

Adafruit OV5640 Camera Breakout

Created by Jeff Epler

https://learn.adafruit.com/adafruit-ov5640-camera-breakout

Last updated on 2023-11-16 11:31:16 AM EST

©Adafruit Industries Page 1 of 59

5

7

14

15

15

17

28

31

32

38

Table of Contents

Overview

Pinouts

• A note on silkscreen labels

• Camera Lens

• Power Supply

• Power Down & Reset

• Power LED

• I2C Pins

• Clock and Synchronization Pins

• Data Pins

• Autofocus Motor Power

• Test Bar Mode

Assembly

CircuitPython Camera Libraries

• Camera Pin Naming

Espressif ESP32-family Overview

• Setting 'reserved PSRAM'

• Pin Choices

Install TinyUF2 on Espressif Kaluga

• Method 1: WebSerial ESPTool / esptool

• Step 1. Download the tinyuf2 combined.bin file here

• Step 2. Place your board in bootloader mode

• Step 3 Option A. Use the Web Serial ESPTool to upload

• Step 3. Option B. Use esptool.py to upload (for advanced users)

• Step 4. Reset the board

• Method 2: Flash an Arduino Sketch

• Arduino IDE Setup

• Load the Blink Sketch

Install CircuitPython on Espressif Kaluga with TinyUF2

• CircuitPython Quickstart

• Kaluga USB Connection

Espressif Kaluga Pinout

• Setting 'reserved PSRAM'

• Camera Module Connections

• LCD variants

LCD Mirror Demo

• Install & Use the Demo

• Code Walkthrough

ASCII Mirror Demo

• Install & Use the Demo

©Adafruit Industries Page 2 of 59

42

47

47

48

50

54

57

57

JPEG Capture Demo

• Install & Use the Demo

• Code walkthrough

espcamera documentation

Raspberry Pi RP2040 Overview

• Image storage

• Pin choices

Raspberry Pi Pico Usage

• Camera connections

• LCD connections

ASCII Mirror Demo

• Install & Use the Demo

LCD Mirror Demo

• Install & Use the Demo

• Code Walkthrough

adafruit_ov5640 documentation

Downloads

• Files

• Schematic and Fab Print

©Adafruit Industries Page 3 of 59

©Adafruit Industries Page 4 of 59

Overview

Hobby-level microcontrollers are finally getting powerful enough to start handling

camera modules that historically would have required a full computer or FPGA to

handle. The RP2040 and ESP32-Sx series of chips, for example, have enough pins to

communicate with the 8-bit data output, DMA to quickly grab a frame, and the

necessary RAM to buffer a raw snapshot. Now all that is needed is a nice camera

module to make interfacing easy!

This Adafruit OV5640 Camera Breakout with 120 Degree Lens has a nice quality

OV5640 camera with a 5 Megapixel sensor element, 120-degree wide angle lens, and

©Adafruit Industries Page 5 of 59

all the support circuitry you need. Adafruit looked at existing camera modules and

while this breakout board is backwards compatible, they made some improvements:

Standard 2x9 header if you want it, but also a duplicated header strip 0.3" apart

so you can plug it into a breadboard or perfboard

Selectable external or internal 24MHz "XCLK" clock generation - save one GPIO

pin, or just have a nice stable 24 MHz signal even if your microcontroller can't

generate it for you.

Heat-sinking camera area with exposed ground pad, with lots of vias for good

thermal transfer. Helpful for when doing continuous encoding and reducing

thermal image drift.

Optional VMotor 3.3V power jumper on DATA1, for auto-focusing camera

modules

3.3V power-good LED on back that can be disabled

The module comes with header pins so you can solder it for use on a breadboard or

on the standard 2x9 header—It's up to you.

•

•

•

•

•

©Adafruit Industries Page 6 of 59

Pinouts

A note on silkscreen labels

In each column, the top label (e.g., G, SDA,

etc) applies to both the top and center

rows of pins. The bottom label (e.g., 3V,

SCL, etc) is for the bottom row of pins. As

noted on the Assembly page, depending

how you will install the module you will

either be using the two outermost rows of

pins, or the two bottom rows of pins.

©Adafruit Industries Page 7 of 59

https://learn.adafruit.com//assets/118602
https://learn.adafruit.com//assets/118602

Camera Lens

This OV5640 camera has a 120° wide-angle lens. Its focusing distance can't be

adjusted. When shipped, it has an opaque lens cap on it. Remove the cap to capture

images, unless you really like the color black.

Power Supply

©Adafruit Industries Page 8 of 59

The camera module requires a well-regulated 3.3v supply in order to operate.

G (GND): Connect to microcontroller GND

3V (3.3V): Connect to microcontroller +3.3V supply

Power Down & Reset

PD (powerdown): Optional connection to microcontroller GPIO. When pulled HIG

H the camera module is put into power-down mode. When released or pulled LO

W the camera is powered on. This pin can also be pulsed HIGH as a way to

reset the camera.

RT (reset): Optional connect to microcontroller GPIO. Pull the pin LOW to reset

the camera module and release it or pull it HIGH to enter operating mode.

Both pins have built-in pull resistors, so by default the camera is powered on and

allowed to exit reset mode.

•

•

•

•

©Adafruit Industries Page 9 of 59

Power LED

When powered on, this LED will light. To disable the LED, cut the small trace between

the two pads of the solder jumper. To re-enable it, bridge the two pads with a blob of

solder.

I2C Pins

©Adafruit Industries Page 10 of 59

The camera module must be configured using I2C.

SDA: Connect to microcontroller SDA

SCL: Connect to microcontroller SDL

Adafruit's OV5640 camera module has built-in pull ups, so you don't need to add

external ones. But note that many modules from other vendors do not have these

pull-ups.

Clock and Synchronization Pins

XC (external clock): When the XCLK jumper is set to "EXT" (the default), this pin

must be driven with a 24MHz square wave from the microcontroller or other

source. When the jumper is changed to "INT", then an on-board clock generator

is used instead. In this case, the XC pin should not be driven by the

microcontroller and may be left unconnected.

PC (pixel clock) tells the microcontroller when image data is available. This may

need to be connected to a specific microcontroller pin.

VS and HS are synchronization signals, which tell the microcontroller when a

new frame (VS) or row (HS) of data begins. These may need to be connected to

specific microcontroller pins.

•

•

•

•

•

©Adafruit Industries Page 11 of 59

The OV5640 Camera Breakout includes an on-board 24MHz crystal oscillator. To use

this as the OV5640 clock, cut the jumper from the center pad to EXT then solder

between the center pad and INT. In this mode, any input on the XC pin is ignored

and XC may be left unconnected.

Data Pins

The 8 data pins (numbered from D2 to D9 because reasons) carry data out of the

camera into the microcontroller.

©Adafruit Industries Page 12 of 59

Depending on mode, these 8 data bits can be half of a 16-bit pixel value, or one byte

of JPEG data.

Autofocus Motor Power

While the camera supplied with the OV5640 Camera Breakout does not have an auto-

focus motor, some compatible camera modules include a "voice coil" motor for auto-

focus.

If you install such a module, close the VM jumper with a blob of solder. Internally, this

connects the 3.3V supply to the camera module on its D1 connection.

Test Bar Mode

In test bar mode, the camera shows color

bars in the order white - yellow - cyan -

green - purple - red - blue - black. A small

vertical bar of inverted colors moves from

top to bottom. Here's a typical test bar,

captured in JPEG mode at VGA resolution.

©Adafruit Industries Page 13 of 59

https://learn.adafruit.com//assets/118553
https://learn.adafruit.com//assets/118553

Assembly

First, decide how you are going to use your camera module: on a board which has a

standard 2x9 header or on a standard breadboard.

If your microcontroller has a 2x9 header available, that method is strongly preferred!

The high speed signals of the camera module can be scrambled even with short

lengths of jumper wire on a solderless breadboard.

Using side cutters, snap off two 9-pin sections of headers.

If you are soldering for the 2x9 header then place the pins in the two rows at the

edge of the board

If you are soldering for breadboard use then place the pins in the outermost rows,

leaving the middle row empty.

Carefully align the headers. You can use tacky clay to hold them in place. Solder just

one pin in each row, then check again for alignment. If the pins are poorly aligned, re-

heat the solder joint while adjusting it until it is straight. Add flux if needed so that you

don't end up with a cold solder joint.

Then, solder the rest of the pins.

(For tips on soldering, be sure to check out our Guide to Excellent Soldering ()).

©Adafruit Industries Page 14 of 59

http://learn.adafruit.com/adafruit-guide-excellent-soldering
http://learn.adafruit.com/adafruit-guide-excellent-soldering

CircuitPython Camera Libraries

There are multiple libraries for camera support on CircuitPython.

For Espressif boards, the built in espcamera () module (added in CircuitPython 8)

interfaces with multiple types of cameras including the OV5640.

For other boards, such as the Raspberry Pi Pico with RP2040 microcontrollers, an

installable library called adafruit_ov5640 () is used instead. Internally, this uses a

module called imagecapture () for low-level camera interfacing.

Remember to use the right library for your board!

Camera Pin Naming

By convention, if a board has an integrated camera or a dedicated camera connector,

the following will exist in the board module:

CAMERA_SIOC - the SCL pin of the camera

CAMERA_SIOD - the SDA pin of the camera

CAMERA_PCLK - the pixel clock of the camera

CAMERA_VSYNC - the vertical sync of the camera

CAMERA_HREF - the horizontal sync of the camera

CAMERA_XCLK - the input clock pin of the camera

CAMERA_DATA - the 8 data pins of the camera

Espressif ESP32-family Overview

CircuitPython's espcamera module is available on most supported ESP32-S2 and

ESP32-S3 boards with PSRAM. It incorporates both the camera configuration code

and the image capturing code in a single library that works across multiple types of

camera modules, instead of being available for regular CircuitPython objects.

Setting 'reserved PSRAM'

Because of how CircuitPython and ESP-IDF (Espressif IoT Development Framework)

manage memory together, a portion of memory has to be set aside for the camera

framebuffers.

•

•

•

•

•

•

•

©Adafruit Industries Page 15 of 59

https://docs.circuitpython.org/en/latest/shared-bindings/espcamera/index.html
https://docs.circuitpython.org/en/latest/shared-bindings/espcamera/index.html
https://docs.circuitpython.org/projects/ov5640/en/latest/
https://docs.circuitpython.org/projects/ov5640/en/latest/
https://docs.circuitpython.org/en/latest/shared-bindings/imagecapture/index.html
https://docs.circuitpython.org/en/latest/shared-bindings/imagecapture/index.html

Usually, 1MB (1048576 bytes) is a reasonable amount of memory to reserve. This is

plenty of space for two 320×240 bitmap images or a 5-megapixel JPEG image, along

with other memory that the esp-idf allocates internally.

Boards with built-in cameras include a default reserved PSRAM setting. Boards with

only a dedicated camera header do not.

To set the reserved memory amount, edit the settings.toml file within the CIRCUITPY

drive. Add a line that says CIRCUITPY_RESERVED_PSRAM=1048576

The setting will become effective when the board is reset with the reset button. You

can check it by opening the repl and running the following lines:

Adafruit CircuitPython 8.0.0-rc.1 on 2023-01-30; Kaluga 1 with ESP32S2

>>> import espidf

>>> espidf.get_reserved_psram()

1048576

Pin Choices

By selecting appropriate pins, you can use the espcamera CircuitPython module on

other boards with supported ESP32, ESP32-S2 and ESP32-S3 microcontrollers:

xclk, pclk, vsync, href: Free choice of any pin

reset, shutdown: Free choice of any pin. Can omit one or both, but the

initialization sequence is less reliable.

data_pins: Free choice of any 8 pins

By convention, if a board has an integrated camera or a dedicated camera connector,

the following will exist in the board module:

CAMERA_SIOC - the SCL pin of the camera

CAMERA_SIOD - the SDA pin of the camera

CAMERA_PCLK - the pixel clock of the camera

CAMERA_VSYNC - the vertical sync of the camera

CAMERA_HREF - the horizontal sync of the camera

CAMERA_XCLK - the input clock pin of the camera

CAMERA_DATA - the 8 data pins of the camera

Continue to the next page to see how to use the camera module with the Espressif

Kaluga, which has a compatible 18-pin camera connector built in.

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 16 of 59

Install TinyUF2 on Espressif Kaluga

Now, use the breakout USB connection in lieu of either of the built-in USB Micro B

ports to install and use CircuitPython.

Start by connecting the USB Breakout

Cable to the Kaluga board.

Black: Use a Male/Female Extension

Jumper Wire to connect to GND

White: Connect to IO19

Green: Connect to IO20

Red: Use a Male/Female Extension Jumper

Wire to connect to 5V

If you're familiar with our other products and chipsets you may be famliar with our

drag-n-drop bootloader, a.k.a UF2. We have a UF2 bootloader for the ESP32-S2, that

will let you drag firmware on/off a USB disk drive.

However, thanks to the ROM bootloader, you don't have to worry about it if the UF2

bootloader is damaged. The ROM bootloader can never be disabled or erased, so its

always there if you need it! You can simply re-load the UF2 bootloader (USB-disk-

style) with the ROM bootloader (non-USB-drive)

You can use the TinyUF2 bootloader to load code directly, say CircuitPython or the

binary output of an Arduino compilation or you can use it to load a second bootloader

on, like UF2 which has a drag-n-drop interface.

There are two versions of the Kaluga board, v1.2 and v1.3. Check which version

you have, and install the correct build of CircuitPython. The board revisions

change the pinout of the camera connector slightly.

Do not connect the Red wire to 3V3, it will irreversibly damage the Kaluga.

Unlike the M0 (SAMD21) and M4 (SAMD51) boards, there is no bootloader

protection for the UF2 bootloader. That means it is possible to erase or damage

the bootloader, especially if you upload Arduino sketches to ESP32S2 boards

that doesn't "know" there's a bootloader it should not overwrite!

©Adafruit Industries Page 17 of 59

https://learn.adafruit.com//assets/103223
https://learn.adafruit.com//assets/103223

Method 1: WebSerial ESPTool / esptool

This section outlines using WebSerial ESPTool or esptool to flash the UF2

bootloader onto your ESP32-S2 board.

Step 1. Download the tinyuf2 combined.bin file here

Note that this file is 3MB but that's because the bootloader is near the end of the

available flash. It's not actually 3MB large, most of the file is empty but its easier to

program if we give you one combined 'swiss cheese' file. Save this file to your

desktop or wherever you plan to run esptool from

combined.bin

Step 2. Place your board in bootloader mode

Entering the bootloader is easy. Complete the following steps.

Make sure your ESP32-S2 is plugged into USB port to your computer using a

data/sync cable. Charge-only cables will not work!

Turn on the On/Off switch - If your board has a power switch, check that you see

the OK light on so you know the board is powered, a prerequisite!

Press and hold the DFU / Boot0 button down. Don't let go of it yet!

Press and release the Reset button. You should have the DFU/Boot0 button

pressed while you do this.

Now you can release the DFU / Boot0 button

Installing the UF2 bootloader will erase your board's firmware which is also used

for storing CircuitPython/Arduino/Files! Be sure to back up your data first.

1.

2.

3.

4.

5.

©Adafruit Industries Page 18 of 59

https://cdn-learn.adafruit.com/assets/assets/000/103/224/original/combined.bin?1624988368

Because there are several incompatible versions of the Kaluga TFT display, the

bootloader's screen may appear incorrectly or not at all. This does not affect its

operation.

Check for a new serial / COM port

On Windows check the Device manager -

you will see a COM port, for example here

its COM88. You may also see another

"Other device" called ESP32-S2

It's best to do this with no other dev

boards plugged in so you don't get

confused about which COM port is the

ESP32-S2

©Adafruit Industries Page 19 of 59

https://learn.adafruit.com//assets/101577
https://learn.adafruit.com//assets/101577

On Mac/Linux you will need to find the tty

name which lives under /dev

On Linux, try ls /dev/ttyS* for example, to

find the matching serial port name. In this

case it shows up as /dev/ttyS87. If you

don't see it listed try ls /dev/ttyA* on some

Linux systems it might show up like /dev/

ttyACM0

On Mac, try ls /dev/cu.usbmodem* for

example, to find the matching serial port

name. In this case, it shows up as /dev/

cu.usbmodem01

It's best to do this with no other dev

boards plugged in so you don't get

confused about which serial port is the

ESP32-S2

Step 3 Option A. Use the Web Serial ESPTool to upload

The WebSerial ESPTool was designed to be a web-capable option for programming

ESP32-S2 boards. It allows you to erase the contents of the microcontroller and

program up to 4 files at different offsets.

You will have to use the Chrome browser for this to work, Safari and Firefox, etc are n

ot supported because we need Web Serial and only Chrome is supporting it to the

level needed.

Enable Web Serial (For older chrome)

As of chrome 89, Web Serial is already enabled, so this step is only necessary on

older browsers.

©Adafruit Industries Page 20 of 59

https://learn.adafruit.com//assets/101578
https://learn.adafruit.com//assets/101578
https://learn.adafruit.com//assets/101579
https://learn.adafruit.com//assets/101579

Visit chrome://flags from within Chrome.

Find and enable the Experimental Web

Platform features

Restart Chrome

Connecting

In the Chrome browser visit https://

adafruit.github.io/

Adafruit_WebSerial_ESPTool/ (). It should

look like the image to the left.

Press the Connect button in the top right

of the web browser. You will get a pop up

asking you to select the COM or Serial

port.

Remember, you should remove all other

USB devices so only the ESP32-S2 board

is attached, that way there's no confusion

over multiple ports!

On some systems, such as MacOS, there

may be additional system ports that

appear in the list.

©Adafruit Industries Page 21 of 59

https://learn.adafruit.com//assets/101562
https://learn.adafruit.com//assets/101562
https://learn.adafruit.com//assets/110625
https://learn.adafruit.com//assets/110625
https://adafruit.github.io/Adafruit_WebSerial_ESPTool/
https://adafruit.github.io/Adafruit_WebSerial_ESPTool/
https://adafruit.github.io/Adafruit_WebSerial_ESPTool/
https://learn.adafruit.com//assets/110626
https://learn.adafruit.com//assets/110626

The Javascript code will now try to

connect to the ROM bootloader. It may

timeout for a bit until it succeeds. On

success, you will see that it

is Connected and will print out a

unique MAC address identifying the board.

Once you have successfully connected,

the command toolbar will appear.

Erasing the Contents

If you would like to erase the entire flash area so that you can start with a clean slate,

you can use the erase feature. We recommend doing this if you are having issues.

To erase the contents, click the Erase

button. You will be prompted whether you

want to continue. Click OK to continue or if

you changed your mind, just click cancel.

©Adafruit Industries Page 22 of 59

https://learn.adafruit.com//assets/110627
https://learn.adafruit.com//assets/110627
https://learn.adafruit.com//assets/110628
https://learn.adafruit.com//assets/110628
https://learn.adafruit.com//assets/110629
https://learn.adafruit.com//assets/110629

Programming the Microcontroller

Programming the microcontroller can be done with up to 4 files at different locations,

but with the tinyuf2combo BIN file, which you should have downloaded under Step 1

on this page, you only need to use 1 file.

You can click on Choose a file... from any

of the available buttons. It will only attempt

to program buttons with a file and a

unique location. Then select the Adafruit

CircuitPython BIN files (not the UF2 file!)

Verify that the Offset box next to the file

location you used is 0x0.

Once you choose a file, the button text will

change to match your filename. You can

then select the Program button to start

flashing.

A progress bar will appear and after a

minute or two, you will have written the

firmware.

©Adafruit Industries Page 23 of 59

https://learn.adafruit.com//assets/101574
https://learn.adafruit.com//assets/101574
https://learn.adafruit.com//assets/110630
https://learn.adafruit.com//assets/110630
https://learn.adafruit.com//assets/110631
https://learn.adafruit.com//assets/110631

Step 3. Option B. Use esptool.py to upload (for advanced

users)

Once you have entered ROM bootloader mode, you can then use Espressif's esptool

program () to communicate with the chip! esptool is the 'official' programming tool

and is the most common/complete way to program an ESP chip.

Install ESPTool.py

You will need to use the command line / Terminal to install and run esptool .

You will also need to have pip and Python installed (any version!)

Install the latest version using pip (you may be able to run pip without the 3 depen

ding on your setup):

pip3 install --upgrade esptool

Then, you can run:

esptool.py

Test the Installation

Run esptool.py in a new terminal/command line and verify you get something like

the below:

Run the following command, replacing the identifier after --port with the COMxx , /

dev/cu.usbmodemxx or /dev/ttySxx you found above.

After using the tool, press the reset button to get out of bootloader mode and

launch the new firmware!

Make sure you are running esptool v3.0 or higher, which adds ESP32-S2 support

©Adafruit Industries Page 24 of 59

https://github.com/espressif/esptool
https://github.com/espressif/esptool

esptool.py --port COM88 chip_id

You should get a notice that it connected over that port and found an ESP32-S2

Installing the Bootloader

Run this command and replace the serial port name with your matching port and the

file you just downloaded

esptool.py --port COM88 write_flash 0x0 tinyuf2_combo.bin

Don't forget to change the --port name to match.

There might be a bit of a 'wait' when programming, where it doesn't seem like it's

working. Give it a minute, it has to erase the old flash code which can cause it to

seem like it's not running.

You'll finally get an output like this:

Step 4. Reset the board

Click the RESET button to launch the bootloader. You'll see a new disk drive on your

computer with the name KALUGA1BOOT.

©Adafruit Industries Page 25 of 59

You're now ready to copy the CircuitPython UF2 on to the drive which will set up

CircuitPython!

Method 2: Flash an Arduino Sketch

This section outlines flashing an Arduino sketch onto your ESP32-S2 board, which

automatically installs the UF2 bootloader as well.

Arduino IDE Setup

If you don't already have the Arduino IDE installed, the first thing you will need to do

is to download the latest release of the Arduino IDE. ESP32-S2 requires version 1.8 or

higher. Click the link to download the latest.

Arduino IDE Download

After you have downloaded and installed the latest version of Arduino IDE, you will

need to start the IDE and navigate to the Preferences menu. You can access it from

the File > Preferences menu in Windows or Linux, or the Arduino > Preferences menu

on OS X.

The Preferences window will open.

In the Additional Boards Manager URLs field, you'll want to add a new URL. The list of

URLs is comma separated, and you will only have to add each URL once. The URLs

point to index files that the Board Manager uses to build the list of available &

installed boards.

Copy the following URL.

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/

package_esp32_dev_index.json

Add the URL to the the Additional Boards Manager URLs field (highlighted in red

below).

©Adafruit Industries Page 26 of 59

https://www.arduino.cc/en/software

Click OK to save and close Preferences.

In the Tools > Boards menu you should see the ESP32 Arduino menu. In the expanded

menu, it should contain the ESP32 boards along with all the latest ESP32-S2 boards.

Now that your IDE is setup, you can continue on to loading the sketch.

Load the Blink Sketch

In the Tools > Boards menu you should see the ESP32 Arduino menu. In the expanded

menu, look for the menu option for the ESP32S2 Dev Module, and click on it to

choose it.

Open the Blink sketch by clicking through File > Examples > 01.Basics > Blink.

Once open, click Upload from the sketch window.

©Adafruit Industries Page 27 of 59

Once successfully uploaded, the little red LED will begin blinking once every second.

At that point, you can now enter the bootloader.

Install CircuitPython on Espressif Kaluga

with TinyUF2

CircuitPython () is a derivative of MicroPython () designed to simplify experimentation

and education on low-cost microcontrollers. It makes it easier than ever to get

prototyping by requiring no upfront desktop software downloads. Simply copy and

edit files on the CIRCUITPY drive to iterate.

 CircuitPython Quickstart

Follow this step-by-step to quickly get CircuitPython running on your a Kaluga 1.3

board (a Kaluga 1.2 will NOT WORK).

Download the latest version of

CircuitPython for this board via

circuitpython.org

©Adafruit Industries Page 28 of 59

https://github.com/adafruit/circuitpython
https://micropython.org
https://circuitpython.org/board/espressif_kaluga_1.3/

Kaluga USB Connection

Neither of the two Micro USB connectors on the Kaluga provide access to the native

USB connection used by CircuitPython. Instead, a USB breakout cable must be

connected as follows:

USB +5V (red) to Kaluga +5V

USB GND (black) to Kaluga GND

USB D+ (green) to Kaluga GPIO20

USB D- (white) to Kaluga GPIO19

Advanced USB connection

Non-populated resistor positions R151 & R152 connect the "J10" micro-USB connector

to native USB. By soldering in a 0-ohm link at these positions, you can use the J10

connector for native USB. Some photos in this guide show a board which has been

modified in this way.

Click the reset button once, and then the boot button once when you see the RGB

status LED turn purple (approximately half a second later). The second tap needs to

happen while the LED is still purple.

Once successful, you will see the RGB status LED(s) turn green (highlighted in green

above). If you see red, try another port, or if you're using an adapter or hub, try

without the hub, or different adapter or hub.

•

•

•

•

©Adafruit Industries Page 29 of 59

If double-clicking doesn't work the first time, try again. Sometimes it can take a few

tries to get the rhythm right!

A lot of people end up using charge-only USB cables and it is very frustrating! Make

sure you have a USB cable you know is good for data sync.

Remember that unless you've modified your Kaluga, you have to use a USB breakout

cable, not the built-in USB Micro-B ports!

You will see a new disk drive appear called

KALUGA1BOOT.

Drag the adafruit-circuitpython-

espressif_kaluga_1.3.uf2 file to

KALUGA1BOOT

Because there are multiple variants of the LCD bundled with the Espressif Kaluga

development kit, TinyUF2 may show a distorted image on the LCD. This is

harmless.

©Adafruit Industries Page 30 of 59

https://learn.adafruit.com//assets/118510
https://learn.adafruit.com//assets/118510
https://learn.adafruit.com//assets/118511
https://learn.adafruit.com//assets/118511

The BOOT drive will disappear and a new

disk drive called CIRCUITPY will appear.

That's it!

Espressif Kaluga Pinout

Setting 'reserved PSRAM'

The 'reserved PSRAM' setting was discussed earlier, but here's a reminder now that

you've got CircuitPython installed:

Edit the settings.toml file within the CIRCUITPY drive, creating it as an empty file if

necessary. Add a line that says CIRCUITPY_RESERVED_PSRAM=1048576

The setting will become effective when the board is reset with the reset button. You

can check it by opening the REPL and running the following lines:

Adafruit CircuitPython 8.0.0-rc.1 on 2023-01-30; Kaluga 1 with ESP32S2

>>> import espidf

>>> espidf.get_reserved_psram()

1048576

Camera Module Connections

Take the assembled Kaluga board stack (all three boards) and attach the camera at

the dedicated header, making sure the pins are inserted properly.

These demos only work with the Kaluga version 1.3. They are not compatible with

version 1.2. Check your board's silkscreen to find the version.

On the Kaluga, the camera connector shares pins with the JTAG debugging

facility. It is not possible to use a JTAG debugger together with the camera on

this board.

©Adafruit Industries Page 31 of 59

https://learn.adafruit.com//assets/118512
https://learn.adafruit.com//assets/118512

The camera pins are as follows (though in CircuitPython they also have meaningful

names that should be used when available):

GPIO8 is CAMERA_SIOC - the SCL pin of the camera

GPIO9 is CAMERA_SIOD - the SDA pin of the camera

GPIO33 is CAMERA_PCLK - the pixel clock of the camera

GPIO2 is CAMERA_VSYNC - the vertical sync of the camera

GPIO3 is CAMERA_HREF - the horizontal sync of the camera

GPIO1 is CAMERA_XCLK - the input clock pin of the camera

GPIO36, 37, 41, 42, 39, 40, 21, 38 are CAMERA_DATA - the 8 data pins of the

camera

LCD variants

There are at least 3 variants of the LCD board that ship with the Kaluga:

st7789

ili9341

ili9341 with rotation=90

There are no markings to distinguish the three, so for demos that use the LCD you will

need to try each variant until you find the one that works.

LCD Mirror Demo

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 32 of 59

Install & Use the Demo

First, make sure you can see the Kaluga CIRCUITPY drive and connect to the REPL.

Open the REPL and double check that import espcamera works without showing

an error. Then, copy one of the Adafruit software bundles to your device (the first

appears below, more on subsequent pages). It will automatically reload and start

displaying the image from the camera on the built-in LCD.

By clicking the BOOT button you can swap the camera between live mode & test

pattern mode.

If the live mode image is black, remove the lens cap from the camera.

Click the Download Project Bundle button below to download the necessary libraries

and the code.py file in a zip file. Extract the contents of the zip file, and copy the

entire lib folder and the code.py file to your CIRCUITPY drive.

SPDX-FileCopyrightText: Copyright (c) 2021 Jeff Epler for Adafruit Industries

#

SPDX-License-Identifier: Unlicense

"""

This demo is designed for the Kaluga development kit version 1.3 with the

ILI9341 display. It requires CircuitPython 8.

To fix the MemoryError when creating a Camera object, Place the line

```toml

CIRCUITPY_RESERVED_PSRAM=1048576

```

in the file **CIRCUITPY/settings.toml** and restart.

"""

import struct

import board

import busio

import keypad

import displayio

import espcamera

import espidf

print("Initializing display")

displayio.release_displays()

spi = busio.SPI(MOSI=board.LCD_MOSI, clock=board.LCD_CLK)

display_bus = displayio.FourWire(

 spi,

 command=board.LCD_D_C,

 chip_select=board.LCD_CS,

 reset=board.LCD_RST,

 baudrate=80_000_000,

)

_INIT_SEQUENCE = (

 b"\x01\x80\x80" # Software reset then delay 0x80 (128ms)

 b"\xEF\x03\x03\x80\x02"

 b"\xCF\x03\x00\xC1\x30"

 b"\xED\x04\x64\x03\x12\x81"

 b"\xE8\x03\x85\x00\x78"

©Adafruit Industries Page 33 of 59

 b"\xCB\x05\x39\x2C\x00\x34\x02"

 b"\xF7\x01\x20"

 b"\xEA\x02\x00\x00"

 b"\xc0\x01\x23" # Power control VRH[5:0]

 b"\xc1\x01\x10" # Power control SAP[2:0];BT[3:0]

 b"\xc5\x02\x3e\x28" # VCM control

 b"\xc7\x01\x86" # VCM control2

 b"\x36\x01\x40" # Memory Access Control

 b"\x37\x01\x00" # Vertical scroll zero

 b"\x3a\x01\x55" # COLMOD: Pixel Format Set

 b"\xb1\x02\x00\x18" # Frame Rate Control (In Normal Mode/Full Colors)

 b"\xb6\x03\x08\x82\x27" # Display Function Control

 b"\xF2\x01\x00" # 3Gamma Function Disable

 b"\x26\x01\x01" # Gamma curve selected

 b"\xe0\x0f\x0F\x31\x2B\x0C\x0E\x08\x4E\xF1\x37\x07\x10\x03\x0E\x09\x00" # Set

Gamma

 b"\xe1\x0f\x00\x0E\x14\x03\x11\x07\x31\xC1\x48\x08\x0F\x0C\x31\x36\x0F" # Set

Gamma

 b"\x11\x80\x78" # Exit Sleep then delay 0x78 (120ms)

 b"\x29\x80\x78" # Display on then delay 0x78 (120ms)

)

display = displayio.Display(display_bus, _INIT_SEQUENCE, width=320, height=240)

if espidf.get_reserved_psram() < 1047586:

 print("""Place the following line in CIRCUITPY/settings.toml, then hard-reset

the board:

CIRCUITPY_RESERVED_PSRAM=1048576

""")

 raise SystemExit

print("Initializing camera")

cam = espcamera.Camera(

 data_pins=board.CAMERA_DATA,

 external_clock_pin=board.CAMERA_XCLK,

 pixel_clock_pin=board.CAMERA_PCLK,

 vsync_pin=board.CAMERA_VSYNC,

 href_pin=board.CAMERA_HREF,

 pixel_format=espcamera.PixelFormat.RGB565,

 frame_size=espcamera.FrameSize.QVGA,

 i2c=board.I2C(),

 external_clock_frequency=20_000_000,

 framebuffer_count=2)

print(cam.width, cam.height)

display.auto_refresh = False

k = keypad.Keys([board.IO0], value_when_pressed=False)

ow = (display.width - cam.width) // 2

oh = (display.height - cam.height) // 2

display_bus.send(42, struct.pack(">hh", ow, cam.width + ow - 1))

display_bus.send(43, struct.pack(">hh", oh, cam.height + ow - 1))

while True:

 if (e := k.events.get()) is not None and e.pressed:

 cam.colorbar = not cam.colorbar

 frame = cam.take(1)

 display_bus.send(44, frame)

©Adafruit Industries Page 34 of 59

Code Walkthrough

First, the code performs necessary imports and sets up the display. It will stop if it

detects the necessary reserved PSRAM setting is not active:

SPDX-FileCopyrightText: Copyright (c) 2021 Jeff Epler for Adafruit Industries

#

SPDX-License-Identifier: Unlicense

"""

This demo is designed for the Kaluga development kit version 1.3 with the

ILI9341 display. It requires CircuitPython 8.

To fix the MemoryError when creating a Camera object, Place the line

```toml

CIRCUITPY_RESERVED_PSRAM=1048576

```

in the file **CIRCUITPY/settings.toml** and restart.

"""

import struct

import board

import busio

import keypad

import displayio

import espcamera

import espidf

print("Initializing display")

displayio.release_displays()

spi = busio.SPI(MOSI=board.LCD_MOSI, clock=board.LCD_CLK)

display_bus = displayio.FourWire(

 spi,

 command=board.LCD_D_C,

 chip_select=board.LCD_CS,

 reset=board.LCD_RST,

 baudrate=80_000_000,

)

_INIT_SEQUENCE = (

 b"\x01\x80\x80" # Software reset then delay 0x80 (128ms)

 b"\xEF\x03\x03\x80\x02"

 b"\xCF\x03\x00\xC1\x30"

 b"\xED\x04\x64\x03\x12\x81"

 b"\xE8\x03\x85\x00\x78"

 b"\xCB\x05\x39\x2C\x00\x34\x02"

 b"\xF7\x01\x20"

 b"\xEA\x02\x00\x00"

 b"\xc0\x01\x23" # Power control VRH[5:0]

 b"\xc1\x01\x10" # Power control SAP[2:0];BT[3:0]

 b"\xc5\x02\x3e\x28" # VCM control

 b"\xc7\x01\x86" # VCM control2

 b"\x36\x01\x40" # Memory Access Control

 b"\x37\x01\x00" # Vertical scroll zero

©Adafruit Industries Page 35 of 59

 b"\x3a\x01\x55" # COLMOD: Pixel Format Set

 b"\xb1\x02\x00\x18" # Frame Rate Control (In Normal Mode/Full Colors)

 b"\xb6\x03\x08\x82\x27" # Display Function Control

 b"\xF2\x01\x00" # 3Gamma Function Disable

 b"\x26\x01\x01" # Gamma curve selected

 b"\xe0\x0f\x0F\x31\x2B\x0C\x0E\x08\x4E\xF1\x37\x07\x10\x03\x0E\x09\x00" # Set

Gamma

 b"\xe1\x0f\x00\x0E\x14\x03\x11\x07\x31\xC1\x48\x08\x0F\x0C\x31\x36\x0F" # Set

Gamma

 b"\x11\x80\x78" # Exit Sleep then delay 0x78 (120ms)

 b"\x29\x80\x78" # Display on then delay 0x78 (120ms)

)

display = displayio.Display(display_bus, _INIT_SEQUENCE, width=320, height=240)

if espidf.get_reserved_psram() < 1047586:

 print("""Place the following line in CIRCUITPY/settings.toml, then hard-reset

the board:

CIRCUITPY_RESERVED_PSRAM=1048576

""")

 raise SystemExit

Next, the camera object is created. Since this board has a dedicated camera header,

there are shorthand names in the board module to name the pins; see the Espressif

Overview page for how to adapt the example to other boards.

print("Initializing camera")

cam = espcamera.Camera(

 data_pins=board.CAMERA_DATA,

 external_clock_pin=board.CAMERA_XCLK,

 pixel_clock_pin=board.CAMERA_PCLK,

 vsync_pin=board.CAMERA_VSYNC,

 href_pin=board.CAMERA_HREF,

 pixel_format=espcamera.PixelFormat.RGB565,

 frame_size=espcamera.FrameSize.QVGA,

 i2c=board.I2C(),

 external_clock_frequency=20_000_000,

 framebuffer_count=2)

The BOOT button (also known as IO0) can be used when the demo is running to turn

the test pattern on and off:

k = keypad.Keys([board.IO0], value_when_pressed=False)

To improve the refresh rate of the display, the demo directly sends data to the LCD

rather than going through displayio. The program's forever-loop repeatedly fetches a

frame and then sends its data to the LCD over the fourwire bus:

ow = (display.width - cam.width) // 2

oh = (display.height - cam.height) // 2

display_bus.send(42, struct.pack(">hh", ow, cam.width + ow - 1))

display_bus.send(43, struct.pack(">hh", oh, cam.height + ow - 1))

while True:

 if (e := k.events.get()) is not None and e.pressed:

 cam.colorbar = not cam.colorbar

©Adafruit Industries Page 36 of 59

 frame = cam.take(1)

 display_bus.send(44, frame)

ESP32-S2 Kaluga Dev Kit featuring

ESP32-S2 WROVER

The ESP32-S2-Kaluga-1 kit is a full

featured development kit by Espressif for

the ESP32-S2 that comes with everything

but the kitchen sink! From TFTs to touch

panels,...

https://www.adafruit.com/product/4729

USB Type A Plug Breakout Cable with

Premium Female Jumpers

If you'd like to connect a USB-capable

chip to your USB host, this cable will

make the task very simple. There is no

converter chip in this cable! Its basically

a...

https://www.adafruit.com/product/4448

USB Extension Cable - 3 meters / 10 ft

long

This handy USB extension cable will make

it easy for you to extend your USB cable

when it won't reach. The connectors are

gold plated for years of reliability. We use

these handy...

https://www.adafruit.com/product/993

©Adafruit Industries Page 37 of 59

https://www.adafruit.com/product/4729
https://www.adafruit.com/product/4729
https://www.adafruit.com/product/4729
https://www.adafruit.com/product/4448
https://www.adafruit.com/product/4448
https://www.adafruit.com/product/4448
https://www.adafruit.com/product/993
https://www.adafruit.com/product/993
https://www.adafruit.com/product/993

ASCII Mirror Demo

Install & Use the Demo

First, make sure you can see the Kaluga CIRCUITPY drive and connect to the REPL.

Open the REPL and double check that import espcamera works without showing

an error. Then, copy the correct bundle to your device. It will automatically reload and

start displaying the image from the camera on the serial REPL as lo-fi ASCII art.

By clicking the BOOT button you can swap the camera between live mode & test

pattern mode.

You will need to use a terminal program that understands ANSI escape codes such as

screen or tio.

If the live mode image is black, remove the lens cap from the camera.

Click the Download Project Bundle button below to download the necessary libraries

and the code.py file in a zip file. Extract the contents of the zip file, and copy the

entire lib folder and the code.py file to your CIRCUITPY drive.

SPDX-FileCopyrightText: Copyright (c) 2021 Jeff Epler for Adafruit Industries

#

SPDX-License-Identifier: Unlicense

"""

This demo is designed for the Kaluga development kit version 1.3.

To fix the MemoryError when creating a Camera object, Place the line

```toml

CIRCUITPY_RESERVED_PSRAM=1048576

```

in the file **CIRCUITPY/settings.toml** and restart.

"""

©Adafruit Industries Page 38 of 59

import sys

import board

import keypad

import displayio

import espcamera

import espidf

The demo runs very slowly if the LCD display is enabled!

It's intended to be viewed on the REPL on a host computer

displayio.release_displays()

if espidf.get_reserved_psram() < 1047586:

 print("""Place the following line in CIRCUITPY/settings.toml, then hard-reset

the board:

CIRCUITPY_RESERVED_PSRAM=1048576

""")

 raise SystemExit

print("Initializing camera")

cam = espcamera.Camera(

 data_pins=board.CAMERA_DATA,

 external_clock_pin=board.CAMERA_XCLK,

 pixel_clock_pin=board.CAMERA_PCLK,

 vsync_pin=board.CAMERA_VSYNC,

 href_pin=board.CAMERA_HREF,

 pixel_format=espcamera.PixelFormat.GRAYSCALE,

 frame_size=espcamera.FrameSize.QQVGA,

 i2c=board.I2C(),

 external_clock_frequency=20_000_000,

 framebuffer_count=2)

print("initialized")

k = keypad.Keys([board.IO0], value_when_pressed=False)

chars = b" .:-=+*#%@"

remap = [chars[i * (len(chars) - 1) // 255] for i in range(256)]

width = cam.width

row = bytearray(width//2)

sys.stdout.write("\033[2J")

while True:

 if (e := k.events.get()) is not None and e.pressed:

 cam.colorbar = not cam.colorbar

 frame = cam.take(1)

 for j in range(0, cam.height, 5):

 sys.stdout.write(f"\033[{j//5}H")

 for i in range(cam.width // 2):

 row[i] = remap[frame[width * j + 2 * i]]

 sys.stdout.write(row)

 sys.stdout.write("\033[K")

 sys.stdout.write("\033[J")

©Adafruit Industries Page 39 of 59

After code that is familiar from the LCD demo is the start of the code specific to the

ASCII art part of the program:

"chars" holds the ASCII characters to use, arranged from darkest to lightest (the

demo is intended to be run on a terminal with a dark background color).

"remap" is a 256-element look-up table from the raw brightness value to a

character

"width" is just a shorthand way to refer to the camera's width property

"row" contains one byte for every 2 characters across the image, which gives a

width of 80 characters, a standard terminal width.

Finally, the whole screen is cleared.

chars = b" .:-=+*#%@"

remap = [chars[i * (len(chars) - 1) // 255] for i in range(256)]

width = cam.width

row = bytearray(width//2)

sys.stdout.write("\033[2J")

The forever loop grabs a fresh frame and then converts it to ASCII.

Every 5th row of the input image is used, giving 24 lines of height; every 2nd column

is taken, given 80 characters of width.

First, an escape code is printed to move the cursor to the start of the correct line.

Then, the ASCII characters for the row are calculated by using the remap array

Finally, the row is written, followed by an escape code indicating "clear to end of line".

When the whole thing is written, the remainder of the screen (if any) is cleared.

while True:

 if (e := k.events.get()) is not None and e.pressed:

 cam.colorbar = not cam.colorbar

 frame = cam.take(1)

 for j in range(0, cam.height, 5):

 sys.stdout.write(f"\033[{j//5}H")

 for i in range(cam.width // 2):

 row[i] = remap[frame[width * j + 2 * i]]

 sys.stdout.write(row)

 sys.stdout.write("\033[K")

 sys.stdout.write("\033[J")

•

•

•

•

©Adafruit Industries Page 40 of 59

ESP32-S2 Kaluga Dev Kit featuring

ESP32-S2 WROVER

The ESP32-S2-Kaluga-1 kit is a full

featured development kit by Espressif for

the ESP32-S2 that comes with everything

but the kitchen sink! From TFTs to touch

panels,...

https://www.adafruit.com/product/4729

USB Type A Plug Breakout Cable with

Premium Female Jumpers

If you'd like to connect a USB-capable

chip to your USB host, this cable will

make the task very simple. There is no

converter chip in this cable! Its basically

a...

https://www.adafruit.com/product/4448

USB Extension Cable - 3 meters / 10 ft

long

This handy USB extension cable will make

it easy for you to extend your USB cable

when it won't reach. The connectors are

gold plated for years of reliability. We use

these handy...

https://www.adafruit.com/product/993

©Adafruit Industries Page 41 of 59

https://www.adafruit.com/product/4729
https://www.adafruit.com/product/4729
https://www.adafruit.com/product/4729
https://www.adafruit.com/product/4448
https://www.adafruit.com/product/4448
https://www.adafruit.com/product/4448
https://www.adafruit.com/product/993
https://www.adafruit.com/product/993
https://www.adafruit.com/product/993

JPEG Capture Demo

Install & Use the Demo

For this demo, you'll need to attach an SD card breakout to your Kaluga using the

following connections:

5V to 5V, or 3V to 3V3 (depends on breakout)

GND to GND

CLK to GPIO18

MOSI to GPIO14

MISO to GPIO10

CS to GPIO12

Now, insert a CircuitPython-supported, formatted SD card. Supported formats include

FAT16 and FAT32, but not exFAT.

Next, copy the correct bundle to your device. It will automatically reload and start

displaying the image from the camera on the LCD.

Click the boot button to capture an image in JPEG format to the SD card.

Click the Download Project Bundle button below to download the necessary libraries

and the code.py file in a zip file. Extract the contents of the zip file, and copy the

entire lib folder and the code.py file to your CIRCUITPY drive.

•

•

•

•

•

•

©Adafruit Industries Page 42 of 59

SPDX-FileCopyrightText: Copyright (c) 2023 Jeff Epler for Adafruit Industries

#

SPDX-License-Identifier: Unlicense

"""

This demo is designed for the Kaluga development kit version 1.3 with the

ILI9341 display. It requires CircuitPython 8.

This demo needs reserved psram properly configured in settings.toml:

CIRCUITPY_RESERVED_PSRAM=1048576

This example also requires an SD card breakout wired as follows:

 * IO18: SD Clock Input

 * IO17: SD Serial Output (MISO)

 * IO14: SD Serial Input (MOSI)

 * IO12: SD Chip Select

Insert a CircuitPython-compatible SD card before powering on the Kaluga.

Press the "BOOT" button to take a photo in BMP format.

"""

import os

import struct

import board

import busio

import displayio

import espcamera

import espidf

import keypad

import sdcardio

import storage

print("Initializing display")

displayio.release_displays()

spi = busio.SPI(MOSI=board.LCD_MOSI, clock=board.LCD_CLK)

display_bus = displayio.FourWire(

 spi,

 command=board.LCD_D_C,

 chip_select=board.LCD_CS,

 reset=board.LCD_RST,

 baudrate=80_000_000,

)

_INIT_SEQUENCE = (

 b"\x01\x80\x80" # Software reset then delay 0x80 (128ms)

 b"\xEF\x03\x03\x80\x02"

 b"\xCF\x03\x00\xC1\x30"

 b"\xED\x04\x64\x03\x12\x81"

 b"\xE8\x03\x85\x00\x78"

 b"\xCB\x05\x39\x2C\x00\x34\x02"

 b"\xF7\x01\x20"

 b"\xEA\x02\x00\x00"

 b"\xc0\x01\x23" # Power control VRH[5:0]

 b"\xc1\x01\x10" # Power control SAP[2:0];BT[3:0]

 b"\xc5\x02\x3e\x28" # VCM control

 b"\xc7\x01\x86" # VCM control2

 b"\x36\x01\x40" # Memory Access Control

 b"\x37\x01\x00" # Vertical scroll zero

 b"\x3a\x01\x55" # COLMOD: Pixel Format Set

 b"\xb1\x02\x00\x18" # Frame Rate Control (In Normal Mode/Full Colors)

 b"\xb6\x03\x08\x82\x27" # Display Function Control

 b"\xF2\x01\x00" # 3Gamma Function Disable

 b"\x26\x01\x01" # Gamma curve selected

 b"\xe0\x0f\x0F\x31\x2B\x0C\x0E\x08\x4E\xF1\x37\x07\x10\x03\x0E\x09\x00" # Set

Gamma

 b"\xe1\x0f\x00\x0E\x14\x03\x11\x07\x31\xC1\x48\x08\x0F\x0C\x31\x36\x0F" # Set

Gamma

 b"\x11\x80\x78" # Exit Sleep then delay 0x78 (120ms)

©Adafruit Industries Page 43 of 59

 b"\x29\x80\x78" # Display on then delay 0x78 (120ms)

)

display = displayio.Display(display_bus, _INIT_SEQUENCE, width=320, height=240)

if espidf.get_reserved_psram() < 1047586:

 print("""Place the following line in CIRCUITPY/settings.toml, then hard-reset

the board:

CIRCUITPY_RESERVED_PSRAM=1048576

""")

 raise SystemExit

print("Initializing SD card")

sd_spi = busio.SPI(clock=board.IO18, MOSI=board.IO14, MISO=board.IO17)

sd_cs = board.IO12

sdcard = sdcardio.SDCard(sd_spi, sd_cs)

vfs = storage.VfsFat(sdcard)

storage.mount(vfs, "/sd")

print("Initializing camera")

cam = espcamera.Camera(

 data_pins=board.CAMERA_DATA,

 external_clock_pin=board.CAMERA_XCLK,

 pixel_clock_pin=board.CAMERA_PCLK,

 vsync_pin=board.CAMERA_VSYNC,

 href_pin=board.CAMERA_HREF,

 pixel_format=espcamera.PixelFormat.RGB565,

 frame_size=espcamera.FrameSize.QVGA,

 i2c=board.I2C(),

 external_clock_frequency=20_000_000,

 framebuffer_count=1)

print("initialized")

display.auto_refresh = False

def exists(filename):

 try:

 os.stat(filename)

 return True

 except OSError:

 return False

_image_counter = 0

def open_next_image(extension="jpg"):

 global _image_counter # pylint: disable=global-statement

 while True:

 filename = f"/sd/img{_image_counter:04d}.{extension}"

 _image_counter += 1

 if exists(filename):

 continue

 print("#", filename)

 return open(filename, "wb")

ow = (display.width - cam.width) // 2

oh = (display.height - cam.height) // 2

k = keypad.Keys([board.IO0], value_when_pressed=False)

while True:

 frame = cam.take(1)

 display_bus.send(42, struct.pack(">hh", ow, cam.width + ow - 1))

 display_bus.send(43, struct.pack(">hh", oh, cam.height + ow - 1))

 display_bus.send(44, frame)

 if (e := k.events.get()) is not None and e.pressed:

 cam.reconfigure(

 pixel_format=espcamera.PixelFormat.JPEG,

 frame_size=espcamera.FrameSize.SVGA,

©Adafruit Industries Page 44 of 59

)

 frame = cam.take(1)

 if isinstance(frame, memoryview):

 jpeg = frame

 print(f"Captured {len(jpeg)} bytes of jpeg data")

 with open_next_image() as f:

 f.write(jpeg)

 cam.reconfigure(

 pixel_format=espcamera.PixelFormat.RGB565,

 frame_size=espcamera.FrameSize.QVGA,

)

Code walkthrough

These functions help with opening the next numbered image in a sequence, so that

files are named img0000 img0001 etc.

def exists(filename):

 try:

 os.stat(filename)

 return True

 except OSError:

 return False

_image_counter = 0

def open_next_image(extension="jpg"):

 global _image_counter # pylint: disable=global-statement

 while True:

 filename = f"/sd/img{_image_counter:04d}.{extension}"

 _image_counter += 1

 if exists(filename):

 continue

 print("#", filename)

 return open(filename, "wb")

Inside the forever loop, when the shutter button is pressed, these lines change the

camera to JPEG mode, capture an image to the SD card, and then set the camera

back to RGB mode:

if (e := k.events.get()) is not None and e.pressed:

 cam.reconfigure(

 pixel_format=espcamera.PixelFormat.JPEG,

 frame_size=espcamera.FrameSize.SVGA,

)

 frame = cam.take(1)

©Adafruit Industries Page 45 of 59

 if isinstance(frame, memoryview):

 jpeg = frame

 print(f"Captured {len(jpeg)} bytes of jpeg data")

 with open_next_image() as f:

 f.write(jpeg)

 cam.reconfigure(

 pixel_format=espcamera.PixelFormat.RGB565,

 frame_size=espcamera.FrameSize.QVGA,

)

ESP32-S2 Kaluga Dev Kit featuring

ESP32-S2 WROVER

The ESP32-S2-Kaluga-1 kit is a full

featured development kit by Espressif for

the ESP32-S2 that comes with everything

but the kitchen sink! From TFTs to touch

panels,...

https://www.adafruit.com/product/4729

USB Type A Plug Breakout Cable with

Premium Female Jumpers

If you'd like to connect a USB-capable

chip to your USB host, this cable will

make the task very simple. There is no

converter chip in this cable! Its basically

a...

https://www.adafruit.com/product/4448

USB Extension Cable - 3 meters / 10 ft

long

This handy USB extension cable will make

it easy for you to extend your USB cable

when it won't reach. The connectors are

gold plated for years of reliability. We use

these handy...

https://www.adafruit.com/product/993

©Adafruit Industries Page 46 of 59

https://www.adafruit.com/product/4729
https://www.adafruit.com/product/4729
https://www.adafruit.com/product/4729
https://www.adafruit.com/product/4448
https://www.adafruit.com/product/4448
https://www.adafruit.com/product/4448
https://www.adafruit.com/product/993
https://www.adafruit.com/product/993
https://www.adafruit.com/product/993

espcamera documentation

espcamera documentation ()

Raspberry Pi RP2040 Overview

The CircuitPython imagecapture module is available on most supported RP2040

boards including the Raspberry Pi Pico.

This low-level module works together with a camera-specific high-level module such

as adafruit_ov5640, to set up the camera.

Image storage

A 320×240 image at 16bpp takes about 150kB of RAM to store. The RP2040 has this

much storage, but as memory can become fragmented, it's generally a good idea to

allocate storage for the image just once at the beginning of your program. As shown

in the example, a displayio.Bitmap object can be used for this.

Pin choices

By selecting appropriate pins, you can use the adafruit_ov5640 library on other

boards with the RP2040 microcontroller:

xclk, pclk, vsync, href: Free choice of any pin

reset, shutdown: Free choice of any pin. Can omit one or both, but the

initialization sequence is less reliable.

data_pins: Any 8 sequential pins in GPIO ordering (e.g., GPIO2..GPIO9).

By convention, if a board has an integrated camera or a dedicated camera connector,

the following will exist in the board module:

CAMERA_SIOC - the SCL pin of the camera

CAMERA_SIOD - the SDA pin of the camera

CAMERA_PCLK - the pixel clock of the camera

CAMERA_VSYNC - the vertical sync of the camera

CAMERA_HREF - the horizontal sync of the camera

CAMERA_XCLK - the input clock pin of the camera

CAMERA_DATA - the 8 data pins of the camera

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 47 of 59

https://docs.circuitpython.org/en/latest/shared-bindings/espcamera/index.html

Continue to the next page to see how to use the camera module with the Raspberry

Pi Pico module on a permaproto board. Be prepared to do quite a bit of wiring &

soldering for the required connections.

Raspberry Pi Pico Usage

Camera connections

For the Raspberry Pi Pico setup shown in these examples, wire the following

connections:

OV5640 GND to Pi Pico GND

OV5640 3V to Pi Pico 3V3

OV5640 SDA to Pi Pico GP8

OV5640 SCL to Pi Pico GP9

OV5640 HS to Pi Pico GP21

OV5640 VS to Pi Pico GP7

OV5640 XC to Pi Pico GP20

OV5640 PC to Pi Pico GP11

OV5640 D2..D9 to Pi Pico GP12..GP19

OV5640 RT to Pi Pico GP10

The pull-up resistors shown on GP8 and GP9 are not required for Adafruit's OV5640

camera break-out board but may be required for other camera breakout boards.

LCD connections

For the LCD display, make the following connections:

Display V+ to Pi Pico VBUS

Display GND to Pi Pico GND

Display CK to Pi Pico GP2

Display SI to Pi Pico GP3

Display DC to Pi Pico GP0

Display TC to Pi Pico GP1

•

•

•

•

•

•

•

•

•

•

Many of these connections carry high frequency signals. Keep wire lengths short

and consider using a perma-proto board to improve signal integrity.

•

•

•

•

•

•

©Adafruit Industries Page 48 of 59

Here's a diagram of the many connections required; rather than trying to trace out the

connections from this image, though, it's better to use the bullet list of connections

above.

Depending whether you are using the optional LCD display, continue on to the LCD or

ASCII mirror demo on the following pages.

©Adafruit Industries Page 49 of 59

ASCII Mirror Demo

Install & Use the Demo

Click the Download Project Bundle button below to download the necessary libraries

and the code.py file in a zip file. Extract the contents of the zip file, and copy the entir

e lib folder and the code.py file to your CIRCUITPY drive.

You will need to use a terminal program that understands ANSI escape codes such as

screen or tio . Connect to your device using a compatible terminal program and

you will see the image captured as lo-fi ASCII art.

If the live mode image is black, remove the lens cap from the camera.

SPDX-FileCopyrightText: Copyright (c) 2023 Limor Fried for Adafruit Industries

#

SPDX-License-Identifier: Unlicense

"""

This demo is designed for the Raspberry Pi Pico.

It shows the camera image as ASCII art on the USB REPL.

"""

import sys

import time

import busio

import board

import digitalio

import adafruit_ov5640

print("construct bus")

bus = busio.I2C(board.GP9, board.GP8)

print("construct camera")

reset = digitalio.DigitalInOut(board.GP10)

cam = adafruit_ov5640.OV5640(

 bus,

 data_pins=(

©Adafruit Industries Page 50 of 59

 board.GP12,

 board.GP13,

 board.GP14,

 board.GP15,

 board.GP16,

 board.GP17,

 board.GP18,

 board.GP19,

),

 clock=board.GP11,

 vsync=board.GP7,

 href=board.GP21,

 mclk=board.GP20,

 shutdown=None,

 reset=reset,

 size=adafruit_ov5640.OV5640_SIZE_QQVGA,

)

print("print chip id")

print(cam.chip_id)

cam.colorspace = adafruit_ov5640.OV5640_COLOR_YUV

cam.flip_y = True

cam.flip_x = True

cam.test_pattern = False

buf = bytearray(cam.capture_buffer_size)

chars = b" .':-+=*%$#"

remap = [chars[i * (len(chars) - 1) // 255] for i in range(256)]

width = cam.width

row = bytearray(width)

print("capturing")

cam.capture(buf)

print("capture complete")

sys.stdout.write("\033[2J")

while True:

 cam.capture(buf)

 for j in range(0, cam.height, 2):

 sys.stdout.write(f"\033[{j//2}H")

 for i in range(cam.width):

 row[i] = remap[buf[2 * (width * j + i)]]

 sys.stdout.write(row)

 sys.stdout.write("\033[K")

 sys.stdout.write("\033[J")

 time.sleep(0.1)

©Adafruit Industries Page 51 of 59

After code that is familiar from the LCD demo is the start of the code specific to the

ASCIi art part of the program:

"chars" holds the ASCII characters to use, arranged from darkest to lightest (the

demo is intended to be run on a terminal with a dark background color).

"remap" is a 256-element look-up table from the raw brightness value to a

character

"width" is just a short-hand way to refer to the camera's width property

"row" contains one byte for every 2 characters across the image, which gives a

width of 80 characters, a standard terminal width.

Finally, the whole screen is cleared.

chars = b" .:-=+*#%@"

remap = [chars[i * (len(chars) - 1) // 255] for i in range(256)]

width = cam.width

row = bytearray(width//2)

sys.stdout.write("\033[2J")

The forever loop grabs a fresh frame and then converts it to ASCII.

Every 5th row of the input image is used, giving 24 lines of height; every 2nd column

is taken, given 80 characters of width.

First, an escape code is printed to move the cursor to the start of the correct line.

Then, the ASCII characters for the row are calculated by using the remap array

Finally, the row is written, followed by an escape code indicating "clear to end of line".

When the whole thing is written, the remainder of the screen (if any) is cleared.

sys.stdout.write("\033[2J")

while True:

 cam.capture(buf)

 for j in range(0, cam.height, 2):

 sys.stdout.write(f"\033[{j//2}H")

 for i in range(cam.width):

 row[i] = remap[buf[2 * (width * j + i)]]

 sys.stdout.write(row)

 sys.stdout.write("\033[K")

 sys.stdout.write("\033[J")

 time.sleep(0.1)

•

•

•

•

©Adafruit Industries Page 52 of 59

ESP32-S2 Kaluga Dev Kit featuring

ESP32-S2 WROVER

The ESP32-S2-Kaluga-1 kit is a full

featured development kit by Espressif for

the ESP32-S2 that comes with everything

but the kitchen sink! From TFTs to touch

panels,...

https://www.adafruit.com/product/4729

USB Type A Plug Breakout Cable with

Premium Female Jumpers

If you'd like to connect a USB-capable

chip to your USB host, this cable will

make the task very simple. There is no

converter chip in this cable! Its basically

a...

https://www.adafruit.com/product/4448

USB Extension Cable - 3 meters / 10 ft

long

This handy USB extension cable will make

it easy for you to extend your USB cable

when it won't reach. The connectors are

gold plated for years of reliability. We use

these handy...

https://www.adafruit.com/product/993

©Adafruit Industries Page 53 of 59

https://www.adafruit.com/product/4729
https://www.adafruit.com/product/4729
https://www.adafruit.com/product/4729
https://www.adafruit.com/product/4448
https://www.adafruit.com/product/4448
https://www.adafruit.com/product/4448
https://www.adafruit.com/product/993
https://www.adafruit.com/product/993
https://www.adafruit.com/product/993

LCD Mirror Demo

Install & Use the Demo

Click the Download Project Bundle button below to download the necessary libraries

and the code.py file in a zip file. Extract the contents of the zip file, and copy the

entire lib folder and the code.py file to your CIRCUITPY drive.

If the live mode image is black, remove the lens cap from the camera.

SPDX-FileCopyrightText: Copyright (c) 2023 Limor Fried for Adafruit Industries

#

SPDX-License-Identifier: Unlicense

"""

This demo is designed for the Raspberry Pi Pico. with 240x240 SPI TFT display

It shows the camera image on the LCD

"""

import time

import busio

import board

import digitalio

import adafruit_ov5640

import adafruit_st7789

import displayio

Set up the display (You must customize this block for your display!)

displayio.release_displays()

spi = busio.SPI(clock=board.GP2, MOSI=board.GP3)

display_bus = displayio.FourWire(spi, command=board.GP0, chip_select=board.GP1,

reset=None)

display = adafruit_st7789.ST7789(display_bus, width=240, height=240, rowstart=80,

rotation=0)

print("construct bus")

©Adafruit Industries Page 54 of 59

bus = busio.I2C(board.GP9, board.GP8)

print("construct camera")

reset = digitalio.DigitalInOut(board.GP10)

cam = adafruit_ov5640.OV5640(

 bus,

 data_pins=(

 board.GP12,

 board.GP13,

 board.GP14,

 board.GP15,

 board.GP16,

 board.GP17,

 board.GP18,

 board.GP19,

),

 clock=board.GP11,

 vsync=board.GP7,

 href=board.GP21,

 mclk=board.GP20,

 shutdown=None,

 reset=reset,

 size=adafruit_ov5640.OV5640_SIZE_240X240,

)

print("print chip id")

print(cam.chip_id)

cam.colorspace = adafruit_ov5640.OV5640_COLOR_RGB

cam.flip_y = False

cam.flip_x = False

cam.test_pattern = False

width = display.width

height = display.height

#cam.test_pattern = OV7670_TEST_PATTERN_COLOR_BAR_FADE

bitmap = displayio.Bitmap(cam.width, cam.height, 65535)

print(width, height, cam.width, cam.height)

if bitmap is None:

 raise SystemExit("Could not allocate a bitmap")

g = displayio.Group(scale=1, x=(width-cam.width)//2, y=(height-cam.height)//2)

tg = displayio.TileGrid(bitmap,

pixel_shader=displayio.ColorConverter(input_colorspace=displayio.Colorspace.RGB565_SWAPPED)

)

g.append(tg)

display.root_group = g

t0 = time.monotonic_ns()

display.auto_refresh = False

while True:

 cam.capture(bitmap)

 bitmap.dirty()

 display.refresh(minimum_frames_per_second=0)

 t1 = time.monotonic_ns()

 print("fps", 1e9 / (t1 - t0))

 t0 = t1

©Adafruit Industries Page 55 of 59

Code Walkthrough

First, the code performs necessary imports and sets up the display.

SPDX-FileCopyrightText: Copyright (c) 2023 Limor Fried for Adafruit Industries

#

SPDX-License-Identifier: Unlicense

"""

This demo is designed for the Raspberry Pi Pico. with 240x240 SPI TFT display

It shows the camera image on the LCD

"""

import time

import busio

import board

import digitalio

import adafruit_ov5640

import adafruit_st7789

import displayio

Set up the display (You must customize this block for your display!)

displayio.release_displays()

spi = busio.SPI(clock=board.GP2, MOSI=board.GP3)

display_bus = displayio.FourWire(spi, command=board.GP0, chip_select=board.GP1,

reset=None)

display = adafruit_st7789.ST7789(display_bus, width=240, height=240, rowstart=80,

rotation=0)

Next, the camera object is created and configured.

print("construct bus")

bus = busio.I2C(board.GP9, board.GP8)

print("construct camera")

reset = digitalio.DigitalInOut(board.GP10)

cam = adafruit_ov5640.OV5640(

 bus,

 data_pins=(

 board.GP12,

 board.GP13,

 board.GP14,

 board.GP15,

 board.GP16,

 board.GP17,

 board.GP18,

 board.GP19,

),

 clock=board.GP11,

 vsync=board.GP7,

 href=board.GP21,

 mclk=board.GP20,

©Adafruit Industries Page 56 of 59

 shutdown=None,

 reset=reset,

 size=adafruit_ov5640.OV5640_SIZE_240X240,

)

print("print chip id")

print(cam.chip_id)

cam.colorspace = adafruit_ov5640.OV5640_COLOR_RGB

cam.flip_y = False

cam.flip_x = False

cam.test_pattern = False

width = display.width

height = display.height

This demo integrates with displayio for display, so a bitmap object is needed:

bitmap = displayio.Bitmap(cam.width, cam.height, 65535)

print(width, height, cam.width, cam.height)

if bitmap is None:

 raise SystemExit("Could not allocate a bitmap")

g = displayio.Group(scale=1, x=(width-cam.width)//2, y=(height-cam.height)//2)

tg = displayio.TileGrid(bitmap,

pixel_shader=displayio.ColorConverter(input_colorspace=displayio.Colorspace.RGB565_SWAPPED)

)

g.append(tg)

display.root_group = g

The forever loop grabs a frame to the bitmap and then refreshes the display. It tracks

the approximate refresh rate (FPS) of the demo; this demo achieves about 2fps due

mostly to the overhead of displayio & communication with the display.

t0 = time.monotonic_ns()

display.auto_refresh = False

while True:

 cam.capture(bitmap)

 bitmap.dirty()

 display.refresh(minimum_frames_per_second=0)

 t1 = time.monotonic_ns()

 print("fps", 1e9 / (t1 - t0))

 t0 = t1

adafruit_ov5640 documentation

adafruit_ov5640 documentation ()

Downloads

Files

OV5640 Datasheet () •

©Adafruit Industries Page 57 of 59

https://docs.circuitpython.org/projects/ov5640/en/latest/
https://cdn-learn.adafruit.com/assets/assets/000/118/306/original/ov5640_datasheet.pdf?1675869959

OV5640 Register Datasheet ()

OV5640 Firmware User Guide ()

EagleCAD PCB files on GitHub ()

Fritzing object in the Adafruit Fritzing Library ()

Schematic and Fab Print

•

•

•

•

©Adafruit Industries Page 58 of 59

https://cdn-learn.adafruit.com/assets/assets/000/118/994/original/OV5640_datasheet.pdf?1677598686
https://cdn-learn.adafruit.com/assets/assets/000/126/084/original/ov5640-firmware-user-guide.pdf?1700151367
https://github.com/adafruit/Adafruit-OV5640-Camera-Breakout-PCB
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20OV5640%20Camera%20Breakout.fzpz

©Adafruit Industries Page 59 of 59

	Adafruit OV5640 Camera Breakout
	Table of Contents
	Overview
	Pinouts
	Assembly
	CircuitPython Camera Libraries
	Espressif ESP32-family Overview
	Install TinyUF2 on Espressif Kaluga
	Install CircuitPython on Espressif Kaluga with TinyUF2
	Espressif Kaluga Pinout
	LCD Mirror Demo
	ASCII Mirror Demo
	JPEG Capture Demo
	espcamera documentation
	Raspberry Pi RP2040 Overview
	Raspberry Pi Pico Usage
	ASCII Mirror Demo
	LCD Mirror Demo
	adafruit_ov5640 documentation
	Downloads

	Overview
	Pinouts
	A note on silkscreen labels
	Camera Lens
	Power Supply
	Power Down & Reset
	Power LED
	I2C Pins
	Clock and Synchronization Pins
	Data Pins
	Autofocus Motor Power
	Test Bar Mode

	Assembly
	CircuitPython Camera Libraries
	Camera Pin Naming

	Espressif ESP32-family Overview
	Setting 'reserved PSRAM'
	Pin Choices

	Install TinyUF2 on Espressif Kaluga
	Method 1: WebSerial ESPTool / esptool
	Step 1. Download the tinyuf2 combined.bin file here
	Step 2. Place your board in bootloader mode
	Check for a new serial / COM port

	Step 3 Option A. Use the Web Serial ESPTool to upload
	Enable Web Serial (For older chrome)
	Connecting
	Erasing the Contents
	Programming the Microcontroller

	Step 3. Option B. Use esptool.py to upload (for advanced users)
	Install ESPTool.py
	Test the Installation
	Installing the Bootloader

	Step 4. Reset the board

	Method 2: Flash an Arduino Sketch
	Arduino IDE Setup
	Load the Blink Sketch

	Install CircuitPython on Espressif Kaluga with TinyUF2
	CircuitPython Quickstart
	Kaluga USB Connection
	Advanced USB connection

	Espressif Kaluga Pinout
	Setting 'reserved PSRAM'
	Camera Module Connections
	LCD variants

	LCD Mirror Demo
	Install & Use the Demo
	Code Walkthrough

	ASCII Mirror Demo
	Install & Use the Demo

	JPEG Capture Demo
	Install & Use the Demo
	Code walkthrough

	espcamera documentation
	Raspberry Pi RP2040 Overview
	Image storage
	Pin choices

	Raspberry Pi Pico Usage
	Camera connections
	LCD connections

	ASCII Mirror Demo
	Install & Use the Demo

	LCD Mirror Demo
	Install & Use the Demo
	Code Walkthrough

	adafruit_ov5640 documentation
	Downloads
	Files
	Schematic and Fab Print

