

KAmodRPi CAN-FD (PL)

Rev. 20240623130147 Źródło: https://wiki.kamamilabs.com/index.php/KAmodRPi_CAN-FD_(PL)

Spis treści

	1
JUIS	. ⊥ ว
	. Z
wyposażenie standardowe	. 3
Schemat elektryczny	.4
Złącze sterujące	. 5
Złącze GPIO w standardzie Raspberry Pi	. 6
Podłączenie dwóch modułów interfejsu CAN	. 7
Złącze magistrali CAN	. 8
Dołączenie rezystora terminującego	. 9
Wyłączenie transceivera magistrali CAN	10
Monitorowanie strumieni danych TX i RX	11
Zasilanie i napięcie sygnałów sterujących VIO	12
Diody sygnalizacyjne	13
Wymiary	14
Linki	15
Uruchomienie modułu z komputerkiem Raspberry Pi 5	15
Odblokowanie interfejsu SPI	16
nstalowanie pakietu narzędzi dla interfejsu CAN	17
Konfigurowanie interfejsu CAN	18
Restartowanie systemu	19
Sprawdzenie konfiguracji	20
Test komunikacji	21
Test komunikacji w trybie CAN FD	23

Opis

KAmodRPi CAN-FD jest kompletnym interfejsem magistrali CAN bazującym na zaawansowanym kontrolerze CAN typu MCP2518FD. Zastosowany układ odpowiada za formowanie prawidłowych ramek wysyłanych na magistralę, oraz buforowanie danych przesłanych do, oraz z magistrali CAN. Dzięki tym cechom może współpracować niemal z dowolnym komputerkiem SBC lub mikrokontrolerem. Komunikacja po stronie CAN może odbywać się z prędkością do 1 Mbps w trybie CAN 2.0 lub do 8 Mbps w trybie CAN FD. Komunikacja z kontrolerem odbywa się poprzez 4-przewodowy interfejs SPI (MISO, MOSI, SCK, CE) oraz dodatkowy sygnał przerwania (INT). Wszystkie sygnały są doprowadzone do 40 stykowego złącza w taki sposób, że 2 moduły mogą działać jednocześnie z jednym komputerkiem Raspberry Pi 5.

Podstawowe parametry

- Interfejs magistrali CAN, kompatybilny z CAN 2.0 oraz CAN FD
- Bazuje na kontrolerze CAN typu MCP2518FD
- Komunikacja poprzez interfejs SPI z maksymalnym taktowaniem 20 MHz
- Interfejs SPI działający z napięciem 3,3 V lub 5 V
- Prędkość komunikacji (bit rate): 125 kbps...1 Mbps (500 kbps...8 Mbps w trybie FD)
- Dołączany rezystor terminujący 120 Ω
- Diody LED sygnalizujące poprawne zasilanie oraz komunikację
- Kompatybilny z płytkami Raspberry Pi 5 oraz innymi z rodziny Raspberry Pi
- Możliwość dołączenia dwóch modułów do jednego komputerka (komunikacja poprzez jeden interfejs SPI z oddzielnymi liniami CE0/CE1)
- Linie magistrali CAN dołączane poprzez złącze Phoenix MC 3,81 mm
- Zabezpieczenie przed przepięciami na liniach magistrali CAN
- Zasilanie 5 V, 100 mA
- Wymiary płytki 65x30 mm, wysokość ok. 25 mm

Wyposażenie standardowe

 Kod
 Opis

 KAmod CAN-FD
 Zmontowany i uruchomiony moduł

Schemat elektryczny

Złącze sterujące

Złącze	Funkcja
J1	• Wyprowadzone sygnały sterujące kontrolera CAN
Szpilki goldpin 1x6, 2,54 mm	Wejście zasilania

Kontroler CAN typu MCP2518FD jest sterowany poprzez interfejs SPI. Poprzez SPI odbywa się konfigurowanie parametrów pracy oraz przesyłanie danych do i z kontrolera. Dodatkowo kontroler udostępnia kilka dodatkowych sygnałów - przerwań, które pozwalają szybko reagować na określone zdarzenia. Wszystkie linie działają z napięciem 3,3 V, ale opcjonalnie można je skonfigurować do pracy z napięciem 5 V.

Funkcje sygnałów na złączu **J1** są następujące:

- szpilki nr 1 i 2: +5V wejście zasilania o napięciu 4,5...5,5 V;
- szpilka nr 3: VIO opcjonalne wejście zasilania dla napięcia 3,3...5 V, jeśli sygnały sterujące mają działać z napięciem wyższym niż 3,3 V;
- szpilka nr 4: GND masa zasilania i sygnałowa;
- szpilka nr 5: TINT wyjście przerwania INT0 (TX Interrupt output), aktywne w stanie niskim;
- szpilka nr 6: CE wejście wyboru układu interfejsu SPI (SPI chip select input), aktywne w stanie niskim;
- szpilka nr 7: RINT wyjście przerwania INT1 (RX Interrupt output), aktywne w stanie niskim;
- szpilka nr 8: SCK wejście sygnału zegarowego interfejsu SPI kontrolera CAN (SPI clock input);
- szpilka nr 9: SOF wyjście sygnalizujące start ramki (Start of Frame output);
- szpilka nr 10: MISO wyjście danych SPI kontrolera CAN (SPI data output);
- szpilka nr 11: INT główne wyjście przerwania, aktywne w stanie niskim;
- szpilka nr 12: MOSI wejście danych SPI kontrolera CAN (SPI data input);

Złącze GPIO w standardzie Raspberry Pi

Złącze Funkcja		
J2 Złącze goldpin 2x20, 2,54 mm	 Wyprowadzone sygnały sterujące kontrolera CAN, dołączone do odpowiednich styków złącza GPIO Wejście zasilania, dołączone do odpowiednich styków złącza GPIO 	

Sygnały sterujące kontrolerem CAN zostały doprowadzone do odpowiednich styków złącza **J2** (oraz równolegle do złącza J1), które jest kompatybilne ze standardem złącza GPIO płytek Raspberry Pi. Dzięki temu moduł KAmod CAN-FD można łatwo dołączyć do SBC Raspberry Pi. Rozmieszczenie sygnałów sterujących na złączu GPIO jest następujące:

- pozycja nr 2 oznaczona "3V3" zwarcie szpilek 3-4 oznacza, że szeregowy interfejs sterujący jest dostosowany do napięcia 3,3 V, które jest dostarczane ze zintegrowanego na płytce stabilizatora napięcia;
- styki 2 i 4: +5V zasilanie 5 V doprowadzone ze złącza GPIO;
- styki 6, 9, 14, 20, 25, 30, 34, 39 masa GND doprowadzona ze złącza GPIO;
- styk 18: GPIO24 może być połączony z sygnałem INT (zależy od ustawienia zworki J7);
- styk 22: GPIO25 może być połączony z sygnałem INT (zależy od ustawienia zworki J7);
- styk 24: GPIO08 może być połączony z sygnałem CE (zależy od ustawienia zworki J8);
- styk 26: GPI007 może być połączony z sygnałem CE (zależy od ustawienia zworki J8);
- styk 19: GPI010 połączony z sygnałem MOSI wejście danych SPI kontrolera CAN;
- styk 19: GPI009 połączony z sygnałem MISO wyjście danych SPI kontrolera CAN;
- styk 19: GPIO11 połączony z sygnałem SCK wejście zegarowe SPI kontrolera CAN;

Podłączenie dwóch modułów interfejsu CAN

Złącze	Funkcja
J7, J8 Szpilki goldpin + jumper 1x3, 2,54 mm	 Wybór kanału interfejsu SPI dla kontrolera CAN (sygnały CE0/CE1 na złączu GPIO) Wybór wejścia dla przerwania INT z kontrolera CAN (sygnały GPIO24/GPIO25 na złączu GPIO)

Moduł KAmod CAN-FD jest sterowany poprzez interfejs szeregowy SPI, który może obsługiwać kilka kontrolerów w jednej aplikacji. Każdy kontroler powinien mieć przypisaną dla siebie linię wyboru **CE** (Chip Enable). Na złączu GPIO Raspberry Pi są dostępne dwie linie CE – CE0 oraz CE1. Za pomocą zworki **J8** można wybrać, z której linii CE będzie korzystał kontroler CAN na płytce modułu KAmod CAN-FD:

- zwarcie szpilek 1-2 J8: ustawia linię CE0, jako linię wyboru kontrolera (jak na rysunku),
- zwarcie szpilek 2-3 J8: ustawia linię CE1, jako linię wyboru kontrolera.

Kontroler CAN typu MCP2518FD, do prawidłowego działania wymaga obsługi przerwania ustawianego stanem na linii **INT**. Aby umożliwić działanie dwóch kontrolerów CAN, sygnał INT można dołączyć do jednego z dwóch styków złącza GPIO, za pomocą zworki **J7**:

- zwarcie szpilek 1-2 J7: sygnał INT połączony z linią GPIO25 (jak na rysunku),
- zwarcie szpilek 2-3 J7: sygnał INT połączony z linią GPIO24.

Złącze magistrali CAN

Złącze	Funkcja	
J3 - CAN Phoenix MC 3,81 mm	• Złącze magistrali CAN	

Złącze magistrali CAN zawiera 3 styki: **CANL**, **CANH** oraz **GND**. Ich rozmieszczenie jest opisane na płytce modułu, styk **GND to styk środkowy**. Każdy styk należy dołączyć do magistrali CAN zgodnie z oznaczeniem. Sygnał GND powinien być dołączony do wspólnej masy zasilania urządzeń połączonych magistralą CAN.

Przebiegi napięć na magistrali CAN pokazuje poniższy rysunek:

Dołączenie rezystora terminującego

Złącze	Funkcja
J4 Szpilki goldpin + jumper 1x3, 2,54 mm	• Dołączenie rezystora terminującego 120 Ω

Urządzenia w magistrali CAN, jak sama nazwa wskazuje, są połączone w topologii magistrali. Jest to jedna szyna, bez rozgałęzień, w której można wskazać dwa końce. Każdy koniec magistrali powinien być wyposażony w terminator magistrali – w przypadku magistrali CAN jest to rezystor o wartości **120 Ω**. Na płytce modułu znajduje się odpowiedni rezystor, który można dołączyć poprzez odpowiednie ustawienie zworki **J4**:

- zwarcie szpilek 1-2, oznacza, że rezystor terminujący 120 Ω jest dołączony pomiędzy liniami CANL i CANH (jak na rysunku);
- zwarcie szpilek 2-3, lub usunięcie zworki powoduje odłączenie rezystora terminującego.

Wyłączenie transceivera magistrali CAN

Złącze	Funkcja
J6 Szpilki goldpin + jumper 1x3, 2,54 mm	• Włączenie/wyłączenie transceivera magistrali CAN

W trakcie prób i testów komunikacji poprzez CAN, może istnieć potrzeba odcinania dostępu do magistrali, aby testowana aplikacja nie zakłócała komunikacji innych urządzeń. Moduł KAmod CAN-FD zawiera transceiver typu **MCP2542FD**, który dostosowuje strumień danych z kontrolera CAN do parametrów elektrycznych magistrali. Szybkim sposobem odcięcia dostępu do magistrali, bez modyfikacji okablowania, jest wyłączenie transceivera – ustawienie trybu uśpienia *standby*. Za pomocą szpilek **J6** można w łatwy sposób włączyć/wyłączyć transceiver:

- zwarcie szpilek 1-2: transceiver aktywny (jak na rysunku),
- zwarcie szpilek 2-3: transceiver w trybie uśpienia *standby*.

Monitorowanie strumieni danych TX i RX

Złącze	Funkcja
J5 Szpilki goldpin + jumper 1x3, 2,54 mm	• Monitorowanie strumieni danych nadawanych i odbieranych z magistrali CAN

Na złączu **J5** modułu KAmod CAN-FD, wyprowadzone są sygnały strumieni danych wysyłanych z kontrolera i do kontrolera CAN. Są to zwykłe sygnały logiczne, dlatego można je łatwo monitorować i rejestrować np. za pomocą analizatora logicznego. Poziom napięcia sygnałów odpowiada napięciu **VIO**. Monitorowanie tych sygnałów może być przydatne na etapie uruchamiania aplikacji i wyszukiwania błędów. Rozmieszczenie sygnałów jest następujące:

- szpilka nr 1: G masa sygnałów,
- szpilka nr 2: R strumień danych odebranych z magistrali CAN,
- szpilka nr 3: T strumień danych wysyłanych do magistrali CAN z kontrolera.

Zasilanie i napięcie sygnałów sterujących VIO

Złącze		Funkcja	
J1		• Wejście zasilania	
Szpilki goldpi	n 2x6, 2,54 mm	• Ustawienie napięcia sygnałów sterujących VIO	

Zastosowany w module KAmod CAN-FD transceiver CAN (MCP2542FD) wymaga zasilania o napięciu z zakresu 4,5...5,5 V, które należy dołączyć do złącza J1, do styków +5V i GND. Natomiast zasilanie kontrolera CAN (MCP2518FD), może być niższe – musi zawierać się w zakresie 3...5,5 V. Napięcie sygnałów sterujących na złączu J1 będzie takie samo, jak napięcie zasilania kontrolera.

Kontroler CAN jest zasilany napięciem 3,3 V z wbudowanego w moduł stabilizatora napięcia. Napięcie to jest wyprowadzone na styku VIO złącza J1. Podając na styk VIO napięcie wyższe niż 3 V, np. 5 V, można uzyskać wyższe napięcie sygnałów sterujących – np. 5V.

Funkcje styków zasilania na złączu **J1** są następujące:

- szpilki nr 1 i 2: +5V wejście zasilania o napięciu 4,5...5,5 V;
- szpilka nr 3: VIO opcjonalne wejście zasilania dla napięcia 3,3...5 V, jeśli sygnały sterujące mają działać z napięciem wyższym niż 3,3 V;
- szpilka nr 4: GND masa zasilania i sygnałowa;

Diody sygnalizacyjne

Тур

• RX – sygnalizacja odczytu danych z magistrali CAN

Funkcja

RX ТΧ • TX – sygnalizacja nadawania danych na magistralę

V • V – sygnalizacja napięcia kontrolera CAN

Diody LED RX i TX sygnalizują stan aktywny - czyli niski stan logiczny (stan dominujący na magistrali CAN), odpowiednio na wyjściu i wejściu transceivera CAN. W przypadku przesyłania danych na magistralę, będą migały obie diody - TX oraz RX, ponieważ dane są jednocześnie odczytywane przez transceiver. Dioda V sygnalizuje obecność napięcia kontrolera CAN.

Wymiary

Wymiary modułu interfejsu KAmod CAN-FD to 65x30 mm, i wysokość ok. 25 mm. Moduł jest kompatybilny z płytkami Raspberry Pi 5 oraz Raspberry Pi Zero.

Linki

- Karta katalogowa układu MCP2518
- <u>Karta katalogowa układu MCP2542FD</u>
- Artykuł na portalu MIKROKONTROLER.pl "Interfejs komunikacyjny CAN: podstawy"
- <u>Repozytorium narzędzi Linux CAN</u>

Uruchomienie modułu z komputerkiem Raspberry Pi 5

Uruchomienie interfejsu CAN z połączeniu z komputerkiem Raspberry Pi 5 wymaga wykonania następujących kroków.

Odblokowanie interfejsu SPI

Uruchamiamy program do konfiguracji Raspberry Pi – Raspberry Pi Configuration Wybieramy zakładkę Interfaces, a tam przełączamy w pozycję aktywną przełącznik przy SPI. Zapisujemy i zamykamy program.

📃 Preferences 🔹 🔸	Add / Remove Software
Run	Appearance Settings
🖍 Shutdown	📝 Main Menu Editor
	Mouse and Keyboard Settings
	Print Settings
	👹 Raspberry Pi Configuration
	Secommended Software
	Screen Configuration

	P	aspberry Pi Co	onfiguration	~ ^ X
System	Display	Interfaces	Performance	Localisation
SSH:				\bigcirc
VNC:				\bigcirc
SPI:				
12C:				
Serial Port:				
Serial Conso	ole:			
1-Wire:				
Remote GPI	0:			\bigcirc
			Cano	el OK

Instalowanie pakietu narzędzi dla interfejsu CAN

Uruchamiamy okno terminala, np. za pomocą klawiszy *Ctrl+Alt+T*, a następnie wpisujemy komendę:

sudo apt-get install can-utils

Czekamy do zakończenia i potwierdzamy wszystkie zapytania.

Konfigurowanie interfejsu CAN

Uruchamiamy okno terminala, np. za pomocą klawiszy *Ctrl+Alt+T*. W programie do edycji plików tekstowych nano otwieramy plik config.txt, wpisując komendę:

sudo nano /boot/firmware/config.txt

(we wcześniejszych wersjach systemu Raspbian, plik config.txt jest tu: /boot/config.txt)

Sprawdzamy, czy linia o treści:

```
dtparam=spi=on
```

nie ma znaku # jeśli tak, to usuwamy znak #

Na końcu pliku dopisujemy:

dtoverlay=mcp251xfd,spi0-0,oscillator=40000000,interrupt=25

Wpis ten odnosi się do ustawienia zworek na płytce modułu (J7: 1-2; J8: 1-2)

Jeśli zamierzamy dołączyć dwa moduły interfejsu CAN, to należy dopisać kolejną linię:

dtoverlay=mcp251xfd,spi0-1,oscillator=40000000,interrupt=24

Wpis ten odnosi się do ustawienia zworek na płytce modułu (J7: 2-3; J8: 2-3)

Zapisujemy zmiany naciskając Ctrl+O i potwierdzając klawiszem Enter, a następnie zamykamy edytor naciskając Ctrl+X

Restartowanie systemu

Restartujemy system, np. za pomocą polecenia:

sudo reboot

Sprawdzenie konfiguracji

Uruchamiamy okno terminala, np. za pomocą klawiszy Ctrl+Alt+T. Wpisujemy polecenie:

dmesg | grep spi

które wyświetli informacje dotyczące interfejsu SPI zebrane w czasie uruchamiania systemu:

1 promotic provide a control message pump with reactine priority and the second priority and the secon

Jeśli wszystko zostało prawidłowo skonfigurowane powinniśmy zobaczyć dwa wpisy (lub jeden, jeśli zamontowano tylko jeden moduł): mcp251xfd spi0.0 oraz mcp251xfd spi0.1. co oznacza, że kontrolery CAN zostały prawidłowo zainicjowane – successfully initialized.

Teraz należy wpisać polecenie:

ifconfig -a

które wyświetli listę dostępnych interfejsów sieciowych - Ethernet, Wi-Fi oraz właśnie CAN:

KAMAMI

Test komunikacji

Najprostszy test komunikacji można wykonać mając dwa moduły interfejsu CAN KAmod CAN-FD podłączone do jednego komputerka Raspberry Pi 5. Jednak analogicznie będzie przebiegał test z dwoma komputerkami wyposażonymi w interfejs KAmod CAN-FD.

Uruchamiamy okno terminana, np. za pomocą klawiszy *Ctrl+Alt+T*. Aktywujemy magistralę CAN poleceniem:

sudo ip link set can0 up type can bitrate 1000000

gdzie: *can0* - to numer interfejsu, dla drugiego modułu będzie *can1 bitrate 1000000* - oznacza prędkość komunikacji, w tym przypadku ustawiamy 1 Mbps

Dla drugiego modułu należy wpisać analogiczne polecenie:

sudo ip link set can1 up type can bitrate 1000000

Teraz otwieramy drugi terminal – w jednym oknie będziemy obserwować dane odebrane za pomocą jednego interfejsu CAN (np. *can0*), a w drugim oknie będziemy wysyłać ramki danych za pomocą drugiego interfejsu CAN (np. *can1*). W pierwszym oknie wpisujemy polecenie:

candump can0

które sprawia, że interfejs can0 wyświetla w terminalu wszystkie odebrane dane.

W drugim oknie wpisujemy polecenie:

cansend can1 456#214234

Efekt widać na poniższych zrzutach ekranów:

pi@raspberrypi:~ \$	sudo ip	link	set	can1	up	type	can	bitrate	1000000
pi@raspberrypi:~ \$	sudo ip	link	set	can0	up	type	can	bitrate	1000000
pi@raspberrypi:~ \$	candump	can0							
can0 456 [3]	21 42 3	4							
can0 456 [3]	21 42 3	4							
pi@raspberrypi:~ \$	cansend	can1	456	#21423	34				
pi@raspberrypi:~ \$									
pi@raspberrypi:~ \$									
pi@raspberrypi:~ \$	cansend	can1	456	#21423	34				
pi@raspberrypi:~ S									

Polecenie *cansend can1 456#214234* powoduje wysłanie ramki CAN o identyfikatorze 456 z 3 bajtami danych: 21, 42 i 34. W standardzie CAN 2.0B identyfikator ma długość 29 bitów, a ramka może zawierać do 8 bajtów danych. Polecenie *candump can0* monitoruje stan magistrali i wyświetla wszystkie odebrane ramki danych. Aby przerwać działanie tego procesu należy nacisnąć *Ctrl+C*.

Aby zmienić parametry komunikacji należy najpierw dezaktywować magistrale CAN poleceniami

sudo ifconfig can0 down
sudo ifconfig can1 down

Test komunikacji w trybie CAN FD

Standard CAN2.0 pozwala na przesłanie do 8 bajtów danych z prędkością do 1 Mbps. Standard CAN FD (Controller Area Network Flexible Data-Rate) pozwala na przesyłanie do 64 bajtów danych w jednej ramce, poprzez zwiększenie szybkości komunikacji wewnątrz ramki - w czasie przesyłania danych, do 8 Mbps:

- CAN 2.0B data frame

Moduł KAmod CAN-FD jest kompatybilny ze standardem CAN FD. Aby przetestować moduł w tym trybie należy wykonać następujące czynności.

Uruchamiamy okno terminana, np. za pomocą klawiszy Ctrl+Alt+T. Aktywujemy magistralę CAN poleceniem:

sudo ip link set can0 up type can bitrate 1000000 dbitrate 8000000 restart-ms 1000 berrreporting on fd on

Analogicznie postępujemy z drugą magistralą:

```
sudo ip link set can1 up type can bitrate 1000000 dbitrate 8000000 restart-ms 1000 berr-
reporting on fd on
```

Teraz użyjemy narzędzia do generowania losowych ramek CAN – cangen. W oknie pierwszego terminala wpisujemy polecenie:

cangen can0 -mv

W oknie drugiego terminala wpisujemy polecenie:

candump can1

Efekt jest widoczny na poniższym zrzucie ekranu:

can0	0376C759##2.02.3C.A2.35.0C.09.38.15.02.3									-		-												
can0	1526C79F#C5.C6.AB.39.D7.63.83.5F								pi@		spo		рі. ~									Ň	^	• •
can0	196C79E2#FB.9E.3B.3C.2D.C5	File	Edit	Tahs	Heln																			
can0	64F##1.98	THE	Lun	Tubb	Ticip																			
^Cpi@ra	spberrypi:~ S cangen can0 -mv	pi@ras	spberry	ypi:~	S cand	ump	can	1																-
can0	5D8##0.F3.44	can1	L 5D8	[02]	F3 4	4																		
can0	4B9##0.59.BB.50.36.6C.69.11	can1	L 4B9	[07]	59 B	B 50	36	6C	69	11	1													
can0	595#00.36	can1	L 595	[2]	00 3	6																		
can0	06C89197##1.73.7B	can1	L 06C	89197	[02]	73	7B																	
can0	1314091B#FD.6B.8E.0A.93.AD.DE.49	can1	131	4091B	[8]	FD	6B	8E	ΘA	93	AD	DE	49											
can0	1B6ECF6F##2	can1	L 1B6	ECF6F	[00]																			
can0	7FE#02.43.83.54.F1.04.D0	can1		7FE	[7]	02	43	83	54	F1	04	DO												
can0	5F4#A7.08.7B.00.4D.31.2D.2D	can1		5F4	[8]	Α7	08	7B	00	4D	31	2D	2D											
can0	1D0FC86B##1.C9.84	can1	L 1D0	FC86B	[02]	C9	84																	
can0	0BE83C61##1.5A.E3.39	can1	L OBE	83C61	[03]	5A	F3	39																
can0	2DE#	can1	()	2DF	[0]																			
can0	1C9447F8##0.83.E0.26.31.05.4D.4C.63.83.E	can1	L 1C9	447F8	[20]	83	E0	26	31	05	4D	4C	63	83	EΘ	26	31	05	4D	4C	63	83	EΘ	2

Wśród wygenerowanych ramek widać takie, które nie niosą żadnych danych, tylko sam identyfikator oraz takie, które niosą 20 bajtów danych – zgodnie z możliwościami CAN FD.

Zastrzegamy prawo do wprowadzania zmian bez uprzedzenia.

Oferowane przez nas płytki drukowane mogą się różnić od prezentowanej w dokumentacji, przy czym zmianom nie ulegają jej właściwości użytkowe.

BTC Korporacja gwarantuje zgodność produktu ze specyfikacją.

BTC Korporacja nie ponosi odpowiedzialności za jakiekolwiek szkody powstałe bezpośrednio lub pośrednio w wyniku użycia lub nieprawidłowego działania produktu.

BTC Korporacja zastrzega sobie prawo do modyfikacji niniejszej dokumentacji bez uprzedzenia.