 65536 / 2; // step of 1/2

266 uint32_t dv = 65536 / 3; // step of 1/3

267 texture_mapped_span(output, 0, @, du, dv, 12);

268

269 for (uint i = 0; i < 12; i++) {

270 printf("ex%@2x\n", output[i]);

271 }

272 }

This should print the following:

3.1.SIO 53

RP2350 Datasheet

3.1.11. List of Registers

0x00
0x00
0x01
0x01
0x12
0x12
0x13
0x23
0x20
0x20
0x31
0x31

The SIO registers start at a base address of 0xd0000000 (defined as SIO_BASE in SDK).

Table 16. List of SIO
registers

Offset

Name

Info

0x000

CPUID

Processor core identifier

0x004

GPIO_IN

Input value for GPI00...31.

In the Non-secure SIO, Secure-only GPIOs (as per ACCESSCTRL)
appear as zero.

0x008

GPIO_HI_IN

Input value on GP1032...47, QSPI 10s and USB pins

In the Non-secure SIO, Secure-only GPIOs (as per ACCESSCTRL)
appear as zero.

0x010

GPIO_OUT

GPI00...31 output value

0x014

GPIO_HI_OUT

Output value for GPI032...47, QSPI I0s and USB pins.

Write to set output level (1/0 — high/low). Reading back gives
the last value written, NOT the input value from the pins. If core 0
and core 1 both write to GPIO_HI_OUT simultaneously (orto a
SET/CLR/XOR alias), the result is as though the write from core 0
took place first, and the write from core 1 was then applied to
that intermediate result.

In the Non-secure SIO, Secure-only GPIOs (as per ACCESSCTRL)
ignore writes, and their output status reads back as zero. This is
also true for SET/CLR/XOR aliases of this register.

0x018

GPIO_OUT_SET

GPI00...37 output value set

0x01c

GPIO_HI_OUT_SET

Output value set for GPI032..47, QSPI 10s and USB pins.
Perform an atomic bit-set on GPIO_HI_OUT, i.e. GPI0_HI_OUT |=
wdata

0x020

GPIO_OUT_CLR

GPI00...31 output value clear

0x024

GPIO_HI_OUT_CLR

Output value clear for GPI032..47, QSPI 10s and USB pins.
Perform an atomic bit-clear on GPIO_HI_OUT, i.e. GPI0_HI_OUT &=
~wdata

0x028

GPIO_OUT_XOR

GPI00...31 output value XOR

3.1.SIO

54

RP2350 Datasheet

Offset Name Info

0x02c GPIO_HI_OUT_XOR Output value XOR for GP1032..47, QSPI I0s and USB pins.
Perform an atomic bitwise XOR on GPIO_HI_OUT, i.e. GPI0O_HI_OUT
A= wdata

0x030 GPIO_OE GPI00...31 output enable

0x034 GPIO_HI_OE Output enable value for GP1032...47, QSPI I10s and USB pins.
Write output enable (1/0 — output/input). Reading back gives
the last value written. If core 0 and core 1 both write to
GPIO_HI_OE simultaneously (or to a SET/CLR/XOR alias), the
result is as though the write from core 0 took place first, and the
write from core 1 was then applied to that intermediate result.
In the Non-secure SIO, Secure-only GPIOs (as per ACCESSCTRL)
ignore writes, and their output status reads back as zero. This is
also true for SET/CLR/XOR aliases of this register.

0x038 GPIO_OE_SET GPI00...31 output enable set

0x03c GPIO_HI_OE_SET Output enable set for GPI032...47, QSPI 10s and USB pins.
Perform an atomic bit-set on GPIO_HI_OE, i.e. GPI0_HI_OE |= wdata

0x040 GPIO_OE_CLR GPI00...31 output enable clear

0x044 GPIO_HI_OE_CLR Output enable clear for GP1032...47, QSPI 10s and USB pins.
Perform an atomic bit-clear on GPIO_HI_OE, i.e. GPI0_HI_OE &=
~wdata

0x048 GPIO_OE_XOR GPI00...31 output enable XOR

0x04c GPIO_HI_OE_XOR Output enable XOR for GP1032...47, QSPI I0s and USB pins.
Perform an atomic bitwise XOR on GPIO_HI_OE, i.e. GPI0_HI_OE A=
wdata

0x050 FIFO_ST Status register for inter-core FIFOs (mailboxes).

0x054 FIFO_WR Write access to this core’s TX FIFO

0x058 FIFO_RD Read access to this core’s RX FIFO

0x05¢ SPINLOCK_ST Spinlock state

0x080 INTERPO_ACCUMO Read/write access to accumulator 0

0x084 INTERPO_ACCUM1 Read/write access to accumulator 1

0x088 INTERPO_BASEO Read/write access to BASEQ register.

0x08c INTERPO_BASE1 Read/write access to BASET register.

0x090 INTERPO_BASE2 Read/write access to BASE2 register.

0x094 INTERPO_POP_LANEO Read LANEDO result, and simultaneously write lane results to both
accumulators (POP).

0x098 INTERPO_POP_LANE1 Read LANET result, and simultaneously write lane results to both
accumulators (POP).

0x09c INTERPO_POP_FULL Read FULL result, and simultaneously write lane results to both
accumulators (POP).

0x0a0 INTERPO_PEEK_LANEQ Read LANEQO result, without altering any internal state (PEEK).

0x0a4 INTERPO_PEEK_LANE1 Read LANE1 result, without altering any internal state (PEEK).

3.1.SIO

55

RP2350 Datasheet
]

3.1.SIO

Offset Name Info

0x0a8 INTERPO_PEEK_FULL Read FULL result, without altering any internal state (PEEK).

0x0ac INTERPO_CTRL_LANEOQ Control register for lane 0

0x0b0 INTERPO_CTRL_LANE1 Control register for lane 1

0x0b4 INTERPO_ACCUMO_ADD Values written here are atomically added to ACCUMO

0x0b8 INTERPO_ACCUM1_ADD Values written here are atomically added to ACCUM1

0x0bc INTERPO_BASE_TANDO On write, the lower 16 bits go to BASEOQ, upper bits to BASE1
simultaneously.

0x0c0 INTERP1_ACCUMO Read/write access to accumulator 0

0x0c4 INTERP1_ACCUM1 Read/write access to accumulator 1

0x0c8 INTERP1_BASEO Read/write access to BASEQ register.

0x0cc INTERP1_BASE1 Read/write access to BASET register.

0x0d0 INTERP1_BASE2 Read/write access to BASE2 register.

0x0d4 INTERP1_POP_LANEO Read LANEDO result, and simultaneously write lane results to both
accumulators (POP).

0x0d8 INTERP1_POP_LANE1 Read LANET1 result, and simultaneously write lane results to both
accumulators (POP).

0x0dc INTERP1_POP_FULL Read FULL result, and simultaneously write lane results to both
accumulators (POP).

0x0e0 INTERP1_PEEK_LANEOQ Read LANEQO result, without altering any internal state (PEEK).

0x0e4 INTERP1_PEEK_LANE1 Read LANE1 result, without altering any internal state (PEEK).

0x0e8 INTERP1_PEEK_FULL Read FULL result, without altering any internal state (PEEK).

0x0ec INTERP1_CTRL_LANEO Control register for lane 0

0x0f0 INTERP1_CTRL_LANE1 Control register for lane 1

0x0f4 INTERP1_ACCUMO_ADD Values written here are atomically added to ACCUMO

0x0f8 INTERP1_ACCUM1_ADD Values written here are atomically added to ACCUM1

0x0fc INTERP1_BASE_TANDO On write, the lower 16 bits go to BASEOQ, upper bits to BASE1
simultaneously.

0x100 SPINLOCKO Spinlock register 0

0x104 SPINLOCK1 Spinlock register 1

0x108 SPINLOCK2 Spinlock register 2

0x10c SPINLOCK3 Spinlock register 3

0x110 SPINLOCK4 Spinlock register 4

0x114 SPINLOCK5 Spinlock register 5

0x118 SPINLOCK6 Spinlock register 6

0x11c SPINLOCK7 Spinlock register 7

0x120 SPINLOCK8 Spinlock register 8

0x124 SPINLOCK9 Spinlock register 9

56

RP2350 Datasheet
]

3.1.SIO

Offset Name Info

0x128 SPINLOCK10 Spinlock register 10
0x12c SPINLOCK11 Spinlock register 11
0x130 SPINLOCK12 Spinlock register 12
0x134 SPINLOCK13 Spinlock register 13
0x138 SPINLOCK14 Spinlock register 14
0x13c SPINLOCK15 Spinlock register 15
0x140 SPINLOCK16 Spinlock register 16
0x144 SPINLOCK17 Spinlock register 17
0x148 SPINLOCK18 Spinlock register 18
O0x14c SPINLOCK19 Spinlock register 19
0x150 SPINLOCK?20 Spinlock register 20
0x154 SPINLOCK21 Spinlock register 21
0x158 SPINLOCK22 Spinlock register 22
0x15¢ SPINLOCK23 Spinlock register 23
0x160 SPINLOCK?24 Spinlock register 24
0x164 SPINLOCK25 Spinlock register 25
0x168 SPINLOCK26 Spinlock register 26
Ox16¢ SPINLOCK27 Spinlock register 27
0x170 SPINLOCK?28 Spinlock register 28
0x174 SPINLOCK?29 Spinlock register 29
0x178 SPINLOCK30 Spinlock register 30
0x17c SPINLOCK31 Spinlock register 31
0x180 DOORBELL_OUT_SET Trigger a doorbell interrupt on the opposite core.

Write 1 to a bit to set the corresponding bit in DOORBELL_IN on
the opposite core. This raises the opposite core’s doorbell

interrupt.

Read to get the status of the doorbells currently asserted on the
opposite core. This is equivalent to that core reading its own

DOORBELL_IN status.

57

RP2350 Datasheet

Offset

Name

Info

0x184

DOORBELL_OUT_CLR

Clear doorbells which have been posted to the opposite core.
This register is intended for debugging and initialisation
purposes.

Writing 1 to a bit in DOORBELL_OUT_CLR clears the
corresponding bit in DOORBELL_IN on the opposite core.
Clearing all bits will cause that core’s doorbell interrupt to
deassert. Since the usual order of events is for software to send
events using DOORBELL_OUT_SET, and acknowledge incoming
events by writing to DOORBELL_IN_CLR, this register should be
used with caution to avoid race conditions.

Reading returns the status of the doorbells currently asserted on
the other core, i.e. is equivalent to that core reading its own
DOORBELL_IN status.

0x188

DOORBELL_IN_SET

Write 1s to trigger doorbell interrupts on this core. Read to get
status of doorbells currently asserted on this core.

0x18c

DOORBELL_IN_CLR

Check and acknowledge doorbells posted to this core. This
core’s doorbell interrupt is asserted when any bit in this register
is 1.

Write 1 to each bit to clear that bit. The doorbell interrupt
deasserts once all bits are cleared. Read to get status of
doorbells currently asserted on this core.

0x190

PERI_NONSEC

Detach certain core-local peripherals from Secure SIO, and
attach them to Non-secure SIO, so that Non-secure software can
use them. Attempting to access one of these peripherals from
the Secure SIO when it is attached to the Non-secure SIO, or vice
versa, will generate a bus error.

This register is per-core, and is only present on the Secure SIO.

Most SIO hardware is duplicated across the Secure and Non-
secure SIO, so is not listed in this register.

0x1a0

RISCV_SOFTIRQ

Control the assertion of the standard software interrupt
(MIP.MSIP) on the RISC-V cores.

Unlike the RISC-V timer, this interrupt is not routed to a normal
system-level interrupt line, so can not be used by the Arm cores.

It is safe for both cores to write to this register on the same
cycle. The set/clear effect is accumulated across both cores,
and then applied. If a flag is both set and cleared on the same
cycle, only the set takes effect.

3.1.SIO

58

RP2350 Datasheet
]

Offset Name Info

OxTa4 MTIME_CTRL Control register for the RISC-V 64-bit Machine-mode timer. This
timer is only present in the Secure SIO, so is only accessible to
an Arm core in Secure mode or a RISC-V core in Machine mode.

Note whilst this timer follows the RISC-V privileged specification,
it is equally usable by the Arm cores. The interrupts are routed to
normal system-level interrupt lines as well as to the MIP.MTIP
inputs on the RISC-V cores.

0x1b0 MTIME Read/write access to the high half of RISC-V Machine-mode
timer. This register is shared between both cores. If both cores
write on the same cycle, core 1 takes precedence.

0x1b4 MTIMEH Read/write access to the high half of RISC-V Machine-mode
timer. This register is shared between both cores. If both cores
write on the same cycle, core 1 takes precedence.

0x1b8 MTIMECMP Low half of RISC-V Machine-mode timer comparator. This
register is core-local, i.e., each core gets a copy of this register,
with the comparison result routed to its own interrupt line.

The timer interrupt is asserted whenever MTIME is greater than
or equal to MTIMECMP. This comparison is unsigned, and
performed on the full 64-bit values.

0x1bc MTIMECMPH High half of RISC-V Machine-mode timer comparator. This
register is core-local.

The timer interrupt is asserted whenever MTIME is greater than
or equal to MTIMECMP. This comparison is unsigned, and
performed on the full 64-bit values.

0x1c0 TMDS_CTRL Control register for TMDS encoder.
Ox1c4 TMDS_WDATA Write-only access to the TMDS colour data register.
0x1c8 TMDS_PEEK_SINGLE Get the encoding of one pixel's worth of colour data, packed into

a 32-bit value (3x10-bit symbols).

The PEEK alias does not shift the colour register when read, but
still advances the running DC balance state of each encoder.
This is useful for pixel doubling.

OxT1cc TMDS_POP_SINGLE Get the encoding of one pixel's worth of colour data, packed into
a 32-bit value. The packing is 5 chunks of 3 lanes times 2 bits (30
bits total). Each chunk contains two bits of a TMDS symbol per
lane. This format is intended for shifting out with the HSTX
peripheral on RP2350.

The POP alias shifts the colour register when read, as well as
advancing the running DC balance state of each encoder.

3.1.SIO 59

RP2350 Datasheet
]

Offset Name Info

0x1d0 TMDS_PEEK_DOUBLE_LO Get lane 0 of the encoding of two pixels' worth of colour data.
Two 10-bit TMDS symbols are packed at the bottom of a 32-bit
word.

The PEEK alias does not shift the colour register when read, but
still advances the lane 0 DC balance state. This is useful if all 3
lanes' worth of encode are to be read at once, rather than
processing the entire scanline for one lane before moving to the
next lane.

0x1d4 TMDS_POP_DOUBLE_LO Get lane 0 of the encoding of two pixels' worth of colour data.
Two 10-bit TMDS symbols are packed at the bottom of a 32-bit
word.

The POP alias shifts the colour register when read, according to
the values of PIX_SHIFT and PIX2_NOSHIFT.

0x1d8 TMDS_PEEK_DOUBLE_L1 Get lane 1 of the encoding of two pixels' worth of colour data.
Two 10-bit TMDS symbols are packed at the bottom of a 32-bit
word.

The PEEK alias does not shift the colour register when read, but
still advances the lane 1 DC balance state. This is useful if all 3
lanes' worth of encode are to be read at once, rather than
processing the entire scanline for one lane before moving to the
next lane.

0x1dc TMDS_POP_DOUBLE_L1 Get lane 1 of the encoding of two pixels' worth of colour data.
Two 10-bit TMDS symbols are packed at the bottom of a 32-bit
word.

The POP alias shifts the colour register when read, according to
the values of PIX_SHIFT and PIX2_NOSHIFT.

0x1e0 TMDS_PEEK_DOUBLE_L2 Get lane 2 of the encoding of two pixels' worth of colour data.
Two 10-bit TMDS symbols are packed at the bottom of a 32-bit
word.

The PEEK alias does not shift the colour register when read, but
still advances the lane 2 DC balance state. This is useful if all 3
lanes' worth of encode are to be read at once, rather than
processing the entire scanline for one lane before moving to the
next lane.

OxTed TMDS_POP_DOUBLE_L2 Get lane 2 of the encoding of two pixels' worth of colour data.
Two 10-bit TMDS symbols are packed at the bottom of a 32-bit
word.

The POP alias shifts the colour register when read, according to
the values of PIX_SHIFT and PIX2_NOSHIFT.

S10: CPUID Register
Offset: 0x000

Description

Processor core identifier

3.1.SIO 60

RP2350 Datasheet

Tab{e 17. CPUID Bits Description Type Reset
Register
31:0 Value is 0 when read from processor core 0, and 1 when read from processor | RO -
core 1.
SI0: GPIO_IN Register
Offset: 0x004
Table 18. GPIO_IN Bits Description Type Reset
Register
31:0 Input value for GPI00...31. RO 0x00000000

In the Non-secure SIO, Secure-only GPIOs (as per ACCESSCTRL) appear as
zero.

SI0: GPIO_HL_IN Register
Offset: 0x008

Description

Input value on GPI032...47, QSPI 10s and USB pins

In the Non-secure SIO, Secure-only GPIOs (as per ACCESSCTRL) appear as zero.

Table 19. GPIO_HI_IN

Register Bits Description Type Reset

31:28 QSPI_SD: Input value on QSPI SDO (MOSI), SD1 (MIS0), SD2 and SD3 pins RO 0x0

27 QSPI_CSN: Input value on QSPI CSn pin RO 0x0

26 QSPI_SCK: Input value on QSPI SCK pin RO 0x0

25 USB_DM: Input value on USB D- pin RO 0x0

24 USB_DP: Input value on USB D+ pin RO 0x0
23:16 Reserved. = =

15:0 GPIO: Input value on GP1032...47 RO 0x0000

SI0: GPIO_OUT Register
Offset: 0x010

Description

GPI00...31 output value

3.1.SIO 61

RP2350 Datasheet

Table 20. GPIO_OUT

) Bits Description Type Reset
Register

31:0 Set output level (1/0 — high/low) for GPI00...31. Reading back gives the last |RW 0x00000000
value written, NOT the input value from the pins.

If core 0 and core 1 both write to GPIO_OUT simultaneously (or to a
SET/CLR/XOR alias), the result is as though the write from core 0 took place
first, and the write from core 1 was then applied to that intermediate result.

In the Non-secure SIO, Secure-only GPIOs (as per ACCESSCTRL) ignore writes,
and their output status reads back as zero. This is also true for SET/CLR/XOR
aliases of this register.

SI0: GPIO_HI_OUT Register
Offset: 0x014

Description
Output value for GP1032...47, QSPI I0s and USB pins.
Write to set output level (1/0 — high/low). Reading back gives the last value written, NOT the input value from the pins.

If core 0 and core 1 both write to GPIO_HI_OUT simultaneously (or to a SET/CLR/XOR alias), the result is as though the
write from core 0 took place first, and the write from core 1 was then applied to that intermediate result.

In the Non-secure SIO, Secure-only GPIOs (as per ACCESSCTRL) ignore writes, and their output status reads back as
zero. This is also true for SET/CLR/XOR aliases of this register.

Table 21.

) Bits Description Type Reset
GPIO_HI_OUT Register

31:28 | QSPI_SD: Output value for QSPI SDO (MOSI), SD1 (MISO), SD2 and SD3 pins RW 0x0

27 QSPI_CSN: Output value for QSPI CSn pin RW 0x0
26 QSPI_SCK: Output value for QSPI SCK pin RW 0x0
25 USB_DM: Output value for USB D- pin RW 0x0
24 USB_DP: Output value for USB D+ pin RW 0x0

23:16 Reserved. - -

15:0 GPIO: Output value for GP1032...47 RW 0x0000

SI0: GPIO_OUT_SET Register
Offset: 0x018

Description

GPI00...31 output value set

Table 22. Bits Description Type Reset
GPIO_OUT_SET
Register 31:0 Perform an atomic bit-set on GPIO_OUT, i.e. 6P10_0UT |= wdata wo 0x00000000

SI10: GPIO_HI_OUT_SET Register
Offset: 0x01c

Description

Output value set for GPI032..47, QSPI 10s and USB pins.
Perform an atomic bit-set on GPIO_HI_OUT, i.e. GPI0_HI_OUT |= wdata

3.1.SIO 62

RP2350 Datasheet
]

Table 23. Bits Description Type Reset
GPIO_HI_OUT_SET
Register 31:28 QSPI_SD WO 0x0
27 QSPI_CSN WO 0x0
26 QSPI_SCK WO 0x0
25 USB_DM WO 0x0
24 USB_DP WO 0x0
23:16 Reserved. - -
15:.0 GPIO WO 0x0000
SI0: GPIO_OUT_CLR Register
Offset: 0x020
Description
GPI00...31 output value clear
Table 24. A S
GPIO.OUT.CLR Bits Description Type Reset
Register 31:0 Perform an atomic bit-clear on GPIO_OUT, i.e. 6PI0_0UT &= ~wdata WO 0x00000000
SI10: GPIO_HI_OUT_CLR Register
Offset: 0x024
Description
Output value clear for GPI032..47, QSPI 10s and USB pins.
Perform an atomic bit-clear on GPIO_HI_OUT, i.e. GPI0_HI_OUT &= ~wdata
Table 25. Bits Description Type Reset
GPIO_HI_OUT_CLR
Register 31:28 QSPI_SD WO 0x0
27 QSPI_CSN WO 0x0
26 QSPI_SCK WO 0x0
25 USB_DM WO 0x0
24 USB_DP WO 0x0
23:16 Reserved. - -
15:.0 GPIO WO 0x0000
SI10: GPIO_OUT_XOR Register
Offset: 0x028
Description
GPI100...31 output value XOR
Table 26. Bits Description Type Reset
GPIO_OUT_XOR
Register 31:0 Perform an atomic bitwise XOR on GPIO_OUT, i.e. GPI0_OUT A= wdata e} 0x00000000

SI0: GPIO_HI_OUT_XOR Register

Offset: 0x02¢c

3.1.SIO 63

RP2350 Datasheet

Description

Output value XOR for GPI032..47, QSPI I0s and USB pins.
Perform an atomic bitwise XOR on GPIO_HI_OUT, i.e. GPIO_HI_OUT "= wdata

;l/?g_ffbur_xm Bits aanier Type Reset
Fegister 31:28 QSPI_SD WO OxD0

27 QSPI_CSN WO 0x0

26 QSPI_SCK WO 0x0

25 USB_DM WO 0x0

24 USB_DP WO 0x0

23:16 Reserved. i :

15:0 GPIO WO 0x0000

SI10: GPIO_OE Register
Offset: 0x030

Description

GPI100...31 output enable

Table 28. GPIO_OE

) Bits Description Type Reset
Register

31:0 Set output enable (1/0 — output/input) for GPI00..31. Reading back gives the | RW 0x00000000
last value written.

If core 0 and core 1 both write to GPIO_OE simultaneously (or to a
SET/CLR/XOR alias), the result is as though the write from core 0 took place
first, and the write from core 1 was then applied to that intermediate result.

In the Non-secure SIO, Secure-only GPIOs (as per ACCESSCTRL) ignore writes,
and their output status reads back as zero. This is also true for SET/CLR/XOR
aliases of this register.

S10: GPIO_HI_OE Register
Offset: 0x034

Description
Output enable value for GP1032...47, QSPI 10s and USB pins.
Write output enable (1/0 — output/input). Reading back gives the last value written. If core 0 and core 1 both write to

GPIO_HI_OE simultaneously (or to a SET/CLR/XOR alias), the result is as though the write from core 0 took place first,
and the write from core 1 was then applied to that intermediate result.

In the Non-secure SIO, Secure-only GPIOs (as per ACCESSCTRL) ignore writes, and their output status reads back as
zero. This is also true for SET/CLR/XOR aliases of this register.

Table 29. GPIO_HI_OE

) Bits Description Type Reset
Register
31:28 QSPI_SD: Output enable value for QSPI SDO (MOSI), SD1 (MIS0), SD2 and SD3 | RW 0x0
pins
27 QSPI_CSN: Output enable value for QSPI CSn pin RW 0x0
26 QSPI_SCK: Output enable value for QSPI SCK pin RW 0x0
25 USB_DM: Output enable value for USB D- pin RW 0x0

3.1.SIO 64

RP2350 Datasheet
]

Table 30.
GPIO_OE_SET Register

Table 31.
GPIO_HI_OE_SET

Register

Table 32.
GPIO_OE_CLR Register

3.1.SIO

Bits Description

Type

Reset

24 USB_DP: Output enable value for USB D+ pin

RW

0x0

23:16 Reserved.

15:0 GPIO: Output enable value for GP1032...47

RW

0x0000

SI0: GPIO_OE_SET Register
Offset: 0x038

Description

GPI00...31 output enable set

Bits Description

Type

Reset

310 Perform an atomic bit-set on GPIO_OE, i.e. GPI0_0F |= wdata

WO

0x00000000

SI10: GPIO_HI_OE_SET Register
Offset: 0x03c

Description

Output enable set for GP1032...47, QSPI I0s and USB pins.
Perform an atomic bit-set on GPIO_HI_OE, i.e. GPI0_HI_OE |= wdata

Bits Description

Type

Reset

31:28 QSPI_SD

WO

0x0

27 QSPI_CSN

WO

0x0

26 QSPI_SCK

WO

0x0

25 USB_DM

WO

0x0

24 USB_DP

WO

0x0

23:16 Reserved.

15:0 GPIO

WO

0x0000

SI10: GPIO_OE_CLR Register
Offset: 0x040

Description

GPI00...31 output enable clear

Bits Description

Type

Reset

31:0 Perform an atomic bit-clear on GPIO_OE, i.e. GPI0_OF &= ~wdata

WO

0x00000000

SIO: GPIO_HI_OE_CLR Register
Offset: 0x044

Description

Output enable clear for GPI032...47, QSPI 10s and USB pins.
Perform an atomic bit-clear on GPIO_HI_OE, i.e. GPI0_HI_OF &= ~wdata

65

RP2350 Datasheet
]

g;t/):)(e_z‘j;OE_CLR Bits Description Type Reset
Register 31:28 QSPI_SD wo 0x0
27 QSPI_CSN WO 0x0
26 QSPI_SCK WO 0x0
25 USB_DM WO 0x0
24 USB_DP WO 0x0
23:16 Reserved. = =
15:0 GPIO WO 0x0000
SI10: GPIO_OE_XOR Register
Offset: 0x048
Description
GPI00...31 output enable XOR
;;7§Z§_XOR Bits Description Type Reset
Register 31:0 Perform an atomic bitwise XOR on GPIO_OE, i.e. GP10_OF /= wdata WO 0x00000000
SI0: GPIO_HI_OE_XOR Register
Offset: 0x04c
Description
Output enable XOR for GP1032...47, QSPI 10s and USB pins.
Perform an atomic bitwise XOR on GPIO_HI_OE, i.e. GPI0_HI_OE 7= wdata
;[I’:;_ZiOE_XOR Bits Description Type Reset
Register 31:28 QSPI_SD WO 0x0
27 QSPI_CSN WO 0x0
26 QSPI_SCK WO 0x0
25 USB_DM WO 0x0
24 USB_DP WO 0x0
23:16 Reserved. = -
15:0 GPIO WO 0x0000

SI10: FIFO_ST Register
Offset: 0x050

Description

Status register for inter-core FIFOs (mailboxes).

There is one FIFO in the core 0 — core 1 direction, and one core 1 — core 0. Both are 32 bits wide and 8 words
deep.

Core 0 can see the read side of the 1—0 FIFO (RX), and the write side of 0—1 FIFO (TX).

Core 1 can see the read side of the 0— 1 FIFO (RX), and the write side of 1—0 FIFO (TX).

The SIO IRQ for each core is the logical OR of the VLD, WOF and ROE fields of its FIFO_ST register.

3.1.SIO 66

RP2350 Datasheet
]

Table 36. FIFO_ST
Register

Table 37. FIFO_WR
Register

Table 38. FIFO_RD
Register

Table 39.
SPINLOCK_ST
Register

Table 40.
INTERPO_ACCUMO
Register

Table 41.
INTERPO_ACCUM1
Register

3.1.SIO

Bits Description Type Reset
31:4 Reserved. = =
3 ROE: Sticky flag indicating the RX FIFO was read when empty. This read was | WC 0x0
ignored by the FIFO.
2 WOF: Sticky flag indicating the TX FIFO was written when full. This write was | WC 0x0
ignored by the FIFO.
1 RDY: Value is 1 if this core’s TX FIFO is not full (i.e. if FIFO_WR is ready for RO 0x1
more data)
0 VLD: Value is 1 if this core’s RX FIFO is not empty (i.e. if FIFO_RD is valid) RO 0x0
SI10: FIFO_WR Register
Offset: 0x054
Bits Description Type Reset
31:0 Write access to this core’s TX FIFO WF 0x00000000
SI0: FIFO_RD Register
Offset: 0x058
Bits Description Type Reset
31:0 Read access to this core’s RX FIFO RF -
SIO: SPINLOCK_ST Register
Offset: 0x05¢c
Bits Description Type Reset
31:0 Spinlock state RO 0x00000000
A bitmap containing the state of all 32 spinlocks (1=locked).
Mainly intended for debugging.
SI0: INTERPO_ACCUMO Register
Offset: 0x080
Bits Description Type Reset
31:0 Read/write access to accumulator 0 RW 0x00000000
SIO: INTERPO_ACCUMT1 Register
Offset: 0x084
Bits Description Type Reset
31:0 Read/write access to accumulator 1 RW 0x00000000

SIO: INTERPO_BASEO Register

Offset: 0x088

67

RP2350 Datasheet
]

Table 42.
INTERPO_BASEQ
Register

Table 43.
INTERPO_BASET
Register

Table 44.
INTERPO_BASE2
Register

Table 45.
INTERPO_POP_LANEO
Register

Table 46.
INTERPO_POP_LANET
Register

Table 47.
INTERPO_POP_FULL
Register

Table 48.
INTERPO_PEEK_LANE
0 Register

Bits Description Type Reset
31:0 Read/write access to BASEOQ register. RW 0x00000000
SIO: INTERPO_BASET1 Register
Offset: 0x08¢c
Bits Description Type Reset
31:0 Read/write access to BASE1 register. RW 0x00000000
SIO: INTERPO_BASE?2 Register
Offset: 0x090
Bits Description Type Reset
31:0 Read/write access to BASE2 register. RW 0x00000000
SIO: INTERPO_POP_LANEO Register
Offset: 0x094
Bits Description Type Reset
31:0 Read LANEDO result, and simultaneously write lane results to both RO 0x00000000
accumulators (POP).
SIO: INTERPO_POP_LANE1 Register
Offset: 0x098
Bits Description Type Reset
31:0 Read LANE1 result, and simultaneously write lane results to both RO 0x00000000
accumulators (POP).
SIO: INTERPO_POP_FULL Register
Offset: 0x09¢c
Bits Description Type Reset
31:0 Read FULL result, and simultaneously write lane results to both accumulators | RO 0x00000000
(POP).
SIO: INTERPO_PEEK_LANEO Register
Offset: 0x0a0
Bits Description Type Reset
31:0 Read LANEQ result, without altering any internal state (PEEK). RO 0x00000000

SI0: INTERPO_PEEK_LANE1 Register

Offset: 0x0a4

3.1.SIO

68

RP2350 Datasheet

Table 49.
INTERPO_PEEK_LANE
1 Register

Table 50.
INTERPO_PEEK_FULL
Register

Table 51.
INTERPO_CTRL_LANE
0 Register

3.1.SIO

Bits Description Type Reset
31:0 Read LANET result, without altering any internal state (PEEK). RO 0x00000000
SIO: INTERPO_PEEK_FULL Register
Offset: 0x0a8
Bits Description Type Reset
31:0 Read FULL result, without altering any internal state (PEEK). RO 0x00000000
SI0: INTERPO_CTRL_LANEO Register
Offset: 0x0ac
Description
Control register for lane 0
Bits Description Type Reset
31:26 Reserved. - -
25 OVERF: Set if either OVERFO or OVERF1 is set. RO 0x0
24 OVERF1: Indicates if any masked-off MSBs in ACCUM1 are set. RO 0x0
23 OVERFO: Indicates if any masked-off MSBs in ACCUMO are set. RO 0x0
22 Reserved. = =
21 BLEND: Only present on INTERPO on each core. If BLEND mode is enabled: RW 0x0
- LANET result is a linear interpolation between BASEQ and BASE1, controlled
by the 8 LSBs of lane 1 shift and mask value (a fractional number between
0 and 255/256ths)
- LANEQO result does not have BASEOQ added (yields only the 8 LSBs of lane 1
shift+mask value)
- FULL result does not have lane 1 shift+mask value added (BASE2 + lane 0
shift+mask)
LANE1 SIGNED flag controls whether the interpolation is signed or unsigned.
20:19 FORCE_MSB: ORed into bits 29:28 of the lane result presented to the RW 0x0
processor on the bus.
No effect on the internal 32-bit datapath. Handy for using a lane to generate
sequence
of pointers into flash or SRAM.
18 ADD_RAW: If 1, mask + shift is bypassed for LANEO result. This does not RW 0x0
affect FULL result.
17 CROSS_RESULT: If 1, feed the opposite lane’s result into this lane’s RW 0x0
accumulator on POP.
16 CROSS_INPUT: If 1, feed the opposite lane’s accumulator into this lane’s shift | RW 0x0
+ mask hardware.
Takes effect even if ADD_RAW is set (the CROSS_INPUT mux is before the
shift+mask bypass)
15 SIGNED: If SIGNED is set, the shifted and masked accumulator value is sign- | RW 0x0

extended to 32 bits
before adding to BASEO, and LANEQO PEEK/POP appear extended to 32 bits
when read by processor.

69

RP2350 Datasheet
]

Table 52.
INTERPO_CTRL_LANE
1 Register

3.1.SIO

Bits Description Type Reset
14:10 MASK_MSB: The most-significant bit allowed to pass by the mask (inclusive) |RW 0x00
Setting MSB < LSB may cause chip to turn inside-out
9:5 MASK_LSB: The least-significant bit allowed to pass by the mask (inclusive) | RW 0x00
4:0 SHIFT: Right-rotate applied to accumulator before masking. By appropriately | RW 0x00
configuring the masks, left and right shifts can be synthesised.
SI0: INTERPO_CTRL_LANE1 Register
Offset: 0x0ObO
Description
Control register for lane 1
Bits Description Type Reset
31:21 Reserved. - -
20:19 FORCE_MSB: ORed into bits 29:28 of the lane result presented to the RW 0x0
processor on the bus.
No effect on the internal 32-bit datapath. Handy for using a lane to generate
sequence
of pointers into flash or SRAM.
18 ADD_RAW: If 1, mask + shift is bypassed for LANE1 result. This does not RW 0x0
affect FULL result.
17 CROSS_RESULT: If 1, feed the opposite lane’s result into this lane’s RW 0x0
accumulator on POP.
16 CROSS_INPUT: If 1, feed the opposite lane’s accumulator into this lane’s shift | RW 0x0
+ mask hardware.
Takes effect even if ADD_RAW is set (the CROSS_INPUT mux is before the
shift+mask bypass)
15 SIGNED: If SIGNED is set, the shifted and masked accumulator value is sign- | RW 0x0
extended to 32 bits
before adding to BASE1, and LANE1 PEEK/POP appear extended to 32 bits
when read by processor.
14:10 MASK_MSB: The most-significant bit allowed to pass by the mask (inclusive) |RW 0x00
Setting MSB < LSB may cause chip to turn inside-out
9:5 MASK_LSB: The least-significant bit allowed to pass by the mask (inclusive) RW 0x00
4:0 SHIFT: Right-rotate applied to accumulator before masking. By appropriately | RW 0x00

configuring the masks, left and right shifts can be synthesised.

SIO: INTERPO_ACCUMO_ADD Register

Offset: 0x0b4

70

RP2350 Datasheet
]

Table 53.
INTERPO_ACCUMO_AD
D Register

Table 54.
INTERPO_ACCUMT_AD
D Register

Table 55.
INTERPO_BASE_TAND
0 Register

Table 56.
INTERP1_ACCUMO
Register

Table 57.
INTERP1_ACCUM1
Register

Table 58.
INTERPT_BASEQ
Register

3.1.SIO

Bits Description Type Reset
31:24 |Reserved. = =
23:0 Values written here are atomically added to ACCUMO RW 0x000000
Reading yields lane 0’s raw shift and mask value (BASEO not added).
SI0: INTERPO_ACCUM1_ADD Register
Offset: 0x0b8
Bits Description Type Reset
31:24 | Reserved. = =
23:0 Values written here are atomically added to ACCUM1 RW 0x000000
Reading yields lane 1’s raw shift and mask value (BASE1 not added).
SI0: INTERPO_BASE_1ANDO Register
Offset: 0xObc
Bits Description Type Reset
31:0 On write, the lower 16 bits go to BASEOQ, upper bits to BASE1 simultaneously. | WO 0x00000000
Each half is sign-extended to 32 bits if that lane’s SIGNED flag is set.
SI0: INTERP1_ACCUMO Register
Offset: 0x0c0
Bits Description Type Reset
31:0 Read/write access to accumulator 0 RW 0x00000000
SI0: INTERP1_ACCUMT1 Register
Offset: 0x0c4
Bits Description Type Reset
31:0 Read/write access to accumulator 1 RW 0x00000000
SI0: INTERP1_BASEO Register
Offset: 0x0c8
Bits Description Type Reset
31:0 Read/write access to BASEOQ register. RW 0x00000000

SIO: INTERP1_BASET1 Register

Offset: 0xOcc

71

RP2350 Datasheet
]

Table 59.
INTERPT_BASET
Register

Table 60.
INTERP1_BASE2
Register

Table 61.
INTERP1_POP_LANEO
Register

Table 62.
INTERP1_POP_LANET
Register

Table 63.
INTERPT_POP_FULL
Register

Table 64.
INTERP1_PEEK_LANE
0 Register

Table 65.
INTERP1_PEEK_LANE
1 Register

Bits Description Type Reset
31:0 Read/write access to BASET register. RW 0x00000000
SIO: INTERP1_BASE2 Register
Offset: 0x0d0
Bits Description Type Reset
31:0 Read/write access to BASE2 register. RW 0x00000000
SIO: INTERP1_POP_LANEO Register
Offset: 0x0d4
Bits Description Type Reset
31:0 Read LANEDO result, and simultaneously write lane results to both RO 0x00000000
accumulators (POP).
SIO: INTERP1_POP_LANE1 Register
Offset: 0x0d8
Bits Description Type Reset
31:0 Read LANE1 result, and simultaneously write lane results to both RO 0x00000000
accumulators (POP).
SIO: INTERP1_POP_FULL Register
Offset: 0x0dc
Bits Description Type Reset
31:0 Read FULL result, and simultaneously write lane results to both accumulators | RO 0x00000000
(POP).
SIO: INTERP1_PEEK_LANEO Register
Offset: 0x0e0
Bits Description Type Reset
31:0 Read LANEQ result, without altering any internal state (PEEK). RO 0x00000000
SIO: INTERP1_PEEK_LANE1 Register
Offset: 0x0e4
Bits Description Type Reset
31:0 Read LANET result, without altering any internal state (PEEK). RO 0x00000000

SIO: INTERP1_PEEK_FULL Register

Offset: 0x0e8

3.1.SIO

T2

RP2350 Datasheet
]

Table 66. Bits Description Type Reset
INTERP1_PEEK_FULL
Register 31:0 Read FULL result, without altering any internal state (PEEK). RO 0x00000000
SI0: INTERP1_CTRL_LANEO Register
Offset: 0xOec
Description
Control register for lane 0
Table 67. Bits Description Type Reset
INTERP1_CTRL_LANE
0 Register 31:26 | Reserved. - -
25 OVERF: Set if either OVERFO or OVERF1 is set. RO 0x0
24 OVERF1: Indicates if any masked-off MSBs in ACCUM1 are set. RO 0x0
23 OVERFO: Indicates if any masked-off MSBs in ACCUMO are set. RO 0x0
22 CLAMP: Only present on INTERP1 on each core. If CLAMP mode is enabled: RW 0x0

- LANEQ result is shifted and masked ACCUMO, clamped by a lower bound of
BASEOQ and an upper bound of BASE1.
- Signedness of these comparisons is determined by LANEO_CTRL_SIGNED

21 Reserved. - -

20:19 FORCE_MSB: ORed into bits 29:28 of the lane result presented to the RW 0x0
processor on the bus.

No effect on the internal 32-bit datapath. Handy for using a lane to generate
sequence

of pointers into flash or SRAM.

18 ADD_RAW: If 1, mask + shift is bypassed for LANEO result. This does not RW 0x0
affect FULL result.

17 CROSS_RESULT: If 1, feed the opposite lane’s result into this lane’s RW 0x0
accumulator on POP.

16 CROSS_INPUT: If 1, feed the opposite lane’s accumulator into this lane’s shift | RW 0x0
+ mask hardware.

Takes effect even if ADD_RAW is set (the CROSS_INPUT mux is before the
shift+mask bypass)

15 SIGNED: If SIGNED is set, the shifted and masked accumulator value is sign- | RW 0x0
extended to 32 bits

before adding to BASEO, and LANEO PEEK/POP appear extended to 32 bits
when read by processor.

14:10 MASK_MSB: The most-significant bit allowed to pass by the mask (inclusive) |RW 0x00
Setting MSB < LSB may cause chip to turn inside-out

9:5 MASK_LSB: The least-significant bit allowed to pass by the mask (inclusive) | RW 0x00

4:0 SHIFT: Right-rotate applied to accumulator before masking. By appropriately | RW 0x00

configuring the masks, left and right shifts can be synthesised.

SI0: INTERP1_CTRL_LANE1 Register
Offset: 0x0f0

Description

Control register for lane 1

I
3.1.SIO 73

RP2350 Datasheet
]

Table 68.
INTERPT_CTRL_LANE
1 Register

Table 69.
INTERP1_ACCUMO_AD
D Register

Table 70.
INTERPT_ACCUMT1_AD
D Register

3.1.SIO

Bits Description Type Reset
31:21 Reserved. = =
20:19 FORCE_MSB: ORed into bits 29:28 of the lane result presented to the RW 0x0
processor on the bus.
No effect on the internal 32-bit datapath. Handy for using a lane to generate
sequence
of pointers into flash or SRAM.
18 ADD_RAW: If 1, mask + shift is bypassed for LANE1 result. This does not RW 0x0
affect FULL result.
17 CROSS_RESULT: If 1, feed the opposite lane’s result into this lane’s RW 0x0
accumulator on POP.
16 CROSS_INPUT: If 1, feed the opposite lane’s accumulator into this lane’s shift | RW 0x0
+ mask hardware.
Takes effect even if ADD_RAW is set (the CROSS_INPUT mux is before the
shift+mask bypass)
15 SIGNED: If SIGNED is set, the shifted and masked accumulator value is sign- | RW 0x0
extended to 32 bits
before adding to BASE1, and LANE1 PEEK/POP appear extended to 32 bits
when read by processor.
14:10 MASK_MSB: The most-significant bit allowed to pass by the mask (inclusive) |RW 0x00
Setting MSB < LSB may cause chip to turn inside-out
9:5 MASK_LSB: The least-significant bit allowed to pass by the mask (inclusive) RW 0x00
4:0 SHIFT: Right-rotate applied to accumulator before masking. By appropriately | RW 0x00
configuring the masks, left and right shifts can be synthesised.
SI0: INTERP1_ACCUMO_ADD Register
Offset: 0x0f4
Bits Description Type Reset
31:24 Reserved. = =
23:0 Values written here are atomically added to ACCUMO RW 0x000000
Reading yields lane 0’s raw shift and mask value (BASEOQ not added).
SI0: INTERP1_ACCUM1_ADD Register
Offset: 0x0f8
Bits Description Type Reset
31:24 Reserved. = =
23:0 Values written here are atomically added to ACCUM1 RW 0x000000
Reading yields lane 1’s raw shift and mask value (BASE1 not added).
SI0: INTERP1_BASE_1ANDO Register
Offset: 0x0fc

74

RP2350 Datasheet
]

Table 71.
INTERPT_BASE_1AND
0 Register

Table 72. SPINLOCKO,
SPINLOCKT, ...,
SPINLOCK30,
SPINLOCK31
Registers

Table 73.
DOORBELL_OUT_SET
Register

3.1.SIO

Bits Description

Type

Reset

31:0 On write, the lower 16 bits go to BASEOQ, upper bits to BASE1 simultaneously.
Each half is sign-extended to 32 bits if that lane’s SIGNED flag is set.

WO

0x00000000

SIO: SPINLOCKO, SPINLOCKT, ..., SPINLOCK30, SPINLOCK31 Registers

Offsets: 0x100, 0x104, ..., 0x178, 0x17¢c

Bits Description Type Reset
31:0 Reading from a spinlock address will: RW 0x00000000
- Return 0 if lock is already locked
- Otherwise return nonzero, and simultaneously claim the lock
Writing (any value) releases the lock.
If core 0 and core 1 attempt to claim the same lock simultaneously, core 0
wins.
The value returned on success is 0x1 << lock number.
S10: DOORBELL_OUT_SET Register
Offset: 0x180
Bits Description Type Reset
31:8 Reserved. - -
7:0 Trigger a doorbell interrupt on the opposite core. RW 0x00

core. This raises the opposite core’s doorbell interrupt.

Write 1 to a bit to set the corresponding bit in DOORBELL_IN on the opposite

Read to get the status of the doorbells currently asserted on the opposite
core. This is equivalent to that core reading its own DOORBELL_IN status.

SI0: DOORBELL_OUT_CLR Register

Offset: 0x184

75

RP2350 Datasheet
]

Table 74.
DOORBELL_OUT_CLR
Register

Table 75.
DOORBELL_IN_SET
Register

Table 76.
DOORBELL_IN_CLR
Register

Table 77.
PERI_NONSEC
Register

3.1.SIO

Bits Description Type Reset
31:8 Reserved. = =
7:0 Clear doorbells which have been posted to the opposite core. This registeris | WC 0x00
intended for debugging and initialisation purposes.
Writing 1 to a bit in DOORBELL_OUT_CLR clears the corresponding bit in
DOORBELL_IN on the opposite core. Clearing all bits will cause that core’s
doorbell interrupt to deassert. Since the usual order of events is for software
to send events using DOORBELL_OUT_SET, and acknowledge incoming events
by writing to DOORBELL_IN_CLR, this register should be used with caution to
avoid race conditions.
Reading returns the status of the doorbells currently asserted on the other
core, i.e. is equivalent to that core reading its own DOORBELL_IN status.
SI0: DOORBELL_IN_SET Register
Offset: 0x188
Bits Description Type Reset
31:8 Reserved. = =
7:0 Write 1s to trigger doorbell interrupts on this core. Read to get status of RW 0x00
doorbells currently asserted on this core.
S10: DOORBELL_IN_CLR Register
Offset: 0x18c
Bits Description Type Reset
31:8 Reserved. = =
7:0 Check and acknowledge doorbells posted to this core. This core’s doorbell WC 0x00

interrupt is asserted when any bit in this registeris 1.

Write 1 to each bit to clear that bit. The doorbell interrupt deasserts once all
bits are cleared. Read to get status of doorbells currently asserted on this
core.

SI10: PERI_NONSEC Register

Offset: 0x190

Description

Detach certain core-local peripherals from Secure SIO, and attach them to Non-secure SIO, so that Non-secure
software can use them. Attempting to access one of these peripherals from the Secure SIO when it is attached to

the Non-secure SIO, or vice versa, will generate a bus error.

This register is per-core, and is only present on the Secure SIO.

Most SIO hardware is duplicated across the Secure and Non-secure SIO, so is not listed in this register.

Bits Description Type Reset

31:6 Reserved. = =

5 TMDS: IF 1, detach TMDS encoder (of this core) from the Secure SIO, and RW 0x0
attach to the Non-secure SIO.

76

RP2350 Datasheet

Bits Description Type Reset

4:2 Reserved. = =

1 INTERP1: If 1, detach interpolator 1 (of this core) from the Secure SIO, and RW 0x0
attach to the Non-secure SIO.

0 INTERPO: If 1, detach interpolator 0 (of this core) from the Secure SIO, and RW 0x0
attach to the Non-secure SIO.

SI10: RISCV_SOFTIRQ Register
Offset: 0x1a0

Description

Control the assertion of the standard software interrupt (MIP.MSIP) on the RISC-V cores.

Unlike the RISC-V timer, this interrupt is not routed to a normal system-level interrupt line, so can not be used by the Arm
cores.

It is safe for both cores to write to this register on the same cycle. The set/clear effect is accumulated across both
cores, and then applied. If a flag is both set and cleared on the same cycle, only the set takes effect.

Table 75. Bits Description Type Reset
RISCV_SOFTIRQ
Register 31:10 | Reserved. - -
9 CORE1_CLR: Write 1 to atomically clear the core 1 software interrupt flag. RW 0x0
Read to get the status of this flag.
8 COREO_CLR: Write 1 to atomically clear the core 0 software interrupt flag. RW 0x0
Read to get the status of this flag.
7:2 Reserved. = =
1 CORE1_SET: Write 1 to atomically set the core 1 software interrupt flag. Read | RW 0x0
to get the status of this flag.
0 COREO_SET: Write 1 to atomically set the core 0 software interrupt flag. Read | RW 0x0
to get the status of this flag.
S10: MTIME_CTRL Register
Offset: Ox1a4
Description
Control register for the RISC-V 64-bit Machine-mode timer. This timer is only present in the Secure SIO, so is only
accessible to an Arm core in Secure mode or a RISC-V core in Machine mode.
Note whilst this timer follows the RISC-V privileged specification, it is equally usable by the Arm cores. The interrupts
are routed to normal system-level interrupt lines as well as to the MIP.MTIP inputs on the RISC-V cores.
Table 79. _ Bits Description Type Reset
MTIME_CTRL Register
31:4 Reserved. = =
3 DBGPAUSE_CORET1: If 1, the timer pauses when core 1 is in the debug halt RW 0x1
state.
2 DBGPAUSE_COREQ: If 1, the timer pauses when core 0 is in the debug halt RW 0x1
state.
1 FULLSPEED: If 1, increment the timer every cycle (i.e. run directly from the RW 0x0
system clock), rather than incrementing on the system-level timer tick input.

3.1.SIO

7

RP2350 Datasheet

Table 80. MTIME
Register

Table 81. MTIMEH
Register

Table 82. MTIMECMP
Register

Table 83.
MTIMECMPH Register

3.1.SIO

Bits Description Type Reset
0 EN: Timer enable bit. When 0, the timer will not increment automatically. RW 0x1
S10: MTIME Register
Offset: 0x1b0
Bits Description Type Reset
31:0 Read/write access to the high half of RISC-V Machine-mode timer. This RW 0x00000000
register is shared between both cores. If both cores write on the same cycle,
core 1 takes precedence.
S10: MTIMEH Register
Offset: 0x1b4
Bits Description Type Reset
31:0 Read/write access to the high half of RISC-V Machine-mode timer. This RW 0x00000000
register is shared between both cores. If both cores write on the same cycle,
core 1 takes precedence.
S10: MTIMECMP Register
Offset: 0x1b8
Bits Description Type Reset
31:0 Low half of RISC-V Machine-mode timer comparator. This register is core- RW Oxffffffff
local, i.e., each core gets a copy of this register, with the comparison result
routed to its own interrupt line.
The timer interrupt is asserted whenever MTIME is greater than or equal to
MTIMECMP. This comparison is unsigned, and performed on the full 64-bit
values.
S10: MTIMECMPH Register
Offset: Ox1bc
Bits Description Type Reset
31:0 High half of RISC-V Machine-mode timer comparator. This register is core- RW Oxffffffff

local.

The timer interrupt is asserted whenever MTIME is greater than or equal to
MTIMECMP. This comparison is unsigned, and performed on the full 64-bit
values.

S10: TMDS_CTRL Register

Offset: 0x1c0

Description

Control register for TMDS encoder.

RP2350 Datasheet
]

Table 84. TMDS_CTRL
Register

3.1.SIO

Bits Description Type Reset
31:29 Reserved. - -
28 CLEAR_BALANCE: Clear the running DC balance state of the TMDS encoders. |SC 0x0
This bit should be written once at the beginning of each scanline.
27 PIX2_NOSHIFT: When encoding two pixels’s worth of symbols in one cycle (a | RW 0x0
read of a PEEK/POP_DOUBLE register), the second encoder sees a shifted
version of the colour data register.
This control disables that shift, so that both encoder layers see the same pixel
data. This is used for pixel doubling.
26:24 PIX_SHIFT: Shift applied to the colour data register with each read of a POP RW 0x0
alias register.
Reading from the POP_SINGLE register, or reading from the POP_DOUBLE
register with PIX2_NOSHIFT set (for pixel doubling), shifts by the indicated
amount.
Reading from a POP_DOUBLE register when PIX2_NOSHIFT is clear will shift
by double the indicated amount. (Shift by 32 means no shift.)
Enumerated values:
0x0 — Do not shift the colour data register.
0x1 — Shift the colour data register by 1 bit
0x2 — Shift the colour data register by 2 bits
0x3 — Shift the colour data register by 4 bits
0x4 — Shift the colour data register by 8 bits
0x5 — Shift the colour data register by 16 bits
23 INTERLEAVE: Enable lane interleaving for reads of RW 0x0
PEEK_SINGLE/POP_SINGLE.
When interleaving is disabled, each of the 3 symbols appears as a contiguous
10-bit field, with lane 0 being the least-significant and starting at bit 0 of the
register.
When interleaving is enabled, the symbols are packed into 5 chunks of 3 lanes
times 2 bits (30 bits total). Each chunk contains two bits of a TMDS symbol
per lane, with lane 0 being the least significant.
22:21 Reserved. = =
20:18 L2_NBITS: Number of valid colour MSBs for lane 2 (1-8 bits, encoded as 0 RW 0x0
through 7). Remaining LSBs are masked to 0 after the rotate.
17:15 L1_NBITS: Number of valid colour MSBs for lane 1 (1-8 bits, encoded as 0 RW 0x0
through 7). Remaining LSBs are masked to 0 after the rotate.
14:12 LO_NBITS: Number of valid colour MSBs for lane 0 (1-8 bits, encoded as 0 RW 0x0

through 7). Remaining LSBs are masked to 0 after the rotate.

79

RP2350 Datasheet
]

Bits Description Type Reset

11:8 L2_ROT: Right-rotate the 16 LSBs of the colour accumulator by 0-15 bits, in RW 0x0
order to get the MSB of the lane 2 (red) colour data aligned with the MSB of
the 8-bit encoder input.

For example, for RGB565 (red most significant), red is bits 15:11, so should be
right-rotated by 8 bits to align with bits 7:3 of the encoder input.

74 L1_ROT: Right-rotate the 16 LSBs of the colour accumulator by 0-15 bits, in RW 0x0
order to get the MSB of the lane 1 (green) colour data aligned with the MSB of
the 8-bit encoder input.

For example, for RGB565, green is bits 10:5, so should be right-rotated by 3
bits to align with bits 7:2 of the encoder input.

3:0 LO_ROT: Right-rotate the 16 LSBs of the colour accumulator by 0-15 bits, in RW 0x0
order to get the MSB of the lane 0 (blue) colour data aligned with the MSB of
the 8-bit encoder input.

For example, for RGB565 (red most significant), blue is bits 4:0, so should be
right-rotated by 13 to align with bits 7:3 of the encoder input.

S10: TMDS_WDATA Register

Offset: Ox1c4

Table 85. Bits Description Type Reset
TMDS_WDATA
Register 31:0 Write-only access to the TMDS colour data register. WO 0x00000000
SI0: TMDS_PEEK_SINGLE Register
Offset: 0x1c8
Table 86. Bits Description Type Reset
TMDS_PEEK_SINGLE
Register 31:0 Get the encoding of one pixel’s worth of colour data, packed into a 32-bit value | RF 0x00000000

(3x10-bit symbols).

The PEEK alias does not shift the colour register when read, but still advances
the running DC balance state of each encoder. This is useful for pixel
doubling.

SI0: TMDS_POP_SINGLE Register

Offset: Ox1cc

3.1.SIO 80

RP2350 Datasheet
]

Table 87.
TMDS_POP_SINGLE
Register

Table 88.
TMDS_PEEK_DOUBLE_
L0 Register

Table 89.
TMDS_POP_DOUBLE_L
0 Register

Table 90.
TMDS_PEEK_DOUBLE_
L1 Register

Bits Description Type Reset
31:0 Get the encoding of one pixel's worth of colour data, packed into a 32-bit RF 0x00000000
value. The packing is 5 chunks of 3 lanes times 2 bits (30 bits total). Each
chunk contains two bits of a TMDS symbol per lane. This format is intended
for shifting out with the HSTX peripheral on RP2350.
The POP alias shifts the colour register when read, as well as advancing the
running DC balance state of each encoder.
S10: TMDS_PEEK_DOUBLE_LO Register
Offset: 0x1d0
Bits Description Type Reset
31:0 Get lane 0 of the encoding of two pixels' worth of colour data. Two 10-bit RF 0x00000000
TMDS symbols are packed at the bottom of a 32-bit word.
The PEEK alias does not shift the colour register when read, but still advances
the lane 0 DC balance state. This is useful if all 3 lanes' worth of encode are to
be read at once, rather than processing the entire scanline for one lane before
moving to the next lane.
SI0: TMDS_POP_DOUBLE_LO Register
Offset: 0x1d4
Bits Description Type Reset
31:0 Get lane 0 of the encoding of two pixels' worth of colour data. Two 10-bit RF 0x00000000
TMDS symbols are packed at the bottom of a 32-bit word.
The POP alias shifts the colour register when read, according to the values of
PIX_SHIFT and PIX2_NOSHIFT.
S10: TMDS_PEEK_DOUBLE_L1 Register
Offset: 0x1d8
Bits Description Type Reset
31:0 Get lane 1 of the encoding of two pixels' worth of colour data. Two 10-bit RF 0x00000000

TMDS symbols are packed at the bottom of a 32-bit word.

The PEEK alias does not shift the colour register when read, but still advances
the lane 1 DC balance state. This is useful if all 3 lanes' worth of encode are to
be read at once, rather than processing the entire scanline for one lane before
moving to the next lane.

SI0: TMDS_POP_DOUBLE_L1 Register

Offset: Ox1dc

3.1.SIO

81

RP2350 Datasheet
]

Table 91.
TMDS_POP_DOUBLE_L

1 Register 31:0 Get lane 1 of the encoding of two pixels' worth of colour data. Two 10-bit RF 0x00000000
TMDS symbols are packed at the bottom of a 32-bit word.

Bits Description Type Reset

The POP alias shifts the colour register when read, according to the values of
PIX_SHIFT and PIX2_NOSHIFT.

SI0: TMDS_PEEK_DOUBLE_L2 Register

Offset: 0x1e0

Table 92 Bits Description Type Reset
TMDS_PEEK_DOUBLE.
L2 Register 31:0 Get lane 2 of the encoding of two pixels' worth of colour data. Two 10-bit RF 0x00000000
TMDS symbols are packed at the bottom of a 32-bit word.
The PEEK alias does not shift the colour register when read, but still advances
the lane 2 DC balance state. This is useful if all 3 lanes' worth of encode are to
be read at once, rather than processing the entire scanline for one lane before
moving to the next lane.
SI0: TMDS_POP_DOUBLE_L2 Register
Offset: Ox1e4
Table 95. Bits Description Type Reset
TMDS_POP_DOUBLE.L
2 Register 31:0 Get lane 2 of the encoding of two pixels' worth of colour data. Two 10-bit RF 0x00000000

TMDS symbols are packed at the bottom of a 32-bit word.

The POP alias shifts the colour register when read, according to the values of
PIX_SHIFT and PIX2_NOSHIFT.

3.2. Interrupts

Each core is equipped with an internal interrupt controller, with 52 interrupt inputs. For the most part each core has
exactly the same interrupts routed to it, though there are some exceptions, referred to as core-local interrupts, where
there is an individual per-core interrupt source mapped to the same interrupt number on each core:

e Cross-core FIFO interrupts: SI0_IRQ_FIF0 and SI0_IRQ_FIFO_NS (Section 3.1.5)

e Cross-core doorbell interrupts: SI0_IRQ_BELL and SI0_IRQ_BELL_NS (Section 3.1.6)

® RISC-V platform timer (also usable by Arm cores): SI0_IRQ_MTIMECMP (Section 3.1.8)

® GPIO interrupts: 10_IRQ_BANK®, TRQ_T0_BANKO_NS, T0_TIRQ_QSPI, I0_IRQ_QSPI_NS (Section 9.5)

The remaining interrupt inputs have the same interrupt source mirrored identically on both cores. Non-core-local
interrupts should only be enabled in the interrupt controller of a single core at a time, and will be serviced by the core
whose interrupt controller they are enabled in.

Table 94. System-level IRQ | Interrupt Source IRQ | Interrupt Source IRQ | Interrupt Source IRQ | Interrupt Source IRQ | Interrupt Source

interrupt numbering.

Allinterrupts are 0 | TIMERO_IRQ_@ 11 | DMA_IRQ_1 22 | 10_IRQ_BANK@_NS |33 | UARTO_IRQ 44 | POWMAN_IRQ_POW
routed to both

processors. 1 | TIMERO_IRQ_1 12 |DMA_IRQ.2 23 | 10_IRQ_QSPI 34 | UARTI_IRQ 45 | POWMAN_IRQ_TIMER

2 TIMERO_IRQ_2 13 | DMA_IRQ_3 24 | 10_IRQ_QSPI_NS 35 [ADC_IRQ_FIFO 46 | SPAREIRQ_IRQ_O

|
3.2. Interrupts 82

RP2350 Datasheet
]

IRQ | Interrupt Source IRQ | Interrupt Source IRQ | Interrupt Source IRQ | Interrupt Source IRQ | Interrupt Source
3 TIMERO_IRQ_3 14 | USBCTRL_IRQ 25 | SI0O_IRQ_FIFO 36 | I200_IRQ 47 | SPAREIRQ_IRQ_1
4 | TIMER1_IRQ_O 15 | PI00_IRQ_0 26 | SIO_IRQ_BELL 37 |I201_IRQ 48 | SPAREIRQ_IRQ_2
5 TIMERT_IRQ_1 16 | PI00_IRQ_1 27 |SI0O_IRQ_FIFO_NS |38 |[0TP_IRQ 49 | SPAREIRQ_IRQ_3
6 TIMERT_IRQ_2 17 |PIOT_IRQ_O 28 | SIO_IRQ_BELL_NS |39 |TRNG_IRQ 50 | SPAREIRQ_IRQ_4
7 | TIMER1_IRQ_3 18 |PIOT_IRQ1 29 | SIO_IRQ_MTIMECMP |40 |PROCO_IRQ_CTI 51 | SPAREIRQ_IRQ_5
8 PWM_IRQ_WRAP_0 19 |PI02_IRQ_0 30 | CLOCKS_IRQ 41 | PROCT_IRQ_CTI

9 PWM_IRQ_WRAP_1 20 |PI02_IRQ1 31 |[SPIO_IRQ 42 | PLL_SYS_IRQ

10 |DMA_IRQ_0 21 | 10_IRQ_BANK® 32 | SPI1_IRQ 43 | PLL_USB_IRQ

On RP2350, only the lower 46 IRQ signals are connected to system-level interrupt sources, and IRQs 46 to 51 are
hardwired to zero (never firing). These six spare interrupts, referred to as SPAREIRQ_IRQ_0 through SPAREIRQ_IRQ_5 in the
table, are deliberately reserved for the cores to interrupt themselves (via the Arm NVIC_ISPRO registers or the Hazard3
MEIFA CSR), for example, when an interrupt handler wants to schedule a "bottom half" handler for work that must be
done after exiting the interrupt handler, but before returning to the code running in the foreground.

Nested interrupts are supported in hardware: a lower-priority interrupt can be pre-empted by a higher-priority interrupt or
fault, and will resume once the higher-priority handler returns. The pre-emption priority order is determined by the
interrupt priority registers starting from NVIC_IPRO (Cortex-M33) or the MEIPRA interrupt priority array CSR (Hazard3).

When there is a choice of multiple interrupts to be entered at the same dynamic priority, the interrupt with the lowest
IRQ number is chosen as a tie-breaker. The system-level IRQ numbering has been chosen to generally put higher-priority
interrupts at lower IRQ numbers for this reason, though the true priority is often dependent on the specific application.

3.2.1. Non-maskable Interrupt (NMI)

The system IRQ signals can be routed to the Cortex-M33 non-maskable interrupt (NMI) input, by setting the bit for that
IRQ number in NMI_MASKO or NMI_MASKT. The non-maskable interrupt ignores the processor’s interrupt
enable/disable state (PRIMASK), and can pre-empt any other active interrupt. NMls are generally used for emergent
circumstances that require the processor’s unconditional attention, such as loss of PLL lock or power supply integrity.

The NMI mask registers are core-local, so each core can have a different combination of interrupts routed to its NMI
input. The NMI mask, along with all other EPPB registers, is reset by a warm reset of that core. This avoids an issue on
RP2040 where the NMI mask could be left set following a processor reset.

In addition to system-level interrupts, the non-maskable interrupt is asserted when an integrity check is failed in the
redundancy coprocessor (RCP, Section 3.6.3). This behaviour cannot be disabled, but a correctly-programmed RCP
does not trigger under normal voltage, frequency, and temperature conditions. Likewise, if user code does not execute
any RCP instructions, the RCP will never trigger. The RCP NMI output is asserted on both cores when an integrity check
fails, and is de-asserted by a warm processor reset.

3.2.2. Further Reading on Interrupts

This section describes the routing of system-level interrupt requests to the processor subsystem. It omits important
details such as the processor’s response to receiving an interrupt, and how processors choose which system-level
interrupt requests to subscribe to. The following is a selection of relevant information for these topics:

® Section 3.7.2.5 describes the Cortex-M33’s internal interrupt controller, the NVIC
® Register listings starting from NVIC_ISERO describe controls for NVIC operation

® Section 3.7.4.6 is an overview of Cortex-M33 exception handling

3.2. Interrupts

83

RP2350 Datasheet
]

® The Armv8-M Architecture Reference Manual describes detailed architecture rules for exception handling
® Section 3.8.4 describes standard RISC-V trap handling

® Section 3.8.4.2 describes the standard RISC-V external, timer and software interrupt requests, and how they are
connected on RP2350

® Section 3.8.6.1 describes the Xh3irq interrupt controller, which provides priority-controlled interrupt support for the
system-level interrupts on Hazard3

® Each peripheral has its own interrupt registers which control the assertion of its system-level interrupts listed in
Table 94 — see peripheral documentation for more information

3.3. Event Signals (Arm)

Using the WFE instruction, the Cortex-M33 can enter a sleep state until an "event” (or interrupt) takes place. It can also
generate events using the SEV instruction. RP2350 cross-wires event signals between the two processors: an event sent
by one processor will be received on the other.

© NoTE

The event flag is "sticky": if both processors send an event (SEV) simultaneously, then enter the sleep state (IWFE), they
will both wake immediately. This prevents the processors from getting stuck in a sleep state in this scenario.

Processors also receive an event signal from the global monitor if their reservation is lost due to a write by a different
master, in accordance with Armv8-M architecture requirements.

While in a WFE (or WFI) sleep state, the processor shuts off its internal clock gates to reduce power consumption. When
both processors are in a sleep state and the DMA is inactive, all of RP2350 can enter a sleep state, disabling clocks on
unused infrastructure such as the bus fabric. The rest of RP2350 wakes automatically when either of the processors
wakes. See Section 6.5.2.

3.4. Event Signals (RISC-V)

The Hazard3 h3.block instruction halts processor execution until an unblock signal is received. The h3.unblock instruction
sends an unblock signal to other processors. These NOP-compatible hint instructions are documented in Section
3.8.6.3.

On RP2350 the Hazard3 unblock in/out signals are cross-connected between the two processors, and each processor’s
unblock output is also fed back into its input. The global monitor also posts an unblock signal to each core when that
core loses a reservation due to an access by another core or the system DMA.

The Hazard3 MSLEEP CSR defines how deep a sleep the processor will enter when executing a h3.block instruction. By
default this is a simple pipeline stall, but the processor can also gate its own clock and negotiate the system-level clock
wake/sleep state with the clocks block (Section 6.5.2).

The h3.unblock instruction is "sticky": an h3.block will fall through immediately if any unblock signal has been received
since the last time the processor executed an h3.block instruction.

3.5. Debug

The Serial Wire Debug (SWD) bus provides access to hardware and software debug features including:

® | oading firmware into SRAM or external flash memory

3.3. Event Signals (Arm) 84

https://developer.arm.com/documentation/ddi0553/latest/

RP2350 Datasheet

Figure 10. RP2350
debug topology. An
SW-DP connects the
external SWD pins to
internal debug
hardware. The ROM
table lists debug
components, for
automatic discovery.
AHB-APs provide
debug access to Arm
processors, and an
APB-AP provides
access to a standard

RISC-V Debug Module.

The RP-AP provides
Raspberry-Pi-specific
controls such as
rescue reset and
debug key entry.
Remaining
components are for
Arm trace.

® Control of processor execution: run/halt, step, set breakpoints, other standard debug functionality
® Access to processor architectural state

® Access to memory and memory-mapped |0 via the system bus

® Configuring the CoreSight trace hardware (Arm processors only)

The SWD bus is exposed on two dedicated pins, SWCLK and SWDIO. See Table 1427 for the pin definitions for SWCLK
and SWDIO, and see Table 1437 for additional information on their specifications.

A single SW-DP provides access to RP2350’s debug subsystem from the external SWCLK and SWDIO pins. The DP is
multidrop-capable, but use of multidrop SWD is not mandatory. All hardware in the debug subsystem, with the exception
of the RP-AP, can also be accessed directly from the system bus using the self-hosted debug window starting at
CORESIGHT_PERIPH_BASE.

External Pads Internal Probe Bitbang System Bus
SWD Mux
Self-hosted
SARIP Debug APB
APB Crossbar
ROM AHB-AP: AHB-AP: || Timestamp ATB TPIU CTI APB-AP: RP-AP
Table Core 0 Core 1 Generator Funnel RISC-V
(0x00000) | | (0x02000) || (0x04000) || (0x06000) || (0x07000) || (0x08000) || (0x09000) || (0x0a000) || (0x80000)
Arm Arm RDleS& ;/
Core 0 Core 1 Viaahi
RISC-V RISC-V
Core 0 Core 1

The numbers in brackets in Figure 10 are the addresses of the debug components within the debug address space.
These correspond to values written to the SW-DP SELECT register for SWD accesses, or offsets from
CORESIGHT_PERIPH_BASE for self-hosted debug access. All APs are accessible through the SW-DP, and all except the
RP-AP are also accessible through self-hosted debug.

The SW-DP and RP-AP are in the always-on power domain, and are available once external power is applied and the
power-on reset (POR) time has elapsed. All other APs in Figure 10 are available only once:

1. the power manager (POWMAN) has sequenced the first power up of the switched core domain
2. the OTP PSM has read critical hardware configuration flags from OTP

3. the system clock (clk_sys) is running

3.5.1. Connecting to the SW-DP

The SW-DP defaults to the Dormant state at power-up or assertion of the external reset (RUN) pin. A Dormant-to-SWD
sequence must be issued before beginning SWD operations. See the Arm Debug Interface specification, version 6, for
details of Dormant/SWD state switching: https://developer.arm.com/documentation/ihi0074/latest/

After a power-on, the following sequence can be used to connect to the SW-DP:

1. At least 8 x SWCLK cycles with SWDIO high.

3.5. Debug

85

https://developer.arm.com/documentation/ihi0074/latest/

RP2350 Datasheet
]

2. The 128-bit Selection Alert sequence: 0x19bc0ea2, 0xe3ddafe9, 0x86852d95, 0x6209F392, LSB-first.
3. Four SWCLK cycles with SWDIO low.

4. SWD activation code sequence : 0x1a, LSB first.

5. At least 50 x SWCLK cycles with SWDIO high (line reset).

6. A DPIDR read to exit the Reset state

In order to wake up the system from a low power (P1.x) state, set the CDBGPWRUPREQ in the DP CTRL/STAT register,
then poll CDBGPWRUPACK in the same register until set. In low-power states, only the SW-DP and RP-AP are accessible,
as the remaining debug logic is unpowered.

3.5.2. Arm Debug

There are two AHB5 Mem-APs, at offsets 0x02000 and 0x04000 in the debug address space, which are used to debug the
two Arm Cortex-M33 processors. Each Mem-AP is an AHB5 manager which accesses a 32-bit downstream address
space. This is the same address space accessed by a processor’s load/store instructions, which includes system-level
hardware such as memory and peripherals, and processor-internal hardware on the processor’s private peripheral bus
(PPB). Certain PPB registers are visible only when accessed from the Mem-AP, not when accessed by software running
on the processor.

The AHB5 Mem-AP’s own register map is defined in Arm'’s ADIv6 specification. Generally this is only of interest to those
implementing their own debug translator, and the Mem-AP can be thought of simply as a bridge between a DP (such as
RP2350’s SW-DP) and a downstream address space.

The standard Arm debug registers used to debug software running on the Cortex-M33 can be found documented in the
Armv8-M Architecture Reference Manual, or the Cortex-M33 Technical Reference Manual, available from Arm Ltd. This
datasheet also documents the core’s internal registers in Section 3.7.5.

The Mem-APs can access system peripherals and memory at exactly the same addresses they would be accessed by
software running on the processor. However, the privilege and security of Mem-AP accesses may be different from the
security state of the software running on the processor at the point it halted: the privilege and security of Mem-AP
accesses is configured explicitly via its control and status word (CSW) register. Care must be taken when debugging
Non-secure software which accesses the SIO, for example, because by default the debugger may access the Secure
alias of the SIO, not the Non-secure alias which software will have been accessing.

The bus filters configured by the ACCESSCTRL bus access permission registers (Section 10.6.2) treat bus accesses
originating from the Mem-APs as distinct from bus accesses originating from software running on the processor. This
means it is possible to lock software out from a peripheral, whilst still allowing debugger access.

3.5.3. RISC-V Debug

There is a single APB Mem-AP, at offset 0x0a000 in the debug address space, which provides access only to the RISC-V
Debug Module (DM). The DM is a standard component which the debugger uses to enumerate RISC-V harts present in
the system, debug software running on each hart, and access the system bus. It is defined in the RISC-V debug
specification, of which RP2350 implements version 0.13.2.

From the point of view of the RISC-V debug specification, the SW-DP and APB Mem-AP function jointly as the Debug
Transport Module for this system. The DM is located at offset 0x0 in the APB-AP’s downstream address space, and the
registers are word-sized and byte-addressed, meaning the DM register addresses in the debug specification must be
multiplied by 4 to get the correct APB address.

On RP2350, each core possesses exactly one hardware thread (hart). Core 0 has a hart ID of 0, and core 1 has a hart ID
of 1. These hart IDs match the hart index used in the DM. This DM is also equipped with the hart array mask select
extension, which allows multiple cores to be reset/halted/resumed simultaneously.

The DM is equipped with the System Bus Access (SBA) extension, which allows the debugger to access the system bus
without halting either core. This can be used for minimally intrusive debug techniques like Segger RTT. SBA accesses

]
3.5. Debug 86

https://developer.arm.com/documentation/ddi0553/latest/

RP2350 Datasheet
]

arbitrate with core 1's load/store port to access the system bus, but they are treated as distinct from core 1's accesses
for the purpose of bus filtering (Section 10.6.2), which means it is possible to lock software out of a peripheral whilst
retaining debug access. Processor load/stores in Debug mode are also treated as debug accesses for the purpose of
bus filtering.

The DM is able to reset each core individually using the dmcontrol.hartreset control. This resets only the selected
processor. The dmcontrol.ndnreset resets both processors only, which is the minimum requirement in the RISC-V debug
specification. A full system reset, which includes the DM, can be performed using the SYSRESETREQ control in the SW-
DP, a switched core domain reset configured in POWMAN and initiated by the watchdog, or any full-system reset such
as the RUN pin. A PSM reset initiated by the watchdog can reset almost all system-level hardware except for the DM,
but note that the DM becomes momentarily inaccessible whilst the system clock’s clock generator is reset, which is the
reason for dmcontrol.ndmreset resetting the processors only.

For details on the processor side of RISC-V debug, see Section 3.8.5. See also the Hazard3 source code at
github.com/Wren6991/Hazard3, which includes the DM implementation under the hd1/debug/dm/ directory.

3.5.4. Debug Power Domains

The SW-DP and the RP-AP are in the always-on power domain. This means they are available even when the system is in
its lowest-power state, with the switched core domain (which includes the processors) fully powered down.

The remainder of the debug hardware is in the switched core domain. This is the same domain as the processors and
system peripherals.

Setting the CDOBGPWRUPREQ bit in the SW-DP’s CTRL/STAT register will force a power up of the switched core domain,
making the remaining debug hardware available. This power up takes some time, as it is sequenced by the 32 kHz low-
power oscillator (Section 8.4), so the CDBGPWRUPACK bit must be polled to wait for the system to power up before
attempting to access any APs other than the RP-AP. See Arm'’s ADIv6 specification for the SW-DP’s register listing.

Note that the RP-AP is accessible without asserting COBGPWRUPREQ, as it is always powered.

3.5.5. Software control of SWD pins

The DBGFORCE register in SYSCFG can be used to detach the SW-DP from the external debug pads, and instead bitbang
the internal SWD signals directly from software. This is intended for a debug probe running on one core being used to
debug the other core. For other use cases it is generally cleaner to use the self-hosted debug access to interface with
the APs directly from the system bus.

3.5.6. Self-hosted Debug

All APs shown in Figure 10, except for the RP-AP, have direct memory-mapped access from the system bus. This is
known as self-hosted debug, because with care it allows running a debug host (i.e. a debugger) directly on-system. It
can also be used to access the trace hardware, which can be used for self-hosted trace using the trace DMA FIFO. By
default only Secure access is permitted, as the processor debug presents an opportunity for Non-secure code to
interfere with the Secure context and/or perform Secure bus accesses.

The self-hosted debug window starts at address 0x40140000 (CORESIGHT_PERIPH_BASE). The offsets of the APs within
this window are the same as the APs' addresses when accessed from the SW-DP.

Because of the blocking nature of the AHB-AP’s DRW register, and its interactions with the Cortex-M33’s arbitration of
AHB-AP accesses with load/stores, certain accesses have potential to cause bus lockup due to circular bus stall
dependencies. In particular, cores may not access their own AHB-APs through the self-hosted debug window, and AHB-
APs may not access AHB-APs through the self-hosted debug window — attempting to do so will immediately return a
bus fault. To reduce the opportunities for deadlock, a full APB crossbar is used to connect the SW-DP and the self-
hosted debug port to the APs, so that for example self-hosted use of the Arm trace hardware will not interfere with an
external debugger attaching via the AHB-APs.

]
3.5. Debug 87

https://github.com/Wren6991/Hazard3/

RP2350 Datasheet
]

Figure 11. Trace
Subsystem

There are some cases where a bus deadlock can not be avoided, such as a core using the other core’'s AHB-AP, via the
self-hosted debug window, to access some other APB peripheral:

1. The access upstream of the APB’s DRW register will not complete until the downstream access completes
2. The downstream access will not complete until it is granted access to the system APB bridge

3. Access to the APB bridge will not be granted until the upstream access, which is occupying the system APB bridge,
completes

4. See point 1.

This situation can arise when running a self-hosted debugger on one core, and debugging code on the other core which
accesses APB addresses. The deadlock is eventually broken when the APB bridge’s 65536-cycle timeout expires,
abandoning the transfer and returning a bus error to the origin of the upstream access. To avoid this, software should
detect when it is about to use an AP to access an APB address (an address starting with 0x4), and perform the access
directly instead of using the Mem-AP.

This type of deadlock does not occur when the debugger accesses the bus with RISC-V System Bus Access, because
the bus transfer upstream of the DM does not block on completion of the downstream access.

3.5.7. Trace

3.5.7.1. Overview

The ATB trace subsystem is based on the Coresight SoC-600M architecture, as shown in Figure 11.

TSy o Upsizer 8/16 AT Buffer
Generator ™ Upsizer 8/16 >/ AT Buffer ol
4bit DDR
ATBE
ETM Upsizer 8/16 -»| AT Buffer H e
Upsizer 8/16 AT Buffer
Trace
FIFO
O Cortex-M33
[1 SoC-600M o
Raspberry Pi Controller

The trace subsystem captures trace messages from each of the Cortex-M33 ITM/ETM components, merges them into
a single trace bus, and sends off-chip through the 4-bit DDR trace port for subsequent capture and analysis by a trace
port analyser.

This allows the developer to review a detailed log of software executed on the processors. The advantage over
conventional hardware debug is that it does this without halting the processors or affecting their execution timing, so
you can diagnose software issues that are hard to reproduce under a debugger.

The trace subsystem comprises the following main components:

® Timestamp Generator: Timestamps propagate to both Cortex-M33 processors, and are applied to ETM and ITM
output so that the relative timing of their trace streams can be recovered.

Cortex-M33 ETM: Embedded Trace Macrocell, for real-time instruction flow messages generated from
observations of the Cortex-M33's execution.

® Cortex-M33 ITM: Instruction Trace Macrocell, for software-generated messages.

* ATB Funnel: Merges the Cortex-M33 trace sources into a single trace stream using the timestamps from the
Timestamp Generator.

® TPIU: Trace Port Interface Unit, outputs trace data over trace port pins. The source-synchronous trace interface is
4-bits DDR, up to 75 MHz clock, giving a maximum trace data rate of up to 600 Mb/s.

3.5. Debug

88

RP2350 Datasheet

® Trace FIFO: Optionally captures the 32-bit TPIU trace stream on-device, from which point the DMA can transfer to
main system SRAM.

See the Arm CoreSight ETM-M33 Technical Reference Manual for information about the Cortex-M33 ETM. See the SoC-
600M Technical Reference Manual for information about the other trace components in Figure 11

The trace output clock is fixed at one half of clk_sys. At the maximum system frequency of 150 MHz this yields a
75 MHz TPIU output clock. The trace throughput is reduced at lower system clock frequencies, though this is rarely an
issue in practice as the processor instruction throughput (and therefore the demand for trace output bandwidth) scales
accordingly.

3.5.7.2. Trace FIFO

Trace output goes to one of two data sinks:
® The four-bit TPIU interface streams data out of the chip through GPIOs, for capture by an external probe
® The trace FIFO streams data into SRAM via the system DMA

The bandwidth of the DMA is greater than the bandwidth of the TPIU interface. Capturing into an on-chip buffer also
allows trace to operate through a comparatively low-speed SWD probe without restricting trace bandwidth.

The operation is similar to a micro-trace buffer (MTB). However, all of system SRAM is available for trace. You can also
use other DMA endpoints like the PIO and HSTX to implement your own trace data sinks, for example if you would
prefer a wider and lower-frequency bus than the TPIU provides.

You must enable DMA access to the trace FIFO registers by setting the DA bit in the ACCESSCTRL CORESIGHT_TRACE
register before attempting to DMA from this FIFO. Configure the DMA for DREQ 53 to select the trace FIFO.

3.5.7.3. List of Trace FIFO Registers

The trace FIFO registers start at a base address of 0x50700000 (defined as CORESIGHT_TRACE_BASE in the SDK).

Table 95. List of Offset Name Info
CORESIGHT_TRACE
registers 0x0 CTRL_STATUS Control and status register
0x4 TRACE_CAPTURE_FIFO FIFO for trace data captured from the TPIU

CORESIGHT_TRACE: CTRL_STATUS Register
Offset: 0x0

Description

Control and status register

Table 96. Bits Description Type Reset
CTRL_STATUS
Register 31:2 Reserved. - -

1 TRACE_CAPTURE_FIFO_OVERFLOW: This status flag is set high when trace RW 0x0

data has been dropped due to the FIFO being full at the point trace data was
sampled. Write 1 to acknowledge and clear the bit.

3.5. Debug 89

https://developer.arm.com/documentation/100232/latest/
https://developer.arm.com/documentation/101883/0200
https://developer.arm.com/documentation/101883/0200

RP2350 Datasheet
]

Table 97.
TRACE_CAPTURE_FIF
0 Register

Bits Description Type Reset

0 TRACE_CAPTURE_FIFO_FLUSH: Set to 1 to continuously hold the trace FIFO in| RW 0x1
a flushed state and prevent overflow.

Before clearing this flag, configure and start a DMA channel with the correct
DREQ for the TRACE_CAPTURE_FIFO register.

Clear this flag to begin sampling trace data, and set once again once the trace
capture buffer is full. You must configure the TPIU in order to generate trace
packets to be captured, as well as components like the ETM further upstream
to generate the event stream propagated to the TPIU.

CORESIGHT_TRACE: TRACE_CAPTURE_FIFO Register
Offset: 0x4

Description

FIFO for trace data captured from the TPIU

Bits Description Type Reset
31:0 RDATA: Read from an 8 x 32-bit FIFO containing trace data captured from the | RF 0x00000000
TPIU.

Hardware pushes to the FIFO on rising edges of clk_sys, when either of the
following is true:

* TPIU TRACECTL output is low (normal trace data)

* TPIU TRACETCL output is high, and TPIU TRACEDATAO and TRACEDATA1
are both low (trigger packet)

These conditions are in accordance with Arm Coresight Architecture Spec
v3.0 section D3.3.3: Decoding requirements for Trace Capture Devices

The data captured into the FIFO is the full 32-bit TRACEDATA bus output by
the TPIU. Note that the TPIU is a DDR output at half of clk_sys, therefore this
interface can capture the full 32-bit TPIU DDR output bandwidth as it samples
once per active edge of the TPIU output clock.

3.5.8. Rescue Reset

A rescue reset is a full system reset, similar to asserting the RUN pin low, which also sets a flag telling the bootrom to
halt before running any user software. This is performed over the SWD bus using the RP-AP, and can be performed even
when system clocks are stopped and the switched core power domain is powered down. This is used in the case where
the chip has locked up, for example if code has been programmed into flash which permanently halts the system clock:
since the debugger can no longer communicate with the processors to return the system to a working state, more
drastic action is needed. This functionality was provided by the Rescue DP on RP2040, but on RP2350 it is provided by
the RP-AP, to avoid mandatory use of multidrop SWD.

A rescue is invoked by setting and then clearing the CTRL.RESCUE_RESTART bit in the RP-AP. This causes a hard reset
of the chip, and sets CHIP_RESET.RESCUE_FLAG to indicate that a rescue reset took place. The bootrom checks this
flag almost immediately in the initial boot process (before watchdog, flash or USB boot), acknowledges by clearing the
bit, then halts the processor. This leaves the system in a safe state, with the system clock running, so that the debugger
can reattach to the cores and load fresh code.

3.5. Debug

90

RP2350 Datasheet
]

3.5.9. Security

By default, the SWD debug access port allows an external debugger to access all system memory and peripherals, and
to observe and change the execution of software running on the processors. If boot signature enforcement is enabled
(Section 10.1.1), debug access becomes a security concern, as it is able to sidestep this protection. To account for this,
RP2350 supports progressively locking down the debug port using configuration in on-chip OTP storage.

Conceptually there are two control bits: debug disable, and secure debug disable. Debug disable is intended to
completely cut off debug access to the processors and the system bus, whilst the secure debug disable forbids Secure
bus accesses, and halting of processors in the Secure state, but still allows Non-secure software to be debugged as
normal. There are two ways to set these control bits:

® Setting the relevant OTP critical flag: CRIT1.DEBUG_DISABLE or CRIT1.SECURE_DEBUG_DISABLE to set the debug
disable or secure debug disable, respectively

® Installing a 128-bit fixed debug key as OTP key 5 or 6 (Section 3.5.9.2)
OTP configuration changes take effect at the next reset of the OTP block.

Once debug has been disabled, software can re-enable debug using the OTP DEBUGEN register, which allows the secure
and overall debug enable to be cleared individually for each processor. For example, Secure software may implement a
shell where users can authenticate using a cryptographic challenge to enable debug on systems where it is disabled by
default. The DEBUGEN register belongs to the processor cold reset domain, so it is preserved over a PSM reset starting
from as early as OTP (the second PSM stage). This allows almost a full system reset without losing debug access.

To avoid accidental writes of the DEBUGEN register, its bits can be individually locked using the matching bits in
DEBUGEN_LOCK.

This offers increasing levels of debug protection:

1. Fully open: no keys installed and no OTP debug disable flags are set. This is the most convenient configuration for
product development.

2. Access with key only: at least one key is installed, but no OTP debug disable flags are set.

3. No access even with key (an OTP debug disable flag is set), but Secure code can enable debug access by writing
to DEBUGEN.

4. No access even with key (an OTP debug disable flag is set), and DEBUGEN is locked by DEBUGEN_LOCK.

3.5.9.1. Effects of Debug Disables

The secure debug disable flag (CRIT1.SECURE_DEBUG_DISABLE) has the following effects:
® Set Secure AP enable signals for Arm core 0 and core 1 AHB-APs to 0.
o This prevents the APs from performing Secure bus accesses (including to the PPB).
o Status is reported in the SDeviceEn flag of the AHB-AP (SW register.
® Set the Cortex-M33 SPIDEN and SPNIDEN signals for both cores to 0.
o This prevents the cores from being halted or traced whilst in the Secure state.
® Disable the factory test JTAG interface (Section 10.10).

The debug disable flag (CRIT1.DEBUG_DISABLE) has all of the effects of the secure debug disable flag. It also has the
following additional effects:

® Set AP enable signals for Arm core 0 and core 1 AHB-APs to 0.
o This prevents the APs from performing any bus accesses at all (including to the PPB).
o Status is reported in the DeviceEn flag of the AHB-AP CSW register.

® Set AP enable signal for RISC-V DM APB-AP to 0.

]
3.5. Debug 91

RP2350 Datasheet
]

o This prevents the AP from accessing the RISC-V Debug Module.
o Status is reported in the DeviceEn flag of the APB-AP (Su register.
® Set DBGEN and NIDEN signals for the CTl to 0.

On RISC-V CRIT1.SECURE_DEBUG_DISABLE has no useful effect. Debug-mode accesses from the cores always have
Secure and Privileged bus attributes, except when reduced by FORCE_CORE_NS. Likewise, System Bus Access via the
Debug Module is always Secure and Privileged, unless FORCE_CORE_NS.CORET is set, in which case it is Non-secure
and Privileged. Use the CRIT1.DEBUG_DISABLE flag on RISC-V.

3.5.9.2. Debug Keys

Section 13.5.2 describes the OTP hardware access keys. Hardware reads OTP access keys into hidden registers as part
of the OTP power-up sequence which takes place after an OTP reset, and the corresponding OTP locations then
become inaccessible. OTP keys 5 and 6 are special in that they control access to the SWD debug hardware in addition to
functioning as normal OTP page keys.

A debug key is a 128-bit fixed challenge. Installing a debug key in OTP locks down debug access, and it remains locked
until the debug host writes a matching key value through the RP-AP DBGKEY register. This is a write-only interface.

To install a debug key, first program the OTP locations starting from KEY5_0 or KEY6_0. These locations are ECC-
protected. Once you have programmed the 128-bit key value and read it back to confirm the correct value is
programmed, write the raw bit pattern 0x010101 to KEY5_VALID or KEY6_VALID to mark the key as valid. The validity
takes effect at the next reset of the OTP block.

Once a key is valid, the OTP storage locations for that key become inaccessible for both reads and writes. Only the OTP
power-up state machine (Section 13.3.4) can read the key.

The effect of installing debug keys depends on which of key 5 and 6 are installed:

e |f key 5 or key 6 is valid, and no matching key (either) has been entered through the RP-AP, all debug is disabled.
This has the same effect as setting CRIT1.DEBUG_DISABLE.

e |f key 5 is valid, and no matching key (key 5 specifically) has been entered through the RP-AP, Secure debug is
disabled. This has the same effect as writing CRIT1.SECURE_DEBUG_DISABLE.

When both keys are installed, key 5 provides both Secure and Non-secure debug access, and key 6 provides Non-secure
debug access only. When only a single key is installed, that key provides both Secure and Non-secure debug access.

To enter a key over SWD, first write a 1 to DBGKEY.RESET. Then sequentially write 128 bits to DBGKEY.DATA, each
accompanied by a 1 written to DBGKEY.PUSH. Write the data LSB-first, starting with the lowest-numbered OTP row.

Assuming you wrote a value that matched one of the installed debug keys, debug unlocks after the 128th push. The
SDeviceEn and DeviceEn flags in the Mem-AP CSi registers indicate success or failure.

Failure to supply a matching key through the RP-AP disables debug if it would otherwise be enabled. However, supplying
a key does not enable if it is already disabled for other reasons. For example, if CRIT1.DEBUG_DISABLE is set, and
DEBUGEN is clear, debug is be disabled no matter the state of the debug keys and the RP-AP.

3.5.10. RP-AP

The RP-AP is a small register block which is always accessible over SWD. RP-AP access does not require the switched
core domain to be powered up, or any internal system clock generators to be running.

3.5.10.1. List of Registers

The RP-AP registers start at offset 0x80000 in the debug address space, which is accessed via address 0x80000 in the SW-
DP’s SELECT register. Unlike the other APs, it can not be accessed directly from the system bus.

]
3.5. Debug 92

RP2350 Datasheet

Table 98. List of
RP_AP registers

Offset

Name

Info

0x000

CTRL

This register is primarily used for DFT but can also be used to
overcome some power up problems. However, it should not be
used to force power up of domains. Use DBG_POW_OVRD for
that.

0x004

DBGKEY

Serial key load interface (write-only)

0x008

DBG_POW_STATE_SWCORE

This register indicates the state of the power sequencer for the
switched-core domain.

The sequencer timing is managed by the POWMAN_SEQ_*
registers. See the header file for those registers for more
information on the timing.

Power up of the domain commences by clearing bit 0 (IS_PD)
then bits 1-8 are set in sequence. Bit 8 (IS_PU) indicates the
sequence is complete.

Power down of the domain commences by clearing bit 8 (IS_PU)
then bits 7-1 are cleared in sequence. Bit 0 (IS_PU) is then set to
indicate the sequence is complete.

Bits 9-11 describe the states of the power manager clocks which
change as clock generators in the switched-core become
available following switched-core power up.

This bus can be sent to GPIO for debug. See
DBG_POW_OUTPUT_TO_GPIO in the DBG_POW_OVRD register.

0x00c

DBG_POW_STATE_XIP

This register indicates the state of the power sequencer for the
XIP domain.

The sequencer timing is managed by the POWMAN_SEQ_*
registers. See the header file for those registers for more
information on the timing.

Power up of the domain commences by clearing bit 0 (IS_PD)
then bits 1-8 are set in sequence. Bit 8 (IS_PU) indicates the
sequence is complete.

Power down of the domain commences by clearing bit 8 (IS_PU)
then bits 7-1 are cleared in sequence. Bit 0 (IS_PU) is then set to
indicate the sequence is complete.

0x010

DBG_POW_STATE_SRAMO

This register indicates the state of the power sequencer for the
SRAMO domain.

The sequencer timing is managed by the POWMAN_SEQ_*
registers. See the header file for those registers for more
information on the timing.

Power up of the domain commences by clearing bit 0 (IS_PD)
then bits 1-8 are set in sequence. Bit 8 (IS_PU) indicates the
sequence is complete.

Power down of the domain commences by clearing bit 8 (IS_PU)
then bits 7-1 are cleared in sequence. Bit 0 (IS_PU) is then set to
indicate the sequence is complete.

3.5. Debug

93

RP2350 Datasheet
]

Table 99. CTRL
Register

Offset

Name

Info

0x014

DBG_POW_STATE_SRAM1

This register indicates the state of the power sequencer for the
SRAM1 domain.

The sequencer timing is managed by the POWMAN_SEQ_*
registers. See the header file for those registers for more
information on the timing.

Power up of the domain commences by clearing bit 0 (IS_PD)
then bits 1-8 are set in sequence. Bit 8 (IS_PU) indicates the
sequence is complete.

Power down of the domain commences by clearing bit 8 (IS_PU)
then bits 7-1 are cleared in sequence. Bit 0 (IS_PU) is then set to
indicate the sequence is complete.

0x018

DBG_POW_OVRD

This register allows external control of the power sequencer
outputs for all the switched power domains. If any of the power
sequencers stall at any stage then force power up operation of
all domains by running this sequence:

- set DBG_POW_OVRD = 0x3b to force small power switches on,
large power switches off, resets on and isolation on

- allow time for the domain power supplies to reach full rail

- set DBG_POW_OVRD = 0x3b to force large power switches on
- set DBG_POW_OVRD = 0x37 to remove isolation

- set DBG_POW_OVRD = 0x17 to remove resets

0x01c

DBG_POW_OUTPUT_TO_GPIO

Send some, or all, bits of DBG_POW_STATE_SWCORE to gpios.
Bit 0 sends bit 0 of DBG_POW_STATE_SWCORE to GPIO 34
Bit 1 sends bit 1 of DBG_POW_STATE_SWCORE to GPIO 35
Bit 2 sends bit 2 of DBG_POW_STATE_SWCORE to GPIO 36

Bit 11 sends bit 11 of DBG_POW_STATE_SWCORE to GPIO 45

Oxdfc

IDR

Standard Coresight ID Register

RP_AP: CTRL Register
Offset: 0x000

Description

This register is primarily used for DFT but can also be used to overcome some power up problems. However, it
should not be used to force power up of domains. Use DBG_POW_OVRD for that.

Bits Description Type Reset
31 RESCUE_RESTART: Allows debug of boot problems by restarting the chip with | RW 0x0
minimal boot code execution. Write to 1 to put the chip in reset then write to 0
to restart the chip with the rescue flag set. The rescue flag is in the
POWMAN_CHIP_RESET register and is read by boot code. The rescue flag is
cleared by writing 0 to POWMAN_CHIP_RESET_RESCUE_FLAG or by resetting
the chip by any means other than RESCUE_RESTART.
30 SPARE: Unused RW 0x0
29:7 Reserved. = =

3.5. Debug

94

RP2350 Datasheet
]

Table 100. DBGKEY
Register

Bits

Description

Type

Reset

DBG_FRCE_GPIO_LPCK: Allows chip start-up when the Low Power Oscillator
(LPOSC) is inoperative or malfunctioning and also allows the initial power
sequencing rate to be adjusted. Write to 1 to force the LPOSC output to be
driven from a GPIO (gpio20 on 80-pin package, gpio34 on the 60-pin package).
If the LPOSC is inoperative or malfunctioning it may also be necessary to set
the LPOSC_STABLE_FRCE bit in this register. The user must provide a clock on
the GPIO. For normal operation use a clock running at around 32kHz.
Adjusting the frequency will speed up or slow down the initial power-up
sequence.

RW

0x0

LPOSC_STABLE_FRCE: Allows the chip to start-up even though the Low Power
Oscillator (LPOSC) is failing to set its stable flag. Initial power sequencing is
clocked by LPOSC at around 32kHz but does not start until the LPOSC
declares itself to be stable. If the LPOSC is otherwise working correctly the
chip will boot when this bit is set. If the LPOSC is not working then
DBG_FRCE_GPIO_LPCK must be set and an external clock provided.

RW

0x0

POWMAN_DFT_ISO_OFF: Holds the isolation gates between power domains in
the open state. This is intended to hold the gates open for DFT and power
manager debug. It is not intended to force the isolation gates open. Use the
overrides in DBG_POW_OVRD to force the isolation gates open or closed.

RW

0x0

POWMAN_DFT_PWRON: Holds the power switches on for all domains. This is
intended to keep the power on for DFT and debug, rather than for switching
the power on. The power switches are not sequenced and the sudden demand
for current could cause the always-on power domain to brown out. This
register is in the always-on domain therefore chaos could ensue. It is
recommended to use the DBG_POW_OVRD controls instead.

RW

0x0

POWMAN_DBGMODE: This prevents the power manager from powering down
and resetting the switched-core power domain. It is intended for DFT and for
debugging the power manager after the chip has booted. It cannot be used to
force initial power on because it simultaneously deasserts the reset.

RW

0x0

JTAG_FUNCSEL: Multiplexes the JTAG ports onto GPIO0-3

RW

0x0

JTAG_TRSTN: Resets the JTAG module. Active low.

RW

0x0

RP_AP: DBGKEY Register
Offset: 0x004

Description

Serial key load interface (write-only)

Bits

Description

Type

Reset

313

Reserved.

2

RESET: Reset (before sending a new key)

RW

0x0

1

PUSH

RW

0x0

0

DATA

RW

0x0

RP_AP: DBG_POW_STATE_SWCORE Register

Offset: 0x008

3.5. Debug

95

RP2350 Datasheet
]

Table 101.
DBG_POW_STATE_SW
CORE Register

Description

This register indicates the state of the power sequencer for the switched-core domain.

The sequencer timing is managed by the POWMAN_SEQ_* registers. See the header file for those registers for more
information on the timing.
Power up of the domain commences by clearing bit 0 (IS_PD) then bits 1-8 are set in sequence. Bit 8 (IS_PU)
indicates the sequence is complete.
Power down of the domain commences by clearing bit 8 (IS_PU) then bits 7-1 are cleared in sequence. Bit 0 (IS_PU)
is then set to indicate the sequence is complete.
Bits 9-11 describe the states of the power manager clocks which change as clock generators in the switched-core

become available following switched-core power up.

This bus can be sent to GPIO for debug. See DBG_POW_OUTPUT_TO_GPIO in the DBG_POW_OVRD register.

Bits

Description

Type

Reset

31:12

Reserved.

11

USING_FAST_POWCK: Indicates the source of the power manager clock. On
switched-core power up the clock switches from the LPOSC to clk_ref and this
flag will be set. clk_ref will be running from the ROSC initially but will switch to
XOSC when it comes available. On switched-core power down the clock
switches to LPOSC and this flag will be cleared.

RO

0x0

10

WAITING_POWCK: Indicates the switched-core power sequencer is waiting for
the power manager clock to update. On switched-core power up the clock
switches from the LPOSC to clk_ref. clk_ref will be running from the ROSC
initially but will switch to XOSC when it comes available. On switched-core
power down the clock switches to LPOSC.

If the switched-core power up sequence stalls with this flag active then it
means clk_ref is not running which indicates a problem with the ROSC. If that
happens then set DBG_POW_RESTART_FROM_XOSC in the DBG_POW_OVRD
register to avoid using the ROSC.

If the switched-core power down sequence stalls with this flag active then it
means LPOSC is not running. The solution is to not stop LPOSC when the
switched-core power domain is powered.

RO

0x0

WAITING_TIMCK: Indicates that the switched-core power sequencer is waiting
for the AON-Timer to update. On switched-core power-up there is nothing to
be done. The AON-Timer continues to run from the LPOSC so this flag will not
be set. Software decides whether to switch the AON-Timer clock to XOSC (via
clk_ref). On switched-core power-down the sequencer will switch the AON-
Timer back to LPOSC if software switched it to XOSC. During the switchover
the WAITING_TIMCK flag will be set. If the switched-core power down
sequence stalls with this flag active then the only recourse is to reset the chip
and change software to not select XOSC as the AON-Timer source.

RO

0x0

IS_PU: Indicates the power somain is fully powered up.

RO

0x0

RESET_FROM_SEQ: Indicates the state of the reset to the power domain.

RO

0x0

ENAB_ACK: Indicates the state of the enable to the power domain.

RO

0x0

ISOLATE_FROM_SEQ: Indicates the state of the isolation control to the power
domain.

RO

0x0

LARGE_ACK: Indicates the state of the large power switches for the power
domain.

RO

0x0

3.5. Debug

96

RP2350 Datasheet
]

Bits Description Type Reset

3 SMALL_ACK2: The small switches are split into 3 chains. In the power up RO 0x0
sequence they are switched on separately to allow management of the VDD
rise time. In the power down sequence they switch off simultaneously with the
large power switches.

This bit indicates the state of the last element in small power switch chain 2.

2 SMALL_ACKT1: This bit indicates the state of the last element in small power | RO 0x0
switch chain 1.

1 SMALL_ACKO: This bit indicates the state of the last element in small power | RO 0x0
switch chain 0.

0 IS_PD: Indicates the power somain is fully powered down. RO 0x0

RP_AP: DBG_POW_STATE_XIP Register
Offset: 0x00c

Description

This register indicates the state of the power sequencer for the XIP domain.

The sequencer timing is managed by the POWMAN_SEQ_* registers. See the header file for those registers for more
information on the timing.

Power up of the domain commences by clearing bit 0 (IS_PD) then bits 1-8 are set in sequence. Bit 8 (IS_PU)
indicates the sequence is complete.

Power down of the domain commences by clearing bit 8 (IS_PU) then bits 7-1 are cleared in sequence. Bit 0 (IS_PU)
is then set to indicate the sequence is complete.

Table 102.

Bits Description Type Reset
DBG_POW_STATE_XIP
Register 31:9 Reserved. - -
8 IS_PU: Indicates the power somain is fully powered up. RO 0x0
7 RESET_FROM_SEQ: Indicates the state of the reset to the power domain. RO 0x0
6 ENAB_ACK: Indicates the state of the enable to the power domain. RO 0x0
5 ISOLATE_FROM_SEQ: Indicates the state of the isolation control to the power |RO 0x0
domain.
4 LARGE_ACK: Indicates the state of the large power switches for the power RO 0x0
domain.
3 SMALL_ACK2: The small switches are split into 3 chains. In the power up RO 0x0

sequence they are switched on separately to allow management of the VDD
rise time. In the power down sequence they switch off simultaneously with the
large power switches.

This bit indicates the state of the last element in small power switch chain 2.

2 SMALL_ACKT1: This bit indicates the state of the last element in small power | RO 0x0
switch chain 1.

1 SMALL_ACKQO: This bit indicates the state of the last element in small power | RO 0x0
switch chain 0.

0 IS_PD: Indicates the power somain is fully powered down. RO 0x0

RP_AP: DBG_POW_STATE_SRAMO Register

Offset: 0x010

3.5. Debug 97

RP2350 Datasheet
]

Table 103.
DBG_POW_STATE_SR
AMO Register

Table 104.
DBG_POW_STATE_SR
AMT Register

Description

This register indicates the state of the power sequencer for the SRAMO domain.
The sequencer timing is managed by the POWMAN_SEQ_* registers. See the header file for those registers for more
information on the timing.
Power up of the domain commences by clearing bit 0 (IS_PD) then bits 1-8 are set in sequence. Bit 8 (IS_PU)
indicates the sequence is complete.
Power down of the domain commences by clearing bit 8 (IS_PU) then bits 7-1 are cleared in sequence. Bit 0 (IS_PU)
is then set to indicate the sequence is complete.

Bits Description Type Reset
31:9 Reserved. - -
8 IS_PU: Indicates the power somain is fully powered up. RO 0x0
7 RESET_FROM_SEQ: Indicates the state of the reset to the power domain. RO 0x0
6 ENAB_ACK: Indicates the state of the enable to the power domain. RO 0x0
5 ISOLATE_FROM_SEQ: Indicates the state of the isolation control to the power |RO 0x0
domain.
4 LARGE_ACK: Indicates the state of the large power switches for the power RO 0x0
domain.
3 SMALL_ACK2: The small switches are split into 3 chains. In the power up RO 0x0
sequence they are switched on separately to allow management of the VDD
rise time. In the power down sequence they switch off simultaneously with the
large power switches.
This bit indicates the state of the last element in small power switch chain 2.
2 SMALL_ACK1: This bit indicates the state of the last element in small power | RO 0x0
switch chain 1.
1 SMALL_ACKO: This bit indicates the state of the last element in small power | RO 0x0
switch chain 0.
0 IS_PD: Indicates the power somain is fully powered down. RO 0x0

RP_AP: DBG_POW_STATE_SRAM1 Register

Offset: 0x014

Description

This register indicates the state of the power sequencer for the SRAM1 domain.
The sequencer timing is managed by the POWMAN_SEQ_* registers. See the header file for those registers for more
information on the timing.
Power up of the domain commences by clearing bit 0 (IS_PD) then bits 1-8 are set in sequence. Bit 8 (IS_PU)
indicates the sequence is complete.
Power down of the domain commences by clearing bit 8 (IS_PU) then bits 7-1 are cleared in sequence. Bit 0 (IS_PU)
is then set to indicate the sequence is complete.

Bits Description Type Reset

31:9 Reserved. = =

8 IS_PU: Indicates the power somain is fully powered up. RO 0x0

7 RESET_FROM_SEQ: Indicates the state of the reset to the power domain. RO 0x0

6 ENAB_ACK: Indicates the state of the enable to the power domain. RO 0x0

5 ISOLATE_FROM_SEQ: Indicates the state of the isolation control to the power |RO 0x0
domain.

3.5. Debug

98

RP2350 Datasheet
]

Table 105.
DBG_POW_OVRD
Register

Bits Description Type Reset

4 LARGE_ACK: Indicates the state of the large power switches for the power RO 0x0
domain.

3 SMALL_ACK2: The small switches are split into 3 chains. In the power up RO 0x0
sequence they are switched on separately to allow management of the VDD
rise time. In the power down sequence they switch off simultaneously with the
large power switches.
This bit indicates the state of the last element in small power switch chain 2.

2 SMALL_ACKT1: This bit indicates the state of the last element in small power | RO 0x0
switch chain 1.

1 SMALL_ACKO: This bit indicates the state of the last element in small power | RO 0x0
switch chain 0.

0 IS_PD: Indicates the power somain is fully powered down. RO 0x0

RP_AP: DBG_POW_OVRD Register
Offset: 0x018

Description

This register allows external control of the power sequencer outputs for all the switched power domains. If any of

the power sequencers stall at any stage then force power up operation of all domains by running this sequence:

set DBG_POW_OVRD = 0x3b to force small power switches on, large power switches off, resets on and

isolation on

allow time for the domain power supplies to reach full rail

set DBG_POW_OVRD = 0x3b to force large power switches on
set DBG_POW_OVRD = 0x37 to remove isolation

set DBG_POW_OVRD = 0x17 to remove resets

Bits

Description

Type

Reset

317

Reserved.

DBG_POW_RESTART_FROM_XOSC: By default the system begins boot as
soon as a clock is available from the ROSC, then it switches to the XOSC when
it is available. This is done because the XOSC takes several ms to start up. If
there is a problem with the ROSC then the default behaviour can be changed
to not use the ROSC and wait for XOSC. However, this requires a mask change
to modify the reset value of the Power Manager START_FROM_XOSC register.
To allow experimentation the default can be temporarily changed by setting
this register bit to 1. After setting this bit the core must be reset by a Coresight
dprst or a rescue reset (see RESCUE_RESTART in the RP_AP_CTRL register
above). A power-on reset, brown-out reset or RUN pin reset will reset this
control and revert to the default behaviour.

RW

0x0

DBG_POW_RESET: When DBG_POW_OVRD_RESET=1 this register bit controls
the resets for all domains. 1 = reset. 0 = not reset.

RW

0x0

DBG_POW_OVRD_RESET: Enables DBG_POW_RESET to control the resets for
the power manager and the switched-core. Essentially that is everythjing
except the Coresight 2-wire interface and the RP_AP registers.

RW

0x0

DBG_POW_ISO: When DBG_POW_OVRD_ISO=1 this register bit controls the
isolation gates for all domains. 1 = isolated. 0 = not isolated.

RW

0x0

3.5. Debug

99

RP2350 Datasheet

Bits Description Type Reset
2 DBG_POW_OVRD_ISO: Enables DBG_POW_ISO to control the isolation gates RW 0x0
between domains.
1 DBG_POW_OVRD_LARGE_REQ: Turn on the large power switches for all RW 0x0
domains. This should not be done until sufficient time has been allowed for
the small switches to bring the supplies up. Switching the large switches on
too soon risks browning out the always-on domain and corrupting these very
registers.
0 DBG_POW_OVRD_SMALL_REQ: Turn on the small power switches for all RW 0x0
domains. This switches on chain 0 for each domain and switches off chains 2
& 3 and the large power switch chain. This will bring the power up for all
domains without browning out the always-on power domain.
RP_AP: DBG_POW_OUTPUT_TO_GPIO Register
Offset: 0x01c
Description
Send some, or all, bits of DBG_POW_STATE_SWCORE to gpios.
Bit 0 sends bit 0 of DBG_POW_STATE_SWCORE to GPIO 34
Bit 1 sends bit 1 of DBG_POW_STATE_SWCORE to GPIO 35
Bit 2 sends bit 2 of DBG_POW_STATE_SWCORE to GPIO 36
2. +Bit 11 sends bit 11 of DBG_LPOW_STATE_SWCORE to GPIO 45
Table 106. Bits Description Type Reset
DBG_POW_OUTPUT_T
0-GPIO Register 31:12 Reserved. - -
11:0 ENABLE RW 0x000
RP_AP: IDR Register
Offset: Oxdfc
Table 107. IR Bits Description Type Reset
Register
31:0 Standard Coresight ID Register RO -

3.6. Cortex-M33 Coprocessors

The Cortex-M33 features a coprocessor port which transfers up to 64 bits per cycle between the processor and certain
closely-coupled hardware. The Cortex-M33's built-in floating-point unit is an example of such a coprocessor, but
RP2350 adds three device-specific coprocessors to this interface. The following sections document these

coprocessors.

Before accessing a coprocessor from Secure code, that coprocessor must first be enabled by setting the corresponding
bit in the CPACR. Before accessing from the Non-secure state, the corresponding bits in the NSACR and CPACR_NS
registers must be set.

The RISC-V processors on RP2350 do not have access to the Cortex-M33 coprocessors.

|
3.6. Cortex-M33 Coprocessors

100

RP2350 Datasheet
]

3.6.1. GPIO Coprocessor (GPIOC)

Coprocessor port 0 provides low-overhead access from the Cortex-M33 processors to the GPIO registers in the SIO
(Section 3.1.3). This enables a single coprocessor instruction to sample all 48 GPIOs, or to set/clear/write any single
GPIO, among other functionality.

Non-secure accesses are filtered according to the GPIO_NSMASKO and GPIO_NSMASK1 registers in ACCESSCTRL.
GPIOs not granted for Non-secure use will ignore writes from the Non-secure state, and read back as zero when read
from the Non-secure state.

3.6.1.1. OUT Mask Write Instructions

These instructions write to multiple bits in the SIO GPIO_OUT and GPIO_HI_OUT registers.

Mnemonic Armv8-M Instruction Operation

gpioc_lo_out_put mer po, #0, Rt, c@, c@ sio_hw>gpio_out = Rt;

gpioc_lo_out_xor mer p@, #1, Rt, c0, c@ sio_hw>gpio_togl = Rt;

gpioc_lo_out_set mer p@, #2, Rt, c@, c@ sio_hw>gpio_set = Rt;

gpioc_lo_out_clr mer p@, #3, Rt, c@, c@ sio_hw»gpio_clr = Rt;

gpioc_hi_out_put mer p@, #0, Rt, c@, cl sio_hw»>gpio_hi_out = Rt;

gpioc_hi_out_xor mer p@, #1, Rt, c@, cl sio_hw>gpio_hi_togl = Rt;

gpioc_hi_out_set mer p@, #2, Rt, c@, cl sio_hw»>gpio_hi_set = Rt;

gpioc_hi_out_clr mer p@, #3, Rt, c@, cl sio_hw>gpio_hi_clr = Rt;

gpioc_hilo_out_put merr po, #0, Rt, Rt2, c0 Simultaneously: sio_hwsgpio_out = Rt; sio_hwsgpio_hi_out = Rt2;
gpioc_hilo_out_xor merr p@, #1, Rt, Rt2, c@ Simultaneously: sio_hw>gpio_togl = Rt; sio_hwsgpio_hi_togl = Rt2;
gpioc_hilo_out_set merr po, #2, Rt, Rt2, c@ Simultaneously: sio_hw>gpio_set = Rt; sio_hwsgpio_hi_set = Rt2;
gpioc_hilo_out_clr merr p@, #3, Rt, Rt2, c@ Simultaneously: sio_hw>gpio_clr = Rt; sio_hwsgpio_hi_clr = Rt2;

3.6.1.2. OE Mask Write Instructions

These instructions write to multiple bits in the SIO GPIO_OE and GPIO_HI_OE registers.

Mnemonic Armv8-M Instruction Operation

gpioc_lo_oe_put mer po, #0, Rt, c0, c4 sio_hw>gpio_oe = Rt;

gpioc_lo_oe_xor mer p@, #1, Rt, c0, c4 sio_hw>gpio_oe_togl = Rt;

gpioc_lo_oe_set mer p@, #2, Rt, c0, c4 sio_hw>gpio_oe_set = Rt;

gpioc_lo_oe_clr mer p@, #3, Rt, c0, c4 sio_hw>gpio_oe_clr = Rt;

gpioc_hi_oe_put mer p@, #0, Rt, c@, c5 sio_hw>gpio_hi_oe = Rt;

gpioc_hi_oe_xor mer p@, #1, Rt, c@, c5 sio_hw>gpio_hi_oe_togl = Rt;

gpioc_hi_oe_set mer p@, #2, Rt, c@, c5 sio_hw>gpio_hi_oe_set = Rt;

gpioc_hi_oe_clr mer p@, #3, Rt, c@, c5 sio_hw>gpio_hi_oe_clr = Rt;

gpioc_hilo_oe_put merr po, #0, Rt, Rt2, c4 Simultaneously: sio_hw>gpio_oe = Rt; sio_hw>gpio_hi_oe = Rt2;

gpioc_hilo_oe_xor merr p@, #1, Rt, Rt2, c4 Simultaneously: sio_hwsgpio_oe_togl = Rt; sio_hw>gpio_hi_oe_togl =
Rt2;

|
3.6. Cortex-M33 Coprocessors 101

RP2350 Datasheet
]

Mnemonic Armv8-M Instruction Operation

Simultaneously: sio_hwsgpio_oe_set = Rt; sio_hwsgpio_hi_oe_set =
Rt2;

gpioc_hilo_oe_set merr p@, #2, Rt, Rt2, c4

gpioc_hilo_oe_clr merr p@, #3, Rt, Rt2, c4 Simultaneously: sio_hw>gpio_oe_clr = Rt; sio_hw>gpio_hi_oe_clr =

Rt2;

3.6.1.3. Single-bit Write Instructions

These instructions write to a single, indexed bit in either the GPIO_OUT and GPIO_HI_OUT registers, or the GPIO_OE and
GPIO_HI_OE registers.

Mnemonic

Armv8-M Instruction

Operation

gpioc_bit_out_put

merr po, #4, Rt, Rt2, c0

Write a 1-bit value to any output. Equivalent to: if (Rt2 & 1)
gpioc_hilo_out_set(Tull << Rt); else gpioc_hilo_out_clr(Tull << Rt);

gpioc_bit_out_xor

mer po, #5, Rt, c0, c@

Unconditionally toggle any single output. Equivalent to:
gpioc_hilo_out_xor(Tull << Rt);

gpioc_bit_out_set

mer p@, #6, Rt, c@, c@

Unconditionally set any single output. Equivalent to:
gpioc_hilo_out_set(Tull << Rt);

gpioc_bit_out_clr

mer p@, #7, Rt, c@, c@

Unconditionally clear any single output. Equivalent to:
gpioc_hilo_out_clr(Tull << Rt);

gpioc_bit_out_xor2

merr po, #5, Rt, Rt2, c@

Conditionally toggle any single output. Equivalent to:
gpioc_hilo_out_xor((uint64_t)(Rt2 & 1) << Rt);

gpioc_bit_out_set2

merr p@, #6, Rt, Rt2, c0

Conditionally set any single output. Equivalent to:
gpioc_hilo_out_set((uint64_t)(Rt2 & 1) << Rt);

gpioc_bit_out_clr2

merr p@, #7, Rt, Rt2, c0

Conditionally clear any single output. Equivalent to:
gpioc_hilo_out_clr((uint64_t)(Rt2 & 1) << Rt);

gpioc_bit_oe_put

merr p@, #4, Rt, Rt2, c4

Write a 1-bit value to any output enable. Equivalent to: if (Rt2 & 1)
gpioc_hilo_oe_set(Tull << Rt); else gpioc_hilo_oe_clr(Tull << Rt);

gpioc_bit_oe_xor

mer p@, #5, Rt, c0, c4

Unconditionally toggle any output enable. Equivalent to:
gpioc_hilo_oe_xor(Tull << Rt);

gpioc_bit_oe_set

mer po, #6, Rt, c0, c4

Unconditionally set any output enable (set to output). Equivalent to:
gpioc_hilo_oe_set(Tull << Rt);

gpioc_bit_oe_clr

mer p@, #7, Rt, c0, c4

Unconditionally clear any output enable (set to input). Equivalent to:
gpioc_hilo_oe_clr(Tull << Rt);

gpioc_bit_oe_xor2

merr p@, #5, Rt, Rt2, c4

Conditionally toggle any output enable. Equivalent to:
gpioc_hilo_oe_xor((uint64_t)(Rt2 & 1) << Rt);

gpioc_bit_oe_set2

merr p@, #6, Rt, Rt2, c4

Conditionally set any output enable (set to output). Equivalent to:
gpioc_hilo_oe_set((uint64_t)(Rt2 & 1) << Rt);

gpioc_bit_oe_clr2

merr p@, #7, Rt, Rt2, c4

Conditionally clear any output enable (set to input). Equivalent to:
gpioc_hilo_oe_clr((uint64_t)(Rt2 & 1) << Rt);

3.6.1.4. Indexed Mask Write Instructions

These instructions write to a single, dynamically selected 32-bit GPIO register.

Mnemonic

Armv8-M Instruction

Operation

gpioc_index_out_put

merr po, #8, Rt, Rt2, c0

Write Rt to a GPIO output register selected by Rt2.

|
3.6. Cortex-M33 Coprocessors

102

RP2350 Datasheet
]

Mnemonic

Armv8-M Instruction

Operation

gpioc_index_out_xor

merr po, #9, Rt, Rt2, c0

Toggle bits Rt in a GPIO output register selected by Rt2.

gpioc_index_out_set

merr p@, #10, Rt, Rt2, c@

Set bits Rt in a GPIO output register selected by Rt2.

gpioc_index_out_clr

merr p@, #11, Rt, Rt2, c@

Clear bits Rt in a GPIO output register selected by Rt2.

gpioc_index_oe_put

merr po, #8, Rt, Rt2, c4

Write Rt to a GPIO output enable register selected by Rt2

gpioc_index_oe_xor

merr p@, #9, Rt, Rt2, c4

Toggle bits Rt in a GPIO output enable register selected by Rt2.

gpioc_index_oe_set

merr p0, #10, Rt, Rt2, c4

Set bits Rt in a GPIO output enable register selected by Rt2 (i.e. set
to output).

gpioc_index_oe_clr

merr p@, #11, Rt, Rt2, c4

Clear bits Rt in a GPIO output enable register selected by Rt2 (i.e. set
to input).

3.6.1.5. Read Instructions

These instructions read from either the GPIO_OUT and GPIO_HI_OUT registers; the GPIO_OE and GPIO_HI_OE registers;
or the GPIO_IN and GPIO_HI_IN registers.

Mnemonic

Armv8-M Instruction

Operation

gpioc_lo_out_get

mrc p@, #0, Rt, c@, c@

Read back the lower 32-bit output register. Equivalent to: Rt =
sio_hw>gpio_out;

gpioc_hi_out_get

mrc po, #0, Rt, c0, cl

Read back the upper 32-bit output register. Equivalent to: Rt =
sio_hw>gpio_hi_out;

gpioc_hilo_out_get

mrrc po, #0, Rt, Rt2, c0

Read back two 32-bit output registers in a single operation.
Equivalent to: Rt = sio_hw>gpio_out; and simultaneously Rt2 =
sio_hw»gpio_hi_out << 32);

gpioc_lo_oe_get

mrc po, #0, Rt, c0, c4

Read back the lower 32-bit output enable register. Equivalent to: Rt
= sio_hw>gpio_oe;

gpioc_hi_oe_get

mrc po, #0, Rt, c@, c5

Read back the upper 32-bit output enable register. Equivalent to: Rt
= sio_hw>gpio_hi_oe;

gpioc_hilo_oe_get

mrrc p@, #0, Rt, Rt2, c4

Read back two 32-bit output enable registers in a single operation.
Equivalent to: Rt = sio_hwsgpio_oe; and simultaneously Rt2 =
sio_hw>gpio_hi_oe << 32);

gpioc_lo_in_get

mrc po, #0, Rt, c@, c8

Sample the lower 32 GPIOs. Equivalent to: Rt = sio_hw>gpio_in;

gpioc_hi_in_get

mrc p@, #0, Rt, c@, c9

Sample the upper 32 GPIOs. Equivalent to: Rt = sio_hw>gpio_hi_in;

gpioc_hilo_in_get

mrrc po, #0, Rt, Rt2, c8

Sample 64 GPI0s on the same cycle. Equivalent to: Rt =
sio_hw>gpio_in; and simultaneously Rt2 = sio_hw»gpio_hi_in << 32);

3.6.1.6. Interpreting Instruction Fields

The type of coprocessor instruction — mrc, mrre, mer and merr — specifies the direction of the transfer (read/write) and the

number of Arm registers being transferred (one or two).

Bits 3:2 of the first coprocessor register number field, CRm, identify the group of registers being accessed. Values 0, 1 and
2 refer to the output, output enable and input registers respectively.

Bit 0 of the first coprocessor register number field, CRm, may be used to distinguish which register in a group is being
accessed. Bit 1is reserved to allow more registers to be indexed on future chips with more GPIOs.

For writes, bits 1:0 of the instruction’s opc1 field specify the type of write operation: values 0, 1, 2, 3 map to normal write,

|
3.6. Cortex-M33 Coprocessors

103

RP2350 Datasheet
]

XOR, set and clear operations respectively. Bits 3:2 of the opc1 field are used to indicate the addressing mode for the
register or individual bit being accessed. Their exact interpretation depends on the instruction.

Any combinations not listed in the preceding tables are reserved for future use.

3.6.2. Double-precision Coprocessor (DCP)

Each Cortex-M33 CPU core is equipped with two instances of a double-precision coprocessor that provides acceleration
of double-precision floating point operations including add, subtract, multiply, divide and square root. The design is
implemented in just a few thousand gates and so occupies much less silicon die area than a full double-precision
floating-point unit. Nevertheless, these coprocessors considerably speed up basic double-precision operations
compared to pure software implementations. The coprocessors also offer support for some single-precision operations
and conversions.

The two coprocessor instances are assigned to the Secure and Non-secure domains. Coprocessor number 4 always
maps to the coprocessor used for the current processor security state. Coprocessor number 5 always maps to the Non-
secure coprocessor instance, but is accessible only from Secure code. This duplication avoids saving and restoring the
coprocessor context during Secure/Non-secure state transitions.

3.6.2.1. CPU Interface

As with the other coprocessors, the accelerator connects to the CPU over a 64-bit bus. Two words of data can be
transferred per cycle over that bus using the following instructions:

* JICRR: move two integer registers to coprocessor
* MRRC: move two integer registers from coprocessor

There are also single-register versions of these instructions, including ones that allow the CPU’s flags to be loaded from
the coprocessor. The CPU issues CDP instructions to trigger operations within the coprocessor without transferring any
data.

3.6.2.2. Internal architecture

A block diagram of the accelerator is shown in Figure 12.

|
3.6. Cortex-M33 Coprocessors 104

RP2350 Datasheet

Figure 12. Block zﬂ;@ﬁgg control
. logic

diagram of double- from

precision accelerator unpack registers

status
controls
| other controls

xe I
ve
force Ll carry- | adder
0 save

adder

e
data — T
from —, |
cPU —

exponent data path

——
mantissa data path —
(xm I ©
ym
shift] STIfter
mode — CI==C

xm
ropagate]
q sticky propag
M) it

bi
ticl logic
I $:

| =N

0 constant:

carry in—=|

pack

data
to CPU

l

reciprocal
square root
approximation

reciprocal
approximation

At the heart of the design are:
® two sets of registers, each designed to hold an unpacked double-precision value
® a 9-bit status register

Unlike a conventional FPU, the accelerator does not contain a full register bank. Not only does this save die area, it also
means that saving and restoring the coprocessor’s state is very fast: in fact, the entire state fits within six 32-bit words
and hence can be saved to, or restored from, the CPU in three instructions.

The accelerator contains a wide adder, capable of adding two mantissa values and three exponent values
simultaneously. There is also a shifter that can either perform a logical right shift by a given amount, or normalise a
denormalised mantissa and report the amount of shift required to do so. A considerable amount of hardware in the
shifter is shared between these two operating modes.

Control logic, shown at the top of the diagram, decodes coprocessor instructions and configures the accelerator’s
functional units and datapath multiplexers in order to execute the desired operation. Each coprocessor instruction takes
a single cycle, so coprocessor operations cannot stall the CPU.

A floating-point operation such as addition or subtraction is carried out by executing a fixed (or 'canned'’) sequence of
instructions as follows:

1. One or two NMCRR instructions to write the operands to the coprocessor.
2. A number of CDP (and possibly other) instructions that together perform the operation itself.
3. An MRRC or MRC instruction to read back the result.

The hardware handles special cases involving zeroes, NaNs, and infinities, as well as rounding, underflow and overflow.

3.6. Cortex-M33 Coprocessors 105

RP2350 Datasheet
]

The accelerator does not contain a multiplier array, as that would occupy a considerable amount of die area. Instead,
the mantissas of the operands of a multiplication operation are brought back into the CPU to take advantage of the fast
long multiply instructions available there. The coprocessor handles the processing of exponents.

Division and square root operations also involve data moving back and forth between coprocessor and CPU. To assist
with these operations, the coprocessor contains two small lookup tables (implemented as random logic) that provide
initial approximations used in the divide and square root algorithms. The coprocessor handles the processing of
exponents.

The accelerator is only meant to be used with the canned instruction sequences that implement basic floating-point
operations. The state of the accelerator is not guaranteed to be preserved from the end of one canned sequence to the
beginning of the next: see the discussion of the 'engaged' flag in the status register below.

3.6.2.3. Registers

X and Y mantissa registers

The X and Y mantissa registers (xm and ym) are each 64 bits wide. They can be read and written directly by the CPU;
the xm register can also store the lower part of the result from the adder. When a value is written to the coprocessor
using a 'write unpacked' MCRR instruction, the top two bits of the mantissa register are set to 81 and the next most
significant bits are filled from the mantissa field of the floating-point operand. The low-order bits of the mantissa
register are cleared.

X and Y exponent registers

The X and Y exponent registers (xe and ye) are each 14 bits wide. They can be read and written directly by the CPU;
the xe register can also store the higher part of the result from the adder. When a value is written to the coprocessor
using a 'write unpacked' MCRR instruction, the exponent register is set from the exponent field of the floating-point
operand.

X and Y flag registers

The X and Y flag registers (xf and yf) are each four bits wide. They can be read and written directly by the CPU. The
flag register stores information about the type of floating-point number represented in the corresponding mantissa
and exponent registers: its sign, whether it is a zero, whether it is an infinity, and whether it is a NaN. When a value
is written to the coprocessor using a 'write unpacked' MCRR instruction, the bits of the flag register are updated
according to the type of the floating-point operand.

Status register

The status register contains nine bits. It can be read and written directly by the CPU. The least significant six bits of
the register store the shift required to align the two operands of an addition or subtraction; the next two bits
indicate whether the value represented by (xe, xm) is greater than, equal to, or less than the value represented by
(ye, ym) - in other words, whether the magnitude of the value stored in the X registers is greater than, equal to, or
less than the magnitude of the value stored in the Y registers. These status bits are set in the first step of an
addition, subtraction or comparison operation after the operands have been loaded.

The final bit of the status register indicates whether the coprocessor is 'engaged'. The engaged flag is set by all
coprocessor instructions that occur at the beginning or in the middle of the canned instruction sequences. It is cleared
by those instructions used at the end of a canned sequence to read back a final result.

3.6.2.4. State save and restore

An interrupt handler can test the engaged flag to determine whether it has pre-empted an in-progress operation on the
same coprocessor. If the engaged flag is set, the handler can save (and restore) the coprocessor state before using the
coprocessor. If the engaged flag is clear, the save (and restore) step can be skipped. If this approach is implemented,
the state of the accelerator must be regarded as undefined when not within one of the canned instruction sequences.

Three MRRC instructions are provided to copy the six words of state in the coprocessor into integer registers in the CPU,
from where they can, for example, be pushed onto the stack. The last of these instructions clears the engaged flag.

|
3.6. Cortex-M33 Coprocessors 106

RP2350 Datasheet

Similarly, three MCRR instructions are provided to restore the state of the coprocessor from integer registers, including the
state of the engaged flag.

3.6.2.5. Instruction summary

As mentioned above, it is intended that the coprocessor instructions are only used as part of canned sequences.
Nevertheless, for completeness, a list of the available instructions is given here with an outline of their effects.

NMCRR instructions are shown in Table 108.

Table 198‘ MCRR Mnemonic Effect Used by
instructions
WXMD write xm direct restore status
WYMD write ym direct restore status
WEFD write xe,xf,ye,yf,other status direct restore status
Wxup write xm,xe,xf unpacked double-precision double-precision binary
operations
wyup write ym,ye,yf unpacked double-precision double-precision binary
operations
WxXYu write xm,xe,xf,ymye,yf two unpacked single-precision single-precision binary
operations
WXMS write xm bit 0=0/1 if data zero/nonzero dmul
WXMO write xm direct OR into b0, add exponents, XOR signs dmul
WXDD write xm direct; subtract exponents, XOR signs ddiv
WXDQ write xm direct, offset exponent dsqrt
Wxuc write X unsigned int+252+2%, Y=252423%2 conversions from
unsigned int
WXIC write X signed int+25%+2%2, Y=2524232 conversions from signed
int
wxpc write X unpacked double-precision, Y=2%+232 conversions from double-
precision
WXFC write X unpacked single-precision, Y=252+2%2 conversions from single-
precision
WXFM write xm direct, add exponents, XOR signs fmul
WXFD write xm direct, subtract exponents, XOR signs fdiv
WXFQ write xm direct, offset exponent fsqrt
CDP instructions are shown in Table 109.
Tab’e 199‘ cop Mnemonic Effect Used by
instructions
INIT zero all registers
ADDO compare X-Y, set status add, sub, cmp
ADD1 xm:=txm+tym>>s Or tym+txm>>s add
SUB1 Xm:=txm—xym>>s OF —+ymtxm>>s sub
SQRO xe=xe/2, xm=xm<<0:1 sqrt

3.6. Cortex-M33 Coprocessors

107

RP2350 Datasheet
]

Table 110. MRRC and
MRC instructions

Mnemonic Effect Used by

NORM normalise

NRDF normalise and round single-precision single-precision
operations, conversions
to single-precision

NRDD normalise and round double-precision double-precision
operations, conversions
to double-precision

NTDC normalise and truncate double-precision pre-integer conversion truncating conversions to
int

NRDC normalise and round double-precision pre-integer conversion rounding conversions to

int

MRRC and MRC instructions are shown in Table 110.

Mnemonic Effect Used by

RXVD read xf,VERSION direct dclassify, check version

RCMP read processed status dcmp

RDFA read FADD result packed from X fadd

RDFS read FSUB result packed from X fsub

RDFM read FMUL result packed from X fmul

RDFD read FDIV result packed from X fdiv

RDFQ read FSQRT result packed from X fsqrt

RDFG read general float result packed from X double-precision to
single-precision
conversion

RDUC read unsigned integer conversion result from X conversions to unsigned
int

RDIC read signed integer conversion result from X conversions to signed int

RXMD read xm direct save status

RYMD read yn direct, engaged=0 save status

REFD read xe,xf,ye,yf,other status direct save status

RXMS read xm Q62-s dmul, ddiv, dsqrt

RYMS read yn Q62-s dmul, ddiv

RXYH read ym hi, xm hi fmul, fdiv

RYMR read ynm hi, recip approximation lo fdiv, ddiv

RXMQ read xm hi, rsqrt approximation lo fsqrt, dsqrt

RDDA read DADD result packed from X dadd

RDDS read DSUB result packed from X dsub

RDDM read DMUL result packed from X dmul

RDDD read DDIV result packed from X ddiv

3.6. Cortex-M33 Coprocessors

108

RP2350 Datasheet

Mnemonic Effect Used by

RDDQ read DSQRT result packed from X dsqrt

RDDG read general double result packed from X single-precision to
double-precision
conversion

Alongside each MRRC and MRC instruction is a variant starting P (for 'peek’) instead of R that has the same function but
preserves the engaged flag. RXMD is identical to PXMD; REFD is identical to PEFD.

The SDK includes macros to generate Arm assembler from the mnemonics above in the file dep_instr.inc.S in the SDK,
for example turning WXUP r@,r1into merr p4,#1,r0,r1,c0.

3.6.2.6. Example canned sequence

The assembly code sequence to implement a callable double-precision addition operation is shown in Table 111.

Table 111. Assembly

Arm assembler Coprocessor mnemonic | Action
code sequence to
implement a callable | o c 04 11,00, 11,0 WXUP r0,r1 write R0 and R1 unpacked double-precision into X
double-precision
addition operation merr pd,#1,r2,r3,c1 WYUP r2,r3 write R2 and R3 unpacked double-precision into Y
cdp p4,#0,c0,c0,c1,40 ADDO compare X and Y; set status and alignment shift
cdp p4,#1,c0,c0,c1,#0 ADD1 add/subtract (depending on status and signs) xm and ym

aligned, write result to xm

cdp p4,#8,c0,c0,c0,#1 NRDD normalise and round double-precision result

mrrc p4,#1,r0,r1,c0 RDDA r0,r1 read R0 and R1 packed double-precision from ¥, including
special-value processing for addition

bx r14 return from function

Logic in the coprocessor ensures, for example, that the ADD1 instruction shifts the smaller argument, that xm and ym are
negated as required before being sent to the adder, and that the larger exponent is used as the basis for the subsequent
normalisation.

3.6.2.7. Using the coprocessor via the SDK library

The SDK pico_double library automatically uses the coprocessor for double-precision floating-point calculations. This is
the simplest way to take advantage of the coprocessor, but it entails a few cycles of overhead for each operation. Not
only is there the overhead involved in a function call and return, but for safety the general-purpose implementations in
the SDK always test the engaged flag, saving and restoring the coprocessor state to and from the stack as needed. That
ensures that the functions work correctly if used in interrupt handlers, without additional intervention.

3.6.2.8. Using the coprocessor directly

The SDK includes macros to generate canned sequences for standard operations in the file dcp_canned.inc.S in the SDK.

These allow the callable double-precision addition operation listed above, for example, to be written as:

dcp_dadd_m r@,r1, r@,r1,r2,r3 @ result in r@,r1; operands in r@,r1 and r2,r3
bx r14

3.6. Cortex-M33 Coprocessors 109

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_dcp/include/hardware/dcp_instr.inc.S
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_dcp/include/hardware/dcp_instr.inc.S
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_dcp/include/hardware/dcp_instr.inc.S
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_dcp/include/hardware/dcp_canned.inc.S
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_dcp/include/hardware/dcp_canned.inc.S

RP2350 Datasheet
]

dep_dadd_m is a macro which expands into the sequence of coprocessor instructions given above. This macro allows you
to specify the integer registers to be used for the operands and the result, which means that using these macros directly
not only avoids function call and return overhead, it also avoids the extra overhead associated with argument
marshalling.

The more complex macros also require you to specify 'scratch’ registers that they can use for storing intermediate
results. The following function, which calculates the dot product of two three-element vectors of doubles pointed to by
RO and R1, illustrates this:

push {r4-r9,r14}

1ldrd r3,r4,[r0],#8 load X,
1drd r5,r6,[r1],#8 load vy,
dcp_dmul_m r7,r8, r3,r4,r5,r6, r3,r4,r5,r6,r12,r14,r9 compute Xgyo @
1ldrd r3,r4,[r0],#8 load x
1ldrd r5,r6,[r1],#8 load vy;

dep_dmul_m r3,r4, r3,r4,r5,r6, r3,r4,r5,r6,r12,r14,r9
dcp_dadd_m r7,r8, r3,r4,r7,r8

1ldrd r3,r4,[r0],#8

1ldrd r5,r6,[r1],#8

dep_dmul_m r3,r4, r3,r4,r5,r6, r3,r4,r5,r6,r12,r14,r9
dcp_dadd_m r@,r1, r3,r4,r7,r8

pop {r4-r9,ri15}

compute xiy; @

compute XoYotX1y1

load x;

load vy,

compute xxy, @

compute XoYotXiy1+Xay, @

® ® ® ® ® ® ® ® ® ® ®

1. r3, 14, 15,16, r12, r14, and r9 are scratch registers.

2. stores the resultin ro, r1.

O NoOTE

This example does not check the engaged flag. If used in interrupt handlers or in multi-threaded applications, a
suitable test would have to be added. For example, see the SDK implementation of __aeabi_dadd for an efficient way
to do this. The test only needs to be performed once, at the beginning of the function, so the overhead in this case
would be relatively small.

The following example demonstrates how to use the coprocessor:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/dcp/hello_dcp/hello_dcp.c Lines 18 - 109

18 extern double dcp_dot (double*p, double*q,int n);

19 extern double dcp_dotx (float*p, float*q, int n);

20 extern float dcp_iirx (float x,float*temp,float*coeff,int order);
21 extern void dcp_butterfly_radix2 (double*x, double*y) ;

22 extern void dcp_butterfly_radix2_twiddle_dif (double*x,double*y,double*tf);
23 extern void dcp_butterfly_radix2_twiddle_dit (double*x,double*y,double*tf);

24 extern void dcp_butterfly_radix4 (double*w, double*x, double*y, double*z) ;
25

26 static void dcp_test@() {

27 double u[3]={1,2,3};

28 double v[3]={4,5,6};

29 double w;

30 w=dcp_dot(u,v,3);

31 printf("(1,2,3).(4,5,6)=%g\n",w) ;
32 }

838

34 static void dcp_test1() {

35 float u[3]={1+pow(2,-20),2,3};

36 float v[3]={1-pow(2,-20),5,6};

37 double w;

38 w=dcp_dotx(u,v,3);

|
3.6. Cortex-M33 Coprocessors 110

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_double/double_aeabi_dcp.S
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_double/double_aeabi_dcp.S
https://github.com/raspberrypi/pico-examples/blob/master/dcp/hello_dcp/hello_dcp.c#L18-L109

RP2350 Datasheet
]

39 printf("(1+pow(2,-20),2,3).(1-pow(2,-20),5,6)=%.17g\n",w) ;
40 }

41

42 static void dcp_test2() {

43 int t;

44 float w;

45 // filter coefficients calculated using Octave as follows:

46 // octave> pkg load signal

47 // octave> format long

48 // octave> [b,a]=cheby1(2,1,.5)

49 // b = 0.307043201259064 0.614086402518128 0.307043201259064

50 // a = 1.000000000000000e+00 6.406405700380895e-62 3.139684953186774e-01
51 // and tested as follows:

52 // octave> filter(b,a,[1 zeros(1,19)])

53 float coeff[5]={0.3070432,0.3139685,0.6140864,0.06406406,0.3070432} ;
54 float temp[4]={0};

55 printf("IIR filter impulse response:\n");

56 for(t=0;t<20;t++) {

57 w=dcp_iirx(t?0:1, temp,coeff,2);

58 printf("y[%2d]=%g\n", t,w);

59 }

60 }

61

62 static void dcp_test3() {
63 double x[2]={2,3};

64 double y[2]={5,7};

65 dcp_butterfly_radix2(x,y);

66 printf("Radix-2 butterfly of (2+3j,5+7])=(%g%*gj,%g%+gj)\n",x[8],x[1],y[e],y[1]);

67 }

68

69 static void dcp_test4() {

70 double x[2]={2,3};

71 double y[2]={5,7};

72 double t[2]={1.5,2.5};

73 dcp_butterfly_radix2_twiddle_dif(x,y,t);

74 printf("Radix-2 DIF butterfly of (2+3j,5+7j) with twiddle factor
(1.5+2.5j)=(%g%+g], %g%+gj)\n",x[0],x[1],y[0],y[1]);

75 }

76

77 static void dcp_test5() {

78 double x[2]={2,3};

79 double y[2]={5,7};

80 double t[2]={1.5,2.5};

81 dep_butterfly_radix2_twiddle_dit(x,y,t);

82 printf("Radix-2 DIT butterfly of (2+3j,5+7j) with twiddle factor
(1.5+2.5j)=(%g%+g], %g%+gj)\n",x[0],x[1],y[0],y[1]);

83 }

84

85 static void dcp_test6() {

86 double w[2]={2,3};

87 double x[2]={5,7};

88 double y[2]={11,17};

89 double z[2]={41,43};

90 dcp_butterfly_radix4(w,x,y,z);

91 printf("Radix-4 butterfly of (2+3j,5+7j,11+17],41+43j)=(%g%+g], %g%+gj, %g%+gj, %g%+gj)\n"
,wiel,wl1],x[el,x[11,y[el,y[1],z[e],z[1]);

92 }

93

94 int main() {

95 stdio_init_all();

96

97 printf("Hello, DCP!\n");

98

99 dcp_testO();

|
3.6. Cortex-M33 Coprocessors 111

RP2350 Datasheet
]

100 dep_testi1();
101 dcp_test2();
102 dcp_test3();
103 dcp_test4();
104 dep_test5();
105 dcp_test6();
106

107 return 0;
108 }

There are also further examples in the dcp/ directory in the Pico Examples repository.

3.6.2.9. IEEE 754 compliance

The canned instruction sequences provide IEEE-compliant operations with the exception that denormals are flushed to
zero on input and output. Zeroes, NaNs and infinities are correctly handled. Rounding is to nearest, even on tie.

Faster versions of division and square root operations, named ddiv_fast and dsqrt_fast respectively, are available. These
do not always give correctly rounded results but do have a guaranteed error before rounding of less than 0.5ulp ('units in
last place’), which in particular means that if there is an exact representation of the result then that is what is returned.

3.6.2.10. Benchmarks

Table 112 gives cycle counts for various floating-point operations using the accelerator with inlined code, compared to
some typical ranges of benchmarks for (a) fully-fledged hardware double-precision FPUs; and (b) pure software
implementations.

Table 112. Cy d? Operation Using Full hardware (latency) Software only
counts for floating-
.) . coprocessor

point operations using

the accelerator dadd 6 2.6 70-90
dsub 6 2-6 70-90
dmul 17 3-7 75-90
ddiv 51 13-60 135-600
ddiv_fast 32
dsqrt 49 15-62 130-650
dsqrt_fast 38
demp 4
delassify 2
integer to/from double 5

3.6.3. Redundancy Coprocessor (RCP)

|
3.6. Cortex-M33 Coprocessors 112

https://github.com/raspberrypi/pico-examples

RP2350 Datasheet

Figure 13. The
redundancy
coprocessor
implements hardware-
checked assertions, to
aid control flow and
data flow integrity
checking. Its two-
phase pipeline is
closely coupled to the
Cortex-M33 pipeline. A
64-bit salt register
holds a once-per-boot
random number, which
is used to generate
and validate stack
canary values and
generate
pseudorandom delay
sequences on RCP
instructions. Other
comparison functions
provide more general
hardware-checked
assertion support.

Opcode Phase Data Phase

CPOPC . CPRDATA[31:0] CPWDATA[63:0]
l . A
—>
Control Salt
Signals | Register
L Ly
i C
Instruction > Tag anary L4 »| Comparison Fault Flag —
Decode Generation
—>
A
Decode o Sequence|
Error Counter

The redundancy coprocessor (RCP) is used in the RP2350 bootrom to provide hardware-assisted mitigation against
fault injection and return-oriented programming attacks. This includes the following instructions:

® generate and validate stack canary values based on a per-boot random seed

® assert that certain points in the program are executed in the correct order without missing steps
* validate booleans stored as one of two valid bit patterns in a 32-bit word

* validate 32-bit integers stored redundantly in two words with an XOR parity mask

® halt the processor upon reaching a software-detected panic condition

Section 3.6.3.7 lists the RCP instruction set in full. RCP instruction encodings contain a parity bit; executing an invalid
instruction or an instruction with bad parity triggers an RCP fault.

Each Cortex-M33 processor is equipped with a single RCP instance, mapped as coprocessor number 7 in the
coprocessor opcode space. The two RCP instances are linked: an RCP fault on one core immediately triggers a fault on
the other. RCP faults have two steps:

1. The non-maskable interrupt (NMI) is asserted. It remains asserted until a warm reset of the processor.

2. Any further RCP instructions stall the coprocessor port until a warm reset of the processor. This stall cannot be
interrupted, as the processor is already in the NMI state.

The RP2350 bootrom implements the NMI and HardFault vectors with an rcp_panic instruction. This instruction
unconditionally stalls the coprocessor port. This prevents the processor from retiring any more instructions until either
a debugger connects to reset the processors, or the processors reset through some other mechanism (such as the
system watchdog timer). The processor quickly reaches a quiescent state that reduces vulnerability to further fault
injection (deliberate or otherwise).

Each core’s RCP has a 64-bit seed value (Section 3.6.3.1). The RCP uses this value to generate stack canary values and
to add short pseudorandom delays to RCP instructions. Both RCP instances are seeded by core 0 during the early boot
path in the bootrom using the system true-random number generator (Section 12.12). Running any RCP instruction
before providing a salt value triggers an RCP fault. The use of random data in stack canary values makes it difficult to
reuse return-oriented-programming stack payloads across multiple boots.

Figure 13 gives a dataflow-level overview of the RCP hardware. The RCP is structured as a two-phase pipeline which
overlays the Cortex-M33 execution pipeline. It exchanges data with the core via a 64-bit incoming bus (CPWDATA) and
a 32-bit outgoing bus (CPRDATA). The Cortex-M33 can issue two register reads to the coprocessor in one cycle through
the CPWDATA bus. The RCP leverages this throughput for some of its assertion instructions, such as rcp_iequal, which
raises a fault when two Arm registers do not contain the same 32-bit value.

3.6. Cortex-M33 Coprocessors

113

RP2350 Datasheet
]

The 8-bit tag value in Figure 13 is an 8-bit instruction immediate value encoded by the instruction CRn and CRm fields.
These 8-bit values are used to uniquely identify functions for canary value generation so that stack frames are not
interchangeable between functions. They also provide 8-bit counter values for rcp_count_set and rep_count_check
instructions. Encoding the tags using the CRn and CRm fields makes RCP instruction sequences more compact, as it
obviates additional instructions to materialise these small constants in registers and pass them through CPWDATA.
This also makes the tag values less vulnerable to glitching, because the instruction opcode fields are available earlier in
the cycle than the register values passed on CPWDATA.

RCP instructions may also execute in the Non-secure state, with certain differences to prevent Non-secure code from
triggering RCP faults or observing the value of the salt register. This supports Non-secure software executing shared
ROM routines which contain RCP instructions, but does not allow probing of the RCP’s internal state from a Non-secure
context. Section 3.6.3.2 gives further details and rationale for Non-secure execution support.

Certain details are elided from Figure 13 for clarity, such as the delay counter used for pseudorandom instruction
delays, and the logic for suppressing faults under Non-secure execution. This behaviour is described in full in the
following sections.

3.6.3.1. Salt Register

Each RCP instance is provisioned with a 64-bit salt register, which provides a seed for stack canary values and random
instruction delays. This is expected to be initialised with a random value early in the boot process: the RP2350 bootrom
uses the true random number generator to generate the salt values.

Initially the salt register is in the invalid state. This state only allows the following operations:
® Checking the valid state of the salt register, via rcp_canary_status

® Writing a salt via rcp_salt_core@ or rep_salt_corel, which writes a 64-bit value to that core’s salt register, and
changes its state to valid

When the salt register is in the invalid state, executing any RCP instruction other than those listed above unconditionally
triggers an RCP fault. This makes it difficult to skip RCP initialisation via fault injection, because the RP2350 bootrom
contains a high density of RCP instructions.

Similarly, attempting to write to an already-valid RCP salt register triggers an RCP fault. There is no reason to initialise
the RCP salt register twice, so this case is detected as an anomaly that indicates loss of control flow integrity.

Core 0's coprocessor port writes the salt registers for both cores' RCP instances to simplify multicore interactions
during early boot. In the RP2350 bootrom, core 1's first steps lock down its MPU execute permissions to a small region
of the ROM containing its wait-for-launch code, and then poll for its RCP salt to become valid once core 0 has cleared
boot memory, performed some minimal hardware setup, and generated the RCP salts.

When core 0 is switched to RISC-V architecture and core 1 is Arm, the core 1 salt register is forcibly marked as valid to
permit core 1 to execute the ROM. This has no impact on secure boot because RISC-V cores are only enabled when
secure boot is disabled; the ability to set core 0 to RISC-V already implies subversion of secure boot.

3.6.3.2. Access from Non-secure

Setting bit 7 of the Cortex-M33 NSACR register permits Non-secure code to set bit 7 of CPACR_NS, which in turn enables Non-
secure access to the RCP. Non-secure RCP access is useful for executing shared Secure/Non-secure routines which
contain RCP instructions. For example, the memcpy implementation in the RP2350 bootrom is shared by Secure code in
the main boot path, and Non-secure code such as the USB bootloader.

Since an RCP fault is fatal for all software running on the system, Non-secure must not be able to trigger RCP faults at
will. Similarly, if Non-secure code were able to read out the RCP salt register, it would make it easier to engineer stack
payloads which can control Secure execution without triggering RCP faults. Therefore the RCP handles Non-secure
accesses differently from Secure:

® Masks read data to all-zeroes

|
3.6. Cortex-M33 Coprocessors 114

RP2350 Datasheet

® Ignores write data: any instruction which would generate a data-dependent RCP fault becomes a no-op

® Reports coprocessor errors instead of RCP faults for invalid instructions, which the processor maps to the Non-
secure UNDEFINSTR UsageFault

® Skips the pseudorandom instruction delay: all RCP instructions execute in one cycle, assuming the Cortex-M33 is
able to issue them at one instruction per cycle

The lack of pseudorandom instruction delays makes it more difficult for Non-secure code to extract the seed value used
to add delays to Secure execution of RCP instructions.

3.6.3.3. Instruction Validation

The RCP applies the following rules to all coprocessor instructions which target coprocessor 7:
® The number of 1 bits in the 0pc1 field, plus the instruction parity bit, must be an even number.
o Former, mre and cdp instructions, bit ¢ of the 0pc2 field encodes the parity bit.
o Formerr, bit 3 of the CRm field encodes the parity bit.
® The instruction must not be an mrrc (64-bit coprocessor-to-core)
® For mer instructions (32-bit core-to-coprocessor):
o The 0pc1 field must be in the range 0 through 6.

o If there is no 8-bit tag (i.e. any other than rcp_canary_check, rep_count_check, rep_count_set), the CRn and CRm
opcode fields must be all-zeroes.

® Fornrc instructions (32-bit coprocessor-to-core):
o The 0pc1 field must be in the range 0 through 2.

o Forinstructions other than rcp_canary_get and rcp_canary_check, the CRn and CRm opcode fields must be all-
zeroes.

® For merr instructions (64-bit core-to-coprocessor):
o The 0pc1 field must be in the range 0 through 8.

o Forrep_salt_core* instructions, bits 2:0 of the CRm field must be 0 or 1 (referred to as rep_salt_cored and
rcp_salt_corel respectively).

o For all other merr instructions, bits 2:0 of the CRm field must be 0.

The terms Opc1, Opc2, CRm and CRn in the description above refer to standard encoding fields in the Arm T32 instruction
encoding for coprocessor instructions. See the Armv8-M Architecture Reference Manual for full details of the encoding
and assembler syntax.

Any coprocessor instruction targeting coprocessor 7 that fails these validation rules will result in one of two outcomes,
depending on the security domain in which the instruction is executed:

® Secure execution of an invalid instruction is an immediate, unconditional RCP fault. The RCP asserts the core’s
non-maskable interrupt signal, and any further RCP instructions stall the coprocessor port indefinitely. This
continues until the core receives a warm reset. This also triggers RCP faults on other cores: for more information,
see Section 3.6.3.4.

* Non-secure execution of an invalid instruction returns an error on the opcode-phase coprocessor interface, which
is interpreted as a Non-secure UNDEFINSTR UsageFault by the core. For a full description of this Armv8-M-specific
fault, see the Armv8-M Architecture Reference Manual.

3.6.3.4. Cross-core Triggering

An RCP fault indicates that the integrity of the software environment is compromised. Though the fault may originate on

3.6. Cortex-M33 Coprocessors 115

https://developer.arm.com/documentation/ddi0553/latest/
https://developer.arm.com/documentation/ddi0553/latest/

RP2350 Datasheet
]

Figure 14. Triggering
an RCP fault on one
core also triggers a
fault on the other
core. Triggers
accumulate into a
fault register, which
remains set until the
core resets. The NMI
asserts when the fault
register is set.

a single processor, all processors which share the same trusted memory may behave unpredictably if they continue to
execute, since:

® The physical condition which caused one processor to misexecute in a detectable way, such as low supply voltage,
may cause other processors to misexecute in a manner which was not detected.

® The processor which triggered an RCP fault may already have corrupted shared, trusted memory contents in a way
that interferes with the other processor’s operation, (e.g. corrupting the other core’s stack).

Therefore, an RCP fault on one core also triggers an RCP fault on other cores. Because RP2350 has two cores, an RCP
fault on core 0 always triggers a fault on core 1, and an RCP fault on core 1 always triggers a fault on core 0.

Core 0 D Q l—» Core 0

Trigger Core 0 NMI
Fault

D Q l—» Core 1

Core 1 Core 1 NMI
Trigger Fault

Each core locally ORs in the trigger signal from the other core. The outputs of the two OR gates on the left are logically
equivalent, but the gates are kept local to the core to minimise delay routing the core’s own fault trigger to its own fault
register.

3.6.3.5. Stack Canary Values

Canaries are values written to the stack on function entry and validated on function exit, to assure that:
® The exit matches the entry (i.e. when leaving through the back door, you entered through the front door)
® The stack was not completely overwritten in the course of executing the function

This helps to mitigate two classes of attack:

® Fault injection: any physical fault condition which corrupts the program counter or causes a wild indirect branch is
likely to cause the processor to execute a function epilogue which does not match the prologue. Any branch into
the middle of a function is likely to eventually reach the epilogue.

® Return-oriented programming: deliberate stack corruption can redirect control flow through a sequence of function
tails which perform arbitrary operations. The stack may be corrupted by exploiting missing bounds checks on
stack buffer operations. Random canary values make it difficult to craft such a stack payload.

Return-oriented programming mitigation is particularly important to account for in the bootrom because the bootrom
exposes an API surface that is mapped at a known location at runtime (it is physically always mapped at 8x00000000).
This provides a well-known exploit surface similar to the C standard library.

The RCP supports canary values with two canary-specific instructions:
® rcp_canary_get generates a 32-bit value for an 8-bit tag as a function of the salt register

® rcp_canary_check validates a 32-bit value for an 8-bit tag and raises an RCP fault if the value does not match that
produced by an rcp_canary_get for the same tag.

The 32-bit canary value is as follows:
® Bits 7:0: all-zero

® Bits 15:8: XOR of bits 7:0 of the salt with (AND of bits 31:24 of the salt with the 8-bit tag)

|
3.6. Cortex-M33 Coprocessors 116

RP2350 Datasheet
]

® Bits 23:16: XOR of bits 15:8 of the salt with (AND of bits 39:32 of the salt with the bitwise NOT of the 8-bit tag)
® Bits 31:24: XOR of bits 23:16 of the salt with the 8-bit tag

The following code demonstrates how you might calculate the 32-bit canary value in C:

uint32_t canary_value(uint64_t salt, uint8_t tag) {
uint32_t tag_expanded =
(uint32_t)tag |
((uint32_t)~tag << 8)
((uint32_t)tag << 16);
tag_expanded &= (@xff@080u | ((salt >> 24) & @x00ffffu));
uint32_t result24 = tag_expanded * salt;
return result24 << 8;

This canary value is chosen such that:
* Different tags are guaranteed to yield different canary values

* For any two different tags, each is a function of at least one salt bit that the other is not a function of (so it is
difficult to calculate canaries for different tags even if one value is known)

* Null-terminated string operations on the stack terminate before reading or writing a canary

Each function should use a different canary tag, to prevent a stack frame for one function being used to return through
another function’s epilogue. Avoid using canary values for purposes other than stack canaries.

The RP2350 bootrom uses 8-bit tags in the range 0x40 through oxbf. The remaining tags are free for use in user code.

3.6.3.6. Pseudorandom Instruction Delays

By default, all RCP instructions execute with a pseudorandom delay in the range of 0 to 127 cycles. These delays make
it more difficult for an outside observer to precisely time a fault injection event with respect to an RCP instruction, or the
critical code path it protects.

Setting bit 12 of the first halfword of an instruction disables the pseudorandom delay for that instruction only. The
instruction executes in a single cycle, assuming the Cortex-M33 does not insert stall cycles due to other micro-
architectural constraints. To set this bit, assemble the *2 variant of any given coprocessor instruction (e.g. mrc2 rather
thanmrc). In the Non-secure state, RCP instructions always execute without delay.

The RCP implements instruction execution delays by stalling the coprocessor opcode interface during the opcode
phase (shown in the Figure 13 pipeline diagram). The Cortex-M33 may choose to abandon a stalled coprocessor
instruction due to an interrupt. When this happens, the delay counter continues counting down, waiting for the delay
period to elapse. If the Cortex-M33 issues another RCP instruction whilst the delay counter is still running (either in the
interrupt, or after returning to the interrupted RCP instruction), this instruction executes once the existing countdown
completes. However, if the delay counter of an abandoned instruction has already expired before the next RCP
instruction executes, the next instruction samples a pseudorandom delay count, and begins a new countdown.

The pseudorandom delay sequence is a function of bits 63:40 of the salt value. As such, the pattern of delays is unique
per-boot, provided each boot writes a different 64-bit value to the salt register.

The pseudorandom number generator (PRNG) used for delays implements a number of small linear feedback shift
registers (LFSRs) in bits 63:40 of the salt register, and returns a nonlinear function of the 24-bit state. The LFSR feedback
functions on the 24-bit state are:

® Bits 23:20: 4-bit LFSR with taps 0xc
® Bits 19:15: 5-bit LFSR with taps 0x14

® Bits 14:8: 7-bit LFSR with taps 0x60

|
3.6. Cortex-M33 Coprocessors 117

RP2350 Datasheet
]

® Bits 7:0: 8-bit LFSR with taps 0xb4

The LFSRs are implemented by shifting the XOR reduction of (state AND taps) into the LSB with each state update.
When an LFSR’s state is all-zeroes, a one bit is shifted into the LSB. The LFSR state advances each time a random
number is generated: this happens when executing an instruction with a pseudorandom delay, or when executing a
rep_random_byte instruction.

Each bit of the pseudorandom output is the XOR of six bits of the 24-bit state, XORed with the majority-3 vote of three

other bits of the state:

Output Bit XOR Taps Majority-3 Taps

7 7 17 6 16 13 8 9 12 21
6 14 21 19 6 16 13 4 14 6
5 7 5 2 18 11 1 18 14 7
4 4 19 17 0 18 7 18 11 3
3 23 12 7 16 14 5 17 3 15
2 15 13 20 21 8 12 7 22 9
1 4 16 11 18 9 6 14 21 16
0 11 3 4 19 10 14 1 2 9

Bits 6:0 of this function are used for pseudorandom instruction delays, producing delays in the range of 0 to 127 cycles.
The delay is applied in addition to the one-cycle base cost of executing a coprocessor instruction. The full 8-bit result is
available through the rcp_random_byte instruction.

This is a simple pseudorandom number generator which makes it difficult to recover the initial 24-bit state from a small
number of observations. It accomplishes this by making the observation size much smaller than the state size and
using a non-linear combination function for the output. It has a number of statistical aberrations which make it
unsuitable for general random number generation (not to mention its small state size). For high-quality random number
generation, either use the system true-random number generator (TRNG) directly, or use a high-quality software PRNG
with a large state seeded from the TRNG.

Note that the 24 MSBs of the salt value used to seed the delay PRNG do not overlap with the 40 LSBs used to generate
stack canary values. Therefore measuring the random delays externally provides no information on the canary values.

3.6.3.7. Instruction Listing

The Cortex-M33 processors access the RCP using mcr, merr, mre, and cdp instructions. The Armv8-M Architecture
Reference Manual describes the intricacies of these instructions in relation to the processor’s architectural state, but
from the coprocessor’s point of view:

® mcr writes a 32-bit value to the coprocessor from a single Arm integer register
® merr writes a 64-bit value to the coprocessor from a pair of Arm integer registers

® nrc reads a 32-bit value from the coprocessor, writing to either a single Arm integer register or to the processor
status flags

® cdp performs some internal coprocessor operation without exchanging data with the processor

For each mcr, merr, mre and cdp instruction, the RCP also accepts the matching mer2, merr2, mre2, and cdp2 opcode variant.
These opcodes differ only in bit 12. The plain versions have a pseudorandom delay of up to 127 cycles on their
execution, whereas the 2-suffixed versions have no such delay.

Most RCP instructions are in the form of hardware-checked assertions. The phrase "asserts that" in the following
instruction listings means that, if some asserted condition is not true, the coprocessor raises an RCP fault.

|
3.6. Cortex-M33 Coprocessors 118

https://developer.arm.com/documentation/ddi0553/latest/
https://developer.arm.com/documentation/ddi0553/latest/

RP2350 Datasheet

3.6.3.7.1. Initialisation
rcp_salt_core@
Asserts that the core 0 salt register is currently invalid. Writes a 64-bit value, and marks it as valid.

Opcode:

mcrr p7, #8, Rt, Rt2, c@

Rt is the 32 LSBs of the salt, Rt2 is the 32 MSBs.

rep_salt_corel

Asserts that the core 1 salt register is currently invalid. Writes a 64-bit value, and marks it as valid.

Opcode:

mcrr p7, #8, Rt, Rt2, ci

rcp_canary_status

Returns a true or false bit pattern (9xa500a500 or 0x00c300c3 respectively) that indicates whether the salt register for
this core has been initialised.

Opcode:

mrc p7, #1, Rt, cO, cO, #0

Invoking with Rt = 0xf sets the Arm N and ¢ flags if and only if the salt register is valid.

If the salt has not been initialised, any operation other than initialising the salt or checking the canary status triggers
an RCP fault.

This opcode is used on core 0 to skip the RCP initialisation sequence if the bootrom has been re-entered without a
reset under debugger control, and on core 1 to wait for its RCP salt to be initialised.

3.6.3.7.2. Canary

rcp_canary_get

Gets a 32-bit canary value as a function of the salt register and the 8-bit tag encoded by two 4-bit coprocessor
register numbers CRn and CRm. CRn contains the four MSBs, CRm the four LSBs.

Opcode:

mrc p7, #0@, Rt, CRn, CRm, #1

Section 3.6.3.5 specifies the 32-bit value returned by this instruction, but you should treat this as an opaque value to
be consumed by rcp_canary_check.

rcep_canary_check

Asserts that a value matches the result of an rep_canary_get with the same 8-bit tag. The tag is encoded by two 4-bit
coprocessor register numbers, CRn and CRm. CRn contains the four MSBs, CRm the four LSBs.

Opcode:

3.6. Cortex-M33 Coprocessors 119

RP2350 Datasheet

mcr p7, #@, Rt, CRn, CRm, #1

3.6.3.7.3. Boolean Validation

The RCP defines 0xa500a500 as the true value for 32-bit booleans, and 0x00c300c3 as the false value. All other bit patterns
are poison, and trigger an RCP fault when consumed by any RCP boolean instructions. These values are chosen as they
are valid immediates in Armv8-M Main.

This provides limited runtime type checking to ensure that boolean values are used in boolean contexts. The RP2350
bootrom occasionally uses redundant operations to generate booleans in a way that results in an invalid bit pattern if
the two redundant operations do not return the same value, such as when checking boot flags in OTP.

rcp_bvalid

Asserts that Rt is a valid boolean (0xa500a500 or 0x00c300c3).

Opcode:

mcr p7, #1, Rt, cO, co, #0

rcp_btrue

Asserts that Rt is true (0xa500a500).

Opcode:

mcr p7, #2, Rt, cO, co, #0

rcp_bfalse
Asserts that Rt is false (0x00c300c3).

Opcode:

mcr p7, #3, Rt, cO, co, #1

rep_b2valid

Asserts that Rt and Rt2 are both valid booleans.

Opcode:

mcrr p7, #0@, Rt, Rt2, c8

rep_b2and

Asserts that Rt and Rt2 are both true.

Opcode:

3.6. Cortex-M33 Coprocessors 120

RP2350 Datasheet

mcrr p7, #1, Rt, Rt2, c@

rep_b2or

Asserts that both Rt and Rt2 are valid, and at least one is true.

mcrr p7, #2, Rt, Rt2, c@

rcp_bxorvalid

Asserts that Rt XOR Rt2 is a valid boolean. The XOR mask is generally a fixed bit pattern used to validate the origin
of the boolean, such as a return value from a critical function.

Opcode:

mcrr p7, #3, Rt, Rt2, c8

rcp_bxortrue

Asserts that Rt XOR Rt2 is true.

Opcode:

mcrr p7, #4, Rt, Rt2, c@

rcp_bxorfalse

Asserts that Rt XOR Rt2 is false.

Opcode:

mcrr p7, #5, Rt, Rt2, c8

3.6.3.7.4. Integer Validation
rep_ivalid

Asserts that Rt XOR Rt2 is equal to 0x96009600. This is used to validate 32-bit integers stored redundantly in two

memory words. The XOR difference provides assurance that two parallel chains of integer operations have not
mixed.

Opcode:

mcrr p7, #6, Rt, Rt2, c8

rep_iequal

Asserts that Rt is equal to Rt2. Useful for general software assertions that are worth checking in hardware.

3.6. Cortex-M33 Coprocessors 121

RP2350 Datasheet

Opcode:

mcrr p7, #7, Rt, Rt2, c@

3.6.3.7.5. Random

rcp_random_byte

Returns a random 8-bit value generated from the upper 24 bits of the 64-bit salt value. Bits 31:8 of the result are all-
zero.

Opcode:

mrc p7, #2, Rt, cO, co, #0

This is the same PRNG used for random delay values. It is mainly exposed for debugging purposes, and should not
be used for general software RNG purposes because the 24-bit state space is inadequate for scenarios where the
quality and predictability of the random numbers is important.

This instruction never has an execution delay. Once the Cortex-M33 issues the coprocessor access, it always
completes in one cycle.

3.6.3.7.6. Sequence Count Checking

These instructions are used to assert that a sequence of operations happens in the correct order. The count is
initialised to an 8-bit value at the beginning of such a sequence, then repeatedly checked, incrementing with each check.
If the 8-bit check value does not match the current counter value, the coprocessor raises an RCP fault.

rep_count_set

Writes an 8-bit count value to the RCP sequence counter. Encodes the 8-bit value using two 4-bit coprocessor
numbers: CRn provides the MSBs, CRm the LSBs.

Opcode:

mcr p7, #4, r@, CRn, CRm, #0

rcp_count_check

Asserts that an 8-bit count value matches the current value of the RCP sequence counter. Increments the counter
by one, wrapping back to 0x00 after reaching oxff. Encodes the 8-bit count value using two 4-bit coprocessor
numbers: CRn provides the MSBs, CRm the LSBs.

Opcode:

mcr p7, #5, r@, CRn, CRm, #1

3.6. Cortex-M33 Coprocessors 122

RP2350 Datasheet
]

3.6.3.7.7. Panic

rep_panic

Stalls the coprocessor port forever. If the processor abandons the coprocessor access, asserts NMI and continues
stalling the coprocessor port. Also immediately raises an RCP fault on other cores.

Opcode:
cdp p7, #0, c0, co, co, #1

Software executes an rep_panic instruction when it detects a condition that makes it unsafe to continue executing
the current program. The RCP responds by stalling the processor’'s CDP access forever, which should cause the
processor to stop fetching and executing instructions.

The processor is allowed to abandon a stalled coprocessor instruction when interrupted, which may cause it to
continue executing in an unsafe state. The RCP responds to an abandoned transfer by asserting the non-maskable
interrupt, pre-empting the interrupt handler that caused the coprocessor access to be abandoned. This should
swiftly encounter another RCP instruction and once again stall the processor, this time without allowing
interruption.

Panic is specified in this way, instead of gating the processor clock, so the debugger can still attach cleanly to the
processor after a panic.

3.6.4. Floating Point Unit

The Cortex-M33 cores on RP2350 are configured with the standard Arm single-precision floating point unit (FPU).
Coprocessor ports 10 and 11 access the FPU.

The Arm floating point extension is documented in the Armv8-M Architecture Reference Manual.

Applications built with the SDK use the FPU automatically by default. For example, calculations with the float data type
in C automatically use the standard FPU, while calculations with the double data type automatically use the RP2350
double-precision coprocessor (Section 3.6.2).

3.7. Cortex-M33 Processor

Arm Documentation
Excerpted from the Cortex-M33 Technical Reference Manual. Used with permission.
The Arm Cortex-M33 processor is a low gate count, highly energy-efficient processor intended for microcontroller and

embedded applications. The processor is based on the Armv8-M architecture and is primarily for use in environments
where security is an important consideration.

© NoTE

Full details of the Arm Cortex-M33 processor can be found in the Technical Reference Manual.

3.7.1. Features

The Arm Cortex-M33 processor provides the following features and benefits:

|
3.7. Cortex-M33 Processor 123

https://developer.arm.com/documentation/ddi0553/latest/
https://developer.arm.com/documentation/100230/0100/
https://developer.arm.com/documentation/100230/0100/

RP2350 Datasheet

An in-order issue pipeline

Thumb-2 technology; for more information, see the Armv8-M Architecture Reference Manual
Little-endian data accesses

A Nested Vectored Interrupt Controller (NVIC) closely integrated with the processor

A Floating Point Unit (FPU) supporting single-precision arithmetic

Support for exception-continuable instructions, such as LDM, LDMDB, STM, STMDB, PUSH, POP, VLDM, VSTM,
VPUSH, and VPOP

A low-cost debug solution that provides the ability to implement:
o breakpoints
o watchpoints
o tracing
o system profiling
o Support for printf() style debugging through an Instrumentation Trace Macrocell (ITM)

Support for the Embedded Trace Macrocell (ETM) instruction trace option. For more information, see the Arm
CoreSight ETM-M33 Technical Reference Manual

A coprocessor interface for external hardware accelerators

Low-power features including architectural clock gating, sleep mode, and a power-aware system with Wake-up
Interrupt Controller (WIC)

A memory system that includes memory protection and security attribution

3.7.2. Configuration

Each Arm Cortex-M33 processor in RP2350 is configured with the following features:

FPU: Single precision FPU

DSP: DSP extension

SECEXT: Security extensions

CPIF: coprocessor interface

MPU_NS: 8 non-secure MPU regions

MPU_S: 8 secure MPU regions

SAU: 8 SAU regions

IRQ: 52 external interrupts

IRQLVL: 4 exception priority bits

DBGLVL: Full debug set: 4 watchpoint, 8 breakpoint comparators, debug monitor
ITM: DWT and ITM trace

ETM: ETM trace

MTB: no MTB trace

WIC: Wake up interrupt controller

WICLINES: 55: All external interrupts and 3 internal events: NMI, RVEX, Debug

CTI: Cross trigger interface

|
3.7. Cortex-M33 Processor

124

https://developer.arm.com/documentation/ddi0553/latest/

RP2350 Datasheet

® RAR:reset all registers on power up

® UNCROSS_I_D: Modify internal address map

® SBIST: no SBIST features

® CDE modules not used

® CDERTLID: RTL ID for system with multi Cortex-M33: 16

Architectural clock gating allows the processor core to support SLEEP and DEEPSLEEP power states by disabling the
clock to parts of the processor core. Power gating is not supported.

Each Cortex-M33 core has its own interrupt controller which can individually mask out interrupt sources as required.
The same interrupts route to both Cortex-M33 cores.

The processor supports the following interfaces:
® Code AHB (C-AHB) interface
® System AHB (S-AHB) interface
* External PPB (EPPB) APB interface
® Debug AHB (D-AHB) interface
The processor implements the following optional interfaces:
® Arm TrustZone technology, using the Armv8-M Security Extension supporting Secure and Non-secure states
® Memory Protection Units (MPUs), which you can configure to protect regions of memory
® Floating-point arithmetic functionality with support for single precision arithmetic

® Support for ETM and MTB trace

3.7.2.1. Modifications by Raspberry Pi

3.7.2.1.1. UNCROSS_I_D

The original Cortex-M33 processor design routes the following operations to either the Code or System port:
® instruction fetch
® |oad/stores
® debugger accesses

Accesses below address 0x20000000 route to the Code port. All other accesses route to the System port.

This routing strategy makes contention possible on both the internal bus matrix and the main system AHBS5 crossbar.
The Cortex-M33 Technical Reference Manual describes this strategy in detail.

In RP2350, Raspberry Pi modified the Cortex-M33 bus matrix to:
® route all instruction fetch operations to the Code port
® route all load/stores and debugger accesses to the System port

This eliminates internal conflicts and improves performance in certain software use cases, e.g. when allocating both
code and data from a single unified SRAM pool.

In Section 3.7.2, we refer to this feature as UNCROSS_I_D.

There are no other modifications to the Cortex-M33 processor.

3.7. Cortex-M33 Processor 125

RP2350 Datasheet

O NoTE

This datasheet may refer to the Cortex-M33 Code and System ports as the instruction and data ports respectively (I
and D), to reflect this modification to the core’s integrated bus matrix.

3.7.2.2. Interfaces

The processor has various external interfaces:

Code and System AHB interfaces

Harvard AHB bus architecture supporting exclusive transactions and security state.

System AHB interface

The System AHB (S-AHB) interface is used for any instruction fetch and data access to the memory-mapped SRAM,
Peripheral, External RAM and External device, or Vendor_SYS regions of the Armv8-M memory map.

Code AHB interface
The Code AHB (C-AHB) interface is used for any instruction fetch and data access to the Code region of the Armv8-
M memory map.

External Private Peripheral Bus

The External PPB (EPPB) APB interface enables access to CoreSight-compatible debug and trace components in a
system connected to the processor.

Secure attribution interface

The processor has an interface that connects to an external Implementation Defined Attribution Unit (IDAU), which
enables your system to set security attributes based on address.

ATB interfaces

The ATB interfaces output trace data for debugging. The ATB interfaces are compatible with the CoreSight
architecture. See the Arm CoreSight Architecture Specification v2.0 for more information. The instruction ATB
interface is used by the ETM, and the instrumentation ATB interface is used by the Instrumentation Trace Macrocell
(ITM).

Micro Trace Buffer interfaces

The Micro Trace Buffer (MTB) AHB slave interface and SRAM interface are for the CoreSight Micro Trace Buffer.

Coprocessor interface

The coprocessor interface is designed for closely coupled external accelerator hardware.

Debug AHB interface
The Debug AHB (D-AHB) slave interface allows a debugger access to registers, memory, and peripherals. The D-
AHB interface provides debug access to the processor and the complete memory map.

Cross Trigger Interface

The processor includes a Cross Trigger Interface (CTI) Unit that has an interface that is suitable for connection to
external CoreSight components using a Cross Trigger Matrix (CTM).

Power control interface

The processor supports a number of internal power domains which can be enabled and disabled using Q-channel
interfaces connected to a Power Management Unit (PMU) in the system.

3.7.2.3. Security attribution and memory protection

The Cortex-M33 processor supports the Armv8-M Protected Memory System Architecture (PMSA) that provides
programmable support for memory protection using a number of software controllable regions. RP2350 supports 8
programmable regions.

3.7. Cortex-M33 Processor 126

https://developer.arm.com/documentation/107565/0101/Memory-protection/Memory-Protection-Unit

RP2350 Datasheet
]

PMSA allows privileged software to assign access permissions to a memory region. When unprivileged software
attempts to access the region, a fault exception is triggered. PMSA includes fault status registers that allow an
exception handler to determine the source of the fault, apply corrective action, and notify the system. This reduces the
potential impact of incorrectly-written application code.

The Cortex-M33 processor also includes support for defining memory regions as Secure or Non-secure, as defined in
the Armv8-M Security Extension. This protects memory regions from accesses with an inappropriate level of security.

3.7.2.4. Floating-Point Unit (FPU)

The FPU provides:
* Instructions for single-precision (C programming language float type) data-processing operations
® Instructions for double-precision (C programming language double type) load and store operations
® Combined multiply-add instructions for increased precision (Fused MAC)
® Hardware support for conversion, addition, subtraction, multiplication, accumulate, division, and square-root
® Hardware support for denormals and all IEEE Standard 754-2008 rounding modes
® Thirty-two 32-bit single-precision registers or sixteen 64-bit double-precision registers

® | azy floating-point context save

3.7.2.4.1. Lazy floating-point context save

This FPU function delays automated stacking of floating-point state until the ISR attempts to execute a floating-point
instruction. This reduces the latency to enter the ISR and removes floating-point context save for ISRs that do not use
floating-point.

3.7.2.5. NVIC

The Nested Vectored Interrupt Controller NVIC prioritizes external interrupt signals. Software can set the priority of each
interrupt. The NVIC and the Cortex-M33 processor core are closely coupled, providing low latency interrupt processing
and efficient processing of late arriving interrupts.

© NoTE

"Nested" refers to the fact that interrupts can themselves be interrupted, by higher-priority interrupts. "Vectored"
refers to the hardware dispatching each interrupt to a distinct handler routine specified by a vector table. For more
details about nesting and vectoring behaviour, see the Armv8-M Architecture Reference Manual.

All NVIC registers are only accessible using word transfers. Any attempt to read or write a halfword or byte individually
is unpredictable.

NVIC registers are always little-endian.

The Nested Vectored Interrupt Controller (NVIC) is closely integrated with the core to achieve low-latency interrupt
processing.

Functions of the NVIC include:

® External interrupts, configurable from 1 to 480 using a contiguous or non-contiguous mapping. This is configured
at implementation.

® Configurable levels of interrupt priority from 8 to 256. This is configured at implementation.

® Dynamic reprioritisation of interrupts.

|
3.7. Cortex-M33 Processor 127

https://developer.arm.com/documentation/ddi0553/latest/

RP2350 Datasheet
]

® Priority grouping. This enables selection of pre-empting interrupt levels and non-pre-empting interrupt levels.

® Support for tail-chaining and late arrival of interrupts. This enables back-to-back interrupt processing without the
overhead of state saving and restoration between interrupts.

® Support for the Armv8-M Security Extension. Secure interrupts can be prioritized above any Non-secure interrupt.

3.7.2.6. Cross Trigger Interface Unit (CTI)

The CTl enables the debug logic, MTB, and ETM to interact with each other and with other CoreSightTM components.

3.7.2.7.ETM

The ETM provides instruction-only capabilities.

3.7.2.8. MTB

The MTB provides a simple low-cost execution trace solution for the Cortex-M33 processor.

Trace is written to an SRAM interface, and can be extracted using a dedicated AHB slave interface (M-AHB) on the
processor. The MTB can be controlled by memory-mapped registers in the PPB region or by events generated by the
DWT or through the CTI.

See the Arm CoreSight MTB-M33 Technical Reference Manual for more information.

3.7.2.9. Debug and Trace

Debug and trace components include a configurable Breakpoint Unit (BPU) used to implement breakpoints and a
configurable Data Watchpoint and Trace (DWT) unit used to implement watchpoints, data tracing, and system profiling.
Other debug and trace components include:

® |TM for support of printf() style debugging, using instrumentation trace
* Interfaces suitable for:

o Passing on-chip data through a Trace Port Interface Unit (TPIU) to a Trace Port Analyzer (TPA), including
Serial Wire Output (SWO) mode

o A ROM table to allow debuggers to determine which components are implemented in the Cortex-M33
processor

o Debugger access to all memory and registers in the system, including access to memory-mapped devices,
access to internal core registers when the core is halted, and access to debug control registers even when
reset is asserted

3.7.3. Compliance

The processor complies with, or implements, the relevant Arm architectural standards and protocols, and relevant
external standards.

3.7.3.1. Arm architecture
The processor is compliant with the following:

* Armv8-M Main Extension

|
3.7. Cortex-M33 Processor 128

https://developer.arm.com/documentation/100231/latest/

RP2350 Datasheet
]

® Armv8-M Security Extension

* Armv8-M Protected Memory System Architecture (PMSA)
® Armv8-M Floating-point Extension

* Armv8-M Digital Signal Processing (DSP) Extension

* Armv8-M Debug Extension

® Armv8-M Flash Patch Breakpoint (FPB) architecture version 2.0

3.7.3.2. Bus architecture

The processor provides external interfaces that comply with the AMBA 5 AHB5 protocol. The processor also
implements interfaces for CoreSight and other debug components using the APB4 protocol and ATBv1.1 part of the
AMBA 4 ATB protocol.

For more information, see the:
* Arm AMBA 5 AHB Protocol Specification
* AMBA APB Protocol Version 2.0 Specification
* Arm AMBA 4 ATB Protocol Specification ATBv1.0 and ATBv1.1

The processor also provides a Q-Channel interface. For more information, see the AMBA Low Power Interface
Specification.

3.7.3.3. Debug

The debug features of the processor implement the Arm Debug Interface Architecture. For more information, see the
Arm Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2.

3.7.3.4. Embedded Trace Macrocell

The trace features of the processor implement the Arm Embedded Trace Macrocell (ETM) v4.2 architecture.

For more information, see the Arm CoreSight ETM-M33 Technical Reference Manual.

3.7.3.5. Floating-Point Unit

The Cortex-M33 processor with FPU supports single-precision arithmetic as defined by the FPv5 architecture that is part
of the Armv8-M architecture. The FPU provides floating-point computation functionality compliant with ANSI/IEEE
Standard 754-2008, IEEE Standard for Binary Floating-Point Arithmetic.

The FPU supports single-precision add, subtract, multiply, divide, multiply and accumulate, and square root operations.
It also provides conversions between fixed-point and floating-point data formats, and floating-point constant
instructions.

The FPU provides an extension register file containing 32 single-precision registers.
The registers can be viewed as:

® Thirty-two 32-bit single-word registers, 50-531

® Sixteen 64-bit double-word registers, D0-D15

® A combination of registers from these views

|
3.7. Cortex-M33 Processor 129

https://developer.arm.com/docs/ihi0033/latest
https://developer.arm.com/documentation/ihi0024/latest/
https://developer.arm.com/documentation/ihi0032/b/
https://developer.arm.com/documentation/ihi0068/latest/
https://developer.arm.com/documentation/ihi0068/latest/
https://developer.arm.com/documentation/ihi0031/latest/
https://developer.arm.com/documentation/100232/latest/

RP2350 Datasheet
]

3.7.3.5.1. FPU modes

The FPU provides full-compliance, flush-to-zero, and Default NaN modes of operation. In full-compliance mode, the FPU
processes all operations according to the IEEE 754 standard in hardware.

Modes of operation are controlled using the Floating-Point Status and Control Register, FPSCR.

Setting the FPSCR.FZ bit enables Flush-to-Zero (FZ) mode. In FZ mode, the FPU treats all subnormal input operands of
arithmetic operations as zeros. Exceptions that result from a zero operand are signalled appropriately. VABS, VNEG, and
VMOV are not considered arithmetic operations and are not affected by FZ mode. When an operation yields a tiny result
(as described in the IEEE 754 standard, where the destination precision is smaller in magnitude than the minimum
normal value before rounding) FZ mode replaces the result with a zero.

The FPSCR.IDC bit indicates when an input flush occurs.
The FPSCR.UFC bit indicates when a result flush occurs.

Setting the FPSCR.DN bit enables Default NaN (DN) mode. In NaN mode, the result of any arithmetic data processing
operation that involves an input NaN, or that generates a NaN result, returns the default NaN. All arithmetic operations
except for VABS, VNEG, and VMOV ignore the fraction bits of an input NaN.

Setting neither the FPSCR.DN bit nor the FPSCR.FZ bit enables full-compliance mode. In full-compliance mode, FPv5
functionality is compliant with the IEEE 754 standard in hardware.

For more information about the FPU and FPSCR, see the Armv8-M Architecture Reference Manual.

3.7.3.5.2. FPU Exceptions

The FPU sets the cumulative exception status flag in the FPSCR register as required for each instruction, in accordance
with the FPv5 architecture. The FPU does not support exception traps.

The processor has six output pins. By default, they are disconnected. Each reflect the status of one of the cumulative
exception flags:

FPIXC

Masked floating-point inexact exception.
FPUFC

Masked floating-point underflow exception.
FPOFC

Masked floating-point overflow exception.
FPDZC

Masked floating-point divide by zero exception.
FPIDC

Masked floating-point input denormal exception.
FPIOC

Invalid operation.

When a floating-point context is active, the stack frame extends to accommodate the floating-point registers. To reduce
the additional interrupt latency associated with writing the larger stack frame on exception entry, the processor
supports lazy stacking. This means that the processor reserves space on the stack for the FP state, but does not save
that state information to the stack unless the processor executes an FPU instruction inside the exception handler.

The lazy save of the FP state is interruptible by a higher priority exception. The FP state saving operation starts over
after that exception returns.

|
3.7. Cortex-M33 Processor 130

https://developer.arm.com/documentation/ddi0553/latest/

RP2350 Datasheet
]

3.7.3.5.3. Low power FPU operation

If the FPU is in a separate power domain, the way the FPU domain powers down depends on whether the FPU domain
includes state retention logic.

To power down the FPU:
¢ |f FPU domain includes state retention logic, disable the FPU by clearing the CPACR.CP10 and CPACR.CP11 bitfields.

* |f FPU domain does not include state retention logic, disable the FPU by clearing the CPACR.CP10 and CPACR.CP11
bitfields and set both the CPPWR.SU10 and CPPWR.SU11 bitfields to 1.

@ WARNING

Setting the CPPWR.SU10 and CPPWR.SU11 bitfields indicates that FPU state can be lost.

3.7.4. Programmer’s model

The Cortex-M33 programmer’s model is an implementation of the Armv8-M Main Extension architecture.

For a complete description of the programmers model, refer to the Armv8-M Architecture Reference Manual, which also
contains the Armv8-M Thumb instructions. In addition, other options of the programmers model are described in the
System Control, MPU, NVIC, FPU, Debug, DWT, ITM, and TPIU feature topics.

3.7.4.1. Modes of operation and execution

The Cortex-M33 processor supports Secure and Non-secure security states, Thread and Handler operating modes, and
can run in either Thumb or Debug operating states. In addition, the processor can limit or exclude access to some
resources by executing code in privileged or unprivileged mode.

See the Armv8-M Architecture Reference Manual for more information about the modes of operation and execution.

3.7.4.1.1. Security states

With the Armv8-M Security Extension, the programmer’s model includes two orthogonal security states: Secure state
and Non-secure state. The processor always resets into Secure state. Each security state includes a set of independent
operating modes and supports both privileged and unprivileged user access. Registers in the System Control Space are
banked across Secure and Non-secure state, with a Non-secure register view available to Secure state at an aliased
address.

3.7.4.1.2. Operating modes

For each security state, the processor can operate in Thread or Handler mode. The following conditions cause the
processor to enter Thread or Handler mode:

® The processor enters Thread mode on reset, or as a result of an exception return to Thread mode. Privileged and
Unprivileged code can run in Thread mode.

® The processor enters Handler mode as a result of an exception. In Handler mode, all code is privileged.

The processor can change security state on taking an exception, for example when a Secure exception is taken from
Non-secure state, the Thread mode enters the Secure state Handler mode. The processor can also call Secure functions
from Non-secure state and Non-secure functions from Secure state. The Security Extension includes requirements for
these calls to prevent Secure data from being accessed in Non-secure state.

|
3.7. Cortex-M33 Processor 131

https://developer.arm.com/documentation/ddi0553/latest/
https://developer.arm.com/documentation/ddi0553/latest/

RP2350 Datasheet

3.7.4.1.3. Operating states

The processor can operate in Thumb or Debug state:
® Thumb state is the state of normal execution running 16-bit and 32-bit halfword- aligned Thumb instructions.

® Debug state is the state when the processor is in Halting debug.

3.7.4.1.4. Privileged access and unprivileged user access

Code can execute as privileged or unprivileged. Unprivileged execution limits resource access appropriate to the current
security state. Privileged execution has access to all resources available to the security state. Handler mode is always
privileged. Thread mode can be privileged or unprivileged.

3.7.4.2. Instruction set summary

The processor implements the following instruction from Armv8-M:
® All base instructions
® Allinstructions in the Main Extension
® Allinstructions in the Security Extension
® Allinstructions in the DSP Extension
* All single-precision instructions and double precision load/store instructions in the Floating-point Extension

For more information about Armv8-M instructions, see the Armv8-M Architecture Reference Manual.

3.7.4.3. Memory model

The processor contains a bus matrix that arbitrates instruction fetches and memory accesses from the processor core
between the external memory system and the internal System Control Space (SCS) and debug components.

Priority is usually given to the processor to keep debug accesses as non-intrusive as possible.

The system memory map is Armv8-M Main Extension compliant, and is common both to the debugger and processor
accesses.

The default memory map provides user and privileged access to all regions except for the Private Peripheral Bus (PPB).
The PPB space only allows privileged access.

The following table shows the default memory map. This is the memory map used when the included MPUs are
disabled. The attributes and permissions of all regions, except that targeting the NVIC and debug components, can be
modified using an implemented MPU.

Table 113. Default

Address Range (inclusive) Region Interface
memory map
0x00000000 - Ox1FFFFFFF Code Instruction and data accesses.
0x20000000 - 0x3FFFFFFF SRAM Instruction and data accesses.
0x40000000 - Ox5FFFFFFF Peripheral Instruction and data accesses. Any attempt to execute instructions

from the peripheral and external device region results in a
MemManage fault.

0x60000000 - OxIFFFFFFF External RAM | Instruction and data accesses. Any attempt to execute instructions
from the peripheral and external device region results in a
MemManage fault.

3.7. Cortex-M33 Processor 132

https://developer.arm.com/documentation/ddi0553/latest/

RP2350 Datasheet

Address Range (inclusive) Region Interface

0xA0000000 - OXDFFFFFFF External device | Instruction and data accesses. Any attempt to execute instructions
from the peripheral and external device region results in a
MemManage fault.

0xEQ000000 - OXEQOFFFFF PPB Reserved for system control and debug. Cannot be used for
exception vector tables. Data accesses are either performed
internally or on EPPB. Accesses in the range 0xE0000000 - 0xE0043FFF
are handled within the processor. Accesses in the range 0xE0044000
- 0xEOOFFFFF appear as APB transactions on the EPPB interface of
the processor. Any attempt to execute instructions from the region
results in a MemManage fault.

0xE0100000 - OxFFFFFFFF Vendor_SYS Partly reserved for future processor feature expansion. Any
attempt to execute instructions from the region results in a
MemManage fault.

The internal Secure Attribution Unit (SAU) determines the security level associated with an address. Some internal
peripherals have memory-mapped registers in the PPB region which are banked between Secure and Non-secure state.
When the processor is in Secure state, software can access both the Secure and Non-secure versions of these
registers. The Non-secure versions are accessed using an aliased address.

For more information about the memory model, see the Armv8-M Architecture Reference Manual.

3.7.4.3.1. Private Peripheral Bus (PPB)

The Private Peripheral Bus (PPB) memory region provides access to internal and external processor resources.
The internal PPB provides access to:

® The System Control Space (SCS), including the Memory Protection Unit (MPU), Secure Attribution Unit (SAU), and
the Nested Vectored Interrupt Controller (NVIC).

® The Data Watchpoint and Trace (DWT) unit.
® The Breakpoint Unit (BPU).

® The Embedded Trace Macrocell (ETM).

® CoreSight Micro Trace Buffer (MTB).

® Cross Trigger Interface (CTI).

® The ROM table.

The external PPB (EPPB) provides access to implementation-specific external areas of the PPB memory map.

3.7.4.3.2. Unaligned accesses

The Cortex-M33 processor supports unaligned accesses. They are converted into two or more aligned AHB transactions
on the C-AHB or S-AHB master ports on the processor.

Unaligned support is only available for load/store singles (LDR, LDRH, STR, STRH, TBH) to addresses in Normal
memory. Load/store double and load/store multiple instructions already support word aligned accesses, but do not
permit other unaligned accesses, and generate a fault if this is attempted. Unaligned accesses in Device memory are
not permitted and fault. Unaligned accesses that cross memory map boundaries are architecturally UNPREDICTABLE.

3.7. Cortex-M33 Processor 133

https://developer.arm.com/documentation/ddi0553/latest/

RP2350 Datasheet

Table 114. Processor
core register set
summary

© NOTE

If CCR.UNALIGN_TRP for the current Security state is set, any unaligned accesses generate a fault.

3.7.4.4. Exclusive monitor

The Cortex-M33 processor implements a local exclusive monitor. The local monitor within the processor has been
constructed so that it does not hold any physical address, but instead treats any store-exclusive access as matching the
address of the previous load-exclusive. This means that the implemented exclusives reservation granule is the entire
memory address range. For more information about semaphores and the local exclusive monitor, see the Armv8-M
Architecture Reference Manual.

3.7.4.5. Processor core registers summary

The following table shows the processor core register set summary. Each of these registers is 32 bits wide. When the
Armv8-M Security Extension is included, some of the registers are banked. The Secure view of these registers is
available when the Cortex-M33 processor is in Secure state and the Non-secure view when Cortex-M33 processor is in
Non-secure state.

Name Description
RO-R12 RO-R12 are general-purpose registers for data operations.
MSP (R13) The Stack Pointer (SP) is register R13. In Thread mode, the

CONTROL register indicates the stack pointer to use, Main
Stack Pointer (MSP) or Process Stack Pointer (PSP).
There are two MSP registers in the Cortex-M33 processor:
MSP_NS for the Non-secure state, and MSP_S for the Secure
state. There are two PSP registers in the Cortex-M33
processor: PSP_NS for the Non-secure state, and PSP_S for
the Secure state.

PSP (R13) The Stack Pointer (SP) is register R13. In Thread mode, the
CONTROL register indicates the stack pointer to use, Main
Stack Pointer (MSP) or Process Stack Pointer (PSP).
There are two MSP registers in the Cortex-M33 processor:
MSP_NS for the Non-secure state, and MSP_S for the Secure
state. There are two PSP registers in the Cortex-M33
processor: PSP_NS for the Non-secure state, and PSP_S for
the Secure state.

MSPLIM The stack limit registers limit the extent to which the MSP
and PSP registers can descend respectively. There are
two MSPLIM registers in the Cortex-M33 processor:
MSPLIM_NS for the Non-secure state, and MSPLIN_S for the
Secure state. There are two PSPLIM registers in the
Cortex-M33 processor: PSPLIN_NS for the Non-secure state,
and PSPLIN_S for the Secure state.

PSPLIM The stack limit registers limit the extent to which the MSP
and PSP registers can descend respectively. There are
two MSPLIM registers in the Cortex-M33 processor:
MSPLIM_NS for the Non-secure state, and NSPLIN_S for the
Secure state. There are two PSPLIM registers in the
Cortex-M33 processor: PSPLIM_NS for the Non-secure state,
and PSPLIN_S for the Secure state.

|
3.7. Cortex-M33 Processor 134

https://developer.arm.com/documentation/ddi0553/latest/
https://developer.arm.com/documentation/ddi0553/latest/

RP2350 Datasheet
]

Name Description

LR (R14) The Link Register (LR) is register R14. It stores the return
information for subroutines, function calls, and
exceptions.

PC (R15) The Program Counter (PC) is register R15. It contains the

current program address.

PSR The Program Status Register (PSR) combines the
Application Program Status Register (APSR), Interrupt
Program Status Register (IPSR), and Execution Program
Status Register (EPSR). These registers provide different
views of the PSR.

PRIMASK The PRIMASK register prevents activation of exceptions with
configurable priority. When the Armv8-M Security
Extension is included, there are two PRINASK registers in the
Cortex-M33 processor: PRIMASK_NS for the Non-secure state
and PRIMASK_S for the Secure state.

BASEPRI The BASEPRI register defines the minimum priority for
exception processing. There are two BASEPRI registers in
the Cortex-M33 processor: BASEPRI_NS for the Non-secure
state, and BASEPRI_S for the Secure state.

FAULTMASK The FAULTMASK register prevents activation of all exceptions
except for NON-MASKABLE INTERRUPT (NMI) and
Secure HardFault. There are two FAULTMASK registers in the
Cortex-M33 processor: FAULTMASK_NS for the Non-secure
state, and FAULTMASK_S for the Secure state.

CONTROL The CONTROL register controls the stack used, and optionally
the privilege level, when the processor is in Thread mode.
There are two CONTROL registers in the Cortex-M33
processor: CONTROL_NS for the Non-secure state and
CONTROL_S for the Secure state.

3.7.4.6. Exceptions

Exceptions are handled and prioritized by the processor and the NVIC. In addition to architecturally defined behaviour,
the processor implements advanced exception and interrupt handling that reduces interrupt latency and includes
implementation defined behaviour.

The processor core and the Nested Vectored Interrupt Controller (NVIC) together prioritize and handle all exceptions.
When handling exceptions:

* All exceptions are handled in Handler mode.

® Processor state is automatically stored to the stack on an exception, and automatically restored from the stack at
the end of the Interrupt Service Routine (ISR).

® The vector is fetched in parallel to the state saving, enabling efficient interrupt entry.

The processor supports tail-chaining that enables back-to-back interrupts without the overhead of state saving and
restoration.

Software can choose only to enable a subset of the configured number of interrupts, and can choose how many bits of
the configured priorities to use.

Exceptions can be specified as either Secure or Non-secure. When an exception occurs the processor switches to the
associated security state. The priority of Secure and Non-secure exceptions can be programmed independently. You

|
3.7. Cortex-M33 Processor 135

RP2350 Datasheet
]

can deprioritise Non-secure configurable exceptions using the AIRCR.PRIS bit field to enable Secure interrupts to take
priority.

When taking and returning from an exception, the register state is always stored using the stack pointer associated with
the background security state. When taking a Non-secure exception from Secure state, all the register state is stacked
and then registers are cleared to prevent Secure data being available to the Non-secure handler. The vector base
address is banked between Secure and Non-secure state. VTOR_S contains the Secure vector base address, and VTOR_NS
contains the Non-secure vector base address. These registers can be programmed by software, and also initialized at
reset by the system.

© NoTE

Vector table entries are compatible with interworking between Arm and Thumb instructions. This causes bit[0] of the
vector value to load into the Execution Program Status Register (EPSR) T-bit on exception entry. All populated
vectors in the vector table entries must have bit[0] set. Creating a table entry with bit[0] clear generates an INVSTATE
fault on the first instruction of the handler corresponding to this vector.

3.7.4.7. Security Attribution and Memory Protection

Security attribution and memory protection in the processor is provided by the Security Attribution Unit (SAU) and the
Memory Protection Units (MPUs).

The SAU is a programmable unit that determines the security of an address. RP2350 includes 8 memory regions.

For instructions and data, the SAU returns the security attribute that is associated with the address.

For instructions, the attribute determines the allowable Security state of the processor when the instruction is executed.
It can also identify whether code at a Secure address can be called from Non-secure state.

For data, the attribute determines whether a memory address can be accessed from Non-secure state, and also whether
the external memory request is marked as Secure or Non-secure.

If a data access is made from Non-secure state to an address marked as Secure, then a SecureFault exception is taken
by the processor. If a data access is made from Secure state to an address marked as Non-secure, then the associated
memory access is marked as Non-secure.

The security level returned by the SAU is a combination of the region type defined in the internal SAU, if configured, and
the type that is returned on the associated Implementation Defined Attribution Unit (IDAU). If an address maps to
regions defined by both internal and external attribution units, the region of the highest security level is selected.

The register fields SAU_CTRL.EN and SAU_CTRL.ALLNS control the enable state of the SAU and the default security level when
the SAU is disabled. Both SAU_CTRL.EN and SAU_CTRL.ALLNS reset to zero disabling the SAU and setting all memory, apart
from some specific regions in the PPB space to Secure level. If the SAU is not enabled, and SAU_CTRL.ALLNS is zero, then
the IDAU cannot set any regions of memory to a security level lower than Secure, for example Secure NSC or NS. If the
SAU is enabled, then SAU_CTRL.ALLNS does not affect the Security level of memory.

RP2350 supports the Armv8-M Protected Memory System Architecture (PMSA). The MPU provides full support for:
® protection regions
® access permissions
® exporting memory attributes to the system

MPU mismatches and permission violations invoke the MemManage handler. For more information, see the Armv8-M
Architecture Reference Manual.

You can use the MPU to:
* enforce privilege rules

® separate processes

|
3.7. Cortex-M33 Processor 136

https://developer.arm.com/documentation/ddi0553/latest/
https://developer.arm.com/documentation/ddi0553/latest/

RP2350 Datasheet
]

* manage memory attributes

The MPU supports 16 memory regions: 8 secure and 8 non-secure. The MPU is banked between Secure and Non-secure
states. The number of regions in the Secure and Non-secure MPU can be configured independently and each can be
programmed to protect memory for the associated Security state.

3.7.4.8. External coprocessors

The external coprocessor interface:
® Supports low-latency data transfer from the processor to and from the accelerator components.
* Has a sustained bandwidth up to twice of the processor memory interface.
The following instruction types are supported:
® Register transfer from the Cortex-M33 processor to the coprocessor MCR, MCRR, MCR2, MCRR2.
® Register transfer from the coprocessor to the Cortex-M33 processor MRC, MRRC, MRC2, MRRC2.

® Data processing instructions CDP, CDP2.

O NoTE

The regular and extension forms of the coprocessor instructions for example, MCR and MCRR2, have the same
functionality but different encodings. The MRC and MRC2 instructions support the transfer of APSR.NzVC flags when the
processor register field is set to PC, for example Rt == 0xF.

3.7.4.8.1. Restrictions

The following restrictions apply when to coprocessor instructions:

® The LDC(2) or STC(2) instructions are not supported. If these are included in software with the <coproc> field set to a
value between 0-7 and the coprocessor is present and enabled in the appropriate fields in the CPACR/NSACR registers,
the Cortex-M33 processor always attempts to take an Undefined instruction (UNDEFINSTR) UsageFault exception.

* The processor register fields for data transfer instructions must not include the stack pointer (Rt == 0xD), this
encoding is UNPREDICTABLE in the Armv8-M architecture and results in an Undefined instruction (UNDEFINSTR)
UsageFault exception in the CPACR/NSACR registers.

* If any coprocessor instruction is executed when the corresponding coprocessor is disabled in the CPACR/NSACR
register, the Cortex-M33 processor always attempts to take a No coprocessor (NOCP) UsageFault exception.

3.7.4.8.2. Data transfer rates

The following table shows the ideal data transfer rates for the coprocessor interface. This means that the coprocessor
responds immediately to an instruction. The ideal data transfer rates are sustainable if the corresponding coprocessor
instructions are executed consecutively.

The following instructions have the following data transfer rates:

MCR, MCR2 (Processor to coprocessor)
32 bits per cycle
MRC, MRC2 (Coprocessor to processor)

32 bits per cycle

MCRR, MCRR2 (Processor to coprocessor)

64 bits per cycle

|
3.7. Cortex-M33 Processor 137

RP2350 Datasheet
]

MRRC, MRRC2 (Coprocessor to processor)

64 bits per cycle

3.7.4.9. Debug

Cortex-M33 debug functionality includes processor halt, single-step, processor core register access, Vector Catch,
unlimited software breakpoints, and full system memory access.

The processor also includes support for hardware breakpoints and watchpoints configured during implementation:
® A breakpoint unit supporting eight instruction comparators
® A watchpoint unit supporting four data watchpoint comparators

The Cortex-M33 processor supports system level debug authentication to control access from a debugger to resources
and memory. Authentication via the Armv8-M Security Extension can be used to allow a debugger full access to Non-
secure code and data without exposing any Secure information.

The processor implementation can be partitioned to place the debug components in a separate power domain from the
processor core and NVIC.

All debug registers are accessible by the D-AHB interface.

For more information, see the Armv8-M Architecture Reference Manual.

3.7.4.10. Data Watchpoint and Trace unit (DWT)

The DWT is a full configuration, containing four comparators (DWT_CONP@ to DWT_COMP3). These comparators support the
following features:

® Hardware watchpoint support
® Hardware trace packet support
® CMPMATCH support for ETM/MTB/CTI triggers
® Cycle counter matching support (DWT_COMPO only)
® |nstruction address matching support
® Data address matching support
® Data value matching support (DWT_COMP1 only in a reduced DWT, DWT_COMP3 only in a Full DWT)
® Linked/limit matching support (DWT_COMP1 and DWT_COMP3 only)
The DWT contains counters for:
® Cycles (DWT_CYCCNT.CYCCNT)
® Folded Instructions (FOLDCNT)
* Additional cycles required to execute all load/store instructions (LSUCNT)
® Processor sleep cycles (SLEEPCNT)
* Additional cycles required to execute multi-cycle instructions and instruction fetch stalls (CPICNT)
® Cycles spent in exception processing (EXCCNT)
Before using DWT, set the DENMCR. TRCENA bit to 1.

The DWT provides periodic requests for protocol synchronization to the ITM and the TPIU.

|
3.7. Cortex-M33 Processor 138

https://developer.arm.com/documentation/ddi0553/latest/

RP2350 Datasheet

3.7.4.11. Cross Trigger Interface (CTI)

The CTI enables the debug logic, MTB, and ETM to interact with each other and with other CoreSight components. This
is called cross triggering. For example, you can configure the CTI to generate an interrupt when the ETM trigger event
occurs or to start tracing when a DWT comparator match is detected.

The following figure shows the debug system components and the available trigger inputs and trigger outputs:

Figure 15 shows the components of the debug system.

Figure 15. Debug
system components

4_<I:Extern debug request

Debug request

4_@: Extern restart request
Restart request

(€= Interrupt requests

Processor

Processor halted ———»|

CTl input
—— DWT comparator outputs ——| [« channels >
CTI
le CTI output
ETM event outputs =————p»| channels

ET™M

[&——ETM event inputs

| = MTB Trace start

MTB
[MTB Trace stop

The following table shows how the CTI trigger inputs are connected to the Cortex-M33 processor:

Table 115, Trigger Signal Description Connection Acknowledge, handshake
signals to the CTI
CTITRIGIN[7] ETM to CTI Pulsed
CTITRIGIN[6] ETM to CTI Pulsed
CTITRIGIN[5] | ETM Event Output 1 ETM to CTI Pulsed
CTITRIGIN[4] | ETM Event Output 0 or Comparator Output | ETM/Processor to CTI Pulsed
3
CTITRIGIN[3] | DWT Comparator Output 2 Processor to CTI Pulsed
CTITRIGIN[2] | DWT Comparator Output 1 Processor to CTI Pulsed
CTITRIGIN[1] | DWT Comparator Output 0 Processor to CTI Pulsed
CTITRIGIN[O] | Processor Halted Processor to CTI Pulsed

The following table shows how the CTI trigger outputs are connected to the processor and ETM:

Table 116. Trigger

) Signal Description Connection Acknowledge, handshake
signals from the CTI
CTITRIGOUT[| ETM Event Input 3 CTlIto ETM Pulsed
7]
CTITRIGOUT[| ETM Event Input 2 CTlto ETM Pulsed
6]
CTITRIGOUT[| ETM Event Input 1 or MTB Trace stop CTlto ETM or MTB Pulsed
5]
CTITRIGOUT[| ETM Event Input 1 or MTB Trace start CTlto ETM or MTB Pulsed
4]

3.7. Cortex-M33 Processor 139

RP2350 Datasheet
]

Signal Description Connection Acknowledge, handshake

CTITRIGOUT] | Interrupt request 1 CTl to system Acknowledged by writing to

3] the CTIINTACK register in ISR

CTITRIGOUT] | Interrupt request 0 CTl to system Acknowledged by writing to

2] the CTIINTACK register in ISR

CTITRIGOUT] | Processor Restart CTI to Processor Processor Restarted

1]

CTITRIGOUT] | Processor debug request CTI to Processor Acknowledged by the

0] debugger writing to the
CTIINTACK register

After the processor is halted using CTI Trigger Output 0, the Processor Debug Request signal remains asserted. The
debugger must write to CTIINTACK to clear the halting request before restarting the processor.

After asserting an interrupt using the CTI Trigger Output 1 or 2, the Interrupt Service Routine (ISR) must clear the
interrupt request by writing to the CTI Interrupt Acknowledge, CTIINTACK.

Interrupt requests from the CTI to the system are only asserted when invasive debug is enabled in the processor.

3.7.4.11.1. CTI programmers model

The following table shows the CTI programmable registers, with address offset, type, and reset value for each register.
See the Arm CoreSightTM SoC-400 Technical Reference Manual for register descriptions.

Table 1,1 7. CortexM33 | A qdress offset Name Type Reset value Description
CTl register summary

0xE0042000 CTICONTROL RW 0x00000000 CTI Control Register

0xE0042010 CTIINTACK WO UNKNOWN CTI Interrupt Acknowledge
Register

0xE0042014 CTIAPPSET RW 0x00000000 CTI Application Trigger Set
Register

0xE0042018 CTIAPPCLEAR RW 0x00000000 CTI Application Trigger Clear
Register

0xE004201C CTIAPPPULSE WO UNKNOWN CTI Application Pulse Register

0xE0042020-0xE004203C | CTIINEN[7:0] RW 0x00000000 CTI Trigger to Channel Enable
Registers

0xE00420A0-0xE00420BC | CTIOUTEN([7:0] RW 0x00000000 CTI Channel to Trigger Enable
Registers

0xE0042130 CTITRIGINSTATUS RO 0x00000000 CTI Trigger In Status Register

0xE0042134 CTITRIGOUTSTATUS |RO 0x00000000 CTI Trigger Out Status Register

0xE0042138 CTICHINSTATUS RO 0x00000000 CTI Channel In Status Register

0xE0042140 CTIGATE RW 0x0000000F Enable CTI Channel Gate Register

0xE0042144 ASICCTL RW 0x00000000 External Multiplexer Control
Register

OxE0Q42EE4 ITCHOUT WO UNKNOWN Integration Test Channel Output
Register

OxE0042EES ITTRIGOUT WO UNKNOWN Integration Test Trigger Output
Register

|
3.7. Cortex-M33 Processor 140

https://developer.arm.com/documentation/100536/0302/apb-interconnect-components

RP2350 Datasheet

Address offset Name Type Reset value Description
OxEQQ42EF4 ITCHIN RO 0x00000000 Integration Test Channel Input
Register
0xE0042F00 ITCTRL RW 0x00000000 Integration Mode Control Register
0xE0042FC8 DEVID RO 0x00040800 Device Configuration Register
0xE0Q42FBC DEVARCH RO 0x47701A14 Device Architecture Register
0xEQ042FCC DEVTYPE RO 0x00000014 Device Type Identifier Register
0xE0042FD0O PIDR4 RO 0x00000004 Peripheral ID4 Register
0xEQ042FD4 PIDR5 RO 0x00000000 Peripheral ID5 Register
0xE0042FD8 PIDR6 RO 0x00000000 Peripheral ID6 Register
0xEQ042FDC PIDR7 RO 0x00000000 Peripheral ID7 Register
0xE0Q42FEQ PIDRO RO 0x00000021 Peripheral IDO Register
0xEQ042FE4 PIDR1 RO 0x000000BD Peripheral ID1 Register
0xE0042FES PIDR2 RO 0x0000000B Peripheral ID2 Register
OxE0Q42FEC PIDR3 RO 0x00000001 Peripheral ID3 Register
0xEQ042FF0 CIDRO RO 0x0000000D Component IDO Register
0xE0Q42FF4 CIDR1 RO 0x00000090 Component ID1 Register
OXxEQ042FF8 CIDR2 RO 0x00000005 Component ID2 Register
0xEQ042FFC CIDR3 RO 0x000000B1 Component ID3 Register

3.7.5. List of Registers

The Arm Cortex-M33 registers start at a base address of 0xe0000000, defined as PPB_BASE in the SDK.

Taéle 178 Listof M35 | ogtset Name Info

registers
0x00000 ITM_STIMO ITM Stimulus Port Register 0
0x00004 ITM_STIM1 ITM Stimulus Port Register 1
0x00008 ITM_STIM2 ITM Stimulus Port Register 2
0x0000c ITM_STIM3 ITM Stimulus Port Register 3
0x00010 ITM_STIM4 ITM Stimulus Port Register 4
0x00014 ITM_STIM5 ITM Stimulus Port Register 5
0x00018 ITM_STIM6 ITM Stimulus Port Register 6
0x0001¢c ITM_STIM7 ITM Stimulus Port Register 7
0x00020 ITM_STIM8 ITM Stimulus Port Register 8
0x00024 ITM_STIM9 ITM Stimulus Port Register 9
0x00028 ITM_STIM10 ITM Stimulus Port Register 10
0x0002¢c ITM_STIM11 ITM Stimulus Port Register 11
0x00030 ITM_STIM12 ITM Stimulus Port Register 12

3.7. Cortex-M33 Processor

141

RP2350 Datasheet

Offset Name Info

0x00034 ITM_STIM13 ITM Stimulus Port Register 13

0x00038 ITM_STIM14 ITM Stimulus Port Register 14

0x0003c ITM_STIM15 ITM Stimulus Port Register 15

0x00040 ITM_STIM16 ITM Stimulus Port Register 16

0x00044 ITM_STIM17 ITM Stimulus Port Register 17

0x00048 ITM_STIM18 ITM Stimulus Port Register 18

0x0004c ITM_STIM19 ITM Stimulus Port Register 19

0x00050 ITM_STIM20 ITM Stimulus Port Register 20

0x00054 ITM_STIM21 ITM Stimulus Port Register 21

0x00058 ITM_STIM22 ITM Stimulus Port Register 22

0x0005¢ ITM_STIM23 ITM Stimulus Port Register 23

0x00060 ITM_STIM24 ITM Stimulus Port Register 24

0x00064 ITM_STIM25 ITM Stimulus Port Register 25

0x00068 ITM_STIM26 ITM Stimulus Port Register 26

0x0006¢c ITM_STIM27 ITM Stimulus Port Register 27

0x00070 ITM_STIM28 ITM Stimulus Port Register 28

0x00074 ITM_STIM29 ITM Stimulus Port Register 29

0x00078 ITM_STIM30 ITM Stimulus Port Register 30

0x0007¢ ITM_STIM31 ITM Stimulus Port Register 31

0x00e00 ITM_TERO Provide an individual enable bit for each ITM_STIM register

0x00e40 ITM_TPR Controls which stimulus ports can be accessed by unprivileged
code

0x00e80 ITM_TCR Configures and controls transfers through the ITM interface

0x00ef0 INT_ATREADY Integration Mode: Read ATB Ready

0x00ef8 INT_ATVALID Integration Mode: Write ATB Valid

0x00f00 ITM_ITCTRL Integration Mode Control Register

0x00fbc ITM_DEVARCH Provides CoreSight discovery information for the ITM

0x00fcc ITM_DEVTYPE Provides CoreSight discovery information for the ITM

0x00fd0 ITM_PIDR4 Provides CoreSight discovery information for the ITM

0x00fd4 ITM_PIDR5 Provides CoreSight discovery information for the ITM

0x00fd8 ITM_PIDR6 Provides CoreSight discovery information for the ITM

0x00fdc ITM_PIDR7 Provides CoreSight discovery information for the ITM

0x00fe0 ITM_PIDRO Provides CoreSight discovery information for the ITM

0x00fe4 ITM_PIDR1 Provides CoreSight discovery information for the ITM

0x00fe8 ITM_PIDR2 Provides CoreSight discovery information for the ITM

0x00fec ITM_PIDR3 Provides CoreSight discovery information for the ITM

3.7. Cortex-M33 Processor

142

RP2350 Datasheet

Offset Name Info

0x00ff0 ITM_CIDRO Provides CoreSight discovery information for the ITM

0x00ff4 ITM_CIDR1 Provides CoreSight discovery information for the ITM

0x00ff8 ITM_CIDR2 Provides CoreSight discovery information for the ITM

0x00ffc ITM_CIDR3 Provides CoreSight discovery information for the ITM

0x01000 DWT_CTRL Provides configuration and status information for the DWT unit,
and used to control features of the unit

0x01004 DWT_CYCCNT Shows or sets the value of the processor cycle counter, CYCCNT

0x0100c DWT_EXCCNT Counts the total cycles spent in exception processing

0x01014 DWT_LSUCNT Increments on the additional cycles required to execute all load
or store instructions

0x01018 DWT_FOLDCNT Increments on the additional cycles required to execute all load
or store instructions

0x01020 DWT_COMPO Provides a reference value for use by watchpoint comparator 0

0x01028 DWT_FUNCTIONO Controls the operation of watchpoint comparator 0

0x01030 DWT_COMP1 Provides a reference value for use by watchpoint comparator 1

0x01038 DWT_FUNCTION1 Controls the operation of watchpoint comparator 1

0x01040 DWT_COMP2 Provides a reference value for use by watchpoint comparator 2

0x01048 DWT_FUNCTION2 Controls the operation of watchpoint comparator 2

0x01050 DWT_COMP3 Provides a reference value for use by watchpoint comparator 3

0x01058 DWT_FUNCTION3 Controls the operation of watchpoint comparator 3

0x01fbc DWT_DEVARCH Provides CoreSight discovery information for the DWT

0x01fcc DWT_DEVTYPE Provides CoreSight discovery information for the DWT

0x01fd0 DWT_PIDR4 Provides CoreSight discovery information for the DWT

0x01fd4 DWT_PIDR5 Provides CoreSight discovery information for the DWT

0x01fd8 DWT_PIDR6 Provides CoreSight discovery information for the DWT

0x01fdc DWT_PIDR7 Provides CoreSight discovery information for the DWT

0x01fe0 DWT_PIDRO Provides CoreSight discovery information for the DWT

0x01fe4 DWT_PIDR1 Provides CoreSight discovery information for the DWT

0x01fe8 DWT_PIDR2 Provides CoreSight discovery information for the DWT

0x01fec DWT_PIDR3 Provides CoreSight discovery information for the DWT

0x01ff0 DWT_CIDRO Provides CoreSight discovery information for the DWT

0x01ff4 DWT_CIDR1 Provides CoreSight discovery information for the DWT

0x01ff8 DWT_CIDR2 Provides CoreSight discovery information for the DWT

0x01ffc DWT_CIDR3 Provides CoreSight discovery information for the DWT

0x02000 FP_CTRL Provides FPB implementation information, and the global enable
for the FPB unit

3.7. Cortex-M33 Processor

143

RP2350 Datasheet

Offset

Name

Info

0x02004

FP_REMAP

Indicates whether the implementation supports Flash Patch
remap and, if it does, holds the target address for remap

0x02008

FP_COMPO

Holds an address for comparison. The effect of the match
depends on the configuration of the FPB and whether the
comparator is an instruction address comparator or a literal
address comparator

0x0200c

FP_COMP1

Holds an address for comparison. The effect of the match
depends on the configuration of the FPB and whether the
comparator is an instruction address comparator or a literal
address comparator

0x02010

FP_COMP2

Holds an address for comparison. The effect of the match
depends on the configuration of the FPB and whether the
comparator is an instruction address comparator or a literal
address comparator

0x02014

FP_COMP3

Holds an address for comparison. The effect of the match
depends on the configuration of the FPB and whether the
comparator is an instruction address comparator or a literal
address comparator

0x02018

FP_COMP4

Holds an address for comparison. The effect of the match
depends on the configuration of the FPB and whether the
comparator is an instruction address comparator or a literal
address comparator

0x0201¢c

FP_COMPS5

Holds an address for comparison. The effect of the match
depends on the configuration of the FPB and whether the
comparator is an instruction address comparator or a literal
address comparator

0x02020

FP_COMP6

Holds an address for comparison. The effect of the match
depends on the configuration of the FPB and whether the
comparator is an instruction address comparator or a literal
address comparator

0x02024

FP_COMP7

Holds an address for comparison. The effect of the match
depends on the configuration of the FPB and whether the
comparator is an instruction address comparator or a literal
address comparator

0x02fbc

FP_DEVARCH

Provides CoreSight discovery information for the FPB

0x02fcc

FP_DEVTYPE

Provides CoreSight discovery information for the FPB

0x02fd0

FP_PIDR4

Provides CoreSight discovery information for the FP

0x02fd4

FP_PIDR5

Provides CoreSight discovery information for the FP

0x02fd8

FP_PIDR6

Provides CoreSight discovery information for the FP

0x02fdc

FP_PIDR7

Provides CoreSight discovery information for the FP

0x02fe0

FP_PIDRO

Provides CoreSight discovery information for the FP

0x02fe4

FP_PIDR1

Provides CoreSight discovery information for the FP

0x02fe8

FP_PIDR2

Provides CoreSight discovery information for the FP

0x02fec

FP_PIDR3

Provides CoreSight discovery information for the FP

3.7. Cortex-M33 Processor

144

RP2350 Datasheet

Offset Name Info

0x02ff0 FP_CIDRO Provides CoreSight discovery information for the FP

0x02ff4 FP_CIDR1 Provides CoreSight discovery information for the FP

0x02ff8 FP_CIDR2 Provides CoreSight discovery information for the FP

0x02ffc FP_CIDR3 Provides CoreSight discovery information for the FP

0x0e004 ICTR Provides information about the interrupt controller

0x0e008 ACTLR Provides IMPLEMENTATION DEFINED configuration and control
options

0x0e010 SYST_CSR SysTick Control and Status Register

0x0e014 SYST_RVR SysTick Reload Value Register

0x0e018 SYST_CVR SysTick Current Value Register

0x0e01c SYST_CALIB SysTick Calibration Value Register

0x0e100 NVIC_ISERO Enables or reads the enabled state of each group of 32 interrupts

0x0e104 NVIC_ISER1 Enables or reads the enabled state of each group of 32 interrupts

0x0e180 NVIC_ICERO Clears or reads the enabled state of each group of 32 interrupts

0x0e184 NVIC_ICER1 Clears or reads the enabled state of each group of 32 interrupts

0x0e200 NVIC_ISPRO Enables or reads the pending state of each group of 32 interrupts

0x0e204 NVIC_ISPR1 Enables or reads the pending state of each group of 32 interrupts

0x0e280 NVIC_ICPRO Clears or reads the pending state of each group of 32 interrupts

0x0e284 NVIC_ICPR1 Clears or reads the pending state of each group of 32 interrupts

0x0e300 NVIC_IABRO For each group of 32 interrupts, shows the active state of each
interrupt

0x0e304 NVIC_IABR1 For each group of 32 interrupts, shows the active state of each
interrupt

0x0e380 NVIC_ITNSO For each group of 32 interrupts, determines whether each
interrupt targets Non-secure or Secure state

0x0e384 NVIC_ITNS1 For each group of 32 interrupts, determines whether each
interrupt targets Non-secure or Secure state

0x0e400 NVIC_IPRO Sets or reads interrupt priorities

0x0e404 NVIC_IPR1 Sets or reads interrupt priorities

0x0e408 NVIC_IPR2 Sets or reads interrupt priorities

0x0e40c NVIC_IPR3 Sets or reads interrupt priorities

0x0e410 NVIC_IPR4 Sets or reads interrupt priorities

0x0e414 NVIC_IPR5 Sets or reads interrupt priorities

0x0e418 NVIC_IPR6 Sets or reads interrupt priorities

0x0e4dl1c NVIC_IPR7 Sets or reads interrupt priorities

0x0e420 NVIC_IPR8 Sets or reads interrupt priorities

0x0e424 NVIC_IPR9 Sets or reads interrupt priorities

3.7. Cortex-M33 Processor

145

RP2350 Datasheet
]

Offset Name Info

0x0e428 NVIC_IPR10 Sets or reads interrupt priorities

0x0e42c NVIC_IPR11 Sets or reads interrupt priorities

0x0e430 NVIC_IPR12 Sets or reads interrupt priorities

0x0e434 NVIC_IPR13 Sets or reads interrupt priorities

0x0e438 NVIC_IPR14 Sets or reads interrupt priorities

0x0e43c NVIC_IPR15 Sets or reads interrupt priorities

0x0ed00 CPUID Provides identification information for the PE, including an

implementer code for the device and a device ID number

0x0ed04 ICSR Controls and provides status information for NMI, PendSV,
SysTick and interrupts

0x0ed08 VTOR Vector Table Offset Register

0x0edOc AIRCR Application Interrupt and Reset Control Register

0x0ed10 SCR System Control Register

0x0ed14 CCR Sets or returns configuration and control data

0x0ed18 SHPR1 Sets or returns priority for system handlers 4 -7

0x0ed1c SHPR2 Sets or returns priority for system handlers 8 - 11

0x0ed20 SHPR3 Sets or returns priority for system handlers 12-15

0x0ed24 SHCSR Provides access to the active and pending status of system
exceptions

0x0ed28 CFSR Contains the three Configurable Fault Status Registers.

31:16 UFSR: Provides information on UsageFault exceptions

15:8 BFSR: Provides information on BusFault exceptions

7:0 MMFSR: Provides information on MemManage exceptions

0x0ed2c HFSR Shows the cause of any HardFaults

0x0ed30 DFSR Shows which debug event occurred

0x0ed34 MMFAR Shows the address of the memory location that caused an MPU
fault

0x0ed38 BFAR Shows the address associated with a precise data access
BusFault

0x0ed40 ID_PFRO Gives top-level information about the instruction set supported
by the PE

0x0ed44 ID_PFR1 Gives information about the programmers' model and Extensions
support

0x0ed48 ID_DFRO Provides top level information about the debug system

0x0ed4c ID_AFRO Provides information about the IMPLEMENTATION DEFINED

features of the PE

0x0ed50 ID_MMFRO Provides information about the implemented memory model and
memory management support

|
3.7. Cortex-M33 Processor 146

RP2350 Datasheet

Offset Name Info

0x0ed54 ID_MMFR1 Provides information about the implemented memory model and
memory management support

0x0ed58 ID_MMFR2 Provides information about the implemented memory model and
memory management support

0x0ed5c ID_MMFR3 Provides information about the implemented memory model and
memory management support

0x0ed60 ID_ISARO Provides information about the instruction set implemented by
the PE

0x0ed64 ID_ISAR1 Provides information about the instruction set implemented by
the PE

0x0ed68 ID_ISAR2 Provides information about the instruction set implemented by
the PE

0x0ed6c ID_ISAR3 Provides information about the instruction set implemented by
the PE

0x0ed70 ID_ISAR4 Provides information about the instruction set implemented by
the PE

0x0ed74 ID_ISARS Provides information about the instruction set implemented by
the PE

0x0ed7c CTR Provides information about the architecture of the caches. CTR
is RESO if CLIDR is zero.

0x0ed88 CPACR Specifies the access privileges for coprocessors and the FP
Extension

0x0ed8c NSACR Defines the Non-secure access permissions for both the FP
Extension and coprocessors CP0 to CP7

0x0ed90 MPU_TYPE The MPU Type Register indicates how many regions the MPU
"FTSSS supports

0x0ed94 MPU_CTRL Enables the MPU and, when the MPU is enabled, controls
whether the default memory map is enabled as a background
region for privileged accesses, and whether the MPU is enabled
for HardFaults, NMls, and exception handlers when FAULTMASK
issetto1

0x0ed98 MPU_RNR Selects the region currently accessed by MPU_RBAR and
MPU_RLAR

0x0ed9c MPU_RBAR Provides indirect read and write access to the base address of
the currently selected MPU region "FTSSS

0x0eda0 MPU_RLAR Provides indirect read and write access to the limit address of
the currently selected MPU region "FTSSS

0x0eda4 MPU_RBAR_A1 Provides indirect read and write access to the base address of
the MPU region selected by MPU_RNR[7:2]:(1[1:0]) ‘FTSSS

0x0eda8 MPU_RLAR_A1 Provides indirect read and write access to the limit address of
the currently selected MPU region selected by
MPU_RNR([7:2]:(1[1:0]) ‘FTSSS

0x0edac MPU_RBAR_A2 Provides indirect read and write access to the base address of
the MPU region selected by MPU_RNR([7:2]:(2[1:0]) ‘FTSSS

3.7. Cortex-M33 Processor

147

RP2350 Datasheet

Offset Name Info

0x0edb0 MPU_RLAR_A2 Provides indirect read and write access to the limit address of
the currently selected MPU region selected by
MPU_RNR([7:2]:(2[1:0]) ‘FTSSS

0x0edb4 MPU_RBAR_A3 Provides indirect read and write access to the base address of
the MPU region selected by MPU_RNR[7:2]:(3[1:0]) ‘FTSSS

0x0edb8 MPU_RLAR_A3 Provides indirect read and write access to the limit address of
the currently selected MPU region selected by
MPU_RNR([7:2]:(3[1:0]) ‘FTSSS

0x0edc0 MPU_MAIRO Along with MPU_MAIR1, provides the memory attribute
encodings corresponding to the Attrindex values

0x0edc4 MPU_MAIR1 Along with MPU_MAIRO, provides the memory attribute
encodings corresponding to the Attrindex values

0x0edd0 SAU_CTRL Allows enabling of the Security Attribution Unit

0x0edd4 SAU_TYPE Indicates the number of regions implemented by the Security
Attribution Unit

0x0edd8 SAU_RNR Selects the region currently accessed by SAU_RBAR and
SAU_RLAR

0x0eddc SAU_RBAR Provides indirect read and write access to the base address of
the currently selected SAU region

0x0ede0 SAU_RLAR Provides indirect read and write access to the limit address of
the currently selected SAU region

0x0ede4 SFSR Provides information about any security related faults

0x0ede8 SFAR Shows the address of the memory location that caused a
Security violation

0x0edf0 DHCSR Controls halting debug

0x0edf4 DCRSR With the DCRDR, provides debug access to the general-purpose
registers, special-purpose registers, and the FP extension
registers. A write to the DCRSR specifies the register to transfer,
whether the transfer is a read or write, and starts the transfer

0x0edf8 DCRDR With the DCRSR, provides debug access to the general-purpose
registers, special-purpose registers, and the FP Extension
registers. If the Main Extension is implemented, it can also be
used for message passing between an external debugger and a
debug agent running on the PE

0x0edfc DEMCR Manages vector catch behavior and DebugMonitor handling
when debugging

0x0ee08 DSCSR Provides control and status information for Secure debug

0x0ef00 STIR Provides a mechanism for software to generate an interrupt

0x0ef34 FPCCR Holds control data for the Floating-point extension

0x0ef38 FPCAR Holds the location of the unpopulated floating-point register
space allocated on an exception stack frame

0x0ef3c FPDSCR Holds the default values for the floating-point status control data
that the PE assigns to the FPSCR when it creates a new floating-
point context

3.7. Cortex-M33 Processor

148

RP2350 Datasheet

Offset Name Info

0x0ef40 MVFRO Describes the features provided by the Floating-point Extension

0x0ef44 MVFR1 Describes the features provided by the Floating-point Extension

0x0ef48 MVFR2 Describes the features provided by the Floating-point Extension

0x0efbc DDEVARCH Provides CoreSight discovery information for the SCS

0x0Oefcc DDEVTYPE Provides CoreSight discovery information for the SCS

0x0efd0 DPIDR4 Provides CoreSight discovery information for the SCS

0x0efd4 DPIDR5 Provides CoreSight discovery information for the SCS

0x0efd8 DPIDR6 Provides CoreSight discovery information for the SCS

0x0efdc DPIDR7 Provides CoreSight discovery information for the SCS

0x0efe0 DPIDRO Provides CoreSight discovery information for the SCS

O0x0efed DPIDR1 Provides CoreSight discovery information for the SCS

0x0efe8 DPIDR2 Provides CoreSight discovery information for the SCS

0x0Oefec DPIDR3 Provides CoreSight discovery information for the SCS

0x0eff0 DCIDRO Provides CoreSight discovery information for the SCS

0x0eff4 DCIDR1 Provides CoreSight discovery information for the SCS

0x0eff8 DCIDR2 Provides CoreSight discovery information for the SCS

0x0effc DCIDR3 Provides CoreSight discovery information for the SCS

0x41004 TRCPRGCTLR Programming Control Register

0x4100c TRCSTATR The TRCSTATR indicates the ETM-Teal status

0x41010 TRCCONFIGR The TRCCONFIGR sets the basic tracing options for the trace
unit

0x41020 TRCEVENTCTLOR The TRCEVENTCTLOR controls the tracing of events in the trace
stream. The events also drive the ETM-Teal external outputs.

0x41024 TRCEVENTCTL1R The TRCEVENTCTL1R controls how the events selected by
TRCEVENTCTLOR behave

0x4102¢c TRCSTALLCTLR The TRCSTALLCTLR enables ETM-Teal to stall the processor if
the ETM-Teal FIFO goes over the programmed level to minimize
risk of overflow

0x41030 TRCTSCTLR The TRCTSCTLR controls the insertion of global timestamps into
the trace stream. A timestamp is always inserted into the
instruction trace stream

0x41034 TRCSYNCPR The TRCSYNCPR specifies the period of trace synchronization of
the trace streams. TRCSYNCPR defines a number of bytes of
trace between requests for trace synchronization. This value is
always a power of two

0x41038 TRCCCCTLR The TRCCCCTLR sets the threshold value for instruction trace
cycle counting. The threshold represents the minimum interval
between cycle count trace packets

0x41080 TRCVICTLR The TRCVICTLR controls instruction trace filtering

3.7. Cortex-M33 Processor

149

RP2350 Datasheet

Offset Name Info

0x41140 TRCCNTRLDVRO The TRCCNTRLDVR defines the reload value for the reduced
function counter

0x41180 TRCIDR8 TRCIDR8

0x41184 TRCIDR9 TRCIDR9

0x41188 TRCIDR10 TRCIDR10

0x4118c TRCIDR11 TRCIDR11

0x41190 TRCIDR12 TRCIDR12

0x41194 TRCIDR13 TRCIDR13

0x411c0 TRCIMSPEC The TRCIMSPEC shows the presence of any IMPLEMENTATION
SPECIFIC features, and enables any features that are provided

0x411e0 TRCIDRO TRCIDRO

0x411e4 TRCIDR1 TRCIDR1

0x411e8 TRCIDR2 TRCIDR2

0x411ec TRCIDR3 TRCIDR3

0x411f0 TRCIDR4 TRCIDR4

0x411f4 TRCIDR5 TRCIDR5

0x411f8 TRCIDR6 TRCIDR6

0x411fc TRCIDR7 TRCIDR7

0x41208 TRCRSCTLR2 The TRCRSCTLR controls the trace resources

0x4120c TRCRSCTLR3 The TRCRSCTLR controls the trace resources

0x412a0 TRCSSCSR Controls the corresponding single-shot comparator resource

0x412c0 TRCSSPCICR Selects the PE comparator inputs for Single-shot control

0x41310 TRCPDCR Requests the system to provide power to the trace unit

0x41314 TRCPDSR Returns the following information about the trace unit: - OS Lock
status. - Core power domain status. - Power interruption status

0x41eed TRCITATBIDR Trace Intergration ATB Identification Register

0x41ef4 TRCITIATBINR Trace Integration Instruction ATB In Register

0x41efc TRCITIATBOUTR Trace Integration Instruction ATB Out Register

0x41fa0 TRCCLAIMSET Claim Tag Set Register

0x41fad TRCCLAIMCLR Claim Tag Clear Register

0x41fb8 TRCAUTHSTATUS Returns the level of tracing that the trace unit can support

0x41fbc TRCDEVARCH TRCDEVARCH

0x41fc8 TRCDEVID TRCDEVID

0x41fce TRCDEVTYPE TRCDEVTYPE

0x41fd0 TRCPIDR4 TRCPIDR4

0x41fd4 TRCPIDR5 TRCPIDR5

0x41fd8 TRCPIDR6 TRCPIDR6

3.7. Cortex-M33 Processor

150

RP2350 Datasheet
]

Offset Name Info

0x41fdc TRCPIDR7 TRCPIDR7

0x41fe0 TRCPIDRO TRCPIDRO

0x41fed TRCPIDR1 TRCPIDR1

0x41fe8 TRCPIDR2 TRCPIDR2

0x41fec TRCPIDR3 TRCPIDR3

0x41ff0 TRCCIDRO TRCCIDRO

0x41ff4 TRCCIDR1 TRCCIDR1

0x41ff8 TRCCIDR2 TRCCIDR2

0x41ffc TRCCIDR3 TRCCIDR3

0x42000 CTICONTROL CTI Control Register

0x42010 CTIINTACK CTI Interrupt Acknowledge Register
0x42014 CTIAPPSET CTI Application Trigger Set Register
0x42018 CTIAPPCLEAR CTI Application Trigger Clear Register
0x4201c CTIAPPPULSE CTI Application Pulse Register

0x42020 CTIINENO CTI Trigger to Channel Enable Registers
0x42024 CTIINEN1 CTI Trigger to Channel Enable Registers
0x42028 CTIINEN2 CTI Trigger to Channel Enable Registers
0x4202¢c CTIINEN3 CTI Trigger to Channel Enable Registers
0x42030 CTIINEN4 CTI Trigger to Channel Enable Registers
0x42034 CTIINENS CTI Trigger to Channel Enable Registers
0x42038 CTIINENG CTI Trigger to Channel Enable Registers
0x4203c CTIINEN7 CTI Trigger to Channel Enable Registers
0x420a0 CTIOUTENO CTI Trigger to Channel Enable Registers
0x420a4 CTIOUTEN1 CTI Trigger to Channel Enable Registers
0x420a8 CTIOUTEN2 CTI Trigger to Channel Enable Registers
0x420ac CTIOUTEN3 CTI Trigger to Channel Enable Registers
0x420b0 CTIOUTEN4 CTI Trigger to Channel Enable Registers
0x420b4 CTIOUTENS CTI Trigger to Channel Enable Registers
0x420b8 CTIOUTEN6 CTI Trigger to Channel Enable Registers
0x420bc CTIOUTEN7 CTI Trigger to Channel Enable Registers
0x42130 CTITRIGINSTATUS CTI Trigger to Channel Enable Registers
0x42134 CTITRIGOUTSTATUS CTI Trigger In Status Register

0x42138 CTICHINSTATUS CTI Channel In Status Register
0x42140 CTIGATE Enable CTI Channel Gate register
0x42144 ASICCTL External Multiplexer Control register
0x42eed ITCHOUT Integration Test Channel Output register

|
3.7. Cortex-M33 Processor 151

RP2350 Datasheet

Table 119.
ITM_STIMO,
ITM_STIMT, ...,
ITM_STIM30,
ITM_STIM31 Registers

Table 120. ITM_TERO
Register

Offset Name Info

0x42ee8 ITTRIGOUT Integration Test Trigger Output register
0x42ef4 ITCHIN Integration Test Channel Input register
0x42f00 ITCTRL Integration Mode Control register
0x42fbc DEVARCH Device Architecture register

0x42fc8 DEVID Device Configuration register

0x42fcc DEVTYPE Device Type Identifier register
0x42fd0 PIDR4 CoreSight Periperal ID4

0x42fd4 PIDR5 CoreSight Periperal ID5

0x42fd8 PIDR6 CoreSight Periperal ID6

0x42fdc PIDR7 CoreSight Periperal ID7

0x42fe0 PIDRO CoreSight Periperal IDO

0x42fe4 PIDR1 CoreSight Periperal ID1

0x42fe8 PIDR2 CoreSight Periperal ID2

0x42fec PIDR3 CoreSight Periperal ID3

0x42ff0 CIDRO CoreSight Component ID0O

0x42ff4 CIDR1 CoreSight Component ID1

0x42ff8 CIDR2 CoreSight Component ID2

0x42ffc CIDR3 CoreSight Component ID3

M33: ITM_STIMO, ITM_STIM1, ..., ITM_STIM30, ITM_STIM31 Registers

Offsets: 0x00000, 0x00004, ..., 0x00078, 0x0007¢c

Description

Provides the interface for generating Instrumentation packets

Bits Description Type Reset
31:0 STIMULUS: Data to write to the Stimulus Port FIFO, for forwarding as an RW 0x00000000
Instrumentation packet. The size of write access determines the type of
Instrumentation packet generated.
M33: ITM_TERO Register
Offset: 0x00e00
Description
Provide an individual enable bit for each ITM_STIM register
Bits Description Type Reset
31:0 STIMENA: For STIMENA[m] in ITM_TER*n, controls whether ITM_STIM(32*n + | RW 0x00000000

m) is enabled

M33: ITM_TPR Register

Offset: 0x00e40

3.7. Cortex-M33 Processor

RP2350 Datasheet
]

Description

Controls which stimulus ports can be accessed by unprivileged code

Tab{e 121. ITM_TPR Bits Description Type Reset
Register
31:4 Reserved. - -
3:0 PRIVMASK: Bit mask to enable tracing on ITM stimulus ports RW 0x0
M33: ITM_TCR Register
Offset: 0x00e80
Description
Configures and controls transfers through the ITM interface
Tab{e 122 ITMTCR Bits Description Type Reset
Register
31:24 Reserved. - -
23 BUSY: Indicates whether the ITM is currently processing events RO 0x0
22:16 TRACEBUSID: Identifier for multi-source trace stream formatting. If multi- RW 0x00
source trace is in use, the debugger must write a unique non-zero trace ID
value to this field
15:12 Reserved. - -
11:10 GTSFREQ: Defines how often the ITM generates a global timestamp, based on | RW 0x0
the global timestamp clock frequency, or disables generation of global
timestamps
9:8 TSPRESCALE: Local timestamp prescaler, used with the trace packet RW 0x0
reference clock
7:6 Reserved. - -
5 STALLENA: Stall the PE to guarantee delivery of Data Trace packets. RW 0x0
4 SWOENA: Enables asynchronous clocking of the timestamp counter RW 0x0
3 TXENA: Enables forwarding of hardware event packet from the DWT unit to RW 0x0
the ITM for output to the TPIU
2 SYNCENA: Enables Synchronization packet transmission for a synchronous RW 0x0
TPIU
1 TSENA: Enables Local timestamp generation RW 0x0
0 ITMENA: Enables the ITM RW 0x0
M33: INT_ATREADY Register
Offset: 0x00ef0
Description
Integration Mode: Read ATB Ready
Table 123. Bits Description Type Reset
INT_ATREADY
Register 31:2 Reserved. - -
1 AFVALID: A read of this bit returns the value of AFVALID RO 0x0
0 ATREADY: A read of this bit returns the value of ATREADY RO 0x0

|
3.7. Cortex-M33 Processor

RP2350 Datasheet

M33: INT_ATVALID Register
Offset: 0x00ef8

Description

Integration Mode: Write ATB Valid

Table 124.) Bits Description Type Reset
INT_ATVALID Register
31:2 Reserved. - -
1 AFREADY: A write to this bit gives the value of AFREADY RW 0x0
0 ATREADY: A write to this bit gives the value of ATVALID RW 0x0
M33: ITM_ITCTRL Register
Offset: 0x00f00
Description
Integration Mode Control Register
Table 125. . Bits Description Type Reset
ITM_ITCTRL Register
31:1 Reserved. = =
0 IME: Integration mode enable bit - The possible values are: 0 - The trace unitis | RW 0x0
not in integration mode. 1 - The trace unit is in integration mode. This mode
enables: A debug agent to perform topology detection. SoC test software to
perform integration testing.
M33: ITM_DEVARCH Register
Offset: 0x00fbc
Description
Provides CoreSight discovery information for the ITM
Table 126. Bits Description Type Reset
ITM_DEVARCH
Register 31:21 | ARCHITECT: Defines the architect of the component. Bits [31:28] are the RO 0x23b
JEP106 continuation code (JEP106 bank ID, minus 1) and bits [27:21] are the
JEP106 ID code.
20 PRESENT: Defines that the DEVARCH register is present RO 0x1
19:16 REVISION: Defines the architecture revision of the component RO 0x0
15:12 ARCHVER: Defines the architecture version of the component RO 0x1
11:0 ARCHPART: Defines the architecture of the component RO 0xa01
M33: ITM_DEVTYPE Register
Offset: 0x00fcc
Description
Provides CoreSight discovery information for the ITM
Table 127. Bits Description Type Reset
ITM_DEVTYPE
Register 31:8 Reserved. - -
7:4 SUB: Component sub-type RO 0x4

3.7. Cortex-M33 Processor

154

RP2350 Datasheet

Table 128. ITM_PIDR4
Register

Table 129. ITM_PIDRS
Register

Table 130. ITM_PIDR6
Register

Table 131. ITM_PIDR7
Register

3.7. Cortex-M33 Processor

Bits Description Type Reset
3:0 MAJOR: Component major type RO 0x3
M33: ITM_PIDR4 Register
Offset: 0x00fd0
Description
Provides CoreSight discovery information for the ITM
Bits Description Type Reset
31:8 Reserved. = =
74 SIZE: See CoreSight Architecture Specification RO 0x0
3:0 DES_2: See CoreSight Architecture Specification RO 0x4
M33: ITM_PIDRS Register
Offset: 0x00fd4
Description
Provides CoreSight discovery information for the ITM
Bits Description Type Reset
31:0 Reserved. = =
M33: ITM_PIDR6 Register
Offset: 0x00fd8
Description
Provides CoreSight discovery information for the ITM
Bits Description Type Reset
31:0 Reserved. - -
M33: ITM_PIDR7 Register
Offset: 0x00fdc
Description
Provides CoreSight discovery information for the ITM
Bits Description Type Reset
31:0 Reserved. - -

M33: ITM_PIDRO Register

Offset: 0x00fe0

Description

Provides CoreSight discovery information for the ITM

RP2350 Datasheet

Tab{e 132.1TM_PIDRO" | piye Description Type Reset
Register
31:8 Reserved. = =
7:0 PART_0: See CoreSight Architecture Specification RO 0x21
M33: ITM_PIDR1 Register
Offset: 0x00fe4
Description
Provides CoreSight discovery information for the ITM
Tab{e 133. ITM_PIDR1 Bits Description Type Reset
Register
31:8 Reserved. = =
7:4 DES_0: See CoreSight Architecture Specification RO Oxb
3:0 PART_1: See CoreSight Architecture Specification RO Oxd
M33: ITM_PIDR2 Register
Offset: 0x00fe8
Description
Provides CoreSight discovery information for the ITM
Tab{e 134.1TM_PIDR2 | Biss Description Type Reset
Register
31:8 Reserved. = =
7:4 REVISION: See CoreSight Architecture Specification RO 0x0
3 JEDEC: See CoreSight Architecture Specification RO 0x1
2:0 DES_1: See CoreSight Architecture Specification RO 0x3
M33: ITM_PIDR3 Register
Offset: 0x00fec
Description
Provides CoreSight discovery information for the ITM
Table 135 ITM_PIDRS | piye Description Type Reset
Register
31:8 Reserved. = =
74 REVAND: See CoreSight Architecture Specification RO 0x0
3:0 CMOD: See CoreSight Architecture Specification RO 0x0

M33: ITM_CIDRO Register
Offset: 0x00ff0

Description

Provides CoreSight discovery information for the ITM

3.7. Cortex-M33 Processor

RP2350 Datasheet

Table 136. ITM_CIDRO

) Bits Description Type Reset
Register
31:8 Reserved. = =
7:0 PRMBL_0: See CoreSight Architecture Specification RO 0x0d
M33: ITM_CIDR1 Register
Offset: 0x00ff4
Description
Provides CoreSight discovery information for the ITM
Tab{e 137. ITMCIDRT Bits Description Type Reset
Register
31:8 Reserved. = =
7:4 CLASS: See CoreSight Architecture Specification RO 0x9
3:0 PRMBL_1: See CoreSight Architecture Specification RO 0x0
M33: ITM_CIDR2 Register
Offset: 0x00ff8
Description
Provides CoreSight discovery information for the ITM
Tab{e 138 1TM.CIDR2 | Biys Description Type Reset
Register
31:8 Reserved. = =
7:0 PRMBL_2: See CoreSight Architecture Specification RO 0x05
M33: ITM_CIDR3 Register
Offset: 0x00ffc
Description
Provides CoreSight discovery information for the ITM
Tab{e 139. ITM.CIDRS Bits Description Type Reset
Register
31:8 Reserved. = =
7:0 PRMBL_3: See CoreSight Architecture Specification RO Oxb1

M33: DWT_CTRL Register
Offset: 0x01000

Description

Provides configuration and status information for the DWT unit, and used to control features of the unit

Tab{e 140. DWLCTRL | gieg Description Type Reset
Register
31:28 NUMCOMP: Number of DWT comparators implemented RO 0x7
27 NOTRCPKT: Indicates whether the implementation does not support trace RO 0x0
26 NOEXTTRIG: Reserved, RAZ RO 0x0
25 NOCYCCNT: Indicates whether the implementation does not include a cycle RO 0x1
counter

3.7. Cortex-M33 Processor

RP2350 Datasheet
]

Bits Description Type Reset

24 NOPRFCNT: Indicates whether the implementation does not include the RO 0x1
profiling counters

23 CYCDISS: Controls whether the cycle counter is disabled in Secure state RW 0x0
22 CYCEVTENA: Enables Event Counter packet generation on POSTCNT RW 0x1
underflow
21 FOLDEVTENA: Enables DWT_FOLDCNT counter RW 0x1
20 LSUEVTENA: Enables DWT_LSUCNT counter RW 0x1
19 SLEEPEVTENA: Enable DWT_SLEEPCNT counter RW 0x0
18 EXCEVTENA: Enables DWT_EXCCNT counter RW 0x1
17 CPIEVTENA: Enables DWT_CPICNT counter RW 0x0
16 EXTTRCENA: Enables generation of Exception Trace packets RW 0x0

15:13 Reserved. - -

12 PCSAMPLENA: Enables use of POSTCNT counter as a timer for Periodic PC RW 0x1
Sample packet generation

11:10 SYNCTAP: Selects the position of the synchronization packet countertapon |RW 0x2
the CYCCNT counter. This determines the Synchronization packet rate

9 CYCTAP: Selects the position of the POSTCNT tap on the CYCCNT counter RW 0x0
8:5 POSTINIT: Initial value for the POSTCNT counter RW 0x1
4:1 POSTPRESET: Reload value for the POSTCNT counter RW 0x2
0 CYCCNTENA: Enables CYCCNT RW 0x0

M33: DWT_CYCCNT Register
Offset: 0x01004

Description

Shows or sets the value of the processor cycle counter, CYCCNT

Table 141. o -
DWT.CYCONT Bits Description Type Reset
Register 31:0 CYCCNT: Increments one on each processor clock cycle when RW 0x00000000
DWT_CTRL.CYCCNTENA == 1 and DEMCR.TRCENA == 1. On overflow,
CYCCNT wraps to zero
M33: DWT_EXCCNT Register
Offset: 0x0100c
Description
Counts the total cycles spent in exception processing
Table 142. Bits Description Type Reset
DWT_EXCCNT
Register 31:8 Reserved. - -

|
3.7. Cortex-M33 Processor 158

RP2350 Datasheet
]

Bits Description Type Reset
7:0 EXCCNT: Counts one on each cycle when all of the following are true: - RW 0x00
DWT_CTRL.EXCEVTENA == 1 and DEMCR.TRCENA == 1. - No instruction is

executed, see DWT_CPICNT. - An exception-entry or exception-exit related
operation is in progress. - Either SecureNoninvasiveDebugAllowed() == TRUE,
or NS-Req for the operation is set to Non-secure and
NoninvasiveDebugAllowed() == TRUE.

M33: DWT_LSUCNT Register
Offset: 0x01014

Description

Increments on the additional cycles required to execute all load or store instructions

Table 143.

) Bits Description Type Reset
DWT_LSUCNT Register

31:8 Reserved. - -

7:0 LSUCNT: Counts one on each cycle when all of the following are true: - RW 0x00
DWT_CTRL.LSUEVTENA == 1 and DEMCR.TRCENA == 1. - No instruction is
executed, see DWT_CPICNT. - No exception-entry or exception-exit operation
is in progress, see DWT_EXCCNT. - A load-store operation is in progress. -
Either SecureNoninvasiveDebugAllowed() == TRUE, or NS-Req for the
operation is set to Non-secure and NoninvasiveDebugAllowed() == TRUE.

M33: DWT_FOLDCNT Register
Offset: 0x01018

Description

Increments on the additional cycles required to execute all load or store instructions

Table 144.

Bits Description Type Reset
DWT_FOLDCNT
Register 31:8 Reserved. - -
7:0 FOLDCNT: Counts on each cycle when all of the following are true: - RW 0x00
DWT_CTRL.FOLDEVTENA == 1 and DEMCR.TRCENA == 1. - At least two
instructions are executed, see DWT_CPICNT. - Either
SecureNoninvasiveDebugAllowed() == TRUE, or the PE is in Non-secure state
and NoninvasiveDebugAllowed() == TRUE. The counter is incremented by the
number of instructions executed, minus one
M33: DWT_COMPO Register
Offset: 0x01020
Table 145. . Bits Description Type Reset
DWT_COMPO Register
31:0 Provides a reference value for use by watchpoint comparator 0 RW 0x00000000

M33: DWT_FUNCTIONO Register
Offset: 0x01028

Description

Controls the operation of watchpoint comparator 0

3.7. Cortex-M33 Processor 159

RP2350 Datasheet

Table 146.
DWT_FUNCTIONO
Register

Table 147.
DWT_COMP1 Register

Table 148.
DWT_FUNCTIONT
Register

Bits Description Type Reset
31:27 ID: Identifies the capabilities for MATCH for comparator *n RO 0x0b
26:25 Reserved. = =
24 MATCHED: Set to 1 when the comparator matches RO 0x0
23:12 | Reserved. = =
11:10 DATAVSIZE: Defines the size of the object being watched for by Data Value RW 0x0
and Data Address comparators
9:6 Reserved. = =
5:4 ACTION: Defines the action on a match. This field is ignored and the RW 0x0
comparator generates no actions if it is disabled by MATCH
3:0 MATCH: Controls the type of match generated by this comparator RW 0x0
M33: DWT_COMP1 Register
Offset: 0x01030
Bits Description Type Reset
31:0 Provides a reference value for use by watchpoint comparator 1 RW 0x00000000
M33: DWT_FUNCTION1 Register
Offset: 0x01038
Description
Controls the operation of watchpoint comparator 1
Bits Description Type Reset
31:27 ID: Identifies the capabilities for MATCH for comparator *n RO 0x11
26:25 Reserved. = =
24 MATCHED: Set to 1 when the comparator matches RO 0x1
23:12 Reserved. = =
11:10 DATAVSIZE: Defines the size of the object being watched for by Data Value RW 0x2
and Data Address comparators
9:6 Reserved. = =
5:4 ACTION: Defines the action on a match. This field is ignored and the RW 0x2
comparator generates no actions if it is disabled by MATCH
3:0 MATCH: Controls the type of match generated by this comparator RW 0x8

M33: DWT_COMP2 Register

Offset: 0x01040

3.7. Cortex-M33 Processor

160

RP2350 Datasheet

Table 149.
DWT_COMP2 Register

Table 150.
DWT_FUNCTION2
Register

Table 151.
DWT_COMP3 Register

Table 152.
DWT_FUNCTION3
Register

Bits Description Type Reset
31:0 Provides a reference value for use by watchpoint comparator 2 RW 0x00000000
M33: DWT_FUNCTION2 Register
Offset: 0x01048
Description
Controls the operation of watchpoint comparator 2
Bits Description Type Reset
31:27 ID: Identifies the capabilities for MATCH for comparator *n RO 0x0a
26:25 Reserved. = =
24 MATCHED: Set to 1 when the comparator matches RO 0x0
23:12 Reserved. = =
11:10 DATAVSIZE: Defines the size of the object being watched for by Data Value RW 0x0
and Data Address comparators
9:6 Reserved. = =
5:4 ACTION: Defines the action on a match. This field is ignored and the RW 0x0
comparator generates no actions if it is disabled by MATCH
3.0 MATCH: Controls the type of match generated by this comparator RW 0x0
M33: DWT_COMP3 Register
Offset: 0x01050
Bits Description Type Reset
31:0 Provides a reference value for use by watchpoint comparator 3 RW 0x00000000
M33: DWT_FUNCTION3 Register
Offset: 0x01058
Description
Controls the operation of watchpoint comparator 3
Bits Description Type Reset
31:27 ID: Identifies the capabilities for MATCH for comparator *n RO 0x04
26:25 Reserved. = =
24 MATCHED: Set to 1 when the comparator matches RO 0x0
23:12 | Reserved. = =
11:10 DATAVSIZE: Defines the size of the object being watched for by Data Value RW 0x2
and Data Address comparators
9:6 Reserved. = =
5:4 ACTION: Defines the action on a match. This field is ignored and the RW 0x0
comparator generates no actions if it is disabled by MATCH
3:0 MATCH: Controls the type of match generated by this comparator RW 0x0

3.7. Cortex-M33 Processor

161

RP2350 Datasheet

M33: DWT_DEVARCH Register

Offset: 0x01fbc

Description

Provides CoreSight discovery information for the DWT

Table 153. Bits Description Type Reset
DWT_DEVARCH
Register 31:21 | ARCHITECT: Defines the architect of the component. Bits [31:28] are the RO 0x23b
JEP106 continuation code (JEP106 bank ID, minus 1) and bits [27:21] are the
JEP106 ID code.
20 PRESENT: Defines that the DEVARCH register is present RO 0x1
19:16 REVISION: Defines the architecture revision of the component RO 0x0
15:12 | ARCHVER: Defines the architecture version of the component RO 0x1
11:0 ARCHPART: Defines the architecture of the component RO 0xa02
M33: DWT_DEVTYPE Register
Offset: 0x01fcc
Description
Provides CoreSight discovery information for the DWT
Table 154. Bits Description Type Reset
DWT_DEVTYPE
Register 31:8 Reserved. - -
74 SUB: Component sub-type RO 0x0
3:0 MAJOR: Component major type RO 0x0
M33: DWT_PIDR4 Register
Offset: 0x01fd0
Description
Provides CoreSight discovery information for the DWT
Table 155.) Bits Description Type Reset
DWT_PIDR4 Register
31:8 Reserved. - -
7:4 SIZE: See CoreSight Architecture Specification RO 0x0
3:0 DES_2: See CoreSight Architecture Specification RO 0x4

M33: DWT_PIDRS Register
Offset: 0x01fd4

Description

Provides CoreSight discovery information for the DWT

3.7. Cortex-M33 Processor 162

RP2350 Datasheet

Table 156.
DWT_PIDR5 Register

Table 157.
DWT_PIDR6 Register

Table 158.
DWT_PIDR7 Register

Table 159.
DWT_PIDRO Register

Table 160.
DWT_PIDRT Register

3.7. Cortex-M33 Processor

Bits

Description Type

Reset

31:0

Reserved. -

M33: DWT_PIDR6 Register

Offset: 0x01fd8

Description

Provides CoreSight discovery information for the DWT

Bits

Description Type

Reset

31:0

Reserved. -

M33: DWT_PIDR7 Register

Offset: 0x01fdc

Description

Provides CoreSight discovery information for the DWT

Bits

Description Type

Reset

31:0

Reserved. -

M33: DWT_PIDRO Register

Offset: 0x01fe0

Description

Provides CoreSight discovery information for the DWT

Bits

Description

Type

Reset

31:8

Reserved.

7:0

PART_0: See CoreSight Architecture Specification

RO

0x21

M33: DWT_PIDR1 Register

Offset: 0x01fe4

Description

Provides CoreSight discovery information for the DWT

Bits

Description

Type

Reset

31:8

Reserved.

74

DES_0: See CoreSight Architecture Specification

RO

Oxb

3.0

PART_1: See CoreSight Architecture Specification

RO

Oxd

M33: DWT_PIDR2 Register

Offset: 0x01fe8

Description

Provides CoreSight discovery information for the DWT

RP2350 Datasheet

Table 161.) Bits Description Type Reset
DWT_PIDR2 Register
31:8 Reserved. - -
74 REVISION: See CoreSight Architecture Specification RO 0x0
3 JEDEC: See CoreSight Architecture Specification RO 0x1
2:0 DES_1: See CoreSight Architecture Specification RO 0x3
M33: DWT_PIDR3 Register
Offset: 0x01fec
Description
Provides CoreSight discovery information for the DWT
Table162. Bits Description Type Reset
DWT_PIDR3 Register
31:8 Reserved. - -
74 REVAND: See CoreSight Architecture Specification RO 0x0
3.0 CMOD: See CoreSight Architecture Specification RO 0x0
M33: DWT_CIDRO Register
Offset: 0x01ff0
Description
Provides CoreSight discovery information for the DWT
Table163. Bits Description Type Reset
DWT_CIDRO Register
31:8 Reserved. - -
7:0 PRMBL_0: See CoreSight Architecture Specification RO 0x0d
M33: DWT_CIDR1 Register
Offset: 0x01ff4
Description
Provides CoreSight discovery information for the DWT
Table164. Bits Description Type Reset
DWT_CIDRT Register
31:8 Reserved. = =
7:4 CLASS: See CoreSight Architecture Specification RO 0x9
3:0 PRMBL_1: See CoreSight Architecture Specification RO 0x0

M33: DWT_CIDR2 Register
Offset: 0x01ff8

Description

Provides CoreSight discovery information for the DWT

3.7. Cortex-M33 Processor 164

RP2350 Datasheet

Table 165.
DWT_CIDR2 Register

Table 166.
DWT_CIDR3 Register

Table 167. FP_CTRL
Register

Table 168. FP_REMAP
Register

Bits Description Type Reset
31:8 Reserved. = =
7:0 PRMBL_2: See CoreSight Architecture Specification RO 0x05
M33: DWT_CIDR3 Register
Offset: 0x01ffc
Description
Provides CoreSight discovery information for the DWT
Bits Description Type Reset
31:8 Reserved. = =
7:0 PRMBL_3: See CoreSight Architecture Specification RO 0xb1
M33: FP_CTRL Register
Offset: 0x02000
Description
Provides FPB implementation information, and the global enable for the FPB unit
Bits Description Type Reset
31:28 REV: Flash Patch and Breakpoint Unit architecture revision RO 0x6
27:15 Reserved. = =
14:12 NUM_CODE_14_12_: Indicates the number of implemented instruction RO 0x5
address comparators. Zero indicates no Instruction Address comparators are
implemented. The Instruction Address comparators are numbered from 0 to
NUM_CODE - 1
11:8 NUML_LIT: Indicates the number of implemented literal address comparators. | RO 0x5
The Literal Address comparators are numbered from NUM_CODE to
NUM_CODE + NUM_LIT - 1
7:4 NUM_CODE_7_4_: Indicates the number of implemented instruction address | RO 0x8
comparators. Zero indicates no Instruction Address comparators are
implemented. The Instruction Address comparators are numbered from 0 to
NUM_CODE - 1
3:2 Reserved. - -
1 KEY: Writes to the FP_CTRL are ignored unless KEY is concurrently writtento | RW 0x0
one
0 ENABLE: Enables the FPB RW 0x0

M33: FP_REMAP Register

Offset: 0x02004

Description

Indicates whether the implementation supports Flash Patch remap and, if it does, holds the target address for

remap

Bits

Description

Type

Reset

31:30

Reserved.

3.7. Cortex-M33 Processor

165

RP2350 Datasheet

Bits Description Type Reset

29 RMPSPT: Indicates whether the FPB unit supports the Flash Patch remap RO 0x0
function

28:5 REMAP: Holds the bits[28:5] of the Flash Patch remap address RO 0x000000

4:0 Reserved. = =

M33: FP_COMPO, FP_COMP1, ..., FP_COMP6, FP_COMP7 Registers
Offsets: 0x02008, 00200, ..., 0x02020, 0x02024

Description

Holds an address for comparison. The effect of the match depends on the configuration of the FPB and whether
the comparator is an instruction address comparator or a literal address comparator

Table 165. FP.COMPO, | pipe Description Type Reset
FP_COMPT, .,
FP_COMPS, 31:1 Reserved. - -
FP_COMP7 Registers
0 BE: Selects between flashpatch and breakpoint functionality RW 0x0
M33: FP_DEVARCH Register
Offset: 0x02fbc
Description
Provides CoreSight discovery information for the FPB
Table 170. , Bits Description Type Reset
FP_DEVARCH Register
31:21 ARCHITECT: Defines the architect of the component. Bits [31:28] are the RO 0x23b
JEP106 continuation code (JEP106 bank ID, minus 1) and bits [27:21] are the
JEP106 ID code.
20 PRESENT: Defines that the DEVARCH register is present RO 0x1
19:16 REVISION: Defines the architecture revision of the component RO 0x0
15112 ARCHVER: Defines the architecture version of the component RO 0x1
11:0 ARCHPART: Defines the architecture of the component RO 0xa03
M33: FP_DEVTYPE Register
Offset: 0x02fcc
Description
Provides CoreSight discovery information for the FPB
Table 171. _ Bits Description Type Reset
FP_DEVTYPE Register
31:8 Reserved. = =
74 SUB: Component sub-type RO 0x0
3:0 MAJOR: Component major type RO 0x0

3.7. Cortex-M33 Processor

M33: FP_PIDR4 Register

Offset: 0x02fd0

RP2350 Datasheet
]

Table 172. FP_PIDR4
Register

Table 173. FP_PIDR5
Register

Table 174. FP_PIDR6
Register

Table 175. FP_PIDR7
Register

Description

Provides CoreSight discovery information for the FP

Bits Description

Type

Reset

31:8 Reserved.

7:4 SIZE: See CoreSight Architecture Specification

RO

0x0

3:0 DES_2: See CoreSight Architecture Specification

RO

0x4

M33: FP_PIDRS Register

Offset: 0x02fd4

Description

Provides CoreSight discovery information for the FP

Bits

Description

Type

Reset

31:0

Reserved.

M33: FP_PIDR6 Register

Offset: 0x02fd8

Description

Provides CoreSight discovery information for the FP

Bits

Description

Type

Reset

31:0

Reserved.

M33: FP_PIDR7 Register

Offset: 0x02fdc

Description

Provides CoreSight discovery information for the FP

Bits

Description

Type

Reset

31:0

Reserved.

M33: FP_PIDRO Register

Offset: 0x02fe0

Description

Provides CoreSight discovery information for the FP

|
3.7. Cortex-M33 Processor

167

RP2350 Datasheet

Tab{e 176. FP_PIDRO Bits Description Type Reset
Register
31:8 Reserved. = =
7:0 PART_0: See CoreSight Architecture Specification RO 0x21
M33: FP_PIDR1 Register
Offset: 0x02fe4
Description
Provides CoreSight discovery information for the FP
Tab{e 177 FP_PIDR1 Bits Description Type Reset
Register
31:8 Reserved. = =
7:4 DES_0: See CoreSight Architecture Specification RO Oxb
3:0 PART_1: See CoreSight Architecture Specification RO Oxd
M33: FP_PIDR2 Register
Offset: 0x02fe8
Description
Provides CoreSight discovery information for the FP
Tab{e 178. FP_PIDR2 Bits Description Type Reset
Register
31:8 Reserved. = =
7:4 REVISION: See CoreSight Architecture Specification RO 0x0
3 JEDEC: See CoreSight Architecture Specification RO 0x1
2:0 DES_1: See CoreSight Architecture Specification RO 0x3
M33: FP_PIDR3 Register
Offset: 0x02fec
Description
Provides CoreSight discovery information for the FP
Table 175. FP_PIDRS | pijye Description Type Reset
Register
31:8 Reserved. = =
74 REVAND: See CoreSight Architecture Specification RO 0x0
3:0 CMOD: See CoreSight Architecture Specification RO 0x0

M33: FP_CIDRO Register
Offset: 0x02ff0

Description

Provides CoreSight discovery information for the FP

3.7. Cortex-M33 Processor 168

RP2350 Datasheet

Tab{e 180. FP_CIDRO Bits Description Type Reset
Register
31:8 Reserved. = =
7:0 PRMBL_0: See CoreSight Architecture Specification RO 0x0d
M33: FP_CIDR1 Register
Offset: 0x02ff4
Description
Provides CoreSight discovery information for the FP
Tab{e 181. FP-CIDRT Bits Description Type Reset
Register
31:8 Reserved. = =
7:4 CLASS: See CoreSight Architecture Specification RO 0x9
3:0 PRMBL_1: See CoreSight Architecture Specification RO 0x0
M33: FP_CIDR2 Register
Offset: 0x02ff8
Description
Provides CoreSight discovery information for the FP
Tab{e 182. FP_CIDR2 Bits Description Type Reset
Register
31:8 Reserved. = =
7:0 PRMBL_2: See CoreSight Architecture Specification RO 0x05
M33: FP_CIDR3 Register
Offset: 0x02ffc
Description
Provides CoreSight discovery information for the FP
Tab{e 183. FP-CIDRS Bits Description Type Reset
Register
31:8 Reserved. = =
7:0 PRMBL_3: See CoreSight Architecture Specification RO Oxb1

M33: ICTR Register
Offset: 0x0e004

Description

Provides information about the interrupt controller

|
3.7. Cortex-M33 Processor 169

RP2350 Datasheet

Table 184. ICTR

) Bits Description Type Reset
Register
31:4 Reserved. - -
3:0 INTLINESNUM: Indicates the number of the highest implemented register in RO 0x1
each of the NVIC control register sets, or in the case of NVIC_IPR*n,
4xINTLINESNUM
M33: ACTLR Register
Offset: 0x0e008
Description
Provides IMPLEMENTATION DEFINED configuration and control options
TabI‘e 185. ACTLR Bits Description Type Reset
Register
31:30 Reserved. - -
29 EXTEXCLALL: External Exclusives Allowed with no MPU RW 0x0
28:13 Reserved. - -
12 DISITMATBFLUSH: Disable ATB Flush RW 0x0
11 Reserved. = =
10 FPEXCODIS: Disable FPU exception outputs RW 0x0
9 DISOOFP: Disable out-of-order FP instruction completion RW 0x0
8:3 Reserved. - -
2 DISFOLD: Disable dual-issue. RW 0x0
1 Reserved. - -
0 DISMCYCINT: Disable dual-issue. RW 0x0
M33: SYST_CSR Register
Offset: 0x0e010
Description
Use the SysTick Control and Status Register to enable the SysTick features.
Table 186. SYST.CSR | pijte Description Type Reset
Register
31:17 Reserved. - -
16 COUNTFLAG: Returns 1 if timer counted to 0 since last time this was read. RO 0x0
Clears on read by application or debugger.
158 Reserved. - -
2 CLKSOURCE: SysTick clock source. Always reads as one if SYST_CALIB RW 0x0
reports NOREF.
Selects the SysTick timer clock source:
0 = External reference clock.
1 = Processor clock.
1 TICKINT: Enables SysTick exception request: RW 0x0
0 = Counting down to zero does not assert the SysTick exception request.
1 = Counting down to zero to asserts the SysTick exception request.

3.7. Cortex-M33 Processor

170

RP2350 Datasheet

Bits Description Reset

Type

0 ENABLE: Enable SysTick counter: RW 0x0
0 = Counter disabled.
1 = Counter enabled.

M33: SYST_RVR Register
Offset: 0x0e014

Description

Use the SysTick Reload Value Register to specify the start value to load into the current value register when the
counter reaches 0. It can be any value between 0 and 0xO0FFFFFF. A start value of 0 is possible, but has no effect
because the SysTick interrupt and COUNTFLAG are activated when counting from 1 to 0. The reset value of this
register is UNKNOWN.

To generate a multi-shot timer with a period of N processor clock cycles, use a RELOAD value of N-1. For example,
if the SysTick interrupt is required every 100 clock pulses, set RELOAD to 99.

Tab"e 187. SYST.RVR | Bits Description Type Reset
Register
31:24 Reserved. = =
23:0 RELOAD: Value to load into the SysTick Current Value Register when the RW 0x000000
counter reaches 0.

M33: SYST_CVR Register

Offset: 0x0e018

Description

Use the SysTick Current Value Register to find the current value in the register. The reset value of this register is

UNKNOWN.
Tabl_e 188. SYST.CVR | Bits Description Type Reset
Register
31:24 Reserved. = =
23:0 CURRENT: Reads return the current value of the SysTick counter. This register | RW 0x000000

is write-clear. Writing to it with any value clears the register to 0. Clearing this
register also clears the COUNTFLAG bit of the SysTick Control and Status
Register.

M33: SYST_CALIB Register

Offset: 0x0e01c

Description

Use the SysTick Calibration Value Register to enable software to scale to any required speed using divide and

multiply.
Table780. Bits Description Type Reset
SYST_CALIB Register
31 NOREEF: If reads as 1, the Reference clock is not provided - the CLKSOURCE bit | RO 0x0
of the SysTick Control and Status register will be forced to 1 and cannot be
cleared to 0.
30 SKEW: If reads as 1, the calibration value for 10ms is inexact (due to clock RO 0x0
frequency).
29:24 Reserved. = =

|
3.7. Cortex-M33 Processor

RP2350 Datasheet

Bits

Description

Type

Reset

23:0

TENMS: An optional Reload value to be used for 10ms (100Hz) timing, subject
to system clock skew errors. If the value reads as 0, the calibration value is not

known.

RO

0x000000

M33: NVIC_ISERO, NVIC_ISER1 Registers

Offsets: 0x0e100, 0x0e104

Description
Enables or reads the enabled state of each group of 32 interrupts

Reset

Table 790.

Bits

Description

Type

NVIC_ISERO,
NVIC_ISERT Registers

31:0

SETENA: For SETENA[m] in NVIC_ISER*n, indicates whether interrupt 32*n + m

is enabled

RW

0x00000000

M33: NVIC_ICERO, NVIC_ICER1 Registers

Offsets: 0x0e180, 0x0e184

Description
Clears or reads the enabled state of each group of 32 interrupts

Reset

Table 197.

Bits

Description

Type

NVIC_ICERO,
NVIC_ICERT Registers

31:0

CLRENA: For CLRENA[m] in NVIC_ICER*n, indicates whether interrupt 32*n +

m is enabled

RW

0x00000000

M33: NVIC_ISPRO, NVIC_ISPR1 Registers

Offsets: 0x0e200, 0x0e204

Description
Enables or reads the pending state of each group of 32 interrupts

Table 192.

Bits

Description

Type

Reset

NVIC_ISPRO,
NVIC_ISPRT Registers

Table 193.
NVIC_ICPRO,
NVIC_ICPR1 Registers

31:0

SETPEND: For SETPEND[m] in NVIC_ISPR*n, indicates whether interrupt 32*n

+mis pending

RW

0x00000000

M33: NVIC_ICPRO, NVIC_ICPR1 Registers

Offsets: 0x0e280, 0x0e284

Description
Clears or reads the pending state of each group of 32 interrupts

Bits

Description

Type

Reset

31:0

+mis pending

CLRPEND: For CLRPEND[m] in NVIC_ICPR*n, indicates whether interrupt 32*n

RW

0x00000000

M3

3: NVIC_IABRO, NVIC_IABR1 Registers

Offsets: 0x0e300, 0x0e304

Description

For each group of 32 interrupts, shows the active state of each interrupt

3.7. Cortex-M33 Processor

RP2350 Datasheet

Table 194.
NVIC_IABRO,
NVIC_IABR1 Registers

Table 195.
NVIC_ITNSO,
NVIC_ITNST Registers

Table 196. NVIC_IPRO,
NVIC_IPRT, ...,
NVIC_IPR14,
NVIC_IPR15 Registers

Table 197. CPUID
Register

Bits

Description

Type

Reset

31:0

ACTIVE: For ACTIVE[m] in NVIC_IABR*n, indicates the active state for interrupt
32*n+m

RW

0x00000000

M33: NVIC_ITNSO, NVIC_ITNS1 Registers

Offsets: 0x0e380, 0x0e384

Description

For each group of 32 interrupts, determines whether each interrupt targets Non-secure or Secure state

Bits

Description

Type

Reset

31:0

ITNS: For ITNS[m] in NVIC_ITNS*n, "IAAMO the target Security state for
interrupt 32*n+m

RW

0x00000000

M33: NVIC_IPRO, NVIC_IPRT1, ..., NVIC_IPR14, NVIC_IPR15 Registers

Offsets: 0x0e400, 0x0e404, ..., 0x0e438, 0x0e43c

Description

Sets or reads interrupt priorities

Bits Description Type Reset

31:28 PRI_N3: For register NVIC_IPRn, the priority of interrupt number 4*n+3, or RW 0x0
RESO if the PE does not implement this interrupt

27:24 Reserved. = =

23:20 PRI_N2: For register NVIC_IPRn, the priority of interrupt number 4*n+2, or RW 0x0
RESO if the PE does not implement this interrupt

19:16 Reserved. - -

15:12 PRI_N1: For register NVIC_IPRn, the priority of interrupt number 4*n+1, or RW 0x0
RESO if the PE does not implement this interrupt

11:8 Reserved. = =

7:4 PRI_NO: For register NVIC_IPRn, the priority of interrupt number 4*n+0, or RW 0x0
RESO if the PE does not implement this interrupt

3:0 Reserved. = =

M33: CPUID Register

Offset: 0x0ed00

Description

Provides identification information for the PE, including an implementer code for the device and a device ID number

Bits Description Type Reset

31:24 IMPLEMENTER: This field must hold an implementer code that has been RO 0x41
assigned by ARM

23:20 VARIANT: IMPLEMENTATION DEFINED variant number. Typically, this field is | RO 0x1
used to distinguish between different product variants, or major revisions of a
product

19:16 ARCHITECTURE: Defines the Architecture implemented by the PE RO Oxf

3.7. Cortex-M33 Processor

173

RP2350 Datasheet

Bits Description Type Reset
15:4 PARTNO: IMPLEMENTATION DEFINED primary part number for the device RO 0xd21
3:0 REVISION: IMPLEMENTATION DEFINED revision number for the device RO 0x0

M33: ICSR Register
Offset: 0x0ed04

Description

Controls and provides status information for NMI, PendSV, SysTick and interrupts

;:S;zt:j& ICSR Bits Description Type Reset

31 PENDNMISET: Indicates whether the NMI exception is pending RO 0x0
30 PENDNMICLR: Allows the NMI exception pend state to be cleared RW 0x0
29 Reserved. = =

28 PENDSVSET: Indicates whether the PendSV "FTSSS exception is pending RO 0x0
27 PENDSVCLR: Allows the PendSV exception pend state to be cleared "FTSSS RW 0x0
26 PENDSTSET: Indicates whether the SysTick "FTSSS exception is pending RO 0x0
25 PENDSTCLR: Allows the SysTick exception pend state to be cleared "FTSSS RW 0x0
24 STTNS: Controls whether in a single SysTick implementation, the SysTick is RW 0x0

Secure or Non-secure

23 ISRPREEMPT: Indicates whether a pending exception will be serviced on exit | RO 0x0
from debug halt state

22 ISRPENDING: Indicates whether an external interrupt, generated by the NVIC, |RO 0x0
is pending

21 Reserved. - -

20:12 VECTPENDING: The exception number of the highest priority pending and RO 0x000

enabled interrupt

11 RETTOBASE: In Handler mode, indicates whether there is more than one RO 0x0
active exception

10:9 Reserved. - -

8:0 VECTACTIVE: The exception number of the current executing exception RO 0x000

M33: VTOR Register
Offset: 0x0ed08

Description

The VTOR indicates the offset of the vector table base address from memory address 0x00000000.

|
3.7. Cortex-M33 Processor 174

RP2350 Datasheet
]

Table 199. VTOR

) Bits Description Type Reset
Register

317 TBLOFF: Vector table base offset field. It contains bits[31:7] of the offset of RW 0x0000000
the table base from the bottom of the memory map.

6:0 Reserved. - -

M33: AIRCR Register
Offset: 0x0edOc

Description

Use the Application Interrupt and Reset Control Register to: determine data endianness, clear all active state
information from debug halt mode, request a system reset.

Table 200. AIRCR

) Bits Description Type Reset
Register

31:16 VECTKEY: Register key: RW 0x0000
Reads as Unknown
On writes, write 0x05FA to VECTKEY, otherwise the write is ignored.

15 ENDIANESS: Data endianness implemented: RO 0x0
0 = Little-endian.

14 PRIS: Prioritize Secure exceptions. The value of this bit defines whether RW 0x0
Secure exception priority boosting is enabled.

0 Priority ranges of Secure and Non-secure exceptions are identical.
1 Non-secure exceptions are de-prioritized.

13 BFHFNMINS: BusFault, HardFault, and NMI Non-secure enable. RW 0x0
0 BusFault, HardFault, and NMI are Secure.

1 BusFault and NMI are Non-secure and exceptions can target Non-secure
HardFault.

12:11 Reserved. - -

10:8 PRIGROUP: Interrupt priority grouping field. This field determines the split of | RW 0x0
group priority from subpriority.

See https://developer.arm.com/documentation/100235/0004/the-cortex-
m33-peripherals/system-control-block/application-interrupt-and-reset-control-
register?lang=en

7:4 Reserved. - -

3 SYSRESETREQS: System reset request, Secure state only. RW 0x0
0 SYSRESETREQ functionality is available to both Security states.
1 SYSRESETREQ functionality is only available to Secure state.

2 SYSRESETREQ: Writing 1 to this bit causes the SYSRESETREQ signal to the RW 0x0
outer system to be asserted to request a reset. The intention is to force a large
system reset of all major components except for debug. The C_HALT bit in the
DHCSR is cleared as a result of the system reset requested. The debugger
does not lose contact with the device.

1 VECTCLRACTIVE: Clears all active state information for fixed and RW 0x0
configurable exceptions. This bit: is self-clearing, can only be set by the DAP
when the core is halted. When set: clears all active exception status of the
processor, forces a return to Thread mode, forces an IPSR of 0. A debugger
must re-initialize the stack.

0 Reserved. - -

|
3.7. Cortex-M33 Processor 175

https://developer.arm.com/documentation/100235/0004/the-cortex-m33-peripherals/system-control-block/application-interrupt-and-reset-control-register?lang=en
https://developer.arm.com/documentation/100235/0004/the-cortex-m33-peripherals/system-control-block/application-interrupt-and-reset-control-register?lang=en
https://developer.arm.com/documentation/100235/0004/the-cortex-m33-peripherals/system-control-block/application-interrupt-and-reset-control-register?lang=en

RP2350 Datasheet

M33: SCR Register
Offset: 0x0ed10

Description

System Control Register. Use the System Control Register for power-management functions: signal to the system
when the processor can enter a low power state, control how the processor enters and exits low power states.

Table 201. SCR Bits Description Type Reset
Register
BIlES Reserved. = =
4 SEVONPEND: Send Event on Pending bit: RW 0x0
0 = Only enabled interrupts or events can wakeup the processor, disabled
interrupts are excluded.
1 = Enabled events and all interrupts, including disabled interrupts, can
wakeup the processor.
When an event or interrupt becomes pending, the event signal wakes up the
processor from WFE. If the
processor is not waiting for an event, the event is registered and affects the
next WFE.
The processor also wakes up on execution of an SEV instruction or an external
event.
3 SLEEPDEEPS: 0 SLEEPDEEP is available to both security states RW 0x0
1 SLEEPDEEP is only available to Secure state
2 SLEEPDEEP: Controls whether the processor uses sleep or deep sleep asits | RW 0x0
low power mode:
0 = Sleep.
1 = Deep sleep.
1 SLEEPONEXIT: Indicates sleep-on-exit when returning from Handler mode to | RW 0x0
Thread mode:
0 = Do not sleep when returning to Thread mode.
1 = Enter sleep, or deep sleep, on return from an ISR to Thread mode.
Setting this bit to 1 enables an interrupt driven application to avoid returning to
an empty main application.
0 Reserved. = =
M33: CCR Register
Offset: 0x0ed14
Description
Sets or returns configuration and control data
Table 202. CCR Bits Description Type Reset
Register
31:19 Reserved. = =
18 BP: Enables program flow prediction "FTSSS RO 0x0
17 IC: This is a global enable bit for instruction caches in the selected Security RO 0x0
state
16 DC: Enables data caching of all data accesses to Normal memory "FTSSS RO 0x0
15:11 Reserved. = =

|
3.7. Cortex-M33 Processor

RP2350 Datasheet

Bits Description Type Reset

10 STKOFHFNMIGN: Controls the effect of a stack limit violation while executing | RW 0x0
at a requested priority less than 0

9 RES1: Reserved, RES1 RO 0x1

8 BFHFNMIGN: Determines the effect of precise BusFaults on handlers running | RW 0x0

at a requested priority less than 0

7:5 Reserved. = =

4 DIV_O_TRP: Controls the generation of a DIVBYZERO UsageFault when RW 0x0
attempting to perform integer division by zero

3 UNALIGN_TRP: Controls the trapping of unaligned word or halfword accesses | RW 0x0

2 Reserved. = =

1 USERSETMPEND: Determines whether unprivileged accesses are permitted to | RW 0x0

pend interrupts via the STIR

0 RES1_1: Reserved, RES1 RO 0x1

M33: SHPR1 Register
Offset: 0x0ed18

Description

Sets or returns priority for system handlers 4 - 7

Table 203. SHPR1

) Bits Description Type Reset
Register

31:29 PRI_7_3: Priority of system handler 7, SecureFault RW 0x0

28:24 Reserved. - -

23:21 PRI_6_3: Priority of system handler 6, SecureFault RW 0x0

20:16 Reserved. - -

15:13 PRI_5_3: Priority of system handler 5, SecureFault RW 0x0

12:8 Reserved. - -

7:5 PRI_4_3: Priority of system handler 4, SecureFault RW 0x0
4:0 Reserved. = =
M33: SHPR2 Register

Offset: 0x0ed1c

Description

Sets or returns priority for system handlers 8 - 11

Table 204. SHPR2

) Bits Description Type Reset
Register

31:29 PRI_11_3: Priority of system handler 11, SecureFault RW 0x0

28:24 Reserved. - -

23:16 PRI_10: Reserved, RESO RO 0x00

15:8 PRI_9: Reserved, RESO RO 0x00

3.7. Cortex-M33 Processor 177

RP2350 Datasheet

Bits Description Type Reset

7:0 PRI_8: Reserved, RESO RO 0x00

M33: SHPR3 Register
Offset: 0x0ed20

Description

Table 205. SHPR3

Sets or returns priority for system handlers 12 - 15

) Bits Description Type Reset
Register
31:29 PRI_15_3: Priority of system handler 15, SecureFault RW 0x0
28:24 Reserved. = =
23:21 PRI_14_3: Priority of system handler 14, SecureFault RW 0x0
20:16 Reserved. = =
15:8 PRI_13: Reserved, RESO RO 0x00
7:5 PRI_12_3: Priority of system handler 12, SecureFault RW 0x0
4.0 Reserved. - -
M33: SHCSR Register
Offset: 0x0ed24
Description
Provides access to the active and pending status of system exceptions
Tab{e 206. SHCSR Bits Description Type Reset
Register
31:22 Reserved. = =
21 HARDFAULTPENDED: 'IAAMO the pending state of the HardFault exception RW 0x0
"CTTSSS
20 SECUREFAULTPENDED: 'IAAMO the pending state of the SecureFault RW 0x0
exception
19 SECUREFAULTENA: 'DW the SecureFault exception is enabled RW 0x0
18 USGFAULTENA: 'DW the UsageFault exception is enabled "FTSSS RW 0x0
17 BUSFAULTENA: "DW the BusFault exception is enabled RW 0x0
16 MEMFAULTENA: 'DW the MemManage exception is enabled ‘FTSSS RW 0x0
15 SVCALLPENDED: 'IAAMO the pending state of the SVCall exception "‘FTSSS RW 0x0
14 BUSFAULTPENDED: 'IAAMO the pending state of the BusFault exception RW 0x0
13 MEMFAULTPENDED: "IAAMO the pending state of the MemManage exception | RW 0x0
"FTSSS
12 USGFAULTPENDED: The UsageFault exception is banked between Security RW 0x0
states, IAAMO the pending state of the UsageFault exception ‘FTSSS
11 SYSTICKACT: 'IAAMO the active state of the SysTick exception "'FTSSS RW 0x0
10 PENDSVACT: "IAAMO the active state of the PendSV exception 'FTSSS RW 0x0

3.7. Cortex-M33 Processor

178

RP2350 Datasheet
]

Bits Description Type Reset

9 Reserved. = =

8 MONITORACT: 'IAAMO the active state of the DebugMonitor exception RW 0x0

7 SVCALLACT: 'IAAMO the active state of the SVCall exception "FTSSS RW 0x0

6 Reserved. = =

5 NMIACT: 'IAAMO the active state of the NMI exception RW 0x0

4 SECUREFAULTACT: 'IAAMO the active state of the SecureFault exception RW 0x0

3 USGFAULTACT: 'IAAMO the active state of the UsageFault exception 'FTSSS | RW 0x0

2 HARDFAULTACT: Indicates and allows limited modification of the active state | RW 0x0
of the HardFault exception "FTSSS

1 BUSFAULTACT: 'IAAMO the active state of the BusFault exception RW 0x0

0 MEMFAULTACT: 'IAAMO the active state of the MemManage exception RW 0x0
'FTSSS

M33: CFSR Register
Offset: 0x0ed28

Description

Contains the three Configurable Fault Status Registers.
31:16 UFSR: Provides information on UsageFault exceptions
15:8 BFSR: Provides information on BusFault exceptions

7:0 MMFSR: Provides information on MemManage exceptions

Table 207. CFSR

) Bits Description Type Reset
Register

31:26 Reserved. - -

25 UFSR_DIVBYZERO: Sticky flag indicating whether an integer division by zero RW 0x0
error has occurred

24 UFSR_UNALIGNED: Sticky flag indicating whether an unaligned access error | RW 0x0
has occurred

23:21 Reserved. - -

20 UFSR_STKOF: Sticky flag indicating whether a stack overflow error has RW 0x0
occurred
19 UFSR_NOCP: Sticky flag indicating whether a coprocessor disabled or not RW 0x0

present error has occurred

18 UFSR_INVPC: Sticky flag indicating whether an integrity check error has RW 0x0
occurred
17 UFSR_INVSTATE: Sticky flag indicating whether an EPSR.T or EPSR.IT validity | RW 0x0

error has occurred

16 UFSR_UNDEFINSTR: Sticky flag indicating whether an undefined instruction RW 0x0
error has occurred

15 BFSR_BFARVALID: Indicates validity of the contents of the BFAR register RW 0x0

14 Reserved. - -

|
3.7. Cortex-M33 Processor 179

RP2350 Datasheet
]

Bits Description Type Reset
13 BFSR_LSPERR: Records whether a BusFault occurred during FP lazy state RW 0x0
preservation
12 BFSR_STKERR: Records whether a derived BusFault occurred during RW 0x0
exception entry stacking
11 BFSR_UNSTKERR: Records whether a derived BusFault occurred during RW 0x0
exception return unstacking
10 BFSR_IMPRECISERR: Records whether an imprecise data access error has RW 0x0
occurred
9 BFSR_PRECISERR: Records whether a precise data access error has occurred | RW 0x0
8 BFSR_IBUSERR: Records whether a BusFault on an instruction prefetch has RW 0x0
occurred
7:0 MMFSR: Provides information on MemManage exceptions RW 0x00
M33: HFSR Register
Offset: 0x0ed2c
Description
Shows the cause of any HardFaults
Table 208. HFSR Bits Description Type Reset
Register
31 DEBUGEVT: Indicates when a Debug event has occurred RW 0x0
30 FORCED: Indicates that a fault with configurable priority has been escalated to | RW 0x0
a HardFault exception, because it could not be made active, because of
priority, or because it was disabled
29:2 Reserved. = =
1 VECTTBL: Indicates when a fault has occurred because of a vector table read | RW 0x0
error on exception processing
0 Reserved. = =
M33: DFSR Register
Offset: 0x0ed30
Description
Shows which debug event occurred
Tabl_e 209. DFSR Bits Description Type Reset
Register
BilE5! Reserved. = =
4 EXTERNAL: Sticky flag indicating whether an External debug request debug RW 0x0
event has occurred
3 VCATCH: Sticky flag indicating whether a Vector catch debug event has RW 0x0
occurred
2 DWTTRAP: Sticky flag indicating whether a Watchpoint debug event has RW 0x0
occurred
1 BKPT: Sticky flag indicating whether a Breakpoint debug event has occurred | RW 0x0

3.7. Cortex-M33 Processor

180

RP2350 Datasheet

Table 210. MMFAR
Register

Table 211. BFAR
Register

Table 212. ID_PFRO
Register

Table 213. ID_PFRT
Register

3.7. Cortex-M33 Processor

Bits Description Type Reset
0 HALTED: Sticky flag indicating that a Halt request debug event or Step debug | RW 0x0
event has occurred
M33: MMFAR Register
Offset: 0x0ed34
Description
Shows the address of the memory location that caused an MPU fault
Bits Description Type Reset
31:0 ADDRESS: This register is updated with the address of a location that RW 0x00000000
produced a MemManage fault. The MMFSR shows the cause of the fault, and
whether this field is valid. This field is valid only when MMFSR.MMARVALID is
set, otherwise it is UNKNOWN
M33: BFAR Register
Offset: 0x0ed38
Description
Shows the address associated with a precise data access BusFault
Bits Description Type Reset
31:0 ADDRESS: This register is updated with the address of a location that RW 0x00000000
produced a BusFault. The BFSR shows the reason for the fault. This field is
valid only when BFSR.BFARVALID is set, otherwise it is UNKNOWN
M33: ID_PFRO Register
Offset: 0x0ed40
Description
Gives top-level information about the instruction set supported by the PE
Bits Description Type Reset
31:8 Reserved. - -
74 STATE1: T32 instruction set support RO 0x3
3.0 STATEO: A32 instruction set support RO 0x0
M33: ID_PFR1 Register
Offset: 0x0ed44
Description
Gives information about the programmers' model and Extensions support
Bits Description Type Reset
31:12 Reserved. - -
11:8 MPROGMOD: Identifies support for the M-Profile programmers' model support | RO 0x5
7:4 SECURITY: Identifies whether the Security Extension is implemented RO 0x2
3:0 Reserved. - -

RP2350 Datasheet

M33: ID_DFRO Register
Offset: 0x0ed48

Description

Provides top level information about the debug system

Table 214. ID_DFRO

) Bits Description Type Reset
Register

31:24 Reserved. - -

23:20 MPROFDBG: Indicates the supported M-profile debug architecture RO 0x2

19:0 Reserved. - -

M33: ID_AFRO Register
Offset: 0xOed4c

Description

Provides information about the IMPLEMENTATION DEFINED features of the PE

Table 215. ID_AFRO

) Bits Description Type Reset
Register

31:16 Reserved. - -

15:12 IMPDEF3: IMPLEMENTATION DEFINED meaning RO 0x0
11:8 IMPDEF2: IMPLEMENTATION DEFINED meaning RO 0x0
74 IMPDEF1: IMPLEMENTATION DEFINED meaning RO 0x0
3:0 IMPDEFO: IMPLEMENTATION DEFINED meaning RO 0x0

M33: ID_MMFRO Register
Offset: 0x0ed50

Description

Provides information about the implemented memory model and memory management support

Tab{e 216 ID-MMFRO | jps Description Type Reset
Register
31:24 Reserved. = =
23:20 AUXREG: Indicates support for Auxiliary Control Registers RO 0x1
19:16 TCM: Indicates support for tightly coupled memories (TCMs) RO 0x0
15:12 | SHARELVL: Indicates the number of shareability levels implemented RO 0x1
11:8 OUTERSHR: Indicates the outermost shareability domain implemented RO Oxf
74 PMSA: Indicates support for the protected memory system architecture RO 0x4
(PMSA)
3:0 Reserved. = =

M33: ID_MMFR1 Register

Offset: 0x0ed54

3.7. Cortex-M33 Processor 182

RP2350 Datasheet

Description

Provides information about the implemented memory model and memory management support

Table 217. ID_MMFR1

) Bits Description
Register

Type Reset

31:0 Reserved. - -

M33: ID_MMFR2 Register
Offset: 0x0ed58

Description

Provides information about the implemented memory model and memory management support

Tab{e 218 ID-MMFR2 | By Description Type Reset
Register
31:28 Reserved. - -
27:24 | WFISTALL: Indicates the support for Wait For Interrupt (WFI) stalling RO 0x1
23:0 Reserved. - -

M33: ID_MMFRS3 Register

Offset: 0x0ed5c

Description

Provides information about the implemented memory model and memory management support

Tab"e 219 ID_MMFRS | jpg Description Type Reset
Register
31:12 Reserved. - -
11:8 BPMAINT: Indicates the supported branch predictor maintenance RO 0x0
74 CMAINTSW: Indicates the supported cache maintenance operations by RO 0x0
set/way
3:0 CMAINTVA: Indicates the supported cache maintenance operations by RO 0x0
address
M33: ID_ISARO Register
Offset: 0x0ed60
Description
Provides information about the instruction set implemented by the PE
Tab{e 220. ID_ISARO Bits Description Type Reset
Register
31:28 Reserved. - -
27:24 DIVIDE: Indicates the supported Divide instructions RO 0x8
23:20 DEBUG: Indicates the implemented Debug instructions RO 0x0
19:16 COPROC: Indicates the supported Coprocessor instructions RO 0x9
15:12 CMPBRANCH: Indicates the supported combined Compare and Branch RO 0x2
instructions
11:8 BITFIELD: Indicates the supported bit field instructions RO 0x3

3.7. Cortex-M33 Processor

RP2350 Datasheet

Bits Description Type Reset
7:4 BITCOUNT: Indicates the supported bit count instructions RO 0x0
3:0 Reserved. = =
M33: ID_ISAR1 Register
Offset: 0x0Oed64
Description
Provides information about the instruction set implemented by the PE
;:Z:zéfl ID-ISART Bits Description Type Reset
31:28 Reserved. = =
27:24 INTERWORK: Indicates the implemented Interworking instructions RO 0x5
23:20 IMMEDIATE: Indicates the implemented for data-processing instructions with | RO 0x7
long immediates
19:16 IFTHEN: Indicates the implemented If-Then instructions RO 0x2
15112 EXTEND: Indicates the implemented Extend instructions RO 0x5
11:0 Reserved. = =
M33: ID_ISAR2 Register
Offset: 0x0ed68
Description
Provides information about the instruction set implemented by the PE
;Zg;:fz‘ ID-ISAR2 Bits Description Type Reset
31:28 REVERSAL: Indicates the implemented Reversal instructions RO 0x3
27:24 Reserved. = =
23:20 MULTU: Indicates the implemented advanced unsigned Multiply instructions | RO 0x1
19:16 MULTS: Indicates the implemented advanced signed Multiply instructions RO 0x7
15:12 MULT: Indicates the implemented additional Multiply instructions RO 0x3
11:8 MULTIACCESSINT: Indicates the support for interruptible multi-access RO 0x4
instructions
7:4 MEMHINT: Indicates the implemented Memory Hint instructions RO 0x2
3:0 LOADSTORE: Indicates the implemented additional load/store instructions RO 0x6
M33: ID_ISAR3 Register
Offset: 0xOed6c
Description
Provides information about the instruction set implemented by the PE
;ZZ;;E?‘ ID-ISARS Bits Description Type Reset
31:28 Reserved. = =

3.7. Cortex-M33 Processor

184

RP2350 Datasheet

Bits Description Type Reset
27:24 TRUENOP: Indicates the implemented true NOP instructions RO 0x7
23:20 T32COPY: Indicates the support for T32 non flag-setting MOV instructions RO 0x8
19:16 TABBRANCH: Indicates the implemented Table Branch instructions RO 0x9
15:12 SYNCHPRIM: Used in conjunction with ID_ISAR4.SynchPrim_frac to indicate | RO 0x5

the implemented Synchronization Primitive instructions

11:8 SVC: Indicates the implemented SVC instructions RO 0x7
74 SIMD: Indicates the implemented SIMD instructions RO 0x2
3:0 SATURATE: Indicates the implemented saturating instructions RO 0x9

M33: ID_ISAR4 Register
Offset: 0x0ed70

Description

Provides information about the instruction set implemented by the PE

Table 224. ID_ISAR4

) Bits Description Type Reset
Register

31:28 Reserved. - -

27:24 PSR_M: Indicates the implemented M profile instructions to modify the PSRs | RO 0x1

23:20 SYNCPRIM_FRAC: Used in conjunction with ID_ISAR3.SynchPrim to indicate | RO 0x3
the implemented Synchronization Primitive instructions

19:16 BARRIER: Indicates the implemented Barrier instructions RO 0x1

15:12 Reserved. - -

11:8 WRITEBACK: Indicates the support for writeback addressing modes RO 0x1
7:4 WITHSHIFTS: Indicates the support for writeback addressing modes RO 0x3
3:0 UNPRIV: Indicates the implemented unprivileged instructions RO 0x2

M33: ID_ISARS Register
Offset: 0x0ed74

Description

Provides information about the instruction set implemented by the PE

Table 225. ID_ISARS

) Bits Description Type Reset
Register

31:0 Reserved. - -

M33: CTR Register
Offset: 0x0ed7c

Description

Provides information about the architecture of the caches. CTR is RESO if CLIDR is zero.

Table 226. CTR

) Bits Description Type Reset
Register

31 RES1: Reserved, RES1 RO 0x1

3.7. Cortex-M33 Processor 185

RP2350 Datasheet
]

Bits Description Type Reset

30:28 Reserved. - -

2724 | CWG: Log2 of the number of words of the maximum size of memory that can | RO 0x0
be overwritten as a result of the eviction of a cache entry that has had a
memory location in it modified

23:20 ERG: Log?2 of the number of words of the maximum size of the reservation RO 0x0
granule that has been implemented for the Load-Exclusive and Store-Exclusive
instructions

19:16 DMINLINE: Log?2 of the number of words in the smallest cache line of all the RO 0x0
data caches and unified caches that are controlled by the PE

15:14 RES1_1: Reserved, RES1 RO 0x3

13:4 Reserved. - -

3.0 IMINLINE: Log?2 of the number of words in the smallest cache line of all the RO 0x0
instruction caches that are controlled by the PE

M33: CPACR Register
Offset: 0x0ed88

Description

Specifies the access privileges for coprocessors and the FP Extension

Table 227. CPACR

) Bits Description Type Reset
Register

31:24 Reserved. - -

23:22 CP11: The value in this field is ignored. If the implementation does not include | RW 0x0
the FP Extension, this field is RAZ/WI. If the value of this bit is not
programmed to the same value as the CP10 field, then the value is UNKNOWN

21:20 CP10: Defines the access rights for the floating-point functionality RW 0x0

19:16 Reserved. - -

15:14 CP7: Controls access privileges for coprocessor 7 RW 0x0
13:12 CP6: Controls access privileges for coprocessor 6 RW 0x0
11:10 CP5: Controls access privileges for coprocessor 5 RW 0x0
9:8 CP4: Controls access privileges for coprocessor 4 RW 0x0
7:6 CP3: Controls access privileges for coprocessor 3 RW 0x0
5:4 CP2: Controls access privileges for coprocessor 2 RW 0x0
3:2 CP1: Controls access privileges for coprocessor 1 RW 0x0
1:0 CPO: Controls access privileges for coprocessor 0 RW 0x0

M33: NSACR Register
Offset: 0x0ed8c

Description

Defines the Non-secure access permissions for both the FP Extension and coprocessors CP0 to CP7

3.7. Cortex-M33 Processor 186

RP2350 Datasheet

;Zzzéf& NSACR Bits Description Type Reset
31:12 | Reserved. = =
11 CP11: Enables Non-secure access to the Floating-point Extension RW 0x0
10 CP10: Enables Non-secure access to the Floating-point Extension RW 0x0
9:8 Reserved. = =
7 CP7: Enables Non-secure access to coprocessor CP7 RW 0x0
6 CP6: Enables Non-secure access to coprocessor CP6 RW 0x0
5 CP5: Enables Non-secure access to coprocessor CP5 RW 0x0
4 CP4: Enables Non-secure access to coprocessor CP4 RW 0x0
3 CP3: Enables Non-secure access to coprocessor CP3 RW 0x0
2 CP2: Enables Non-secure access to coprocessor CP2 RW 0x0
1 CP1: Enables Non-secure access to coprocessor CP1 RW 0x0
0 CPO: Enables Non-secure access to coprocessor CP0 RW 0x0
M33: MPU_TYPE Register
Offset: 0x0ed90
Description

The MPU Type Register indicates how many regions the MPU "FTSSS supports

;Zs::éfg' MPUTYPE | Bits Description Type Reset
31:16 Reserved. = =
15:8 DREGION: Number of regions supported by the MPU RO 0x08
7:1 Reserved. = =
0 SEPARATE: Indicates support for separate instructions and data address RO 0x0

regions

M33: MPU_CTRL Register
Offset: 0x0ed94

Description

Enables the MPU and, when the MPU is enabled, controls whether the default memory map is enabled as a
background region for privileged accesses, and whether the MPU is enabled for HardFaults, NMls, and exception
handlers when FAULTMASK is set to 1

Tab{e 230. MPU.CTRL Bits Description Type Reset
Register
BjlE8 Reserved. = =
2 PRIVDEFENA: Controls whether the default memory map is enabled for RW 0x0
privileged software
1 HFNMIENA: Controls whether handlers executing with priority less than 0 RW 0x0
access memory with the MPU enabled or disabled. This applies to HardFaults,
NMls, and exception handlers when FAULTMASK is set to 1
0 ENABLE: Enables the MPU RW 0x0

|
3.7. Cortex-M33 Processor 187

RP2350 Datasheet

M33: MPU_RNR Register
Offset: 0x0ed98

Description

Selects the region currently accessed by MPU_RBAR and MPU_RLAR

Tab{e 231 MPURNR | B Description Type Reset
Register
BjlE8 Reserved. = =
2:0 REGION: Indicates the memory region accessed by MPU_RBAR and RW 0x0
MPU_RLAR

M33: MPU_RBAR Register
Offset: 0x0ed9c

Description

Table 232. MPU_RBAR
Register

Provides indirect read and write access to the base address of the currently selected MPU region "FTSSS

Bits Description Type Reset

31:5 BASE: Contains bits [31:5] of the lower inclusive limit of the selected MPU RW 0x0000000
memory region. This value is zero extended to provide the base address to be
checked against

4:3 SH: Defines the Shareability domain of this region for Normal memory RW 0x0

2:1 AP: Defines the access permissions for this region RW 0x0

0 XN: Defines whether code can be executed from this region RW 0x0

M33: MPU_RLAR Register
Offset: 0x0eda0

Description

Provides indirect read and write access to the limit address of the currently selected MPU region "FTSSS

Tab{e 235, MPURLAR Bits Description Type Reset
Register
31:5 LIMIT: Contains bits [31:5] of the upper inclusive limit of the selected MPU RW 0x0000000
memory region. This value is postfixed with 0x1F to provide the limit address
to be checked against
4 Reserved. - -
3:1 ATTRINDX: Associates a set of attributes in the MPU_MAIRO and MPU_MAIR1 | RW 0x0
fields
0 EN: Region enable RW 0x0

M33: MPU_RBAR_A1 Register
Offset: 0xOeda4

Description

Provides indirect read and write access to the base address of the MPU region selected by MPU_RNR([7:2]:(1[1:0])
"FTSSS

3.7. Cortex-M33 Processor 188

RP2350 Datasheet
]

Table 254. Bits Description Type Reset
MPU_RBAR_AT
Register 31:5 BASE: Contains bits [31:5] of the lower inclusive limit of the selected MPU RW 0x0000000
memory region. This value is zero extended to provide the base address to be
checked against
4:3 SH: Defines the Shareability domain of this region for Normal memory RW 0x0
2:1 AP: Defines the access permissions for this region RW 0x0
0 XN: Defines whether code can be executed from this region RW 0x0
M33: MPU_RLAR_A1 Register
Offset: 0xOeda8
Description
Provides indirect read and write access to the limit address of the currently selected MPU region selected by
MPU_RNR[7:2]:(1[1:0]) ‘FTSSS
Table 255. Bits Description Type Reset
MPU_RLAR_AT
Register 31:5 LIMIT: Contains bits [31:5] of the upper inclusive limit of the selected MPU RW 0x0000000
memory region. This value is postfixed with 0x1F to provide the limit address
to be checked against
4 Reserved. - -
3:1 ATTRINDX: Associates a set of attributes in the MPU_MAIRO0 and MPU_MAIR1 | RW 0x0
fields
0 EN: Region enable RW 0x0
M33: MPU_RBAR_A2 Register
Offset: OxOedac
Description
Provides indirect read and write access to the base address of the MPU region selected by MPU_RNR[7:2]:(2[1:0])
'FTSSS
Table 236. Bits Description Type Reset
MPU_RBAR_A2
Register 31:5 BASE: Contains bits [31:5] of the lower inclusive limit of the selected MPU RW 0x0000000

memory region. This value is zero extended to provide the base address to be
checked against

4:3 SH: Defines the Shareability domain of this region for Normal memory RW 0x0
2:1 AP: Defines the access permissions for this region RW 0x0
0 XN: Defines whether code can be executed from this region RW 0x0

M33: MPU_RLAR_A2 Register
Offset: 0x0edb0

Description

Provides indirect read and write access to the limit address of the currently selected MPU region selected by
MPU_RNR[7:2]:(2[1:0]) 'FTSSS

|
3.7. Cortex-M33 Processor 189

RP2350 Datasheet

Table 257. Bits Description Type Reset
MPU_RLAR_A2
Register 31:5 LIMIT: Contains bits [31:5] of the upper inclusive limit of the selected MPU RW 0x0000000
memory region. This value is postfixed with 0x1F to provide the limit address
to be checked against
4 Reserved. - -
3:1 ATTRINDX: Associates a set of attributes in the MPU_MAIRO and MPU_MAIR1 | RW 0x0
fields
0 EN: Region enable RW 0x0
M33: MPU_RBAR_A3 Register
Offset: 0xOedb4
Description
Provides indirect read and write access to the base address of the MPU region selected by MPU_RNR([7:2]:(3[1:0])
"FTSSS
Table 255. Bits Description Type Reset
MPU_RBAR_A3
Register 31:5 BASE: Contains bits [31:5] of the lower inclusive limit of the selected MPU RW 0x0000000
memory region. This value is zero extended to provide the base address to be
checked against
4:3 SH: Defines the Shareability domain of this region for Normal memory RW 0x0
2:1 AP: Defines the access permissions for this region RW 0x0
0 XN: Defines whether code can be executed from this region RW 0x0
M33: MPU_RLAR_A3 Register
Offset: 0xOedb8
Description
Provides indirect read and write access to the limit address of the currently selected MPU region selected by
MPU_RNR([7:2]:(3[1:0]) ‘FTSSS
Table 239. Bits Description Type Reset
MPU_RLAR_A3
Register 31:5 LIMIT: Contains bits [31:5] of the upper inclusive limit of the selected MPU RW 0x0000000
memory region. This value is postfixed with 0x1F to provide the limit address
to be checked against
4 Reserved. - -
3:1 ATTRINDX: Associates a set of attributes in the MPU_MAIRO0 and MPU_MAIR1 | RW 0x0
fields
0 EN: Region enable RW 0x0

M33: MPU_MAIRO Register
Offset: 0x0edcO

Description

Along with MPU_MAIRT1, provides the memory attribute encodings corresponding to the Attrindex values

Table 240.

Bits Description
MPU_MAIRO Register

Type Reset

31:24 ATTR3: Memory attribute encoding for MPU regions with an Attrindex of 3 RW 0x00

3.7. Cortex-M33 Processor 190

RP2350 Datasheet
]

Bits Description Type Reset
23:16 ATTR2: Memory attribute encoding for MPU regions with an Attrindex of 2 RW 0x00
15:8 ATTR1: Memory attribute encoding for MPU regions with an Attrindex of 1 RW 0x00
7:0 ATTRO: Memory attribute encoding for MPU regions with an Attrindex of 0 RW 0x00

M33: MPU_MAIR1 Register
Offset: 0xOedc4

Description

Along with MPU_MAIRO, provides the memory attribute encodings corresponding to the Attrindex values

Table 241.) Bits Description Type Reset
MPU_MAIRT Register
31:24 ATTR7: Memory attribute encoding for MPU regions with an Attrindex of 7 RW 0x00
23:16 ATTR6: Memory attribute encoding for MPU regions with an Attrindex of 6 RW 0x00
15:8 ATTRS5: Memory attribute encoding for MPU regions with an Attrindex of 5 RW 0x00
7:0 ATTR4: Memory attribute encoding for MPU regions with an Attrindex of 4 RW 0x00

M33: SAU_CTRL Register
Offset: 0x0edd0

Description

Allows enabling of the Security Attribution Unit

Table 242. SAU_CTRL

) Bits Description Type Reset
Register

31:2 Reserved. - -

1 ALLNS: When SAU_CTRL.ENABLE is 0 this bit controls if the memory is RW 0x0
marked as Non-secure or Secure

0 ENABLE: Enables the SAU RW 0x0

M33: SAU_TYPE Register
Offset: 0xOedd4

Description

Indicates the number of regions implemented by the Security Attribution Unit

Table 243. SAU_TYPE

) Bits Description Type Reset
Register

31:8 Reserved. - -

7:0 SREGION: The number of implemented SAU regions RO 0x08

M33: SAU_RNR Register
Offset: 0x0edd8

Description

Selects the region currently accessed by SAU_RBAR and SAU_RLAR

Table 244. SAU_RNR

) Bits Description Type Reset
Register

31:8 Reserved. - -

|
3.7. Cortex-M33 Processor 191

RP2350 Datasheet

Bits

Description

Type

Reset

7:0

REGION: Indicates the SAU region accessed by SAU_RBAR and SAU_RLAR

RW

0x00

M33: SAU_RBAR Register
Offset: Ox0eddc

Description

Table 245. SAU_RBAR

Provides indirect read and write access to the base address of the currently selected SAU region

) Bits Description Type Reset
Register
31:5 BADDR: Holds bits [31:5] of the base address for the selected SAU region RW 0x0000000
4:0 Reserved. = =

M33: SAU_RLAR Register
Offset: 0x0ede0

Description

Provides indirect read and write access to the limit address of the currently selected SAU region

Table 246. SAU_RLAR

) Bits Description Type Reset
Register
31:5 LADDR: Holds bits [31:5] of the limit address for the selected SAU region RW 0x0000000
4:2 Reserved. = =
1 NSC: Controls whether Non-secure state is permitted to execute an SG RW 0x0
instruction from this region
0 ENABLE: SAU region enable RW 0x0
M33: SFSR Register
Offset: 0xOede4
Description
Provides information about any security related faults
Tab{e 247. SFSR Bits Description Type Reset
Register
31:8 Reserved. = =
7 LSERR: Sticky flag indicating that an error occurred during lazy state activation | RW 0x0
or deactivation
6 SFARVALID: This bit is set when the SFAR register contains a valid value. As | RW 0x0
with similar fields, such as BFSR.BFARVALID and MMFSR.MMARVALID, this
bit can be cleared by other exceptions, such as BusFault
5 LSPERR: Stick flag indicating that an SAU or IDAU violation occurred during RW 0x0
the lazy preservation of floating-point state
4 INVTRAN: Sticky flag indicating that an exception was raised due to a branch | RW 0x0
that was not flagged as being domain crossing causing a transition from
Secure to Non-secure memory

3.7. Cortex-M33 Processor

192

RP2350 Datasheet
]

Bits Description Type Reset

3 AUVIOL: Sticky flag indicating that an attempt was made to access parts of RW 0x0
the address space that are marked as Secure with NS-Req for the transaction
set to Non-secure. This bit is not set if the violation occurred during lazy state
preservation. See LSPERR

2 INVER: This can be caused by EXC_RETURN.DCRS being set to 0 when RW 0x0
returning from an exception in the Non-secure state, or by EXC_RETURN.ES
being set to 1 when returning from an exception in the Non-secure state

1 INVIS: This bit is set if the integrity signature in an exception stack frame is RW 0x0
found to be invalid during the unstacking operation

0 INVEP: This bit is set if a function call from the Non-secure state or exception | RW 0x0
targets a non-SG instruction in the Secure state. This bit is also set if the
target address is a SG instruction, but there is no matching SAU/IDAU region
with the NSC flag set

M33: SFAR Register
Offset: 0x0ede8

Description

Shows the address of the memory location that caused a Security violation

Table 248. SFAR

) Bits Description Type Reset
Register

31:0 ADDRESS: The address of an access that caused a attribution unit violation. RW 0x00000000
This field is only valid when SFSR.SFARVALID is set. This allows the actual flip
flops associated with this register to be shared with other fault address
registers. If an implementation chooses to share the storage in this way, care
must be taken to not leak Secure address information to the Non-secure state.
One way of achieving this is to share the SFAR register with the MMFAR_S
register, which is not accessible to the Non-secure state

M33: DHCSR Register
Offset: 0x0edf0

Description

Controls halting debug

Table 249. DHCSR

) Bits Description Type Reset
Register

31:27 Reserved. - -

26 S_RESTART_ST: Indicates the PE has processed a request to clear RO 0x0
DHCSR.C_HALT to 0. That is, either a write to DHCSR that clears
DHCSR.C_HALT from 1 to 0, or an External Restart Request

25 S_RESET_ST: Indicates whether the PE has been reset since the last read of RO 0x0
the DHCSR
24 S_RETIRE_ST: Set to 1 every time the PE retires one of more instructions RO 0x0

23:21 Reserved. - -

20 S_SDE: Indicates whether Secure invasive debug is allowed RO 0x0
19 S_LOCKUP: Indicates whether the PE is in Lockup state RO 0x0
18 S_SLEEP: Indicates whether the PE is sleeping RO 0x0

|
3.7. Cortex-M33 Processor 193

RP2350 Datasheet

Bits Description Type Reset
17 S_HALT: Indicates whether the PE is in Debug state RO 0x0
16 S_REGRDY: Handshake flag to transfers through the DCRDR RO 0x0

15:6 Reserved. - -

5 C_SNAPSTALL: Allow imprecise entry to Debug state RW 0x0
4 Reserved. - -
3 C_MASKINTS: When debug is enabled, the debugger can write to this bit to RW 0x0

mask PendSV, SysTick and external configurable interrupts

2 C_STEP: Enable single instruction step RW 0x0
1 C_HALT: PE enter Debug state halt request RW 0x0
0 C_DEBUGEN: Enable Halting debug RW 0x0

M33: DCRSR Register
Offset: 0x0edf4

Description

With the DCRDR, provides debug access to the general-purpose registers, special-purpose registers, and the FP
extension registers. A write to the DCRSR specifies the register to transfer, whether the transfer is a read or write,
and starts the transfer

Table 250. DCRSR

) Bits Description Type Reset
Register

31:17 Reserved. - -

16 REGWNR: Specifies the access type for the transfer RW 0x0

15:7 Reserved. - -

6:0 REGSEL: Specifies the general-purpose register, special-purpose register, or RW 0x00
FP register to transfer

M33: DCRDR Register
Offset: 0x0edf8

Description

With the DCRSR, provides debug access to the general-purpose registers, special-purpose registers, and the FP
Extension registers. If the Main Extension is implemented, it can also be used for message passing between an
external debugger and a debug agent running on the PE

Table 251. DCRDR

) Bits Description Type Reset
Register

31:0 DBGTMP: Provides debug access for reading and writing the general-purpose | RW 0x00000000
registers, special-purpose registers, and Floating-point Extension registers

M33: DEMCR Register
Offset: 0x0edfc

Description

Manages vector catch behavior and DebugMonitor handling when debugging

Table 252. DEMCR

) Bits Description Type Reset
Register

31:25 Reserved. - -

3.7. Cortex-M33 Processor 194

RP2350 Datasheet
]

Bits Description Type Reset

24 TRCENA: Global enable for all DWT and ITM features RW 0x0

23:21 Reserved. - -

20 SDME: Indicates whether the DebugMonitor targets the Secure or the Non- RO 0x0
secure state and whether debug events are allowed in Secure state

19 MON_REQ: DebugMonitor semaphore bit RW 0x0
18 MON_STEP: Enable DebugMonitor stepping RW 0x0
17 MON_PEND: Sets or clears the pending state of the DebugMonitor exception | RW 0x0
16 MON_EN: Enable the DebugMonitor exception RW 0x0

15:12 Reserved. - -

11 VC_SFERR: SecureFault exception halting debug vector catch enable RW 0x0
10 VC_HARDERR: HardFault exception halting debug vector catch enable RW 0x0
9 VC_INTERR: Enable halting debug vector catch for faults during exception RW 0x0

entry and return

8 VC_BUSERR: BusFault exception halting debug vector catch enable RW 0x0

7 VC_STATERR: Enable halting debug trap on a UsageFault exception caused by | RW 0x0
a state information error, for example an Undefined Instruction exception

6 VC_CHKERR: Enable halting debug trap on a UsageFault exception caused by | RW 0x0
a checking error, for example an alignment check error

5 VC_NOCPERR: Enable halting debug trap on a UsageFault caused by an RW 0x0
access to a coprocessor

4 VC_MMERR: Enable halting debug trap on a MemManage exception RW 0x0
31 Reserved. - -
0 VC_CORERESET: Enable Reset Vector Catch. This causes a warm reset to halt | RW 0x0

a running system

M33: DSCSR Register
Offset: 0x0ee08

Description

Provides control and status information for Secure debug

Table 253. DSCSR

) Bits Description Type Reset
Register

31:18 Reserved. - -

17 CDSKEY: Writes to the CDS bit are ignored unless CDSKEY is concurrently RW 0x0
written to zero

16 CDS: This field indicates the current Security state of the processor RW 0x0

15:2 Reserved. - -

1 SBRSEL: If SBRSELEN is 1 this bit selects whether the Non-secure or the RW 0x0
Secure version of the memory-mapped Banked registers are accessible to the
debugger

|
3.7. Cortex-M33 Processor 195

RP2350 Datasheet

Bits Description Type Reset
0 SBRSELEN: Controls whether the SBRSEL field or the current Security state of | RW 0x0
the processor selects which version of the memory-mapped Banked registers
are accessed to the debugger
M33: STIR Register
Offset: 0x0ef00
Description
Provides a mechanism for software to generate an interrupt
Tab{e 254. STIR Bits Description Type Reset
Register
31:9 Reserved. = =
8:0 INTID: Indicates the interrupt to be pended. The value written is RW 0x000
(ExceptionNumber - 16)
M33: FPCCR Register
Offset: 0x0ef34
Description
Holds control data for the Floating-point extension
Table 255. FPCCR Bits Description Type Reset
Register
31 ASPEN: When this bit is set to 1, execution of a floating-point instruction sets | RW 0x0
the CONTROL.FPCA bit to 1
30 LSPEN: Enables lazy context save of floating-point state RW 0x0
29 LSPENS: This bit controls whether the LSPEN bit is writeable from the Non- RW 0x1
secure state
28 CLRONRET: Clear floating-point caller saved registers on exception return RW 0x0
27 CLRONRETS: This bit controls whether the CLRONRET bit is writeable from the | RW 0x0
Non-secure state
26 TS: Treat floating-point registers as Secure enable RW 0x0
25:11 Reserved. = =
10 UFRDY: Indicates whether the software executing when the PE allocated the |RW 0x1
floating-point stack frame was able to set the UsageFault exception to
pending
9 SPLIMVIOL: This bit is banked between the Security states and indicates RW 0x0
whether the floating-point context violates the stack pointer limit that was
active when lazy state preservation was activated. SPLIMVIOL modifies the
lazy floating-point state preservation behavior
8 MONRDY: Indicates whether the software executing when the PE allocated the | RW 0x0
floating-point stack frame was able to set the DebugMonitor exception to
pending
7 SFRDY: Indicates whether the software executing when the PE allocated the RW 0x0
floating-point stack frame was able to set the SecureFault exception to
pending. This bit is only present in the Secure version of the register, and
behaves as RAZ/WI when accessed from the Non-secure state

3.7. Cortex-M33 Processor

196

RP2350 Datasheet

Bits Description Type Reset

6 BFRDY: Indicates whether the software executing when the PE allocated the |RW 0x1
floating-point stack frame was able to set the BusFault exception to pending

5 MMRDY: Indicates whether the software executing when the PE allocated the | RW 0x1
floating-point stack frame was able to set the MemManage exception to
pending

4 HFRDY: Indicates whether the software executing when the PE allocated the | RW 0x1

floating-point stack frame was able to set the HardFault exception to pending

3 THREAD: Indicates the PE mode when it allocated the floating-point stack RW 0x0
frame
2 S: Security status of the floating-point context. This bit is only present in the RW 0x0

Secure version of the register, and behaves as RAZ/WI when accessed from
the Non-secure state. This bit is updated whenever lazy state preservation is
activated, or when a floating-point instruction is executed

1 USER: Indicates the privilege level of the software executing when the PE RW 0x1
allocated the floating-point stack frame

0 LSPACT: Indicates whether lazy preservation of the floating-point state is RW 0x0
active

M33: FPCAR Register
Offset: 0x0ef38

Description

Holds the location of the unpopulated floating-point register space allocated on an exception stack frame

Table 256. FPCAR

) Bits Description Type Reset
Register

31:3 ADDRESS: The location of the unpopulated floating-point register space RW 0x00000000
allocated on an exception stack frame

2:0 Reserved. - -

M33: FPDSCR Register
Offset: 0x0ef3c

Description

Holds the default values for the floating-point status control data that the PE assigns to the FPSCR when it creates
a new floating-point context

Table 257. FPDSCR

) Bits Description Type Reset
Register

31:27 Reserved. - -

26 AHP: Default value for FPSCR.AHP RW 0x0
25 DN: Default value for FPSCR.DN RW 0x0
24 FZ: Default value for FPSCR.FZ RW 0x0
23:22 RMODE: Default value for FPSCR.RMode RW 0x0

21:0 Reserved. - -

3.7. Cortex-M33 Processor 197

RP2350 Datasheet

Table 258. MVFRO
Register

Table 259. MVFR1
Register

Table 260. MVFR2
Register

3.7. Cortex-M33 Processor

M33: MVFRO Register

Offset: 0x0ef40

Description

Describes the features provided by the Floating-point Extension

Bits Description Type Reset
31:28 FPROUND: Indicates the rounding modes supported by the FP Extension RO 0x6
27:24 | Reserved. = =
23:20 FPSQRT: Indicates the support for FP square root operations RO 0x5
19:16 FPDIVIDE: Indicates the support for FP divide operations RO 0x4
15:12 | Reserved. = =
11:8 FPDP: Indicates support for FP double-precision operations RO 0x6
74 FPSP: Indicates support for FP single-precision operations RO 0x0
3:0 SIMDREG: Indicates size of FP register file RO 0x1
M33: MVFR1 Register
Offset: 0x0ef44
Description
Describes the features provided by the Floating-point Extension
Bits Description Type Reset
31:28 FMAC: Indicates whether the FP Extension implements the fused multiply RO 0x8
accumulate instructions
27:24 FPHP: Indicates whether the FP Extension implements half-precision FP RO 0x5
conversion instructions
23:8 Reserved. = =
7:4 FPDNAN: Indicates whether the FP hardware implementation supports NaN RO 0x8
propagation
3:0 FPFTZ: Indicates whether subnormals are always flushed-to-zero RO 0x9
M33: MVFR2 Register
Offset: 0x0ef48
Description
Describes the features provided by the Floating-point Extension
Bits Description Type Reset
31:8 Reserved. = =
7:4 FPMISC: Indicates support for miscellaneous FP features RO 0x6
3:0 Reserved. = =

M33: DDEVARCH Register

Offset: 0x0efbc

RP2350 Datasheet

Description

Provides CoreSight discovery information for the SCS

Table 261. DDEVARCH

) Bits Description Type Reset
Register

31:21 ARCHITECT: Defines the architect of the component. Bits [31:28] are the RO 0x23b
JEP106 continuation code (JEP106 bank ID, minus 1) and bits [27:21] are the
JEP106 ID code.

20 PRESENT: Defines that the DEVARCH register is present RO 0x1
19:16 REVISION: Defines the architecture revision of the component RO 0x0
15:12 | ARCHVER: Defines the architecture version of the component RO 0x2
11:0 ARCHPART: Defines the architecture of the component RO 0xa04

M33: DDEVTYPE Register
Offset: Ox0Oefcc

Description

Provides CoreSight discovery information for the SCS

Table 262. DDEVTYPE

) Bits Description Type Reset
Register
31:8 Reserved. - -
7:4 SUB: Component sub-type RO 0x0
3:0 MAJOR: CoreSight major type RO 0x0
M33: DPIDR4 Register
Offset: 0x0efd0
Description
Provides CoreSight discovery information for the SCS
Tab{e 263. DPIDR Bits Description Type Reset
Register
31:8 Reserved. = =
74 SIZE: See CoreSight Architecture Specification RO 0x0
3:0 DES_2: See CoreSight Architecture Specification RO 0x4
M33: DPIDRS Register
Offset: 0x0efd4
Description
Provides CoreSight discovery information for the SCS
Tab{e 264. DPIDRS Bits Description Type Reset
Register
31:0 Reserved. = =

M33: DPIDR6 Register

Offset: 0x0efd8

3.7. Cortex-M33 Processor

RP2350 Datasheet

Description

Provides CoreSight discovery information for the SCS

Table 265. DPIDR6

) Bits Description
Register

Type Reset

31:0 Reserved. - -

M33: DPIDR7 Register
Offset: Ox0efdc

Description

Provides CoreSight discovery information for the SCS

Table 266. DPIDR7

) Bits Description
Register

Type Reset

31:0 Reserved. - -

M33: DPIDRO Register
Offset: 0x0efe0

Description

Provides CoreSight discovery information for the SCS

Table 267. DPIDRO

Bits Description
Register

Type Reset

31:8 Reserved. - -

7:0 PART_0: See CoreSight Architecture Specification RO 0x21

M33: DPIDR1 Register
Offset: 0xOefe4

Description

Provides CoreSight discovery information for the SCS

Table 268. DPIDR1

Register

Table 269. DPIDR2
Register

Bits

Description

Type

Reset

31:8

Reserved.

7:4

DES_0: See CoreSight Architecture Specification

RO

Oxb

3.0 PART_1: See CoreSight Architecture Specification

RO

Oxd

M33: DPIDR2 Register
Offset: 0x0efe8

Description

Provides CoreSight discovery information for the SCS

Bits Description

Type

Reset

31:8 Reserved.

74 REVISION: See CoreSight Architecture Specification

RO

0x0

3 JEDEC: See CoreSight Architecture Specification

RO

0x1

2:0 DES_1: See CoreSight Architecture Specification

RO

0x3

3.7. Cortex-M33 Processor

200

RP2350 Datasheet

M33: DPIDR3 Register
Offset: OxOefec

Description

Provides CoreSight discovery information for the SCS

Tab{e 270. DPIDRS Bits Description Type Reset
Register
31:8 Reserved. = =
7:4 REVAND: See CoreSight Architecture Specification RO 0x0
3:0 CMOD: See CoreSight Architecture Specification RO 0x0
M33: DCIDRO Register
Offset: 0x0eff0
Description
Provides CoreSight discovery information for the SCS
Tab{e 271. DCIDRO Bits Description Type Reset
Register
31:8 Reserved. = =
7:0 PRMBL_0: See CoreSight Architecture Specification RO 0x0d
M33: DCIDR1 Register
Offset: 0x0eff4
Description
Provides CoreSight discovery information for the SCS
Tab{e 272. DCIDR1 Bits Description Type Reset
Register
31:8 Reserved. = =
74 CLASS: See CoreSight Architecture Specification RO 0x9
3:0 PRMBL_1: See CoreSight Architecture Specification RO 0x0
M33: DCIDR2 Register
Offset: 0x0eff8
Description
Provides CoreSight discovery information for the SCS
Tab{e 273. DCIDR2 Bits Description Type Reset
Register
31:8 Reserved. = =
7:0 PRMBL_2: See CoreSight Architecture Specification RO 0x05

M33: DCIDR3 Register
Offset: Ox0effc

Description

Provides CoreSight discovery information for the SCS

3.7. Cortex-M33 Processor

RP2350 Datasheet

Table 274. DCIDR3

) Bits Description Type Reset
Register
31:8 Reserved. - -
7:0 PRMBL_3: See CoreSight Architecture Specification RO 0xb1
M33: TRCPRGCTLR Register
Offset: 0x41004
Description
Programming Control Register
Table 275.) Bits Description Type Reset
TRCPRGCTLR Register
31:1 Reserved. - -
0 EN: Trace Unit Enable RW 0x0
M33: TRCSTATR Register
Offset: 0x4100c
Description
The TRCSTATR indicates the ETM-Teal status
Tab{e 276 TRCSTATR | gy Description Type Reset
Register
31:2 Reserved. - -
1 PMSTABLE: Indicates whether the ETM-Teal registers are stable and canbe | RO 0x0
read
0 IDLE: Indicates that the trace unit is inactive RO 0x0
M33: TRCCONFIGR Register
Offset: 0x41010
Description
The TRCCONFIGR sets the basic tracing options for the trace unit
Table 277.) Bits Description Type Reset
TRCCONFIGR Register
31:13 Reserved. = =
12 RS: Resturn stack enable RW 0x0
11 TS: Global timestamp tracing RW 0x0
10:5 COND: Conditional instruction tracing RW 0x00
4 CCI: Cycle counting in instruction trace RW 0x0
3 BB: Branch broadcast mode RW 0x0
2:0 Reserved. - -

M33: TRCEVENTCTLOR Register
Offset: 0x41020

Description

The TRCEVENTCTLOR controls the tracing of events in the trace stream. The events also drive the ETM-Teal

3.7. Cortex-M33 Processor

RP2350 Datasheet

external outputs.

Table 275. Bits Description Type Reset
TRCEVENTCTLOR
Register 31:16 | Reserved. - -
15 TYPE1: Selects the resource type for event 1 RW 0x0
14:11 Reserved. - -
10:8 SEL1: Selects the resource number, based on the value of TYPE1: When RW 0x0
TYPE1 is 0, selects a single selected resource from 0-15 defined by SEL1[2:0].
When TYPET1 is 1, selects a Boolean combined resource pair from 0-7 defined
by SEL1[2:0]
7 TYPEO: Selects the resource type for event 0 RW 0x0
6:3 Reserved. - -
2:0 SELO: Selects the resource number, based on the value of TYPEO: When RW 0x0
TYPE1 is 0, selects a single selected resource from 0-15 defined by SEL0[2:0].
When TYPET1 is 1, selects a Boolean combined resource pair from 0-7 defined
by SELO[2:0]
M33: TRCEVENTCTL1R Register
Offset: 0x41024
Description
The TRCEVENTCTL1R controls how the events selected by TRCEVENTCTLOR behave
Table 275. Bits Description Type Reset
TRCEVENTCTLIR
Register 31:13 | Reserved. - -
12 LPOVERRIDE: Low power state behavior override RW 0x0
11 ATB: ATB enabled RW 0x0
10:2 Reserved. - -
1 INSTEN1: One bit per event, to enable generation of an event element in the RW 0x0
instruction trace stream when the selected event occurs
0 INSTENO: One bit per event, to enable generation of an event element in the RW 0x0
instruction trace stream when the selected event occurs
M33: TRCSTALLCTLR Register
Offset: 0x4102c
Description
The TRCSTALLCTLR enables ETM-Teal to stall the processor if the ETM-Teal FIFO goes over the programmed level
to minimize risk of overflow
Table 250. Bits Description Type Reset
TRCSTALLCTLR
Register 31:11 | Reserved. - -
10 INSTPRIORITY: Reserved, RESO RO 0x0
9 Reserved. - -
8 ISTALL: Stall processor based on instruction trace buffer space RW 0x0
74 Reserved. - -

3.7. Cortex-M33 Processor 203

RP2350 Datasheet

Bits Description Type Reset
3:2 LEVEL: Threshold at which stalling becomes active. This provides four levels. | RW 0x0
This level can be varied to optimize the level of invasion caused by stalling,
balanced against the risk of a FIFO overflow
1:0 Reserved. - -

M33: TRCTSCTLR Register

Offset: 0x41030

Description

The TRCTSCTLR controls the insertion of global timestamps into the trace stream. A timestamp is always inserted
into the instruction trace stream

Table 251.) Bits Description Type Reset
TRCTSCTLR Register
31:8 Reserved. = =
7 TYPEQO: Selects the resource type for event 0 RW 0x0
6:2 Reserved. - =
1:0 SELO: Selects the resource number, based on the value of TYPEO: When RW 0x0
TYPET is 0, selects a single selected resource from 0-15 defined by SEL0[2:0].
When TYPET1 is 1, selects a Boolean combined resource pair from 0-7 defined
by SELO[2:0]
M33: TRCSYNCPR Register
Offset: 0x41034
Description
The TRCSYNCPR specifies the period of trace synchronization of the trace streams. TRCSYNCPR defines a number
of bytes of trace between requests for trace synchronization. This value is always a power of two
Table 262.) Bits Description Type Reset
TRCSYNCPR Register
BilES) Reserved. = =
4:0 PERIOD: Defines the number of bytes of trace between trace synchronization | RO 0x0a

requests as a total of the number of bytes generated by the instruction
stream. The number of bytes is 2N where N is the value of this field: - A value
of zero disables these periodic trace synchronization requests, but does not
disable other trace synchronization requests. - The minimum value that can be
programmed, other than zero, is 8, providing a minimum trace synchronization
period of 256 bytes. - The maximum value is 20, providing a maximum trace
synchronization period of 2°20 bytes

M33: TRCCCCTLR Register
Offset: 0x41038

Description

The TRCCCCTLR sets the threshold value for instruction trace cycle counting. The threshold represents the
minimum interval between cycle count trace packets

Table 283.
TRCCCCTLR Register

Bits Description Type Reset

31:12 Reserved. - -

|
3.7. Cortex-M33 Processor 204

RP2350 Datasheet

Table 284. TRCVICTLR
Register

Table 285.
TRCCNTRLDVRO
Register

3.7. Cortex-M33 Processor

Bits Description Type Reset
11:0 THRESHOLD: Instruction trace cycle count threshold RW 0x000
M33: TRCVICTLR Register
Offset: 0x41080
Description
The TRCVICTLR controls instruction trace filtering
Bits Description Type Reset
31:20 Reserved. = =
19 EXLEVEL_S3: In Secure state, each bit controls whether instruction tracingis | RW 0x0
enabled for the corresponding exception level
18:17 Reserved. = =
16 EXLEVEL_SO: In Secure state, each bit controls whether instruction tracingis | RW 0x0
enabled for the corresponding exception level
15:12 | Reserved. = =
11 TRCERR: Selects whether a system error exception must always be traced RW 0x0
10 TRCRESET: Selects whether a reset exception must always be traced RW 0x0
9 SSSTATUS: Indicates the current status of the start/stop logic RW 0x0
8 Reserved. = =
7 TYPEQO: Selects the resource type for event 0 RW 0x0
6:2 Reserved. - -
1:0 SELO: Selects the resource number, based on the value of TYPEO: When RW 0x0
TYPET is 0, selects a single selected resource from 0-15 defined by SEL0[2:0].
When TYPET1 is 1, selects a Boolean combined resource pair from 0-7 defined
by SELO[2:0]
M33: TRCCNTRLDVRO Register
Offset: 0x41140
Description
The TRCCNTRLDVR defines the reload value for the reduced function counter
Bits Description Type Reset
31:16 Reserved. = =
15:0 VALUE: Defines the reload value for the counter. This value is loaded into the | RW 0x0000

counter each time the reload event occurs

M33: TRCIDR8 Register

Offset: 0x41180

Description
TRCIDR8

RP2350 Datasheet

Table 286. TRCIDR8
Register

Table 287. TRCIDR9
Register

Table 288. TRCIDR10
Register

Table 289. TRCIDR11
Register

Table 290. TRCIDR12
Register

31:0 MAXSPEC: reads as ‘ImpDef RO 0x00000000

M33: TRCIDR9 Register
Offset: 0x41184

Description
TRCIDR9

31:0 NUMPOKEY: reads as ‘ImpDef RO 0x00000000

M33: TRCIDR10 Register
Offset: 0x41188

Description

TRCIDR10

31:0 NUMP1KEY: reads as ‘ImpDef RO 0x00000000

M33: TRCIDR11 Register
Offset: 0x4118¢c

Description
TRCIDR11

31:0 NUMP1SPC: reads as ‘ImpDef RO 0x00000000

M33: TRCIDR12 Register
Offset: 0x41190

Description
TRCIDR12

31:0 NUMCONDKEY: reads as ‘ImpDef RO 0x00000001

M33: TRCIDR13 Register
Offset: 0x41194

Description
TRCIDR13

. __|
3.7. Cortex-M33 Processor 206

RP2350 Datasheet

Table 291. TRCIDR13
Register

Table 292.
TRCIMSPEC Register

Table 293. TRCIDRO
Register

Bits Description Type Reset

31:0 NUMCONDSPC: reads as ‘ImpDef RO 0x00000000

M33: TRCIMSPEC Register
Offset: 0x411c0

Description

The TRCIMSPEC shows the presence of any IMPLEMENTATION SPECIFIC features, and enables any features that
are provided

Bits Description Type Reset

31:4 Reserved. - -

3.0 SUPPORT: Reserved, RESO RO 0x0

M33: TRCIDRO Register

Offset: 0x411e0

Description
TRCIDRO

Bits Description Type Reset
31:30 Reserved. = =

29 COMMOPT: reads as "ImpDef RO 0x1
28:24 TSSIZE: reads as "'ImpDef RO 0x08
23:18 Reserved. = =

17 TRCEXDATA: reads as ‘ImpDef RO 0x0
16:15 QSUPP: reads as ‘ImpDef RO 0x0
14 QFILT: reads as 'ImpDef RO 0x0
13:12 CONDTYPE: reads as ‘ImpDef RO 0x0
11:10 NUMEVENT: reads as ‘ImpDef RO 0x1
9 RETSTACK: reads as ‘'ImpDef RO 0x1
8 Reserved. = =

7 TRCCCI: reads as ‘ImpDef RO 0x1
6 TRCCOND: reads as ‘ImpDef RO 0x1
5 TRCBB: reads as "ImpDef RO 0x1
4:3 TRCDATA: reads as ‘ImpDef RO 0x0
2:1 INSTPO: reads as "ImpDef RO 0x0
0 RES1: Reserved, RES1 RO 0x1

M33: TRCIDR1 Register
Offset: 0x411e4

Description

TRCIDR1

3.7. Cortex-M33 Processor 207

RP2350 Datasheet

Table 294. TRCIDRT

) Bits Description Type Reset
Register

31:24 DESIGNER: reads as ‘ImpDef RO 0x41

23:16 Reserved. - -

15112 RES1: Reserved, RES1 RO Oxf
11:8 TRCARCHMAJ: reads as 0b0100 RO 0x4
7:4 TRCARCHMIN: reads as 0b0000 RO 0x2
3:0 REVISION: reads as ‘ImpDef RO 0x1

M33: TRCIDR2 Register

Offset: 0x411e8

Description
TRCIDR2
;:S;;ngs‘ TRCIDR2 Bits Description Type Reset
31:29 Reserved. = =
28:25 CCSIZE: reads as "ImpDef RO 0x0
24:20 DVSIZE: reads as 'ImpDef RO 0x00
19:15 DASIZE: reads as "ImpDef RO 0x00
14:10 | VMIDSIZE: reads as ‘ImpDef RO 0x00
9:5 CIDSIZE: reads as ‘ImpDef RO 0x00
4:0 IASIZE: reads as "ImpDef RO 0x04

M33: TRCIDR3 Register

Offset: 0x411ec

Description
TRCIDR3
;:Z;zér% TRCIDRS Bits Description Type Reset

31 NOOVERFLOW: reads as ‘ImpDef RO 0x0
30:28 NUMPROC: reads as ‘ImpDef RO 0x0
27 SYSSTALL: reads as "ImpDef RO 0x1
26 STALLCTL: reads as ‘ImpDef RO 0x1
25 SYNCPR: reads as ‘ImpDef RO 0x1
24 TRCERR: reads as ‘ImpDef RO 0x1
23:20 EXLEVEL_NS: reads as ‘ImpDef RO 0x0
19:16 EXLEVEL_S: reads as ‘ImpDef RO 0x9
15:12 Reserved. = =
11:0 CCITMIN: reads as "ImpDef RO 0x004

M33: TRCIDR4 Register

3.7. Cortex-M33 Processor 208

RP2350 Datasheet
]

Offset: 0x411f0

Description
TRCIDR4
;:S:;Z;ﬁ' TRCIDR4 | Bits Description Type Reset

31:28 NUMVMIDC: reads as ‘ImpDef RO 0x0
27:24 NUMCIDC: reads as ‘ImpDef RO 0x0
23:20 NUMSSCC: reads as ‘ImpDef RO 0x1
19:16 NUMRSPAIR: reads as ‘ImpDef RO 0x1
15112 NUMPC: reads as "ImpDef RO 0x4
11:9 Reserved. = =
8 SUPPDAC: reads as "ImpDef RO 0x0
74 NUMDVC: reads as ‘ImpDef RO 0x0
3:0 NUMACPAIRS: reads as "ImpDef RO 0x0
M33: TRCIDRS Register

Offset: 0x411f4

Description

TRCIDRS
;ZZ;;;%‘ TRCIDRS Bits Description Type Reset

31 REDFUNCNTR: reads as ‘ImpDef RO 0x1
30:28 NUMCNTR: reads as ‘ImpDef RO 0x1
27:25 NUMSEQSTATE: reads as ‘ImpDef RO 0x0
24 Reserved. - -

23 LPOVERRIDE: reads as ‘ImpDef RO 0x1
22 ATBTRIG: reads as 'ImpDef RO 0x1
21:16 TRACEIDSIZE: reads as 0x07 RO 0x07
15:12 | Reserved. = =
11:9 NUMEXTINSEL: reads as ‘ImpDef RO 0x0
8:0 NUMEXTIN: reads as "ImpDef RO 0x004

M33: TRCIDR6 Register
Offset: 0x411f8

Description

TRCIDR6

|
3.7. Cortex-M33 Processor 209

RP2350 Datasheet

Tab{e 299. TRCIDRS Bits Description Type Reset
Register
31:0 Reserved. - -
M33: TRCIDR7 Register
Offset: 0x411fc
Description
TRCIDR7
Tab{e 300. TRCIDR7 Bits Description Type Reset
Register
31:0 Reserved. - -
M33: TRCRSCTLR2 Register
Offset: 0x41208
Description
The TRCRSCTLR controls the trace resources
Table 501.) Bits Description Type Reset
TRCRSCTLR2 Register
31:22 Reserved. - -
21 PAIRINV: Inverts the result of a combined pair of resources. This bit is only RW 0x0
implemented on the lower register for a pair of resource selectors
20 INV: Inverts the selected resources RW 0x0
19 Reserved. - -
18:16 GROUP: Selects a group of resource RW 0x0
15:8 Reserved. - -
7:0 SELECT: Selects one or more resources from the wanted group. One bit is RW 0x00
provided per resource from the group
M33: TRCRSCTLR3 Register
Offset: 0x4120c
Description
The TRCRSCTLR controls the trace resources
Table 302.) Bits Description Type Reset
TRCRSCTLR3 Register
31:22 Reserved. - -
21 PAIRINV: Inverts the result of a combined pair of resources. This bit is only RW 0x0
implemented on the lower register for a pair of resource selectors
20 INV: Inverts the selected resources RW 0x0
19 Reserved. = =
18:16 GROUP: Selects a group of resource RW 0x0
15:8 Reserved. - -

3.7. Cortex-M33 Processor

210

RP2350 Datasheet

Bits Description Type Reset

7:0 SELECT: Selects one or more resources from the wanted group. One bit is RW 0x00
provided per resource from the group

M33: TRCSSCSR Register
Offset: 0x412a0

Description

Controls the corresponding single-shot comparator resource

Tabl_e 303. TRCSSCSR | Bjtg Description Type Reset
Register
31 STATUS: Single-shot status bit. Indicates if any of the comparators, that RW 0x0
TRCSSCCRN.SAC or TRCSSCCRN.ARC selects, have matched
30:4 Reserved. - -
3 PC: Reserved, RES1 RO 0x0
2 DV: Reserved, RESO RO 0x0
1 DA: Reserved, RESO RO 0x0
0 INST: Reserved, RESO RO 0x0
M33: TRCSSPCICR Register
Offset: 0x412c0
Description
Selects the PE comparator inputs for Single-shot control
Table 504.) Bits Description Type Reset
TRCSSPCICR Register

31:4 Reserved. - -

3.0 PC: Selects one or more PE comparator inputs for Single-shot control. RW 0x0
TRCIDR4.NUMPC defines the size of the PC field. 1 bit is provided for each
implemented PE comparator input. For example, if bit[1] == 1 this selects PE
comparator input 1 for Single-shot control

M33: TRCPDCR Register
Offset: 0x41310

Description

Requests the system to provide power to the trace unit

Table 305. TRCPDCR

) Bits Description Type Reset
Register

31:4 Reserved. - -

3 PU: Powerup request bit: RW 0x0

2:0 Reserved. - -

M33: TRCPDSR Register

Offset: 0x41314

3.7. Cortex-M33 Processor 211

RP2350 Datasheet

Description

Returns the following information about the trace unit: - OS Lock status. - Core power domain status. - Power

interruption status

Table 306. TRCPDSR | pite Description Type Reset
Register
31:6 Reserved. - -
5 OSLK: OS Lock status bit: RO 0x0
4:2 Reserved. - -
1 STICKYPD: Sticky powerdown status bit. Indicates whether the trace register | RO 0x1
state is valid:
0 POWER: Power status bit: RO 0x1
M33: TRCITATBIDR Register
Offset: 0x41ee4
Description
Trace Intergration ATB Identification Register
Table 507. . Bits Description Type Reset
TRCITATBIDR Register
31:7 Reserved. - -
6:0 ID: Trace ID RW 0x00
M33: TRCITIATBINR Register
Offset: 0x41ef4
Description
Trace Integration Instruction ATB In Register
Table 308. Bits Description Type Reset
TRCITIATBINR
Register 31:2 Reserved. - -
1 AFVALIDM: Integration Mode instruction AFVALIDM in RW 0x0
0 ATREADYM: Integration Mode instruction ATREADYM in RW 0x0
M33: TRCITIATBOUTR Register
Offset: 0x41efc
Description
Trace Integration Instruction ATB Out Register
Table 305. Bits Description Type Reset
TRCITIATBOUTR
Register 31:2 Reserved. - -
1 AFREADY: Integration Mode instruction AFREADY out RW 0x0
0 ATVALID: Integration Mode instruction ATVALID out RW 0x0

3.7. Cortex-M33 Processor

M33: TRCCLAIMSET Register

Offset: 0x41fa0

RP2350 Datasheet

Description
Claim Tag Set Register
Table 310. Bits Description Type Reset
TRCCLAIMSET
Register 31:4 Reserved. - -
3 SET3: When a write to one of these bits occurs, with the value: RW 0x1
2 SET2: When a write to one of these bits occurs, with the value: RW 0x1
1 SET1: When a write to one of these bits occurs, with the value: RW 0x1
0 SETO0: When a write to one of these bits occurs, with the value: RW 0x1
M33: TRCCLAIMCLR Register
Offset: 0x41fa4
Description
Claim Tag Clear Register
Table 311. Bits Description Type Reset
TRCCLAIMCLR
Register 31:4 Reserved. - -
3 CLR3: When a write to one of these bits occurs, with the value: RW 0x0
2 CLR2: When a write to one of these bits occurs, with the value: RW 0x0
1 CLR1: When a write to one of these bits occurs, with the value: RW 0x0
0 CLRO: When a write to one of these bits occurs, with the value: RW 0x0
M33: TRCAUTHSTATUS Register
Offset: 0x41fb8
Description
Returns the level of tracing that the trace unit can support
Table 372 Bits Description Type Reset
TRCAUTHSTATUS
Register 31:8 Reserved. - -
7:6 SNID: Indicates whether the system enables the trace unit to support Secure | RO 0x0
non-invasive debug:
5:4 SID: Indicates whether the trace unit supports Secure invasive debug: RO 0x0
3:2 NSNID: Indicates whether the system enables the trace unit to support Non- RO 0x0
secure non-invasive debug:
1:0 NSID: Indicates whether the trace unit supports Non-secure invasive debug: RO 0x0
M33: TRCDEVARCH Register
Offset: 0x41fbc
Description
TRCDEVARCH
Table 313.) Bits Description Type Reset
TRCDEVARCH Register
31:21 ARCHITECT: reads as 0b01000111011 RO 0x23b

3.7. Cortex-M33 Processor 213

RP2350 Datasheet

Bits Description Type Reset
20 PRESENT: reads as 0b1 RO 0x1
19:16 REVISION: reads as 0b0000 RO 0x2
15:0 ARCHID: reads as 0b0100101000010011 RO 0x4a13

M33: TRCDEVID Register

Offset: 0x41fc8

Description
TRCDEVID
Tab{e 314. TRCDEVID | o Description Type Reset
Register
31:0 Reserved. = =
M33: TRCDEVTYPE Register
Offset: 0x41fcc
Description
TRCDEVTYPE
Table 375.) Bits Description Type pesst
TRCDEVTYPE Register

31:8 Reserved. - -

7:4 SUB: reads as 0b0001 RO 0x1

3.0 MAUJOR: reads as 0b0011 RO 0x3

M33: TRCPIDR4 Register
Offset: 0x41fd0

Description

TRCPIDR4

Table 316. TRCPIDR4

) Bits Description Type Reset
Register

31:8 Reserved. - -

7:4 SIZE: reads as "ImpDef RO 0x0

3:0 DES_2: reads as "ImpDef RO 0x4

M33: TRCPIDR5 Register
Offset: 0x41fd4

Description

TRCPIDRS

3.7. Cortex-M33 Processor 214

RP2350 Datasheet

Table 317. TRCPIDRS
Register

Table 318. TRCPIDR6
Register

Table 319. TRCPIDR7
Register

Table 320. TRCPIDRO
Register

Table 321. TRCPIDRT
Register

31:0 Reserved. - -

M33: TRCPIDR6 Register
Offset: 0x41fd8

Description
TRCPIDR6

31:0 Reserved. - -

M33: TRCPIDR7 Register
Offset: 0x41fdc

Description
TRCPIDR7

31:0 Reserved. - -

M33: TRCPIDRO Register
Offset: 0x41fe0

Description
TRCPIDRO

31:8 Reserved. - -

7:0 PART_0: reads as ‘ImpDef RO 0x21

M33: TRCPIDR1 Register
Offset: 0x41fe4

Description
TRCPIDR1

31:8 Reserved. - -

74 DES_0: reads as "ImpDef RO Oxb

3:0 PART_0: reads as ‘ImpDef RO Oxd

M33: TRCPIDR2 Register
Offset: 0x41fe8

Description
TRCPIDR2

3.7. Cortex-M33 Processor 215

RP2350 Datasheet

Tab{e 822. TRCPIDRZ | jpg Description Type Reset
Register
31:8 Reserved. - -
74 REVISION: reads as ‘ImpDef RO 0x2
3 JEDEC: reads as 0b1 RO 0x1
2:0 DES_0: reads as "ImpDef RO 0x3
M33: TRCPIDR3 Register
Offset: 0x41fec
Description
TRCPIDR3
Table 523. TRCPIDRS | pijge Description Type Reset
Register
31:8 Reserved. - -
74 REVAND: reads as ‘ImpDef RO 0x0
3.0 CMOD: reads as ‘ImpDef RO 0x0
M33: TRCCIDRO Register
Offset: 0x41ff0
Description
TRCCIDRO
Table 524. TRCCIDRO | pige Description Type Reset
Register
31:8 Reserved. - -
7:0 PRMBL_0: reads as 0b00001101 RO 0x0d
M33: TRCCIDR1 Register
Offset: 0x41ff4
Description
TRCCIDR1
Tabl_e 325. TRCCIDR Bits Description Type Reset
Register
31:8 Reserved. = =
7:4 CLASS: reads as 0b1001 RO 0x9
3:0 PRMBL_1: reads as 0b0000 RO 0x0

M33: TRCCIDR2 Register
Offset: 0x41ff8

Description
TRCCIDR2

3.7. Cortex-M33 Processor 216

RP2350 Datasheet

Tab{e 326. TRCCIDR2 [g Description Type Reset
Register
31:8 Reserved. = S
7:0 PRMBL_2: reads as 0b00000101 RO 0x05
M33: TRCCIDR3 Register
Offset: 0x41ffc
Description
TRCCIDR3
Tab{e 327. TRCCIDR3 Bits Description Type Reset
Register
31:8 Reserved. = S
7:0 PRMBL_3: reads as 0b10110001 RO 0xb1
M33: CTICONTROL Register
Offset: 0x42000
Description
CTI Control Register
Table 328. . Bits Description Type Reset
CTICONTROL Register
31:1 Reserved. = =
0 GLBEN: Enables or disables the CTI RW 0x0
M33: CTIINTACK Register
Offset: 0x42010
Description
CTI Interrupt Acknowledge Register
Table 529, CTINTACK | gipg Description Type Reset
Register
31:8 Reserved. = S
7:0 INTACK: Acknowledges the corresponding ctitrigout output. There is one bit | RW 0x00

of the register for each ctitrigout output. When a 1 is written to a bit in this
register, the corresponding ctitrigout is acknowledged, causing it to be
cleared.

M33: CTIAPPSET Register
Offset: 0x42014

Description

CTI Application Trigger Set Register

|
3.7. Cortex-M33 Processor 217

RP2350 Datasheet

Table 330. CTIAPPSET
Register

Table 331.
CTIAPPCLEAR
Register

Table 332.
CTIAPPPULSE
Register

Table 333. CTIINENO,
CTIINENT, ..,
CTIINENG, CTIINEN7
Registers

Bits Description Type Reset
31:4 Reserved. = =
3:0 APPSET: Setting a bit HIGH generates a channel event for the selected RW 0x0
channel. There is one bit of the register for each channel
M33: CTIAPPCLEAR Register
Offset: 0x42018
Description
CTI Application Trigger Clear Register
Bits Description Type Reset
31:4 Reserved. = =
3.0 APPCLEAR: Sets the corresponding bits in the CTIAPPSET to 0. Thereisone | RW 0x0
bit of the register for each channel.
M33: CTIAPPPULSE Register
Offset: 0x4201¢c
Description
CTI Application Pulse Register
Bits Description Type Reset
31:4 Reserved. = =
3:0 APPULSE: Setting a bit HIGH generates a channel event pulse for the selected | RW 0x0
channel. There is one bit of the register for each channel.
M33: CTIINENO, CTIINENT, ..., CTIINEN6, CTIINEN7 Registers
Offsets: 0x42020, 0x42024, .., 0x42038, 0x4203c
Description
CTI Trigger to Channel Enable Registers
Bits Description Type Reset
31:4 Reserved. = =
3:0 TRIGINEN: Enables a cross trigger event to the corresponding channel when a | RW 0x0

ctitrigin input is activated. There is one bit of the field for each of the four

channels

M33: CTIOUTENO, CTIOUTENT, ..., CTIOUTENG6, CTIOUTEN7 Registers

Offsets: 0x420a0, 0x420a4, ..., 0x420b8, 0x420bc

Description
CTI Trigger to Channel Enable Registers
Table 334. Bits Description Type Reset
CTIOUTENO,
CTIOUTENY, ., 31:4 Reserved. - -
CTIOUTENS,
CTIOUTEN7 Registers

3.7. Cortex-M33 Processor 218

RP2350 Datasheet

Table 335.
CTITRIGINSTATUS
Register

Table 336.
CTITRIGOUTSTATUS
Register

Table 337.
CTICHINSTATUS
Register

Table 338. CTIGATE
Register

|
3.7. Cortex-M33 Processor

Bits Description Type Reset
3:0 TRIGOUTEN: Enables a cross trigger event to ctitrigout when the RW 0x0
corresponding channel is activated. There is one bit of the field for each of the
four channels.
M33: CTITRIGINSTATUS Register
Offset: 0x42130
Description
CTI Trigger to Channel Enable Registers
Bits Description Type Reset
31:8 Reserved. - -
7:0 TRIGINSTATUS: Shows the status of the ctitrigin inputs. There is one bit of the | RO 0x00
field for each trigger input.Because the register provides a view of the raw
ctitrigin inputs, the reset value is UNKNOWN.
M33: CTITRIGOUTSTATUS Register
Offset: 0x42134
Description
CTI Trigger In Status Register
Bits Description Type Reset
31:8 Reserved. - -
7:0 TRIGOUTSTATUS: Shows the status of the ctitrigout outputs. There is one bit | RO 0x00
of the field for each trigger output.
M33: CTICHINSTATUS Register
Offset: 0x42138
Description
CTI Channel In Status Register
Bits Description Type Reset
31:4 Reserved. = =
3:0 CTICHOUTSTATUS: Shows the status of the ctichout outputs. There is one bit | RO 0x0
of the field for each channel output
M33: CTIGATE Register
Offset: 0x42140
Description
Enable CTI Channel Gate register
Bits Description Type Reset
31:4 Reserved. - -
3 CTIGATEENS3: Enable ctichout3. Set to 0 to disable channel propagation. RW 0x1
2 CTIGATEENZ2: Enable ctichout2. Set to 0 to disable channel propagation. RW 0x1

RP2350 Datasheet

Table 339. ASICCTL
Register

Table 340. ITCHOUT
Register

Table 341. ITTRIGOUT
Register

Table 342. ITCHIN
Register

Bits Description

Type

Reset

1 CTIGATEENT: Enable ctichout1. Set to 0 to disable channel propagation.

RW

0x1

0 CTIGATEENO: Enable ctichout0. Set to 0 to disable channel propagation.

RW

0x1

M33: ASICCTL Register
Offset: 0x42144

Description

External Multiplexer Control register

Bits Description Type

Reset

31:0 Reserved. -

M33: ITCHOUT Register
Offset: 0x42ee4

Description

Integration Test Channel Output register

Bits Description

Type

Reset

31:4 Reserved.

3.0 CTCHOUT: Sets the value of the ctichout outputs

RW

0x0

M33: ITTRIGOUT Register
Offset: 0x42ee8

Description

Integration Test Trigger Output register

Bits Description

Type

Reset

31:8 Reserved.

7:0 CTTRIGOUT: Sets the value of the ctitrigout outputs

RW

0x00

M33: ITCHIN Register
Offset: 0x42ef4

Description

Integration Test Channel Input register

Bits Description

Type

Reset

31:4 Reserved.

3.0 CTCHIN: Reads the value of the ctichin inputs.

RO

0x0

M33: ITCTRL Register
Offset: 0x42f00

Description

Integration Mode Control register

3.7. Cortex-M33 Processor

RP2350 Datasheet

Table 343. ITCTRL
Register

Table 344. DEVARCH
Register

Table 345. DEVID
Register

Table 346. DEVTYPE
Register

3.7. Cortex-M33 Processor

in the ARM Architecture Specification for this debug and trace component.

Bits Description Type Reset
31:1 Reserved. = =
0 IME: Integration Mode Enable RW 0x0
M33: DEVARCH Register
Offset: 0x42fbc
Description
Device Architecture register
Bits Description Type Reset
31:21 ARCHITECT: Indicates the component architect RO 0x23b
20 PRESENT: Indicates whether the DEVARCH register is present RO 0x1
19:16 REVISION: Indicates the architecture revision RO 0x0
15:0 ARCHID: Indicates the component RO Ox1al4
M33: DEVID Register
Offset: 0x42fc8
Description
Device Configuration register
Bits Description Type Reset
31:20 Reserved. = =
19:16 NUMCH: Number of ECT channels available RO 0x4
15:8 NUMTRIG: Number of ECT triggers available. RO 0x08
7:5 Reserved. = =
4:0 EXTMUXNUM: Indicates the number of multiplexers available on Trigger RO 0x00
Inputs and Trigger Outputs that are using asicctl. The default value of
0b00000 indicates that no multiplexing is present. This value of this bit
depends on the Verilog define EXTMUXNUM that you must change
accordingly.
M33: DEVTYPE Register
Offset: 0x42fcc
Description
Device Type Identifier register
Bits Description Type Reset
31:8 Reserved. - -
74 SUB: Sub-classification of the type of the debug component as specified in the | RO 0x1
ARM Architecture Specification within the major classification as specified in
the MAJOR field.
3:0 MAJOR: Major classification of the type of the debug component as specified | RO 0x4

RP2350 Datasheet

M33: PIDR4 Register
Offset: 0x42fd0

Description

CoreSight Periperal ID4

Table 347. PIDR4

) Bits Description Type Reset
Register

31:8 Reserved. - -

7:4 SIZE: Always 0b0000. Indicates that the device only occupies 4KB of memory | RO 0x0

3.0 DES_2: Together, PIDR1.DES_0, PIDR2.DES_1, and PIDR4.DES_2 identify the RO 0x4
designer of the component.

M33: PIDRS Register
Offset: 0x42fd4

Description

CoreSight Periperal ID5

Table 348. PIDR5

) Bits Description Type Reset
Register

31:0 Reserved. - -

M33: PIDR6 Register
Offset: 0x42fd8

Description

CoreSight Periperal ID6

Table 349. PIDR6

) Bits Description Type Reset
Register

31:0 Reserved. - -

M33: PIDR7 Register
Offset: 0x42fdc

Description

CoreSight Periperal ID7

Table 350. PIDR7

) Bits Description Type Reset
Register

31:0 Reserved. - -

M33: PIDRO Register
Offset: 0x42fe0

Description

CoreSight Periperal IDO

Table 351. PIDRO

) Bits Description Type Reset
Register

31:8 Reserved. - -

|
3.7. Cortex-M33 Processor 222

RP2350 Datasheet

Table 352. PIDR1
Register

Table 353. PIDR2
Register

Table 354. PIDR3
Register

3.7. Cortex-M33 Processor

Bits Description Type Reset
7:0 PART_O: Bits[7:0] of the 12-bit part number of the component. The designer of | RO 0x21
the component assigns this part number.
M33: PIDR1 Register
Offset: 0x42fe4
Description
CoreSight Periperal ID1
Bits Description Type Reset
31:8 Reserved. = =
7:4 DES_0: Together, PIDR1.DES_0, PIDR2.DES_1, and PIDR4.DES_2 identify the RO 0xb
designer of the component.
3:0 PART_1: Bits[11:8] of the 12-bit part number of the component. The designer | RO Oxd
of the component assigns this part number.
M33: PIDR2 Register
Offset: 0x42fe8
Description
CoreSight Periperal ID2
Bits Description Type Reset
31:8 Reserved. = =
74 REVISION: This device is at r1p0 RO 0x0
3 JEDEC: Always 1. Indicates that the JEDEC-assigned designer ID is used. RO 0x1
2:0 DES_1: Together, PIDR1.DES_0, PIDR2.DES_1, and PIDR4.DES_2 identify the RO 0x3
designer of the component.
M33: PIDR3 Register
Offset: 0x42fec
Description
CoreSight Periperal ID3
Bits Description Type Reset
31:8 Reserved. = =
7:4 REVAND: Indicates minor errata fixes specific to the revision of the RO 0x0
component being used, for example metal fixes after implementation. In most
cases, this field is 0b0000. ARM recommends that the component designers
ensure that a metal fix can change this field if required, for example, by driving
it from registers that reset to 0b0000.
3.0 CMOD: Customer Modified. Indicates whether the customer has modified the | RO 0x0

behavior of the component. In most cases, this field is 0b0000. Customers
change this value when they make authorized modifications to this
component.

M33: CIDRO Register

RP2350 Datasheet

Offset: 0x42ff0

Description

CoreSight Component IDO

Table 355. CIDRO

) Bits Description Type Reset
Register

31:8 Reserved. - -

7:0 PRMBL_0: Preamble[0]. Contains bits[7:0] of the component identification RO 0x0d
code

M33: CIDR1 Register
Offset: 0x42ff4

Description

CoreSight Component ID1

Table 356. CIDR1

) Bits Description Type Reset
Register

31:8 Reserved. - -

74 CLASS: Class of the component, for example, whether the component is a RO 0x9
ROM table or a generic CoreSight component. Contains bits[15:12] of the
component identification code.

3:0 PRMBL_1: Preamble[1]. Contains bits[11:8] of the component identification RO 0x0
code.

M33: CIDR2 Register
Offset: 0x42ff8

Description

CoreSight Component ID2

Table 357. CIDR2

) Bits Description Type Reset
Register

31:8 Reserved. - -

7:0 PRMBL_2: Preamble[2]. Contains bits[23:16] of the component identification | RO 0x05
code.

M33: CIDR3 Register
Offset: 0x42ffc

Description

CoreSight Component ID3

Table 358. CIDR3

) Bits Description Type Reset
Register

31:8 Reserved. - -

7:0 PRMBL_3: Preamble[3]. Contains bits[31:24] of the component identification | RO 0xb1
code.

3.7.5.1. Cortex-M33 EPPB Registers

The EPPB contains registers implemented by Raspberry Pi and integrated into the Cortex-M33 PPB to provide per-
processor controls for certain RP2350 features. There is one copy of these registers per core (they are core-local), and

3.7. Cortex-M33 Processor 224

RP2350 Datasheet
]

Table 359. List of
M33_EPPB registers

Table 360.
NMI_MASKO Register

Table 361.
NMI_MASKT1 Register

Table 362.
SLEEPCTRL Register

they reset on a warm reset of the core.

These registers start at a base address of 0xe0080000, defined as EPPB_BASE in the SDK.

Offset Name Info

0x0 NMI_MASKO NMI mask for IRQs 0 through 31. This register is core-local, and
is reset by a processor warm reset.

0x4 NMI_MASK1 NMI mask for IRQs 0 though 51. This register is core-local, and is
reset by a processor warm reset.

0x8 SLEEPCTRL Nonstandard sleep control register

M33_EPPB: NMI_MASKO Register

Offset: 0x0
Bits Description Type Reset
31:0 NMI mask for IRQs 0 through 31. This register is core-local, and isresetbya | RW 0x00000000
processor warm reset.
M33_EPPB: NMI_MASK1 Register
Offset: 0x4
Bits Description Type Reset
31:20 Reserved. = =
19:0 NMI mask for IRQs 0 though 51. This register is core-local, and is reset by a RW 0x00000
processor warm reset.
M33_EPPB: SLEEPCTRL Register
Offset: 0x8
Description
Nonstandard sleep control register
Bits Description Type Reset
31:3 Reserved. - -
2 WICENACK: Status signal from the processor’s interrupt controller. Changes | RO 0x0
to WICENREQ are eventually reflected in WICENACK.
1 WICENREQ: Request that the next processor deep sleep is a WIC sleep. After | RW 0x1
setting this bit, before sleeping, poll WICENACK to ensure the processor
interrupt controller has acknowledged the change.
0 LIGHT_SLEEP: By default, any processor sleep will deassert the system-level | RW 0x0

clock request. Reenabling the clocks incurs 5 cycles of additional latency on
wakeup.

Setting LIGHT_SLEEP to 1 keeps the clock request asserted during a normal
sleep (Arm SCR.SLEEPDEEP = 0), for faster wakeup. Processor deep sleep
(Arm SCR.SLEEPDEEP = 1) is not affected, and will always deassert the
system-level clock request.

3.7. Cortex-M33 Processor

225

RP2350 Datasheet

3.8. Hazard3 Processor

Hazard3 is a low-area, high-performance RISC-V processor with a 3-stage in-order pipeline. RP2350 configures the
following standard RISC-V extensions:

® RV32I: 32-bit base instruction set

® 1: Integer multiply/divide/modulo instructions

® A: Atomic memory operations

® (: Compressed 16-bit instructions (equivalently spelled Zca)

® 7ba: Address generation instructions

® 7bb: Basic bit manipulation instructions

® 7bs: Single-bit manipulation instructions

® 7bkb: Basic bit manipulation for scalar cryptography

® 7cb: Basic additional compressed instructions

® 7Zcmp: Push/pop and double-move compressed instructions

® Zicsr: CSR access instructions

® Debug, Machine and User execution modes

® Physical Memory Protection unit (PMP) with eight regions, 32-byte granule, NAPOT

® External debug support with four instruction address triggers
Additionally, RP2350 enables the following Hazard3 custom extensions:

® Xh3power: Power management instructions and CSRs

® Xh3bextm: Bit-extract-multiple instruction (used in bootrom)

® Xh3irq: Local interrupt controller with nested, prioritised IRQ support

® Xh3pmpm: Unlocked M-mode PMP regions

Hazard3 Source Code

All hardware source files for Hazard3 are available under Apache 2.0 licensing at:

github.com/wren6991/hazard3

3.8.1. Instruction Set Reference

This section is a programmer’s reference guide for the instructions supported by Hazard3. It covers basic assembly
syntax, instruction behaviour, ranges for immediate values, and conditions for instruction compression. The index lists
instructions alphabetically, including pseudo-instructions.

The pseudocode in this guide is informative only, and is no replacement for the official RISC-V specifications in Section
3.8.1.1. However, it should prove a useful mnemonic aid once you have read the specifications.

3.8.1.1. Links to RISC-V Specifications

This table links ratified versions of the base instruction set and extensions implemented by Hazard3. These are the
authoritative reference for the instructions documented in this reference guide.

]
3.8. Hazard3 Processor 226

https://github.com/wren6991/hazard3

RP2350 Datasheet

Extension Specification

RV32Iv2.1 Unprivileged ISA 20191213
Mv2.0 Unprivileged ISA 20191213
Av2.1 Unprivileged ISA 20191213
cv2.0 Unprivileged ISA 20191213
Zicsr v2.0 Unprivileged ISA 20191213

Zifencei v2.0

Unprivileged ISA 20191213

Zba v1.0.0 Bit Manipulation ISA extensions 20210628
Zbb v1.0.0 Bit Manipulation ISA extensions 20210628
Zbsv1.0.0 Bit Manipulation ISA extensions 20210628
Zbkb v1.0.1 Scalar Cryptography ISA extensions 20220218
Zcb v1.0.3-1 Code Size Reduction extensions frozen v1.0.3-1
Zemp v1.0.3-1 Code Size Reduction extensions frozen v1.0.3-1

Machine ISAv1.12

Privileged Architecture 20211203

Debug v0.13.2

RISC-V External Debug Support 20190322

You may also refer to the RISC-V Assembly Programmer’s Manual for information on assembly syntax.

Consult the source code for detailed questions about implementation-defined behaviour, which is not covered by the
RISC-V specifications. RP2350 uses version 86fc4e3, with metal ECOs for commits 2f6e983 and af08c0b.

3.8.1.2. Architecture Strings

-march strings completely specify the set of available RISC-V instructions, so that a compiler can generate correct and
optimal code for your device. Use the following in descending order of preference:

1. Use rv32ima_zicsr_zifencei_zba_zbb_zbs_zbkb_zca_zcb_zemp for compilers which support the Zcb and Zemp extensions,

such as GCC 14.

2. Use rv32ima_zicsr_zifencei_zba_zbb_zbs_zbkb_zca_zcb for GCC 14 packaged with an older assembler which does not

support Zcmp.

3. Use rv32imac_zicsr_zifencei_zba_zbb_zbs_zbkb for older compilers, such as GCC 13 and below.

3.8.1.3. RISC-V Architectural State

The mutable state visible to the programmer consists of:

® The 31 x 32-bit integer general-purpose registers (GPRs), named x1 through x31

® The program counter pc, which points to the beginning of the current instruction in memory

® The control and status registers (CSRs), which configure processor behaviour and are used in trap handling

® The local monitor bit, which helps maintain correctness of atomic read-modify-write sequences

® The current privilege level, which determines which memory locations the core can access, which CSRs it can

access, and which instructions it can execute

Hazard3 supports two privilege levels: Machine and User. These are interchangeably referred to as modes, and are
commonly abbreviated as M-mode and U-mode. Debug mode behaves as an additional privilege level above M-mode.

3.8. Hazard3 Processor

227

https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-bitmanip/releases/download/1.0.0/bitmanip-1.0.0-38-g865e7a7.pdf
https://github.com/riscv/riscv-bitmanip/releases/download/1.0.0/bitmanip-1.0.0-38-g865e7a7.pdf
https://github.com/riscv/riscv-bitmanip/releases/download/1.0.0/bitmanip-1.0.0-38-g865e7a7.pdf
https://github.com/riscv/riscv-crypto/releases/download/v1.0.1-scalar/riscv-crypto-spec-scalar-v1.0.1.pdf
https://github.com/riscv/riscv-code-size-reduction/releases/download/v1.0.3-1/Zc-v1.0.3-1.pdf
https://github.com/riscv/riscv-code-size-reduction/releases/download/v1.0.3-1/Zc-v1.0.3-1.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
https://riscv.org/wp-content/uploads/2019/03/riscv-debug-release.pdf
https://github.com/riscv-non-isa/riscv-asm-manual/blob/main/riscv-asm.md
https://github.com/wren6991/hazard3
https://github.com/Wren6991/Hazard3/releases/tag/v1.0-rc1
https://github.com/Wren6991/Hazard3/commit/2f6e98335fd4fafe9c6faf9285374316c0da8ee4
https://github.com/Wren6991/Hazard3/commit/af08c0becd13ef6462f0656d247231cbdeb56f70

RP2350 Datasheet
]

The Oth general-purpose register, x0, is hardwired to zero and ignores writes. There is no flags register; branch
instructions perform GPR-to-GPR comparisons directly.

This state is duplicated per hardware thread, or hart. RP2350 implements two Hazard3 cores, each with one hart.

3.8.1.3.1. Register Conventions

The following ABI names are synonymous with x@ through x31:

Register ABI Name Description

x0 zero Hardwired to zero; ignores writes
x1 ra Return address (link register)

x2 sp Stack pointer

x3 gp Global pointer

x4 tp Thread pointer

x5 -x7 t0-t2 Temporaries

x8 s or fp Saved register or frame pointer
x9 sl Saved register

x10 - x11 ab - a1l Function arguments and return values
x12 - x17 al-al Function arguments

x18 - x27 s2-s11 Saved registers

x28 - x31 t3-t6 Temporaries

Registers x1 through x31 are identical, and any 32-bit opcode can use any combination of these registers. However,
compressed instructions give preferential treatment to commonly-used registers sp, ra, s, s1 and a@ through a5 to
improve code density. All compressed instructions implemented by Hazard3 are 16-bit aliases for existing 32-bit
instructions, so you can still perform any operation on any register.

See the RISC-V PSABI Specification for more information on the ABI register assignment as well as the RISC-V
procedure calling convention.

3.8.1.4. Compressed Instructions

The RISC-V extensions which Hazard3 implements use a mixture of 32-bit and 16-bit opcodes, the latter being referred
to as compressed instructions. With the exception of Zcmp, each compressed instruction maps to a subset of an existing
32-bit instruction. For example, c.add is a 16-bit alias of the add instruction, with restrictions on register allocation.

The assembler automatically uses compressed instructions when possible. For example, add a0, 30, al is a
compressible form of add. This assembles to the 16-bit opcode c.add a8, a1 when compressed instructions are enabled
in the assembler.

The following extensions use 16-bit opcodes:
® C:compressed instructions (the non-floating-point subset is equivalently spelled as zca)
® Zch: additional basic compressed instructions
® Zcmp: compressed push, pop and double-move

Disabling the above extensions for compilation (and assembly) aligns all instructions to 32-bit boundaries. This may
have a minor performance advantage for branch-dense code sequences (see Section 3.8.7), at the cost of poorer code
density.

]
3.8. Hazard3 Processor 228

https://github.com/riscv-non-isa/riscv-elf-psabi-doc/releases/download/v1.0/riscv-abi.pdf

RP2350 Datasheet
]

When an instruction has an optional 16-bit compressed form, the limitations of the compressed form are documented
in the listing for the 32-bit form. It is useful to be aware of these restrictions when optimising for code size. If no such
limitations are mentioned, it means the instruction is always a 32-bit opcode.

Zemp is an outlier in that its instructions each expand to a sequence of 32-bit instructions from the RV32I base instruction
set. They therefore have no direct 32-bit counterparts.

3.8.1.5. Conventions for Pseudocode

Pseudocode in this section is in Verilog 2005 syntax (IEEE 1364-2005). These Verilog operators are used throughout:
* Infix operators +, -, %, /, & 1, |, <<, ==, =, < and >= can be considered the same as the corresponding C operator.
® {signed() bit-casts to a signed value; comparisons between two signed values are signed comparisons.
® >>is always a logical (zero-extending) right shift.
® >>>o0n a signed value is an arithmetic (sign-extending) right shift.
® {3, b}isthe bit-concatenation of a and b, with a in the more-significant position of the result.
® 3[n] onan array is a subscript array access. For example men[0] is the first byte of memory.

® x[m:1] on a packed array (a bit vector) is a bit slice of x, where m is the (inclusive) MSB and 1 is the (inclusive) LSB.
For example rs1[7:0] is the 8 least-significant bits of rs1.

* {n{x}}, where n is a constant and x is a packed array, replicates x n times. n copies of x are concatenated together.

For example {32{1b1}} is a 32-bit all-ones value.

The pseudocode uses <= non-blocking assignments to assign to outputs: all such assignments are applied in a batch
after the block of pseudocode has executed. Local variables may be assigned with = blocking assignments, which
update the assignee immediately, similar to = procedural assignments in e.g. C programs. This distinction is important
in some cases where e.g. rd and rs1 may alias the same register, but it's generally sufficient just to be aware thata <= b
and a = b are both assignments into a.

3.8.1.5.1. Variables Used in Pseudocode

Pseudocode in this guide uses the following conventions for variables:

® rs1,rs2 and rd are 32-bit unsigned packed arrays (bit vectors), representing the values of the two register operands
and the destination register.

® regnum_rs1, regnum_rs2, and regnum_rd are the 5-bit register numbers which select a GPR for rs1, rs2 and rd

imm is a 32-bit unsigned packed array referring to the instruction’s immediate value.

pc is a 32-bit unsigned packed array referring to the program counter, which is exactly the address of the current
instruction.

® mem is an array of 8-bit unsigned packed arrays, each corresponding to a byte address in memory.

® csris an array of 32-bit unsigned packed arrays, each corresponding to a CSR listed in Section 3.8.9.

priv is a 2-bit unsigned packed array which contains the value 0x3 when the core is in Debug or M-mode, and 0x0
when the core is in U-mode.

® jand j are pseudocode temporary variables of type integer which may be used for loop variables.
The following tasks are used throughout:
® raise_exception(n) raises an exception with a cause of n (see Section 3.8.4.1).

® hbus_error(addr) returns 1 when the address addr returns a bus error, and 0 otherwise.

]
3.8. Hazard3 Processor 229

RP2350 Datasheet

3.8.1.6. Alphabetical List of Instructions

This instruction reference covers all instructions from all extensions which Hazard3 implements on RP2350. The table
below also includes common pseudo-instructions such as not and ret, which you may see in disassembly and be
surprised not to see in the ISA manual. The links for pseudo-instructions go to the entry for the underlying hardware
instruction aliased by that pseudo-instruction.

TP
The instruction names at the left-hand margin of the instruction listings are links back to this index. Use them to
quickly return here and look up another instruction.
Alphabetical order: left-to-right, then top-to-bottom.
add addi amoadd.w amoand.w amomax . w amomaxu.w
amomin.w amominu.w amoor .w amoswap.w amoxor .w and
andi andn auipc belr belri beq
beqz bext bexti bge bgeu bgez
bgt bgtu bgtz binv binvi ble
bleu blez blt bltu bltz bne
bnez brev8 bset bseti clz cm.mvadls
cm.mvsadl cm.pop cm.popret cm.popretz cm.push cpop
csre csrei esrr csrre esrrci esrrs
csrrsi csrrw csrrwi csrs csrsi csrw
csrwi ctz div divu ebreak ecall
fence fence.1i j jal jalr jr
1b 1bu 1h lhu 1r.w lui
w max maxu min minu mret
mul mulh mulhsu mulhu mv neg
nop not or orc.b ori orn
pack packh rem remu ret rev8
rol ror rori sb sc.w seqz
sext.b sext.h sgtz shladd sh2add sh3add
sh s11 s11i slt slti sltiu
sltu sltz snez sra srai srl
srli sub sw unzip wfi xnor
xor xori zext.b zext.h zip

The remainder of this reference guide groups instructions by extension:
® RV32l: base ISA (register-register)
® RV32l: base ISA (register-immediate)
® RV32l: base ISA (large immediate)
® RV32l: base ISA (control transfer)
® RV32l: base ISA (load/store)

3.8. Hazard3 Processor 230

RP2350 Datasheet

® M: multiply and divide

® A:atomics

® C: compressed instructions

® Zba: bit manipulation for address generation

® 7bb: basic bit manipulation

® Zbs: single bit manipulation

® 7bkb: basic bit manipulation for scalar cryptography
® Zcb: additional basic compressed instructions
® Zcmp: compressed push, pop and double-move
® RV32l and Zifencei: memory ordering

® Zicsr: control and status register access

® Privileged instructions

3.8.1.7. RV32I: Base ISA (Register-register)

These instructions calculate a function of two register operands, rs1 and rs2. They write the 32-bit result to a destination
register, rd.

add

Add register to register.
Usage:

add rd, rsi1, rs2
Operation:

rd <= rs1 + rs2;

Compressible if either:
® rd matches rs1, no operands are zero (aka c.add)

® rs2 is zero and neither rd nor rs1is zero (aka c.mv)
and
Bitwise AND register with register.
Usage:

and rd, rs1, rs2

Operation:

3.8. Hazard3 Processor 231

RP2350 Datasheet
]

rd <= rs1 & rs2;

Compressible if: rd matches rs1, registers are in x8 - x15.

or
Bitwise OR register with register.
Usage:
or rd, rsl1, rs2
Operation:
rd <= rs1 | rs2;
Compressible if: rd matches rs1, registers are in x8 - x15.
sl
Shift left, logical. Shift amount is modulo 32.
Usage:
sll rd, rs1, rs2
Operation:
rd <= rsl1 << rs2[4:0];
slt
Set if less than (signed). Result is o for false, 1 for true.
Usage:
slt rd, rs1, rs2
sltz rd, rsi // pseudo: rs2 is zero
sgtz rd, rs2 // pseudo: rs1 is zero
Operation:
rd <= $signed(rs1) < $signed(rs2);
sltu

Set if less than (unsigned). Result is @ for false, 1 for true.

Usage:

]
3.8. Hazard3 Processor 232

RP2350 Datasheet

sltu rd, rs1, rs
snez rd, rs2 // pseudo: rs1 is zero

Operation:

rd <= rsl < rs2;

sra

Shift right, arithmetic. Shift amount is modulo 32.

Usage:

sra rd, rs1, rs2

Operation:

rd <= $signed(rs1) >>> rs2[4:0];

srl

Shift right, logical. Shift amount is modulo 32.

Usage:

srl rd, rs1, rs2

Operation:

rd <= rs1 >> rs2[4:0];

sub
Two's complement subtract register from register.

Usage:

sub rd, rs1, rs2
neg rd, rs2 // pseudo: rs1 is zero

Operation:

rd <= rs1 - rs2;

Compressible if: rd matches rs1, registers are in x8 - x15.

3.8. Hazard3 Processor 233

RP2350 Datasheet
]

xor

Bitwise XOR register with register

Usage:

xor rd, rsi1, rs2

Operation:

rd <= rsl * rs2;

Compressible if: rd matches rs1, registers are in x8 - x15.

3.8.1.8. RV32I: Base ISA (Register-immediate)

These instructions calculate a function of one register rs1 and one immediate operand inm. They write the 32-bit result
to a destination register rd.

Immediate operands are constants encoded directly in the instruction, which avoids the cost of first materialising the
constant value into a register.

addi

Add register to immediate.

Usage:

addi rd, rs1, imm

mv rd, rsi // pseudo: imm is @
nop // pseudo: rd, rs1 are zero, imm is ©
Operation:

rd <= rs1 + imm

Immediate range: -0x800 through ox7ff for 32-bit, smaller for 16-bit.
Compressible if:
® rd matches rs1, and immediate is in the range -0x20 through ox1f (aka c.addi)
® rdis not zero, rs1is zero, and immediate is in the range -0x20 through ox1f (aka c.11)

® rdisinx8-x15, rs1is sp, and immediate is a nonzero multiple of four in the range 0x000 through 0x3fc (aka
c.addi4spn)

® rdis sp, rs1is sp, and immediate is a nonzero multiple of 16 in the range -0x200 through 0x1f0 (aka c.addi16sp)
Note compressed c.mv canonically expands to add, not addi.

andi

Bitwise AND register with immediate.

Usage:

]
3.8. Hazard3 Processor 234

RP2350 Datasheet
]

andi rd, rs1, imm
zext.b rd, rsi // pseudo: imm is @xff

Operation:

rd <= rs1 & imm;

Immediate range: -0x800 through ox7f for 32-bit, -0x20 through ox1f for 16-bit.
Compressible if: rd matches rs1, registers are in x8 - x15, and immediate is in the range -0x20 through ox1f.

ori

Bitwise OR register with immediate.

Usage:

ori rd, rs1, imm

Operation:

rd <= rs1 | imm;

Immediate range: -0x800 through 0x7ff

s11i

Shift left, logical, immediate.

Usage:

slli rd, rs1, imm

Operation:

rd <= rs1 << imm;

Immediate range: 0 through 31.
Compressible if: rd matches rs1, registers are not zero.

slti
Set if less than immediate (signed). Result is @ for false, 1 for true.
Usage:

slti rd, rs1, imm

Operation:

]
3.8. Hazard3 Processor 235

RP2350 Datasheet

rd <= $signed(rs1) < $signed(imm);

Immediate range: -0x800 through 0x7ff

sltiu

Set if less than immediate (unsigned). Result is o for false, 1 for true.

Usage:

sltiu rd, rs1, imm
seqz rd, rsi // pseudo: imm is 1

Operation:

rd <= rs1 < imm;

Immediate range: -0x800 through 0x7ff

Note the negative values indicated for the immediate range are two’s complement: this instruction uses them in an
unsigned context, so -0x800 through -0x001 can be thought of as +oxfffff800 through +oxffffffff for the comparison.

srai

Shift right, arithmetic, immediate.

Usage:

srai rd, rs1, imm

Operation:

rd <= $signed(rs1) >>> imm;

Immediate range: 0 through 31.
Compressible if: rd matches rs1, registers are in x8 through x15.

srli

Shift right, logical, immediate.

Usage:

srli rd, rs1, imm

Operation:

rd <= rs1 >> imm;

Immediate range: 0 through 31.

3.8. Hazard3 Processor 236

RP2350 Datasheet
]

Compressible if: rd matches rs1, registers are in x8 through x15.

xori

Bitwise XOR register with immediate.

Usage:

xori rd, rsi1, imm
not rd, rsi // pseudo: imm is -1

Operation:

rd <= rs1 » imm;

Immediate range: -0x800 through 0x7ff

Compressible if: rd matches rs1, registers are in x8 - x15, and immediate is -1 (aka c.not)

3.8.1.9. RV32I: Base ISA (Large Immediate)

These instructions are the first in a two-instruction sequence to materialise a 32-bit constant, or a 32-bit offset from pc.
auipe
Add upper immediate to program counter.

Usage:

auipc rd, imm

Operation:

rd <= pc + (imm << 12);

Immediate range: -0x80000 through 0x7ffff.

Note -0x80000 through -0x00001 are equivalent to 0x80000 through oxfffff after the left shift (on RV32 only) and the
assembler may also accept these positive values.

lui
Load upper immediate.
Usage:

lui rd, imm

Operation:

]
3.8. Hazard3 Processor 237

RP2350 Datasheet

rd <= imm << 12;

Immediate range: -0x80000 through ox7ffff if 32-bit, or -0x20 through ox1f if 16-bit.
Compressible if: rd is neither zero nor sp, and imm is nonzero in the range -0x20 through ox1f.

Note -0x80000 through -0x00001 are equivalent to 0x80000 through oxfffff after the left shift (on RV32 only) and the
assembler may also accept these positive values.

3.8.1.10. RV32I: Base ISA (Control Transfer)

These instructions modify the value of pc. When unmodified, pc increments by the size of the current instruction in bytes.

Conditional branches either modify or do not modify pc, based on a comparison between two registers. There is no flags
register, however you can pass boolean conditions into branches by comparing a register with the zero register.

beq

bge

Branch if equal.

Usage:

beq rs1, rs2, label
beqz rs1, label // pseudo: rs2 is zero

Operation:

if (rs1 == rs2)
pc <= label;

Immediate range: even values in the range -0x1000 through oxoffe (+4 kB) if 32-bit, or -0x100 through 0xofe (+256 B) if
16-bit.

Compressible if: rs2 is zero, and immediate is in the range -0x100 through 0xéfe (aka c.beqz).

Branch if greater than or equal (signed).

Usage:

bge rs1, rs2, label

bgez rs1, label // pseudo: rs2 is zero
ble rs2, rs1, label // pseudo: operands swapped by assembler
blez rs2, label // pseudo: rs1 is zero

Operation:

if ($signed(rs1) >= Ssigned(rs2))
pc <= label;

Immediate range: even values in the range -0x1000 through oxoffe (+4 kB)

]
3.8. Hazard3 Processor 238

RP2350 Datasheet
]

bgeu

Branch if less than or equal (unsigned).

Usage:

bgeu rs1, rs2, label
bleu rs2, rs1, label // pseudo: operands swapped by assembler

Operation:

if (rs1 >= rs2)
pc <= label;

Immediate range: even values in the range -0x1000 through oxoffe (+4 kB)

blt

Branch if less than (signed).

Usage:

blt rs1, rs2, label

bltz rs1, label // pseudo: rs2 is zero
bgt rs2, rs1, label // pseudo: operands swapped by assembler
bgtz rs2, label // pseudo: rs1 is zero

Operation:

if (Ssigned(rs1) < $signed(rs2))
pc <= label;

Immediate range: even values in the range -0x1000 through oxoffe (+4 kB)

bltu

Branch if less than (unsigned).

Usage:

bltu rs1, rs2, label
bgtu rs2, rs1, label // pseudo: operands swapped by assembler

Operation:

if (rs1 < rs2)
pc <= label;

Immediate range: even values in the range -0x1000 through oxoffe (+4 kB)

bne

Branch if not equal.

]
3.8. Hazard3 Processor 239

RP2350 Datasheet
]

Usage:

bne rs1, rs2, label
bnez rs1, label // pseudo: rs2 is zero

Operation:

if (rs1 !'= rs2)
pc <= label;

Immediate range: even values in the range -0x1000 through oxoffe (+4 kB) if 32-bit, or -0x100 through 0xofe (+256 B) if
16-bit.

Compressible if: rs2 is zero, and immediate is in the range -0x100 through 0xofe (aka c.bnez).
jal
Jump and link, pc-relative.

Usage:

jal rd, label

jal label // pseudo: rd is ra
j label // pseudo: rd is zero
Operation:

rd <= pc + 4; // or +2 if opcode is 16-bit
pc <= label;

Immediate range: even values in the range -0x100000 through oxoffffe (1 MB) if 32-bit, or -0x800 through 0x7fe
(+2 kB) if 16-bit.

Compressible if: rd is zero or ra, and immediate is in the range -0x800 through 0x7fe.

jalr
Jump and link, register-offset.

Usage:

jalr rd, rs1, imm // (imm is implicitly @ if omitted.)
jalr rd, imm(rs1) // alternate syntax. (imm is implicitly @ if omitted.)
jalr rs1, imm // pseudo: rd is ra. (imm is implicitly @ if omitted.)
jalr imm(rs1) // pseudo: rd is ra. (imm is implicitly @ if omitted.)
jr rs1, imm // pseudo: rd is zero. (imm is implicitly @ if omitted.)
jr imm(rs1) // pseudo: rd is zero. (imm is implicitly @ if omitted.)
ret // pseudo for jr ra
Operation:

]
3.8. Hazard3 Processor 240

RP2350 Datasheet

rd <= pc + 4; // or +2 if opcode is 16-bit
pc <= rs1 + imm;

Immediate range: -0x800 through 0x7ff.

Compressible if: rd is zero or ra, immediate is zero, and rs1 is not zero.

3.8.1.11. RV32I: Base ISA (Load and Store)

These instructions transfer data between memory and core registers. The register operand rs1 and immediate inm are
added to form the address. Stores write register operand rs2 into memory, and loads read from memory into the
destination register rd.

All load and store instructions to naturally aligned addresses on RISC-V are single-copy atomic. This means a naturally-
aligned load does not observe byte tearing between the values that a memory location held before and after any
naturally-aligned store to that location. Equivalently, all bytes covered by a single naturally-aligned load or store
instruction transfer in a single transaction with the memory subsystem.

Hazard3 raises an exception on a load or store to a non-naturally-aligned address. See Section 3.8.4.1 for an exhaustive
list of exception causes.
1b

Load signed byte from memory.

Usage:

1b rd, imm(rs1)
1b rd, (rs1) // imm is implicitly @ if omitted.

Operation:

reg [31:0] addr;
addr = rs1 + imm;
if (bus_fault(addr)) begin
raise_exception(4'h5); // Cause = load fault
end else begin
rd <= {
{24{mem[addr][7]}}, // Sign-extend
mem[addr]
bE:

end

Immediate range: -0x800 through 0x7ff for 32-bit, or 0x0 through 0x3 for 16-bit.
Compressible if: rd and rs1 are in x8 through x15, and immediate is in the range 0x0 through 0x3.

1bu

Load unsigned byte from memory.

Usage:

lbu rd, imm(rs1)
lbu rd, (rs1) // imm is implicitly @ if omitted.

3.8. Hazard3 Processor 241

RP2350 Datasheet

1h

lhu

Operation:

reg [31:0] addr;
addr = rs1 + imm;
if (bus_fault(addr)) begin
raise_exception(4'h5); // Cause = load fault
end else begin
rd <= {
24'h000000, // Zero-extend
mem[addr]
b

end

Immediate range: -0x800 through ox7ff for 32-bit, or xo through 0x3 for 16-bit.

Compressible if: rd and rs1 are in x8 through x15, and immediate is in the range 0x0 through 0x3.

Load signed halfword from memory.

Usage:

1h rd, imm(rs1)
lh rd, (rs1) // imm is implicitly @ if omitted.

Operation:

reg [31:0] addr;
addr = rs1 + imm;
if (addr[@]) begin

raise_exception(4'h4); // Cause = unaligned load
end else if (bus_fault(addr)) begin
raise_exception(4'h5); // Cause = load fault
end else begin
rd <= {
{16{mem[addr + 1][7]}}, // Sign-extend
mem[addr + 1],
mem[addr]
h

end

Immediate range: -0x800 through ox7ff for 32-bit, or even values in the range 0x0 through 0x2 for 16-bit.

Compressible if: rd and rs1 are in x8 through x15, and immediate is 0x0 or 0x2.

Load unsigned halfword from memory.

Usage:

lhu rd, imm(rs1)
lhu rd, (rs1) // imm is implicitly @ if omitted.

Operation:

3.8. Hazard3 Processor

242

RP2350 Datasheet
]

reg [31:0] addr;
addr = rs1 + imm;
if (addr[0]) begin
raise_exception(4'h4); // Cause = unaligned load
end else if (bus_fault(addr)) begin
raise_exception(4'h5); // Cause = load fault
end else begin
rd <= {
16'h00o0, // Zero-extend
mem[addr + 1],
mem[addr]
b

end

Immediate range: -0x800 through ox7f for 32-bit, or even values in the range 0x0 through 0x2 for 16-bit.

Compressible if: rd and rs1 are in x8 through x15, and immediate is 0x0 or 0x2.

w
Load word from memory.
Usage:
1w rd, imm(rs1)
1w rd, (rs1) // imm is implicitly @ if omitted.
Operation:
reg [31:0] addr;
addr = rs1 + imm;
if (addr[1:0]) begin
raise_exception(4'h4); // Cause = unaligned load
end else if (bus_fault(addr)) begin
raise_exception(4'h5); // Cause = load fault
end else begin
rd <= {
mem[addr + 3], // Note little-endian;
mem[addr + 2], // MSBs are highest address
mem[addr + 1],
mem[addr]
b
end
Immediate range: -0x800 through 0x7ff for 32-bit, smaller for 16-bit.
Compressible if:
e rdand rs1arein x8 - x15, and immediate is a multiple of four in the range -0x40 through 0x3c (aka c.1w)
® rdisnot zero, rs1is sp, and immediate is a multiple of four in the range 0x00 through oxfc (aka c.lwsp)
sb

Store byte to memory.

Usage:

]
3.8. Hazard3 Processor 243

RP2350 Datasheet

sb rs2, imm(rs1)
sb rs2, (rs1) // imm is implicitly @ if omitted.

Operation:

reg [31:0] addr;
addr = rs1 + imm;
if (bus_fault(addr)) begin
raise_exception(4'h7); // Cause = store/AMO fault
end else begin
mem[addr] <= rs2[7:0];
end

Immediate range: -0x800 through ox7f for 32-bit, or xo through 0x3 for 16-bit.

Compressible if: rd and rs1 are in x8 through x15, and immediate is in the range 0x0 through 0x3.

sh
Store halfword to memory.
Usage:
sh rs2, imm(rs1)
sh rs2, (rs1) // imm is implicitly @ if omitted.
Operation:
reg [31:8] addr;
addr = rs1 + imm;
if (addr[0]) begin
raise_exception(4'h6); // Cause = unaligned store/AMO
end else if (bus_fault(addr)) begin
raise_exception(4'h7); // Cause = store/AMO fault
end else begin
mem[addr] <= rs2[7:0];
mem[addr + 1] <= rs2[15:8];
end
Immediate range: -0x800 through ox7ff for 32-bit, or even values in the range 0x0 through 0x2 for 16-bit.
Compressible if: rd and rs1 are in x8 through x15, and immediate is 0x0 or 0x2.
sw

Store word to memory.

Usage:

sw rs2, imm(rs1)
sw rs2, (rs1) // imm is implicitly @ if omitted.

Operation:

3.8. Hazard3 Processor 244

RP2350 Datasheet

reg [31:0] addr;
addr = rs1 + imm;
if (addr[1:8]) begin

raise_exception(4'h6); // Cause = unaligned store/AMO
end else if (bus_fault(addr)) begin

raise_exception(4'h7); // Cause = store/AMO fault
end else begin

mem[addr] <= rs2[7:0];

mem[addr + 1] <= rs2[15:8];

mem[addr + 2] <= rs2[23:16];

mem[addr + 3] <= rs2[31:24];
end

Immediate range: -0x800 through ox7ff for 32-bit, smaller for 16-bit.

Compressible if:

® rs1and rs2 are in x8 - x15, and immediate is a multiple of four in the range -0x40 through 0x3c (aka c.sw)

® rs2is not zero, rs1is sp, and immediate is a multiple of four in the range 0x80 through oxfc (aka c.swsp)

3.8.1.12. M: Multiply and Divide

These instructions implement integer multiply, divide and modulo.

div
Divide (signed).
Usage:
div rd, rsi1, rs2
Operation:
if (rs2 == 32'h0)
rd <= 32'hffffffff; // Defined for division by zero
else if (rs1 == 32'h80000B0AOO && rs2 == 32'hffffffff)
rd <= 32'h800060000; // Defined for signed overflow
else
rd <= $signed(rs1) / S$signed(rs2); // Sign of rd is XOR of signs
divu
Divide (unsigned).

Usage:

divu rd, rsi1, rs2

Operation:

3.8. Hazard3 Processor 245

RP2350 Datasheet

if (rs2 == 32'h0)

rd <= 32'hffffffff; // Defined for division by zero
else

rd <= rs1 / rs2;

mul

Multiply 32 x 32 — 32.

Usage:

mul rd, rsi1, rs2

Operation:

rd <= rsl * rs2;

Compressible if: rd matches rs1, registers are in x8 through x15.
mulh
Multiply signed (32) by signed (32), return upper 32 bits of the 64-bit result.

Usage:

mulh rd, rsi1, rs2

Operation:

// Both operands are sign-extended to 64 bits:
reg [63:0] result_full;

result_full = {{32{rs1[31]}}, rs1} * {{32{rs2[31]}}, rs2};
rd <= result_full[63:32];

mulhsu
Multiply signed (32) by unsigned (32), return upper 32 bits of the 64-bit result.

Usage:

mulhsu rd, rsi1, rs2

Operation:

// rs1 is sign-extended, rs2 is zero-extended:

reg [63:0] result_full;

result_full = {{32{rs1[31}}, rs1} * {32'h0000000O, rs2};
rd <= result_full[63:32];

3.8. Hazard3 Processor 246

RP2350 Datasheet

mulhu

Multiply unsigned (32) by unsigned (32), return upper 32 bits of the 64-bit result.

Usage:

mulhu rd, rs1, rs2

Operation:

// Both operands are zero-extended to 64 bits:

reg [63:0] result_full;

result_full = {32'h000000OO, rs1} * {32'h0000OOOO, rs2};
rd <= result_full[63:32];

rem

Remainder (signed).

Usage:

rem rd, rsi1, rs2

Operation:

if (rs2 == 32'h0)
rd <= rsi; // Defined for division by zero
else

rd <= $signed(rs1) % Ssigned(rs2); // Sign of rd is sign of rsi

remu

Remainder (unsigned).

Usage:

remu rd, rsi1, rs2

Operation:

if (rs2 == 32'h0)
rd <= rsi;
else
rd <= rs1 % rs2;

3.8.1.13. A: Atomics
These instructions help software to safely and concurrently modify shared variables. They fall into two groups:

3.8. Hazard3 Processor 247

RP2350 Datasheet
]

® 1r.wand sc.w, load-reserved and store-conditional instructions, which allow software to safely perform read-modify-
write operations on shared variables by looping until success

® amo*.w instructions (atomic memory operations or AMOs), which atomically modify a memory location and return
the value it held immediately prior to modification

The pseudocode in this section references the 1-bit global variable 1ocal_monitor_valid. It is true when the hart has:
® previously completed a successful AHB5 exclusive read
® not attempted an exclusive write since the read
* not been interrupted or taken an exception since the read (implementation-defined behaviour)

The pseudocode maintains this invariant over the local_monitor_valid flag. This flag helps the hart maintain atomicity of
its read-modify-write sequences with respect to its own interrupts. Hardware refuses to perform exclusive writes when
the local monitor flag is not set.

AMOs clear the local monitor state even when bailing out during the read phase, since even in this case you have
attempted to execute an instruction which performs an exclusive write. In an 1r.w, sc.w sequence with an AMO executed
in between, the sc.w always fails.

Hazard3 builds its atomic shared memory implementation on top of AHB5 exclusive accesses. The following tasks,
used throughout this section, represent AHBS5 32-bit exclusive reads and writes:

// Read 32 bits from memory and return reservation success/fail according to
// global monitor. Set local monitor bit if the reservation succeeded.
task exclusive_read_32;
input [31:0] addr;
output [31:8] data;
output exclusive_ok;
begin
data = {
mem[addr + 3],
mem[addr + 2],
mem[addr + 1],
mem[addr]
IE
local_monitor_valid = global_monitor_read(addr);
exclusive_ok = local_monitor_valid;
end
endtask

// Attempt to write 32 bits to memory, and return write success/fail according
// to global monitor. Always clear the local monitor flag.
task exclusive_write_32;

input [31:0] addr;

input [31:0] data;

output exclusive_ok;
begin
if (!local_monitor_valid) begin
exclusive_ok = 0; // Write refused by local monitor
end else if (global_monitor_write(addr)) begin
exclusive_ok = 1; // Write succeeds

mem[addr + 3] <= data[31:24];
mem[addr + 2] <= data[23:16];
mem[addr + 1] <= data[15: 8];
mem[addr + @] <= data[7: 0];
end else begin
exclusive_ok = 0; // Write refused by global monitor
end
local_monitor_valid = ©; // Always clear local monitor
end

]
3.8. Hazard3 Processor 248

RP2350 Datasheet
]

endtask

The functions global_monitor_read(addr); and global_monitor_write(addr); in the above code return the global monitor
response for an exclusive read or write to this address, following the rules laid out in Section 2.1.6. The global monitor
enforces atomicity of this hart’s read-modify-write sequences with respect to other harts sharing the same memory.

Because Hazard3 implements an AMO as a hardware-sequenced read-modify-write retry loop using AHB5 exclusives,
the hardware promotes a read reservation failure during an AMO to a store/AMO fault exception (mcause = 7). This
behaviour avoids an infinite loop when accessing locations which do not support exclusive access.

The following local variables are common to all AMO pseudocode:

reg done = 0;
reg exclusive_success;
reg [31:0] tmp;

amoadd.w

Atomically add register to memory and return original memory value.

Usage:

amoadd.w rd, rs2, (rs1)

Operation:

if (rs1[1:0]) begin
raise_exception(4'h6); // Cause: store/AMO align
done = 1;
end
while (!done) begin
exclusive_read_32(rs1, tmp, exclusive_success);
if ('exclusive_success || bus_fault(addr)) begin
raise_exception(4'h7); // Cause: store/AMO fault
done = 1;
end else begin
tmp = tmp + rs2;
exclusive_write_32(rs1, tmp, done);
end
end
local_monitor_valid = 0; // Always clear local monitor

amoand.w
Atomically bitwise AND register into memory. Return original memory value.
Usage:

amoand.w rd, rs2, (rs1)

Operation:

]
3.8. Hazard3 Processor 249

RP2350 Datasheet

if (rs1[1:0]) begin
raise_exception(4'h6); // Cause: store/AMO align
done = 1;
end
while (!done) begin
exclusive_read_32(rs1, tmp, exclusive_success);
if (!exclusive_success || bus_fault(addr)) begin
raise_exception(4'h7); // Cause: store/AMO fault
done = 1;
end else begin
tmp = tmp & rs2;
exclusive_write_32(rs1, tmp, done);
end
end

local_monitor_valid = 0; // Always clear local monitor

amomax.w
Atomically: check if register is signed-greater-than memory value, and write to memory if true. Return original

memory value.

Usage:
amomax.w rd, rs2, (rs1)
Operation:

if (rs1[1:0]) begin
raise_exception(4'h6); // Cause: store/AMO align
done = 1;
end
while (!done) begin
exclusive_read_32(rs1, tmp, exclusive_success);
if (!exclusive_success || bus_fault(addr)) begin
raise_exception(4'h7); // Cause: store/AMO fault
done = 1;
end else begin
tmp = Ssigned(tmp) < $signed(rs2) ? rs2 : tmp;
exclusive_write_32(rs1, tmp, done);
end
end

local_monitor_valid = 0; // Always clear local monitor

amomaxu.w
Atomically: check if register is unsigned-greater-than memory value, and write to memory if so. Return original

memory value.

Usage:
amomaxu.w rd, rs2, (rsi)

Operation:

3.8. Hazard3 Processor 250

RP2350 Datasheet
]

if (rs1[1:0]) begin
raise_exception(4'h6); // Cause: store/AMO align
done = 1;
end
while (!done) begin
exclusive_read_32(rs1, tmp, exclusive_success);
if (!exclusive_success || bus_fault(addr)) begin
raise_exception(4'h7); // Cause: store/AMO fault
done = 1;
end else begin
tmp = tmp < rs2 ? rs2 : tmp;
exclusive_write_32(rs1, tmp, done);
end
end
local_monitor_valid = 0; // Always clear local monitor

amomin.w
Atomically: check if register is signed-less-than memory value, and write to memory if so. Return original memory

value.

Usage:

amomin.w rd, rs2, (rs1)

Operation:

if (rs1[1:0]) begin
raise_exception(4'h6); // Cause: store/AMO align
done = 1;
end
while (!done) begin
exclusive_read_32(rs1, tmp, exclusive_success);
if (!exclusive_success || bus_fault(addr)) begin
raise_exception(4'h7); // Cause: store/AMO fault
done = 1;
end else begin
tmp = Ssigned(tmp) < $signed(rs2) ? tmp : rs2;
exclusive_write_32(rs1, tmp, done);
end
end
local_monitor_valid = 0; // Always clear local monitor

amominu.w
Atomically: check if register is unsigned-less-than memory value, and write to memory if so. Return original memory

value.

Usage:

amominu.w rd, rs2, (rsi)

Operation:

]
3.8. Hazard3 Processor 251

RP2350 Datasheet

if (rs1[1:0]) begin
raise_exception(4'h6); // Cause: store/AMO align
done = 1;
end
while (!done) begin
exclusive_read_32(rs1, tmp, exclusive_success);
if (!exclusive_success || bus_fault(addr)) begin
raise_exception(4'h7); // Cause: store/AMO fault
done = 1;
end else begin
tmp = tmp < rs2 ? tmp : rs2;
exclusive_write_32(rs1, tmp, done);
end
end

local_monitor_valid = 0; // Always clear local monitor

amoor .w

Atomically bitwise OR register into memory. Return original memory value.

Usage:
amoor.w rd, rs2, (rs1)
Operation:

if (rs1[1:8]) begin
raise_exception(4'h6); // Cause: store/AMO align
done = 1;
end
while (!done) begin
exclusive_read_32(rs1, tmp, exclusive_success);
if ('exclusive_success || bus_fault(addr)) begin
raise_exception(4'h7); // Cause: store/AMO fault
done = 1;
end else begin
tmp = tmp | rs2;
exclusive_write_32(rs1, tmp, done);
end
end

local_monitor_valid = ©; // Always clear local monitor

amoswap.w
Atomically: write a value to memory, and return the value the memory location held immediately prior to the write.
Usage:

amoswap.w rd, rs2, (rs1)

Operation:

3.8. Hazard3 Processor 252

RP2350 Datasheet
]

if (rs1[1:0]) begin
raise_exception(4'h6);
done = 1;

// Cause: store/AMO align

end
while (!done) begin
exclusive_read_32(rs1, tmp, exclusive_success);
if (!exclusive_success || bus_fault(addr)) begin
raise_exception(4'h7);
done = 1;
end else begin
exclusive_write_32(rs1, rs2, done);

// Cause: store/AMO fault

end
end

local_monitor_valid = ©; // Always clear local monitor

amoxor.w

Atomically bitwise OR register into memory. Return original memory value.
Usage:
amoxor.w rd, rs2, (rs1)

Operation:

if (rs1[1:0]) begin
raise_exception(4'h6);
done = 1;

// Cause: store/AMO align

end
while (!done) begin
exclusive_read_32(rs1, tmp, exclusive_success);
if (!exclusive_success || bus_fault(addr)) begin
raise_exception(4'h7); // Cause: store/AMO fault
done = 1;
end else begin
exclusive_write_32(rs1, rs2, done);
end
end

local_monitor_valid = ©; // Always clear local monitor

lr.w
Load a value from memory and make a reservation with the global monitor. Set local monitor bit according to

reservation success.
Usage:

Ir.w rd, (rs1)

Operation:

I
253

3.8. Hazard3 Processor

RP2350 Datasheet
]

sc.w

if (rs1[1:0]) begin
raise_exception(4'h4); // Cause: load align

end

end

end

else if (bus_fault(rs1)) begin

raise_exception(4'h5); // Cause: load fault

else begin

read_exclusive_32(rs1, tmp, local_monitor_valid);

rd <= tmp;

Conditionally store a value to memory. Succeed if reservation is valid at both local and global monitor. Return 1 for
failure, @ for success.

Usage:

sc.w rd, rs2, (rs1)

Operation:

if (rs1[1:0]) begin

end

end

end

end

raise_exception(4'h6);
else if (bus_fault(addr)) begin
raise_exception(4'h7);

else if (!'local_monitor_valid) begin

rd <= 1;
else begin

// Cause: store/AMO align

// Cause: store/AMO fault

// Refused by local monitor

write_exclusive_32(rs1, rs2, exclusive_success);

rd <= !exclusive_success;

local_monitor_valid = 0;

3.8.1.14. C: Compressed Instructions

// Always clear local monitor

All instructions in the C extension are 16-bit aliases of 32-bit instructions from other extensions. In the case of Hazard3,
which lacks the F extension, these are all aliases of base I instructions. They behave identically to their 32-bit

counterparts.

¢ adds compressed aliases for the following instructions from RV32l:

Alphabetical order: left-to-right, then top-to-bottom.

add addi and andi beq bne
ebreak jal jalr lui 1w or
slli srai srli sub sw xor

See the per-instruction documentation for the compression limitations of each instruction. The assembler automatically

uses compressed variants when the limitations are met, and when the relevant compressed instruction extension is
enabled for the assembler, for example by passing c in the -march ISA string.

The above also applies to Zca and Zcb: the former is an alias for the non-floating-point subset of ¢, and the latter adds 16-
bit aliases for additional common instructions from the I, M and Zbb extensions. Each Zcmp instruction expands to a

sequence of multiple instructions from the I extension.

3.8. Hazard3 Processor

254

RP2350 Datasheet

(Return to index)

3.8.1.15. Zba: Bit manipulation (address generation)

These instructions accelerate address generation for arrays of 2, 4 and 8-byte elements. They can also multiply by
constant values 3, 5 and 9 if that is more your style.

sh1add
Add, with the first addend shifted left by 1.
Usage:
shladd rd, rs1, rs2

Operation:

rd <= (rs1 << 1) + rs2;

sh2add
Add, with the first addend shifted left by 2.
Usage:
sh2add rd, rs1, rs2

Operation:

rd <= (rs1 << 2) + rs2;

sh3add
Add, with the first addend shifted left by 3.

Usage:

sh3add rd, rsi1, rs2

Operation:

rd <= (rs1 << 3) + rs2;

3.8.1.16. Zbb: Bit manipulation (basic)
These instructions are useful for bitfield manipulation, and complex integer arithmetic, such as in soft floating point
routines. Many of them substitute directly for common pairs of RV32l instructions, like zext.h — s11, srl.

3.8. Hazard3 Processor 255

RP2350 Datasheet

andn

Bitwise AND with inverted second operand.

Usage:

andn rd, rs1, rs2

Operation:

rd <= rs1 & ~rs2;

clz

Count leading zeroes (starting from MSB, searching LSB-ward).

Usage:

clz rd, rsi

Operation:

rd <= 32; // Default = 32 if no set bits
reg found = 1'b@; // Local variable

for (i =08; 1 <32; 1 =1 + 1) begin
if (rs1[31 - i] && !found) begin
found = 1'b1;
rd <= i;
end
end

cpop

Population count.
Usage:
cpop rd, rsi

Operation:

reg [5:0] sum = 6'de; // Local variable
for (i =0; 1 <32; 1=1+1)
sum = sum + rs1[i];

rd <= sum;

ctz

Count trailing zeroes (starting from LSB, searching MSB-ward).

3.8. Hazard3 Processor 256

RP2350 Datasheet

Usage:

ctz rd, rsi

Operation:

rd <= 32; // Default = 32 if no set bits
reg found = 1'b@; // Local variable

for (i =08; 1 <32; 1 =1 + 1) begin
if (rs1[i] && !found) begin
found = 1'b1;
rd <= 1i;
end
end

max

Maximum of two values (signed).

Usage:

max rd, rsi1, rs2

Operation:

if ($signed(rs1) < $signed(rs2))
rd <= rs2;

else
rd <= rsi;

maxu
Maximum of two values (unsigned).
Usage:
maxu rd, rs1, rs2
Operation:
if (rs1 < rs2)
rd <= rs2;
else
rd <= rsi;
min

Minimum of two values (signed).

3.8. Hazard3 Processor 257

RP2350 Datasheet
]

Usage:

min rd, rsi1, rs2

Operation:

if ($signed(rs1) < $signed(rs2))
rd <= rsi;

else
rd <= rs2;

minu
Minimum of two values (unsigned).

Usage:

minu rd, rsi1, rs2

Operation:

if (rs1 < rs2)
rd <= rsi;
else
rd <= rs2;

orc.b

OR-combine of bits within each byte. Generates a mask of nonzero bytes.

Usage:

orc.b rd, rsi

Operation:

rd <= {
{8{|rs1[31:24]}},
{8{|rs1[23:16]}},
{8{|rs1[15:8]}},
{8{|rs1[7:0]}}

i

orn

Bitwise OR with inverted second operand.

Usage:

]
3.8. Hazard3 Processor 258

RP2350 Datasheet
]

orn rd, rsi1, rs2

Operation:

rd <= rs1 | ~rs2;

revg

Reverse bytes within word.

Usage:

rev8 rd, rsi

Operation:

rd <= {
rs1[7:0],
rs1[15:81],
rs1[23:16],
rs1[31:24]

rol

Rotate left by register, modulo 32.

Usage:

rol rd, rsi1, rs2

Operation:

rd <= ({rs1, rs1} << rs2[4:08]) >> 32;

ror
Rotate right by register, modulo 32.
Usage:

ror rd, rsi1, rs2

Operation:

]
3.8. Hazard3 Processor 259

RP2350 Datasheet
]

rd <= {rs1, rs1} >> rs2[4:0];

rori

Rotate right by immediate.

Usage:

rori rd, rs1, imm

Operation:

rd <= {rs1, rs1} >> imm;

Immediate range: 0 through 31.

sext.b

Sign-extend from byte.

Usage:

sext.b rd, rsi

Operation:

rd <= {
{24{rs1[71}},
rs1[7:0]

b

Compressible if: rd matches rs1, and registers are in x8 - x15.

sext.h

Sign-extend from halfword.

Usage:

sext.h rd, rsi

Operation:

rd <= {
{16{rs1[15]}},
rs1[15:0]

IF

Compressible if: rd matches rs1, and registers are in x8 - x15.

]
3.8. Hazard3 Processor 260

RP2350 Datasheet

xnor

Bitwise XOR with inverted operand. Equivalently, bitwise NOT of bitwise XOR.

Usage:

xnor rd, rs1, rs2

Operation:

rd <= rs1 * ~rs2;

zext.b

Zero-extend from byte.

Usage:

zext.b rd, rsi

Operation:

rd <= {
24'h000000,
rs1[7:0]

b5

Compressible if: rd matches rs1, and registers are in x8 - x15.

The 32-bit opcode for zext.b is a pseudo-instruction for andi. However, the compressed variant is a dedicated
instruction from Zcb. It is not actually a part of zbb, but is documented here for grouping with the other sext./zext
instructions.

zext.h

Zero-extend from halfword.

Usage:

zext.h rd, rsi

Operation:

rd <= {
16'hoooe,
rs1[15:0]
b

Compressible if: rd matches rs1, and registers are in x8 - x15.

3.8. Hazard3 Processor 261

RP2350 Datasheet
]

3.8.1.17. Zbs: Bit manipulation (single-bit)

These instructions invert, set, clear and extract single bits in a register.

belr
Clear single bit.
Usage:
bclr rd, rsi1, rs2

Operation:

rd <= rs1 & ~(32'h1 << rs2[4:0]);

belri
Clear single bit (immediate).
Usage:
bclri rd, rs1, imm
Operation:
rd <= rs1 & ~(32'h1 << imm);
Immediate range: 0 through 31.
bext
Extract single bit.
Usage:
bext rd, rs1, rs2

Operation:

rd <= (rs1 >> rs2[4:0]) & 32'h1;

bexti

Extract single bit (immediate).

Usage:

bexti rd, rsi1, imm

]
3.8. Hazard3 Processor 262

RP2350 Datasheet
]

Operation:

rd <= (rs1 >> imm) & 32'h1;

Immediate range: 0 through 31.

binv
Invert single bit.
Usage:
binv rd, rs1, rs2
Operation:
rd <= rs1 * (32'h1 << rs2[4:0]);
binvi
Invert single bit (immediate).
Usage:
binvi rd, rs1, imm
Operation:
rd <= rs1 A (32'h1 << imm);
Immediate range: 0 through 31.
bset
Set single bit.
Usage:
bset rd, rs1, rs2
Operation:
rd <= rs1 | (32'h1 << rs2[4:0])
bseti

Set single bit (immediate).

Usage:

]
3.8. Hazard3 Processor 263

RP2350 Datasheet
]

bseti rd, rs1, imm

Operation:

rd <= rs1 | (32'h1 << imm);

Immediate range: 0 through 31.

3.8.1.18. Zbkb: Basic bit manipulation for cryptography

Zbkb has a large overlap with zbb (basic bit manipulation). This section covers instructions in zbkb but not in zbb.

brev8

Bit-reverse within each byte.

Usage:

brev8 rd, rsi

Operation:

for (i =08; 1 <32; 1 =1 + 8) begin
for (j =0; j <8; j=3j+ 1) begin
rd[i + j] <= rs1[i + (7 - j)]1;
end
end

pack

Pack two halfwords into one word.

Usage:

pack rd, rsi1, rs2

Operation:
rd <= {
rs2[15:0],
rs1[15:0]
IE
packh

Pack two bytes into one halfword.

Usage:

]
3.8. Hazard3 Processor 264

RP2350 Datasheet

packh rd, rs1, rs2

Operation:
rd <= {
16'hoooe,
rs2[7:0],
rs1[7:0]
b
unzip

Deinterleave odd/even bits of register into upper/lower half of result.

Usage:

unzip rd, rsi

Operation:

for (1 =0; i <32; 1 =1+ 2) begin
rd[i / 2] <= rs1[i];
rd[i / 2 + 16] <= rs1[i + 1];
end

zip
Interleave upper/lower half of register into odd/even bits of result.
Usage:
zip rd, rsi
Operation:

for (i =0; 1 <32; 1 =1 + 2) begin
rd[i] <= rs1[i / 2];
rd[i + 1] <= rs1[i / 2 + 16];
end

3.8.1.19. Zch: Additional Basic Compressed Instructions

Zcb adds 16-bit compressed aliases for the following instructions from the I, M and Zbb extensions:

Alphabetical order: left-to-right, then top-to-bottom.

1bu 1h 1hu mul not sb

3.8. Hazard3 Processor 265

RP2350 Datasheet
]

Alphabetical order: left-to-right, then top-to-bottom.

sext.b sext.h sh zext.b zext.h

See per-instruction documentation for the compressibility limitations for each instruction.

(Return to index)

3.8.1.20. Zcmp: Compressed Push, Pop and Double Move

Zemp adds 16-bit instructions which expand to common sequences of 32-bit RV32l instructions used in function
prologues and epilogues. The following is a rough description of the available instructions:

® cm.push: allocates a stack frame and saves registers.
o Push ra onto the stack.
o Optionally push a number of the so through s11 saved registers, consecutively up from so.
o Round the total stack decrement to a multiple of 16 bytes, to maintain stack alignment if already aligned.

o Decrement the stack pointer by up to 48 additional bytes, in multiples of 16 bytes, to allocate additional frame
space.

o There are twelve s* registers, and you can push any number of them except for eleven. If you need to push
more than ten s* registers, push twelve.

® cm.pop: reverse of cm.push. Deallocates a stack frame and restores ra, optionally so through s11.
® cm.popret: equivalent to cm.pop followed by ret. Deallocates a stack frame, restores saved registers, and returns.
® cm.popretz: equivalent to cm.pop; 1i a@, 0; ret. Itis common for functions to return a constant 0.

® cm.mvsadl: move ad and a1l into any two registers in the range s through s7. Used to save arguments over embedded
calls.

® cm.mva@1s: move into ad and a1, from any two registers in sé through s7. Used to restore saved arguments.

See Section 3.8.1.7 for a link to the Zemp specification which covers key details such as stack layout and atomicity with
respect to interrupts. See Section 3.8.7 for cycle counts for these instructions on Hazard3.

(Return to index)

3.8.1.21. RV32I and Zifencei: Memory Ordering Instructions

These instructions control observed memory ordering of loads and stores in multi-hart systems. They also enforce
when a hart’s instruction fetch observes its own stores.

fence

Constrain the position of this hart’s accesses in the total memory order, according to this hart's program order.

Usage:

// <set> is a nonempty string which matches the regex i?o0?r?w?
fence <set>, <set> // predecessor, successor
fence // pseudo: fence iorw, iorw
fence.tso // variant of fence rw, rw; see below

Operation: Hazard3 has no store buffer, and assumes the memory subsystem is sequentially consistent. Therefore
no additional book-keeping is required to enforce ordering on shared memory, and this instruction executes as a no-
op. (The SDK still uses fence instructions, and the ordered variants of amo*.w, for portability across platforms which

]
3.8. Hazard3 Processor 266

RP2350 Datasheet
]

take advantage of relaxed memory ordering.)

Nominally a fence enforces that the predecessor set appears before the successor set in the total memory order.
These sets respectively contain the hart's memory accesses before and after the fence instruction in program order,
and are further filtered by a 4-bit mask each:

® Device input (1)
® Device output (0)
® Read (R)

e Write (W)

The fence.tso (total store order) variant is equivalent to fence rw, rw except that it does not enforce write-before-
read ordering.

fence.i

Instruction fence. Ensure subsequent instruction fetches on this hart observe this hart’s previous stores.

Usage:

fence.i

Operation:
1. Clear the branch target buffer (Section 3.8.7.10)
2. Jump to the instruction at the sequentially-next address (pc + 4), to clear the prefetch buffer.

The prefetch buffer can reorder instruction fetch against stores which are earlier in program order. For example:

la a0, label // get address for store instruction
1i a1, ©@x9002 // get immediate value of c.ebreak
div t1, t1, t1 // long-running instruction, fills prefetch buffer

sh a1, (a@) // write to next address. (16-bit opcode)
label:
nop // (16-bit opcode)

If you execute the above code on Hazard3, you may or may not get a breakpoint exception at 1abel. The outcome
depends on how many cycles the bus accesses take. This is permitted by the RISC-V memory model.

This case is generally only reachable on fall-through, because Hazard3 does not prefetch through control flow
instructions except for the taken backward conditional branch currently allocated in the branch target buffer. In
particular it does not prefetch through indirect branches like ret. You are unlikely to hit this issue in practice;
however, be aware fence. i is the standard mechanism for solving this class of problem.

Hazard3 behaves unpredictably if you write to the address of a conditional branch instruction that is currently
tagged in the branch target buffer, and then execute that conditional branch instruction without first executing a
fence.i. Avoid this by always executing a fence.i between writing to memory and executing that same memory.

3.8.1.22. Zicsr: Control and Status Register Access

These instructions access the control and status registers (CSRs) listed in Section 3.8.9. A CSR instruction may read a
CSR, modify a CSR, or simultaneously read and modify the same CSR. A modification consists of a normal write, an
atomic bit-clear, or an atomic bit-set.

CSR addresses are in the range 0x000 through oxfff (12 bits, 4096 possible CSRs). The CSR address is an immediate
constant in the instruction, so you cannot index CSRs with runtime values. The assembler accepts numeric constants or

]
3.8. Hazard3 Processor 267

RP2350 Datasheet
]

CSR names such as mstatus as CSR addresses.

csrrc

Simultaneously read and clear bits in a CSR.

Usage:

csrrc rd, <addr>, rsi1
csrc <addr>, rsi // pseudo: rd is zero

Operation:

rd <= csr[addr];
if (regnum_rs1 != 5'he0)
csrladdr] <= csr[addr] & ~rs1;

esrrci

Simultaneously read and clear bits in a CSR, with an immediate value for the clear.

Usage:

csrrci rd, <addr>, imm
csrci <addr>, imm // pseudo: rd is zero

Operation:

rd <= csrfaddr];
if (imm !'= 32'h0)
csrladdr] <= csr[addr] & ~imm;

Immediate range: 0 through 31.

Csrrs

Simultaneously read and set bits in a CSR.

Usage:

csrrs rd, <addr>, rsi

csrs <addr>, rsi // pseudo: rd is zero
csrr rd, <addr> // pseudo: rs1 is zero
Operation:

rd <= csr[addr];
if (regnum_rs1 != 5'he0)
csr[addr] <= csr[addr] | rs1;

]
3.8. Hazard3 Processor 268

RP2350 Datasheet
]

csrrsi

Simultaneously read and set bits in a CSR, with an immediate value for the set.

Usage:

csrrsi rd, <addr>, imm
csrsi <addr>, imm // pseudo: rd is zero

Operation:

rd <= csr[addr];
if (imm !'= 32'h0)
csrladdr] <= csr[addr] | imm;

Immediate range: 0 through 31.

csrrw

Simultaneously read and write a CSR.

Usage:

csrrw rd, <addr>, rsi
csrw <addr>, rsi // pseudo: rd is zero

Operation:

if (regnum_rd != 5'h00)
rd <= csr[addr];
csrladdr] <= rs1;

csrrwi

Simultaneously read and write a CSR, with an immediate value for the write.

Usage:

csrrwi rd, <addr>, imm
csrwi <addr>, imm // pseudo: rd is zero

Operation:

if (regnum_rd != 5'h0e)
rd <= csrfaddr];
csrladdr] <= imm;

Immediate range: 0 through 31.

]
3.8. Hazard3 Processor 269

RP2350 Datasheet
]

3.8.1.23. Privileged Instructions

These instructions are part of the trap and interrupt control support defined in the privileged ISA manual. The other part
of this support is the CSRs (Section 3.8.9).

ebreak

Raise a breakpoint exception.

Usage:

ebreak

Operation:

raise_exception(4'h3); // Cause = ebreak

Compressible if: always.
Privilege requirements: any privilege level.

See Section 3.8.4 for details of the RISC-V trap entry sequence. All exceptions trap into M-mode on Hazard3. The
exception program counter mepc points to the start of the ebreak instruction.

An external debug host can catch the execution of breakpoint instructions. If the core is in M-mode, and
DCSR.EBREAKM is set, the core enters Debug mode instead of taking the exception. In U-mode, DCSR.EBREAKU
enables the same behaviour.

ecall

Environment call. Raise an exception to access a handler at a higher privilege level.

Usage:

ecall

Operation:

if (priv == 2'h3)

raise_exception(4'hb); // Cause: Environment call from M-mode
else

raise_exception(4'h8); // Cause: Environment call from U-mode

Privilege requirements: any privilege level.

See Section 3.8.4 for details of the RISC-V trap entry sequence. All exceptions trap into M-mode on Hazard3. The
exception program counter mepc points to the start of the ecall instruction.

mret

Return from M-mode trap.

Usage:

mret

]
3.8. Hazard3 Processor 270

RP2350 Datasheet
]

Operation: execute the trap return sequence described in Section 3.8.4.
Privilege requirements: M-mode only.

wfi

Wait for interrupt.

Usage:

wfi

Operation: pause execution until the processor is interrupted, or enters Debug mode.
Privilege requirements: M-mode is always permitted. U-mode is permitted if MSTATUS.TW is clear.
wfi ignores the global interrupt enable, MSTATUS.MIE. It respects all other interrupt controls. For example:

e |[f MIP.MEIP is 1, MIE.MEIE is 1, and MSTATUS.MIE is 0, a wfi instruction falls through immediately without
pausing.

* |n this example, setting MSTATUS.MIE to 1 would cause the core to immediately take the interrupt.
® |f no bit is set in both MIP and MIE, the wfi stalls until there is at least one such bit.
When a wfi is interrupted, the exception return address MEPC points to the instruction following the wfi.

When the debugger halts the core during a wfi, DPC points to the instruction immediately following the wfi
instruction. wfi executes as a no-op under instruction single-stepping (it does not stall), and under Debug-mode
execution in the Program Buffer.

Hazard3's MSLEEP CSR controls additional power-saving measures the core can implement during a wfi sleep
state.

3.8.2. Memory Access

Hazard3 accesses memory within a 4 GB (22 bytes) physical address space. There is no address translation. Each
possible value of an integer register uniquely identifies a single byte in the physical address space. Multi-byte values
occupy consecutive byte addresses.

3.8.2.1. Endianness

Hazard3 is always little-endian for all load and store accesses. RISC-V instruction fetch is always little-endian.

This means in a multi-byte access such as a sw instruction (four bytes are transferred), data stored at higher byte
addresses has greater numerical significance. For example:

1i a@, 0x0docoboa // materialise constant in register

la a4, some_global_variable // materialise address (assume addr % 4 == 0)
sw af, (a4) // 4-byte write to memory

lbu a@, 0(a4) // load byte from addr + 0: @x@a

lbu a1, 1(a4) // load byte from addr + 1: @x@b

lbu a2, 2(a4) // load byte from addr + 2: @x@c

lbu a3, 3(a4) // load byte from addr + 3: ©6xed

]
3.8. Hazard3 Processor 271

RP2350 Datasheet
]

Table 363. List of
physical memory
attributes for the
RP2350 address
space. Main SRAM
supports all atomics,
other addresses
support none.
Peripherals are non-
idempotent, all other
addresses are
idempotent.

3.8.2.2. Physical Memory Attributes

The RP2350 address space has the following physical memory attributes:

Start End Description Access Atomicity Idempotency
0x00000000 0x00007fff Boot ROM No AMOs RsrvNone, Idempotent
AMONone
0x10000000 Ox13ffFfff XIP, Cached No AMOs RsrvNone, Idempotent
AMONone
0x14000000 Ox17ffffff XIP, Uncached No AMOs RsrvNone, Idempotent
AMONone
0x18000000 Ox1bffffff XIP, Cache Write-only RsrvNone, Idempotent
Maintenance AMONone
0x1c000000 Ox1fFFffff XIP, Uncached + | No AMOs RsrvNone, Idempotent
Untranslated AMONone
0x20000000 0x200817ff Main SRAM Any RsrvNonEventual, | Idempotent
AMOArithmetic
0x40000000 OxAfFFFFff APB Peripherals | No AMOs, no RsrvNone, Non-idempotent
instruction fetch | AMONone
0x50000000 Ox5FFFFFff AHB Peripherals | No AMOs, no RsrvNone, Non-idempotent
instruction fetch | AMONone
0xd0000000 Oxdfffffff SIO Peripherals No AMOs, no RsrvNone, Non-idempotent
instruction fetch | AMONone

All addresses have Strong ordering. Any address not listed in Table 363 is a Vacant address. Accessing these
addresses has no effect other than returning a bus fault.

Note Hazard3's PMP implementation requires that non-read-idempotent PMAs are also non-executable, because it
enforces execute permissions at the point an instruction is executed, rather than the point an instruction is fetched.
Therefore all non-idempotent locations in Table 363 are also non-executable. This is enforced at a lower level than the
PMP, and executing these addresses at any privilege level will always fault.

Note that cached XIP regions are not cacheable from a PMA point of view, because the cache is private to the memory
controller. Each system address is served by either a single cache controller or none, so coherence between harts is
irrelevant. You may have to perform manual cache maintenance following some operations like flash programming, but
this is a detail of the XIP subsystem, not the system-level memory model.

See section 3.6 of the RISC-V privileged ISA manual linked in Section 3.8.1.7 for definitions of these attributes.

3.8.3. Memory Protection

Hazard3 implements Physical Memory Protection (PMP). It does not implement the Sv32 virtual memory extension or
its associated protections.

The PMP defines permissions for physical addresses. It mostly protects M-mode memory from S-mode and U-mode
access. Hazard3 only implements M-mode and U-mode.

A PMP region applies read, write and execute permissions to a span of byte addresses. For each region there is one
address register, PMPADDRO through PMPADDR15, and an 8-bit configuration field packed into PMPCFGO through
PMPCFG3. The read, write and execute permissions are always enforced for U-mode. They may also be enforced for M-
mode, depending on the PMPCFG L bit for that region, and the PMPCFGMO register.

RP2350 configures Hazard3's PMP hardware with the following features:

]
3.8. Hazard3 Processor 272

RP2350 Datasheet
]

® 8x dynamically configurable regions, 0 through 7

® 3x statically configured (hardwired) regions, 8 through 10

® (Remaining regions 11 through 15 are hardwired to 0FF)

® A granule of 32 bytes

e Support for naturally aligned power of two (NAPOT) region shapes only

® The custom PMPCFGMO CSR can apply M-mode permissions to individual regions without locking them

Section 3.8.8.1 defines the configuration of the hardwired regions 8 through 10. These regions apply default U-mode
permissions to RP2350 ROM and peripherals, to avoid having to spend dynamic regions to cover these addresses. The
system-level ACCESSCTRL registers (Section 10.6) can assign each peripheral individually to M-mode or U-mode.

When multiple PMP regions match the same byte address, the lowest-numbered of these regions takes effect. The
other regions are ignored.

3.8.3.1. PMP Address Registers

Addresses in PMP address registers PMPADDRO through PMPADDR15 are stored with a right-shift of two, so that they
can cover a 16 GB physical address space when Sv32 address translation is in effect. Hazard3 does not implement
address translation, so the physical address space is 4 GB (32-bit byte-addressed) and the two MSBs of each address
register are hardwired to zero.

The RP2350 configuration of Hazard3 supports only the OFF and NAPOT values for the PMPCFG A fields (e.g.
PMPCFGO.RO_A). Setting A to OFF means the region matches no bytes, and is effectively disabled. Setting A to NAPOT
means the region matches on a naturally aligned span of bytes (the base address modulo the size is zero) whose size is
a power of two.

The number of trailing 1s in the PMP address value encodes the size of an NAPOT region. This is the number of
consecutive 1s counted from the LSB without reaching a 0. A PMP address value with no trailing ones (ending in a 0)
matches a region eight bytes in size, and the region size is doubled with each additional 1 bit.

The PMP region matches on the address bits to the left of the least-significant ¢ bit. Because the PMP address registers
are right-shifted by two, you must apply the same shift to the addresses being compared. The following examples
demonstrate how to match addresses based on PMPADDRx values:

® The 30-bit all-ones bit pattern ox3fffffff has the maximum possible size, and matches all addresses.
® The all-zeroes bit pattern 8x00000000 has the minimum possible size.
o Since there are no trailing 1s, this matches starting from bit 1 of the PMP address register.

o Due to addresses being right-shifted by two, this is a region of eight bytes starting from address 0x0.

o Shift the base address of this 64-byte region by two to get bits 29:4 of the PMPADDRx value.

® The bit pattern 0x0800000f matches byte addresses between 0x20000000 and 0x2000007f, the first 128 bytes of SRAM.
o Right-shift the base address (0x20000000) by two to get 0x08000000.
o Add trailing ones to increase the region size and get the final value of 0x0800000f.

o The size of the region is eight bytes times two to the power of the number of trailing 1 bits, which in this case
(four 1s) works out to 8 x 2% = 128 bytes.

For more examples of PMP address match patterns, see the hardwired PMP region values in Section 3.8.8.1.

RP2350 configures Hazard3 with a granule of 32 bytes. This means the two least-significant bits of each PMP address
register are hardwired to all-ones when the region is enabled. The hardware does not decode address regions smaller
than 32 bytes.

]
3.8. Hazard3 Processor 273

RP2350 Datasheet
]

3.8.3.2. PMP Permissions

Each 8-bit PMP configuration field contains three permission flags:
® R permits non-instruction-fetch reads:
o load instructions
o the read phase of AMOs
® |\l permits writes:
o store instructions
o the write phase of AMOs
® X permits instruction execution

A 1 value for each permission means it is granted, and a @ means it is revoked. These permissions apply to U-mode
access to the region. They also apply to M-mode accesses when any of the following is true:

® The L (lock) configuration bit is 1
® The Hazard3 custom PMPCFGMO register bit for this region is 1

The L (lock) bit also locks the associated PMP address register and 8-bit PMP configuration field, so that it ignores
future writes. You should always lock PMP regions consecutively from region ¢, so that locked regions cannot be
bypassed by unlocked regions.

U-mode accesses which match no PMP regions have no permissions: all memory accesses fail. M-mode accesses
which match no PMP regions have all permissions. The hardwired PMP regions in Section 3.8.8.1 define additional U-
mode permissions for the ROM and peripheral address ranges: these can be overridden by enabling any of the
dynamically configured regions.

O NoOTE

Due to RP2350-E6 the field order in the PMP configuration fields is R, W, X (MSB-first) rather than the standard X, W, R.
The SDK register headers match the as-implemented order.

3.8.3.3. Accesses Spanning Multiple PMP Regions

Hazard3 does not support non-naturally-aligned loads or stores, other than to generate standard exceptions when they
are attempted. Since NAPOT PMP regions are always naturally aligned, it is impossible for a load or store to span two
PMP regions. Therefore all bytes covered by a load or store instruction are determined by at most a single active PMP
region which matches the lowest byte address accessed by that instruction.

Instructions are up to 32 bits in size with as little as 16-bit alignment. Therefore it is possible for an instruction to match
multiple PMP regions. When this happens, the instruction generates an instruction fault exception, (ncause = 0x1), unless
there is a lower-numbered PMP region which fully covers the instruction. Lower-numbered PMP regions take
precedence.

The exact quote from the privileged ISA specification is: "The lowest-numbered PMP entry that matches any byte of an
access determines whether that access succeeds or fails. The matching PMP entry must match all bytes of an access, or
the access fails, irrespective of the L, R, W, and X bits." (page 60 of RISC-V privileged ISA manual version 20211203).

The RISC-V specification is flexible in what is considered a single access for the purposes of memory protection
checking. Hazard3 considers the fetch of one instruction to be a single access. It therefore forbids instruction fetches
which straddle two PMP regions, even if both regions grant execute permission. Due to this architecture rule, portable
RISC-V software must not assume it can execute instructions which span multiple PMP regions.

Avoid this issue by using hole-punching region configurations in preference to glueing configurations. Suppose you want
to cover the first 12 kB of SRAM (0x20000000 — 0x20002f), this can be achieved in two ways:

]
3.8. Hazard3 Processor 274

RP2350 Datasheet
]

® One region adding permissions to 8x20000000 — 0x200001fff, and another region adding permissions to 0x20002000 —
0x20002fff

® One region adding permissions to 0x20000000 — 0x20003fff, and a lower-numbered region subtracting permissions
from 0x20003000 — 0x20003fff

The former option has a crack between the two regions, which has potentially unwanted effects on some platforms. The
latter avoids this issue entirely.

3.8.4. Interrupts and Exceptions

In the RISC-V privileged ISA manual, a trap refers to either an interrupt or an exception:

Interrupt

A signal from outside the processor requests that it temporarily abandons its current task to deal with some
system-level event. The processor responds by transferring control to an interrupt handler function.

Exception

An instruction encounters a condition which prevents that instruction from completing normally. The processor
transfers control to an exception handler function to deal with the exceptional condition before it can resume
execution.

The two are closely related, and they are collectively referred to as traps to avoid stating everything twice.
Hardware performs the following steps automatically and atomically when entering a trap:

1. Save the address of the interrupted or excepting instruction to MEPC

2. Set the MSB of MCAUSE to indicate the cause is an interrupt, or clear it to indicate an exception

3. Write the detailed trap cause to the LSBs of the MCAUSE register

4. Save the current privilege level to MSTATUS.MPP

5. Set the privilege to M-mode (note Hazard3 does not implement S-mode)

6. Save the current value of MSTATUS.MIE to MSTATUS.MPIE

7. Disable interrupts by clearing MSTATUS.MIE

8. Jump to the correct offset from MTVEC depending on the trap cause

©® NoOTE

The above sequence of events is standard and is also described in the RISC-V Privileged ISA Manual. See Section
3.8.1.1 for a list of links to RISC-V specifications.

All earlier instructions than the one pointed to by MEPC execute normally, and their effects are visible to the trap
handler. These earlier instructions are not affected by the exception or interrupt. On the other hand the instruction
pointed to by MEPC, and all later instructions, does not execute before entering the trap handler. These instructions
have no visible side effects, with the possible exception of load/store fault exceptions, where the bus fault itself may
have observable effects on the bus or peripheral.

Expanding on the MEPC behaviour in architectural terms, all traps are precise, meaning there exists some point in
program order where the trap handler observes all earlier instructions to have retired and all later instructions to have
not. The MEPC register indicates this point. All exceptions are also synchronous, meaning there is a particular
instruction which originated the trap, and the trap architecturally takes place in between that instruction and its
predecessors in program order.

M-mode software executes an mret instruction to return to the interrupted or excepting instruction at the end of a
handler. This largely reverses the process of entering the trap:

1. Restore core privilege level to the value of MSTATUS.MPP

]
3.8. Hazard3 Processor 275

RP2350 Datasheet
]

2. Write 8 (U-mode) to MSTATUS.MPP

3. Restore MSTATUS.MIE from MSTATUS.MPIE
4. Write 1to MSTATUS.MPIE

5. Jump to the address in MEPC.

Often, the values restored on exit are exactly those values saved on entry. However this need not be the case, as all
CSRs mentioned above are read/writable by M-mode software at any time. Hand-manipulating the trap handling CSRs is
useful for low-level OS operations such as context switching, or to make exception handlers return to the instruction
after the trap point by incrementing MEPC before return. You can execute an mret without any prior trap, for example
when entering U-mode code from M-mode for the first time.

Hardware does not save or restore any other registers. In particular, it does not save the core GPRs, and software is
responsible for ensuring the execution of the handler does not perturb the foreground context. For an interrupt, this may
mean saving the core registers on the interruptee’s stack, or using the MSCRATCH CSR to swap the stack pointer before
saving registers on a dedicated interrupt stack. For a fatal exception this may be unimportant, as there is no
requirement for the handler to return.

3.8.4.1. Exceptions

Exceptions occur for a variety of reasons. MCAUSE indicates the specific reason for the latest exception:

Cause Meaning

0x0 Instruction alignment: Does not occur on RP2350, because 16-bit compressed instructions are
implemented, and it is impossible to jump to a byte-aligned address.

ox1 Instruction fetch fault: Attempted to fetch from an address that does not support instruction fetch (like
APB/AHB peripherals on RP2350), or lacks PMP execute permission, or is forbidden by ACCESSCTRL, or
returned a fault from the memory device itself.

0x2 Illegal instruction: Encountered an instruction that was not a valid RISC-V opcode implemented by this
processor, or attempted to access a nonexistent CSR, or attempted to execute a privileged instruction or
access a privileged CSR without sufficient privilege.

0x3 Breakpoint: An ebreak or c.ebreak instruction was executed, and no external debug host caught it (
DCSR.EBREAKM or DCSR.EBREAKU was not set).

ox4 Load alignment: Attempted to load from an address that was not a multiple of access size.

0x5 Load fault: Attempted to load from an address that does not exist, or lacks PMP read permissions, or is
forbidden by ACCESSCTRL, or returned a fault from a peripheral.

0x6 Store/AMO alignment: Attempted to write to an address that was not a multiple of access size.

ox7 Store/AMO fault: Attempted to write to an address that does not exist, or lacks PMP write permissions, or
is forbidden by ACCESSCTRL, or returned a fault from a peripheral. Also raised when attempting an AMO
on an address that does not support AHB5 exclusives.

0x8 An ecall instruction was executed in U-mode.

Oxb An ecall instruction was executed in M-mode.

Exceptions jump to exactly the address of MTVEC, no matter the cause and no matter whether vectoring is enabled.

The MSTATUS.MIE global interrupt enable does not affect exception entry. You can still take an exception and trap into
the exception handler when exceptions are disabled.

Returning from an exception will jump to MEPC, which hardware sets to the address of the excepting instruction before
entering the exception handler. This means by default you will return to the exact same instruction that caused the
exception. When emulating illegal instructions, you should increment mepc before returning, so that execution resumes
after the problematic instruction.

]
3.8. Hazard3 Processor 276

RP2350 Datasheet
]

Hazard3 hardwires mtval to zero. To emulate a misaligned load/store instruction you must decode the instruction and
read the spilled register state to calculate the address, and to emulate an illegal instruction you must read the
instruction bits from memory yourself by dereferencing mepc.

3.8.4.2. Interrupts

Hazard3 implements the standard RISC-V interrupt scheme with a single external interrupt routed to MIP.MEIP, and the
standard timer and soft interrupts routed to MTIP and MSIP. An interrupt controller such as a standard RISC-V PLIC can
be integrated externally to route multiple interrupts through to the single external interrupt line. Alternatively, the
Hazard3 interrupt controller (see Xh3irq extension, Section 3.8.6.1) multiplexes multiple external interrupts onto
MIP.MEIP in such a way that interrupts can efficiently pre-empt one another, with configurable dynamic priority per
interrupt.

RP2350 configures Hazard3 with the Xh3irq interrupt controller, with 52 external interrupt lines and 16 levels of pre-
emption priority. The IRQ numbers for the system-level interrupts, documented in Section 3.2, are the same on both Arm
and RISC-V.

The core enters an interrupt when all of the following are true:
®* MSTATUS.MIE is set
® An interrupt pending bit in the standard MIP CSR is set
® The matching interrupt enable in the standard MIE CSR is also set

When vectoring is disabled (LSB of MTVEC is clear), interrupts transfer control directly to the address indicated by mtvec.
Setting the LSB enables vectoring: interrupts transfer control to the address mtvec + 4 * cause, where the interrupt cause
is one of:

® meip: cause = 11
® mtip: cause =7
® msip: cause =3

The pointer written to mtvec must be word-aligned (4 bytes). Additionally, when vectoring is enabled, it must be aligned
to the size of the table, rounded up to a power of two. This works out to 64-byte alignment. On RP2350, mtvec is fully
writable except for bit 1, which is hardwired to zero as it is only used for additional vectoring modes not supported by
Hazard3.

When multiple interrupts are active, hardware picks one to enter, in the order meip > msip > mtip. (Note this is not quite the
same order as the cause values.)

3.8.4.2.1. RISC-V Interrupt Signals

The standard timer interrupt MIP.MTIP connects to the RISC-V platform timer in the SIO subsystem (Section 3.1.8). This
is a 64-bit timer with a per-core 64-bit comparison value. The interrupt is asserted whenever the timer is greater than or
equal to the comparison value, and de-asserts automatically when less than. The same interrupt signal also appears in
the system-level IRQs, as SI0_IRQ_MTIMECHP (IRQ 40). The timer is a standard RISC-V peripheral, often used by operating
systems to generate context switch interrupts.

The standard software interrupt MIP.MSIP connects to the RISCV_SOFTIRQ register in the SIO subsystem. The register
has a single bit per hart, which asserts the soft IRQ interrupt to that hart. This can be used to interrupt the other hart, or
to interrupt yourself as though the other hart had interrupted you, which can help to make handler code more
symmetric. On RP2350 there is a one-to-one correspondence between harts and cores, so you could equivalently say
there is one soft IRQ per core.

Hazard3's internal interrupt controller drives the MIP.MEIP external interrupt pending bit based on its internal state and
the system-level interrupt signals, to transfer control to the interrupt vector when it is both safe and necessary. Section
3.8.6.1 describes the Xh3irq interrupt controller in depth.

]
3.8. Hazard3 Processor 277

RP2350 Datasheet
]

3.8.4.2.2. Interrupt Calling Convention

The default SDK hardware_irq library expects function pointers registered for system-level IRQs to be normal C functions.
There must be no __attribute__((interrupt)) on an interrupt handler passed into functions such as
set_exclusive_irq_handler(). This is an API detail that is consistent across all architectures supported by the SDK. Using
regular C calling convention is also efficient under heavy interrupt load, because the cost of saving/restoring all caller
save and temporary registers can be amortised over multiple interrupt handlers due to tail sharing, and a save triggered

by a low-priority IRQ can be taken over by a high-priority IRQ that asserted during the save.

Conversely, handlers registered for the standard RISC-V mtip and msip interrupts via the SDK
irq_set_riscv_vector_handler() function must be __attribute__((interrupt)). In terms of the generated code, this means
they should use save-as-you-go calling convention, and end with an nret. These interrupts are entered directly by the
hardware without any intermediate dispatch code.

As software is responsible for the dispatch to individual system interrupt handlers from the meip vector, it is possible to
support other interrupt calling conventions by supplying a different implementation for the dispatch.

3.8.5. Debug

RISC-V Debug Specification

Hazard3 implements version 0.13.2 of the RISC-V External Debug Support specification, available at:

riscv.org/wp-content/uploads/2019/03/riscv-debug-release.pdf

RP2350 implements a single RISC-V Debug Module, which enables debug access to the two Hazard3 processor
instances. Hazard3 should be supported by any debug translator implementing version 0.13.2 of the RISC-V External
Debug Support specification, but some details of its implementation-defined behaviour are described here for
completeness. Note that the Debug Module source code, available in the Hazard3 repository, can be consulted to
answer more detailed questions about the debug implementation.

As configured on RP2350, Hazard3 supports the following standard RISC-V debug features:
® Run/halt/reset control of each processor

® Halt-on-reset support for all processors

Hart array mask register, for halting/resuming multiple processors simultaneously

Abstract access to GPRs

Program Buffer: 2 words with an implicit ebreak (impebreak)

Automatic trigger of abstract commands (abstractauto)

® System Bus Access, arbitrated with core 1’s load/store port

An instruction address trigger unit with four hardware breakpoints

3.8.5.1. Accessing the Debug Module

The Debug Module is accessed through a CoreSight APB-AP which can be accessed in one of two ways:
® Externally, through the system’s SW-DP (see Section 3.5)
* Internally, via self-hosted debug (see Section 3.5.6)

The APB-AP for the Debug Module is located at offset 0xa000 in the debug address space. The Debug Module starts at
address 0 in the APB-AP’s downstream address space. The Debug Module addresses registers in increments of four
bytes, as APB is byte-addressed rather than word-addressed. This means the Debug Module register addresses listed in
the RISC-V debug specification must be multiplied by four.

]
3.8. Hazard3 Processor 278

https://riscv.org/wp-content/uploads/2019/03/riscv-debug-release.pdf

RP2350 Datasheet
]

3.8.5.2. Harts

Each Hazard3 core possesses exactly one hardware thread, or hart. This means each processor executes only a single
stream of instructions at a time. The two Hazard3 processor cores on RP2350, core 0 and 1, have hart IDs of 0 and 1
respectively. These values can be read from the MHARTID register on each processor, and match the values read from
the CPUID register in SIO.

The dmcontrol.hartsel field in RP2350’s Debug Module supports writing the values 0 and 1 only (it implements only a
single writable bit), and these correspond to hart IDs 0 and 1, which execute on core 0 and core 1 respectively.

3.8.5.3. Resets

The dmcontrol.hartreset field resets the selected cores only. This can be a single core selected by dmcontrol.hartsel, or
multiple cores selected by the hart array mask. It does not reset cores that are not selected, nor does it reset any other
system hardware. Note that there is a one-to-one correspondence between harts and cores on this system.

The dmcontrol.ndmreset field resets both cores. It does not reset any other hardware. As per the specification: "Exactly
what is affected by this reset is implementation dependent, as long as it is possible to debug programs from the first
instruction executed.”

3.8.5.4. Implementation-defined behaviour

The following are not implemented:

® Abstract access memory

® Abstract access CSR

® Post-incrementing abstract access GPR
The core behaves as follows:

® Branch, jal, jalr and auipc are illegal in Debug mode, because they observe PC: attempting to execute will halt
Program Buffer execution and report an exception in abstractcs.cmderr

® The dret instruction is not implemented (a special purpose DM-to-core signal is used to signal resume)

® The dscratch CSRs are not implemented

The Debug Module’s data0 register is mapped into the core as a CSR, DMDATAQ

® desr.stepie is hardwired to 0 (no interrupts during single stepping)

desr.stopcount and desr.stoptime are hardwired to 1 (no counter or internal timer increment in Debug mode)
® desr.mprven is hardwired to 0
® desr.prv accepts only the values 3 (M-mode) and 8 (U-mode), rounding to nearest on write

For more details on the core-side Debug mode registers, see DCSR and DPC.

The trigger unit implements four exact instruction address match triggers. Triggers can be configured to trap to M-
mode as well as Debug-mode, meaning M-mode can use triggers for self-hosted hardware breakpoint support. The
tcontrol.mte and tcontrol.mpte fields are implemented to avoid infinite exception loops when an M-mode trigger is set on
the M-mode exception handler.

3.8.6. Custom Extensions

Hazard3 implements a small number of custom extensions. All are optional: custom extensions are only included if the
relevant feature flags are set to 1 when instantiating the processor (Section 3.8.8). Hazard3 is always a conforming
RISC-V implementation; when these extensions are disabled, it is also a standard RISC-V implementation.

]
3.8. Hazard3 Processor 279

RP2350 Datasheet
]

If any one of these extensions is enabled, the x bit in MISA is set to indicate the presence of a non-standard extension.

3.8.6.1. Xh3irq: Hazard3 interrupt controller

Xh3irqg controls up to 512 external interrupts, with up to 16 levels of pre-emption. It is architected as a layer on top of the
standard mip.meip external interrupt line, and all standard RISC-V interrupt behaviour still applies. This extension adds no
new instructions, but does add several CSRs:

* MEIEA: external interrupt enable array
® MEIPA: external interrupt pending array
* MEIFA: external interrupt force array

* MEIPRA: external interrupt priority array

MEINEXT: get next external interrupt
* MEICONTEXT: external interrupt context register

Xh3irq is geared towards supporting interrupt handlers as bare C functions, with dispatch implemented in software and
pre-emption priority logic implemented in hardware. However, the exact interrupt ABI is up to the implementation of the
soft dispatch routine installed as the mip.meip external interrupt handler.

3.8.6.1.1. Array CSRs

RISC-V CSRs are ideal for interrupt controls because they are closely coupled to the processor, offer native atomic
set/clear accesses, and can be accessed in a single instruction without first having to materialise an address. However
there are issues with using CSRs for large bit arrays, such as interrupt enables:

® The CSR address space is limited
® CSRs can not be addressed indirectly, so are difficult to iterate over
® Using a CSR to index other CSRs is problematic for interrupt handlers due to additional mutable state

Xh3irq uses the array CSR idiom to expose a large bit vector at a single CSR address, such as MEIEA. The upper half of
the CSR is a 16-bit window into the array, and the window is indexed by the LSBs of the write data for the same CSR
instruction.

For example, the following assembly code writes 0xa5a5 to bits 47:32 of the interrupt enable array, since the window
index is 0x2 and the window is 16 bits in size:

1i a@, 6xa5a50002
csrw RVCSR_MEIEA_OFFSET, a@

The following reads bits 63:48 of the interrupt pending array into register a0, since the index is 0x3, and a CSR set of
0x0000 does not modify the window contents:

csrrsi a@, RVCSR_MEIPA_OFFSET, ©0x3

Setting an arbitrary IRQ enable from C works as follows:

void enable_irq(uint irq) {
uint index = irq / 16;
uint32_t mask = 1u << (irq % 16);
asm (

]
3.8. Hazard3 Processor 280

RP2350 Datasheet
]

"csrs Oxbed, %0\n"
:"r" (index | (mask << 16))

Getting an arbitrary IRQ pending flag from C is as follows:

bool check_irg_pending(uint irq) {
uint index = irq / 16;
uint32_t csr_rdata;
asm (
"csrrs %0, Oxbel, %1\n"
: "=r" (csr_rdata)

:'r" (index)

)i

csr_rdata >>= 16;

return csr_rdata & (1u << (irqg % 16));

The SDK implements similar operations in the hardware_irq API.

Hazard3 supports up to 512 interrupts, which is one 16-bit window for each of the possible values of a 5-bit CSR
immediate.

3.8.6.1.2. Enable, Pending and Force Arrays

The MEIEA, MEIPA and MEIFA CSRs expose the interrupt enable, pending and force arrays respectively. Each array
contains one bit per system-level interrupt line, of which there are 52 lines in total. (See Section 3.2 for the assignment
of system IRQ numbers to peripherals.)

The interrupt enable array gates the entry of interrupt signals into the core. When a bit is clear in MEIEA, the
corresponding interrupt signal is ignored. When a bit is set, assertion of the corresponding interrupt signal will send the
core to the meip vector as soon as it is safe and appropriate to do so. From there, the meip handler vectors to the correct
handler, after saving the interruptee’s context.

The SDK irq_set_enabled() function in the hardware_irq library is a convenient way to manipulate the interrupt enable
array.

The interrupt pending array displays the current status of the system-level interrupt signals. Interrupts are visible in
MEIPA even if the corresponding bit is clear in MEIEA, and even if the interrupt has insufficient priority to interrupt the
core at this time. This register is read-only: bits in MEIPA clear automatically when the corresponding interrupt source
de-asserts. For example a UART RX FIFO interrupt should clear on its own once data has been read from the FIFO.

The interrupt force array causes interrupts to appear pending, even when the corresponding system-level interrupt
signal is de-asserted. When a bit is set in MEIFA, the corresponding bit in MEIPA reads as 1, and will interrupt the core if
it meets the usual prerequisites.

MEIFA bits clear automatically when the corresponding interrupt is sampled from MEINEXT. It is not necessary to write
a 1 bit to MEINEXT.UPDATE for the interrupt force bit to clear. This means setting an MEIFA bit should cause the
interrupt to be taken once. Normal csrw and csrc instructions will also clear MEIFA.

Six spare interrupt lines 46 through 51, referred to as SPAREIRQ_IRQ_0 through SPAREIRQ_IRQ_5 in the SDK, deliberately do not
connect to system-level hardware. However they are still fully implemented in the interrupt controller, and fire when set
pending in MEIFA. For example, a fast interrupt top-half handler may schedule its longer-running bottom half to run at a
lower priority, or a high-priority context switch interrupt may schedule a context switch to take place at a lower priority in
order to clear interrupt frames off the stack.

]
3.8. Hazard3 Processor 281

RP2350 Datasheet

3.8.6.1.3. Next Interrupt Register

MEINEXT always displays the next interrupt that should be handled, taking priority order into account. Interrupts appear
in MEINEXT when they meet all of the following criteria:

1. Pending in MEIPA
2. Enabled in MEIEA
3. Of priority greater than or equal to MEICONTEXT.PPREEMPT

The value returned is the IRQ number of the highest-priority interrupt that meets these three criteria, left-shifted by two.
When multiple interrupts have the highest priority, the lowest-numbered of those interrupts is chosen, as a tie-break.

The MSB of MEINEXT is set to indicate there were no eligible interrupts, and the remaining bits are undefined in this
case. Software should repeatedly read MEINEXT until all available interrupts are exhausted. The bltz and bgez
instructions are a convenient way to test the MSB of a register.

The purpose of rule 3 above is to ensure that any interrupt that may already be in progress in a pre-empted interrupt
frame is not re-entered in the current frame. Without this rule, multiple executions of the same interrupt handler could be
interleaved due to pre-emption by other handlers. Programmers are usually surprised when this happens.

MEINEXT.UPDATE is a write-only field which instructs hardware to update MEICONTEXT with information about the
interrupt displayed in MEINEXT on that cycle. Section 3.8.6.1.5 goes into more detail about context register updates.

© IMPORTANT

MEINEXT is constantly changing as interrupt signals come and go. The write to MEINEXT.UPDATE must be the
same instruction that reads the interrupt index from MEINEXT to avoid a data race. This can be achieved with a csrrw
or csrrwi instruction.

3.8.6.1.4. Interrupt Priority

The interrupt priority array MEIPRA implements a four-bit field per interrupt. In hardware, numerically higher (unsigned)
MEIPRA values have higher priority, taking precedence over lower-priority interrupts. The irq_set_priority() SDK
function uses the opposite convention, with lower numeric values indicating greater precedence. This section uses the
hardware numbering.

The interrupt priority in MEIPRA determines three things:

1. Whether the interrupt source is permitted to interrupt the core at this moment: must be greater than or equal
MEICONTEXT.PREEMPT

2. Whether the interrupt source can appear in MEINEXT: must be greater than or equal to MEICONTEXT.PPREEMPT
3. What order this interrupt will appear in when there are multiple candidates for MEINEXT

When MEICONTEXT is correctly saved and restored, PREEMPT and PPREEMPT are both zero outside of interrupt
handlers, and PREEMPT is strictly greater than PPREEMPT when inside an interrupt handler. Together they define the
band of interrupt priorities which may be processed without any pushing or popping of interrupt stack frames.

Manipulating interrupt priority outside of interrupts is safe. There is no need to disable interrupts when writing to the
priority array. Manipulating interrupt priority inside of an interrupt handler requires care: hardware operation is well-
defined, but the results can be surprising. Be wary of the following cases:

1. Increasing the priority of the current handler: if still enabled and pending, you will instantly pre-empt yourself.

2. Increasing the priority of a different interrupt, with priority lower than MEICONTEXT.PPREEMPT: this interrupt may
already be in progress in a frame that was pre-empted in order to run your handler. Increasing the priority may
cause it to execute in a higher frame before returning to the original frame where it is still in progress, thereby
interleaving with its own execution.

Note PPREEMPT is guaranteed to be no greater than the current handler priority if MEICONTEXT is correctly
saved/restored, since it contains the previous value of PREEMPT at the time a pre-emption took place, and interrupts

3.8. Hazard3 Processor 282

RP2350 Datasheet

lower than PREEMPT can not interrupt the core. Therefore a safe approximation for case 2 above is: do not increase (by
any amount) the priority of a handler with lower priority than the currently running handler.

If an interrupt must increase the priority of a lower-priority interrupt, one solution is to queue up interrupt priority
updates, and pend a lowest-priority handler assigned to one of the spare IRQs, which processes the enqueued updates.
You can pend this handler manually by setting its bit in MEIFA. The handler will run last thing before returning to
foreground code. This is safe because an interrupt of the lowest priority by definition can not have pre-empted any other
interrupts.

3.8.6.1.5. Interrupt Context Management

The MEICONTEXT register has two functions: manage the core pre-emption priority across multiple pre-empting
interrupt stack frames, and help software track which interrupt handler it is currently executing, if any.

MEICONTEXT.PREEMPT, MEICONTEXT.PPREEMPT and MEICONTEXT.PPPREEMPT form a three-level stack of pre-
emption priorities:

® PREEMPT sets the minimum interrupt priority which interrupts the core

® PPREEMPT sets the minimum interrupt priority which appears in MEINEXT: this avoids redundant execution of
interrupt handlers which may have been pre-empted

® PPPREEMPT has no hardware function other than save/restore of PPREEMPT

When entering the MIP.MEIP vector, hardware atomically performs the following updates to MEICONTEXT
simultaneous to the standard trap entry sequence described in Section 3.8.4:

1. Save the current value of MEICONTEXT.PPREEMPT to PPPREEMPT

2. Save the current value of MEICONTEXT.PREEMPT to PPREEMPT

3. Write one plus the priority of the IRQ which caused this interrupt to MEICONTEXT.PREEMPT
4. Write 1 to MEICONTEXT.MRETEIRQ, to enable priority restore on next mret

The standard trap entry sequence includes clearing MSTATUS.MIE, so interrupts are disabled at the start of the handler.
To implement pre-emption, the MIP.MEIP handler must re-enable interrupts after its context save critical section. This
should include saving MEICONTEXT, MSTATUS, MEPC, and the caller-saved general-purpose registers.

Any trap entry not caused by MIP.MEIP clears MRETEIRQ. Trap exit (nret) also clears MRETEIRQ.

A trap exit where MEICONTEXT.MRETEIRQ is set atomically performs the following updates to MEICONTEXT
simultaneous to the standard trap exit sequence:

1. Restore MEICONTEXT.PREEMPT from MEICONTEXT.PPREEMPT
2. Restore MEICONTEXT.PPREEMPT from MEICONTEXT.PPPREEMPT
3. Write 0 to MEICONTEXT.PPPREEMPT

The MRETEIRQ flag allows hardware to match each MIP.MEIP vector entry with its associated mret. This balances
pushes and pops of the PREEMPT priority stack. When there is no pre-emption, and no exceptions raised within
interrupt handlers, MRETEIRQ can be left in place in the MEICONTEXT.MRETEIRQ register. Otherwise, you must save
MEICONTEXT upon entering the external interrupt vector and restore it before the mret at the end of the handler.
Interrupts must be disabled during save/restore.

Writing 1to MEINEXT.UPDATE updates MEICONTEXT as follows:
1. Write MEINEXT.NOIRQ to MEICONTEXT.NOIRQ
2. Write MEINEXT.IRQ (the IRQ number) to MEICONTEXT.IRQ
3. If MEINEXT.NOIRQ is...

o Clear: Write one plus the priority of MEINEXT.IRQ to MEICONTEXT.PREEMPT

3.8. Hazard3 Processor 283

RP2350 Datasheet
]

o Set: Write 0x10 to MEICONTEXT.PREEMPT (greater than any interrupt priority in MEIPRA)

MEICONTEXT.IRQ and NOIRQ help code determine in which interrupt handler it is running. MEICONTEXT should be
saved/restored by interrupts which pre-empt the current one, so is safe to check these fields during the handler.

The update to MEICONTEXT.PREEMPT upon writing MEINEXT.UPDATE ensures the core will be pre-empted by
interrupts higher-priority than the one it is about to enter. Equally important, it ensures the core is not pre-empted by
lower or equal priority interrupts, including the one whose handler it is about to enter.

To avoid awkward interactions between the MIP.MEIP handler, which should be aware of the Xh3irq extension, and the
MTIP/MSIP handlers, which may not be, it's best to avoid pre-emption of the former by the Iatter.
MEICONTEXT.CLEARTS, MTIESAVE and MSIESAVE support disabling and restoring the timer/software interrupt
enables as part of the MEICONTEXT CSR accesses that take place during context save/restore in the MEIP handler.

3.8.6.1.6. Minimal Handler Example

This example demonstrates a minimal meip handler which dispatches to an array of C-function interrupt handlers,
without enabling pre-emption. In this case the priorities configured in MEIPRA still determine the order in which
interrupts are entered when multiple are asserted, but once an interrupt handler starts running, no other interrupts are
serviced until that handler completes.

#include "hardware/regs/rvecsr.h"

isr_riscv_machine_external_irq:
// Save all caller saves and temporaries before entering a C ABI function.
// Note mstatus.mie is cleared by hardware on interrupt entry, and
// we're going to leave it clear.
addi sp, sp, -64
sw ra, 0(sp)
sw te, 4(sp)
sw t1, 8(sp)
sw t2, 12(sp)
sw a@, 16(sp)
sw al, 20(sp)
sw a2, 24(sp)
sw a3, 28(sp)
sw a4, 32(sp)
sw a5, 36(sp)
sw a6, 40(sp)
sw a7, 44(sp)
sw t3, 48(sp)
sw t4, 52(sp)
sw t5, 56(sp)
sw t6, 60(sp)

get_first_irq:
// Sample the current highest-priority active IRQ (left-shifted by 2) from
// meinext. Don't set the ‘update’ bit as we aren't saving/restoring meicontext --
// this is fine, just means you can't check meicontext to see whether you are in an IRQ.
csrr a@, RVCSR_MEINEXT_OFFSET

// MSB will be set if there is no active IRQ at the current priority level
bltz a@, no_more_irgs
dispatch_irq:
// Load indexed table entry and jump through it. No bounds checking is necessary
// because the hardware will not return a nonexistent IRQ.
lui a1, %hi(__soft_vector_table)
add a1, al, a@
1w a1, %lo(__soft_vector_table)(al)
jalr ra, al
get_next_irq:

]
3.8. Hazard3 Processor 284

RP2350 Datasheet
]

// Get the next-highest-priority IRQ

csrr a@, RVCSR_MEINEXT_OFFSET

// MSB will be set if there is no active IRQ at the current priority level
bgez a@, dispatch_irq

no_more_irqgs:
// Restore saved context and return from IRQ

1w ra, 0(sp)
1w te, 4(sp)
1w t1, 8(sp)

1w t2, 12(sp)
1w a0, 16(sp)
1w a1, 20(sp)
1w a2, 24(sp)
1w a3, 28(sp)
1w a4, 32(sp)
1w a5, 36(sp)
1w a6, 40(sp)
1w a7, 44(sp)
1w t3, 48(sp)
1w t4, 52(sp)
1w t5, 56(sp)
1w t6, 60(sp)
addi sp, sp, 64
mret

// Array of function pointers for interrupt handlers
.section ".bss"

.p2align 2

.global __soft_vector_table

__soft_vector_table:

.space 52 * 4

Since the handler loops on meinext until no more interrupts are pending, multiple interrupts are processed with a single
save/restore of the caller saves and temporaries.

The pending status of each IRQ in MEIPA clears once the corresponding peripheral de-asserts its interrupt output. A
correctly programmed interrupt handler should cause the peripheral interrupt to de-assert, so each successive read
from meinext will return a new interrupt. Because meinext always returns the highest-priority active interrupt, this loop
iterates over active interrupts in descending priority order.

Note the overhead of performing the register save/restore in software is minimal, because the save/restore routine is
actually limited by bus bandwidth, not by instruction execution overhead. This also makes the hardware more flexible,
because the same hardware can support multiple interrupt ABIs.

3.8.6.2. Xh3pmpm: M-mode PMP regions

This extension adds a new M-mode CSR, PMPCFGMO, which allows a PMP region to be enforced in M-mode without
locking the region.

This is useful when the PMP is used for non-security-related purposes such as stack guarding, or trapping and
emulation of peripheral accesses.

3.8.6.3. Xh3power: Hazard3 power management

This extension adds a new M-mode CSR (MSLEEP), and two new hint instructions, h3.block and h3.unblock, in the sit
nop-compatible custom hint space.

The msleep CSR controls how deeply the processor sleeps in the WFI sleep state. By default, a WFI is implemented as a

]
3.8. Hazard3 Processor 285

RP2350 Datasheet

normal pipeline stall. By configuring msleep appropriately, the processor can gate its own clock when asleep or, with a
simple 4-phase reg/ack handshake, negotiate power up/down of external hardware with an external power controller.
These options can improve the sleep current at the cost of greater wakeup latency.

The hints allow processors to sleep until woken by other processors in a multiprocessor environment. They are
implemented on top of the standard WFI state, which means they interact in the same way with external debug, and
benefit from the same deep sleep states in msleep.

3.8.6.3.1. h3.block

Enter a WFI sleep state until either an unblock signal is received, or an interrupt is asserted that would cause a WFI to
exit.

If mstatus.tw is set, attempting to execute this instruction in privilege modes lower than M-mode will generate an illegal
instruction exception.

If an unblock signal has been received in the time since the last h3.block, this instruction executes as a nop, and the
processor does not enter the sleep state. Conceptually, the sleep state falls through immediately because the
corresponding unblock signal has already been received.

An unblock signal is received when a neighbouring processor (the exact definition of "neighbouring" being left to the
implementer) executes an h3.unblock instruction, or for some other platform-defined reason.

This instruction is encoded as s1t x0, x@, x0, which is part of the custom nop-compatible hint encoding space.

Example C macro:

#define __h3_block() asm ("slt x0, x0, x0")

Example assembly macro:

.macro h3.block
slt x0, x0, x0
.endm

3.8.6.3.2. h3.unblock

Post an unblock signal to other processors in the system. For example, to notify another processor that a work queue is
now non-empty.

If mstatus.tw is set, attempting to execute this instruction in privilege modes lower than M-mode will generate an illegal
instruction exception.

This instruction is encoded as s1t x0, x@, x1, which is part of the custom nop-compatible hint encoding space.

Example C macro:

#define __h3_unblock() asm ("slt x@, x0, x1")

Example assembly macro:

3.8. Hazard3 Processor 286

RP2350 Datasheet

.macro h3.unblock
slt x0, x0, x1
.endm

3.8.6.4. Xh3bextm: Hazard3 bit extract multiple

This is a small extension with multi-bit versions of the "bit extract" instructions from Zbs, used for extracting small,
contiguous bit fields.

3.8.6.4.1. h3.bextm

"Bit extract multiple", a multi-bit version of the bext instruction from Zbs. Perform a right-shift followed by a mask of 1-8
LSBs.

Encoding (R-type):

Bits Name Value Description

31:29 funct7[6:4] 0b00o RESO

28:26 size - Number of ones in mask, values 0—7 encode 18 bits.
25 funct7[0] 0bo RESQ, because aligns with shamt[5] of potential RV64

version of h3.bextmi

24:20 rs2 - Source register 2 (shift amount)
19:15 rsi - Source register 1

14:12 funct3 0b00o h3.bextm

11:7 rd - Destination register

6:2 opc 0b01011 customO opcode

1:0 size 0b11 32-bit instruction

Example C macro (using GCC statement expressions):

// nbits must be a constant expression
#define __h3_bextm(nbits, rsi1, rs2) ({\
uint32_t __h3_bextm_rd; \
asm (".insn r @x@b, 0, %3, %0, %1, %2"\
: "=r" (__h3_bextm_rd) \
c'r" (rs1), "r" (rs2), "i" ((((nbits) - 1) & 0x7) << 1)\
)i\
__h3_bextm_rd; \
})

Example assembly macro:

// rd = (rs1 >> rs2[4:0]) & ~(-1 << nbits)
.macro h3.bextm rd rs1 rs2 nbits

.if (\nbits < 1) || (\nbits > 8)

.err

.endif

#if NO_HAZARD3_CUSTOM

3.8. Hazard3 Processor 287

RP2350 Datasheet

srl \rd, \rs1, \rs2
andi \rd, \rd, ((1 << \nbits) - 1)
#else
.insn r @x@b, 0x0, (((\nbits - 1) & 0x7) << 1), \rd, \rs1, \rs2
#endif
.endm
3.8.6.4.2. h3.bextmi

Immediate variant of h3.bextm.

Encoding (I-type):

Bits Name Value Description

31:29 imm[11:9] 0b00o RESO

28:26 size - Number of ones in mask, values 0—7 encode 1— 8 bits.
25 imm[5] 0bo RESQ, for potential future RV64 version

24:20 shamt - Shift amount, 0 through 31

19:15 rsi - Source register 1

14:12 funct3 0b100 h3.bextmi

11:7 rd - Destination register

6:2 opc 0b01011 customO opcode

1:0 size 0b11 32-bit instruction

Example C macro (using GCC statement expressions):

// nbits and shamt must be constant expressions
#define __h3_bextmi(nbits, rs1, shamt) ({\
uint32_t __h3_bextmi_rd; \
asm (".insn i @x@b, Ox4, %0, %1, %2"\
:'=r" (__h3_bextmi_rd) \
:"r" (rs1), "i" ((((nbits) - 1) & 8x7) << 6 | ((shamt) & @x1f)) \
)i\
__h3_bextmi_rd; \
)

Example assembly macro:

// rd = (rs1 >> shamt) & ~(-1 << nbits)
.macro h3.bextmi rd rs1 shamt nbits
.if (\nbits < 1) || (\nbits > 8)

.err
.endif
.if (\shamt < @) || (\shamt > 31)
.err
.endif
#if NO_HAZARD3_CUSTOM
srli \rd, \rs1, \shamt
andi \rd, \rd, ((1 << \nbits) - 1)
#else

.insn i @x@b, Ox4, \rd, \rs1, (\shamt & @x1f) | (((\nbits - 1) & Bx7) << 6)

3.8. Hazard3 Processor 288

RP2350 Datasheet
|

#endif
.endm

3.8.7. Instruction Cycle Counts

All timings are given assuming perfect bus behaviour (no downstream bus stalls).

See Section 3.8.1.6 for a synopsis of instruction behaviour.

3.8.7.1. RV32I

Instruction Cycles Note

Integer Register-register

add rd, rs1, rs2 1
sub rd, rs1, rs2 1
slt rd, rs1, rs2 1
sltu rd, rs1, rs2 1
and rd, rs1, rs2 1
or rd, rs1, rs2 1
xor rd, rs1, rs2 1
s1l rd, rs1, rs2 1
srl rd, rs1, rs2 1
sra rd, rs1, rs2 1

Integer Register-immediate

addi rd, rs1, imm 1 nop is a pseudo-op for addi x0, x0, @
slti rd, rs1, imm 1
sltiu rd, rs1, imm 1
andi rd, rs1, imm 1
ori rd, rs1, imm 1
xori rd, rs1, imm 1
s11i rd, rs1, imm 1
srli rd, rs1, imm 1
srai rd, rs1, imm 1

Large Immediate

lui rd, imm 1

auipc rd, imm 1

Control Transfer

jal rd, label 211

jalr rd, rs1, imm 201

. __|
3.8. Hazard3 Processor 289

RP2350 Datasheet
]

Instruction Cycles Note

beq rs1, rs2, label 1or 2"

_

if correctly predicted, 2 if mispredicted.

bne rs1, rs2, label 1or 2/ 1 if correctly predicted, 2 if mispredicted.
blt rs1, rs2, label 1or 2" 1 if correctly predicted, 2 if mispredicted.
bge rs1, rs2, label 1or 2" 1 if correctly predicted, 2 if mispredicted.
bltu rs1, rs2, label 1or 2 1 if correctly predicted, 2 if mispredicted.
bgeu rs1, rs2, label 1or 2 1 if correctly predicted, 2 if mispredicted.

Load and Store

1w rd, imm(rs1) Tor2 1 if next instruction is independent, 2 if dependent.”
1h rd, imm(rs1) 1or2 1 if next instruction is independent, 2 if dependent.”?
lhu rd, imm(rs1) Tor2 1 if next instruction is independent, 2 if dependent.”
1b rd, imm(rs1) Tor2 1 if next instruction is independent, 2 if dependent.”?
1bu rd, imm(rs1) Tor2 1 if next instruction is independent, 2 if dependent.”?
sw rs2, imm(rs1) 1
sh rs2, imm(rs1) 1
sb rs2, imm(rs1) 1

3.8.7.2. M Extension

Instruction Cycles Note

32 x 32 — 32 Multiply

mul rd, rs1, rs2 1

32 x 32 — 64 Multiply, Upper Half

mulh rd, rs1, rs2 1
mulhsu rd, rs1, rs2 1
mulhu rd, rs1, rs2 1

Divide and Remainder

div rd, rs1, rs2 18 0or19 Depending on sign correction
divu rd, rs1, rs2 18

rem rd, rs1, rs2 18 0r19 Depending on sign correction
remu rd, rs1, rs2 18

3.8.7.3. A Extension

Instruction Cycles Note

Load-Reserved/Store-Conditional

Tr.w rd, (rs1) Tor2 2 if next instruction is dependent?, an 1r.w, sc.w or amo*.w."!

sc.w rd, rs2, (rs1) Tor2 2 if next instruction is dependent?, an 1r.w, sc.w or amo*.w."!

]
3.8. Hazard3 Processor 290

RP2350 Datasheet

Instruction Cycles Note

Atomic Memory Operations

amoswap.w rd, rs2, (rs1) 4+ 4 per attempt. Multiple attempts if reservation is lost."”
amoadd.w rd, rs2, (rs1) 4+ 4 per attempt. Multiple attempts if reservation is lost."”
amoxor.w rd, rs2, (rs1) 4+ 4 per attempt. Multiple attempts if reservation is lost.""
amoand.w rd, rs2, (rs1) 4+ 4 per attempt. Multiple attempts if reservation is lost."”
amoor.w rd, rs2, (rs1) 4+ 4 per attempt. Multiple attempts if reservation is lost."”
amomin.w rd, rs2, (rs1) 4+ 4 per attempt. Multiple attempts if reservation is lost."¥
amomax.w rd, rs2, (rs1) 4+ 4 per attempt. Multiple attempts if reservation is lost./¥
amominu.w rd, rs2, (rs1) 4+ 4 per attempt. Multiple attempts if reservation is lost."”
amomaxu.w rd, rs2, (rs1) 4+ 4 per attempt. Multiple attempts if reservation is lost."”

3.8.7.4. C Extension

All C extension 16-bit instructions are aliases of base RV32l instructions. On Hazard3, they perform identically to their

32-bit counterparts.

A consequence of the C extension is that 32-bit instructions can be non-naturally-aligned. This has no penalty during
sequential execution, but branching to a 32-bit instruction that is not 32-bit-aligned carries a 1 cycle penalty, because
the instruction fetch is cracked into two naturally-aligned bus accesses.

3.8.7.5. Privileged Instructions (including Zicsr)

Instruction Cycles Note

CSR Access

csrrw rd, csr, rsl 1

csrrc rd, csr, rsl 1

csrrs rd, csr, rsl 1

csrrwi rd, csr, imm 1

csrrei rd, csr, imm 1

csrrsi rd, csr, imm 1

Traps and Interrupts

ecall 3 Time given is for jumping to mtvec
ebreak 3 Time given is for jumping to mtvec
mret 211

wfi 2+ Always stalls for one cycle, no upper limit

3.8.7.6. Bit Manipulation

3.8. Hazard3 Processor

291

RP2350 Datasheet
|

Zba (address generation)

shladd rd, rs1, rs2 1
sh2add rd, rs1, rs2 1
sh3add rd, rs1, rs2 1
Zbb (basic bit manipulation)

andn rd, rs1, rs2 1
clz rd, rsil 1
cpop rd, rsi 1
ctz rd, rsi 1
max rd, rs1, rs2 1
maxu rd, rs1, rs2 1
min rd, rs1, rs2 1
minu rd, rs1, rs2 1
orc.b rd, rsl 1
orn rd, rs1, rs2 1
rev8 rd, rsl 1
rol rd, rs1, rs2 1
ror rd, rs1, rs2 1
rori rd, rs1, imm 1
sext.b rd, rsi 1
sext.h rd, rsi 1
xnor rd, rs1, rs2 1
zext.h rd, rs1 1
zext.b rd, rsl 1 zext.b is a pseudo-op for andi rd, rs1, Oxff

Zbs (single-bit manipulation)

belr rd, rs1, rs2 1
belri rd, rs1, imm 1
bext rd, rs1, rs2 1
bexti rd, rs1, imm 1
binv rd, rs1, rs2 1
binvi rd, rs1, imm 1
bset rd, rs1, rs2 1
bseti rd, rs1, imm 1

Zbkb (basic bit manipulation for cryptography)

pack rd, rs1, rs2 1

packh rd, rs1, rs2 1

. __|
3.8. Hazard3 Processor 292

RP2350 Datasheet

Instruction Cycles Note
brev8 rd, rs1 1
zip rd, rsi 1
unzip rd, rsil 1

3.8.7.7. Zcb Extension

Similarly to the C extension, this extension contains 16-bit variants of common 32-bit instructions:

® RV32l base ISA: by, 1h, 1hy, sb, sh, zext.b (alias of andi), not (alias of xori)

e 7Zbb extension: sext.b, zext.h, sext.h

® M extension: mul

They perform identically to their 32-bit counterparts.

3.8.7.8. Zcmp Extension

Instruction Cycles Note
em.push rlist, -imm T+n n is number of registers in rlist
cm.pop rlist, imm T+n n is number of registers in rlist

cm.popret rlist, imm

4(n="1)0r2+n(n>=2)"

nis number of registers in rlist

cm.popretz rlist, imm

5(n=1)%0r3+n(n>=2)"

n is number of registers in rlist

em.mvadls ris', r2s'

2

cm.mvsadl ris', r2s

2

3.8.7.9. Table Footnotes

nl

12]

131

14

Is]

I
293

3.8. Hazard3 Processor

A jump or branch to a 32-bit instruction which is not 32-bit-aligned requires one additional cycle, because
two naturally aligned bus cycles are required to fetch the target instruction.

If an instruction in stage 2 (e.g. an add) uses data from stage 3 (e.g. a 1w result), a 1-cycle bubble is inserted
between the pair. A load data — store data dependency is not an example of this, because data is
produced and consumed in stage 3. However, load data — load address would qualify, as would e.g. sc.w

— beqz.

AMOs are issued as a paired exclusive read and exclusive write on the bus, at the maximum speed of 2
cycles per access, since the bus does not permit pipelining of exclusive reads/writes. If the write phase
fails due to the global monitor reporting a lost reservation, the instruction loops at a rate of 4 cycles per
loop, until success. If the read reservation is refused by the global monitor, the instruction generates a
Store/AMO Fault exception, to avoid an infinite loop.

A pipeline bubble is inserted between 1r.w/sc.w and an immediately-following 1r.w/sc.w/amo*, because the
AHBS5 bus standard does not permit pipelined exclusive accesses. A stall would be inserted between 1r.u
and sc.w anyhow, so the local monitor can be updated based on the 1r.w data phase in time to suppress the
sc.w address phase.

The single-register variants of cm.popret and cm.popretz take the same number of cycles as the two-register
variants, because of an internal load-use dependency on the loaded return address.

RP2350 Datasheet
]

3.8.7.10. Branch Predictor

Hazard3 includes a minimal branch predictor, to accelerate tight loops:
® The instruction frontend remembers the last taken, backward branch in a single-entry branch target buffer (BTB)
* |f the same branch is seen again, it is predicted taken
o All other branches are predicted non-taken
* |f the core executes but does not take a predicted-taken branch:
o The core clears the BTB
o The branch is predicted non-taken on its next execution

Correctly predicted branches execute in one cycle: the frontend is able to stitch together the two nonsequential fetch
paths so that they appear sequential. Mispredicted branches incur a penalty cycle, since a nonsequential fetch address
must be issued when the branch is executed. Consider the following copy routine:

// a@ is dst pointer
// al is src pointer
// a2 is len
copy_data:

beqz a2, 2f

add a2, a2, al

lbu a3, (a@)

sb a3, (a1)
addi a@, a0, 1
addi a1, ail1, 1
bltu a1, a2, 1b

ret

In the steady state this executes at 5 cycles per loop:
® One cycle for the load
® One cycle for the store: though it depends on the load, the dependency is within stage 3 so there is no stall
® One cycle for each add
® One cycle for the repeatedly-taken backward branch

Without the branch predictor the throughput is 6 cycles per loop. The branch predictor increases the throughput by 20%,
and also reduces energy dissipation due to wasted instruction fetch (memory access is a large fraction of the
instruction energy cost for an embedded processor).

For the above example code, a copy of 10 bytes would take 52 cycles:
® The base cost is 5 cycles per iteration, and there are 10 iterations
* The mispredicted, taken branch at the end of the first iteration costs one cycle

* The mispredicted, non-taken branch at the end of the last iteration costs one cycle

3.8.7.10.1. Caveat: Delay Loops
The branch predictor does not engage when all of the following are true:
® The loop body consists of a single 16-bit instruction (followed by a repeatedly taken backward branch)

® The loop body is 32-bit-aligned

]
3.8. Hazard3 Processor 294

RP2350 Datasheet
]

® There are no bus stalls on the instruction fetch port

This is because the branch predictor lookup functions by comparing bits 31:2 of the sequential-fetch counter to the BTB
tag. In this case the BTB tag points to the same word as the loop entry. In the aforementioned case the sequential-fetch
counter never actually contains the address of the loop entry, because the loop entry address goes straight to the bus,
and the sequential-fetch counter pre-increments to the next address. This manifests in delay loops like the following:

.p2align 2
delay_loop_bad_dont_copy_paste_this:
addi a0, a0, -1
bgez a@, delay_loop_bad_dont_copy_paste_this

Given the description in Section 3.8.7.10, you may expect this loop to execute at two cycles per iteration in the steady
state. The actual behaviour is it executes at three cycles per iteration until instruction fetch encounters a stall,
whereupon it accelerates to two cycles per instruction until the loop ends.

Avoid this by using a 32-bit instruction in the loop body. Force 32-bit alignment of the loop body to avoid an alignment
penalty. The following code executes at the expected two cycles per iteration in the steady state:

.p2align 2 // Force 4-byte alignment
delay_cycles:
.option push
.option norvc // Force 32-bit opcode
addi a@, a0, -1
.option pop
bgez a@, delay_cycles

3.8.8. Configuration

Hazard3 uses the parameters given in the hazard3_config.vh header to customise the core. These values are set before
taping out a Hazard3 instance on silicon, so they are fixed from a user point of view. They determine which instructions
the processor supports, the area-performance trade-off for certain instructions, and static configuration for core
peripherals like the PMP. RP2350 uses the following values for these parameters:

Parameter Value
EXTENSION_A 1
EXTENSION_C 1
EXTENSION_M 1
EXTENSION_ZBA 1
EXTENSION_ZBB 1
EXTENSION_ZBC 0
EXTENSION_ZBS 1
EXTENSION_Z(CB 1
EXTENSION_ZCMP 1
EXTENSION_ZBKB 1
EXTENSION_ZIFENCEI 1
EXTENSION_XH3BEXTM 1
EXTENSION_XH3IRQ 1

]
3.8. Hazard3 Processor 295

https://github.com/Wren6991/Hazard3/blob/86fc4e3f/hdl/hazard3_config.vh

RP2350 Datasheet

Parameter

Value

EXTENSION_XH3PMPM

EXTENSION_XH3POWER

CSR_M_MANDATORY

CSR_M_TRAP

CSR_COUNTER

U_MODE

PMP_REGIONS

n

PMP_GRAIN

PMP_HARDWIRED

11h700

PMP_HARDWIRED_ADDR

See Section 3.8.8.1

PMP_HARDWIRED_CFG

See Section 3.8.8.1

DEBUG_SUPPORT

BREAKPOINT_TRIGGERS 4
NUM_IRQS 52
IRQ_PRIORITY_BITS 4

IRQ_INPUT_BYPASS

{NUM_IRQS{1'b1}}

MVENDORID_VAL 32'h00000493
MIMPID_VAL 32'h86fc4e3f
MCONFIGPTR_VAL 32'he
REDUCED_BYPASS 0
MULDIV_UNROLL 2

MUL_FAST 1

MUL_FASTER 1

MULH_FAST 1
FAST_BRANCHCMP 1
RESET_REGFILE 1
BRANCH_PREDICTOR 1
MTVEC_WMASK 32hfffffffd

3.8.8.1. Hardwired PMP Regions

RP2350 configures Hazard3 with eight dynamically configured PMP regions, and three static ones. The static regions
provide default U-mode RWX permissions on the following ranges:

* ROM: 0x00000000 through ox@fffffff

® Peripherals: 0x40000000 through 0x5fffffff

® SIO: 0xd0000000 through oxdfffffff

These addresses appear in PMPADDR8, PMPADDR9 and PMPADDR10. The hardwired PMP address registers behave
the same as dynamic registers, except that they ignore writes (exercising the WARL rule). The permissions for these

3.8. Hazard3 Processor

296

RP2350 Datasheet
]

Table 364. List of
RVCSR registers

regions are in PMPCFG2.

The hardwired regions have a similar role to the Exempt regions added to the Cortex-M33 IDAU address map specified
in Section 10.2.2.

RP2350 puts default U-mode permissions on AHB/APB peripherals because these are expected to be assigned using
ACCESSCTRL (Section 10.6). ACCESSCTRL can assign each peripheral individually, using the existing address decoders
in the bus fabric, whereas PMP regions are in limited supply so are less useful for peripheral assignment.

Similarly, SIO has internal banking over Secure/Non-secure bus attribution, which is mapped onto Machine and User
modes as described in Section 10.6.2.

The dynamic regions 0 through 7 take priority over the hardwired regions, because the PMP prioritises lower-numbered
regions.

3.8.9. Control and Status Registers
Control and status registers (CSRs) are registers internal to the processor which affect its behaviour. They are hart-
local: every hart has a copy of the CSRs. On RP2350 hart-local is a synonym for core-local.

Use dedicated CSR instructions to access the CSRs, as described in Section 3.8.1.22. You cannot access CSRs with
load or store instructions.

The RISC-V privileged specification is flexible on which CSRs are implemented, and how they behave. This section
documents the as-implemented behaviour of CSRs on Hazard3 specifically, and does not enumerate all possible
behaviour of all platforms.

O IMPORTANT

The RISC-V Privileged Specification should be your primary reference for writing software to run on Hazard3.
Portable RISC-V software should not rely on any implementation-defined behaviour described in this section.

All CSRs are 32-bit, and MXLEN is fixed at 32 bits. CSR addresses not listed in this section are unimplemented.
Accessing an unimplemented CSR raises an illegal instruction exception (ncause = 2). This includes all S-mode CSRs.

Offset Name Info

0x300 MSTATUS Machine status register

0x301 MISA Summary of ISA extension support

0x302 MEDELEG Machine exception delegation register. Not implemented, as no

S-mode support.

0x303 MIDELEG Machine interrupt delegation register. Not implemented, as no S-
mode support.

0x304 MIE Machine interrupt enable register
0x305 MTVEC Machine trap handler base address.
0x306 MCOUNTEREN Counter enable. Control access to counters from U-mode. Not to

be confused with mcountinhibit.

0x30a MENVCFG Machine environment configuration register, low half
0x310 MSTATUSH High half of mstatus, hardwired to 0.

0x31a MENVCFGH Machine environment configuration register, high half
0x320 MCOUNTINHIBIT Count inhibit register for mcycle/minstret

0x323 MHPMEVENT3 Extended performance event selector, hardwired to 0.

]
3.8. Hazard3 Processor 297

https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf

RP2350 Datasheet

Offset Name Info
0x324 MHPMEVENT4 Extended performance event selector, hardwired to 0.
0x325 MHPMEVENTS5 Extended performance event selector, hardwired to 0.
0x326 MHPMEVENT6 Extended performance event selector, hardwired to 0.
0x327 MHPMEVENT?7 Extended performance event selector, hardwired to 0.
0x328 MHPMEVENTS8 Extended performance event selector, hardwired to 0.
0x329 MHPMEVENT9 Extended performance event selector, hardwired to 0.
0x32a MHPMEVENT10 Extended performance event selector, hardwired to 0.
0x32b MHPMEVENT11 Extended performance event selector, hardwired to 0.
0x32c MHPMEVENT12 Extended performance event selector, hardwired to 0.
0x32d MHPMEVENT13 Extended performance event selector, hardwired to 0.
0x32e MHPMEVENT14 Extended performance event selector, hardwired to 0.
0x32f MHPMEVENT15 Extended performance event selector, hardwired to 0.
0x330 MHPMEVENT16 Extended performance event selector, hardwired to 0.
0x331 MHPMEVENT17 Extended performance event selector, hardwired to 0.
0x332 MHPMEVENT18 Extended performance event selector, hardwired to 0.
0x333 MHPMEVENT19 Extended performance event selector, hardwired to 0.
0x334 MHPMEVENT20 Extended performance event selector, hardwired to 0.
0x335 MHPMEVENT21 Extended performance event selector, hardwired to 0.
0x336 MHPMEVENT22 Extended performance event selector, hardwired to 0.
0x337 MHPMEVENT23 Extended performance event selector, hardwired to 0.
0x338 MHPMEVENT24 Extended performance event selector, hardwired to 0.
0x339 MHPMEVENT25 Extended performance event selector, hardwired to 0.
0x33a MHPMEVENT26 Extended performance event selector, hardwired to 0.
0x33b MHPMEVENT27 Extended performance event selector, hardwired to 0.
0x33c MHPMEVENT28 Extended performance event selector, hardwired to 0.
0x33d MHPMEVENT29 Extended performance event selector, hardwired to 0.
0x33e MHPMEVENT30 Extended performance event selector, hardwired to 0.
0x33f MHPMEVENT31 Extended performance event selector, hardwired to 0.
0x340 MSCRATCH Scratch register for machine trap handlers
0x341 MEPC Machine exception program counter
0x342 MCAUSE Machine trap cause. Set when entering a trap to indicate the
reason for the trap. Readable and writable by software.
0x343 MTVAL Machine bad address or instruction. Hardwired to zero.
0x344 MIP Machine interrupt pending
0x3a0 PMPCFGO Physical memory protection configuration for regions 0 through
3

3.8. Hazard3 Processor

298

RP2350 Datasheet

Offset Name Info
0x3a1 PMPCFG1 Physical memory protection configuration for regions 4 through
7
0x3a2 PMPCFG2 Physical memory protection configuration for regions 8 through
11
0x3a3 PMPCFG3 Physical memory protection configuration for regions 12 through
15
0x3b0 PMPADDRO Physical memory protection address for region 0
0x3b1 PMPADDR1 Physical memory protection address for region 1
0x3b2 PMPADDR2 Physical memory protection address for region 2
0x3b3 PMPADDRS3 Physical memory protection address for region 3
0x3b4 PMPADDR4 Physical memory protection address for region 4
0x3b5 PMPADDRS5 Physical memory protection address for region 5
0x3b6 PMPADDR6 Physical memory protection address for region 6
0x3b7 PMPADDR7 Physical memory protection address for region 7
0x3b8 PMPADDR8 Physical memory protection address for region 8
0x3b9 PMPADDR9 Physical memory protection address for region 9
0x3ba PMPADDR10 Physical memory protection address for region 10
0x3bb PMPADDR11 Physical memory protection address for region 11
0x3bc PMPADDR12 Physical memory protection address for region 12
0x3bd PMPADDR13 Physical memory protection address for region 13
0x3be PMPADDR14 Physical memory protection address for region 14
0x3bf PMPADDR15 Physical memory protection address for region 15
0x7a0 TSELECT Select trigger to be configured via tdatal/tdata2
0x7a1 TDATA1 Trigger configuration data 1
0x7a2 TDATA2 Trigger configuration data 2
0x7b0 DCSR Debug control and status register (Debug Mode only)
0x7b1 DPC Debug program counter (Debug Mode only)
0xb00 MCYCLE Machine-mode cycle counter, low half
0xb02 MINSTRET Machine-mode instruction retire counter, low half
0xb03 MHPMCOUNTER3 Extended performance counter, hardwired to 0.
0xb04 MHPMCOUNTER4 Extended performance counter, hardwired to 0.
0xb05 MHPMCOUNTERS Extended performance counter, hardwired to 0.
0xb06 MHPMCOUNTER6 Extended performance counter, hardwired to 0.
0xb07 MHPMCOUNTER7 Extended performance counter, hardwired to 0.
0xb08 MHPMCOUNTER8 Extended performance counter, hardwired to 0.
0xb09 MHPMCOUNTER9 Extended performance counter, hardwired to 0.
0xb0a MHPMCOUNTER10 Extended performance counter, hardwired to 0.

3.8. Hazard3 Processor

299

RP2350 Datasheet

Offset Name Info

0xb0b MHPMCOUNTER11 Extended performance counter, hardwired to 0.
0xb0c MHPMCOUNTER12 Extended performance counter, hardwired to 0.
0xb0d MHPMCOUNTER13 Extended performance counter, hardwired to 0.
0xb0e MHPMCOUNTER14 Extended performance counter, hardwired to 0.
0xbOf MHPMCOUNTER15 Extended performance counter, hardwired to 0.
0xb10 MHPMCOUNTER16 Extended performance counter, hardwired to 0.
0xb11 MHPMCOUNTER17 Extended performance counter, hardwired to 0.
0xb12 MHPMCOUNTER18 Extended performance counter, hardwired to 0.
0xb13 MHPMCOUNTER19 Extended performance counter, hardwired to 0.
0xb14 MHPMCOUNTER20 Extended performance counter, hardwired to 0.
0xb15 MHPMCOUNTER21 Extended performance counter, hardwired to 0.
0xb16 MHPMCOUNTER22 Extended performance counter, hardwired to 0.
0xb17 MHPMCOUNTER23 Extended performance counter, hardwired to 0.
0xb18 MHPMCOUNTER24 Extended performance counter, hardwired to 0.
0xb19 MHPMCOUNTER25 Extended performance counter, hardwired to 0.
Oxbla MHPMCOUNTER26 Extended performance counter, hardwired to 0.
0xb1b MHPMCOUNTER27 Extended performance counter, hardwired to 0.
Oxb1c MHPMCOUNTER28 Extended performance counter, hardwired to 0.
Oxb1d MHPMCOUNTER29 Extended performance counter, hardwired to 0.
Oxble MHPMCOUNTER30 Extended performance counter, hardwired to 0.
0xb1f MHPMCOUNTER31 Extended performance counter, hardwired to 0.
0xb80 MCYCLEH Machine-mode cycle counter, high half

0xb82 MINSTRETH Machine-mode instruction retire counter, low half
0xb83 MHPMCOUNTER3H Extended performance counter, hardwired to 0.
0xb84 MHPMCOUNTER4H Extended performance counter, hardwired to 0.
0xb85 MHPMCOUNTER5H Extended performance counter, hardwired to 0.
0xb86 MHPMCOUNTER6H Extended performance counter, hardwired to 0.
0xb87 MHPMCOUNTER7H Extended performance counter, hardwired to 0.
0xb88 MHPMCOUNTER8H Extended performance counter, hardwired to 0.
0xb89 MHPMCOUNTER9H Extended performance counter, hardwired to 0.
0xb8a MHPMCOUNTER10H Extended performance counter, hardwired to 0.
0xb8b MHPMCOUNTER1T1H Extended performance counter, hardwired to 0.
0xb8c MHPMCOUNTER12H Extended performance counter, hardwired to 0.
Oxb8d MHPMCOUNTER13H Extended performance counter, hardwired to 0.
0xb8e MHPMCOUNTER14H Extended performance counter, hardwired to 0.
0xb8f MHPMCOUNTER15H Extended performance counter, hardwired to 0.

3.8. Hazard3 Processor

300

RP2350 Datasheet

Offset Name Info

0xb90 MHPMCOUNTER16H Extended performance counter, hardwired to 0.

0xb91 MHPMCOUNTER17H Extended performance counter, hardwired to 0.

0xb92 MHPMCOUNTER18H Extended performance counter, hardwired to 0.

0xb93 MHPMCOUNTER19H Extended performance counter, hardwired to 0.

0xb94 MHPMCOUNTER20H Extended performance counter, hardwired to 0.

0xb95 MHPMCOUNTER21H Extended performance counter, hardwired to 0.

0xb96 MHPMCOUNTER22H Extended performance counter, hardwired to 0.

0xb97 MHPMCOUNTER23H Extended performance counter, hardwired to 0.

0xb98 MHPMCOUNTER24H Extended performance counter, hardwired to 0.

0xb99 MHPMCOUNTER25H Extended performance counter, hardwired to 0.

0xb9a MHPMCOUNTER26H Extended performance counter, hardwired to 0.

0xb9b MHPMCOUNTER27H Extended performance counter, hardwired to 0.

0xb9c MHPMCOUNTER28H Extended performance counter, hardwired to 0.

0xb9d MHPMCOUNTER29H Extended performance counter, hardwired to 0.

0xb9e MHPMCOUNTER30H Extended performance counter, hardwired to 0.

0xbof MHPMCOUNTER31H Extended performance counter, hardwired to 0.

0xbd0 PMPCFGMO Set PMP regions to M-mode, without locking

0xbe0 MEIEA External interrupt enable array

Oxbe1 MEIPA External interrupt pending array

0xbe2 MEIFA External interrupt force array

Oxbe3 MEIPRA External interrupt priority array

Oxbe4 MEINEXT Get next external interrupt

0xbe5 MEICONTEXT External interrupt context register

0xbf0 MSLEEP M-mode sleep control register

Oxbff DMDATAOQ Debug Module DATAO access register (Debug Mode only)

0xc00 CYCLE Read-only U-mode alias of mcycle, accessible when mcounteren.cy
is set

0xc02 INSTRET Read-only U-mode alias of minstret, accessible when
mcounteren.ir is set

0xc80 CYCLEH Read-only U-mode alias of mcycleh, accessible when
mcounteren.cy is set

0xc82 INSTRETH Read-only U-mode alias of minstreth, accessible when
mcounteren.ir is set

0xf11 MVENDORID Vendor ID

0xf12 MARCHID Architecture ID (Hazard3)

0xf13 MIMPID Implementation ID. On RP2350 this reads as 0x86fc4e3f, which
is release v1.0-rc1 of Hazard3.

3.8. Hazard3 Processor

301

RP2350 Datasheet

Offset Name Info
0xf14 MHARTID Hardware thread ID
0xf15 MCONFIGPTR Pointer to configuration data structure (hardwired to 0)

RVCSR: MSTATUS Register
Offset: 0x300

Description

Machine status register

Table 365. MSTATUS

) Bits Description Type Reset
Register

31:22 Reserved. - -

21 TW: Timeout wait. When 1, attempting to execute a WFI instruction in U-mode | RW 0x0
will instantly cause an illegal instruction exception.

20:18 Reserved. - -

17 MPRV: Modify privilege. If 1, loads and stores behave as though the current RW 0x0
privilege level were mpp. This includes physical memory protection checks, and
the privilege level asserted on the system bus alongside the load/store
address.

16:13 Reserved. - -

12:11 MPP: Previous privilege level. Can store the values 3 (M-mode) or 0 (U-mode). | RW 0x3
If another value is written, hardware rounds to the nearest supported mode.

10:8 Reserved. - -

7 MPIE: Previous interrupt enable. Readable and writable. Is set to the current RW 0x0
value of mstatus.mie on trap entry. Is set to 1 on trap return.

6:4 Reserved. - -

3 MIE: Interrupt enable. Readable and writable. Is set to 0 on trap entry. Is setto | RW 0x0
the current value of mstatus.mpie on trap return.

2:0 Reserved. - -

RVCSR: MISA Register
Offset: 0x301

Description

Summary of ISA extension support
On RP2350, Hazard3's full -march string is: rv32ima_zicsr_zifencei_zba_zbb_zbs_zbkb_zca_zcb_zcmp

Note Zca is equivalent to the C extension in this case; all instructions from the RISC-V C extension relevant to a 32-bit
non-floating-point processor are supported. On older toolchains which do not support the Zc extensions, the appropriate

-march string is: rv32imac_zicsr_zifencei_zba_zbb_zbs_zbkb

In addition the following custom extensions are configured: Xh3bm, Xh3power, Xh3irg, Xh3pmpm

Table 366. MISA

) Bits Description Type Reset
Register

31:30 MXL: Value of 0x1 indicates this is a 32-bit processor. RO 0x1

29:24 Reserved. - -

]
3.8. Hazard3 Processor 302

RP2350 Datasheet
]

Bits Description Type Reset

23 X: Value of 1 indicates nonstandard extensions are present. (Xh3b bit RO 0x1
manipulation, and custom sleep and interrupt control CSRs)

22 Reserved. = =
21 V: Vector extension (not implemented). RO 0x0
20 U: Value of 1 indicates U-mode is implemented. RO 0x1
19 Reserved. = =
18 S: Supervisor extension (not implemented). RO 0x0
17 Reserved. = =
16 Q: Quad-precision floating point extension (not implemented). RO 0x0

15:13 Reserved. - -

12 M: Value of 1 indicates the M extension (integer multiply/divide) is RO 0x1
implemented.

11:9 Reserved. - -

8 I: Value of 1 indicates the RVI base ISA is implemented (as opposed to RVE) RO 0x1

7 H: Hypervisor extension (not implemented, | agree it would be pretty cool ona | RO 0x0
microcontroller through).

6 Reserved. = =

5 F: Single-precision floating point extension (not implemented). RO 0x0

4 E: RV32E/64E base ISA (not implemented). RO 0x0

3 D: Double-precision floating point extension (not implemented). RO 0x0

2 C: Value of 1 indicates the C extension (compressed instructions) is RO 0x1
implemented.

1 B: Value of 1 indicates the B extension (bit manipulation) is implemented. Bis | RO 0x0

the combination of Zba, Zbb and Zbs.

Hazard3 implements all of these extensions, but the definition of B as
ZbaZbbZbs did not exist at the point this version of Hazard3 was taped out.
This bit was reserved-0 at that point. Therefore this bit reads as 0.

0 A: Value of 1 indicates the A extension (atomics) is implemented. RO 0x1

RVCSR: MEDELEG Register

Offset: 0x302

Tab{e 367. MEDELEG Bits Description Type Reset
Register
31:0 Machine exception delegation register. Not implemented, as no S-mode RW -
support.

RVCSR: MIDELEG Register

Offset: 0x303

3.8. Hazard3 Processor 303

RP2350 Datasheet

Tab{e 368. MIDELEG Bits Description Type Reset
Register
31:0 Machine interrupt delegation register. Not implemented, as no S-mode RW -
support.
RVCSR: MIE Register
Offset: 0x304
Description
Machine interrupt enable register
Tabl_e 369, MIE Bits Description Type Reset
Register
31:12 Reserved. = =
11 MEIE: External interrupt enable. The processor transfers to the external RW 0x0
interrupt vector when mie.meie, mip.meip and mstatus.mie are all 1.
Hazard3 has internal registers to individually filter external interrupts (see
meiea), but this standard control can be used to mask all external interrupts at
once.
10:8 Reserved. = =
7 MTIE: Timer interrupt enable. The processor transfers to the timer interrupt RW 0x0
vector when mie.mtie, mip.mtip and mstatus.mie are all 1, unless a software or
external interrupt request is also both pending and enabled at this time.
6:4 Reserved. = =
3 MSIE: Software interrupt enable. The processor transfers to the software RW 0x0
interrupt vector when mie.msie, mip.msip and mstatus.mie are all 1, unless an
external interrupt request is also both pending and enabled at this time.
2:0 Reserved. = =
RVCSR: MTVEC Register
Offset: 0x305
Description
Machine trap handler base address.
Table 370. MTVEC Bits Description Type Reset
Register
31:2 BASE: The upper 30 bits of the trap vector address (2 LSBs are implicitly 0). RW 0x00001fff
Must be 64-byte-aligned if vectoring is enabled. Otherwise, must be 4-byte-
aligned.
1:0 MODE: If 0 (direct mode), all traps set pc to the trap vector base. If 1 RW 0x0

(vectored), exceptions set pc to the trap vector base, and interrupts set pc to 4
times the interrupt cause (3=soft IRQ, 7=timer IRQ, 11=external IRQ).

The upper bit is hardwired to zero, so attempting to set mode to 2 or 3 will
result in a value of 0 or 1 respectively.

Enumerated values:

0x0 — Direct entry to mtvec

0x1 — Vectored entry to a 16-entry jump table starting at mtvec

3.8. Hazard3 Processor

304

RP2350 Datasheet

Table 371.
MCOUNTEREN
Register

Table 372. MENVCFG
Register

Table 373. MSTATUSH
Register

RVCSR: MCOUNTEREN Register

Offset: 0x306

Description

Counter enable. Control access to counters from U-mode. Not to be confused with mcountinhibit.

Bits Description Type Reset
g3 Reserved. - -
2 IR: If 1, U-mode is permitted to access the instret/instreth instruction retire RW 0x0
counter CSRs. Otherwise, U-mode accesses to these CSRs will trap.
1 TM: No hardware effect, as the time/timeh CSRs are not implemented. RW 0x0
However, this field still exists, as M-mode software can use it to track whether
it should emulate U-mode attempts to access those CSRs.
0 CY: If 1, U-mode is permitted to access the cycle/cycleh cycle counter CSRs. RW 0x0
Otherwise, U-mode accesses to these CSRs will trap.
RVCSR: MENVCFG Register
Offset: 0x30a
Description
Machine environment configuration register, low half
Bits Description Type Reset
31:1 Reserved. - -
0 FIOM: When set, fence instructions in modes less privileged than M-mode RO 0x0
which specify that |0 memory accesses are ordered will also cause ordering
of main memory accesses.
FIOM is hardwired to zero on Hazard3, because S-mode is not supported, and
because fence instructions execute as NOPs (with the exception of fence. 1)
RVCSR: MSTATUSH Register
Offset: 0x310
Bits Description Type Reset
31:0 High half of mstatus, hardwired to 0. RO 0x00000000

RVCSR: MENVCFGH Register

Offset: 0x31a

Description

Machine environment configuration register, high half

This register is fully reserved, as Hazard3 does not implement the relevant extensions. It is implemented as hardwired-

0.

3.8. Hazard3 Processor

305

RP2350 Datasheet

Table 374.
MENVCFGH Register

Table 375.
MCOUNTINHIBIT
Register

Table 376.
MHPMEVENTS3,
MHPMEVENTY, ...,
MHPMEVENT30,
MHPMEVENT31
Registers

Table 377.
MSCRATCH Register

Table 378. MEPC
Register

Bits Description Type Reset
31:0 Reserved. = -
RVCSR: MCOUNTINHIBIT Register
Offset: 0x320
Description
Count inhibit register for mcycle/minstret
Bits Description Type Reset
Bjl8 Reserved. = =
2 IR: Inhibit counting of the minstret and minstreth registers. Set by default to RW 0x1
save power.
1 Reserved. = =
0 CY: Inhibit counting of the mcycle and meycleh registers. Set by default to save | RW 0x1
power.

RVCSR: MHPMEVENT3, MHPMEVENT4, ..., MHPMEVENT30, MHPMEVENT31

Registers
Offsets: 0x323, 0x324, ..., 0x33e, 0x33f
Bits Description Type Reset
31:0 Extended performance event selector, hardwired to 0. RO 0x00000000
RVCSR: MSCRATCH Register
Offset: 0x340
Bits Description Type Reset
31:0 Scratch register for machine trap handlers. RW 0x00000000
32-bit read/write register with no specific hardware function. Software may
use this to do a fast save/restore of a core register in a trap handler.
RVCSR: MEPC Register
Offset: 0x341
Bits Description Type Reset
31:2 Machine exception program counter. RW 0x00000000
When entering a trap, the current value of the program counter is recorded
here. When executing an mret, the processor jumps to mepc. Can also be read
and written by software.
1:0 Reserved. = =

RVCSR: MCAUSE Register

Offset: 0x342

3.8. Hazard3 Processor

306

RP2350 Datasheet
]

Description

Machine trap cause. Set when entering a trap to indicate the reason for the trap. Readable and writable by software.

Table 379. MCAUSE

) Bits Description Type Reset
Register
31 INTERRUPT: If 1, the trap was caused by an interrupt. If 0, it was caused by an | RW 0x0
exception.

30:4 Reserved. - -

3.0 CODE: If interrupt is set, code indicates the index of the bit in mip that caused |RW 0x0
the trap (3=soft IRQ, 7=timer IRQ, 11=external IRQ). Otherwise, code is set
according to the cause of the exception.

Enumerated values:

0x0 — Instruction fetch was misaligned. Will never fire on RP2350, since the C
extension is enabled.

0x1 — Instruction access fault. Instruction fetch failed a PMP check, or
encountered a downstream bus fault, and then passed the point of no
speculation.

0x2 — lllegal instruction was executed (including illegal CSR accesses)

0x3 — Breakpoint. An ebreak instruction was executed when the relevant
dcsr.ebreak bit was clear.

0x4 — Load address misaligned. Hazard3 requires natural alignment of all
accesses.

0x5 — Load access fault. A load failed a PMP check, or encountered a
downstream bus error.

0x6 — Store/AMO address misaligned. Hazard3 requires natural alignment of
all accesses.

0x7 — Store/AMO access fault. A store/AMO failed a PMP check, or
encountered a downstream bus error. Also set if an AMO is attempted on a
region that does not support atomics (on RP2350, anything but SRAM).

0x8 — Environment call from U-mode.

0xb — Environment call from M-mode.

RVCSR: MTVAL Register

Offset: 0x343

Tabl_e 380. MTVAL Bits Description Type Reset
Register

31:0 Machine bad address or instruction. Hardwired to zero. RO 0x00000000

RVCSR: MIP Register

Offset: 0x344

Description

Machine interrupt pending

Tab{e 361. MIP Bits Description Type Reset
Register

31:12 Reserved. - -

]
3.8. Hazard3 Processor 307

RP2350 Datasheet

Bits Description Type Reset
11 MEIP: External interrupt pending. The processor transfers to the external RO 0x0
interrupt vector when mie.meie, mip.meip and mstatus.mie are all 1.
Hazard3 has internal registers to individually filter which external IRQs appear
in meip. When meip is 1, this indicates there is at least one external interrupt
which is asserted (hence pending in mieipa), enabled in meiea, and of priority
greater than or equal to the current preemption level in meicontext.preempt.
10:8 Reserved. = =
7 MTIP: Timer interrupt pending. The processor transfers to the timer interrupt | RW 0x0
vector when mie.mtie, mip.mtip and mstatus.mie are all 1, unless a software or
external interrupt request is also both pending and enabled at this time.
6:4 Reserved. = =
3 MSIP: Software interrupt pending. The processor transfers to the software RW 0x0
interrupt vector when mie.msie, mip.msip and mstatus.mie are all 1, unless an
external interrupt request is also both pending and enabled at this time.
2:0 Reserved. = =
RVCSR: PMPCFGO Register
Offset: 0x3a0
Description
Physical memory protection configuration for regions 0 through 3
Table 382. PMPCFGO | pige Description Type Reset
Register
31 R3_L: Lock region 3, and apply it to M-mode as well as U-mode. RW 0x0
30:29 Reserved. = =
28:27 R3_A: Address matching type for region 3. Writing an unsupported value (TOR) | RW 0x0
will set the region to OFF.
Enumerated values:
0x0 — Disable region
0x2 — Naturally aligned 4-byte
0x3 — Naturally aligned power-of-two (8 bytes to 4 GiB)
26 R3_R: Read permission for region 3. Note R and X are transposed from the RW 0x0
standard bit order due to erratum RP2350-E6.
25 R3_W: Write permission for region 3 RW 0x0
24 R3_X: Execute permission for region 3. Note R and X are transposed from the |RW 0x0
standard bit order due to erratum RP2350-E6.
23 R2_L: Lock region 2, and apply it to M-mode as well as U-mode. RW 0x0
22:21 Reserved. = =
20:19 R2_A: Address matching type for region 2. Writing an unsupported value (TOR) | RW 0x0
will set the region to OFF.
Enumerated values:

3.8. Hazard3 Processor

308

RP2350 Datasheet
]

Bits Description Type Reset

0x0 — Disable region

0x2 — Naturally aligned 4-byte

0x3 — Naturally aligned power-of-two (8 bytes to 4 GiB)

18 R2_R: Read permission for region 2. Note R and X are transposed from the RW 0x0
standard bit order due to erratum RP2350-E6.

17 R2_W: Write permission for region 2 RW 0x0

16 R2_X: Execute permission for region 2. Note R and X are transposed from the | RW 0x0
standard bit order due to erratum RP2350-E6.

15 R1_L: Lock region 1, and apply it to M-mode as well as U-mode. RW 0x0

14:13 Reserved. - -

12:11 R1_A: Address matching type for region 1. Writing an unsupported value (TOR) | RW 0x0
will set the region to OFF.

Enumerated values:

0x0 — Disable region

0x2 — Naturally aligned 4-byte

0x3 — Naturally aligned power-of-two (8 bytes to 4 GiB)

10 R1_R: Read permission for region 1. Note R and X are transposed from the RW 0x0
standard bit order due to erratum RP2350-E6.

9 R1_W: Write permission for region 1 RW 0x0

8 R1_X: Execute permission for region 1. Note R and X are transposed from the | RW 0x0
standard bit order due to erratum RP2350-E6.

7 RO_L: Lock region 0, and apply it to M-mode as well as U-mode. RW 0x0
6:5 Reserved. = =
4:3 RO_A: Address matching type for region 0. Writing an unsupported value (TOR) | RW 0x0

will set the region to OFF.

Enumerated values:

0x0 — Disable region

0x2 — Naturally aligned 4-byte

0x3 — Naturally aligned power-of-two (8 bytes to 4 GiB)

2 RO_R: Read permission for region 0. Note R and X are transposed from the RW 0x0
standard bit order due to erratum RP2350-E6.

1 RO_W: Write permission for region 0 RW 0x0

0 RO_X: Execute permission for region 0. Note R and X are transposed from the |RW 0x0
standard bit order due to erratum RP2350-E6.

RVCSR: PMPCFG1 Register
Offset: 0x3a1

Description

Physical memory protection configuration for regions 4 through 7

3.8. Hazard3 Processor 309

RP2350 Datasheet
]

Table 383. PMPCFG1
Register

Bits Description Type Reset
31 R7_L: Lock region 7, and apply it to M-mode as well as U-mode. RW 0x0
30:29 Reserved. = =
28:27 R7_A: Address matching type for region 7. Writing an unsupported value (TOR) | RW 0x0
will set the region to OFF.
Enumerated values:
0x0 — Disable region
0x2 — Naturally aligned 4-byte
0x3 — Naturally aligned power-of-two (8 bytes to 4 GiB)
26 R7_R: Read permission for region 7. Note R and X are transposed from the RW 0x0
standard bit order due to erratum RP2350-E6.
25 R7_W: Write permission for region 7 RW 0x0
24 R7_X: Execute permission for region 7. Note R and X are transposed from the | RW 0x0
standard bit order due to erratum RP2350-E6.
23 R6_L: Lock region 6, and apply it to M-mode as well as U-mode. RW 0x0
22:21 Reserved. = =
20:19 R6_A: Address matching type for region 6. Writing an unsupported value (TOR) | RW 0x0
will set the region to OFF.
Enumerated values:
0x0 — Disable region
0x2 — Naturally aligned 4-byte
0x3 — Naturally aligned power-of-two (8 bytes to 4 GiB)
18 R6_R: Read permission for region 6. Note R and X are transposed from the RW 0x0
standard bit order due to erratum RP2350-E6.
17 R6_W: Write permission for region 6 RW 0x0
16 R6_X: Execute permission for region 6. Note R and X are transposed from the |RW 0x0
standard bit order due to erratum RP2350-E6.
15 R5_L: Lock region 5, and apply it to M-mode as well as U-mode. RW 0x0
14:13 Reserved. = =
12:11 R5_A: Address matching type for region 5. Writing an unsupported value (TOR) | RW 0x0
will set the region to OFF.
Enumerated values:
0x0 — Disable region
0x2 — Naturally aligned 4-byte
0x3 — Naturally aligned power-of-two (8 bytes to 4 GiB)
10 R5_R: Read permission for region 5. Note R and X are transposed from the RW 0x0
standard bit order due to erratum RP2350-E6.
9 R5_W: Write permission for region 5 RW 0x0
8 R5_X: Execute permission for region 5. Note R and X are transposed from the | RW 0x0

standard bit order due to erratum RP2350-E6.

3.8. Hazard3 Processor

310

RP2350 Datasheet

Bits Description Type Reset
7 R4_L: Lock region 4, and apply it to M-mode as well as U-mode. RW 0x0
6:5 Reserved. = =
4:3 R4_A: Address matching type for region 4. Writing an unsupported value (TOR) | RW 0x0
will set the region to OFF.
Enumerated values:
0x0 — Disable region
0x2 — Naturally aligned 4-byte
0x3 — Naturally aligned power-of-two (8 bytes to 4 GiB)
2 R4_R: Read permission for region 4. Note R and X are transposed from the RW 0x0
standard bit order due to erratum RP2350-E6.
1 R4_W: Write permission for region 4 RW 0x0
0 R4_X: Execute permission for region 4. Note R and X are transposed from the | RW 0x0
standard bit order due to erratum RP2350-E6.
RVCSR: PMPCFG2 Register
Offset: 0x3a2
Description
Physical memory protection configuration for regions 8 through 11
;:S;;Zf"‘ PMPCFG2 Bits Description Type Reset
31 R11_L: Lock region 11, and apply it to M-mode as well as U-mode. RO 0x0
30:29 Reserved. = =
28:27 R11_A: Address matching type for region 11. Writing an unsupported value RO 0x0
(TOR) will set the region to OFF.
Enumerated values:
0x0 — Disable region
0x2 — Naturally aligned 4-byte
0x3 — Naturally aligned power-of-two (8 bytes to 4 GiB)
26 R11_R: Read permission for region 11. Note R and X are transposed from the | RO 0x0
standard bit order due to erratum RP2350-E6.
25 R11_W: Write permission for region 11 RO 0x0
24 R11_X: Execute permission for region 11. Note R and X are transposed from RO 0x0
the standard bit order due to erratum RP2350-E6.
23 R10_L: Lock region 10, and apply it to M-mode as well as U-mode. RO 0x0
22:21 Reserved. = =
20:19 R10_A: Address matching type for region 10. Writing an unsupported value RO 0x3
(TOR) will set the region to OFF.
Enumerated values:
0x0 — Disable region
0x2 — Naturally aligned 4-byte

3.8. Hazard3 Processor

311

RP2350 Datasheet
]

Bits Description Type Reset

0x3 — Naturally aligned power-of-two (8 bytes to 4 GiB)

18 R10_R: Read permission for region 10. Note R and X are transposed from the | RO 0x1
standard bit order due to erratum RP2350-E6.

17 R10_W: Write permission for region 10 RO 0x1

16 R10_X: Execute permission for region 10. Note R and X are transposed from RO 0x1
the standard bit order due to erratum RP2350-E6.

15 R9_L: Lock region 9, and apply it to M-mode as well as U-mode. RO 0x0

14:13 Reserved. - -

12:11 R9_A: Address matching type for region 9. Writing an unsupported value (TOR) | RO 0x3
will set the region to OFF.

Enumerated values:

0x0 — Disable region

0x2 — Naturally aligned 4-byte

0x3 — Naturally aligned power-of-two (8 bytes to 4 GiB)

10 R9_R: Read permission for region 9. Note R and X are transposed from the RO 0x1
standard bit order due to erratum RP2350-E6.

9 R9_W: Write permission for region 9 RO 0x1

8 R9_X: Execute permission for region 9. Note R and X are transposed from the | RO 0x1
standard bit order due to erratum RP2350-E6.

7 R8_L: Lock region 8, and apply it to M-mode as well as U-mode. RO 0x0
6:5 Reserved. = =
4:3 R8_A: Address matching type for region 8. Writing an unsupported value (TOR) | RO 0x3

will set the region to OFF.

Enumerated values:

0x0 — Disable region

0x2 — Naturally aligned 4-byte

0x3 — Naturally aligned power-of-two (8 bytes to 4 GiB)

2 R8_R: Read permission for region 8. Note R and X are transposed from the RO 0x1
standard bit order due to erratum RP2350-E6.

1 R8_W: Write permission for region 8 RO 0x1

0 R8_X: Execute permission for region 8. Note R and X are transposed from the |RO 0x1
standard bit order due to erratum RP2350-E6.

RVCSR: PMPCFG3 Register
Offset: 0x3a3

Description

Physical memory protection configuration for regions 12 through 15

Table 385. PMPCFG3

) Bits Description Type Reset
Register

31 R15_L: Lock region 15, and apply it to M-mode as well as U-mode. RO 0x0

]
3.8. Hazard3 Processor 312

RP2350 Datasheet
]

Bits Description Type Reset

30:29 Reserved. - -

28:27 R15_A: Address matching type for region 15. Writing an unsupported value RO 0x0
(TOR) will set the region to OFF.

Enumerated values:

0x0 — Disable region

0x2 — Naturally aligned 4-byte

0x3 — Naturally aligned power-of-two (8 bytes to 4 GiB)

26 R15_R: Read permission for region 15. Note R and X are transposed from the | RO 0x0
standard bit order due to erratum RP2350-E6.

25 R15_W: Write permission for region 15 RO 0x0

24 R15_X: Execute permission for region 15. Note R and X are transposed from RO 0x0
the standard bit order due to erratum RP2350-E6.

23 R14_L: Lock region 14, and apply it to M-mode as well as U-mode. RO 0x0

22:21 Reserved. - -

20:19 R14_A: Address matching type for region 14. Writing an unsupported value RO 0x0
(TOR) will set the region to OFF.

Enumerated values:

0x0 — Disable region

0x2 — Naturally aligned 4-byte

0x3 — Naturally aligned power-of-two (8 bytes to 4 GiB)

18 R14_R: Read permission for region 14. Note R and X are transposed from the |RO 0x0
standard bit order due to erratum RP2350-E6.

17 R14_W: Write permission for region 14 RO 0x0

16 R14_X: Execute permission for region 14. Note R and X are transposed from | RO 0x0
the standard bit order due to erratum RP2350-E6.

15 R13_L: Lock region 13, and apply it to M-mode as well as U-mode. RO 0x0

14:13 Reserved. - -

12:11 R13_A: Address matching type for region 13. Writing an unsupported value RO 0x0
(TOR) will set the region to OFF.

Enumerated values:

0x0 — Disable region

0x2 — Naturally aligned 4-byte

0x3 — Naturally aligned power-of-two (8 bytes to 4 GiB)

10 R13_R: Read permission for region 13. Note R and X are transposed from the | RO 0x0
standard bit order due to erratum RP2350-E6.

9 R13_W: Write permission for region 13 RO 0x0

8 R13_X: Execute permission for region 13. Note R and X are transposed from RO 0x0
the standard bit order due to erratum RP2350-E6.

7 R12_L: Lock region 12, and apply it to M-mode as well as U-mode. RO 0x0

]
3.8. Hazard3 Processor 313

RP2350 Datasheet
]

Bits Description Type Reset
6:5 Reserved. = =
4:3 R12_A: Address matching type for region 12. Writing an unsupported value RO 0x0

(TOR) will set the region to OFF.

Enumerated values:

0x0 — Disable region

0x2 — Naturally aligned 4-byte

0x3 — Naturally aligned power-of-two (8 bytes to 4 GiB)

2 R12_R: Read permission for region 12. Note R and X are transposed from the | RO 0x0
standard bit order due to erratum RP2350-E6.

1 R12_W: Write permission for region 12 RO 0x0

0 R12_X: Execute permission for region 12. Note R and X are transposed from RO 0x0
the standard bit order due to erratum RP2350-E6.

RVCSR: PMPADDRO Register

Offset: 0x3b0

Table 386. PMPADDRO

) Bits Description Type Reset
Register

31:30 Reserved. - -

29:0 Physical memory protection address for region 0. Note all PMP addresses are | RW 0x00000000
in units of four bytes.

RVCSR: PMPADDRT1 Register

Offset: 0x3b1

Table 387. PMPADDR1

) Bits Description Type Reset
Register

31:30 Reserved. - -

29:0 Physical memory protection address for region 1. Note all PMP addresses are | RW 0x00000000
in units of four bytes.

RVCSR: PMPADDR2 Register

Offset: 0x3b2

Table 388. PMPADDR2

) Bits Description Type Reset
Register

31:30 Reserved. - -

29:0 Physical memory protection address for region 2. Note all PMP addresses are | RW 0x00000000
in units of four bytes.

RVCSR: PMPADDRS Register

Offset: 0x3b3

Table 389. PMPADDR3

) Bits Description Type Reset
Register

31:30 Reserved. - -

3.8. Hazard3 Processor 314

RP2350 Datasheet

Table 390. PMPADDR4
Register

Table 391. PMPADDRS
Register

Table 392. PMPADDR6
Register

Table 393. PMPADDR7
Register

Table 394. PMPADDRS
Register

]
3.8. Hazard3 Processor

Bits Description Type Reset
29:0 Physical memory protection address for region 3. Note all PMP addresses are | RW 0x00000000
in units of four bytes.
RVCSR: PMPADDRA4 Register
Offset: 0x3b4
Bits Description Type Reset
31:30 Reserved. = =
29:0 Physical memory protection address for region 4. Note all PMP addresses are | RW 0x00000000
in units of four bytes.
RVCSR: PMPADDRS Register
Offset: 0x3b5
Bits Description Type Reset
31:30 Reserved. = =
29:0 Physical memory protection address for region 5. Note all PMP addresses are | RW 0x00000000
in units of four bytes.
RVCSR: PMPADDRG6 Register
Offset: 0x3b6
Bits Description Type Reset
31:30 Reserved. = =
29:0 Physical memory protection address for region 6. Note all PMP addresses are | RW 0x00000000
in units of four bytes.
RVCSR: PMPADDR?7 Register
Offset: 0x3b7
Bits Description Type Reset
31:30 Reserved. = =
29:0 Physical memory protection address for region 7. Note all PMP addresses are | RW 0x00000000
in units of four bytes.
RVCSR: PMPADDRS Register
Offset: 0x3b8
Bits Description Type Reset
31:30 Reserved. = =

RP2350 Datasheet
]

Bits Description Type Reset

29:0 Physical memory protection address for region 8. Note all PMP addresses are | RO 0x01ffffff
in units of four bytes.

Hardwired to the address range 0x00000000 through oxefffffff, which contains
the boot ROM. This range is made accessible to User mode by default. User
mode access to this range can be disabled using one of the dynamically
configurable PMP regions, or using the permission registers in ACCESSCTRL.

RVCSR: PMPADDROY Register

Offset: 0x3b9

Tab’_e 395, PMPADDRS | B Description Type Reset
Register
31:30 Reserved. - -
29:0 Physical memory protection address for region 9. Note all PMP addresses are | RO 0x13ffffff
in units of four bytes.
Hardwired to the address range 0x40000000 through ox5fffffff, which contains
the system peripherals. This range is made accessible to User mode by
default. User mode access to this range can be disabled using one of the
dynamically configurable PMP regions, or using the permission registers in
ACCESSCTRL.
RVCSR: PMPADDR10 Register
Offset: 0x3ba
Table 396.

. Bits Description Type Reset
PMPADDR10 Register

31:30 Reserved. - -

29:0 Physical memory protection address for region 10. Note all PMP addresses RO 0x35ffffff
are in units of four bytes.

Hardwired to the address range 0xd0000000 through oxdfffffff, which contains
the core-local peripherals (SI0). This range is made accessible to User mode
by default. User mode access to this range can be disabled using one of the
dynamically configurable PMP regions, or using the permission registers in
ACCESSCTRL.

RVCSR: PMPADDR11 Register

Offset: 0x3bb

]
3.8. Hazard3 Processor 316

RP2350 Datasheet

Table 397.

. Bits Description Type Reset
PMPADDRT11 Register

31:30 Reserved. - -

29:0 Physical memory protection address for region 11. Note all PMP addresses RO 0x00000000
are in units of four bytes.

Hardwired to all-zeroes. This region is not implemented.

RVCSR: PMPADDR12 Register

Offset: 0x3bc

Table 398.

) Bits Description Type Reset
PMPADDR12 Register

31:30 Reserved. - -

29:0 Physical memory protection address for region 12. Note all PMP addresses RO 0x00000000
are in units of four bytes.

Hardwired to all-zeroes. This region is not implemented.

RVCSR: PMPADDR13 Register

Offset: 0x3bd

Table 399.

) Bits Description Type Reset
PMPADDR13 Register

31:30 Reserved. - -

29:0 Physical memory protection address for region 13. Note all PMP addresses RO 0x00000000
are in units of four bytes.

Hardwired to all-zeroes. This region is not implemented.

RVCSR: PMPADDR14 Register

Offset: 0x3be

Table 400.

) Bits Description Type Reset
PMPADDR14 Register

31:30 Reserved. - -

29:0 Physical memory protection address for region 14. Note all PMP addresses RO 0x00000000
are in units of four bytes.

Hardwired to all-zeroes. This region is not implemented.

RVCSR: PMPADDR15 Register

Offset: 0x3bf

3.8. Hazard3 Processor 317

RP2350 Datasheet

Table 407.

. Bits Description Type Reset
PMPADDRT15 Register
31:30 Reserved. = =
29:0 Physical memory protection address for region 15. Note all PMP addresses RO 0x00000000
are in units of four bytes.
Hardwired to all-zeroes. This region is not implemented.
RVCSR: TSELECT Register
Offset: 0x7a0
Tab{e 402. TSELECT Bits Description Type Reset
Register
31:2 Reserved. = =
1:0 Select trigger to be configured via tdatal/tdata2 RW 0x0

On RP2350, four instruction address triggers are implemented, so only the two
LSBs of this register are writable.

RVCSR: TDATAT1 Register

Offset: 0x7a1

Description

Trigger configuration data 1

Hazard 3 only supports address/data match triggers (type=2) so this register description includes the mcontrol fields for

this type.

More precisely, Hazard3 only supports exact instruction address match triggers (hardware breakpoints) so many of this
register’s fields are hardwired.

Tabl_e 403. TOATAT Bits Description Type Reset
Register
31:28 TYPE: Trigger type. Hardwired to type=2, meaning an address/data match RO 0x2
trigger
27 DMODE: If 0, both Debug and M-mode can write the tdata registers at the RW 0x0
selected tselect.
If 1, only Debug Mode can write the tdata registers at the selected tselect.
Writes from other modes are ignored.
This bit is only writable from Debug Mode
26:21 MASKMAX: Value of 0 indicates only exact address matches are supported RO 0x00
20 HIT: Trigger hit flag. Not implemented, hardwired to 0. RO 0x0
19 SELECT: Hardwired value of 0 indicates that only address matches are RO 0x0
supported, not data matches
18 TIMING: Hardwired value of 0 indicates that trigger fires before the triggering | RO 0x0
instruction executes, not afterward
17:16 SIZELO: Hardwired value of 0 indicates that access size matching is not RO 0x0
supported
15112 ACTION: Select action to be taken when the trigger fires. RW 0x0
Enumerated values:

3.8. Hazard3 Processor

318

RP2350 Datasheet
]

Bits Description Type Reset

0x0 — Raise a breakpoint exception, which can be handled by the M-mode
exception handler

0x1 — Enter debug mode. This action is only selectable when tdata1.dmode is 1.

11 CHAIN: Hardwired to 0 to indicate trigger chaining is not supported. RO 0x0

10:7 MATCH: Hardwired to 0 to indicate match is always on the full address RO 0x0
specified by tdata2

6 M: When set, enable this trigger in M-mode RW 0x0

5:4 Reserved. = =

3 U: When set, enable this trigger in U-mode RW 0x0

2 EXECUTE: When set, the trigger fires on the address of an instruction that is RW 0x0
executed.

1 STORE: Hardwired to 0 to indicate store address/data triggers are not RO 0x0
supported

0 LOAD: Hardwired to 0 to indicate load address/data triggers are not supported | RO 0x0

RVCSR: TDATA2 Register

Offset: 0x7a2

Table 404. TDATA2

) Bits Description Type Reset
Register

31:0 Trigger configuration data 2 RW 0x00000000

Contains the address for instruction address triggers (hardware breakpoints)

RVCSR: DCSR Register
Offset: 0x7b0

Description

Debug control and status register. Access outside of Debug Mode will cause an illegal instruction exception.

Table 405. DCSR

) Bits Description Type Reset
Register

31:28 XDEBUGVER: Hardwired to 4: external debug support as per RISC-V 0.13.2 RO 0x4
debug specification.

27:16 Reserved. - -

15 EBREAKM: When 1, ebreak instructions executed in M-mode will break to RW 0x0
Debug Mode instead of trapping

14:13 Reserved. - -

12 EBREAKU: When 1, ebreak instructions executed in U-mode will break to Debug | RW 0x0
Mode instead of trapping.

11 STEPIE: Hardwired to 0: no interrupts are taken during hardware single- RO 0x0
stepping.
10 STOPCOUNT: Hardwired to 1: mcycle/meycleh and minstret/minstreth do not RO 0x1

increment in Debug Mode.

9 STOPTIME: Hardwired to 1: core-local timers don't increment in debug mode. | RO 0x1
External timers (e.g. hart-shared) may be configured to ignore this.

]
3.8. Hazard3 Processor 319

RP2350 Datasheet
]

Bits Description Type Reset

8:6 CAUSE: Set by hardware when entering debug mode. RO 0x0

Enumerated values:

0x1 — An ebreak instruction was executed when the relevant dcsr.ebreakx bit
was set.

0x2 — The trigger module caused a breakpoint exception.

0x3 — Processor entered Debug Mode due to a halt request, or a reset-halt
request present when the core reset was released.

0x4 — Processor entered Debug Mode after executing one instruction with
single-stepping enabled.

5¢3 Reserved. - -

2 STEP: When 1, re-enter Debug Mode after each instruction executed in M- RW 0x0
mode or U-mode.

1:0 PRV: Read the privilege mode the core was in when entering Debug Mode, and | RW 0x3
set the privilege mode the core will execute in when returning from Debug
Mode.

RVCSR: DPC Register

Offset: 0x7b1

Table 406. DPC

) Bits Description Type Reset
Register

31:1 Debug program counter. When entering Debug Mode, dpc samples the current | RW 0x00000000
program counter, e.g. the address of an ebreak which caused Debug Mode
entry. When leaving debug mode, the processor jumps to dpc. The host may
read/write this register whilst in Debug Mode.

0 Reserved. - -

RVCSR: MCYCLE Register
Offset: 0xb00

Description

Machine-mode cycle counter, low half

Tab{e 407. MCYCLE Bits Description Type Reset
Register
31:0 Counts up once per cycle, when mcountinhibit.cy is 0. Disabled by default to RW 0x00000000
save power.

RVCSR: MINSTRET Register
Offset: 0xb02

Description

Machine-mode instruction retire counter, low half

]
3.8. Hazard3 Processor 320

RP2350 Datasheet

Table 408. MINSTRET
Register

Table 409.
MHPMCOUNTERS,
MHPMCOUNTERY, ...,
MHPMCOUNTER30,
MHPMCOUNTER31
Registers

Table 410. MCYCLEH
Register

Table 411.
MINSTRETH Register

Table 412.
MHPMCOUNTER3H,

MHPMCOUNTER4H, ...,

MHPMCOUNTER30H,
MHPMCOUNTER31H
Registers

Table 413.
PMPCFGMO Register

Bits

Description

Type

Reset

31:0

Counts up once per instruction, when mcountinhibit.ir is 0. Disabled by default
to save power.

RW

0x00000000

RVCSR:

MHPMCOUNTER3, MHPMCOUNTER4, ..,

MHPMCOUNTER31 Registers

Offsets: 0xb03, 0xb04, ..., Oxb1e, Oxb1f

MHPMCOUNTERS30,

Bits

Description

Type

Reset

31:0

Extended performance counter, hardwired to 0.

RO

0x00000000

RVCSR: MCYCLEH Register

Offset: 0xb80

Description

Machine-mode cycle counter, high half

Bits

Description

Type

Reset

31:0

Counts up once per 1 << 32 cycles, when mcountinhibit.cy is 0. Disabled by
default to save power.

RW

0x00000000

RVCSR: MINSTRETH Register

Offset: 0xb82

Description

Machine-mode instruction retire counter, low half

Bits

Description

Type

Reset

31:0

Counts up once per 1 << 32 instructions, when mcountinhibit.ir is 0. Disabled
by default to save power.

RW

0x00000000

RVCSR: MHPMCOUNTER3H, MHPMCOUNTER4H, .., MHPMCOUNTER30H,
MHPMCOUNTER31H Registers

Offsets: 0xb83, 0xb84, ..., 0xb9e, Oxbof

Bits Description Type Reset

31:0 Extended performance counter, hardwired to 0. RO 0x00000000
RVCSR: PMPCFGMO Register
Offset: 0xbd0

Bits Description Type Reset

31:16 | Reserved. = -

3.8. Hazard3 Processor

321

RP2350 Datasheet
]

Table 414. MEIEA
Register

Bits Description Type Reset
15:0 PMP M-mode configuration. One bit per PMP region. Setting a bit makes the | RW 0x0000
corresponding region apply to M-mode (like the pmpcfg.L bit) but does not lock
the region.

PMP is useful for non-security-related purposes, such as stack guarding and
peripheral emulation. This extension allows M-mode to freely use any
currently unlocked regions for its own purposes, without the inconvenience of
having to lock them.

Note that this does not grant any new capabilities to M-mode, since in the
base standard it is already possible to apply unlocked regions to M-mode by
locking them. In general, PMP regions should be locked in ascending region
number order so they can't be subsequently overridden by currently unlocked
regions.

Note also that this is not the same as the rule locking bypass bit in the ePMP
extension, which does not permit locked and unlocked M-mode regions to

coexist.

This is a Hazard3 custom CSR.

RVCSR: MEIEA Register
Offset: OxbeO

Description

External interrupt enable array.

The array contains a read-write bit for each external interrupt request: a 1 bit indicates that interrupt is currently enabled.
At reset, all external interrupts are disabled.

If enabled, an external interrupt can cause assertion of the standard RISC-V machine external interrupt pending flag
(mip.meip), and therefore cause the processor to enter the external interrupt vector. See meipa.

There are up to 512 external interrupts. The upper half of this register contains a 16-bit window into the full 512-bit
vector. The window is indexed by the 5 LSBs of the write data.

Bits Description Type Reset

31:16 WINDOW: 16-bit read/write window into the external interrupt enable array RW 0x0000

1555 Reserved. - -

4:0 INDEX: Write-only self-clearing field (no value is stored) used to control which | WO 0x00
window of the array appears in window.

RVCSR: MEIPA Register
Offset: Oxbe1

Description

External interrupt pending array
Contains a read-only bit for each external interrupt request. Similarly to meies, this register is a window into an array of
up to 512 external interrupt flags. The status appears in the upper 16 bits of the value read from meipa, and the lower 5

bits of the value written by the same CSR instruction (or 0 if no write takes place) select a 16-bit window of the full
interrupt pending array.

A 1 bit indicates that interrupt is currently asserted. IRQs are assumed to be level-sensitive, and the relevant meipa bit is

]
3.8. Hazard3 Processor 322

RP2350 Datasheet
]

Table 415. MEIPA
Register

Table 416. MEIFA
Register

Table 417. MEIPRA
Register

cleared by servicing the requestor so that it deasserts its interrupt request.

When any interrupt of sufficient priority is both set in meipa and enabled in meiea, the standard RISC-V external interrupt
pending bit mip.meip is asserted. In other words, meipa is filtered by meiea to generate the standard mip.meip flag.

Bits Description Type Reset

31:16 WINDOW: 16-bit read-only window into the external interrupt pending array RO -

1555 Reserved. = =

4:0 INDEX: Write-only, self-clearing field (no value is stored) used to control which | WO 0x00
window of the array appears in window.

RVCSR: MEIFA Register
Offset: Oxbe2

Description

External interrupt force array

Contains a read-write bit for every interrupt request. Writing a 1 to a bit in the interrupt force array causes the
corresponding bit to become pending in meipa. Software can use this feature to manually trigger a particular interrupt.

There are no restrictions on using meifa inside of an interrupt. The more useful case here is to schedule some lower-
priority handler from within a high-priority interrupt, so that it will execute before the core returns to the foreground
code. Implementers may wish to reserve some external IRQs with their external inputs tied to 0 for this purpose.

Bits can be cleared by software, and are cleared automatically by hardware upon a read of meinext which returns the
corresponding IRQ number in meinext.irq with mienext.noirq clear (no matter whether meinext.update is written).

meifa implements the same array window indexing scheme as meiea and meipa.

Bits Description Type Reset

31:16 WINDOW: 16-bit read/write window into the external interrupt force array RW 0x0000

185 Reserved. = =

4:0 INDEX: Write-only, self-clearing field (no value is stored) used to control which | WO 0x00
window of the array appears in window.

RVCSR: MEIPRA Register
Offset: Oxbe3
Description

External interrupt priority array

Each interrupt has an (up to) 4-bit priority value associated with it, and each access to this register reads and/or writes a
16-bit window containing four such priority values. When less than 16 priority levels are available, the LSBs of the
priority fields are hardwired to 0.

When an interrupt’s priority is lower than the current preemption priority meicontext.preempt, it is treated as not being
pending for the purposes of mip.meip. The pending bit in meipa will still assert, but the machine external interrupt pending
bit mip.meip will not, so the processor will ignore this interrupt. See meicontext.

Bits Description Type Reset

31:16 WINDOW: 16-bit read/write window into the external interrupt priority array, RW 0x0000

containing four 4-bit priority values.

155 Reserved. - -

]
3.8. Hazard3 Processor 323

RP2350 Datasheet

Table 418. MEINEXT
Register

Table 419.
MEICONTEXT Register

Bits Description Type Reset

4:0 INDEX: Write-only, self-clearing field (no value is stored) used to control which | WO 0x00
window of the array appears in window.

RVCSR: MEINEXT Register
Offset: Oxbe4

Description

Get next external interrupt

Contains the index of the highest-priority external interrupt which is both asserted in meipa and enabled in meiea, left-
shifted by 2 so that it can be used to index an array of 32-bit function pointers. If there is no such interrupt, the MSB is
set.

When multiple interrupts of the same priority are both pending and enabled, the lowest-numbered wins. Interrupts with
priority less than meicontext.ppreempt — the previous preemption priority — are treated as though they are not pending.
This is to ensure that a preempting interrupt frame does not service interrupts which may be in progress in the frame
that was preempted.

Bits Description Type Reset

31 NOIRQ: Set when there is no external interrupt which is enabled, pending, and | RO 0x0
has priority greater than or equal to meicontext.ppreempt. Can be efficiently
tested with a b1tz or bgez instruction.

30:11 Reserved. - -

10:2 IRQ: Index of the highest-priority active external interrupt. Zero when no RO 0x000
external interrupts with sufficient priority are both pending and enabled.

1 Reserved. - -

0 UPDATE: Writing 1 (self-clearing) causes hardware to update meicontext SC 0x0
according to the IRQ number and preemption priority of the interrupt indicated
in noirq/irg. This should be done in a single atomic operation, i.e. csrrsi a0,

meinext, 0x1.

RVCSR: MEICONTEXT Register
Offset: Oxbe5

Description

External interrupt context register

Configures the priority level for interrupt preemption, and helps software track which interrupt it is currently in. The latter
is useful when a common interrupt service routine handles interrupt requests from multiple instances of the same
peripheral.

A three-level stack of preemption priorities is maintained in the preempt, ppreempt and pppreempt fields. The priority stack is
saved when hardware enters the external interrupt vector, and restored by an mret instruction if meicontext.mreteirq is
set.

The top entry of the priority stack, preempt, is used by hardware to ensure that only higher-priority interrupts can preempt
the current interrupt. The next entry, ppreempt, is used to avoid servicing interrupts which may already be in progress in a
frame that was preempted. The third entry, pppreempt, has no hardware effect, but ensures that preempt and ppreempt can
be correctly saved/restored across arbitary levels of preemption.

]
3.8. Hazard3 Processor 324

RP2350 Datasheet
]

Bits

Description

Type

Reset

31:28

PPPREEMPT: Previous ppreempt. Set to ppreempt on priority save, set to zero on
priority restore. Has no hardware effect, but ensures that when meicontext is
saved/restored correctly, preempt and ppreempt stack correctly through
arbitrarily many preemption frames.

RW

0x0

27:24

PPREEMPT: Previous preempt. Set to preempt on priority save, restored to to
pppreempt on priority restore.

IRQs of lower priority than ppreempt are not visible in meinext, so that a
preemptee is not re-taken in the preempting frame.

RW

0x0

23:21

Reserved.

20:16

PREEMPT: Minimum interrupt priority to preempt the current interrupt.
Interrupts with lower priority than preempt do not cause the core to transfer to
an interrupt handler. Updated by hardware when when meinext.update is written,
or when hardware enters the external interrupt vector.

If an interrupt is present in meinext when this field is updated, then preempt is
set to one level greater than that interrupt’s priority. Otherwise, ppreempt is set
to one level greater than the maximum interrupt priority, disabling preemption.

RW

0x00

15

NOIRQ: Not in interrupt (read/write). Set to 1 at reset. Set to meinext.noirq
when meinext.update is written. No hardware effect.

RW

0x1

14:13

Reserved.

12:4

IRQ: Current IRQ number (read/write). Set to meinext.irq when meinext.update is
written. No hardware effect.

RW

0x000

MTIESAVE: Reads as the current value of mie.mtie, if clearts is set by the same
CSR access instruction. Otherwise reads as 0. Writes are ORed into mie.mtie.

RO

0x0

MSIESAVE: Reads as the current value of mie.msie, if clearts is set by the same
CSR access instruction. Otherwise reads as 0. Writes are ORed into mie.msie.

RO

0x0

CLEARTS: Write-1 self-clearing field. Writing 1 will clear mie.mtie and mie.msie,
and present their prior values in the mtiesave and msiesave of this register. This
makes it safe to re-enable IRQs (via mstatus.mie) without the possibility of
being preempted by the standard timer and soft interrupt handlers, which may
not be aware of Hazard3's interrupt hardware.

The clear due to clearts takes precedence over the set due to mtiesave/
msiesave, although it would be unusual for software to write both on the same
cycle.

SC

0x0

MRETEIRQ: If 1, enable restore of the preemption priority stack on mret. This
bit is set on entering the external interrupt vector, cleared by nret, and cleared
upon taking any trap other than an external interrupt.

Provided meicontext is saved on entry to the external interrupt vector (before
enabling preemption), is restored before exiting, and the standard
software/timer IRQs are prevented from preempting (e.g. by using clearts),
this flag allows the hardware to safely manage the preemption priority stack
even when an external interrupt handler may take exceptions.

RW

0x0

RVCSR: MSLEEP Register

Offset: 0xbf0

3.8. Hazard3 Processor

325

RP2350 Datasheet
]

Table 420. MSLEEP
Register

Table 421. DMDATAO
Register

Table 422. CYCLE
Register

Table 423. INSTRET
Register

Description

M-mode sleep control register

Bits Description Type Reset
31:3 Reserved. = =
2 SLEEPONBLOCK: Enter the deep sleep state configured by RW 0x0
msleep.deepsleep/msleep.powerdown on a h3.block instruction, as well as a
standard wfi. If this bit is clear, a h3.block is always implemented as a simple
pipeline stall.
1 POWERDOWN: Release the external power request when going to sleep. The | RW 0x0
function of this is platform-defined — it may do nothing, it may do something
simple like clock-gating the fabric, or it may be tied to some complex system-
level power controller.
When waking, the processor reasserts its external power-up request, and will
not fetch any instructions until the request is acknowledged. This may add
considerable latency to the wakeup.
0 DEEPSLEEP: Deassert the processor clock enable when entering the sleep RW 0x0
state. If a clock gate is instantiated, this allows most of the processor
(everything except the power state machine and the interrupt and halt input
registers) to be clock gated whilst asleep, which may reduce the sleep current.
This adds one cycle to the wakeup latency.
RVCSR: DMDATAO Register
Offset: Oxbff
Bits Description Type Reset
31:0 The Debug Module’s DATAO register is mapped into Hazard3’'s CSR space so | RW 0x00000000
that the Debug Module can exchange data with the core by executing CSR
access instructions (this is used to implement the Abstract Access Register
command). Only accessible in Debug Mode.
RVCSR: CYCLE Register
Offset: 0xc00
Bits Description Type Reset
31:0 Read-only U-mode alias of mcycle, accessible when mcounteren.cy is set RO 0x00000000
RVCSR: INSTRET Register
Offset: 0xc02
Bits Description Type Reset
31:0 Read-only U-mode alias of minstret, accessible when mcounteren.ir is set RO 0x00000000

RVCSR: CYCLEH Register

Offset: 0xc80

3.8. Hazard3 Processor

326

RP2350 Datasheet
]

Table 424. CYCLEH

) Bits Description Type Reset
Register

31:0 Read-only U-mode alias of mcycleh, accessible when mcounteren.cy is set RO 0x00000000

RVCSR: INSTRETH Register

Offset: 0xc82

Tab{e 425 INSTRETH Bits Description Type Reset
Register
31:0 Read-only U-mode alias of minstreth, accessible when mcounteren.ir is set RO 0x00000000
RVCSR: MVENDORID Register
Offset: 0xf11
Description
Vendor ID
Table 426. Bits Description Type Reset
MVENDORID Register
317 BANK: Value of 9 indicates 9 continuation codes, which is JEP106 bank 10. RO 0x0000009
6:0 OFFSET: ID 0x13 in bank 10 is the JEP106 ID for Raspberry Pi Ltd, the vendor | RO 0x13
of RP2350.

RVCSR: MARCHID Register

Offset: 0xf12

Table 427. MARCHID

) Bits Description Type Reset
Register

31:0 Architecture ID (Hazard3) RO 0x0000001b

RVCSR: MIMPID Register

Offset: 0xf13

Table 428. MIMPID

) Bits Description Type Reset
Register

31:0 Implementation ID. On RP2350 this reads as 0x86fc4e3f, which is release RO 0x86fc4e3f
v1.0-rc1 of Hazard3.

RVCSR: MHARTID Register
Offset: 0xf14

Description

Hardware thread ID

Table 429. MHARTID

) Bits Description Type Reset
Register

31:0 On RP2350, core 0 has a hart ID of 0, and core 1 has a hart ID of 1. RO -

RVCSR: MCONFIGPTR Register

Offset: 0xf15

3.8. Hazard3 Processor 327

RP2350 Datasheet

Table 430.
MCONFIGPTR Register

Bits Description Type Reset

31:0 Pointer to configuration data structure (hardwired to 0) RO 0x00000000

3.9. Arm/RISC-V Architecture Switching

RP2350 supports both Arm and RISC-V processor architectures. SDK-based programs which do not contain assembly
code typically run unmodified on either architecture by providing the appropriate build flag.

There are two processor sockets on RP2350, referred to as core 0 and core 1 throughout this document. Each socket
can be occupied either by a Cortex-M33 processor (implementing the Armv8-M Main architecture, plus extensions) or by
a Hazard3 processor (implementing the RV32IMAC architecture, plus extensions).

When a processor reset is removed, hardware samples the ARCHSEL register in the OTP control register block to
determine which processor to connect to that socket. The unused processor is held in reset indefinitely, with its clock
inputs gated. The default and allowable values of the ARCHSEL register are determined by critical OTP flags:

1. If CRITO_ARM_DISABLE is set, only RISC-V is allowed.

2. Else if CRITO_RISCV_DISABLE is set, only Arm is allowed.

3. Else if CRIT1_SECURE_BOOT_ENABLE is set, only Arm is allowed.

4. Else if CRIT1_BOOT_ARCH is set, both architectures are permitted, and the default is RISC-V.

5. If none of the above flags are set, both architectures are permitted, and the default is Arm.

No CRIT1 flags are set by default, so on devices where both architectures are available, the default is Arm. To change the
default architecture to RISC-V, set the CRIT1_BOOT_ARCH flag to 1.

Enabling secure boot disables the RISC-V cores because the RP2350 bootrom does not implement secure boot for
RISC-V. This prevents a bad actor from side-stepping secure boot by switching architectures.

RP2350 only samples the ARCHSEL register when a processor is reset. Its value is ignored at all other times, so
software can program the register before a watchdog reset to implement a software-initiated switch between
architectures.

Read the ARCHSEL_STATUS register to check the ARCHSEL value most recently sampled by each processor.

3.9.1. Automatic Switching

RP2350 binaries contain a binary marker recognised by the bootrom. This marker:
® contains additional information such as the binary’s entry point and the intended architecture: Arm, RISC-V, or both
® helps detect when a flash device is connected
® helps verify that the flash device was accessed using the correct SPI parameters

When booting with core 0 in Arm architecture mode, upon detecting a bootable RISC-V binary, the bootrom
automatically resets both cores and switches them to RISC-V architecture mode. After the reset, the bootrom detects
that the binary and processor architectures match, so the binary launches normally.

Likewise, when booting with core 0 in RISC-V architecture mode, upon detecting a bootable Arm binary, the bootrom
automatically resets both cores and switches them to Arm architecture mode.

As a result, the USB bootloader, which runs on both Arm and RISC-V, can accept a UF2 image download for either
architecture, and automatically boot it using the correct processors.

]
3.9. Arm/RISC-V Architecture Switching 328

RP2350 Datasheet

3.9.2. Mixed Architecture Combinations

The ARCHSEL register has one bit for each processor socket, so it is possible to request mixed combinations of Arm
and RISC-V processors: either Arm core 0 and RISC-V core 1, or RISC-V core 0 and Arm core 1.

Practical applications for this are limited, since this requires two separate program images. The two cores interoperate
normally, including shared exclusives via the global monitor: a shared variable can be safely, concurrently accessed by
an Arm processor performing 1drex, strex instructions and a RISC-V processor performing amoadd.w instructions, for
example.

Hardware supports debugging for a mixture of Arm and RISC-V processors, though this may prove challenging on the
host software side. Debug resources for unused processors are dynamically marked as non-PRESENT in the top-level
CoreSight ROM table.

]
3.9. Arm/RISC-V Architecture Switching 329

RP2350 Datasheet

Chapter 4. Memory

RP2350 has embedded ROM, OTP and SRAM. RP2350 provides access to external flash via a QSPI interface.

4.1. ROM

A 32 kB read-only memory (ROM) appears at address 0x00000000. The ROM contents are fixed permanently at the time
the silicon is manufactured. Chapter 5 describes the ROM contents in detail, but in summary it contains:

® Core 0 Boot code (Section 5.2)

® Core 1 Launch code (Section 5.3)

® Runtime APIs (Section 5.4).

® USB bootloader
o Mass storage interface for drag and drop of UF2 flash and SRAM binaries (Section 5.5)
o PICOBOOT interface to support picotool and advanced operations like OTP programming (Section 5.6)
o Support for white-labelling all USB exposed information/identifiers (Section 5.7)

® UART bootloader: minimal shell to load an SRAM binary from a host microcontroller (Section 5.8)

The ROM offers single-cycle access, and has a dedicated AHB5 arbiter, so it can be accessed simultaneously with other
memory devices. Writing to the ROM has no effect, and no bus fault is generated on write.

The ROM is covered by IDAU regions enumerated in Section 10.2.2. These aid in partitioning the bootrom between
Secure and Non-secure code: in particular the USB/UART bootloader runs as a Non-secure client application on Arm, to
reduce the attack surface of the secure boot implementation.

Certain ROM features are not implemented on RISC-V, most notably secure boot.

4.2. SRAM

There is a total of 520 kB (520 x 1024 bytes) of on-chip SRAM. For performance reasons, this memory is physically
partitioned into ten banks, but logically it still behaves as a single, flat 520 kB memory. RP2350 does not restrict the
data stored in each bank: you can use any bank to store processor code, data buffers, or a mixture of the two. There are
eight 16,384 x 32-bit banks (64 kB each) and two 1024 x 32-bit banks (4 kB each).

© NoOTE

Banking is a physical partitioning of SRAM which improves performance by allowing multiple simultaneous
accesses. Logically, there is a single 520 kB contiguous memory.

Each SRAM bank is accessed via a dedicated AHBS5 arbiter. This means different bus managers can access different
SRAM banks in parallel, so up to six 32-bit SRAM accesses can take place every system clock cycle (one per manager).

SRAM is mapped to system addresses starting at 0x20000000. The first 256 kB address region, up to and including
0x2003ffff, is word-striped across the first four 64 kB banks. The next 256 kB address region, up to 0x2007ffff is word-
striped across the remaining four 64 kB banks. The watermark between these two striped regions, at 9x20040000, marks
the boundary between the SRAMO and SRAM1 power domains.

Consecutive words in the system address space are routed to different RAM banks as shown in Table 431. This scheme
is referred to as sequential interleaving, and improves bus parallelism for typical memory access patterns.

4.1. ROM 330

RP2350 Datasheet
]

Table 431. SRAM
bank0/1/2/3 striped
mapping.

System address SRAM Bank SRAM word address
0x20000000 Bank 0 0
0x20000004 Bank 1 0
0x20000008 Bank 2 0
0x2000000c Bank 3 0
0x20000010 Bank 0 1
0x20000014 Bank 1 1
0x20000018 Bank 2 1
0x2000001c Bank 3 1
0x20000020 Bank 0 2
0x20000024 Bank 1 2
0x20000028 Bank 2 2
0x2000002c Bank 3 2
etc

The top two 4 kB regions (starting at 0x20080000 and 0x20081000) map directly to the smaller 4 kB memory banks.
Software may choose to use these for per-core purposes (e.g. stack and frequently-executed code), guaranteeing that
the processors never stall on these accesses. Like all SRAM on RP2350, these banks have single-cycle access from all
managers, (provided no other managers access the bank in the same cycle) so it is reasonable to treat memory as a

single 520 kB device.

© NoTE

RP2040 had a non-striped SRAM mirror. RP2350 no longer has a non-striped mirror, to avoid mapping the same
SRAM location as both Secure and Non-secure. You can still achieve some explicit bandwidth partitioning by
allocating data across two 256 kB blocks of 4-way-striped SRAM.

4.2.1. Other On-chip Memory

Besides the 520 kB main memory, there are two other dedicated RAM blocks that may be used in some circumstances:

® Cache lines can be individually pinned within the XIP address space for use as SRAM, up to the total cache size of

16 kB (see Section 4.4.1.3). Unpinned cache lines remain available for transparent caching of XIP accesses.

* |f USB is not used, the USB data DPRAM can be used as a 4 kB memory starting at 0x50100000.

There is also 1 kB of dedicated boot RAM, hardwired to Secure access only, whose contents and layout is defined by the

boot ROM — see Chapter 5.

4.2. SRAM

331

RP2350 Datasheet

Table 432. List of
BOOTRAM registers

O NoTE

Memory in the peripheral address space (addresses starting with 0x4, 8x5 or 0xd) does not support code execution.
This includes USB RAM and boot RAM. These address ranges are made IDAU-Exempt to simplify assigning
peripherals to security domains using ACCESSCTRL, and consequently must be made non-executable to avoid the
possibility of Non-secure-writable, Secure-executable memory.

4.3. Boot RAM

Boot RAM is a 1kB (256 x 32-bit) SRAM dedicated for use by the bootrom. It is slower than main SRAM, as it is
accessed over APB, taking three cycles for a read and four cycles for a write.

Boot RAM is used for myriad purposes during boot, including the initial pre-boot stack. After the bootrom enters the
user application, boot RAM contains state for the user-facing ROM APIs, such as the resident partition table used for
flash programming protection, and a copy of the flash XIP setup function (formerly known as boot2) to quickly re-
initialise flash XIP modes following serial programming operations.

Boot RAM is hardwired to permit Secure access only (Arm) or Machine-mode access only (RISC-V). It is physically
impossible to execute code from boot RAM, regardless of MPU configuration, as it is on the APB peripheral bus
segment, which is not wired to the processor instruction fetch ports.

Since boot RAM is in the XIP RAM power domain, it is always powered when the switched core domain is powered. This
simplifies SRAM power management in the bootrom, because it doesn't have to power up any RAM before it has a place
to store the call stack.

Boot RAM supports the standard atomic set/clear/XOR accesses used by other peripherals on RP2350 (Section 2.1.3).

It is possible to use boot RAM for user-defined purposes, but this is not recommended, as it may cause ROM APlIs to
behave unpredictably. Calling into the ROM could modify data stored in boot RAM.

4.3.1. List of Registers

A small number of registers are located on the same bus endpoint as boot RAM:

Write Once Bits
These are flags which once set, can only be cleared by a system reset. They are used in the implementation of
certain bootrom security features.

Boot Locks
These function the same as the SIO spinlocks (Section 3.1.4), however they are normally reserved for bootrom

purposes (Section 5.4.4).

These registers start from an offset of 0x800 above the boot RAM base address of 0x400e0000 (defined as
BOOTRAM_BASE in the SDK).

Offset Name Info

0x800 WRITE_ONCEQ This registers always ORs writes into its current contents. Once a
bit is set, it can only be cleared by a reset.

0x804 WRITE_ONCE1 This registers always ORs writes into its current contents. Once a
bit is set, it can only be cleared by a reset.

0x808 BOOTLOCK_STAT Bootlock status register. 1=unclaimed, O=claimed. These locks
function identically to the SIO spinlocks, but are reserved for
bootrom use.

4.3. Boot RAM

332

RP2350 Datasheet
]

Offset Name Info

0x80c BOOTLOCKO Read to claim and check. Write to unclaim. The value returned on
successful claim is 1 << n, and on failed claim is zero.

0x810 BOOTLOCK1 Read to claim and check. Write to unclaim. The value returned on
successful claim is 1 << n, and on failed claim is zero.

0x814 BOOTLOCK2 Read to claim and check. Write to unclaim. The value returned on
successful claim is 1 << n, and on failed claim is zero.

0x818 BOOTLOCK3 Read to claim and check. Write to unclaim. The value returned on
successful claim is 1 << n, and on failed claim is zero.

0x81c BOOTLOCK4 Read to claim and check. Write to unclaim. The value returned on
successful claim is 1 << n, and on failed claim is zero.

0x820 BOOTLOCK5 Read to claim and check. Write to unclaim. The value returned on
successful claim is 1 << n, and on failed claim is zero.

0x824 BOOTLOCK6 Read to claim and check. Write to unclaim. The value returned on
successful claim is 1 << n, and on failed claim is zero.

0x828 BOOTLOCK7 Read to claim and check. Write to unclaim. The value returned on
successful claim is 1 << n, and on failed claim is zero.

BOOTRAM: WRITE_ONCEO, WRITE_ONCE1 Registers

Offsets: 0x800, 0x804

Table 433. Bits Description Type Reset
WRITE_ONCEQO,
:’R’_Tf-ONCE’ 31:0 This registers always ORs writes into its current contents. Once a bit is set, it | RW 0x00000000
egisters
can only be cleared by a reset.
BOOTRAM: BOOTLOCK_STAT Register
Offset: 0x808
Table 434. Bits Description Type Reset
BOOTLOCK_STAT
Register 31:8 Reserved. - -
7:0 Bootlock status register. 1=unclaimed, 0=claimed. These locks function RW Oxff
identically to the SIO spinlocks, but are reserved for bootrom use.

BOOTRAM: BOOTLOCKO, BOOTLOCK1, .., BOOTLOCK6, BOOTLOCK?7
Registers

Offsets: 0x80c, 0x810, ..., 0x824, 0x828

Table 435. Bits Description Type Reset
BOOTLOCKO,

Zggxgiﬁ;’ 31:0 Read to claim and check. Write to unclaim. The value returned on successful | RW 0x00000000
BOOTLOCK? Registers claim is 1 << n, and on failed claim is zero.

4.4. External Flash and PSRAM (XIP)

RP2350 can access external flash and PSRAM via its execute-in-place (XIP) subsystem. The term execute-in-place
refers to external memory mapped directly into the chip’s internal address space. This enables you to execute code as-

4.4, External Flash and PSRAM (XIP) 333

RP2350 Datasheet
]

Figure 16. Flash
execute-in-place (XIP)
subsystem. The cache
is split into two banks
for performance, but
behaves as a single
16 kB cache. XIP
accesses first query
the cache. If a cache
entry is not found, the
QMI generates an
external serial access,
adds the resulting
data to the cache, and
forwards it on to the
system bus (for reads)
or merges it with the
AHB write data (for
writes).

is from the external memory without explicitly copying into on-chip SRAM. For example, a processor instruction fetch
from AHB address 0x10001234 results in a QSPI memory interface fetch from address 0x001234 in an external flash device.

A 16 kB on-chip cache retains the values of recent reads and writes. This reduces the chances that XIP bus accesses
must go to external memory, improving the average throughput and latency of the XIP interface. The cache is physically
structured as two 8 kB banks, interleaving odd and even cache lines of 8-byte granularity over the two banks. This
allows processors to access multiple cache lines during the same cycle. Logically, the XIP cache behaves as a single
16 kB cache.

AHB: XIP
(Even cache lines)

AHB: XIP
(0dd cache lines)

AHB: AUX

APB: XIP_CTRL (Streaming DMA)

APB: QMI_CTRL

XIP/Cache Cache Bank 0 Cache Bank 1)
Control Registers | > | 8 kB 2-way 8 kB 2-way Streaming FIFO
S
AHB Arbiter
A
Data

*7 Configuration — 8 —

QSPI Memory Interface

sck csn[1:0] SD[3:0]
v \/

When booting from flash, the RP2350 bootrom (Chapter 5) sets up a baseline QMI execute-in-place configuration. User
code may later reconfigure this to improve performance for a specific flash device. QSPI clock divisors can be changed
at any time, including whilst executing from XIP. Other reconfiguration requires a momentary disable of the interface.

4.4.1. XIP Cache

The cache is 16 kB, two-way set-associative, 1 cycle hit. It is internal to the XIP subsystem, and only involved in
accesses to the QSPI memory interface, so software does not have to consider cache coherence unless performing
flash programming operations. It caches accesses to a 26-bit downstream XIP address space. On RP2350, the lower
half of this space is occupied by two 16 MB windows for the two QMI chip selects. RP2350 reserves the remainder for
future expansion, but you can use the space to pin cache lines outside of the QMI address space for use as cache-as-
SRAM (Section 4.4.1.3). The 26-bit XIP address space is mirrored multiple times in the RP2350 address space, decoded
on bits 27:26 of the system bus address:

® 0x10...: Cached XIP access

® 0x14...: Uncached XIP access
® 0x18... : Cache maintenance writes
® 0xlc... : Uncached, untranslated XIP access — bypass QMI address translation
You can disable cache lookup separately for Secure and Non-secure accesses via the CTRL.EN_SECURE and

CTRL.EN_NONSECURE register bits. The CTRL register contains controls to disable Secure/Non-secure access to the
uncached and uncached/untranslated XIP windows, which avoids duplicate mappings that may otherwise require
additional SAU or PMP regions.

4.4. External Flash and PSRAM (XIP)

334

RP2350 Datasheet

4.4.1.1. Cache Maintenance

Cache maintenance is performed on a line-by-line basis by writing into the cache maintenance mirror of the XIP address
space, starting at 0x18000000. Cache lines are 8 bytes in size. Write data is ignored; instead, the 3 LSBs of the address
select the maintenance operation:

® 0x0: Invalidate by set/way

0x1: Clean by set/way

0x2:

Invalidate by address

0x3: Clean by address

0x7:

Pin cache set/way at address (Section 4.4.1.3)

Invalidate

Marks a cache line as no longer containing data; the next access to the same address will miss the cache.
Does not write back any data to external memory. Used when external memory has been modified in a way
that the cache would not automatically know about, such as a flash programming operation.

Clean

Instructs the cache to write out any data stored in the cache as a result of a previous cached write access that
has not yet been written out to external memory. Used to make cached writes available to uncached reads.
Also used when cache contents are about to be lost, but external memory is to stay powered (for example,
when the system is about to power down).

By set/way

Selects a particular cache line to be maintained, out of the 2048 x 8-byte lines that make up the cache. Bit 13 of
the system bus address selects the cache way. Bits 12:3 of the address select a particular cache line within
that way. Mainly used to iterate exhaustively over all cache lines (for example, during a full cache flush).

By address

Pin

Looks up an address in the cache, then performs the requested maintenance if that line is currently allocated
in the cache. Used when only a particular range of XIP addresses needs to be maintained, for example, a flash
page that was just programmed. Usually faster than a full flush, because the real cost of a cache flush is not in
the maintenance operations, but the large number of subsequent cache misses.

Prevents a particular cache line from being evicted. Used to mark important external memory contents that
must get guaranteed cache hits, or to allocate cache lines for use as cache-as-SRAM. If a cached access to
some other address misses the cache and attempts to evict a pinned cache line, the eviction fails, and the
access is downgraded to an uncached access.

Cache maintenance operations operate on the cache’s tag memory. This is the cache’s metadata store which tracks the
state of each cache line. Maintenance operations do not affect the cache’s data memory, which contains the cache’s

copy of data bytes from external memory.

By default, cache maintenance is Secure-only. Non-secure writes to the cache maintenance address window have no
effect and return a bus error. Non-secure cache maintenance can be enabled by setting the CTRL.MAINT_NONSEC
register bit, but this is not recommended if Secure software may perform cached XIP accesses.

4.4.1.2. Cache Line States

The changes to a cache line caused by cached accesses and maintenance operations can be summarised by a set of
state transitions.

]
4.4. External Flash and PSRAM (XIP) 335

RP2350 Datasheet

Figure 17. State
transition diagram for
each cache line. Inv,
Clean and Pin
represent
invalidate/clean/pin
maintenance
operations,
respectively. R and W
represent cached
reads and writes. Evict
represents a cache
line deallocation to
make room for a new
allocation due to a
read/write cache
miss.

Inv, Evict

Inv, CIeanC\

Inv

Inv, Evict

R, W, Clean, Pin

Pin

Initially, the state of all cache lines is undefined. When booting from flash, the bootrom performs an invalidate by
set/way on every line of the cache to force them to a known state. In the diagram above, all states have an Inv arc to the
invalid state.

A dirty cache line contains data not yet propagated to downstream memory.
A clean cache line contains data which matches the downstream memory contents.

Accessing an invalid cache line causes an allocation: the cache fetches the corresponding data from downstream
memory, stores it in the cache, then marks the cache line as clean or dirty. The cache also stores part of the
downstream address, known as the tag, to recall the downstream address stored in each cache line. Read allocations
enter the clean state, so the cache line can be safely freed at any time. Write allocations enter the dirty state, so the
cache line must propagate downstream before it can be freed.

Writing to a clean cache line marks it as dirty because the cache now contains write data that has not propagated
downstream. The line can be explicitly returned to the clean state using a clean maintenance operation (0x1 or 0x3), but
this is not required. Typically, the cache automatically propagates dirty cache lines downstream when it needs to
reallocate them.

Evictions happen when a cached read or write needs to allocate a cache line that is already in the clean or dirty state.
The eviction transitions the line momentarily to the invalid state, ready for allocation. For clean cache lines, this happens
instantaneously. For dirty cache lines, the cache must first propagate the cache line contents downstream before it can
safely enter the invalid state.

Cache lines enter the pinned state using a pin maintenance operation (0x7) and exit only by an invalidate maintenance
operation (0x0 or 0x2).

]
4.4. External Flash and PSRAM (XIP) 336

RP2350 Datasheet

O NoTE

The pin maintenance operation only marks the line as pinned; it does not perform any copying of data. When pinning
lines that exist in external memory devices, you must first pin the line, then copy the downstream data into the
pinned line by reading from the uncached XIP window.

4.4.1.3. Cache-as-SRAM

When you disabled the cache of RP2040, the cache would map the entire cache memory at 0x15000000. RP2350 replaces
this with the ability to pin individual cache lines. You can use this in the following ways:

® Pin the entire cache at some address range to use the entire cache as SRAM

® Pin one full cache way to make half of the cache available for cache-as-SRAM use (the remaining cache way still
functions as usual)

® Pin an address range that that maps critical flash contents

O NoOTE

Pinned cache lines are not accessible when the cache is disabled via the CTRL register (CTRL.EN_SECURE or
CTRL.EN_NONSECURE depending on security level of the bus access).

Because the QMI only occupies the lower half of the 64 MB XIP address space, you can pin cache lines outside of the
QMI address range (e.g. at the top of the XIP space) to avoid interfering with any QMI accesses. As a general rule, the
more cache you pin, the lower the cache hit rate for other accesses.

Cache lines are pinned using the pin maintenance operation (0x7), which performs the following steps:
1. An implicit invalidate-by-address operation (0x2) using the full address of the maintenance operation
o This ensures that each address is allocated in only one cache way (required for correct cache operation)

2. Select the cache line to be pinned, using bit 13 to select the cache way, and bits 12:3 to select the cache set (as
with 0x0/0x1 invalidate/clean by set/way commands)

3. Write the address to the cache line's tag entry
4. Change the cache line’s state to pinned (as per the state diagram in Section 4.4.1.2)
5. Update the cache line’s tag with the full address of the maintenance operation

After a pin operation, cached reads and writes to the specified address always hit the cache until that cache line is
either invalidated or pinned to a different address.

© NoTE

Pinning two addresses which are equal modulo cache size pins the same cache line twice. It does not pin two
different cache lines. The second pin will overwrite the first.

When a cached access hits a pinned cache ling, it behaves the same as a dirty line. The cache reads and writes as if
allocated in the cache by normal means.

Cache eviction policy is random, and the cache only makes one attempt to select an eviction way. If the cache selects
to evict a pinned line, the eviction fails, and the access is demoted to an uncached access. As a result, a cache with one
way pinned does not behave exactly the same as a direct-mapped 8 kB cache, but average-case performance is similar.

Cache line states are stored in the cache tag memory stored in the XIP memory power domain. This memory contents
do not change on reset, so pinned lines remain pinned across resets. If the XIP memory power domain is not powered
down, memory contents do not change across power cycles of the switched core reset domain. The bootrom clears the
tag memory upon entering the flash boot or NSBOOT (USB boot) path, but watchdog scratch vector reboots can boot
directly into pinned XIP cache lines.

4.4, External Flash and PSRAM (XIP) 337

RP2350 Datasheet

4.4.2. QSPI Memory Interface (QMI)

Uncached accesses and cache misses require access to external memory. The QSPI memory interface (QMI) provides
this access, as documented in Section 12.14. The QMI supports:
® Up to two external QSPI devices, with separate chip selects and shared clock/data pins
o Banked configuration registers, including different sck frequencies and QSPI opcodes
* Memory-mapped reads and writes (writes must be enabled via CTRL.WRITABLE_MO/CTRL.WRITABLE_M1)
® Serial/dual/quad-SPI transfer formats
® SCK speeds as high as clk_sys
® 8/16/32-bit accesses for uncached accesses, and 64-bit accesses for cache line fills
® Automatic chaining of sequentially addressed accesses into a single QSPI transfer
® Address translation (4 x 4 MB windows per QSPI device)
o Flash storage addresses can differ from runtime addresses, e.g. for multiple OTA upgrade image slots
o Allows code and data segments, or Secure and Non-secure images, to be mapped separately
® Direct-mode FIFO interface for programming and configuring external QSPI devices

XIP accesses via the two cache AHB ports, and from the DMA streaming hardware, arbitrate for access to the QMI. A
separate APB port configures the QMI.

The QM is a new memory interface designed for RP2350, replacing the SSI peripheral on RP2040.

4.4.3. Streaming DMA Interface

As the flash is generally much larger than on-chip SRAM, it's often useful to stream chunks of data into memory from
flash. It's convenient to have the DMA stream this data in the background while software in the foreground does other
things. It's even more convenient if code can continue to execute from flash whilst this takes place.

This doesn’t interact well with standard XIP operation because QMI serial transfers force lengthy bus stalls on the DMA.
These stalls are tolerable for a processor because an in-order processor tends to have nothing better to do while
waiting for an instruction fetch to retire, and because typical code execution tends to have much higher cache hit rates
than bulk streaming of infrequently accessed data. In contrast, stalling the DMA prevents any other active DMA
channels from making progress during this time, slowing overall DMA throughput.

The STREAM_ADDR and STREAM_CTR registers are used to program a linear sequence of flash reads. The XIP
subsystem performs these reads in the background in a best-effort fashion. To minimise impact on code executed from
flash whilst the stream is ongoing, the streaming hardware has lower priority access to the QMI than regular XIP
accesses, and there is a brief cooldown (9 cycles) between the last XIP cache miss and resuming streaming. This
avoids increases in initial access latency on XIP cache misses.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/flash/xip_stream/flash_xip_stream.c Lines 45 - 48

45 while (!(xip_ctrl_hw->stat & XIP_STAT_FIFO_EMPTY))

46 (void) xip_ctrl_hw->stream_fifo;

47 xip_ctrl_hw->stream_addr = (uint32_t) &random_test_data[@];
48 xip_ctrl_hw->stream_ctr = count_of(random_test_data);

The streamed data is pushed to a small FIFO, which generates DREQ signals that tell the DMA to collect the streamed
data. As the DMA does not initiate a read until after reading the data from flash, the DMA does not stall when accessing
the data. The DMA can then retrieve this data through the auxiliary AHB port, which provides direct single-cycle access
to the streaming data FIFO.

On RP2350, you can also use the auxiliary AHB port to access the QMI direct-mode FIFOs. This is faster than accessing

]
4.4. External Flash and PSRAM (XIP) 338

https://github.com/raspberrypi/pico-examples/blob/master/flash/xip_stream/flash_xip_stream.c#L45-L48

RP2350 Datasheet
]

Table 436. List of XIP
registers

the FIFOs through the QMI APB configuration port. When QMI access chaining is enabled, the streaming XIP DMA is
close to the maximum theoretical QSPI throughput, but the direct-mode FIFOs are available on AHB for situations that
require 100% of the theoretical throughput.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/flash/xip_stream/flash_xip_stream.c Lines 58 - 70

58 const uint dma_chan = 0;

59 dma_channel_config cfg = dma_channel_get_default_config(dma_chan);
60 channel_config_set_read_increment(&cfg, false);

61 channel_config_set_write_increment(&cfg, true);

62 channel_config_set_dreq(&cfg, DREQ_XIP_STREAM);

63 dma_channel_configure(

64 dma_chan,

65 &cfg,

66 (void *) buf, // Write addr

67 (const void *) XIP_AUX_BASE, // Read addr

68 count_of(random_test_data), // Transfer count

69 true // Start immediately!
70)5

4.4.4. Performance Counters

The XIP subsystem provides two performance counters. These are 32 bits in size, saturate upon reaching oxffffffff,
and are cleared by writing any value. They count:

1. The total number of XIP accesses, to any alias
2. The number of XIP accesses which resulted in a cache hit

This provides a way to profile the cache hit rate for common use cases.

4.4.5. List of XIP_CTRL Registers

The XIP control registers start at a base address of 0x400c8000 (defined as XIP_CTRL_BASE in SDK).

Offset Name Info
0x00 CTRL Cache control register. Read-only from a Non-secure context.
0x08 STAT
0x0c CTR_HIT Cache Hit counter
0x10 CTR_ACC Cache Access counter
0x14 STREAM_ADDR FIFO stream address
0x18 STREAM_CTR FIFO stream control
OxT1c STREAM_FIFO FIFO stream data
XIP: CTRL Register
Offset: 0x00
Description

Cache control register. Read-only from a Non-secure context.

]
4.4, External Flash and PSRAM (XIP) 339

https://github.com/raspberrypi/pico-examples/blob/master/flash/xip_stream/flash_xip_stream.c#L58-L70

RP2350 Datasheet
]

Table 437. CTRL

) Bits Description Type Reset
Register

31:12 Reserved. - -

11 WRITABLE_MT1: If 1, enable writes to XIP memory window 1 (addresses RW 0x0
0x11000000 through 0x11ffffff, and their uncached mirrors). If 0, this region is
read-only.

XIP memory is read-only by default. This bit must be set to enable writes if a
RAM device is attached on QSPI chip select 1.

The default read-only behaviour avoids two issues with writing to a read-only
QSPI device (e.g. flash). First, a write will initially appear to succeed due to
caching, but the data will eventually be lost when the written line is evicted,
causing unpredictable behaviour.

Second, when a written line is evicted, it will cause a write command to be
issued to the flash, which can break the flash out of its continuous read mode.
After this point, flash reads will return garbage. This is a security concern, as it
allows Non-secure software to break Secure flash reads if it has permission to
write to any flash address.

Note the read-only behaviour is implemented by downgrading writes to reads,
so writes will still cause allocation of an address, but have no other effect.

10 WRITABLE_MO: If 1, enable writes to XIP memory window 0 (addresses RW 0x0
0x10000000 through 0x10ffffff, and their uncached mirrors). If 0, this region is
read-only.

XIP memory is read-only by default. This bit must be set to enable writes if a
RAM device is attached on QSPI chip select 0.

The default read-only behaviour avoids two issues with writing to a read-only
QSPI device (e.g. flash). First, a write will initially appear to succeed due to
caching, but the data will eventually be lost when the written line is evicted,
causing unpredictable behaviour.

Second, when a written line is evicted, it will cause a write command to be
issued to the flash, which can break the flash out of its continuous read mode.
After this point, flash reads will return garbage. This is a security concern, as it
allows Non-secure software to break Secure flash reads if it has permission to
write to any flash address.

Note the read-only behaviour is implemented by downgrading writes to reads,
so writes will still cause allocation of an address, but have no other effect.

9 SPLIT_WAYS: When 1, route all cached+Secure accesses to way 0 of the RW 0x0
cache, and route all cached+Non-secure accesses to way 1 of the cache.

This partitions the cache into two half-sized direct-mapped regions, such that
Non-secure code can not observe cache line state changes caused by Secure
execution.

A full cache flush is required when changing the value of SPLIT_WAYS. The
flush should be performed whilst SPLIT_WAYS is 0, so that both cache ways
are accessible for invalidation.

]
4.4, External Flash and PSRAM (XIP) 340

RP2350 Datasheet
]

Bits Description Type Reset
8 MAINT_NONSEC: When 0, Non-secure accesses to the cache maintenance RW 0x0
address window (addr[27] == 1, addr[26] == 0) will generate a bus error. When

1, Non-secure accesses can perform cache maintenance operations by writing
to the cache maintenance address window.

Cache maintenance operations may be used to corrupt Secure data by
invalidating cache lines inappropriately, or map Secure content into a Non-
secure region by pinning cache lines. Therefore this bit should generally be set
to 0, unless Secure code is not using the cache.

Care should also be taken to clear the cache data memory and tag memory
before granting maintenance operations to Non-secure code.

7 NO_UNTRANSLATED_NONSEC: When 1, Non-secure accesses to the RW 0x1
uncached, untranslated window (addr[27:26] == 3) will generate a bus error.

6 NO_UNTRANSLATED_SEC: When 1, Secure accesses to the uncached, RW 0x0
untranslated window (addr[27:26] == 3) will generate a bus error.
5 NO_UNCACHED_NONSEC: When 1, Non-secure accesses to the uncached RW 0x0

window (addr[27:26] == 1) will generate a bus error. This may reduce the
number of SAU/MPU/PMP regions required to protect flash contents.

Note this does not disable access to the uncached, untranslated
window — see NO_UNTRANSLATED_SEC.

4 NO_UNCACHED_SEC: When 1, Secure accesses to the uncached window RW 0x0
(addr[27:26] == 1) will generate a bus error. This may reduce the number of
SAU/MPU/PMP regions required to protect flash contents.

Note this does not disable access to the uncached, untranslated
window — see NO_UNTRANSLATED_SEC.

3 POWER_DOWN: When 1, the cache memories are powered down. They retain | RW 0x0
state, but can not be accessed. This reduces static power dissipation. Writing
1 to this bit forces CTRL_EN_SECURE and CTRL_EN_NONSECURE to 0, i.e. the
cache cannot be enabled when powered down.

2 Reserved. - -

1 EN_NONSECURE: When 1, enable the cache for Non-secure accesses. When RW 0x1
enabled, Non-secure XIP accesses to the cached (addr[26] == 0) window will

query the cache, and QSPI accesses are performed only if the requested data
is not present. When disabled, Secure access ignore the cache contents, and
always access the QSPI interface.

Accesses to the uncached (addr[26] == 1) window will never query the cache,
irrespective of this bit.

]
4.4, External Flash and PSRAM (XIP) 341

RP2350 Datasheet

Bits Description Type Reset

0 EN_SECURE: When 1, enable the cache for Secure accesses. When enabled, RW 0x1
Secure XIP accesses to the cached (addr[26] == 0) window will query the
cache, and QSPI accesses are performed only if the requested data is not
present. When disabled, Secure access ignore the cache contents, and always
access the QSPI interface.

Accesses to the uncached (addr[26] == 1) window will never query the cache,
irrespective of this bit.

There is no cache-as-SRAM address window. Cache lines are allocated for
SRAM:-like use by individually pinning them, and keeping the cache enabled.

XIP: STAT Register

Offset: 0x08

Table 438. STAT

) Bits Description Type Reset
Register

31:3 Reserved. - -

2 FIFO_FULL: When 1, indicates the XIP streaming FIFO is completely full. RO 0x0
The streaming FIFO is 2 entries deep, so the full and empty
flag allow its level to be ascertained.

1 FIFO_EMPTY: When 1, indicates the XIP streaming FIFO is completely empty. | RO 0x1

0 Reserved. - -

XIP: CTR_HIT Register
Offset: 0x0c

Description

Cache Hit counter

Table 439. CTR_HIT

) Bits Description Type Reset
Register

31:0 A 32 bit saturating counter that increments upon each cache hit, WC 0x00000000
i.e. when an XIP access is serviced directly from cached data.
Write any value to clear.

XIP: CTR_ACC Register
Offset: 0x10

Description

Cache Access counter

Table 440. CTR_ACC

) Bits Description Type Reset
Register

31:0 A 32 bit saturating counter that increments upon each XIP access, WC 0x00000000
whether the cache is hit or not. This includes noncacheable accesses.
Write any value to clear.

XIP: STREAM_ADDR Register

Offset: 0x14

4.4, External Flash and PSRAM (XIP) 342

RP2350 Datasheet

Description

FIFO stream address

Table 441. Bits Description Type Reset
STREAM_ADDR
Register 31:2 The address of the next word to be streamed from flash to the streaming RW 0x00000000
FIFO.
Increments automatically after each flash access.
Write the initial access address here before starting a streaming read.
1:0 Reserved. - -
XIP: STREAM_CTR Register
Offset: 0x18
Description
FIFO stream control
Table 442.

) Bits Description Type Reset
STREAM_CTR Register

31:22 Reserved. - -

21:0 Write a nonzero value to start a streaming read. This will then RW 0x000000
progress in the background, using flash idle cycles to transfer
a linear data block from flash to the streaming FIFO.
Decrements automatically (1 at a time) as the stream
progresses, and halts on reaching 0.

Write 0 to halt an in-progress stream, and discard any in-flight
read, so that a new stream can immediately be started (after
draining the FIFO and reinitialising STREAM_ADDR)

XIP: STREAM_FIFO Register
Offset: Ox1c

Description

FIFO stream data

Table 443.
STREAM_FIFO

Register 31:0 Streamed data is buffered here, for retrieval by the system DMA. RF 0x00000000
This FIFO can also be accessed via the XIP_AUX slave, to avoid exposing
the DMA to bus stalls caused by other XIP traffic.

Bits Description Type Reset

4.4.6. List of XIP_AUX Registers

The XIP_AUX port provides fast AHB access to the streaming FIFO and the QMI Direct Mode FIFOs, to reduce the cost of
DMA access to these FIFOs.

Table 444. List of
XIP_AUX registers

Offset Name Info

0x0 STREAM Read the XIP stream FIFO (fast bus access to
XIP_CTRL_STREAM_FIFO)

0x4 QMI_DIRECT_TX Write to the QMI direct-mode TX FIFO (fast bus access to
QMI_DIRECT_TX)

4.4, External Flash and PSRAM (XIP) 343

RP2350 Datasheet

Table 445. STREAM
Register

Table 446.
QMI_DIRECT_TX
Register

Offset

Name Info

0x8

QMI_DIRECT_RX)

QMI_DIRECT_RX Read from the QMI direct-mode RX FIFO (fast bus access to

XIP_AUX: STREAM Register

Offset: 0x0
Bits Description Type Reset
31:0 Read the XIP stream FIFO (fast bus access to XIP_CTRL_STREAM_FIFQ) RF 0x00000000
XIP_AUX: QMI_DIRECT_TX Register
Offset: 0x4
Description
Write to the QMI direct-mode TX FIFO (fast bus access to QMI_DIRECT_TX)
Bits Description Type Reset
31:21 Reserved. = =
20 NOPUSH: Inhibit the RX FIFO push that would correspond to this TX FIFO WF 0x0
entry.
Useful to avoid garbage appearing in the RX FIFO when pushing the command
at the beginning of a SPI transfer.
19 OE: Output enable (active-high). For single width (SPI), this field is ignored, and | WF 0x0
SDO is always set to output, with SD1 always set to input.
For dual and quad width (DSPI/QSPI), this sets whether the relevant SDx pads
are set to output whilst transferring this FIFO record. In this case the
command/address should have OE set, and the data transfer should have OE
set or clear depending on the direction of the transfer.
18 DWIDTH: Data width. If 0, hardware will transmit the 8 LSBs of the DIRECT_TX | WF 0x0
DATA field, and return an 8-bit value in the 8 LSBs of DIRECT_RX. If 1, the full
16-bit width is used. 8-bit and 16-bit transfers can be mixed freely.
17:16 IWIDTH: Configure whether this FIFO record is transferred with WF 0x0
single/dual/quad interface width (0/1/2). Different widths can be mixed freely.
Enumerated values:
0x0 — Single width
0x1 — Dual width
0x2 — Quad width
15:0 DATA: Data pushed here will be clocked out falling edges of SCK (or before WF 0x0000
the very first rising edge of SCK, if this is the first pulse). For each byte clocked
out, the interface will simultaneously sample one byte, on rising edges of SCK,
and push this to the DIRECT_RX FIFO.
For 16-bit data, the least-significant byte is transmitted first.

XIP_AUX: QMI_DIRECT_RX Register

Offset: 0x8

4.4, External Flash and PSRAM (XIP)

344

RP2350 Datasheet
]

Table 447.
QMI_DIRECT_RX
Register

45.0TP

Description

Read from the QMI direct-mode RX FIFO (fast bus access to QMI_DIRECT_RX)

be clocked in, and will appear in this FIFO. The serial interface will stall when
this FIFQ is full, to avoid dropping data.

When 16-bit data is pushed into the TX FIFO, the corresponding RX FIFO push
will also contain 16 bits of data. The least-significant byte is the first one
received.

Bits Description Type Reset
31:16 Reserved. = =
15:0 With each byte clocked out on the serial interface, one byte will simultaneously | RF 0x0000

4.5. OTP

RP2350 contains 8 kB of one-time-programmable storage (OTP), which stores:

® Manufacturing information such as unique device ID

® Boot configuration such as non-default crystal oscillator frequency

® Public key fingerprint(s) for boot signature enforcement

® Symmetric keys for decryption of external flash contents into SRAM

® User-defined contents, including bootable program images (Section 5.10.7)

The OTP storage is structured as 4096 x 24-bit rows. Each row contains 16 bits of data and 8 bits of parity information,
providing 8 kB of data storage. OTP bit cells are initially @ and can be programmed to 1. However, they cannot be cleared

back to @ under any circumstance. This ensures that security-critical flags, such as debug disables, are physically
impossible to clear once set. However, you must also take care to program the correct values.

For more information about the OTP subsystem, see Chapter 13.

345

RP2350 Datasheet

Chapter 5. Bootrom

Each RP2350 device contains 32 kB of mask ROM: a physically immutable memory resource described in Section 4.1.
The RP2350 bootrom is the binary image etched into this ROM that contains the first instructions executed at reset.

The

bootrom concepts section (Section 5.1) covers the following topics, which are necessary background for

understanding the bootrom features and their implementation:

Partition tables and their associated flash permissions
Bootable images, and the block loops that store their metadata
Versioning for images and partition tables, and A/B versions to support double-buffered upgrades

Hashing and signing to support secure boot with public key fingerprint in OTP (see also Section 10.1.7 in the
security chapter)

Load maps for bootable images, and packaged binaries which the bootrom loads from flash into RAM according to
the image’s load map

Anti-rollback protection to revoke older, compromised versions of software
Three forms of flash boot:

o Flash image boot, with a single binary image written directly into flash

o Flash partition boot, with the boot image selected from the partition table

o Partition-table-in-image boot, where the boot image is not contained in a partition table, but still embeds a
partition table data structure to divide the flash address space

Boot slots for A/B versions of partition tables
Flash update boot, a special one-time boot mode that enables version downgrades following an image download
Try before you buy support for phased upgrades with image self-test

Address translation for flash images, which provides a consistent runtime address to images regardless of
physical storage location

Automatic architecture switch when attempting to run a RISC-V binary on Arm, or vice versa

Targeting UF2 downloads to different flash partitions based on their permissions and the UF2 family ID

Besides features mentioned as concepts above, the RP2350 bootrom implements:

You

The core 0 initial boot sequence (Section 5.2)
The core 1 low-power wait and launch protocol (Section 5.3)
Runtime APIs (Section 5.4) exported through the ROM symbol table, such as flash and OTP programming

A subset of runtime APIs available to Non-secure code, with permission for each API entry point individually
configured by Secure code

A USB MSC class-compliant bootloader with UF2 support for downloading code/data to flash or RAM (Section 5.5),
including support for versioning and A/B partitions

The USB PICOBOOT interface for advanced operations like OTP programming (Section 5.6) and to support picotool
or other host side tools

Support for white-labelling all USB exposed information/identifiers (Section 5.7)
A UART bootloader providing a minimal shell to load an SRAM binary from a host microcontroller (Section 5.8)

should read the bootrom concepts section before diving into the features in the list above. RP2350 adds a

considerable amount of new functionality compared to the RP2040 bootrom. If you are in a terrible hurry, Section 5.9.5

covers the absolute minimum requirements for a binary to be bootable on RP2350 when secure boot is not enabled.

Chapter 5. Bootrom

346

https://github.com/Microsoft/uf2

RP2350 Datasheet
]

Bootrom Source Code

All source files for the RP2350 bootrom are available under the terms of the 3-clause BSD licence:

github.com/raspberrypi/pico-bootrom-rp2350

5.1. Bootrom Concepts

Bold type in the following sections introduces a concept. This chapter frequently refers back to these concepts.

5.1.1. Secure and Non-secure
This datasheet uses the (capitalised) terms Secure and Non-secure to refer to the Arm execution states of the same
name, defined in the Armv8-M Architecture Reference Manual. The uncapitalised term "secure" has no special meaning.

In some contexts, Secure can also refer to a RISC-V core, usually one running at the Machine privilege level. For
example, the low-level flash APIs are exported to Arm Secure code and RISC-V code only, so Secure serves as a
shorthand for this type of API.

A secured RP2350 is a device where secure boot is enabled (Section 5.10.1). This is not the same as the Secure state,
since the device may run a mixture of Secure and Non-secure code after completing the secure boot process.

5.1.2. Partition Tables

A partition table divides flash into a maximum of 16 distinct regions, known as partitions. Each partition defines
attributes such as flash permissions for a contiguous range of flash addresses. The PARTITION_TABLE data structure
describes a partition table, and is an example of a block. Use of partition tables is strictly optional.

Dividing flash into multiple partitions enables you to:

® Store more than one executable image on the device, e.qg.:
o For A/B boot versions (Section 5.1.7)
o For different architectures (Arm/RISC-V) or Secure/Non-secure
o For use with a custom bootloader

® Provision space for data, e.g.:
o Embedded file systems
o Shared Wi-Fi firmware
o Application resources

* Provide different security attributes for different regions of flash (Section 5.1.3)

® Target UF2 downloads to different partitions based on family ID (Section 5.1.18), including custom-defined UF2
families specific to your platform

For more information about PARTITION_TABLE discovery during flash boot, see Section 5.1.5.2.

Partition tables can be versioned to support A/B upgrades. They can also be hashed and signed for security and
integrity purposes.

|
5.1. Bootrom Concepts 347

https://github.com/raspberrypi/pico-bootrom-rp2350
https://developer.arm.com/documentation/ddi0553/latest/

RP2350 Datasheet
]

5.1.2.1. Partition Attributes

Each partition specifies partition attributes for the flash addresses it encompasses, including:

* Start/end offsets within the logical 32 MB address space of the two flash windows; these offsets are specified in
multiples of a flash sector (4 kB)

o Bootable partitions must reside wholly in the first 16 MB flash window, due to limitations of the address
translation hardware

® Access permissions for the partition: read/write for each of Secure (S), Non-secure (NS) and bootloader (BL) access
® |Information on which UF2 family IDs may be dropped into the partition via the UF2 bootloader
® An optional 64-bit identifier
® An optional name (a string for human-readable identification)
® Whether to ignore the partition during Arm or RISC-V boot
* |Information to group partitions together (see Section 5.1.7 and Section 5.1.18)
Section 5.9.4 documents the full list of partition attributes, along with the PARTITION_TABLE binary format.

If there is no partition table, the entirety of flash is considered a single region, with no restricted permissions. Without a
partition table, there is no support for custom UF2 family IDs, therefore you must use one of the standard IDs specified
in Table 452.

5.1.3. Flash Permissions

One of the roles of the partition tables introduced in Section 5.1.2 is to define flash permissions, or simply permissions.
The partition table stores one set of permission flags for each partition: all bytes covered by a single partition have the
same permissions. The partition table separately defines permissions for unpartitioned space: flash addresses which
do not match any of partitions defined in the partition table.

Separate read/write permissions are specified for each of Secure (S), Non-secure (NS) and bootloader (BL) access.
Bootloader permissions control where UF2s can be written to, and what can be accessed via picotool when the device is
in BOOTSEL mode.

Because flash permissions may be changed dynamically at runtime, part of the partition table is resident in RAM at
runtime. You can modify this table to add permissions for other areas of flash at runtime, without changing the partition
table stored in flash itself. There is no bootrom API for this, however the in-memory partition table format is
documented, and a pointer is available in the ROM table. The SDK provides APIs to wrap this functionality.

5.1.4. Image Definitions

An image is a contiguous data blob which may contain code, or data, or a mixture. An image definition is a block of
metadata embedded near the start of an image. The metadata stored in the image definition allows the bootrom to
recognise valid executable and non-executable images. The INAGE_DEF data structure represents the image definition in a
binary format, and is an example of a block.

For executable images, the IMAGE_DEF could be considered similar to an ELF header, as it can include image attributes
such as architecture/chip, entry-point, load addresses, etc.

All IMAGE_DEFs can contain version information and be hashed or signed. Whilst the bootrom only directly boots
executable images, it does provide facilities for selecting a valid (possibly signed) data image from one or more
partitions on behalf of a user application.

The presence of a valid IMAGE_DEF allows the bootrom to discern a valid application in flash from random data. As a
result, you must include a valid INAGE_DEF in any executable binary that you intend to boot.

For more information about how the bootrom discovers IMAGE_DEFs, see the section on block loops.

5.1. Bootrom Concepts 348

RP2350 Datasheet
]

For details about the IMAGE_DEF format itself, see Section 5.9.3.

For a description of the minimum requirements for a bootable image, see Section 5.9.5.

5.1.5. Blocks And Block Loops

5.1.5.1. Blocks
IMAGE_DEFs and PARTITION_TABLEs are both examples of blocks. A block is a recognisable, self-checking data structure
containing one or more distinct data items. The type of the first item in a block defines the type of that entire block.

Blocks are backwards and forwards compatible; item types will not be changed in the future in ways that could cause
existing code to misinterpret data. Consumers of blocks (including the bootrom) must skip items within the block
whose types are currently listed as reserved; encountering reserved item types must not cause a block to fail validation.

To be considered valid, a block must have the following properties:
® it must begin with the 4 byte magic header, PICOBIN_BLOCK_MARKER_START (0xffffded3)
* the end of each (variably-sized) item must also be the start of another valid item
¢ the last item must have type PICOBIN_BLOCK_ITEM_2BS_LAST and specify the correct full length of the block
® it must end with the 4 byte magic footer, PICOBIN_BLOCK_MARKER_END (0xab123579)

The magic header and footer values are chosen to be unlikely to appear in executable Arm and RISC-V code. For more
information about the block format, see Section 5.9.1.

Given a region of memory or flash (e.g. a partition), blocks are found by searching the first 4 kB of that given region (for
flash boot) or the entire region (for RAM/OTP image boots) for a valid block which is part of a valid block loop.

Currently IMAGE_DEFs and PARTITION_TABLEs are the only types of block used by the RP2350 bootrom, but the block format
reserves encoding space for future expansion.

5.1.5.2. Block Loops

A block loop is a cyclic linked list of blocks (a linked loop). Each block has a relative pointer to the next block, and the
last block must link to the first. A single block can form a block loop by linking back to itself with a relative pointer of 0.
The first block in a loop must have the lowest address of all blocks in the loop.

The purpose of a block loop is threefold:
® to discover which blocks belong to the same image without a brute-force search
® to allow metadata to be appended in post-link processing steps
® to detect parts of the binary being overwritten in a way that breaks the loop

For flash image boot the bootrom searches the first 4 kB of flash; the 4 kB size is a compromise between allowing
flexibility for different languages' memory layouts, while avoiding scanning too much flash when trying different flash
access modes and QSPI clock frequencies. flash partition boot also limits its search to the first 4 kB of the partition.

The search window may be larger, such as a RAM image boot following a UF2 SRAM download, where the search
window is all of SRAM. For the fastest boot time, locate the first block as close to the beginning of the binary as
possible.

Block loops support multiple blocks because:

* Signing an image duplicates the existing IMAGE_DEF and adds another (bigger) IMAGE_DEF with additional signature
information.

® Animage may contain multiple IMAGE_DEFs, e.g. with different signing keys.

|
5.1. Bootrom Concepts 349

RP2350 Datasheet
]

® Placing a block at both the beginning and end of an image can detect some partial overwrites of the image (for
example, due to an overly enthusiastic absolute-addressed UF2 download). The SDK does this by default. Hashing
or signing the entire image is more robust, since it detects corruption in the middle of the image.

® A universal binary image might contain code for both Arm and RISC-V, including IMAGE_DEFs for both.
® PARTITION_TABLEs and IMAGE_DEFs are both present in the same block loop in the case of an embedded partition table.

If a block loop contains multiple IMAGE_DEFs or multiple PARTITION_TABLEs, the winner is generally the last one seen in
linked-list order. The exception is the case of two IMAGE DEFs for different architectures (Arm and RISC-V); an IMAGE_DEF
for the architecture currently executing the bootrom is always preferred over one for a different architecture.

5.1.6. Block Versioning

Any block may contain a version. Version information consists of a tuple of either two or three 16-bit values:
(rollback).major.minor, where the rollback part is optional. An item of type VERSION contains the binary data structure
which defines the version of a block.

The rollback version is only relevant in IMAGE_DEFs on a secured RP2350, where it can prevent installation of older,
vulnerable code once a newer version is installed (Section 5.1.11). On chips where secure boot is not enabled it takes
the value zero.

The version number can be used to pick the latest version between two IMAGE_DEFs or two PARTITION_ TABLEs (see Section
5.1.7). Versions compare in lexicographic order:

1. If version x has a different rollback version than version y, then the greater rollback version determines which
version is greater overall

2. Else if version x has a different major version than version y, then the greater major version determines which
version is greater overall

3. Else the minor version determines which of x and y is greater

See Section 5.9.2.1 for full details on the VERSION item in a block.

5.1.7. A/B Versions

A pair of partitions may be grouped into an A/B pair. By logically grouping A and B partitions, you can keep the current
executable image (or data) in one partition, and write a newer version into the other partition. When you finish writing a
new version, you can safely switch to it, reverting to the older version if problems arise. This avoids partially written
states that could render RP2350 un-bootable.

* When booting an A/B partition pair, the bootrom typically uses the partition with the higher version. For scenarios
where this is not the case, see Section 5.1.16.

® When dragging a UF2 onto the BOOTSEL USB drive, the UF2 targets the opposite A/B partition to the one preferred
at boot. See Section 5.1.18 for more details.

© NoTE

It is also possible to have A/B versions of the partition table. For more information about this advanced topic, see
Section 5.1.15.

5.1.8. Hashing and Signing

Any block may be hashed or signed. A hashed block stores the image hash value (see Section 5.9.2.3). At runtime, the
bootrom calculates a hash and compares it to the stored hash to determine if the block is valid. Hashes guard against
corruption of an image, but do not provide any security guarantees.

|
5.1. Bootrom Concepts 350

RP2350 Datasheet

On a secured RP2350, a hash is not sufficient for an image to be considered valid. All images must have a signature: a
hash encrypted by a private key, plus metadata (also covered by the hash) describing how the hash was generated. This
signature is stored as part of an IMAGE_DEF block. An image with a signature in its IMAGE_DEF block is called a signed
image.

O NoOTE

For background on signatures and boot keys, see the introduction to secure boot in the security chapter (Section
10.1.1).

To verify a signed image, the bootrom decrypts the hash stored in the signature using a secp256k1 public key. The
bootrom also computes its own hash of the image and compares its measured hash value with the one in the signature.

The public key is also stored in the block via a SIGNATURE item (see Section 5.9.2.4): this key's (SHA-256) hash must
match one of the boot key hashes stored in OTP locations BOOTKEY0_0 onwards. Up to four public keys can be
registered in OTP, with the count defined by BOOT_FLAGS1.KEY_VALID and BOOT_FLAGS1.KEY_INVALID. A hash of a
key is also referred to as a key fingerprint.

The data to be hashed is defined by a HASH_DEF item (see Section 5.9.2.2), which indicates the type of hash. It also
indicates how much of the block itself is to be hashed. For a signed block, the hash must contain all contents of the
block up to the final SIGNATURE item.

To be useful your hash or signature must cover actual image data in addition to the metadata stored in the block. The
block’s load map item specifies which data the bootrom hashes during hash or signature verification.

The above discussion mostly applies to IMAGE_DEFs. On a secured RP2350 with the
BOOT_FLAGS0.SECURE_PARTITION_TABLE flag set, the bootrom also enforces signatures on PARTITION_TABLES.

5.1.9. Load Maps

A load map describes regions of the binary and what to do with them before the bootrom runs the binary.
The load map supports:

® Copying portions of the binary from flash to RAM (or to the XIP cache)

® Clearing parts of RAM (either .bss clear, or erasing uninitialised memory during secure boot)

® Defining what parts of the binary are included in a hash or signature

® Preventing the flushing of the XIP cache when to keep loaded lines pinned up to the point the binary starts
For full details on the L0OAD_MAP item type of IMAGE_DEF blocks, see Section 5.9.3.2.

When booting a signed binary from flash, it is desirable to load the signed data and code into RAM before checking the
signature and subsequently executing it. Otherwise, an adversary could replace the flash device in between the
signature check and execution, subverting the check. For this reason, the load map also serves as a convenient
description of what to include in a hash or signature. The load map itself is covered by the hash or signature, and the
entire metadata block is loaded into RAM before processing, so it is not itself subject to this time-of-check versus time-
of-use concern.

5.1.10. Packaged Binaries

As described in Section 5.1.9, signed binaries in flash on a secured RP2350 are commonly loaded from flash into RAM,
go through signature verification in RAM, and then execute from the verified version in RAM.

A packaged binary is a binary stored in flash that runs entirely from RAM. The binary is likely compiled to run from RAM
as a RAM-only binary (unfortunately named no_flash in SDK parlance), but subsequently post-processed for flash
residence. The bootrom unpackages the binary into RAM before execution.

|
5.1. Bootrom Concepts 351

RP2350 Datasheet
]

As part of the packaging process, tooling like picotool adds a LOAD_MAP that tells the bootrom which parts of the flash-
resident image it must load into RAM, and where to put them. This tooling may also hash or sign the binary in the same
step. In this case, the bootrom hashes the data it loads as it unpackages the binary, as well as relevant metadata such
as the L0AD_MAP itself. The bootrom compares the resulting hash to the precomputed hash or signature in the IMAGE_DEF to
verify the unpackaged contents in RAM before running those contents.

Compare this with RP2040, where a flash-resident binary which executes from RAM (a copy_to_ram binary in SDK
parlance) must begin by executing from flash, then copy itself to RAM before continuing from there. In the RP2040 case,
the loader itself (or rather the SDK crt@) executes in-place in flash to perform the copy. This makes it impossible to
perform any trustworthy level of verification, because the loader itself executes in untrusted memory.

5.1.11. Anti-rollback Protection

Anti-rollback on a secured RP2350 prevents booting an older binary which may have known vulnerabilities. It prevents
this even if the binary is correctly signed and meets all other requirements for bootability.

Full IMAGE_DEF version information is of the form (rollback).major.minor, where the rollback part is optional. If a rollback
version is present, it is accompanied by a list of OTP rows whose ordered values are used to form a thermometer of
bits indicating the minimum rollback version that may run on the device.

A thermometer code is a base-1 (unary) number where the integer value is one plus the index of the most-significant set
bit. For example, the bit string 00001111 encodes a value of four, and the all-zeroes bit pattern encodes a value of zero.
The bootrom uses this encoding because:

® it allows OTP rows containing counters to be incremented, and
® it does not allow them to be decremented

On a secured RP2350, the bootrom compares the rollback version of the IMAGE_DEF against the thermometer-coded
minimum rollback version stored in OTP. If the IMAGE_DEF value is lower, the bootrom refuses to boot the image.

The IMAGE_DEF rollback version is covered by the image’s signature, thus cannot be modified by an adversary who does
not know the signing key. The list of OTP rows which define the chip’s minimum rollback version is also stored in the
program image, and also covered by the image signature.

The list of OTP rows in the INAGE_DEF must always have at least one bit spare beyond the IMAGE_DEF's rollback version
(enforced by picotool). As a result, older binaries always contain enough information for the bootrom to detect that the
chip’s minimum rollback version has been incremented past the rollback version in the IMAGE_DEF. You can append more
rows to the list on newer binaries to accommodate higher rollback versions without ambiguity.

When an executable image with a non-zero rollback version is successfully booted, its rollback version is written to the
OTP thermometer. The BOOT_FLAGS0.ROLLBACK_REQUIRED flag may be used to require an IMAGE_DEF have a rollback
version on a secured RP2350. This flag is set automatically when updating the rollback version in OTP.

© NoOTE

An IMAGE_DEF with a rollback version of 0 will not automatically set the BOOT_FLAGS0.ROLLBACK_REQUIRED flag, so
it is recommended that the minimum rollback version used is 1, unless the BOOT_FLAGS0.ROLLBACK_REQUIRED
flag is manually set during provisioning.

5.1.12. Flash Image Boot

RP2350 is designed primarily to run code from a QSPI flash device, either in-package or soldered separately to the
circuit board. Code runs either in-place in flash, or in SRAM after being loaded from flash. Flash boot is the process of
discovering that code and preparing to run it. Flash image boot uses a program binary stored directly in flash rather
than in a flash partition. Flash image boot requires the bootrom to discover a block loop starting within the first 4 kB of
flash which contains a valid IMAGE_DEF (and no PARTITION_TABLE).

Flash image boot has no partition table, so it cannot be used with A/B version checking, which requires separate A/B

|
5.1. Bootrom Concepts 352

RP2350 Datasheet
]

partitions. The IMAGE_DEF will boot if it is valid (which includes requiring a signature on a secured RP2350).

For the non-signed case, the IMAGE_DEF can be as small as a 20-bytes; see Section 5.9.5.

@ TIF

A more complicated version of this scenario stores multiple IMAGE_DEFs in the block loop. In this case, the last
IMAGE_DEF for the current architecture is booted, if valid. You can use this to implement universal binaries for various
supported architectures, or to include multiple signatures for targeting devices with different keys.

5.1.13. Flash Partition Boot

If a PARTITION_TABLE, but no IMAGE_DEF, is found in the valid block loop that starts within the first 4 kB of flash, and it is valid
(including signature if necessary on a secured RP2350), the bootrom searches that partition table’s partitions for an
executable image to boot. This process, when successful, is referred to as flash partition boot.

The partitions are searched in order, skipping those marked as ignored for the current architecture. The bootrom
ignores partitions as an optimisation, or to prevent automatic architecture switching.

If the partition is not part of an A/B pair, the first 4 kB is searched for the start of a valid block loop. If a valid block loop
is found, and it contains an executable image with a valid (including signature on a secured RP2350) IMAGE_DEF, then that
executable image is chosen for boot.

If the partition is the A partition of an A/B pair, the bootrom searches both partitions as described above. If both
partitions result in a bootable IMAGE_DEF, the IMAGE_DEF with the higher version number is chosen. Otherwise, the valid
IMAGE_DEF is chosen. There are some exceptions to this rule in advanced scenarios; see Section 5.1.16 and Section
5.1.17 for details.

5.1.14. Partition-Table-in-Image Boot

If both a PARTITION_TABLE and an IMAGE_DEF block are found in the valid block loop that starts within the first 4 kB of flash, a
third type of flash boot takes place. The IMAGE_DEF and PARTITION_TABLE must only be recognised, not necessarily valid or
correctly signed. This stipulation prevents a causality loop.

This is known as partition-table-in-image boot, since the application contains the partition table (instead of vice versa).
This partition table is referred to as an embedded partition table.

The PARTITION_TABLE is loaded as the current partition table, and theIMAGE_DEF is launched directly. The table defined by
the PARTITION_TABLE is not searched for IMAGE_DEFs to boot.

The following common cases might use this scenario:

® You are only using the PARTITION_TABLE for flash permissions. You want to load that partition table, then boot as
normal.

® The IMAGE_DEF contains a small bootloader stored alongside the partition table. In this case, the partition table will
once again be loaded, and the associated image entered. The entered image will then likely pick a partition from
the partition table, and launch an image from there itself.

5.1.15. Flash Boot Slots

The previous sections within this chapter discuss block loops starting within the first 4 kB of flash. Such a block loop
contained either an IMAGE_DEF, a partition table (searched for IMAGE_DEFs), or an IMAGE_DEF and a PARTITION_TABLE (not
searched).

All the previously mentioned cases discovered their block loop in slot 0. Under certain circumstances, the neighbouring
slot 1 is also searched.

Slot 0 starts at the beginning of flash, and has a size of n x 4 kB sectors. Slot 1 has the same size and follows

|
5.1. Bootrom Concepts 353

RP2350 Datasheet
]

immediately after slot 0. The value of n defaults to 1. Both slots are 4 kB in size, but you can override this value by
specifying a value in FLASH_PARTITION_SLOT_SIZE and then setting
BOOT_FLAGS0.OVERRIDE_FLASH_PARTITION_SLOT_SIZE.

Similarly to how a choice can be made between IMAGE_DEFs in A/B partitions, a choice can be made between A/B
PARTITION_TABLES via the two boot slots. This allows for versioning partition tables, targeted drag and drop of UF2s
(Section 5.1.18) containing partition tables, etc. similar to the process used for images.

Slot 1 is only of use when potentially using partition tables. In the simple case of an IMAGE_DEF and no PARTITION_TABLE
found in a block loop starting in slot 0, that image likely actually overlays the space where slot 1 would be, but in any
case, slot 1 is ignored since there is no PARTITION_TABLE.

If slot 0 contains a PARTITION_TABLE or does not contain an IMAGE_DEF (including nothing/garbage in slot 0), slot 1 can be
considered. As an optimisation, in the former case, the scanning of slot 1 can be prevented by setting the singleton flag
in the PARTITION_TABLE.

© NoOTE

When IMAGE_DEFs are also present in the slots, the PARTITION_TABLE's VERSION item determines which of slot 0 and slot 1
to use. The IMAGE_DEF metadata is ignored for the purpose of version comparison.

5.1.16. Flash Update Boot and Version Downgrade

Normally the choice of slot 0 versus slot 1, and partition A versus partition B, is made based on the version of the valid
PARTITION_TABLE or IMAGE_DEF in those slots or partitions respectively. The greater of the two versions wins.

It is however perfectly valid to downgrade to a lower-versioned IMAGE_DEF when using A/B partitions, provided this does
not violate anti-rollback rules on a secured RP2350.

Downloading the new image (and its IMAGE_DEF) into the non-currently-booting partition and doing a normal reboot will
not work in this case, as the newly downloaded image has a lower version.

For this purpose, you can enable a flash update boot boot by passing the FLASH_UPDATE boot type constant flag through
the watchdog scratch registers and a pointer to the start of the region of flash that has just been updated.

The bootrom automatically performs a flash update boot after programming a flash UF2 written to the USB Mass
Storage drive. You can also invoke a flash update boot programmatically via the reboot() API (see Section 5.4.8.24).

The flash address range passed through the reboot parameters is treated specially during a flash update boot. A
PARTITION_TABLE in a slot, or IMAGE_DEF in a partition, will be chosen for boot irrespective of version, if the start of the region
is the start of the respective slot or partition.

In order for the downgrade to persist, the first sector of the previously booting slot or partition must be erased so that
the newly installed PARTITION_TABLE or IMAGE_DEF will continue to be chosen on subsequent boots. This erase is performed
as follows during a FLASH_UPDATE boot.

1. When a PARTITION_TABLE is valid (and correctly signed if necessary) and its slot is chosen for boot, the first sector of
the other slot is erased.

2. When a valid (and correctly signed if necessary) IMAGE_DEF is launched, the first sector of the other image is erased.

3. On explicit request by the image, after it is launched, the first sector of the other image is erased. This is an
alternative to the standard behaviour in the previous bullet, and is selected by a special "Try Before You Buy" flag in
the IMAGE_DEF. For more information about this feature, see Section 5.1.17.

|
5.1. Bootrom Concepts 354

RP2350 Datasheet

O NoTE

Flash update and version downgrade have no effect when using a single slot, or standalone (non A/B) partitions.

5.1.17. Try Before You Buy

Try before you buy (abbreviated TBYB) is an IMAGE_DEF-only feature that allows for a completely safe cycle of version
upgrade:

1. An executable image is running from say partition B.
2. A new image is downloaded into partition A.
3. On download completion, a FLASH_UPDATE reboot is performed for the newly updated partition A.

4. The bootrom will preferentially try to boot partition A (due to the flash update). Note that a non TBYB image will
always be chosen over a TBYB image in A/B partitions during a normal non-FLASH_UPDATE boot.

o If the new image fails validation/signature then the old image in partition B will be used on subsequent (non-
FLASH_UPDATE) boots, recovering from the failed upgrade.

5. If the new image is valid (and correctly signed if necessary), it is entered under a watchdog timer, and has 16.7
seconds to mark itself OK via the explicit_buy() function.

o If the image calls back, the first 4 kB sector of the other partition (containing image B) is erased, and the
TBYB flag of the current image is cleared, so that A becomes the preferred partition for subsequent boots.

o If the image does not call back within the allotted time, then the system reboots, and will continue to boot
partition B (containing the original image) as partition A is still marked as TBYB image.

The erase of the first sector of the opposite partition in the A/B pair severs its image's block loop, rendering it
unbootable. This ensures the tentative image booted under TBYB becomes the preferred boot image going forward,
even if the opposite image had a higher version.

The watchdog timeout is fixed at 16.7 seconds (24-bit count on a 1-microsecond timebase). This can be shortened after
entering the target image, for example if it only needs a few hundred milliseconds for its self-test routine. It can also be
extended by reloading the watchdog counter, at the risk of getting stuck in the tentative image if it fails in a way that
repeatedly reloads the watchdog.

5.1.18. UF2 Targeting

Section 5.5 describes the USB Mass Storage drive, and the ability to download UF2 files to that drive to store and/or
execute code/data on the RP2350.

Since RP2350 supports multiple processor architectures, and partition tables with multiple partitions, some information
on the device must be used to determine what to do with a flash-addressed UF2. Depending on the context, the flash
addresses in the UF2 may be absolute flash storage addresses (as was always the case on RP2040), or runtime
addresses of code and data within a flash partition. UF2 targeting refers to the rules the bootrom applies to interpret
flash addresses in a UF2 file.

UF2 supports a 32-bit family ID embedded in the file. This enables the device to recognise firmware that targets it
specifically, as opposed to firmware intended for some other device. The RP2350 bootrom recognises some standard
UF2 family IDs (rp2040, rp2350-arm-s, rp2350-arm-ns, rp2350-riscv, data and absolute) defined in Table 452. You may define
your own family IDs in the partition table for more refined targeting.

The UF2 family ID is used as follows:

1. A UF2 with the absolute family ID is downloaded without regard to partition boundaries. A partition table (if present)
or OTP configuration define whether absolute family ID downloads are allowed. The default factory settings do
allow for absolute family ID downloads.

|
5.1. Bootrom Concepts 355

RP2350 Datasheet
]

2. If there is no partition table, then the data, rp2350-arm-s (if Arm is enabled) and rp2350-riscv (if RISC-V is enabled)
family IDs are allowed by default. The UF2 is always downloaded to the start of flash.

3. If there is a partition table, then non-absolute family IDs target a single partition under the control of the partition
table:

a. A UF2 will not be downloaded to a partition that doesn't have BL-write flash permissions
b. Each partition lists which family IDs it accepts (both RP2350 standard and user defined)

c. With A/B partitions; the A partition indicates the family IDs supported, and the UF2 goes to the partition that
isn’t the currently booting one (strictly the one that won't be the one chosen if the device were rebooted now).

d. Further refinement with A/B is allowed to support secondary A/B partitions containing data/executables used
(owned) by the main partitions; see Section 5.1.18.1 for detailed information.

For details of the exact rules used when picking a UF2 target partition, see Section 5.5.3.

© NoTE

UF2 family ids are used for partition targeting when copying UF2s to the USB drive, or when using picotool load -p.
When using picotool load without the -p flag images can be written anywhere in flash that has BL-write permissions.

5.1.18.1. Owned Partitions

An executable may require data from another partition (e.g. Wi-Fi firmware). When the main executable is stored in A/B
partitions, for safe upgrades, it may be desirable to associate two other partitions C and D with the primary A and B
partitions, such that:

® the data in partition C is used for executable in partition A, and
® the data in partition D is used for the executable in partition B.

In this scenario A is marked as the owner of C in the partition table, and C is A's owned partition. This affects UF2
image downloads which (due to their UF2 family ID) target partitions C and D.

When a UF2 download targets the C/D partition pair, the bootrom checks the state of the A and B owning partitions to
determine which of the owned partitions (C and D) receives the download. By default:

* |f B would be the target partition for a UF2 with an A/B-compatible family ID, then D is the target for a UF2 with the
C/D compatible family ID.

® Conversely, when A is the target partition for A/B downloads, C is the target partition for C/D downloads.

The FLAGS_UF2_DOWNLOAD_AB_NON_BOOTABLE_OWNER_AFFINITY flag in the partition table reverses this mapping.

5.1.19. Address Translation

RP2040 required images to be stored at the beginning of flash (8x10000000). RP2350 supports storing executable images
in a partitions at arbitrary locations, to support more robust upgrade cycles via A/B versions, among other uses. This
presents the issue that the address an executable is linked at, and therefore the binary contents of the image, would
have to depend on the address it is stored at. This can be worked around to an extent with position-independent code,
at cost to code size and performance.

RP2350 avoids this pitfall with hardware and bootrom support for address translation. An image stored at any 4 kB-
aligned location in flash can appear at flash address 0x10000000 at runtime. The SDK continues to assume an image base
of 0x10000000 by default.

When launching an image from a partition, the bootrom initialises QMI registers ATRANSO through ATRANS3 to map a
flash runtime address of 0x10000000 (by default) to the flash storage address of the start of the partition. It sets the size
of the mapped region to the size of the partition, with a maximum of 16 MB. Accessing flash addresses beyond the size
of the booted partition (but below the 0x11000000 chip select watermark) returns a bus fault.

|
5.1. Bootrom Concepts 356

RP2350 Datasheet
]

Mapping to a runtime address of 9x10000000 is the default behaviour, but you may choose a different address, with some
restrictions. The bootrom allows for runtime address values of 0x10000000, 0x10400000, 0x10800000, and 0x10c00000 for the
beginning of the mapped regions, with the choice specified by the IMAGE_DEF. You must link your binary to run at the
correct, higher base address. One example where this is useful is an application which runs from a high flash address,
and then remains mapped at this high address when launching a second application running at address 0x10000000. You
might use this for a Secure image providing services to a Non-secure client image.

This custom address translation is enabled by a negative ROLLING_WINDOW_DELTA value (see Section 5.9.3.5). The above
four runtime addresses translate to a ROLLING_WINDOW_DELTA of 0, -0x400000, -0x800000, or -0xc00000, which are the only
supported non-positive values. The delta indicates the offset into the image which appears at a runtime address
0x10000000: for negative values this indicates the runtime flash address space starts before the start of the image.

Positive values are also useful, for example when prepending data to an already-linked image as a post-processing step.
Positive deltas must be multiples of 4 kB. For example, a ROLLING_WINDOW_DELTA of 0x1000 will set up address translation
such that the image data starting at offset 0x1000 is mapped to 0x10000000 at runtime, lopping off the first 4 kB of the
image. The first 4 kB is inaccessible except via the untranslated XIP window (which defaults to Secure access only).

© NoOTE

Because address translation within the 0x1 - 0x11 and 0x11 — 0x12 windows is independent,
it is only possible to boot from partitions which are entirely contained within the first 16 MB of flash.

This address translation is performed by hardware in the QMI. For more information, see Section 12.14.4.

5.1.20. Automatic Architecture Switching

If the bootrom encounters a valid and correctly signed IMAGE_DEF for the non-current architecture (i.e. RISC-V when
booted in Arm mode, or Arm when booted in RISC-V), it performs an automatic architecture switch. The bootrom
initiates a reboot into the correct architecture for the binary it discovered, which then boots successfully on the second
attempt. Information passed in watchdog scratch registers (such as a RAM image boot type) is retained, so that the
second boot makes the same decisions as the first, and arrives at the same preferred image to boot.

This happens only when:
® The architecture to be switched to is available according to OTP critical flags
® The architecture switch feature is not disabled by the BOOT_FLAGS0.DISABLE_AUTO_SWITCH_ARCH flag

® The bootrom found no valid binary for the current architecture

@ TP

When storing executable images for both architectures in flash, it's usually preferable to boot an image for the
current architecture. To do this, keep the images in different partitions, marking the partition for Arm as ignored
during boot under RISC-V and vice versa. This avoids always picking the image in the first partition and auto-
switching to run it under the other architecture.

For hardware support details for architecture switching, see Section 3.9.

5.2. Processor-Controlled Boot Sequence

The bootrom contains the first instructions the processors execute following a reset. Both processors enter the
bootrom at the same time, and in the same location, but the boot sequence runs mostly on core 0.

Core 1 redirects very early in the boot sequence to a low-power state where it waits to be launched, after boot, by user
software on core 0. If core 1 is unused, it remains in this low-power state.

5.2. Processor-Controlled Boot Sequence 357

RP2350 Datasheet
]

Source Code Reference

The sequence described in this section is implemented on Arm by the source files arm8_bootrom_rt0.S
and varm_boot_path.c in the bootrom source code repository. RISC-V cores instead begin from
riscv_bootrom_rt@.S, but share the boot path implementation with Arm.

5.2.1. Boot Outcomes

The bootrom decides the boot outcome based on the following system state:
® The contents of the attached QSPI memory device on chip select 0, if any
® The contents of POWMAN registers BOOTO through BOOT3
® The contents of watchdog registers SCRATCH4 through SCRATCH7
® The contents of OTP, particularly CRIT1, BOOT_FLAGSO and BOOT_FLAGS1
® The QSPI Sn pin being driven low externally (to select BOOTSEL)
® The QSPI sD1 pin being driven high externally (to select UART boot in BOOTSEL mode)
Based on these, the outcome of the boot sequence may be to:
® Call code via a vector specified in SCRATCH or B0OT registers prior to the most recent reboot
o e.g.into code retained in RAM following a power-up from a low-power state.
® Run an image from external flash
o either in-place, or loaded into RAM during the boot sequence

o in-package flash on RP2354 is external for boot purposes: it is a separate silicon die, and the RP2350 die
does not implicitly trust it

® Run an image preloaded into SRAM (distinct from the vector case)
® | oad and run an image from OTP into SRAM
® Enter the USB bootloader
® Enter the UART bootloader
* Perform a one-shot operation requested via the reboot() API, such as a flash update boot
o this may be requested by the user, or by the UART or UF2 bootloaders
® Refuse to boot, due to lack of suitable images and the UART and USB bootloaders being disabled via OTP

This section makes no distinction between the different types of flash boot (flash image boot, flash partition boot and
flash partition-table-in-image boot). Likewise, it does not distinguish these types from packaged binaries, which are
loaded into RAM at boot time, because these are just flash binaries with a special load map. This section just describes
the sequence of decisions the bootrom makes to decide which medium to boot from.

5.2.2. Sequence

This section enumerates the steps of the processor-controlled boot sequence for Arm processors. There are some
minor differences on Arm versus RISC-V, which are discussed in Section 5.2.2.2.

A valid image in Table 448 refers to one which contains a valid block loop, with one of those blocks being a valid image
definition. On a secured RP2350 this image must be (correctly) signed, and must meet all other security requirements
such as minimum rollback version.

Shaded cells in the Action column of Table 448 indicate a boot outcome as described in Section 5.2.1. Other cells are
transitory states which continue through the sequence. Both cores start the sequence at Entry.

]
5.2. Processor-Controlled Boot Sequence 358

RP2350 Datasheet
]

Table 448. Processor-
controlled boot
sequence

The main sequential steps in Table 448 are:

Entry

Core 1 Wait

Boot Path Start

Await Rescue

Generate Boot Random
Check POWMAN Vector
Check Watchdog Vector
Prepare for Image Boot
Try RAM Image Boot
Check BOOTSEL

Try OTP Boot

Try Flash Boot

Prepare for BOOTSEL
Enter USB Boot

Enter UART Boot

Boot Failure

See also Section 5.2.2.1 for a summary of Table 448 in pseudocode form.

Condition (If...) Action (Then...)
Step: Entry
Always Check core number in CPUID or MHARTID.

Running on core 0

Clear boot RAM (except for core 1 region and the always region).

Go to Boot Path Start.

Running on core 1

Go to Core 1 Wait.

Step: Core 1 Wait

Always

Wait for RCP salt register to be marked valid by core 0.

Wait for core 0 to provide an entry point through Secure SIO FIFO, using the protocol
described in Section 5.3.

Outcome: Set Secure main sp and VTOR, then jump into the entry point provided.

Step: Boot Path Start

Always

Check rescue flag, CHIP_RESET.RESCUE_FLAG

Rescue flag set

Go to Await Rescue.

Rescue flag clear

Go to Generate Boot Random.

Step: Await Rescue

Always

Clear the rescue flag to acknowledge the request.

Outcome: Halt in place. The debugger attaches to give the processor further instruction.

Step: Generate Boot Random

]
5.2. Processor-Controlled Boot Sequence

359

RP2350 Datasheet
]

Condition (If...)

Action (Then...)

Always

Sample TRNG ROSC into the SHA-256 to generate a 256-bit per-boot random number.

Store 128 bits in boot RAM for retrieval by get_sys_info(), and distribute the remainder to
the RCP salt registers.

Go to Check POWMAN Vector.

Step: Check POWMAN Vector

Always

Read BOOTO through BOOT3 to determine requested boot type.

Boot type parity is valid

Clear BOOTO so this is ignored on subsequent boots.

A BOOTDIS flag is set

Go to Check Watchdog Vector.

Boot type is VECTOR

Outcome: Set Secure main sp, then call into the entry point provided.

(Return from VECTOR)

Go to Check Watchdog Vector.

Other or invalid boot type

Go to Check Watchdog Vector.

Step: Check Watchdog Vector

Always

Read watchdog SCRATCH4 through SCRATCH?7 to determine requested boot type.

Boot type parity is valid

Clear SCRATCH4 so this is ignored on subsequent boots.

Boot type is BOOTSEL

Make note for later: equivalent to selecting BOOTSEL by driving QSPI CSn low.

A BOOTDIS flag is set

Go to Prepare for Image Boot (SO BOOTSEL is the only permitted type when the OTP
BOOTDIS.NOW or POWMAN BOOTDIS.NOW flag is set).

Boot type is VECTOR

Outcome: Set Secure main sp, then call into the entry point provided.

(Return from VECTOR)

Go to Prepare for Image Boot.

Boot type is RAM_IMAGE

Make note for later: this requests a scan of a RAM region for a preloaded image.

Boot type is FLASH_UPDATE

Make note for later: modifies some flash boot behaviour, as described in Section 5.1.16.

Always

Go to Prepare for Image Boot.

Step: Prepare for Image Boot

Always

Clear B00TDIS flags (OTP BOOTDIS.NOW and POWMAN BOOTDIS.NOW).

Power up SRAMO and SRAM1 power domains (XIP RAM domain is already powered).

Reset all PADS and 10 registers, and remove isolation from QSPI pads.

Release USB reset and clear upper 3 kB of USB RAM (for search workspace).

Go to Try RAM Image Boot.

Step: Try RAM Image Boot

Watchdog type is not
RAM_IMAGE

Go to Check BOOTSEL.

BOOT_FLAGSO0.DISABLE_SR
AM_WINDOW_BOOT is set

Go to Check BOOTSEL.

Otherwise

Scan indicated RAM address range for a valid image (base in SCRATCHZ, length in
SCRATCH3). This is used to boot into a RAM image downloaded via UF2, for example.

RAM image is valid

Outcome: Enter RAM image in the manner specified by its image definition.

No valid image

Go to Prepare for Bootsel (skipping flash and OTP boot).

Step: Check BOOTSEL

]
5.2. Processor-Controlled Boot Sequence

360

RP2350 Datasheet
]

Condition (If...)

Action (Then...)

Always Check BOOTSEL request: QSPI ¢sn is low (BOOTSEL button), watchdog type is BOOTSEL, or
RUN pin double-tap was detected (enabled by BOOT_FLAGS1.DOUBLE_TAP).

BOOTSEL requested Go to Prepare for BOOTSEL (skipping flash and OTP boot).

Otherwise Goto Try OTP Boot.

Step: Try OTP Boot

Always Check BOOT_FLAGSO0.DISABLE_OTP_BOOT and BOOT_FLAGS0.ENABLE_OTP_BOOT
(the disable takes precedence).
OTP boot disabled Go to Try Flash Boot.

OTP boot enabled

Load data from OTPBOOT_SRC (in OTP) to OTPBOOT_DSTO/OTPBOOT_DST1 (in
SRAM), with the length specified by OTPBOOT_LEN.

Check validity of the image in-place in SRAM.

Image is valid

Outcome: Enter RAM image in the manner specified by its image definition.

No valid image

Go to Try Flash Boot.

Step: Try Flash Boot

Flash boot disabled by
BOOT_FLAGSO

Go to Prepare for BOOTSEL.

Always

Issue XIP exit sequence to chip select 0.

FLASH_DEVINFO has GPIO
and size for chip select 1

Issue XIP exit sequence to chip select 1.

Always

Scan flash for a valid image (potentially in a partition) with a range of instructions (EBh,
BBh, 0Bh, 03h) and SCK divisors (3 to 24)

Valid image found

Outcome: Enter flash image in the manner specified by its image definition. This may
including loading some flash contents into RAM.

Save the current flash read mode as an XIP setup function at the base of boot RAM,
which can be called later to restore the current mode (e.g. following a serial
programming operation).

No valid image

Go to Prepare for BOOTSEL.

Step: Prepare for BOOTSEL

Always

Erase SRAMO through SRAM9, XIP cache and USB RAM to all-zeroes before
relinquishing memory and peripherals to Non-secure.

Enable XOSC and configure PLL for 48 MHz, according to BOOTSEL_XOSC_CFG and
BOOTSEL_PLL_CFG (default is to expect a 12 MHz crystal).

Check QSPI sp1 pin (with default pull-down resistor) for UART/USB boot select.

Scan flash for a partition table (always using an 03h serial read command with an Sck
divisor of 6). The USB bootloader may download UF2s to different flash addresses
depending on partitions and their contents.

Advance all OTP soft locks to the BL state from OTP, if more restrictive than their S state.

QSPI sp1 pulled low

Go to Enter USB Boot.

QSPI sD1 driven high

Go to Enter UART boot.

Step: Enter USB Boot

]
5.2. Processor-Controlled Boot Sequence

361

RP2350 Datasheet
]

Condition (If...) Action (Then...)

Always Check BOOT_FLAGSO0.DISABLE_BOOTSEL_USB_PICOBOOT_IFC and
BOOT_FLAGSO0.DISABLE_BOOTSEL_USB_MSD_IFC to see which USB interfaces are
permitted.

Both USB interfaces Go to Boot Failure.

disabled

Otherwise Outcome: Enter USB bootloader. The bootloader reboots if a UF2 image is downloaded,

marking a FLASH_UPDATE in the watchdog scratch registers if applicable, and the boot path
restarts from Entry. Valid images boot; invalid images usually end up back in the USB

bootloader.

Step: Enter UART Boot

Always Check BOOT_FLAGS0.DISABLE_BOOTSEL_UART_BOOT to see if UART boot is
permitted.

UART boot disabled Go to Boot Failure.

Otherwise Outcome: Enter UART bootloader. The bootloader reboots once an image has been

downloaded, with a RAM_IMAGE boot type, and the boot path restarts from Entry. Valid
images boot; invalid images usually end up back in the UART bootloader.

Step: Boot Failure

Always Outcome: Take no further action. No valid boot image was discovered, and the selected
BOOTSEL interface was disabled. Attach the debugger to give the processor further
instruction. See the boot reason in boot RAM for diagnostics on why the boot failed.

@ TP

The bootrom internally refers to BOOTSEL mode as NSBOOT, because the USB and UART bootloaders run in the
Non-secure state under Arm. This chapter may also occasionally refer to BOOTSEL as NSBOOT.

5.2.2.1. Boot Sequence Pseudocode

The following pseudocode summarises Table 448.

if (powman_vector_valid && powman_reboot_mode_is_pcsp) {
// This call may return and continue the boot path
if (correct_arch) powman_vector_pc(); else hang();
}
if (watchdog_vector_valid) {
// Make note of RAM_IMAGE, FLASH_UPDATE, BOOTSEL reboot types
check_special_reboot_mode();
if (watchdog_reboot_mode_is_pcsp) {
// This call may return and continue the boot path
if (correct_arch) watchdog_vector_pc(); else hang();

// RAM image window specified by watchdog_scratch, e.g. after a UF2 RAM
// download: either execute the RAM image or fall back to UART/USB boot.
if (watchdog_reboot_mode_is_ram_image && !ram_boot_disabled_in_otp) {
// This only returns if there is no valid RAM image to enter.
// You can't return from the RAM image.
try_boot_ram_image(ram_image_window) ;

]
5.2. Processor-Controlled Boot Sequence 362

RP2350 Datasheet

} else {
// Otherwise try OTP and flash boot (unless there is a request to skip)
skip_flash_and_otp_boot =
bootsel_button_pressed() ||
watchdog_reboot_mode_is_bootsel ||
(double_tap_enabled_in_otp() && double_run_reset_detected());

if (!skip_flash_and_otp_boot) {

if (otp_boot_enabled_in_otp && !otp_boot_disabled_in_otp) {
// This only returns if there is no valid OTP image to enter.
// You can't return from the OTP image.
try_otp_boot();

}

if (!flash_boot_disabled_in_otp) {
// This only returns if there is no valid flash image to enter.
// You can't return from the flash image.
try_flash_boot();

}
// Failed to find an image, so drop down into one of the bootloaders
if (sd1_high_select_uart) {
// Does not return except via reboot
if (nsboot_uart_disabled) hang(); else nsbhoot(uart);
} else {
// Does not return except via reboot
if (nsboot_usb_disabled) hang(); else nsboot(usb);

5.2.2.2. Differences between Arm and RISC-V

The boot sequence outlined in Table 448 has the following differences on RISC-V:

® Secure boot is not supported (from any image source).

Anti-rollback checking is not supported as it applies only to secure boot.

Additional security checks such as the use of the RCP to validate booleans are disabled.

® The UART and USB bootloaders continue to run in Machine mode, rather than transitioning from the Arm Secure to
Non-secure state, meaning there is no hardware-enforced security boundary between these boot phases.

* The XIP setup function written to boot RAM on a successful flash boot contains RISC-V rather than Arm
instructions.

5.2.3. POWMAN Boot Vector

POWMAN contains scratch registers similar to the watchdog scratch registers, which persist over power-down of the
switched core power domain, in addition to most system resets. These registers allow users to install their own boot
handler, and divert control away from the main boot sequence on non-POR/BOR resets. It recognises the following
values written to BOOTO through BOOT3:

® BOOTO: magic number 0xb007c0d3

® BOOT1: Entry point XORed with magic -0xb007c0d3 (0x4ff83f2d)
® BOOT2: Stack pointer

® BOOTS3: Entry point

Use this to vector into code preloaded in RAM which was retained during a low-power state.

5.2. Processor-Controlled Boot Sequence 363

RP2350 Datasheet
]

If either of the magic numbers mismatch, POWMAN vector boot does not take place. If the numbers match, the
bootrom zeroes BOOTO before entering the vector, so that the behaviour does not persist over subsequent reboots.

The POWMAN boot vector is permitted to return. The boot sequence continues as normal after a return from POWMAN
vector boot, as though the vector boot had not taken place. There is no requirement for the vector to preserve the global
pointer (gp) register on RISC-V. Use this to perform any additional setup required for the boot path, such as issuing a
power-up command to an external QSPI device that may have been powered down (e.g. via a B9h power-down
command).

The entry point (pc) must have the LSB set on Arm (the Thumb bit) and clear on RISC-V. If this condition is not met, the
bootrom assumes you have passed a RISC-V function pointer to an Arm processor (or vice versa) and hangs the core
rather than continuing, since executing code for the wrong architecture has spectacularly undefined consequences.

The linker should automatically set the Thumb bit appropriately for a function pointer relocation, but this is something to
be aware of if you pass hardcoded values such as the base of SRAM: this is correctly passed as 0x20000001 on Arm
(Thumb bit set) and 0x20000000 on RISC-V (no Thumb bit, halfword-aligned).

5.2.4. Watchdog Boot Vector

Watchdog boot allows users to install their own boot handler, and divert control away from the main boot sequence on
non-POR/BOR resets. It recognises the following values written to the watchdog's upper scratch registers:

® SCRATCH4: magic number 0xb007c0d3

® SCRATCHS5: entry point XORed with magic -0xb807c0d3 (0x4ff83f2d)
® SCRATCH®6: stack pointer

® SCRATCHY: entry point

If either of the magic numbers mismatch, watchdog boot does not take place. If the numbers match, the Bootrom
zeroes SCRATCH4 before transferring control, so that the behaviour does not persist over subsequent reboots.

Watchdog boot can also be used to select the bootrom'’s special one-shot boot modes, described in Section 5.2.4.1. The
term one-shot refers to the fact these only affect the next boot (and not subsequent ones) due to the bootrom clearing
SCRATCH4 each boot. These boot types are encoded by setting a special entry point (pc) value of 0xbee7c¢ed3, which is
otherwise not a valid entry address, and then setting the boot type in the stack pointer (sp) value. Section 5.2.4.1 lists
the supported values.

The watchdog boot vector is permitted to return. The boot path continues as normal when it returns: use this to perform
any additional setup required for the boot path, such as issuing additional commands to an external QSPI device. On
RISC-V the vector is permitted to use its own global pointer (gp) value, as the bootrom only uses gp during USB boot,
which installs its own value.

With the exception of the magic boot type entry point (0xb807ced3), the vector entry point pc must have the LSB set on
Arm (the Thumb bit) and clear on RISC-V. If this condition is not met, the bootrom assumes you have passed a RISC-V
function pointer to an Arm processor (or vice versa) and hangs the core rather than continuing.

5.2.4.1. Special Watchdog Boot Types

The magic entry point 0xb007c0d3 indicates a special one-shot boot type, identified by the stack pointer value:

BOOTSEL
Selected by sp = 2. Boot into BOOTSEL mode. This will be either UART or USB boot depending on whether QSPI $D1
is driven high (default pull-down selects USB boot). See Section 5.2.8 for more details.

RAM_IMAGE

Selected by sp = 3. Boot into an image stored in SRAM or XIP SRAM. BOOTSEL mode uses this to request execution
of an image it loaded into RAM before rebooting. See Section 5.2.5 for more details.

]
5.2. Processor-Controlled Boot Sequence 364

RP2350 Datasheet
]

Table 449. QSPI read
modes supported by
the bootrom, in the
order it attempts
them.

FLASH_UPDATE

Selected by sp = 4. BOOTSEL selects this mode when rebooting following a flash download. Changes some flash
boot behaviour, such as allowing older versions to boot in preference to newer ones. See Section 5.1.16 for more
details.

Parameters to the one-shot boot type are passed in:
® SCRATCH2: Parameter 0
® SCRATCHS3: Parameter 1

These directly correspond to the po and p1 boot parameters passed into the reboot() API. For example, on a RAM_INAGE
boot, this specifies the base and size of the RAM region to be searched for a valid IMAGE_DEF. See the API listing in
Section 5.4.8.24 for more details. When not performing one of the listed boot types, SCRATCH2 and SCRATCH3 remain
free for arbitrary user values, and the bootrom does not modify or interpret their contents.

5.2.5. RAM Image Boot

The bootrom is directed (via values in the watchdog registers) to boot into an image in SRAM or XIP SRAM. The two
parameters indicate the start and size of the region to search for a block loop containing a valid (and correctly signed if
necessary) IMAGE_DEF. These are passed as parameter 0/1, in watchdog scratch 2/3.

If the image to be booted is contained in XIP SRAM, the XIP SRAM must be pinned in place by the bootrom prior to
launch. For this reason, if you are using XIP SRAM for your binaries, you must add a special entry to the LOAD_MAP item
(see Section 5.9.3.2).

5.2.6. OTP Boot

If OTP boot is enabled, then code from OTP is executed in preference to code from flash. Note that the OTP code is free
to "chain” into an executable stored in flash.

Code from OTP is copied into SRAM at the specified location, then execution proceeds similarly to RAM Image Boot.
The SRAM with the data copied from OTP is searched for a valid (and correctly signed if necessary) IMAGE_DEF. If found, it
is booted; otherwise OTP boot falls through to Flash Boot (if enabled).

OTP boot could, for example, be used to execute some hidden decryption code to decode a flash image on startup. The
OTP boot code can hide itself (in OTP) even from Secure code, once it is done.

5.2.7. Flash Boot

The bootrom scans flash up to 16 times until it finds a valid INAGE_DEF or PARTITION_TABLE. At this point, the flash settings
are considered valid, and the flash boot proceeds if a valid bootable INAGE_DEF is found with these settings. It uses the
following combinations of flash read instruction and SCK divisor for the 16 attempts:

Mode Clock Divisor
EBh quad 3
BBh dual 3
0Bh serial 3
03h serial 3
EBh quad 6
BBh dual 6
0Bh serial 6

]
5.2. Processor-Controlled Boot Sequence 365

RP2350 Datasheet
]

Mode Clock Divisor
03h serial 6

EBh quad 12

BBh dual 12

0Bh serial 12

03h serial 12

EBh quad 24

BBh dual 24

0Bh serial 24

03h serial 24

QSPI does not provide a reliable method to detect whether a device is attached. However, this is not much of an issue
for boot purposes: either there is a device with valid and bootable contents, or there are no such contents (either due to
lack of a connected device, invalid device contents, or failure to communicate in the current QSPI mode).

When there is no device (or no recognisable contents), the bootrom tries all 16 modes in Table 449 before finally giving
up. The size of the initial search region is limited to 4 kB to minimise the time spent scanning flash before falling
through to USB or UART boot. This same 4 kB limit also applies to search within a flash partition, which allows the
bootrom to reliably sever the contained image’s block loop with a single 4 kB sector erase at the start of a partition,
such as on a version downgrade.

There are three main ways that the bootrom locates flash images:

Flash image boot

A flash image can be written directly to flash storage address 0x0, and the bootrom will find it from there. This is the
most similar to flash boot on RP2040 (the main differences being the removal of a boot? in the first 256 bytes of the
image, and the new requirement for a valid image definition anywhere within the first 4 kB of the image).

Flash partition boot

A flash image can be written into a partition of a partition table. The partition table is described by a PARTITION_TABLE
block stored at the start of flash. The bootrom finds the partition table and scans its partitions to look for bootable
images.

Partition-table-in-image boot
A flash image containing an IMAGE_DEF and PARTITION_TABLE block in a single block loop is written to the start of flash.

The bootrom loads the embedded partition table, and enters the image in the same way as the flash image boot
case.

Revisit the linked bootrom concepts sections to get the fullest understanding of each of these three forms of flash boot.
For the purposes of this section, all that matters is whether the bootrom can discover a valid, bootable image or not. In
all three cases, the image must have a valid IMAGE_DEF, and meet all relevant security requirements such as being
correctly signed, and having a rollback version greater than or equal to the one stored in OTP.

The bootrom enters the flash image in whatever QSPI mode it discovered to work during flash programming. Any
further setup (such as prefixless continuous read modes) is performed by the flash image itself. This setup code,
referred to as an XIP setup function, is usually copied into RAM before execution to avoid running from flash whilst the
XIP interface is being reconfigured.

]
5.2. Processor-Controlled Boot Sequence 366

RP2350 Datasheet
]

@ TP

The PICO_EMBED_XIP_SETUP=1 flag in the SDK enables inclusion and execution of an XIP setup function on RP2350
builds. In this case the function executes on the core 0 stack during early startup, so no additional static memory
need be allocated. This is not the case for subsequent calls, because the stack is often not executable post-startup.

You should save your XIP setup function in the first 256 bytes of boot RAM to make it easily locatable when the XIP
mode is re-initialised following a serial flash programming operation which had to drop out of XIP mode. The bootrom
writes a default XIP setup function to this address before entering the flash image, which restores the mode the
bootrom discovered during flash programming.

© NoTE

You cannot execute an XIP setup function directly from boot RAM, because boot RAM is never executable. You must
copy it into SRAM before execution.

XIP setup functions should be fully position-independent, and no more than 256 bytes in size. If you are unable to meet
these requirements, you should install a stub function which calls your XIP setup function elsewhere in RAM.

5.2.8. BOOTSEL (USB/UART) Boot
The bootrom samples the state of QSPI CSn shortly after reset. Based on the result, the bootrom decides whether to
enter BOOTSEL mode, which refers collectively to the USB and UART bootloaders.
The bootrom initialises the chip select to the following state:
® Qutput disabled
® Pulled high (note Sn is an active-low signal, so this deselects the external QSPI device if there is one)

If the chip select remains high, the bootrom continues with its normal, non-BOOTSEL sequence. By default on a blank
device, this means driving the chip select low and attempting to boot from an external flash or PSRAM device.

If chip select is driven low externally, the bootrom enters BOOTSEL mode. You must drive the chip select low with a
sufficiently low impedance to overcome the internal pull-up. A 4.7 kQ resistance to ground is a good intermediate value
which reliably creates a low input logic level, but will not affect the output levels when RP2350 drives the chip select.

The QSPI sp1 line, which RP2350 initially pulls low, selects which bootloader to enter:
® SD1 remains pulled low: enter USB bootloader
® Sp1 driven high: enter UART bootloader

USB boot is a low-friction method for programming an RP2350 from a sophisticated host like a Linux PC. It also directly
exposes more advanced options like OTP programming. See Section 5.5 for the drag-and-drop mass storage interface,
or Section 5.6 for the PICOBOOT vendor interface.

UART boot is a minimal interface for bootstrapping a flashless RP2350 from another microcontroller. UART boot uses
QSPI sp2 for UART TX, and QSPI sb3 for UART RX, at a fixed baud rate of 1 Mbaud. For more details about UART boot,
see Section 5.8.

5.2.8.1. BOOTSEL Clock Requirements

BOOTSEL mode requires either a crystal attached across the XIN and X0UT pins, or a clock signal from an external
oscillator driven into the XIN pin. See Table 1436 for the electrical specifications of these two XOSC pins.

The bootrom assumes a default XOSC frequency of 12 MHz. It configures the USB PLL to derive a fixed 48 MHz
frequency from the XOSC reference. For USB, this must be a precise frequency. If you use a non-12 MHz crystal, and
intend to use USB boot, program BOOTSEL_PLL_CFG and BOOTSEL_XOSC_CFG in OTP, and then set

]
5.2. Processor-Controlled Boot Sequence 367

RP2350 Datasheet
]

BOOT_FLAGSO0.ENABLE_BOOTSEL_NON_DEFAULT_PLL_XOSC_CFG. For details about calculating the correct PLL
parameters for your crystal, see Section 8.6.3.

UART boot uses the same PLL configuration as USB boot. However, the permissible range of crystal frequencies under
the default PLL configuration is wider. See Section 5.8.1.

5.2.9. Boot Configuration (OTP)

User configuration stored in OTP can be found in Section 13.9, starting at CRIT1.

The main controls for the bootrom are stored in BOOT_FLAGS0 and BOOT_FLAGS1. These are both in page 1 of OTP,
which has the following default permissions on a blank device:

® Read-write for Secure (S)
® Read-write for bootloader (BL)
® Read-only for Non-secure (NS)

Boot key hashes are stored in page 2 of OTP, starting from BOOTKEYO0_0. There is space for up to four boot key hashes
in this page. See Section 5.10.7 for an example of how keys can be installed.

5.3. Launching Code On Processor Core 1

As described in Section 5.2, after reset, processor core 1 sleeps at start-up, and remains asleep until woken by core 0
via the SIO FIFOs.

If you are using the SDK then you can use the multicore_launch_corel() function to launch code on processor core 1.
However this section describes the procedure to launch code on processor core 1 yourself.

The procedure to start running on processor core 1 involves both cores moving in lockstep through a state machine
coordinated by passing messages over the inter-processor FIFOs. This state machine is designed to be robust enough
to cope with a recently reset processor core 1 which may be anywhere in its boot code, up to and including going to
sleep. As result, the procedure may be performed at any point after processor core 1 has been reset (either by system
reset, or explicitly resetting just processor core 1).

The following C code describes the procedure:

// values to be sent in order over the FIFO from core @ to core 1
//
// vector_table is value for VTOR register
// sp is initial stack pointer (SP)
// entry is the initial program counter (PC) (don't forget to set the thumb bit!)
const uint32_t cmd_sequence[] =
{6, 0, 1, (uintptr_t) vector_table, (uintptr_t) sp, (uintptr_t) entry};

uint seq = 0;
do {
uint cmd = cmd_sequence[seq];
// always drain the READ FIFO (from core 1) before sending a @
if (!emd) {
// discard data from read FIFO until empty
multicore_fifo_drain();
// execute a SEV as core 1 may be waiting for FIFO space
__sev();
}
// write 32 bit value to write FIFO
multicore_fifo_push_blocking(cmd);
// read 32 bit value from read FIFO once available

]
5.3. Launching Code On Processor Core 1 368

RP2350 Datasheet
]

Table 450. Bootrom
contents at fixed (well
known) addresses for
Arm code

Table 451. Bootrom
contents at fixed (well
known) addresses for
RISC-V code

uint32_t response = multicore_fifo_pop_blocking();
// move to next state on correct response (echo-d value) otherwise start over
seq = cmd == response ? seq + 1 : 0;

} while (seq < count_of(cmd_sequence));

5.4. Bootrom APIs

Whilst some ROM space is dedicated to the implementation of the boot sequence and USB/UART boot interfaces, the
bootrom also contains public functions that provide useful RP2350 functionality that may be useful for any code or
runtime running on the device.

A categorised list is available in Section 5.4.6.

The full alphabetical list is available in Section 5.4.7.

5.4.1. Locating The API Functions

The API functions are normally made available to the user by wrappers in the SDK. However, a lower level method is
provided to locate them (since their locations may change with each bootrom release) for other runtimes, or those who
wish to locate them directly.

Table 450 shows the fixed memory layout of certain words in the bootrom used to locate these functions when using
the Arm architecture. Table 451 shows the additional entries for use when using the RISC-V architecture.

Address Contents Description

0x00000000 32-bit pointer Initial boot stack pointer

0x00000004 32-bit pointer Pointer to boot reset handler function

0x00000008 32-bit pointer Pointer to boot NMI handler function

0x0000000c 32-bit pointer Pointer to boot Hard fault handler function

0x00000010 ‘M, 'u', 0x02 Magic

0x00000013 byte Bootrom version

0x00000014 16-bit pointer Pointer to ROM entry table (BOOTROM_ROMTABLE_START)
000000016 16-bit pointer Pointer to a helper function (rom_table_lookup_val())
0x00000018 16-bit pointer Pointer to a helper function (rom_table_lookup_entry())
Address Contents Description

0x00007d6 16-bit pointer Pointer to ROM entry table (BOOTROM_ROMTABLE_START)
0x00007d8 16-bit pointer Pointer to a helper function (rom_table_lookup_val())
0x00007dfa 16-bit pointer Pointer to a helper function (rom_table_lookup_entry())
0x00007dfc 32-bit instruction | RISC-V Entry Point

Assuming the three bytes starting at address 0x00000010 are ('M', 'u', 0x02), the other fixed location fields can be
assumed to be valid and used to lookup bootrom functionality.

The version byte at offset 0x00000013 is informational, and should not be used to infer the exact location of any
functions. It has the value 2 for A2 silicon.

The following code from the SDK shows how the SDK looks up a bootrom function:

|
5.4. Bootrom APIs 369

RP2350 Datasheet
]

static __force_inline void *rom_func_lookup_inline(uint32_t code) {
#ifdef __riscv
// on RISC-V the code (a jmp) is actually embedded in the table
rom_table_lookup_fn rom_table_lookup =
(rom_table_lookup_fn) (uintptr_t)*(uint16_t*)(BOOTROM_TABLE_LOOKUP_ENTRY_OFFSET
+ rom_offset_adjust);
return rom_table_lookup(code, RT_FLAG_FUNC_RISCV);
#else
// on Arm the function pointer is stored in the table, so we dereference it
// via lookup() rather than lookup_entry()
rom_table_lookup_fn rom_table_lookup =
(rom_table_lookup_fn) (uintptr_t)#*(uint16_t*)(BOOTROM_TABLE_LOOKUP_OFFSET):
if (pico_processor_state_is_nonsecure()) {
return rom_table_lookup(code, RT_FLAG_FUNC_ARM_NONSEC) ;
} else {
return rom_table_lookup(code, RT_FLAG_FUNC_ARM_SEC);

#endif

As well as API functions, there are a few data values that can be looked up. The following code demonstrates:

void *rom_data_lookup(uint32_t code) {
rom_table_lookup_fn rom_table_lookup =
(rom_table_lookup_fn) (uintptr_t)*(uint16_t*)(BOOTROM_TABLE_LOOKUP_OFFSET);
return rom_table_lookup(code, RT_FLAG_DATA);

The code parameter correspond to the CODE values in the tables below, and is calculated as follows:

uint32_t rom_table_code(char c1, char c2) {
return (c2 << 8) | c1;

These codes are also available in bootrom.h in the SDK as #defines.

5.4.2. API Function Availability

Some functions are not available under all architectures or security levels. The API listing in Section 5.4.6 uses the
following terms to list the availability of each individual API entry point:

Arm-S

The function is available to Secure Arm code. The majority of functions are available for Arm-S unless they deal
specifically with RISC-V or Non-secure functionality.

RISC-V

The function is available to RISC-V code. Most of the functions that are available under Arm-S are also exposed
under RISC-V unless they deal specifically with Arm security states.

Arm-NS

The function is available to Non-secure Arm code. The function in this case performs additional permission and
argument checks to prevent Secure data from leaking or being corrupted.

Each individual Arm-NS API function must be explicitly enabled by Secure code before use, via set_ns_api_permission(). A

|
5.4. Bootrom APIs 370

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_bootrom/include/pico/bootrom.h
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_bootrom/include/pico/bootrom.h

RP2350 Datasheet
]

disabled Non-secure API returns BOOTROM_ERROR_NOT_PERMITTED if disabled by Secure code. All Non-secure APls are
disabled initially. There is no permission control on Non-secure code calling Secure-only Arm-S functions, but such a call
will crash when it attempts to access Secure-only hardware.

The Arm-NS functions may escalate through a Secure Gateway (SG) instruction to allow Non-secure code to perform
limited operations on nominally Secure-only hardware, such as QSPI direct-mode interface used for flash programming.

The RISC-V functions do not have separate entry points based on privilege level. Both M-mode and U-mode software can
call bootrom APls, assuming they have execute permissions on ROM addresses in the PMP. However, U-mode calls will
crash if they attempt to access M-mode-only hardware.

5.4.3. API Function Return Codes

Some functions do not support returning any error, and are marked void. The remainder return either 0 (BOOTROM_OK) or a
positive value (if data needs to be returned) for success. These bootrom error codes are identical to the error codes
used by the SDK, so they can be used interchangeably. This explains the gaps in the numbering for SDK error codes that
aren't used by the bootrom.

Name Value Description

value >=0 The function succeeded and returned the value

BOOTROM_OK 0 The function executed successfully
BOOTROM_ERROR_NOT_PERMITTED -4 The operation was disallowed by a security constraint
BOOTROM_ERROR_INVALID_ARG -5 One or more parameters passed to the function is outside

the range of supported values;
BOOTROM_ERROR_INVALID_ADDRESS and
BOOTROM_ERROR_BAD_ALIGNMENT are more specific

errors.

BOOTROM_ERROR_INVALID_ADDRESS -10 An address argument was out-of-bounds or was
determined to be an address that the caller may not
access.

BOOTROM_ERROR_BAD_ALIGNMENT -11 An address passed to the function was not correctly
aligned.

BOOTROM_ERROR_INVALID_STATE -12 Something happened or failed to happen in the past, and

consequently the request cannot currently be serviced.

BOOTROM_ERROR_BUFFER_T00_SMALL -13 A user-allocated buffer was too small to hold the result or
working state of the function.

BOOTROM_ERROR_PRECONDITION_NOT_MET -14 The call failed because another bootrom function must be
called first.
BOOTROM_ERROR_MODIFIED_DATA -15 Cached data was determined to be inconsistent with the

full version of the data it was copied from.

BOOTROM_ERROR_INVALID_DATA -16 The contents of a data structure are invalid

BOOTROM_ERROR_NOT_FOUND -17 An attempt was made to access something that does not
exist; or, a search failed.

BOOTROM_ERROR_UNSUPPORTED_MODIFICATION -18 Modification is impossible based on current state; e.g.
attempted to clear an OTP bit.

BOOTROM_ERROR_LOCK_REQUIRED -19 A required lock is not owned. See Section 5.4.4.

|
5.4. Bootrom APIs 371

RP2350 Datasheet
]

5.4.4. API Functions And Exclusive Access

Various bootrom functions require access to parts of the system which:
® cannot be safely accessed by both cores at once, or
¢ limit the functionality of other hardware when in use

For example:

® Programming OTP: it is not possible to read from the memory mapped OTP data regions at the same time as
accessing its serial programming interface.

* Use of the SHA-256 block: only one SHA-256 sum can be in progress at a time.
® Using the QSPI direct-mode interface to program the flash causes XIP access to return a bus fault.

It is beyond the purview of the bootrom to implement a locking strategy, as the style and scope of the locking required
is entirely up to how the application itself uses these resources.

Nevertheless, it is important that, say, a Non-secure call to a flash programming API can’t cause a hard fault in other
Secure code running from flash. There must be some way for user software to coordinate with bootrom APIs on such
changes of state. The bootrom implements the mechanism but not the policy for mutual exclusion over bootrom API
calls.

The solution the bootrom provides is to use the boot locks (boot RAM registers BOOTLOCKO through BOOTLOCK7Y) to
inform the bootrom which resources are currently owned by the caller and therefore safe for it to use.

To enable lock checking in bootrom APIs, set boot lock 7 (LOCK_ENABLE) to the claimed state. When enabled, bootrom
functions which use certain hardware resources (listed below) will check the status of the boot lock assigned to that
resource, and return BOOTROM_ERROR_LOCK_REQUIRED if that lock is not in the claimed state.

Before calling a bootrom function with locking enabled, you must claim the relevant locks. It may take multiple attempts
to claim if the API is concurrently accessed from other contexts. Follow the same steps as the SIO spinlocks (Section
3.1.4) to claim a lock.

The following boot locks are assigned:
® 0x0 : LOCK_SHA_256 - if owned, then a bootrom APl is allowed to use the SHA-256 block

® 0x1:LOCK_FLASH_OP - if owned, then a bootrom API is allowed to enter direct mode on the QSPI memory interface
(Section 12.14.5) in order to perform low-level flash operations

® 0x2:LOCK_OTP - if owned, then a bootrom APl is allowed to access OTP via the serial interface

® 0x7:LOCK_ENABLE - if owned, then bootrom API resource ownership checking is enabled. This is off by default, since
the bootrom APIs aim to be usable by default without additional setup.

5.4.5. SDK Access To The API

Bootrom functions are exposed in the SDK via the pico_bootrom library (see pico_bootrom).
Each bootrom function has a rom_ wrapper function that looks up the bootrom function address and calls it.

The SDK provides a simple implementation of exclusive access via bootrom_acquire_lock_blocking(n) and
bootrom_release_lock(n). When enabled, as it is by default (PICO_BOOTROM_LOCKING_ENABLED=1 is defined) the SDK enables
bootrom locking via LOCK_ENABLE, and these two functions use the other SHA_256/FLASH_OP/0TP boot locks to take ownership
of/release ownership of the corresponding bootrom resource.

The rom_ wrapper functions the SDK call bootrom_acquire_lock_locking and bootrom_relead_lock functions around bootrom
calls that have locking requirements.

|
5.4. Bootrom APIs 372

https://www.raspberrypi.com/documentation/pico-sdk/runtime.html#pico_bootrom

RP2350 Datasheet

5.4.6. Categorised List Of API Functions and ROM Data

The terms in parentheses after each function name (Arm-S, Arm-NS, RISC-V) indicate the architecture and security state
combinations where that APl is available:

® Arm-S: Arm processors running in the Secure state
® Arm-NS: Arm processors running in the Non-secure state
® RISC-V: RISC-V processors

See Section 5.4.2 for the full definitions of these terms.

List entries ending with parentheses, such as flash_op(), are callable functions. List entries without parentheses, such
as git_revision, are pointers to ROM data locations.

5.4.6.1. Low-Level Flash Access

These low-level (Secure-only) flash access functions are similar to the ones on RP2040:
e connect_internal_flash() (Arm-S, RISC-V)
o flash_enter_cmd_xip() (Arm-S, RISC-V)
* flash_exit_xip() (Arm-S, RISC-V)
e flash_flush_cache() (Arm-S, RISC-V)
e flash_range_erase() (Arm-S, RISC-V)
e flash_range_program() (Arm-S, RISC-V)
These are new with RP2350:
® flash_reset_address_trans() (Arm-S, RISC-V)

* flash_select_xip_read_mode() (Arm-S, RISC-V)

5.4.6.2. High-Level Flash Access

The higher level access functions, provide functionality that is safe to expose (with permissions) to Non-secure code as
well.

e flash_op() (Arm-S, Arm-NS, RISC-V)

e flash_runtime_to_storage_addr() (Arm-S, Arm-NS, RISC-V)

5.4.6.3. System Information

e flash_devinfo16_ptr (Arm-S, RISC-V)
® get_partition_table_info() (Arm-S, Arm-NS RISC-V)
® get_sys_info() (Arm-S, Arm-NS, RISC-V)

e git_revision (Arm-S, Arm-NS, RISC-V)

5.4.6.4. Partition Tables

e get_b_partition() (Arm-S, RISC-V)

® get_uf2_target_partition() (Arm-S, RISC-V)

|
5.4. Bootrom APIs 373

RP2350 Datasheet
]

® pick_ab_partition() (Arm-S, RISC-V)
® partition_table_ptr (Arm-S°, RISC-V)

® |oad_partition_table() (Arm-S, RISC-V)

5.4.6.5. Bootrom Memory and State

® set_bootrom_stack() (RISC-V)
® xip_setup_func_ptr (Arm-S, RISC-V)

® bootrom_state_reset() (Arm-S, RISC-V)

5.4.6.6. Executable Image management

e chain_image() (Arm-S, RISC-V)

e (explicit_buy() (Arm-S, RISC-V)

5.4.6.7. Security

These Secure-only functions control access for Non-secure code:
® set_ns_api_permission() (Arm-S)
e set_rom_callback() (Arm-S, RISC-V)

® validate_ns_buffer() (Arm-S, RISC-V)

5.4.6.8. Miscellaneous

These functions are provided to all platforms and security levels, but perform additional checks when called from Non-
secure Arm code:

® reboot() (Arm-S, Arm-NS, RISC-V)

® otp_access() (Arm-S, Arm-NS, RISC-V)

5.4.6.9. Non-secure Only

e secure_call() (Arm-NS)

5.4.6.10. Bit Manipulation

Unlike RP2040 the bootrom does not contain bit manipulation functions. Processors on RP2350 implement hardware
instructions for these operations which are far faster than the software implementations in the RP2040 bootrom.

5.4.6.11. Memcpy and Memset

Unlike RP2040, the bootrom does not provide memory copy or clearing functions, as your language runtime is expected
to already provide well-performing implementations of these on Cortex-M33 or Hazard3.

The bootrom does contain private implementations of standard C memcpy() and memset(), for both Arm and RISC-V, but
these are optimised for size rather than performance. They are not exported in the ROM table.

|
5.4. Bootrom APIs 374

RP2350 Datasheet
]

5.4.6.12. Floating Point

Unlike RP2040 the bootrom does not contain functions for floating point arithmetic. On Arm there is standard processor
support for single-precision arithmetic via the Cortex-M FPU, and RP2350 provides an Arm coprocessor which
dramatically accelerates double-precision arithmetic (the DCP, Section 3.6.2). The SDK defaults to the most performant
hardware or software implementation available.

5.4.7. Alphabetical List Of API Functions and ROM Data

® bootrom_state_reset() (Arm-S, RISC-V)

chain_image() (Arm-S, RISC-V)

® connect_internal_flash() (Arm-S, RISC-V)

flash_devinfo16_ptr (Arm-S, RISC-V)

flash_enter_cmd_xip() (Arm-S, RISC-V)

flash_exit_xip() (Arm-S, RISC-V)

flash_flush_cache() (Arm-S, RISC-V)

flash_op() (Arm-S, Arm-NS, RISC-V)

flash_range_erase() (Arm-S, RISC-V)

flash_range_program() (Arm-S, RISC-V)

flash_reset_address_trans() (Arm-S, RISC-V)

flash_runtime_to_storage_addr() (Arm-S, Arm-NS, RISC-V)

flash_select_xip_read_mode() (Arm-S, RISC-V)

® get_b_partition() (Arm-S, RISC-V)

get_partition_table_info() (Arm-S, Arm-NS RISC-V)

get_sys_info() (Arm-S, Arm-NS, RISC-V)

get_uf2_target_partition() (Arm-S, RISC-V)

git_revision (Arm-S, Arm-NS, RISC-V)

load_partition_table() (Arm-S, RISC-V)

otp_access() (Arm-S, Arm-NS, RISC-V)

partition_table_ptr (Arm-S°, RISC-V)

® pick_ab_partition() (Arm-S, RISC-V)

reboot() (Arm-S, Arm-NS, RISC-V)

secure_call() (Arm-NS)

* set_bootrom_stack() (RISC-V)

set_ns_api_permission() (Arm-S)

set_rom_callback() (Arm-S, RISC-V)

validate_ns_buffer() (Arm-S, RISC-V)

xip_setup_func_ptr (Arm-S, RISC-V)

|
5.4. Bootrom APIs 375

RP2350 Datasheet
]

5.4.8. API Function Listings

5.4.8.1. bootrom_state_reset

Code: 'S','R"

Signature: void bootrom_state_reset(uint32_t flags)
Supported architectures: Arm-S, RISC-V

Resets internal bootrom state, based on the following flags:

® 0x0001: STATE_RESET_CURRENT_CORE - Resets any internal bootrom state for the current core to a known state. This
method should be called prior to calling any other bootrom APIs on the current core, and is called automatically by
the bootrom during normal boot of core 0 or launch of code on core 1.

® 0x0002 : STATE_RESET_OTHER_CORE - Resets any internal bootrom state for the other core into a clean state. This is
generally called by a debugger when resetting the state of one core via code running on the other.

® (x0004 : STATE_RESET_GLOBAL_STATE - Resets all non core-specific state, including:
o Disables access to bootrom APIs from Arm-NS (see also set_ns_api_permission()).
o Unlocks all boot locks (Section 5.4.4).
o Clears any Secure code callbacks. (see also set_rom_callback())

Note that the SDK calls this method on runtime initialisation to put the bootrom into a known state. This allows the
program to function correctly if it is entered via a debugger, or otherwise without taking the usual boot path through the
bootrom, which itself would reset the state.

5.4.8.2. chain_image

Code: 'c','T"

Signature: int chain_image(uint8_t *workarea_base, uint32_t workarea_size, int32_t region_base, uint32_t region_size)
Supported architectures: Arm-S, RISC-V. Note on RISC-V this function may require additional stack; see Section 5.4.8.26.
Returns: BOOTROM_0K (0) on success, or a negative error code on error.

Searches a memory region for a launchable image, and executes it if possible.

The region_base and region_size specify a word-aligned, word-multiple-sized area of RAM, XIP RAM or flash to search.
The first 4 kB of the region must contain the start of a block loop with an IMAGE_DEF. If the new image is launched, the call
does not return otherwise an error is returned.

The region_base is signed, as a negative value can be passed, which indicates that the (negated back to positive value) is
both the region_base and the base of the "flash update" region.

This method potentially requires similar complexity to the boot path in terms of picking amongst versions, checking
signatures etc. As a result it requires a user provided memory buffer as a work area. The work area should be word
aligned, and of sufficient size or BOOTROM_ERROR_BAD_ALIGNMENT / BOOTROM_ERROR_INSUFFICIENT _RESOURCES will be returned. The
work area size currently required is 3064, so 3 kB is a good choice.

This method is primarily expected to be used when implementing bootloaders.

|
5.4. Bootrom APIs 376

RP2350 Datasheet

© NOTE

When chaining into an image, the BOOT_FLAGS0.ROLLBACK_REQUIRED flag will not be set, to prevent invalidating a
bootloader without a rollback version by booting a binary which has one (see Section 5.10.8).

5.4.8.3. connect_internal_flash

Code: 'T','F'

Signature: void connect_internal_flash(void)

Supported architectures: Arm-S, RISC-V

Restores all QSPI pad controls to their default state, and connects the QMI peripheral to the QSPI pads.

If a secondary flash chip select GPIO has been configured via OTP FLASH_DEVINFO, or by writing to the runtime copy of
FLASH_DEVINFO in boot RAM, then this bank 0 GPIO is also initialised and the QMI peripheral is connected. Otherwise, bank
0 I0s are untouched.

5.4.8.4. explicit_buy

Code: 'E','B"

Signature: int explicit_buy(uint8_t *buffer, uint32_t buffer_size)
Supported architectures: Arm-S RISC-V

Returns: BOOTROM_0K (0) on success, negative error code on error.

Perform an "explicit buy" of an executable launched via an IMAGE_DEF which was TBYB (Section 5.1.17) flagged. A "flash
update" boot of such an image is a way to have the image execute once, but only become the "current” image if it safely
calls back into the bootrom via this call.

This call may perform the following:
® Erase and rewrite the part of flash containing the TBYB flag in order to clear said flag.

® Erase the first sector of the other partition in an A/B partition scenario, if this new IMAGE_DEF is a version downgrade
(so this image will boot again when not doing a normal boot)

* Update the rollback version in OTP if the chip is secure, and a rollback version is present in the image.

© NoTE

The device may reboot while updating the rollback version, if multiple rollback rows need to be written - this occurs
when the version crosses a multiple of 24 (for example upgrading from version 23 to 25 requires a reboot, but 23 to
24 or 24 to 25 doesn'’t). The application should therefore be prepared to reboot when calling this function, if rollback
versions are in use.

© NoTE

The first of the above requires 4 kB of scratch space, so you should pass a word aligned buffer of at least 4 kB to
this method in this case, or BOOTROM_ERROR_BAD_ALIGNMENT / BOOTROM_ERROR_INSUFFICIENT _RESOURCES will be returned.

5.4.8.5. flash_devinfo16-ptr
Code: 'F','D'
Type: uint16_t *flash_devinfol6_ptr

|
5.4. Bootrom APIs 377

RP2350 Datasheet
]

Pointer to the flash device info used by the flash APIs, e.g. for bounds checking against size of flash devices, and
configuring the GPIO used for secondary QSPI chip select.

If BOOT_FLAGSO0.FLASH_DEVINFO_ENABLE is set, this boot RAM location is initialised from FLASH_DEVINFO at startup,
otherwise it is initialised to:

® Chip select 0 size: 16 MB

® Chip select 1 size: 0 bytes

® No chip select 1 GPIO

® No D8h erase command support

The flash APIs use this boot RAM copy of FLASH_DEVINFO, so flash device info can updated by Secure code at runtime by
writing through this pointer.

5.4.8.6. flash_enter_cmd_xip

Code: 'c','X"

Signature: void flash_enter_cmd_xip(void)

Supported architectures: Arm-S, RISC-V

Compatibility alias for flash_select_xip_read_mode(0, 12);.

Configure the QMI to generate a standard 03h serial read command, with 24 address bits, upon each XIP access. This is
a slow XIP configuration, but is widely supported. CLKDIV is set to 12. The debugger may call this function to ensure
that flash is readable following a program/erase operation.

Note that the same setup is performed by flash_exit_xip(), and the RP2350 flash program/erase functions do not leave
XIP in an inaccessible state, so calls to this function are largely redundant. It is provided for compatibility with RP2040.

5.4.8.7. flash_exit_xip

Code: 'E','X'

Signature: void flash_exit_xip(void)
Supported architectures: Arm-S, RISC-V

Initialise the QMI for serial operations (direct mode), and also initialise a basic XIP mode, where the QMI will perform
03h serial read commands at low speed (CLKDIV=12) in response to XIP reads.

Then, issue a sequence to the QSPI device on chip select 0, designed to return it from continuous read mode ("XIP
mode") and/or QPI mode to a state where it will accept serial commands. This is necessary after system reset to
restore the QSPI device to a known state, because resetting RP2350 does not reset attached QSPI devices. It is also
necessary when user code, having already performed some continuous-read-mode or QPI-mode accesses, wishes to
return the QSPI device to a state where it will accept the serial erase and programming commands issued by the
bootrom’s flash access functions.

If a GPIO for the secondary chip select is configured via FLASH_DEVINFO, then the XIP exit sequence is also issued to chip
select 1.

The QSPI device should be accessible for XIP reads after calling this function; the name flash_exit_xip refers to
returning the QSPI device from its XIP state to a serial command state.

5.4.8.8. flash_flush_cache

Code: 'F','C'

|
5.4. Bootrom APIs 378

RP2350 Datasheet
]

Signature: void flash_flush_cache(void)
Supported architectures: Arm-S, RISC-V

Flush the entire XIP cache, by issuing an invalidate by set/way maintenance operation to every cache line (Section
4.4.1). This ensures that flash program/erase operations are visible to subsequent cached XIP reads.

Note that this unpins pinned cache lines, which may interfere with cache-as-SRAM use of the XIP cache.

No other operations are performed.

5.4.8.9. flash_op

Code: 'F','0"

Signature: int flash_op(uint32_t flags, uint32_t addr, uint32_t size_bytes, uint8_t *buf)
Supported architectures: Arm-S, Arm-NS, RISC-V

Returns: BOOTROM_OK (0) on success, negative error code on error.

Perform a flash read, erase, or program operation. Erase operations must be sector-aligned (4096 bytes) and sector-
multiple-sized, and program operations must be page-aligned (256 bytes) and page-multiple-sized; misaligned erase
and program operations will return BOOTROM_ERROR_BAD_ALIGNMENT. The operation — erase, read, program — is selected by
the CFLASH_OP_BITS bitfield of the flags argument.

addr is the address of the first flash byte to be accessed, ranging from XIP_BASE to XIP_BASE + ox1ffffff inclusive. This may
be a runtime or storage address. buf contains data to be written to flash, for program operations, and data read back
from flash, for read operations. buf is never written by program operations, and is completely ignored for erase
operations.

The flash operation is bounds-checked against the known flash devices specified by the runtime value of FLASH_DEVINFO,
stored in boot RAM. This is initialised by the bootrom to the OTP value FLASH_DEVINFO, if
BOOT_FLAGS0.FLASH_DEVINFO_ENABLE is set; otherwise it is initialised to 16 MB for chip select 0 and 0 bytes for chip
select 1. FLASH_DEVINFO can be updated at runtime by writing to its location in boot RAM, the pointer to which can be
looked up in the ROM table.

If a resident partition table is in effect, then the flash operation is also checked against the partition permissions. The
Secure version of this function can specify the caller’s effective security level (Secure, Non-secure, bootloader) using
the CFLASH_SECLEVEL_BITS bitfield of the flags argument, whereas the Non-secure function is always checked against the
Non-secure permissions for the partition. Flash operations which span two partitions are not allowed, and will fail
address validation.

If FLASH_DEVINFO.D8H_ERASE_SUPPORTED is set, erase operations will use a D8h 64 kB block erase command where
possible (without erasing outside the specified region), for faster erase time. Otherwise, only 20h 4 kB sector erase
commands are used.

Optionally, this API can translate addr from flash runtime addresses to flash storage addresses, according to the
translation currently configured by QMI address translation registers, ATRANSO through ATRANS7. For example, an
image stored at a +2 MB offset in flash (but mapped at XIP address 0 at runtime), writing to an offset of +1 MB into the
image, will write to a physical flash storage address of 3 MB. Translation is enabled by setting the CFLASH_ASPACE_BITS
bitfield in the flags argument.

When translation is enabled, flash operations which cross address holes in the XIP runtime address space (created by
non-maximum ATRANSx_SIZE) will return an error response. This check may tear: the transfer may be partially performed
before encountering an address hole and ultimately returning failure.

When translation is enabled, flash operations are permitted to cross chip select boundaries, provided this does not span
an ATRANS address hole. When translation is disabled, the entire operation must target a single flash chip select (as
determined by bits 24 and upward of the address), else address validation will fail.

A typical call sequence for erasing a flash sector in the runtime address space from Secure code would be:

|
5.4. Bootrom APIs 379

RP2350 Datasheet
]

® connect_internal_flash();
® flash_exit_xip();

® flash_op((CFLASH_OP_VALUE_ERASE << CFLASH_OP_LSB) | (CFLASH_SECLEVEL_VALUE_SECURE << CFLASH_SECLEVEL_LSB) |
(CFLASH_ASPACE_VALUE _RUNTIME << CFLASH_ASPACE_LSB), addr, 4096, NULL);

® flash_flush_cache();
® Copy the XIP setup function from boot RAM to SRAM and execute it, to restore the original XIP mode

o The bootrom will have written a default setup function which restores the mode/clkdiv parameters found
during flash search; user code can overwrite this with its own custom setup function.

A similar sequence is required for program operations. Read operations can leave the current XIP mode in effect, so
only the flash_op(::+); call is required.

Note that the RP2350 bootrom leaves the flash in a basic XIP state in between program/erase operations. However,
during a program/erase operation, the QMl is in direct mode (Section 12.14.5) and any attempted XIP access will return
a bus error response.

5.4.8.10. flash_range_erase

Code: 'R','E'

Signature: void flash_range_erase(uint32_t addr, size_t count, uint32_t block_size, uint8_t block_cmd)
Supported architectures: Arm-S, RISC-V

Erase count bytes, starting at addr (offset from start of flash). Optionally, pass a block erase command e.g. D8h block
erase, and the size of the block erased by this command — this function will use the larger block erase where possible,
for much higher erase speed. addr must be aligned to a 4096-byte sector, and count must be a multiple of 4096 bytes.

This is a low-level flash API, and no validation of the arguments is performed. See flash_op() for a higher-level API which
checks alignment, flash bounds and partition permissions, and can transparently apply a runtime-to-storage address
translation.

The QSPI device must be in a serial command state before calling this API, which can be achieved by calling
connect_internal_flash() followed by flash_exit_xip(). After the erase, the flash cache should be flushed via
flash_flush_cache() to ensure the modified flash data is visible to cached XIP accesses.

Finally, the original XIP mode should be restored by copying the saved XIP setup function from boot RAM into SRAM,
and executing it: the bootrom provides a default function which restores the flash mode/clkdiv discovered during flash
scanning, and user programs can override this with their own XIP setup function.

For the duration of the erase operation, QMI is in direct mode (Section 12.14.5) and attempting to access XIP from
DMA, the debugger or the other core will return a bus fault. XIP becomes accessible again once the function returns.

5.4.8.11. flash_range_program
Code: 'R','P'
Signature: void flash_range_program(uint32_t addr, const uint8_t *data, size_t count)

Supported architectures: Arm-S, RISC-V

Program data to a range of flash storage addresses starting at addr (offset from the start of flash) and count bytes in
size. addr must be aligned to a 256-byte boundary, and count must be a multiple of 256.

This is a low-level flash API, and no validation of the arguments is performed. See flash_op() for a higher-level API which
checks alignment, flash bounds and partition permissions, and can transparently apply a runtime-to-storage address
translation.

The QSPI device must be in a serial command state before calling this APl — see notes on flash_range_erase().

|
5.4. Bootrom APIs 380

RP2350 Datasheet
]

5.4.8.12. flash_reset_address_trans
Code: 'R',"A"
Signature: void flash_reset_address_trans(void)

Supported architectures: Arm-S, RISC-V

Restore the QMI address translation registers, ATRANSO through ATRANS?7, to their reset state. This makes the runtime-
to-storage address map an identity map, i.e. the mapped and unmapped address are equal, and the entire space is fully
mapped. See Section 12.14.4.

5.4.8.13. flash_runtime_to_storage_addr

Code: 'F','A"’

Signature: int flash_runtime_to_storage_addr(uint32_t addr)

Supported architectures: Arm-S, Arm-NS, RISC-V

Returns: A positive value on success (the translated address), or negative error code on error

Applies the address translation currently configured by QMI address translation registers, ATRANSO through ATRANS7.
See Section 12.14.4.

Translating an address outside of the XIP runtime address window, or beyond the bounds of an ATRANSx_SIZE field,
returns BOOTROM_ERROR_INVALID_ADDRESS, which is not a valid flash storage address. Otherwise, return the storage address
which QMI would access when presented with the runtime address addr. This is effectively a virtual-to-physical address
translation for QMI.

5.4.8.14. flash_select_xip_read_mode
Code: 'X','M'
Signature: void flash_select_xip_read_mode(bootrom_xip_mode_t mode, uint8_t clkdiv)

Supported architectures: Arm-S, RISC-V

Configure QMI for one of a small menu of XIP read modes supported by the bootrom. This mode is configured for both
memory windows (both chip selects), and the clock divisor is also applied to direct mode.

The available modes are:

® 0: 03h serial read: serial address, serial data, no wait cycles

® 1: 0Bh serial read: serial address, serial data, 8 wait cycles

® 2: BBh dual-10 read: dual address, dual data, 4 wait cycles (including MODE bits, which are driven to 0)

® 3: EBh quad-I0 read: quad address, quad data, 6 wait cycles (including MODE bits, which are driven to 0)
The XIP write command/format are not configured by this function.

When booting from flash, the bootrom tries each of these modes in turn, from 3 down to 0. The first mode that is found
to work is remembered, and a default XIP setup function is written into boot RAM that calls this function
(flash_select_xip_read_mode) with the parameters discovered during flash scanning. This can be called at any time to
restore the flash parameters discovered during flash boot.

All XIP modes configured by the bootrom have an 8-bit serial command prefix, so that the flash device can remain in a
serial command state, meaning XIP accesses can be mixed more freely with program/erase serial operations. This has
a performance penalty, so users can perform their own flash setup after flash boot using continuous read mode or QPI
mode to avoid or alleviate the command prefix cost.

|
5.4. Bootrom APIs 381

RP2350 Datasheet
]

5.4.8.15. get_b_partition

Code: '6','B'

Signature: int get_b_partition(uint partition_a)
Supported architectures: Arm-S RISC-V

Returns: The index of the B partition of partition A if a partition table is present and loaded, and there is a partition A with
a corresponding B partition; otherwise returns BOOTROM_ERROR_NOT_FOUND.

5.4.8.16. get_partition_table_info

Code: '6",'P'

Signature: int get_partition_table_info(uint32_t *out_buffer, uint32_t out_buffer_word_size, uint32_t flags_and_partition)
Supported architectures: Arm-S, Arm-NS, RISC-V

Returns: >= 0 on success (the number of words filled in out_buffer), negative error code on error.

Fills a buffer with information from the partition table. Note that this API is also used to return information over the
PICOBOOT interface.

On success, the buffer is filled, and the number of words filled in the buffer is returned. If the partition table has not been
loaded (e.g. from a watchdog or RAM boot), then this method will return BOOTROM_ERROR_PRECONDITION_NOT_MET, and you
should load the partition table via load_partition_table() first.

Note that not all data from the partition table is kept resident in memory by the bootrom due to size constraints. To
protect against changes being made in flash after the bootrom has loaded the resident portion, the bootrom keeps a
hash of the partition table as of the time it loaded it. If the hash has changed by the time this method is called, then it
will return BOOTROM_ERROR_INVALID_STATE.

The information returned is chosen by the flags_and_partition parameter; the first word in the returned buffer, is the
(sub)set of those flags that the API supports. You should always check this value before interpreting the buffer.

Following the first word, returns words of data for each present flag in order. With the exception of PT_INF0, all the flags
select "per partition" information, so each field is returned in flag order for one partition after the next. The special
SINGLE_PARTITION flag indicates that data for only a single partition is required. Flags include:

® 0x0001 - PT_INFO : information about the partition table as a whole. The second two words for unpartitioned space in
the same form described in Section 5.9.4.2.

o Word 0 : partition_count (low 8 bits), partition_table_present (bit 8)
o Word 1 : unpartitioned_space_permissions_and_location
o Word 2 : unpartitioned_space_permissions_and_flags

® (x8000 - SINGLE_PARTITION : only return data for a single partition; the partition number is stored in the top 8 bits of
flags_and_partition

Per-partition fields:

® 0x0010 - PARTITION_LOCATION_AND_FLAGS : the core information about a partition. The format of these fields is described
in Section 5.9.4.2.

o Word 0 - permissions_and_location
o Word 1 - permissions_and_flags

® 0x0020 - PARTITION_ID : the optional 64-bit identifier for the partition. If the HAS_ID bit is set in the partition flags, then
the 64 bit ID is returned:

o Word 0 - first 32 bits

|
5.4. Bootrom APIs 382

RP2350 Datasheet
]

o Word 1 - second 32 bits

® (0x0040 - PARTITION_FAMILY_IDS : Any additional UF2 family IDs that the partition supports being downloaded into it via
the MSD bootloader beyond the standard ones flagged in the permissions_and_flags field (see Section 5.9.4.2).

® 0x0080 - PARTITION_NAME : The optional name for the partition. If the HAS_NAME field bit in permissions_and_flags is not set,
then no data is returned for this partition; otherwise the format is as follows:

o Byte 0: 7 bit length of the name (LEN); top bit reserved

o Byte 1: first character of name

o Byte LEN : last character of name

o ... (padded up to the next word boundary)

O NoTE

Unpartitioned space is always reported in Word 1 as having a base offset of 6x0 and a size of 0x2000 sectors (32 MB).
The bootrom applies unpartitioned space permissions to any flash storage address that is not covered by a partition.

5.4.8.17. get_sys_info

Code: 'G",'s’

Signature: int get_sys_info(uint32_t *out_buffer, uint32_t out_buffer_word_size, uint32_t flags)

Supported architectures: Arm-S, Arm-NS, RISC-V

Returns: A positive value on success (the number of words filled in out_buffer), negative error code on error.

Fills a buffer with various system information. Note that this APl is also used to return information over the PICOBOOT
interface.

The information returned is chosen by the flags parameter; the first word in the returned buffer, is the (sub)set of those
flags that the API supports. You should always check this value before interpreting the buffer.

Following the first word, returns words of data for each present flag in order:
® 0x0001 : CHIP_INFO - unique identifier for the chip (3 words)
o Word 0: Value of the CHIP_INFO_PACKAGE_SEL register
o Word 1: RP2350 device id
o Word 2 : RP2350 wafer id
® 0x0002 : CRITICAL (1 word)
o Word 0: Value of the OTP CRITICAL register, containing critical boot flags read out on last OTP reset event
® 0x0004 : CPU_INFO (1 word)
o Word 0 : Current CPU architecture
= 0-Arm
= 1-RISCV
® 0x0008 : FLASH_DEV_INFO (1 word)
o Word 0 : Flash device info in the format of OTP FLASH_DEVINFO
® 0x0010 : BOOT_RANDOM - a 128-bit random number generated on each boot (4 words)

o Word 0 : Per boot random number 0

|
5.4. Bootrom APIs 383

RP2350 Datasheet

o Word 1 : Per boot random number 1
o Word 2 : Per boot random number 2
o Word 3 : Per boot random number 3
0x0020 : NONCE - #TO DO: not supported #
0x0040 : BOOT_INFO (4 words)
o Word 0 : 0xttppbbdd
= tt-recent boot TBYB and update info (updated on regular non BOOTSEL boots)
= pp - recent boot partition (updated on regular not BOOTSEL boots)
= bb - boot type of the most recent boot
= dd - recent boot diagnostic "partition”

o Word 1 : Recent boot diagnostic. Diagnostic information from a recent boot (with information from the
partition (or slot) indicated by dd above. "partition" numbers here are:

= 0-15: a partition number
= -T:none
= -2:slot0
= -3:slot1

= -4 :image (the diagnostic came from the launch of a RAM image, OTP boot image or user chain_image()
call).

o Word 2 : Last reboot param 0

o Word 3: Last reboot param 1

"Boot Diagnostic" information is intended to help identify the cause of a failed boot, or booting into an unexpected
binary. This information can be retrieved via PICOBOOT after a watchdog reboot, however it will not survive a reset via
the RUN pin or POWMAN reset.

There is only one word of diagnostic information. What it records is based on the pp selection above, which is itself set
as a parameter when rebooting programmatically into a normal boot.

To get diagnostic info, pp must refer to a slot or an "A" partition; image diagnostics are automatically selected on boot
from OTP or RAM image, or when chain_image() is called.)

The diagnostic word thus contains data for either slot 0 and slot 1, or the "A" partition (and its "B" partition if it has one).
The low half word of the diagnostic word contains information from slot 0 or partition A; the high half word contains
information from slot 1 or partition B.

The format of each half-word is as follows (using the word region to refer to slot or partition)

0x0001 : REGION_SEARCHED - The region was searched for a block loop.
0x0002 : INVALID_BLOCK_LOOP - A block loop was found but it was invalid

0x0004 : VALID_BLOCK_LOOP - A valid block loop was found (Blocks from a loop wholly contained within the region, and
the blocks have the correct structure. Each block consists of items whose sizes sum to the size of the block)

0x0008 : VALID_IMAGE_DEF - A valid IMAGE_DEF was found in the region. A valid IMAGE_DEF must parse correctly and must
be executable.

0x0010 : HAS_PARTITION_TABLE - Whether a partition table is present. This partition table must have a correct structure
formed if VALID_BLOCK_LOOP is set. If the partition table turns out to be invalid, then INVALID_BLOCK_LOOP is set too (thus
both VALID_BLOCK_LOOP and INVALID_BLOCK_LOOP will both be Set).

0x0020 : CONSIDERED - There was a choice of partition/slot and this one was considered. The first slot/partition is
chosen based on a number of factors. If the first choice fails verification, then the other choice will be considered.

5.4. Bootrom APIs

384

RP2350 Datasheet
]

o the version of the PARTITION_TABLE/IMAGE_DEF present in the slot/partition respectively.
o whether the slot/partition is the "update region" as per a FLASH_UPDATE reboot. #TO DO: LINK THIS # see

o whether an INAGE_DEF is marked as "explicit buy”

0x0040 : CHOSEN - This slot/partition was chosen (or was the only choice)

0x0080 : PARTITION_TABLE_MATCHING_KEY_FOR_VERIFY - if a signature is required for the PARTITION_TABLE (via OTP setting),
then whether the PARTITION_TABLE is signed with a key matching one of the four stored in OTP

0x0100 : PARTITION_TABLE_HASH_FOR_VERIFY - set if a hash value check could be performed. In the case a signature is
required, this value is identical to PARTITION_TABLE_MATCHING_KEY_FOR_VERIFY

0x0200 : PARTITION_TABLE_VERIFIED_OK - whether the PARTITION_TABLE passed verification (signature/hash if
present/required)

0x0400 : IMAGE_DEF_MATCHING_KEY_FOR_VERIFY - if a signature is required for the IMAGE_DEF due to secure boot, then
whether the INAGE_DEF is signed with a key matching one of the four stored in OTP.

0x0800 : INAGE_DEF_HASH_FOR_VERIFY - set if a hash value check could be performed. In the case a signature is required,
this value is identical to IMAGE_DEF_MATCHING_KEY_FOR_VERIFY

0x1000 : INAGE_DEF_VERIFIED_OK - whether the PARTITION_TABLE passed verification (signature/hash if present/required)
and any LOAD_MAP is valid

0x2000 : LOAD_MAP_ENTRIES_LOADED - whether any code was copied into RAM due to a LOAD_MAP

0x4000 : IMAGE_LAUNCHED - whether an IMAGE_DEF from this region was launched

0x8000 : IMAGE_CONDITION_FAILURE - whether the IMAGE_DEF failed final checks before launching; these checks include:
o verification failed (if it hasn't been verified earlier in the CONSIDERED phase).
o a problem occurred setting up any rolling window.
o the rollback version could not be set in OTP (if required in Secure mode)
o the image was marked as Non-secure

o the image was marked as "explicit buy", and this was a flash boot, but then region was not the "flash update”
region

o the image has the wrong architecture, but architecture auto-switch is disabled (or the correct architecture is
disabled)

© NoTE

The non-sensical combination of B0OOT_DIAGNOSTIC_INVALID_BLOCK_LOOP and BOOT_DIAGNOSTIC_VALID_BLOCK_LOOP both being
set is used to flag a PARTITION_TABLE which passed the initial verification (and hash/sig), but was later discovered to
have invalid contents when it was fully parsed.

To get a full picture of a failed boot involving slots and multiple partitions, the device can be rebooted multiple times to
gather the information.

5.4.8.18. get_uf2_target_partition
Code: '6",'U"

Signature: int get_uf2_target_partition(uint8_t *workarea_base, wuint32_t workarea_size, wuint32_t family_id,
resident_partition_t *partition_out)

Supported architectures: Arm-S RISC-V. Note on RISC-V this function requires additional stack; see Section 5.4.8.26.
Returns: >= 0 on success (the target partition index), or a negative error code on error.
This method performs the same operation to decide on a taget partition for a UF2 family ID as when a UF2 is dragged

|
5.4. Bootrom APIs 385

RP2350 Datasheet
]

onto the USB drive in BOOTSEL mode.

This method potentially requires similar complexity to the boot path in terms of picking amongst versions, checking
signatures etc. As a result it requires a user provided memory buffer as a work area. The work area should byte word-
aligned and of sufficient size or BOOTROM_ERROR_INSUFFICIENT RESOURCES will be returned. The work area size currently
required is 3064, so 3K is a good choice.

If the partition table has not been loaded (e.g. from a watchdog or RAM boot), then this method will return
BOOTROM_ERROR_PRECONDITION_NOT_MET, and you should load the partition table via load_partition_table() first.

5.4.8.19. git_revision

Code: 'G','R"

Type: const uint32_t git_revision

The 8 most significant hex digits of the bootrom git revision. Uniquely identifies this version of the bootrom.

O NoOTE

This is the git revision built at chip tapeout; the git hash in the public repository is different due to squashed history,
even though the contents are identical. The contents can be verified by building the public bootrom source and
comparing the resulting binary with one binary dumped from the chip.

5.4.8.20. load_partition_table

Code: 'L",'P'

Signature: int load_partition_table(uint8_t *workarea_base, uint32_t workarea_size, bool force_reload)

Supported architectures: Arm-S, RISC-V. Note on RISC-V this function requires additional stack; see Section 5.4.8.26.
Returns: BOOTROM_OK (0) on success, or a negative error code on error.

Loads the current partition table from flash, if present.

This method potentially requires similar complexity to the boot path in terms of picking amongst versions, checking
signatures etc. As a result it requires a user provided memory buffer as a work area. The work area should byte word-
aligned and of sufficient size or BOOTROM_ERROR_INSUFFICIENT _RESOURCES will be returned. The work area size currently
required is 3064, so 3K is a good choice.

If force_reload is false, then this method will return BOOTROM_OK immediately if the bootrom is loaded, otherwise it will
reload the partition table if it has been loaded already, allowing for the partition table to be updated in a running
program.

5.4.8.21. otp_access

Code: '0','A"
Signature: int otp_access(uint8_t *buf, uint32_t buf_len, uint32_t row_and_flags)
Supported architectures: Arm-S, Arm-NS, RISC-V
Returns: BOOTROM_OK (0) on success, or a negative error code on error.
Writes data from a buffer into OTP, or reads data from OTP into a buffer.
® 0x0000ffff - ROW_NUMBER: 16 low bits are row number (0-4095)

® 0x00010000 - IS_WRITE: if set, do a write (not a read)

|
5.4. Bootrom APIs 386

RP2350 Datasheet

® 0x00020000 - IS_ECC: if this bit is set, each value in the buffer is 2 bytes and ECC is used when read/writing from 24 bit
value in OTP. If this bit is not set, each value in the buffer is 4 bytes, the low 24-bits of which are written to or read
from OTP.

The buffer must be aligned to 2 bytes or 4 bytes according to the 1S_Ecc flag.

This method will read and write rows until the first row it encounters that fails a key or permission check at which it will
return BOOTROM_ERROR_NOT_PERMITTED.

Writing will also stop at the first row where an attempt is made to set an OTP bit from a 1 to a 0, and
BOOTROM_ERROR_UNSUPPORTED_MODIFICATION will be returned.

If all rows are read/written successfully, then BOOTROM_0K will be returned.

5.4.8.22. partition_table_ptr

Code: 'P','T'

Type: resident_partition_table **partition_table_ptr

A pointer to the pointer to the resident partition table info. The resident partition table is the subset of the full partition
table that is kept in memory, and used for flash permissions.

The public part of the resident partition table info is of the form:

Word

Bytes

Value

0

1

partition_count (0-16)

1

partition_count_with_permissions (0-16). Set this to > partition_count when adding extra
permission regions at runtime (do not modify the original partitions)

loaded (0x01 if a partition table has been loaded from flash)

0x00 (pad)

unpartitioned_space_permissions_and_flags

2-3

Partition 0

1

permissions_and_location for partition 0

1

permissions_and_flags for partition 0

4-5

Partition 1

1

permissions_and_location for partition 1

1

permissions_and_flags for partition 1

32-33

Partition 15

1

permissions_and_location for partition 15

1

permissions_and_flags for partition 15

Details of the fields permissions_and_location and permissions_and_flags can be found in Section 5.9.4.

5.4.8.23. pick_ab_partition

Code: 'A','B"

Signature: int pick_ab_partition(uint8_t *workarea_base, uint32_t workarea_size, uint partition_a_num)

5.4. Bootrom APIs

387

RP2350 Datasheet
]

Supported architectures: Arm-S, RISC-V. Note on RISC-V this function requires additional stack; see Section 5.4.8.26.
Returns: >= 0 on success (the partition index), or a negative error code on error.

Determines which of the partitions has the "better" IMAGE_DEF. In the case of executable images, this is the one that would
be booted

This method potentially requires similar complexity to the boot path in terms of picking amongst versions, checking
signatures etc. As a result it requires a user provided memory buffer as a work area. The work area should bye word
aligned, and of sufficient size or BOOTROM_ERROR_INSUFFICIENT _RESOURCES will be returned. The work area size currently
required is 3064, so 3K is a good choice.

The passed partition number can be any valid partition number other than the "B" partition of an A/B pair.

This method returns a negative error code, or the partition number of the picked partition if (i.e. partition_a_num or the
number of its "B" partition if any).

© NoTE

This method does not look at owner partitions, only the A partition passed and its corresponding B partition.

5.4.8.24. reboot

Code: 'R','B'

Signature: int reboot(uint32_t flags, uint32_t delay_ms, uint32_t p@, uint32_t p1)
Supported architectures: Arm-S, Arm-NS, RISC-V

Returns: BOOTROM_OK (or doesn'’t return) on success, a negative error code on error.
Resets the RP2350 and uses the watchdog facility to restart.

The delay_ms is the millisecond delay before the reboot occurs. Note: by default this method is asynchronous (unless
NO_RETURN_ON_SUCCESS is set - see below), so the method will return and the reboot will happen this many milliseconds
later.

The flags field contains one of the following values:
® (x0000 : REBOOT_TYPE_NORMAL - reboot into the normal boot path.
® 0x0002 : REBOOT_TYPE_BOOTSEL - reboot into BOOTSEL mode.
o p@ -the GPIO number to use as an activity indicator (enabled by flag in p1).
o pl-asetof flags:
= 0x07: DISABLE_MSD_INTERFACE - Disable the BOOTSEL USB drive (see Section 5.5)
= 0x02 : DISABLE_PICOBOOT_INTERFACE - Disable the PICOBOOT interface (see Section 5.6).
= 0x10 : GPIO_PIN_ACTIVE_LOW - The GPIO in po is active low.
= 0x20: GPIO_PIN_ENABLED - Enable the activity indicator on the specified GPIO.

® (x0003 : REBOOT_TYPE_RAM_IMAGE - reboot into an image in RAM. The region of RAM or XIP RAM is searched for an
image to run. This is the type of reboot used when a RAM UF2 is dragged onto the BOOTSEL USB drive.

o p0 - the region start address (word-aligned).
o p1-the region size (word-aligned).

® 0x0004 : REBOOT_TYPE_FLASH_UPDATE - variant of REBOOT_TYPE_NORMAL to use when flash has been updated. This is the type
of reboot used after dragging a flash UF2 onto the BOOTSEL USB drive.

o p0-the address of the start of the region of flash that was updated. If this address matches the start address
of a partition or slot, then that partition or slot is treated preferentially during boot (when there is a choice).

|
5.4. Bootrom APIs 388

RP2350 Datasheet
]

This type of boot facilitates TBYB (Section 5.1.17) and version downgrades.
® 0x000d : REBOOT_TYPE_PC_SP - reboot to a specific PC and SP. Note: this is not allowed in the Arm-NS variant.

o p0 - the initial program counter (PC) to start executing at. This must have the lowest bit set for Arm and clear
for RISC-V

o p1-the initial stack pointer (SP).
All of the above, can have optional flags ORed in:

® 0x0010 : REBOOT_TO_ARM - switch both cores to the Arm architecture (rather than leaving them as is). The call wil