Adafruit Qualia ESP32-S3 for RGB-666
Displays

Created by Melissa LeBlanc-Williams

Hello World! WB

GREEN

https://learn.adafruit.com/adafruit-qualia-esp32-s3-for-rgb666-displays

Last updated on 2023-10-20 10:53:17 AM EDT

©Adafruit Industries Page 1 of 199

Table of Contents

Overview

Pinouts

« Microcontroller and WiFi

» 40-Pin Display Connector
- |O Expander

« Stemma QT Connector

» Reset and BootO Pins

« Debug Pin

« SPI Pins

« Analog Connector/Pins

« Buttons

« Backlight Jumpers

- |O Expander Address Jumpers
« Parallel Interface Jumpers

CircuitPython
« CircuitPython Quickstart

The CIRCUITPY Drive
« Boards Without CIRCUITPY

CircuitPython Pins and Modules

« CircuitPython Pins

« import board

« 12C, SPI, and UART

« What Are All the Available Names?
« Microcontroller Pin Names

« CircuitPython Built-In Modules

Installing the Mu Editor
- Download and Install Mu

« Starting Up Mu

» Using Mu

Creating and Editing Code
« Creating Code

- Editing Code

« Back to Editing Code...

« Naming Your Program File

Exploring Your First CircuitPython Program

« Imports & Libraries

« Setting Up The LED

« Loop-de-loops

« What Happens When My Code Finishes Running?
« What if | Don't Have the Loop?

Connecting to the Serial Console

« Are you using Mu?
« Serial Console Issues or Delays on Linux

©Adafruit Industries

"

16

19

20

26

28

33

36

Page 2 of 199

« Setting Permissions on Linux
» Using Something Else?

Interacting with the Serial Console

The REPL

» Entering the REPL
« Interacting with the REPL
« Returning to the Serial Console

CircuitPython Libraries

« The Adafruit Learn Guide Project Bundle
» The Adafruit CircuitPython Library Bundle

- Downloading the Adafruit CircuitPython Library Bundle

« The CircuitPython Community Library Bundle

« Downloading the CircuitPython Community Library Bundle

« Understanding the Bundle

« Example Files

« Copying Libraries to Your Board

« Understanding Which Libraries to Install

« Example: ImportError Due to Missing Library
« Library Install on Non-Express Boards

« Updating CircuitPython Libraries and Examples

« CircUp CLI Tool

CircuitPython Documentation

« CircuitPython Core Documentation
« CircuitPython Library Documentation

Recommended Editors

« Recommended editors

« Recommended only with particular settings or add-ons

« Editors that are NOT recommended

Advanced Serial Console on Windows

« Windows 7 and 8.1
« What's the COM?
« Install Putty

Advanced Serial Console on Mac

« What's the Port?
« Connect with screen

Advanced Serial Console on Linux
« What's the Port?

« Connect with screen

« Permissions on Linux

Frequently Asked Questions

« Using Older Versions
« Python Arithmetic

« Wireless Connectivity
« Asyncio and Interrupts
- Status RGB LED

« Memory Issues

©Adafruit Industries

39

42

46

57

64

65

69

71

75

Page 3 of 199

« Unsupported Hardware

Troubleshooting

« Always Run the Latest Version of CircuitPython and Libraries

« | have to continue using CircuitPython 7.x or earlier. Where can | find compatible libraries?

« Bootloader (boardnameBOOT) Drive Not Present

« Windows Explorer Locks Up When Accessing boardnameBOOT Drive
« Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied
« CIRCUITPY Drive Does Not Appear or Disappears Quickly

« Device Errors or Problems on Windows

« Serial Console in Mu Not Displaying Anything

« code.py Restarts Constantly

« CircuitPython RGB Status Light

« CircuitPython 7.0.0 and Later

« CircuitPython 6.3.0 and earlier

« Serial console showing ValueError: Incompatible .mpy file

« CIRCUITPY Drive Issues

- Safe Mode

« To erase CIRCUITPY: storage.erase_filesystem()

« Erase CIRCUITPY Without Access to the REPL

- For the specific boards listed below:

« For SAMD21 non-Express boards that have a UF2 bootloader:
« For SAMD21 non-Express boards that do not have a UF2 bootloader:
« Running Out of File Space on SAMD21 Non-Express Boards

» Delete something!

» Use tabs

« On MacOS?

« Prevent & Remove MacOS Hidden Files

« Copy Files on MacOS Without Creating Hidden Files

« Other MacOS Space-Saving Tips

« Device Locked Up or Boot Looping

Welcome to the Community!

« Adafruit Discord
« CircuitPython.org
« Adafruit GitHub

« Adafruit Forums
« Read the Docs

Create Your settings.toml File

« CircuitPython settings.toml File
« settings.toml File Tips
« Accessing Your settings.toml Information in code.py

CircuitPython Internet Test

» The settings.toml File

Converting Arduino_GFX init strings to CircuitPython

« Using Arduino_GFX Init Codes
« Using Init Code Files
« Script Output

Determining Timings
« Using a Data Sheet

« Fill in the Settings
« Experimenting with Settings

©Adafruit Industries

80

98

107

110

15

119

Page 4 of 199

« Testing your Settings with CircuitPython

CircuitPython Display Setup

« Example TFT_PINS

« Example TFT_TIMINGS

«+ 1/0O Expander

- Display Initialization Code

« Sending Initialization Code via 12C |0 Expander
« 12C Bus Speed

« Constructing the framebuffer and the display

» Dot clocks

CircuitPython Touch Display Usage

« Determining the 12C Address

- Initializing the Touch Controller

« Reading from the Touch Controller
« Example

Qualia S3 RGB-666 with TLO21WVCO02 2.1" 480x480 Round Display

« Initialization Codes
« Timings
« Example

Qualia S3 RGB-666 with TLO34WVSO05 3.4" 480x480 Square Display

« Initialization Codes
» Timings
« Example

Qualia S3 RGB-666 with TLO40HDS20 4.0" 720x720 Square Display

« Initialization Codes
» Timings
« Example

Qualia S3 RGB-666 with TLO32FWVO01 3.2" 320x820 Bar Display

« Initialization Codes
« Timings
« Example

Arduino IDE Setup

Using with Arduino IDE

- Blink

« Select ESP32-S2/S3 Board in Arduino IDE
« Launch ESP32-S2/S3 ROM Bootloader

« Load Blink Sketch

WiFi Test

» WiFi Connection Test
« Secure Connection Example
« JSON Parsing Demo

Usage with Adafruit 10

« Install Libraries
« Adafruit 1O Setup
« Code Usage

©Adafruit Industries

123

135

139

142

146

149

153

156

160

171

Page 5 of 199

Arduino Rainbow Demo

Arduino Touch Display Usage

« Determining the 12C Address

« Initializing the Touch Controller

» Reading from the Touch Controller
« Example

Install UF2 Bootloader

Factory Reset

« Factory Reset Firmware UF2
« Factory Reset and Bootloader Repair
« Download .bin and Enter Bootloader

- Step 1. Download the factory-reset-and-bootloader.bin file

« Step 2. Enter ROM bootloader mode
« The WebSerial ESPTool Method

« Connect

« Erase the Contents

« Program the ESP32-S2/S3

« The esptool Method (for advanced users)

« Install ESPTool.py

« Test the Installation

« Connect

- Erase the Flash

« Installing the Bootloader

« Reset the board

« Older Versions of Chrome

« The Flash an Arduino Sketch Method
« Arduino IDE Setup

« Load the Blink Sketch

Downloads

« Schematic
« Fab Print

©Adafruit Industries

179

182

184

185

198

Page 6 of 199

Overview

There are things everyone loves: ice cream, kittens, and honkin' large TFT LCD
screens. We're no strangers to small TFT's - from our itsy 1.14" color display () that
graces many-a-TFT-Feather to our fancy 3.5" 320x480 () breakout screen. But most
people who dabble or engineer with microcontrollers know that you sort of 'top out' at
320x480 - that's the largest resolution you can use with every day SPI or 8-bit 8080
interfaces. After that, you're in TTL-interface TFT land, where displays no longer have

an internal memory buffer and instead the controller has to continuously write
scanline data over a 16, 18 or 24 pin interface.

©Adafruit Industries Page 7 of 199

https://www.adafruit.com/search?q=1.14+tft
https://www.adafruit.com/product/2050

RGB TTL interface TFT displays can get big: they start out at around 4.3" diagonal
480x272, and can get to 800x480, 800x600 or even 720x720. For displays that big,
you need a lot of video RAM (800x480 at 24 bit color is just over 1MB), plenty of spare
GPIO to dedicate, and a peripheral that will DMA the video RAM out to the display
continuously. This is a setup familiar to people working with hefty microcontrollers or
microcomputers, the sort of device that run cell phones, or your car's GPS navigation
screen. But until now, nearly impossible to use on low cost microcontrollers.

The ESP32-S3 is the first low-cost microcontroller that has a built in peripheral that
can drive TTL displays, and it can come with enough PSRAM to buffer those large
images. For example, on the Adafruit Qualia ESP32-S3 for TTL RGB-666 Displays, we
use a S3 module with 16 MB of Flash and 8 MB of octal PSRAM. Using the built in RGB
display peripheral you can display graphics, images, animations or even video
(cinepak, natch!) with near-instantaneous updates since the whole screen gets
updated about 30 frames per second (FPS).

This dev board is designed to make it easy for you to explore displays that use the
'secondary standard' 40-pin RGB-666 connector. This pin order is most commonly
seen on square, round and bar displays. You'll want to compare the display you're
using to this datasheet (), and if it matches, you'll probably be good! One nice thing
about this connector ordering is that it also includes pins for capacitive touch overlay,
and we wire those up to the ESP32-S3's I12C port so you can also have touch control

with your display.

©Adafruit Industries Page 8 of 199

https://cdn-shop.adafruit.com/product-files/5792/Specification_TL021WVC02CT-B1323B.pdf
https://cdn-shop.adafruit.com/product-files/5792/Specification_TL021WVC02CT-B1323B.pdf

Don't forget! This is just the development board, a display is not included. Use any
RGB-666 pinout display with or without a touch overlay. Note that you will need to
program in the driver initialization code, dimensions, and pulse widths in your
programming language. Here are some known-working displays that you can use in
Arduino and CircuitPython:

« 2.1" 480x480 Round with Capacitive Touch ()
« 21" 480x480 Round without Touch ()

« 4" 720x720 Square with Capacitive Touch ()
« 4" 720x720 Round without Touch ()

« 4.6" 960x320 Rectangular Bar ()

On the Qualia board we have the S3 modules, with 16 pins connected to the TFT for
5-6-5 RGB color, plus HSync, VSync, Data Enable and Pixel Clock. There's a constant
current backlight control circuit using the TPS61169 () which can get up to 30V
forward voltage and can be configured for 25mA-200mA in 25mA increments (default
is 25mA). Power and programming is provided over a USB C connector, wired to the
S3's native USB port. For debugging, the hardware UART TX pin is available as well.

©Adafruit Industries Page 9 of 199

https://www.adafruit.com/product/5792
https://www.adafruit.com/product/5806
https://www.adafruit.com/product/5794
https://www.adafruit.com/product/5793
https://www.adafruit.com/product/5805
https://www.ti.com/product/TPS61169/part-details/TPS61169DCKR

Since almost every GPIO is used, and almost all RGB-666 displays need to be
initialized over SPI, we put a PCA9554 () I/O expander on the shared 12C bus. Arduino
or CircuitPython can be instructed on how to use the expander to reset and init the
display you have if necessary. The remaining expander pins are connected to two
right-angle buttons, and the display backlight.

The expander is what lets us have a full 4-pin SPI port and two more analog GPIO pins
- enough to wire up an MMC in 1-wire SDIO mode along with an I2S amplifier to make
an A/V playback demo (). Maybe we can even eat ice cream while watching kitten
vids! There is also the shared 12C port, we provide a Stemma QT / Qwiic port for easy
addition of any sensor or device you like.

©Adafruit Industries Page 10 of 199

https://www.ti.com/product/PCA9554
https://www.youtube.com/watch?v=pEjw-bCQ-lQ
https://www.youtube.com/watch?v=pEjw-bCQ-lQ

Pinouts

- .

@
<]
:

12

’E

d

g
]
@
3
2

@

)
3
'—
i
I_
©
©
-
a8}
)
o

Quaha ESP32 S3
RGB666 40p TFT

The main processor chip is

the Espressif ESP32-S3 with 3.3v logic/
power. It has 16 MB of Flash and 8MB of
RAM.

The ESP32-S3 comes with WiFi and
Bluetooth LE baked right in, though
CircuitPython only supports WiFi at this
time, not BLE on the S3 chip

40-Pin Display Connector

Not all 40-pin displays have the power pins in the same place. Hooking up a non

RGB666 display with the Qualia S3 risks damaging the display.

©Adafruit Industries Page 11 of 199

https://learn.adafruit.com//assets/124796
https://learn.adafruit.com//assets/124796

aa:abaaauauuaa
SESFSSISENANSES
B-666 TFT w/ =
Touch s
M) il

11

opt Cap.

LORRMoIRNNAER

O
Qualia ESP32-S3 &
RGB666 40p TFT

W

© ™o
Qsck
Omiso

L]
&
4
]
L
"
"
s
n
L
a
"
n
L]

opt Cap. Toucha

jea

RGB-666 TFT w/ aim

EENISNANENAUNSES
. Touch »

B-666 TFT w/ e

W1

©Tx0
Qsck
Omiso

©Adafruit Industries

AO} ! g

8

There is a 40-pin display connector to
connect your display. Displays should be
connected with the pins of the cable down
towards the board and the colored side
facing you.

The Qualia S3 includes a PCA9554 10
Expander. The 10 Expander is connected
via the 12C bus. The main purpose of the
expander is to add additional pins to
communicate with the display.

The default address of the 10 expander is
Ox3F, but it can be changed by soldering
jumpers on the reverse side in case it
interferes with another I12C device.

There is a 4-pin Stemma QT connector on
the left. The 12C has pullups to 3.3V power.

In CircuitPython, you can use the STEMMA
connector

with board.SCL and board.SDA,

or board.STEMMA TI2C() .

Page 12 of 199

https://learn.adafruit.com//assets/124797
https://learn.adafruit.com//assets/124797
https://learn.adafruit.com//assets/124800
https://learn.adafruit.com//assets/124800
https://learn.adafruit.com//assets/124799
https://learn.adafruit.com//assets/124799

Reset and BootO Pins

Reset is the Reset pin. Tie to ground to
manually reset the ESP32-S3.

Ld
&
4
L3
L
"
"
Ed
n
L
a
"
n
L]

"
&
=
S
F.
1
}—
w
7]
@
03]
O
&

Tying BootO to ground while resetting will
place the ESP32-S3 in ROM bootloader
mode.

opt Cap. Touch =

If you'd like to do lower level debugging,
we have the ESP32-S3's TXDO debug pin
exposed as TXO to view messages.

EENISANERNAUNSNS

sreacscsnacBan
RGB-666 TFT w/ s

To read, you would connect a Serial UART
cable Receive connection here and the

son@oonnanon

ualia ESP32-S3
T

opt Cap. Touch »

cable ground connection to the GND pin.

©Adafruit Industries Page 13 of 199

https://learn.adafruit.com//assets/124801
https://learn.adafruit.com//assets/124801
https://learn.adafruit.com//assets/124803
https://learn.adafruit.com//assets/124803

SPI Pins

The SPI pins of the ESP32-S3 are exposed
for communication with other SPI
hardware.

Each of these pins can alternatively be
used for digital 1/0O:

T
Ouch; ;]

SCKis connected to board.TFT SCK
Arduino 5.

MISO is connected to board.TFT_MISO
Arduino 6.

MOSI is connected to board.TFT MOSI
Arduino 7.

CS is connected to board.TFT _CS
Arduino 15 and includes a 10K Pull-up
resistor.

[
asagaaonavean
SENINANENANSNS

opt Cap.

fonogonranne
Qualia ESP32-
GB666 40p T

mw
~“ L
RGB-666 TFT w/ o

ST
L

GND.

On the bottom side towards the right,
there is a connector labeled AO. This is

a 3-pin JST analog connector for sensors,
NeoPixels, or analog output or input.

For the JST connected, there is a jumper
above that can be cut and soldered to use
3V instead of 5V.

T
ouch 3 !]

e
<
=
=
-
TN
-
[$=]
=]
2
1]
Q
1

Qualia ESP32-S3
RGB666 40p TET

5 ‘ opt Cap.
i]

Along the bottom there are also pins
labeled AO and Al.

Each of these pins can be used for analog
inputs or digital 1/0O.

©Adafruit Industries Page 14 of 199

https://learn.adafruit.com//assets/124804
https://learn.adafruit.com//assets/124804
https://learn.adafruit.com//assets/124805
https://learn.adafruit.com//assets/124805

Buttons

,.
T
Ouch; sl

RGB-666 TFT w/ am

09
°
2
k]
' 9
a
a
9
L
Q
9
Kl
u
L]

Lonogonranae
Qualia ESP32-S3
RGB666 40p TET

©

(3] GNDU.' 1

Backlight Jumpers

TESTESLDRINANS
Touch =
i

aEsascasnaadan.
RGB-666 TFT w/ aim

SpagnoINneRe

Qualia ESP32-S3
RGB666 40p TFT

©Adafruit Industries

opt Cap.

a
©
(&
§!
KR

There are three buttons along the left side
of the Qualia S3.

The Reset button is located in the top
position. Click it once to re-start your
firmware. Click it again after about a half
second to enter bootloader mode.

The UP button is located in the middle and
is connected to the 10 expander

The DN button, or Down button, is located
on the bottom and is connected to the 10
expandetr.

The expander implements a light pullup for
each of the buttons and pressing either of
them pulls the input low.

The BootO button is located between the
up button and the Microcontroller. Hold it
while pressing reset to enter ROM
Bootloader mode.

Soldering the bottom PWM jumper allows
using Pin Al to control the backlight of
the display.

By default, 25mA is provided to the
backlight, but additional amperage can be
set by soldering the top jumpers to
provide up to 200mA if needed.

Page 15 of 199

https://learn.adafruit.com//assets/124806
https://learn.adafruit.com//assets/124806
https://learn.adafruit.com//assets/124807
https://learn.adafruit.com//assets/124807

IO Expander Address Jumpers

'© Qualia S3 RGB666 ©

ggtclock TFT Display % - On the reverse, are a couple of solderable
it Boam "_ jumpers to change the 12C address of the
adafrU|t | 10 Expander. By default, both jumpers are

set to high, providing a default address of
: Ox3F. However, it can be set between
16-Bit RGB TTL TFT Pins. , ABEEA dateur

RERS 1110 06\ EREI"C/% delout 0x3B-Ox3F.

GO-G5: 48,47,21,14,13,12 - ® ® e |

B1-B5: 40,39,38,0,45
HS: 41, VS: 42, DE: 2, PCK: 1

00000000000

0 ali S3 RGB666 ©

Dotclock TFT Display

Experimentation Board 9 '-;
o _
| The IMO and IM1 jumpers are for selecting

the mode of the parallel interface for the
display. The default selection should work
for most displays.

16-Bit RGB TTL TFT Pins B
R1-R5:11,10,9,46,3 e :;%A::dﬁdogggu"
GO-G5: 48, 47 21,14,1312 . - =
B1-BS5: 40,39,38,0,45 O

HS: 41, VS: 42, DE: 2, PCK: 1

00000000000

CircuitPython

CircuitPython () is a derivative of MicroPython () designed to simplify experimentation
and education on low-cost microcontrollers. It makes it easier than ever to get
prototyping by requiring no upfront desktop software downloads. Simply copy and
edit files on the CIRCUITPY drive to iterate.

CircuitPython Quickstart

Follow this step-by-step to quickly get CircuitPython running on your board.

©Adafruit Industries Page 16 of 199

https://learn.adafruit.com//assets/124808
https://learn.adafruit.com//assets/124808
https://learn.adafruit.com//assets/124809
https://learn.adafruit.com//assets/124809
https://github.com/adafruit/circuitpython
https://micropython.org

This microcontroller requires the latest unstable (development) release of
CircuitPython. Click below to visit the downloads page on circuitpython.org for your
board. Then, Browse S3 under Absolute Newest.

Download the latest version of

CircuitPython for this board via
circuitpython.org

E; Macintosh...

. ELEIINSEIIINGLLEN Click the link above to download the latest
CircuitPython UF2 file.

€5 Network

{2} kattni . . .
. s Save it wherever is convenient for you.
- Applications
(-] Desktop

+" Documents

€ Downloads

(L)) Pictures

The Qualia S3 does not have a RGB status LED

cotanoonRloe

RGB-666 TFT w/ &

Qualia ESP32-S3
GB666 40p TFT

©

Py

) | g
>
o (&)

Omiso
o

OGND

© X0
©sck
©OMmosi
Ocs3
OA1 e
OAo
©33v__|

Plug your board into your computer, using a known-good data-sync cable, directly, or
via an adapter if needed.

©Adafruit Industries Page 17 of 199

https://circuitpython.org/board/adafruit_qualia_s3_rgb666/
https://learn.adafruit.com//assets/102129
https://learn.adafruit.com//assets/102129

Double-click the reset button (highlighted in red above), and you will see the RGB
status LED(s) turn green (highlighted in green above). If you see red, try another port,
or if you're using an adapter or hub, try without the hub, or different adapter or hub.

For this board, tap reset and wait about a half a second and then tap reset again.

If double-clicking doesn't work the first time, try again. Sometimes it can take a few
tries to get the rhythm right!

A lot of people end up using charge-only USB cables and it is very frustrating! Make
sure you have a USB cable you know is good for data sync.

ene { » TFT_S3B0OT 8¢ =

IClows

(=) Desktop . .
[Documents
3 iCloud Drive AUTORUNINF CURRENTUF2 FAVICONXCO .

Locations

£ Macintosh HD

& TFT_s3800T a
@& Google Drive

€3 truenas a
@ Network

N You will see a new disk drive appear called

O Home TFT_S3BOOT.
® Gy
® Purple

A mmnrtant

ene < TFT_S3B0OT
Kired

= Destion . ‘ * L Drag the adafruit_circuitpython_etc.uf2 file
v to TFT_S3BOOT.

© ICloud Drive AUTORUNINE CUBRINTUFZ FAVCONICO INDEXMTM

Locetiens

& Macintosh HD
[smor . IR
& Google Drive

3 truenas 2
@ Network

Toge

® Orange

O Home

® Gray

® Purple

O lrportant

O Work

- Vel

©Adafruit Industries Page 18 of 199

https://learn.adafruit.com//assets/124832
https://learn.adafruit.com//assets/124832
https://learn.adafruit.com//assets/124889
https://learn.adafruit.com//assets/124889

®
<

Locations
Macintosh HD
B circurTpy The BOOT drive will disappear and a new

@ Network disk drive called CIRCUITPY will appear.
Favorites

fatint That's it!

A Applications

] Desktop

' Documents

O Downloads

0 Pictures

. adafruit-circuitpython-ac

The CIRCUITPY Drive

When CircuitPython finishes installing, or you plug a CircuitPython board into your
computer with CircuitPython already installed, the board shows up on your computer
as a USB drive called CIRCUITPY.

The CIRCUITPY drive is where your code and the necessary libraries and files will live.
You can edit your code directly on this drive and when you save, it will run
automatically. When you create and edit code, you'll save your code in a code.py file
located on the CIRCUITPY drive. If you're following along with a Learn guide, you can
paste the contents of the tutorial example into code.py on the CIRCUITPY drive and
save it to run the example.

With a fresh CircuitPython install, on your CIRCUITPY drive, you'll find a code.py file
containing print("Hello World!") and an empty lib folder. If your CIRCUITPY
drive does not contain a code.py file, you can easily create one and save it to the
drive. CircuitPython looks for code.py and executes the code within the file
automatically when the board starts up or resets. Following a change to the contents
of CIRCUITPY, such as making a change to the code.py file, the board will reset, and
the code will be run. You do not need to manually run the code. This is what makes it
so easy to get started with your project and update your code!

Note that all changes to the contents of CIRCUITPY, such as saving a new file,
renaming a current file, or deleting an existing file will trigger a reset of the board.

©Adafruit Industries Page 19 of 199

https://learn.adafruit.com//assets/102130
https://learn.adafruit.com//assets/102130

o000 i CIRCUITPY

< H = LIERERIEE Q
Devices Name Date Modified ~ Size Kind
Q Macintosh HD >
@ Time Machine 2 H
|
£} cireurtpy A

boot_out.txt January 1, 2000 at 12:00 AM 102 bytes Plain Text

Favorites code.py Today at 1:26 PM 641 bytes Python script

m Kattni » [lip Today at 3:55 PM 35KB Folder

#; Applications
[Desktop

© Downloads
@ Documents

i1 Pictures _ CIRCUITPY

Boards Without CIRCUITPY

CircuitPython is available for some microcontrollers that do not support native USB.
Those boards cannot present a CIRCUITPY drive. This includes boards using ESP32
or ESP32-C3 microcontrollers.

On these boards, there are alternative ways to transfer and edit files. You can use the
Thonny editor (), which uses hidden commands sent to the REPL to read and write
files. Or you can use the CircuitPython web workflow, introduced in Circuitpython 8.
The web workflow provides browser-based WiFi access to the CircuitPython

filesystem. These guides will help you with the web workflow:

« CircuitPython on ESP32 Quick Start ()
« CircuitPython Web Workflow Code Editor Quick Start ()

CircuitPython Pins and Modules

CircuitPython is designed to run on microcontrollers and allows you to interface with
all kinds of sensors, inputs and other hardware peripherals. There are tons of guides
showing how to wire up a circuit, and use CircuitPython to, for example, read data
from a sensor, or detect a button press. Most CircuitPython code includes hardware
setup which requires various modules, such as board or digitalio. You import
these modules and then use them in your code. How does CircuitPython know to look
for hardware in the specific place you connected it, and where do these modules
come from?

This page explains both. You'll learn how CircuitPython finds the pins on your
microcontroller board, including how to find the available pins for your board and
what each pin is named. You'll also learn about the modules built into CircuitPython,
including how to find all the modules available for your board.

©Adafruit Industries Page 20 of 199

https://thonny.org
https://learn.adafruit.com/circuitpython-with-esp32-quick-start
https://learn.adafruit.com/getting-started-with-web-workflow-using-the-code-editor

CircuitPython Pins

When using hardware peripherals with a CircuitPython compatible microcontroller,
you'll almost certainly be utilising pins. This section will cover how to access your
board's pins using CircuitPython, how to discover what pins and board-specific
objects are available in CircuitPython for your board, how to use the board-specific
objects, and how to determine all available pin names for a given pin on your board.

import board

When you're using any kind of hardware peripherals wired up to your microcontroller
board, the import list in your code will include import board. The board module is
built into CircuitPython, and is used to provide access to a series of board-specific
objects, including pins. Take a look at your microcontroller board. You'll notice that
next to the pins are pin labels. You can always access a pin by its pin label. However,
there are almost always multiple names for a given pin.

To see all the available board-specific objects and pins for your board, enter the REPL
(>>>) and run the following commands:

import board
dir(board)

Here is the output for the QT Py SAMD21. You may have a different board, and this list
will vary, based on the board.

3', 'A6', 'A7', 'A8', 'AS', 'DO', 'D1',
', 'D8', 'D9', 'I2C', 'MISO', 'MOSI', '
', 'SCL', 'SDA', 'SPI', 'TX', 'UART

The following pins have labels on the physical QT Py SAMD21 board: AO, A1, A2, A3,
SDA, SCL, TX, RX, SCK, MISO, and MOSI. You see that there are many more entries
available in board than the labels on the QT Py.

You can use the pin names on the physical board, regardless of whether they seem to
be specific to a certain protocol.

For example, you do not have to use the SDA pin for 12C - you can use it for a button
or LED.

©Adafruit Industries Page 21 of 199

On the flip side, there may be multiple names for one pin. For example, on the QT Py
SAMDZ21, pin AO is labeled on the physical board silkscreen, but it is available in
CircuitPython as both A0 and DO . For more information on finding all the names for a
given pin, see the What Are All the Available Pin Names? () section below.

The results of dir(board) for CircuitPython compatible boards will look similar to
the results for the QT Py SAMD21 in terms of the pin names, e.g. AO, DO, etc.
However, some boards, for example, the Metro ESP32-S2, have different styled pin
names. Here is the output for the Metro ESP32-S2.

Note that most of the pins are named in an |I0# style, such as |01 and I02. Those pins
on the physical board are labeled only with a number, so an easy way to know how to
access them in CircuitPython, is to run those commands in the REPL and find the pin
naming scheme.

If your code is failing to run because it can't find a pin name you provided, verify

that you have the proper pin name by running these commands in the REPL.

12C, SPI, and UART

You'll also see there are often (but not always!) three special board-specific objects
included: I2C, SPI, and UART - each one is for the default pin-set used for each of
the three common protocol busses they are named for. These are called singletons.

What's a singleton? When you create an object in CircuitPython, you are instantiating
(‘creating’) it. Instantiating an object means you are creating an instance of the object
with the unique values that are provided, or "passed", to it.

For example, When you instantiate an I12C object using the busio module, it expects
two pins: clock and data, typically SCL and SDA. It often looks like this:

i2c = busio.I2C(board.SCL, board.SDA)

Then, you pass the 12C object to a driver for the hardware you're using. For example,
if you were using the TSL2591 light sensor and its CircuitPython library, the next line
of code would be:

©Adafruit Industries Page 22 of 199

https://learn.adafruit.com/circuitpython-essentials/circuitpython-pins-and-modules#what-are-all-the-available-names-3082670-14

ts12591 = adafruit ts12591.TSL2591(i2c)

However, CircuitPython makes this simpler by including the I2C singleton in the boa
rd module. Instead of the two lines of code above, you simply provide the singleton
as the 12C object. So if you were using the TSL2591 and its CircuitPython library, the
two above lines of code would be replaced with:

ts12591 = adafruit ts12591.TSL2591(board.I2C())

The board.12C(), board.SPI(), and board.UART() singletons do not exist on all

boards. They exist if there are board markings for the default pins for those
devices.

This eliminates the need for the busio module, and simplifies the code. Behind the
scenes, the board.I2C() objectis instantiated when you call it, but not before, and
on subsequent calls, it returns the same object. Basically, it does not create an object
until you need it, and provides the same object every time you need it. You can call
board.I2C() as many times as you like, and it will always return the same object.

The UART/SPI/I2C singletons will use the 'default' bus pins for each board - often

labeled as RX/TX (UART), MOSI/MISO/SCK (SPI), or SDA/SCL (12C). Check your
board documentation/pinout for the default busses.

What Are All the Available Names?

Many pins on CircuitPython compatible microcontroller boards have multiple names,
however, typically, there's only one name labeled on the physical board. So how do
you find out what the other available pin names are? Simple, with the following script!
Each line printed out to the serial console contains the set of names for a particular

pin.

On a microcontroller board running CircuitPython, first, connect to the serial console.
In the example below, click the Download Project Bundle button below to download
the necessary libraries and the code.py file in a zip file. Extract the contents of the zip
file, open the directory CircuitPython_Essentials/Pin_Map_Script/ and then click on
the directory that matches the version of CircuitPython you're using and copy the

contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

©Adafruit Industries Page 23 of 199

v @ CIRCUITPY
> 8
-
-

R boot_out.txt
B code.py
vl lib

SPDX-FileCopyrightText: 2020 anecdata for Adafruit Industries
SPDX-FileCopyrightText: 2021 Neradoc for Adafruit Industries
SPDX-FileCopyrightText: 2021-2023 Kattni Rembor for Adafruit Industries
SPDX-FileCopyrightText: 2023 Dan Halbert for Adafruit Industries

HoHH R R

SPDX-License-Identifier: MIT

"""CircuitPython Essentials Pin Map Script"""
import microcontroller
import board
try:
import cyw43 # raspberrypi
except ImportError:
cyw43 = None

board pins = []
for pin in dir(microcontroller.pin):
if (isinstance(getattr(microcontroller.pin, pin), microcontroller.Pin) or
(cyw43 and isinstance(getattr(microcontroller.pin, pin), cyw43.CywPin))):
pins = []
for alias in dir(board):
if getattr(board, alias) is getattr(microcontroller.pin, pin):
pins.append(f"board.{alias}")
Add the original GPIO name, in parentheses.
if pins:
Only include pins that are in board.
pins.append(f" ({str(pin)})")
board pins.append(" ".join(pins))

for pins in sorted(board pins):
print(pins)

Here is the result when this script is run on QT Py SAMD21:

Each line represents a single pin. Find the line containing the pin name that's labeled
on the physical board, and you'll find the other names available for that pin. For
example, the first pin on the board is labeled AO. The first line in the output is board.
AO board.DO (PAG2) . This means that you can access pin AO in CircuitPython using
both board.A0 and board.DO.

©Adafruit Industries Page 24 of 199

The pins in parentheses are the microcontroller pin names. See the next section for
more info on those.

You'll notice there are two "pins" that aren't labeled on the board but appear in the
list: board.NEOPIXEL and board.NEOPIXEL POWER.Many boards have several of
these special pins that give you access to built-in board hardware, such as an LED or
an on-board sensor. The QT Py SAMD21 only has one on-board extra piece of
hardware, a NeoPixel LED, so there's only the one available in the list. But you can
also control whether or not power is applied to the NeoPixel, so there's a separate pin
for that.

That's all there is to figuring out the available names for a pin on a compatible
microcontroller board in CircuitPython!

Microcontroller Pin Names

The pin names available to you in the CircuitPython board module are not the same
as the names of the pins on the microcontroller itself. The board pin names are
aliases to the microcontroller pin names. If you look at the datasheet for your
microcontroller, you'll likely find a pinout with a series of pin names, such as "PA18" or
"GPIO5". If you want to get to the actual microcontroller pin name in CircuitPython,
you'll need the microcontroller.pin module. As with board, you canrun dir(mi
crocontroller.pin) inthe REPL to receive a list of the microcontroller pin names.

>>> import microcontroller
>>> dir(microcontroller.pin)

['__class__', 'PAG2', 'PAG3', 'PAG4', 'PAG5', 'PAG6', 'PAG7', '

'PAIQ', 'PA11', 'PA15', 'PA16', 'PA17', 'PA18', 'PA1S8', 'PA22', '

CircuitPython Built-In Modules

There is a set of modules used in most CircuitPython programs. One or more of these
modules is always used in projects involving hardware. Often hardware requires
installing a separate library from the Adafruit CircuitPython Bundle. But, if you try to
find board or digitalio inthe same bundle, you'll come up lacking. So, where do
these modules come from? They're built into CircuitPython! You can find an
comprehensive list of built-in CircuitPython modules and the technical details of their
functionality from CircuitPython here () and the Python-like modules included here ().
However, not every module is available for every board due to size constraints or
hardware limitations. How do you find out what modules are available for your board?

©Adafruit Industries Page 25 of 199

https://circuitpython.readthedocs.io/en/latest/shared-bindings/index.html#modules
https://circuitpython.readthedocs.io/en/latest/docs/library/index.html

There are two options for this. You can check the support matrix (), and search for
your board by name. Or, you can use the REPL.

Plug in your board, connect to the serial console and enter the REPL. Type the
following command.

help("modules")

>>> help("modules")

—-main__ collections neopixel_write supervisor

_pixelbuf digitalio 0s sys
it_bus_device displayio pulseio terminalio
i) time

random touchio

re
rotaryio
rtc
storage
microp) n struct
es on the

That's it! You now know two ways to find all of the modules built into CircuitPython for
your compatible microcontroller board.

Installing the Mu Editor

Mu is a simple code editor that works with the Adafruit CircuitPython boards. It's
written in Python and works on Windows, MacOS, Linux and Raspberry Pi. The serial
console is built right in so you get immediate feedback from your board's serial
output!

Mu is our recommended editor - please use it (unless you are an experienced

coder with a favorite editor already!).

©Adafruit Industries Page 26 of 199

https://circuitpython.readthedocs.io/en/latest/shared-bindings/support_matrix.html#

Download and Install Mu

Code with Mu: a simple Python editor for beginner programmers.

r o+ 2 & > M e e?20

Download Mu from https://codewith.mu ().

Click the Download link for downloads and
installation instructions.

Click Start Here to find a wealth of other
information, including extensive tutorials
and and how-to's.

Windows users: due to the nature of MSI installers, please remove old versions of

Mu before installing the latest version.

Starting Up Mu

Please select the desired mode then click "OK", Otherwise, click "Cancel”.

BBC micro:bit
¥ Write MicroPython for the BBC microbit

CircuitPython
Write code for boards running CircuitPython.

ESP MicroPython
Write MicroPython on ESP8266/ESP32 boards.

Lego MicroPython
Write MicroPython directly on Lego Spike devices

Pyboard MicroPython
Use MicroPython on the Pyboard line of boards

Change mode at any time by dicking the *"Mode" button containing Mu's logo.

Cancel

©Adafruit Industries

The first time you start Mu, you will be
prompted to select your 'mode' - you can
always change your mind later. For now
please select CircuitPython!

The current mode is displayed in the lower
right corner of the window, next to the
"gear" icon. If the mode says "Microbit" or
something else, click the Mode button in
the upper left, and then choose
"CircuitPython" in the dialog box that
appears.

Page 27 of 199

https://learn.adafruit.com//assets/105677
https://learn.adafruit.com//assets/105677
https://codewith.mu/
https://learn.adafruit.com//assets/105681
https://learn.adafruit.com//assets/105681

Mu attempts to auto-detect your board on
startup, so if you do not have a

Could not find an attached CircuitPython Circuiththon board pl ugged in with a
device.

Python files for CircuitPython devices are stored on the CI RCU ITPY d rive ava Ila ble’ M u wi | | Inform
device. Therefore, to edit these files you need to have . .

the device plugged in. Until you plug in a device, Mu you where it will store any code you save

will use the directory found here:

until you plug in a board.

[Users/kattni/mu_code

...to store your code.

To avoid this warning, plug in a board and
ensure that the CIRCUITPY drive is
mounted before starting Mu.

Using Mu

You can now explore Mu! The three main sections of the window are labeled below;
the button bar, the text editor, and the serial console / REPL.

LK)
Mode New
code.py

1

Mu 1.0.3 - code.py

Theme Check Help Quit

LLLLL

-reload is on. Simply save files over USB to run them or enter REPL to
disable.

Press any key to enter the REPL. Use CTRL-D to reload.

Now you're ready to code! Let's keep going...

Creating and Editing Code

One of the best things about CircuitPython is how simple it is to get code up and
running. This section covers how to create and edit your first CircuitPython program.

To create and edit code, all you'll need is an editor. There are many options. Adafruit

strongly recommends using Mu! It's designed for CircuitPython, and it's really simple
and easy to use, with a built in serial console!

©Adafruit Industries Page 28 of 199

https://learn.adafruit.com//assets/105679
https://learn.adafruit.com//assets/105679

If you don't or can't use Mu, there are a number of other editors that work quite well.
The Recommended Editors page () has more details. Otherwise, make sure you do
"Eject" or "Safe Remove" on Windows or "sync" on Linux after writing a file if you
aren't using Mu. (This is not a problem on MacOS.)

Creating Code

Installing CircuitPython generates a
code.py file on your CIRCUITPY drive. To
begin your own program, open your editor,
and load the code.py file from the
CIRCUITPY drive.

Serial Plotter Zoom-k

If you are using Mu, click the Load button
in the button bar, navigate to the
CIRCUITPY drive, and choose code.py.

Copy and paste the following code into your editor:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:

led.value = True
time.sleep(0.5)
led.value = alse
time.sleep(0.5)

The KB2040, QT Py and the Trinkeys do not have a built-in little red LED! There is
an addressable RGB NeoPixel LED. The above example will NOT work on the
KB2040, QT Py or the Trinkeys!

If you're using a KB2040, QT Py or a Trinkey, please download the NeoPixel blink
example ().

The NeoPixel blink example uses the onboard NeoPixel, but the time code is the

same. You can use the linked NeoPixel Blink example to follow along with this

guide page.

©Adafruit Industries Page 29 of 199

https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors
https://learn.adafruit.com//assets/105703
https://learn.adafruit.com//assets/105703
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Welcome_to_CircuitPython/code.py
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Welcome_to_CircuitPython/code.py

G000000000000

9099 00

Mode Load Save Serial Plotter Zoom-~in

Save the nt Python script

board
digitalio
time

5 led digitalio.Digita
6 led.direction digita

It will look like this. Note that under the
while True: line, the next four lines
begin with four spaces to indent them, and
they're indented exactly the same amount.
All the lines before that have no spaces
before the text.

Save the code.py file on your CIRCUITPY
drive.

The little LED should now be blinking. Once per half-second.

Congratulations, you've just run your first CircuitPython program!

On most boards you'll find a tiny red LED.

On the ItsyBitsy nRF52840, you'll find a tiny blue LED.

On QT Py MO, QT Py RP2040, and the Trinkey series, you will find only an RGB
NeoPixel LED.

©Adafruit Industries

Page 30 of 199

https://learn.adafruit.com//assets/105704
https://learn.adafruit.com//assets/105704
https://learn.adafruit.com//assets/105705
https://learn.adafruit.com//assets/105705

Editing Code

=t e it Poemel || Sy To edit code, open the code.py file on your
Load & Python script CIRCUITPY drive into your editor.

Make the desired changes to your code.
Save the file. That's it!

Your code changes are run as soon as the file is done saving.

There's one warning before you continue...

Don't click reset or unplug your board!

The CircuitPython code on your board detects when the files are changed or written
and will automatically re-start your code. This makes coding very fast because you
save, and it re-runs. If you unplug or reset the board before your computer finishes
writing the file to your board, you can corrupt the drive. If this happens, you may lose
the code you've written, so it's important to backup your code to your computer
regularly.

There are a couple of ways to avoid filesystem corruption.

1. Use an editor that writes out the file completely when you save it.

Check out the Recommended Editors page () for details on different editing options.

If you are dragging a file from your host computer onto the CIRCUITPY drive, you

still need to do step 2. Eject or Sync (below) to make sure the file is completely
written.

©Adafruit Industries Page 31 of 199

https://learn.adafruit.com//assets/105706
https://learn.adafruit.com//assets/105706
https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors

2. Eject or Sync the Drive After Writing

If you are using one of our not-recommended-editors, not all is lost! You can still make
it work.

On Windows, you can Eject or Safe Remove the CIRCUITPY drive. It won't actually
eject, but it will force the operating system to save your file to disk. On Linux, use the
sync command in a terminal to force the write to disk.

You also need to do this if you use Windows Explorer or a Linux graphical file
manager to drag a file onto CIRCUITPY.

Oh No | Did Something Wrong and Now The CIRCUITPY
Drive Doesn't Show Up!!!
Don't worry! Corrupting the drive isn't the end of the world (or your board!). If this

happens, follow the steps found on the Troubleshooting () page of every board
guide to get your board up and running again.

Back to Editing Code...

Now! Let's try editing the program you added to your board. Open your code.py file
into your editor. You'll make a simple change. Change the first 0.5 to 0.1. The code
should look like this:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
led.value = True
time.sleep(0.1)
led.value = False
time.sleep(0.5)

Leave the rest of the code as-is. Save your file. See what happens to the LED on your
board? Something changed! Do you know why?

You don't have to stop there! Let's keep going. Change the second 0.5 to 0.1 soit
looks like this:

while True:
led.value = True

©Adafruit Industries Page 32 of 199

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting

time.sleep(0.1)
led.value = False
time.sleep(0.1)

Now it blinks really fast! You decreased the both time that the code leaves the LED on
and off!

Now try increasing both of the 0.1 to 1. Your LED will blink much more slowly
because you've increased the amount of time that the LED is turned on and off.

Well done! You're doing great! You're ready to start into new examples and edit them
to see what happens! These were simple changes, but major changes are done using
the same process. Make your desired change, save it, and get the results. That's
really all there is to it!

Naming Your Program File

CircuitPython looks for a code file on the board to run. There are four options: code.tx
t, code.py, main.txt and main.py. CircuitPython looks for those files, in that order, and
then runs the first one it finds. While code.py is the recommended name for your code
file, it is important to know that the other options exist. If your program doesn't seem
to be updating as you work, make sure you haven't created another code file that's
being read instead of the one you're working on.

Exploring Your First CircuitPython Program

First, you'll take a look at the code you're editing.

Here is the original code again:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:

led.value = True
time.sleep(0.5)
led.value = False
time.sleep(0.5)

©Adafruit Industries Page 33 of 199

Imports & Libraries

Each CircuitPython program you run needs to have a lot of information to work. The
reason CircuitPython is so simple to use is that most of that information is stored in
other files and works in the background. The files built into CircuitPython are called m
odules, and the files you load separately are called libraries. Modules are built into
CircuitPython. Libraries are stored on your CIRCUITPY drive in a folder called lib.

import board
import digitalio
import time

The import statements tells the board that you're going to use a particular library or
module in your code. In this example, you imported three modules: board,
digitalio, and time. All three of these modules are built into CircuitPython, so no
separate library files are needed. That's one of the things that makes this an excellent
first example. You don't need anything extra to make it work!

These three modules each have a purpose. The first one, board, gives you access to
the hardware on your board. The second, digitalio, lets you access that hardware
as inputs/outputs. The third, time, let's you control the flow of your code in multiple
ways, including passing time by 'sleeping".

Setting Up The LED

The next two lines setup the code to use the LED.

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

Your board knows the red LED as LED . So, you initialise that pin, and you set it to
output. You set led to equal the rest of that information so you don't have to type it
all out again later in our code.

Loop-de-loops

The third section starts with a while statement. while True: essentially means,
"forever do the following:". while True: creates aloop. Code will loop "while" the
condition is "true" (vs. false), and as True is never False, the code will loop forever.

All code that is indented under while True: is "inside" the loop.

Inside our loop, you have four items:

©Adafruit Industries Page 34 of 199

while True:
led.value =
time.sleep(0.5)
led.value = False
time.sleep(0.5)

True

First, you have led.value = True. This line tells the LED to turn on. On the next
line, you have time.sleep(0.5) . This line is telling CircuitPython to pause running
code for 0.5 seconds. Since this is between turning the led on and off, the led will be
on for 0.5 seconds.

The next two lines are similar. led.value = False tells the LED to turn off, and tim
e.sleep(0.5) tells CircuitPython to pause for another 0.5 seconds. This occurs
between turning the led off and back on so the LED will be off for 0.5 seconds too.

Then the loop will begin again, and continue to do so as long as the code is running!

So, when you changed the first 0.5 to 0.1, you decreased the amount of time that
the code leaves the LED on. So it blinks on really quickly before turning off!

Great job! You've edited code in a CircuitPython program!

What Happens When My Code Finishes Running?

When your code finishes running, CircuitPython resets your microcontroller board to
prepare it for the next run of code. That means any set up you did earlier no longer
applies, and the pin states are reset.

For example, try reducing the code snippet above by eliminating the loop entirely,
and replacing it with led.value = True. The LED will flash almost too quickly to
see, and turn off. This is because the code finishes running and resets the pin state,
and the LED is no longer receiving a signal.

To that end, most CircuitPython programs involve some kind of loop, infinite or
otherwise.

What if | Don't Have the Loop?

If you don't have the loop, the code will run to the end and exit. This can lead to some
unexpected behavior in simple programs like this since the "exit" also resets the state
of the hardware. This is a different behavior than running commands via REPL. So if

©Adafruit Industries Page 35 of 199

you are writing a simple program that doesn't seem to work, you may need to add a
loop to the end so the program doesn't exit.

The simplest loop would be:

while True:
pass

And remember - you can press CTRL+C to exit the loop.

See also the Behavior section in the docs ().

Connecting to the Serial Console

One of the staples of CircuitPython (and programming in general!) is something called
a "print statement". This is a line you include in your code that causes your code to
output text. A print statement in CircuitPython (and Python) looks like this:

print("Hello, world!")
This line in your code.py would result in:
Hello, world!

However, these print statements need somewhere to display. That's where the serial
console comes in!

The serial console receives output from your CircuitPython board sent over USB and
displays it so you can see it. This is necessary when you've included a print statement
in your code and you'd like to see what you printed. It is also helpful for
troubleshooting errors, because your board will send errors and the serial console will
display those too.

The serial console requires an editor that has a built in terminal, or a separate

terminal program. A terminal is a program that gives you a text-based interface to
perform various tasks.

Are you using Mu?

If so, good news! The serial console is built into Mu and will autodetect your board
making using the serial console really really easy.

©Adafruit Industries Page 36 of 199

https://circuitpython.readthedocs.io/en/latest/README.html#behavior

First, make sure your CircuitPython board
is plugged in.

Could not find ttached CircuitPytho .
sise N e If you open Mu without a board plugged

Python files for CircuitPython devices are stored on the in you may encounter the error seen here

device. Therefore, to edit these files you need to have
the device plugged in. Until you plug in a device, Mu

will use the directory found hers: letting you know no CircuitPython board
[Users/kattni/mu_code was found and indicating where your code
b will be stored until you plug in a board.

If you are using Windows 7, make sure you
installed the drivers ().

Once you've opened Mu with your board plugged in, look for the Serial button in the
button bar and click it.

000000

Load Save Serial Plotter Zoom-in Zoom-out

Open a serial connection to your device.

The Mu window will split in two, horizontally, and display the serial console at the
bottom.

Auto-reload 1is on. Simply save files over USB to run them or enter REPL to disable.
code.py output:
Hello, world!

Code done running.

Press any key to enter the REPL. Use CTRL-D to reload.

If nothing appears in the serial console, it may mean your code is done running
or has no print statements in it. Click into the serial console part of Mu, and press
CTRL+D to reload.

Serial Console Issues or Delays on Linux

If you're on Linux, and are seeing multi-second delays connecting to the serial
console, or are seeing "AT" and other gibberish when you connect, then the
modemmanager service might be interfering. Just remove it; it doesn't have much use

unless you're still using dial-up modems.

To remove modemmanager , type the following command at a shell:

©Adafruit Industries Page 37 of 199

https://learn.adafruit.com//assets/105925
https://learn.adafruit.com//assets/105925
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers

sudo apt purge modemmanager

Setting Permissions on Linux

On Linux, if you see an error box something like the one below when you press the S
erial button, you need to add yourself to a user group to have permission to connect
to the serial console.

Mu
Cannot connect to device on port /dev/ttyACMO

4
M Click on the device's reset button, wait a few
seconds and then try again.

& ok

On Ubuntu and Debian, add yourself to the dialout group by doing:

sudo adduser $USER dialout

After running the command above, reboot your machine to gain access to the group.
On other Linux distributions, the group you need may be different. See the Advanced
Serial Console on Linux () for details on how to add yourself to the right group.

Using Something Else?

If you're not using Mu to edit, are using or if for some reason you are not a fan of its
built in serial console, you can run the serial console from a separate program.

Windows requires you to download a terminal program. Check out the Advanced

Serial Console on Windows page for more details. ()

MacOS has Terminal built in, though there are other options available for download. C
heck the Advanced Serial Console on Mac page for more details. ()

Linux has a terminal program built in, though other options are available for
download. Check the Advanced Serial Console on Linux page for more details. ()

Once connected, you'll see something like the following.

©Adafruit Industries Page 38 of 199

https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux
file:///home/welcome-to-circuitpython/advanced-serial-console-on-windows
file:///home/welcome-to-circuitpython/advanced-serial-console-on-windows
file:///home/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux
file:///home/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux

Auto-reload is on. Simply save files over USB to run them or enter REPL to disab
le.

code.py output:

Hello, world!

Code done running.

Press any key to enter the REPL. Use CTRL-D to reload.

Interacting with the Serial Console

Once you've successfully connected to the serial console, it's time to start using it.

The code you wrote earlier has no output to the serial console. So, you're going to
edit it to create some output.

Open your code.py file into your editor, and include a print statement. You can print
anything you like! Just include your phrase between the quotation marks inside the
parentheses. For example:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
print("Hello, CircuitPython!")
led.value = True
time.sleep(1l)
led.value = False
time.sleep(1)

Save your file.

Now, let's go take a look at the window with our connection to the serial console.

000 4. screen

Hello, CircuitPython!
Hello, cuitPython!
Hello, cuitPython!
Hello, cuitPython!

Hello, CircuitPython!

Excellent! Our print statement is showing up in our console! Try changing the printed
text to something else.

import board
import digitalio
import time

©Adafruit Industries Page 39 of 199

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
print("Hello back to you!")

led.value = True
time.sleep(1)
led.value = False
time.sleep(1l)

Keep your serial console window where you can see it. Save your file. You'll see what
the serial console displays when the board reboots. Then you'll see your new change!

4, screen

ircuitPython!

KeyboardInterrupt:
soft reboot

The Traceback (most recent call last): istelling you the last thing your board
was doing before you saved your file. This is normal behavior and will happen every
time the board resets. This is really handy for troubleshooting. Let's introduce an error
SO you can see how it is used.

Delete the e atthe end of True from the line led.value = True so thatit says le
d.value = Tru

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
print("Hello back to you!")
led.value = Tru
time.sleep(1)
led.value = False
time.sleep(1)

Save your file. You will notice that your red LED will stop blinking, and you may have a

colored status LED blinking at you. This is because the code is no longer correct and
can no longer run properly. You need to fix it!

©Adafruit Industries Page 40 of 199

Usually when you run into errors, it's not because you introduced them on purpose.
You may have 200 lines of code, and have no idea where your error could be hiding.
This is where the serial console can help. Let's take a look!

Hello back to you!

Traceback (most recent call last):
File "code.py", line 13, in <module>

KeyboardInterrupt:

soft reboot

Auto-reload is on. Simply save files over USB to run them or enter REPL to disab
le.
code.py output:
Hello back to you!
Traceback (most recent call last):
File line 10, in <module>
NameError: name 'Tru' is not defined

The Traceback (most recent call last): istelling you that the last thing it was
able to run was line 10 in your code. The next line is your error: NameError: name
‘Tru' 1is not defined . This error might not mean a lot to you, but combined with
knowing the issue is on line 10, it gives you a great place to start!

Go back to your code, and take a look at line 10. Obviously, you know what the
problem is already. But if you didn't, you'd want to look at line 10 and see if you could
figure it out. If you're still unsure, try googling the error to get some help. In this case,
you know what to look for. You spelled True wrong. Fix the typo and save your file.

Le.

code.py output:

Hello back to you!

Traceback (most recent call last):
File "code.py", line 10, in <module>

NameError: name 'Tru' is not defined

Press any key to enter the REPL. Use CTRL-D to reload.
soft reboot

Auto-reload is on. Simply save files over USB to run them or enter REPL to disab
Le.

code.py output:

Hello back to you!

Hello back to you!

Nice job fixing the error! Your serial console is streaming and your red LED Is blinking
again.

The serial console will display any output generated by your code. Some sensors,
such as a humidity sensor or a thermistor, receive data and you can use print

©Adafruit Industries Page 41 of 199

statements to display that information. You can also use print statements for
troubleshooting, which is called "print debugging". Essentially, if your code isn't
working, and you want to know where it's failing, you can put print statements in
various places to see where it stops printing.

The serial console has many uses, and is an amazing tool overall for learning and
programming!

The REPL

The other feature of the serial connection is the Read-Evaluate-Print-Loop, or REPL.
The REPL allows you to enter individual lines of code and have them run immediately.
It's really handy if you're running into trouble with a particular program and can't
figure out why. It's interactive so it's great for testing new ideas.

Entering the REPL

To use the REPL, you first need to be connected to the serial console. Once that
connection has been established, you'll want to press CTRL+C.

If there is code running, in this case code measuring distance, it will stop and you'll
see Press any key to enter the REPL. Use CTRL-D to reload. Follow those
instructions, and press any key on your keyboard.

The Traceback (most recent call last): istelling you the last thing your board
was doing before you pressed Ctrl + C and interrupted it. The KeyboardInterrupt

is you pressing CTRL+C. This information can be handy when troubleshooting, but for
now, don't worry about it. Just note that it is expected behavior.

o0 Default (tio)
Distance:
Distance:
Distance:
Distance:
Distance:
Traceback (most recent call last):

File "code.py", line 43, in <module>
KeyboardInterrupt:

Code done running.

Press any key to enter the REPL. Use CTRL-D to reload.

If your code.py file is empty or does not contain a loop, it will show an empty output
and Code done running. . There is no information about what your board was
doing before you interrupted it because there is no code running.

©Adafruit Industries Page 42 of 199

N N Default (tio)

Auto-reload is on. Simply save files over USB to run them or enter REPL to disab
le.

code.py output:

Code done running.

Press any key to enter the REPL. Use CTRL-D to reload.

If you have no code.py on your CIRCUITPY drive, you will enter the REPL immediately
after pressing CTRL+C. Again, there is no information about what your board was
doing before you interrupted it because there is no code running.

N N J Default (tio)
Auto-reload is on. Simply save files over USB to run them or enter REPL to disab
le.

Code done running.

Press any key to enter the REPL. Use CTRL-D to reload.

Regardless, once you press a key you'll see a >>> prompt welcoming you to the
REPL!

cee Default (tio)

Adafruit CircuitPython 7.0.0 on 2021-10-26; Adafruit Feather RP2040 with rp2040

>>>

If you have trouble getting to the >>> prompt, try pressing Ctrl + C a few more times.

The first thing you get from the REPL is information about your board.

Adafruit CircuitPython 7.0.0 on 2021-10-26; Adafruit Feather RP2040 with rp2040

This line tells you the version of CircuitPython you're using and when it was released.
Next, it gives you the type of board you're using and the type of microcontroller the
board uses. Each part of this may be different for your board depending on the
versions you're working with.

This is followed by the CircuitPython prompt.

Interacting with the REPL

From this prompt you can run all sorts of commands and code. The first thing you'll do
isrun help() . This will tell you where to start exploring the REPL. To run code in the
REPL, type it in next to the REPL prompt.

Type help() nextto the promptin the REPL.

©Adafruit Industries Page 43 of 199

ceoe Default (tio)

Adafruit CircuitPython 7.0.0 on 2021-10-26; Adafruit Feather RP2040 with rp2040
>>> help()

Then press enter. You should then see a message.
coeoe Default (tio)
Adafruit CircuitPython 7.0.0 on 2021-10-26; Adafruit Feather RP2040 with rp2040
>>> help()
Welcome to Adafruit CircuitPython 7.0.0!

Visit circuitpython.org for more information.

To Llist built-in modules type “help("modules")".
>>>

First part of the message is another reference to the version of CircuitPython you're
using. Second, a URL for the CircuitPython related project guides. Then... wait. What's

this? To list built-in modules type "help("modules") . Remember the

modules you learned about while going through creating code? That's exactly what
this is talking about! This is a perfect place to start. Let's take a look!

Type help("modules") into the REPL next to the prompt, and press enter.

>>> help("modules")
--main__ board micropython storage
-bleio builtins msgpack struct
adafruit_bus_device busio neopixel_write supervisor
adafruit_pixelbuf collections onewireio synthio
counti 0s sys
iC paralleldisplay terminalio
analogio jisplayio pulseio time
array errno pwmio touchio
atexit fontio qrio traceback
audiobusio framebufferio rainbowio ulab
audiocore [random usb_cdc
audiomixer jetpass re usb_hid
audio imagecapture rgbmatrix usb_midi
10 rotaryio vectorio
binascii json rp2pio watchdog
bitbangio keypad rtc
bitmaptools math sdcardio
bitops microcontroller sharpdisplay
Plus any modules on the filesystem
>>>

This is a list of all the core modules built into CircuitPython, including board .
Remember, board contains all of the pins on the board that you can use in your
code. From the REPL, you are able to see that list!

Type import board into the REPL and press enter. It'll go to a new prompt. It might
look like nothing happened, but that's not the case! If you recall, the import
statement simply tells the code to expect to do something with that module. In this
case, it's telling the REPL that you plan to do something with that module.

>>> import board
25>

Next, type dir(board) into the REPL and press enter.

©Adafruit Industries

Page 44 of 199

, 'D1', 'D18', 'D11', , 'D13',
', 'MISQ', 'MOSI', 'NEQPIXEL', 'RX', (

This is a list of all of the pins on your board that are available for you to use in your
code. Each board's list will differ slightly depending on the number of pins available.
Do you see LED ? That's the pin you used to blink the red LED!

The REPL can also be used to run code. Be aware that any code you enter into the
REPL isn't saved anywhere. If you're testing something new that you'd like to keep,

make sure you have it saved somewhere on your computer as well!

Every programmer in every programming language starts with a piece of code that
says, "Hello, World." You're going to say hello to something else. Type into the REPL:

print("Hello, CircuitPython!")

Then press enter.

That's all there is to running code in the REPL! Nice job!

You can write single lines of code that run stand-alone. You can also write entire
programs into the REPL to test them. Remember that nothing typed into the REPL is
saved.

There's a lot the REPL can do for you. It's great for testing new ideas if you want to
see if a few new lines of code will work. It's fantastic for troubleshooting code by
entering it one line at a time and finding out where it fails. It lets you see what
modules are available and explore those modules.

Try typing more into the REPL to see what happens!
Everything typed into the REPL is ephemeral. Once you reload the REPL or return
to the serial console, nothing you typed will be retained in any memory space. So

be sure to save any desired code you wrote somewhere else, or you'll lose it
when you leave the current REPL instance!

©Adafruit Industries Page 45 of 199

Returning to the Serial Console

When you're ready to leave the REPL and return to the serial console, simply press CT
RL+D. This will reload your board and reenter the serial console. You will restart the
program you had running before entering the REPL. In the console window, you'll see
any output from the program you had running. And if your program was affecting
anything visual on the board, you'll see that start up again as well.

You can return to the REPL at any time!

CircuitPython Libraries

As CircuitPython development continues and there are new releases, Adafruit
will stop supporting older releases. Visit https://circuitpython.org/downloads to
download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.
Please update CircuitPython and then visit https://circuitpython.org/libraries to
download the latest Library Bundle.

Each CircuitPython program you run needs to have a lot of information to work. The
reason CircuitPython is so simple to use is that most of that information is stored in
other files and works in the background. These files are called libraries. Some of them
are built into CircuitPython. Others are stored on your CIRCUITPY drive in a folder
called lib. Part of what makes CircuitPython so great is its ability to store code
separately from the firmware itself. Storing code separately from the firmware makes
it easier to update both the code you write and the libraries you depend.

Your board may ship with a lib folder already, it's in the base directory of the drive. If

not, simply create the folder yourself. When you first install CircuitPython, an empty lib
directory will be created for you.

©Adafruit Industries Page 46 of 199

https://circuitpython.org/downloads
https://circuitpython.org/libraries

[] 8 circuITPY
< — = % v

Locations
Macintosh HD

Favorites

6} kattni R boot_out.txt
A, Applications B code.py

=) Desktop » llib

i’ Documents

O Downloads B circ

CircuitPython libraries work in the same way as regular Python modules so the Python
docs () are an excellent reference for how it all should work. In Python terms, you can
place our library files in the lib directory because it's part of the Python path by
default.

One downside of this approach of separate libraries is that they are not built in. To
use them, one needs to copy them to the CIRCUITPY drive before they can be used.
Fortunately, there is a library bundle.

The bundle and the library releases on GitHub also feature optimized versions of the
libraries with the .mpy file extension. These files take less space on the drive and
have a smaller memory footprint as they are loaded.

Due to the regular updates and space constraints, Adafruit does not ship boards with
the entire bundle. Therefore, you will need to load the libraries you need when you
begin working with your board. You can find example code in the guides for your
board that depends on external libraries.

Either way, as you start to explore CircuitPython, you'll want to know how to get
libraries on board.

The Adafruit Learn Guide Project Bundle

The quickest and easiest way to get going with a project from the Adafruit Learn
System is by utilising the Project Bundle. Most guides now have a Download Project
Bundle button available at the top of the full code example embed. This button
downloads all the necessary files, including images, etc., to get the guide project up
and running. Simply click, open the resulting zip, copy over the right files, and you're
good to go!

The first step is to find the Download Project Bundle button in the guide you're
working on.

©Adafruit Industries Page 47 of 199

https://docs.python.org/3/tutorial/modules.html
https://docs.python.org/3/tutorial/modules.html

The Download Project Bundle button is only available on full demo code

embedded from GitHub in a Learn guide. Code snippets will NOT have the
button available.

> Circuit Playground Express: Piano in the Key of Lime > Piano in the Key of Lime

Piano in the Key of [en][@ save][& subscrive
Lime

Now we'll take everything we learned and put it together!

Be sure to save your current code.py if you've changed anything you'd like to
keep. Download the following file. Rename it to cod
Circuit Playground Express.

Circuit Playground

Express: Pia'no in # SPDX-FileCopyrightText: 2017 Kattni Rembor for Adafruit Industries
the Key of Lime g

SPDX-License-Identifier: MIT

save it to your

I Copy Code

By Kattni Rembor
from adafruit_circuitplayground import cp
Create a full scale tone piano using
while True:
if cp.switch:
some cute little fruits. print("Slide switch off!")
co.pixels.fill((a. 8. 8))

CircuitPython, capacitive touch and

When you copy the contents of the Project Bundle to your CIRCUITPY drive, it
will replace all the existing content! If you don't want to lose anything, ensure you
copy your current code to your computer before you copy over the new Project
Bundle content!

The Download Project Bundle button downloads a zip file. This zip contains a series
of directories, nested within which is the code.py, any applicable assets like images or
audio, and the lib/ folder containing all the necessary libraries. The following zip was
downloaded from the Piano in the Key of Lime guide.

Downloads

Name
CIRCUITPY

Macintosh HD n PianolnTheKeyOfLime.zip

circuitpytho... - B Piano_In_The_Key_Of_Lime
Network B PianolnTheKeyOfLime

n README.txt

kattni
@ CircuitPython 7.x
Desktop

Applications > B lib

Documents . code.py

The Piano in the Key of Lime guide was chosen as an example. That guide is
specific to Circuit Playground Express, and cannot be used on all boards. Do not

©Adafruit Industries Page 48 of 199

expect to download that exact bundle and have it work on your non-CPX

microcontroller.

When you open the zip, you'll find some nested directories. Navigate through them
until you find what you need. You'll eventually find a directory for your CircuitPython
version (in this case, 7.x). In the version directory, you'll find the file and directory you
need: code.py and lib/. Once you find the content you need, you can copy it all over
to your CIRCUITPY drive, replacing any files already on the drive with the files from
the freshly downloaded zip.

In some cases, there will be other files such as audio or images in the same

directory as code.py and lib/. Make sure you include all the files when you copy
things over!

Once you copy over all the relevant files, the project should begin running! If you find
that the project is not running as expected, make sure you've copied ALL of the
project files onto your microcontroller board.

That's all there is to using the Project Bundle!

The Adafruit CircuitPython Library Bundle

Adafruit provides CircuitPython libraries for much of the hardware they provide,
including sensors, breakouts and more. To eliminate the need for searching for each
library individually, the libraries are available together in the Adafruit CircuitPython
Library Bundle. The bundle contains all the files needed to use each library.

Downloading the Adafruit CircuitPython Library Bundle

You can download the latest Adafruit CircuitPython Library Bundle release by clicking
the button below. The libraries are being constantly updated and improved, so you'll
always want to download the latest bundle.

Match up the bundle version with the version of CircuitPython you are running. For
example, you would download the 6.x library bundle if you're running any version of
CircuitPython 6, or the 7.x library bundle if you're running any version of CircuitPython
7, etc. If you mix libraries with major CircuitPython versions, you will get incompatible
mpy errors due to changes in library interfaces possible during major version
changes.

©Adafruit Industries Page 49 of 199

Click to visit circuitpython.org for the

latest Adafruit CircuitPython Library
Bundle

Download the bundle version that matches your CircuitPython firmware version. If you
don't know the version, check the version info in boot_out.txt file on the CIRCUITPY
drive, or the initial prompt in the CircuitPython REPL. For example, if you're running
v7.0.0, download the 7.x library bundle.

There's also a py bundle which contains the uncompressed python files, you probably
don't want that unless you are doing advanced work on libraries.

The CircuitPython Community Library
Bundle

The CircuitPython Community Library Bundle is made up of libraries written and
provided by members of the CircuitPython community. These libraries are often
written when community members encountered hardware not supported in the
Adafruit Bundle, or to support a personal project. The authors all chose to submit
these libraries to the Community Bundle make them available to the community.

These libraries are maintained by their authors and are not supported by Adafruit. As
you would with any library, if you run into problems, feel free to file an issue on the
GitHub repo for the library. Bear in mind, though, that most of these libraries are
supported by a single person and you should be patient about receiving a response.
Remember, these folks are not paid by Adafruit, and are volunteering their personal
time when possible to provide support.

Downloading the CircuitPython Community Library Bundle
You can download the latest CircuitPython Community Library Bundle release by

clicking the button below. The libraries are being constantly updated and improved,
so you'll always want to download the latest bundle.

Click for the latest CircuitPython

Community Library Bundle release

The link takes you to the latest release of the CircuitPython Community Library
Bundle on GitHub. There are multiple versions of the bundle available. Download the
bundle version that matches your CircuitPython firmware version. If you don't know

©Adafruit Industries Page 50 of 199

https://circuitpython.org/libraries
https://github.com/adafruit/CircuitPython_Community_Bundle/releases

the version, check the version info in boot_out.txt file on the CIRCUITPY drive, or the
initial prompt in the CircuitPython REPL. For example, if you're running v7.0.0,
download the 7.x library bundle.

Understanding the Bundle

After downloading the zip, extract its contents. This is usually done by double clicking
on the zip. On Mac OSX, it places the file in the same directory as the zip.

Il Downloads

oo f o NI

Date Added
» [adafruit-circuitpython-bundle-7.x-mpy-20211024 Today, 12:15
n adafruit-circuitpython-bundle-7.x-mpy-20211024.zip T 12:15

Open the bundle folder. Inside you'll find two information files, and two folders. One
folder is the lib bundle, and the other folder is the examples bundle.

[] B adafruit-circuitpython-bundle-7.x-mpy-20211024
< HH
Locations Name Date Added
@ Macintosh HD
A circuitpy a
€ Network » B requirements

» B examples

> B lib
A, Applications B versionsixt

[Deskt
i . README.txt

k' Documents

Now open the lib folder. When you open the folder, you'll see a large number of .mpy
files, and folders.

[]
<

Locations Date Added
lacintosh HD
B creuitpy

@ Network » B adafruit_ads1x15

. adafruit_74hc595.mpy

”% . adafruit_adt7410.mpy
kattni

A, Applications . adafruit_adxI34x.mpy

Example Files

All example files from each library are now included in the bundles in an examples
directory (as seen above), as well as an examples-only bundle. These are included for
two main reasons:

« Allow for quick testing of devices.

©Adafruit Industries Page 51 of 199

« Provide an example base of code, that is easily built upon for individualized
purposes.

[J B examples
< HH =y B
Locations Name Date Added
Macintosh HD
B cireuitPY A

@ Network 74hc595_simpletest.py

B) 72hcs95 8 led.py Today, 13

e adafruit_io_http

{5} kattni
A Applications) adafruit_io_mgqtt
=) Desktop

&' Documents

adafruit_io_simpletest.py

Copying Libraries to Your Board

First open the lib folder on your CIRCUITPY drive. Then, open the lib folder you
extracted from the downloaded zip. Inside you'll find a number of folders and .mpy
files. Find the library you'd like to use, and copy it to the lib folder on CIRCUITPY.

If the library is a directory with multiple .mpy files in it, be sure to copy the entire
folder to CIRCUITPY/lib.

This also applies to example files. Open the examples folder you extracted from the
downloaded zip, and copy the applicable file to your CIRCUITPY drive. Then, rename
it to code.py to run it.

If a library has multiple .mpy files contained in a folder, be sure to copy the entire

folder to CIRCUITPY/lib.

Understanding Which Libraries to Install

You now know how to load libraries on to your CircuitPython-compatible
microcontroller board. You may now be wondering, how do you know which libraries
you need to install? Unfortunately, it's not always straightforward. Fortunately, there is
an obvious place to start, and a relatively simple way to figure out the rest. First up:
the best place to start.

When you look at most CircuitPython examples, you'll see they begin with one or
more import statements. These typically look like the following:

« import library or module

©Adafruit Industries Page 52 of 199

However, import statements can also sometimes look like the following:

« from library or module import name
« from library or module.subpackage import name
« from library or module import name as local name

They can also have more complicated formats, such as includinga try / except
block, etc.

The important thing to know is that an import statement will always include the
name of the module or library that you're importing.

Therefore, the best place to start is by reading through the import statements.

Here is an example import list for you to work with in this section. There is no setup or
other code shown here, as the purpose of this section involves only the import list.

import time

import board

import neopixel

import adafruit lis3dh

import usb hid

from adafruit hid.consumer control import ConsumerControl

from adafruit hid.consumer _control code import ConsumerControlCode

Keep in mind, not all imported items are libraries. Some of them are almost always
built-in CircuitPython modules. How do you know the difference? Time to visit the
REPL.

In the Interacting with the REPL section () on The REPL page () in this guide, the
help("modules") command is discussed. This command provides a list of all of the

built-in modules available in CircuitPython for your board. So, if you connect to the
serial console on your board, and enter the REPL, you can run help("modules") to
see what modules are available for your board. Then, as you read through the impor
t statements, you can, for the purposes of figuring out which libraries to load, ignore
the statement that import modules.

The following is the list of modules built into CircuitPython for the Feather RP2040.

Your list may look similar or be anything down to a significant subset of this list for
smaller boards.

©Adafruit Industries Page 53 of 199

https://learn.adafruit.com/welcome-to-circuitpython/the-repl#interacting-with-the-repl-2977486-14
https://learn.adafruit.com/welcome-to-circuitpython/the-repl

>>> help("modules")

—-main__ board micropython
-bleio builtins msgpack
adafruit_bus_dev busio
adafruit_pixelbuf c onewireio
aesio (o0 0s

alarm C alio paralleldisplay
analogio displayio pulseio

array errno pwmio

atexit fontio

audiobusio framebufferio

audiocore

audiomixer ge SS re

audiomp3 imagecapture rgbmatrix

audiopwmi i0 rotaryio vectorio
json rp2pio watchdog
keypad rtc
math sdcardio
microcontroller sharpdisplay

Now that you know what you're looking for, it's time to read through the import
statements. The first two, time and board, are on the modules list above, so they're
built-in.

The next one, neopixel, is not on the module list. That means it's your first library!
So, you would head over to the bundle zip you downloaded, and search for neopixel.
There is a neopixel.mpy file in the bundle zip. Copy it over to the lib folder on your ClI
RCUITPY drive. The following one, adafruit lis3dh, is also not on the module list.
Follow the same process for adafruit_lis3dh, where you'll find adafruit_lis3dh.mpy,
and copy that over.

The fifth one is usb hid, and itis in the modules list, so it is built in. Often all of the
built-in modules come first in the import list, but sometimes they don't! Don't assume
that everything after the first library is also a library, and verify each import with the
modules list to be sure. Otherwise, you'll search the bundle and come up empty!

The final two imports are not as clear. Remember, when import statements are
formatted like this, the first thing after the from is the library name. In this case, the
library name is adafruit hid . A search of the bundle will find an adafruit_hid folder.
When a library is a folder, you must copy the entire folder and its contents as itis in
the bundle to the lib folder on your CIRCUITPY drive. In this case, you would copy the
entire adafruit_hid folder to your CIRCUITPY/lib folder.

Notice that there are two imports that begin with adafruit hid.Sometimes you will
need to import more than one thing from the same library. Regardless of how many
times you import the same library, you only need to load the library by copying over
the adafruit_hid folder once.

That is how you can use your example code to figure out what libraries to load on
your CircuitPython-compatible board!

©Adafruit Industries Page 54 of 199

There are cases, however, where libraries require other libraries internally. The
internally required library is called a dependency. In the event of library
dependencies, the easiest way to figure out what other libraries are required is to
connect to the serial console and follow along with the ImportError printed there.
The following is a very simple example of an ImportError, but the conceptis the
same for any missing library.

Example: ImportError Due to Missing
Library

If you choose to load libraries as you need them, or you're starting fresh with an
existing example, you may end up with code that tries to use a library you haven't yet
loaded. This section will demonstrate what happens when you try to utilise a library
that you don't have loaded on your board, and cover the steps required to resolve the
issue.

This demonstration will only return an error if you do not have the required library
loaded into the lib folder on your CIRCUITPY drive.

Let's use a modified version of the Blink example.

import board
import time
import simpleio

led = simpleio.DigitalOut(board.LED)

while True:
led.value = True
time.sleep(0.5)
led.value = False
time.sleep(0.5)

Save this file. Nothing happens to your board. Let's check the serial console to see
what's going on.

L

Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.
code.py output:
Traceback (most recent call last):

File "code.py", Lline 3, in <module>

ImportError: no module named 'simpleio’
Code done running.

Press any key to enter the REPL. Use CTRL-D to reload.

©Adafruit Industries Page 55 of 199

You have an ImportError. It says thereis no module named 'simpleio' . That's
the one you just included in your code!

Click the link above to download the correct bundle. Extract the lib folder from the
downloaded bundle file. Scroll down to find simpleio.mpy. This is the library file you're
looking for! Follow the steps above to load an individual library file.

The LED starts blinking again! Let's check the serial console.

r the REPL. Use CTRL-D to reload.

save files over USB to run them «

No errors! Excellent. You've successfully resolved an ImportError!

If you run into this error in the future, follow along with the steps above and choose
the library that matches the one you're missing.

Library Install on Non-Express Boards

If you have an MO non-Express board such as Trinket MO, Gemma MO, QT Py MO, or
one of the MO Trinkeys, you'll want to follow the same steps in the example above to
install libraries as you need them. Remember, you don't need to wait for an ImportEr
ror if you know what library you added to your code. Open the library bundle you
downloaded, find the library you need, and drag it to the lib folder on your CIRCUITPY
drive.

You can still end up running out of space on your MO non-Express board even if you
only load libraries as you need them. There are a number of steps you can use to try
to resolve this issue. You'll find suggestions on the Troubleshooting page ().

Updating CircuitPython Libraries and
Examples

Libraries and examples are updated from time to time, and it's important to update the
files you have on your CIRCUITPY drive.

To update a single library or example, follow the same steps above. When you drag
the library file to your lib folder, it will ask if you want to replace it. Say yes. That's it!

©Adafruit Industries Page 56 of 199

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting

A new library bundle is released every time there's an update to a library. Updates
include things like bug fixes and new features. It's important to check in every so
often to see if the libraries you're using have been updated.

CircUp CLI Tool

There is a command line interface (CLI) utility called CircUp () that can be used to
easily install and update libraries on your device. Follow the directions on the install

page within the CircUp learn guide (). Once you've got it installed you run the
command circup update in aterminal to interactively update all libraries on the
connected CircuitPython device. See the usage page in the CircUp guide () for a full

list of functionality

CircuitPython Documentation

You've learned about the CircuitPython built-in modules and external libraries. You
know that you can find the modules in CircuitPython, and the libraries in the Library
Bundles. There are guides available that explain the basics of many of the modules
and libraries. However, there's sometimes more capabilities than are necessarily
showcased in the guides, and often more to learn about a module or library. So,
where can you find more detailed information? That's when you want to look at the
AP| documentation.

The entire CircuitPython project comes with extensive documentation available on
Read the Docs. This includes both the CircuitPython core () and the Adafruit
CircuitPython libraries ().

CircuitPython Core Documentation

The CircuitPython core documentation () covers many of the details you might want to
know about the CircuitPython core and related topics. It includes API and usage info,
a design guide and information about porting CircuitPython to new boards,
MicroPython info with relation to CircuitPython, and general information about the

project.

©Adafruit Industries Page 57 of 199

https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/install-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/install-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/usage
https://circuitpython.readthedocs.io/
https://circuitpython.readthedocs.io/projects/bundle/en/latest/
https://circuitpython.readthedocs.io/projects/bundle/en/latest/
https://circuitpython.readthedocs.io/

Adafruit CircuitPython

Docs » Adafruit CircuitPython API Reference © Edit on GitHub

Adafruit CircuitPython API Reference

Welcome to the API reference documentation for Adafruit CircuitPython. This contains low-level
API reference docs which may link out to separate “getting started” guides. Adafruit has many
excellent tutorials available through the Adafruit Learning System.

CircuitPython

L ﬁmu?ﬂ

Architecture
Porting

Adding +10 support to other ports

MicroPython libraries

Glossary

The main page covers the basics including where to download CircuitPython, how to
contribute, differences from MicroPython, information about the project structure, and
a full table of contents for the rest of the documentation.

The list along the left side leads to more information about specific topics.

The first section is APl and Usage. This is where you can find information about how
to use individual built-in core modules, such as time and digitalio, details about
the supported ports, suggestions for troubleshooting, and basic info and links to the li
brary bundles. The Core Modules section also includes the Support Matrix, which is a
table of which core modules are available on which boards.

The second section is Design and Porting Reference. It includes a design guide, archit
ecture information, details on porting, and adding module support to other ports.

The third section is MicroPython Specific. It includes information on MicroPython and
related libraries, and a glossary of terms.

The fourth and final section is About the Project. It includes further information
including details on building, testing, and debugging CircuitPython, along with various
other useful links including the Adafruit Community Code of Conduct.

Whether you're a seasoned pro or new to electronics and programming, you'll find a

wealth of information to help you along your CircuitPython journey in the
documentation!

©Adafruit Industries Page 58 of 199

CircuitPython Library Documentation

The Adafruit CircuitPython libraries are documented in a very similar fashion. Each
library has its own page on Read the Docs. There is a comprehensive list available her
e (). Otherwise, to view the documentation for a specific library, you can visit the o
GitHub repository for the library, and find the link in the README.

For the purposes of this page, the LED Animation library () documentation will be
featured. There are two links to the documentation in each library GitHub repo. The
first one is the docs badge near the top of the README.

README.rst

Introduction

docs passing < online’ () Build C1 'passing

Perform a variety of LED animation tasks

The second place is the Documentation section of the README. Scroll down to find it,
and click on Read the Docs to get to the documentation.

Documentation

API documentation for this library can be found on

Now that you know how to find it, it's time to take a look at what to expect.

Not all library documentation will look exactly the same, but this will give you
some idea of what to expect from library docs.

The Introduction page is generated from the README, so it includes all the same info,
such as PyPl installation instructions, a quick demo, and some build details. It also
includes a full table of contents for the rest of the documentation (which is not part of
the GitHub README). The page should look something like the following.

LED_Animation Library
Docs » Introduction © Edit on GitHul

Introduction
Introduction

cocpuesg | crr 4823 ore
Simple test Perform a variety of LED animation tasks

The left side contains links to the rest of the documentation, divided into three
separate sections: Examples, APl Reference, and Other Links.

©Adafruit Industries Page 59 of 199

https://circuitpython.readthedocs.io/projects/bundle/en/latest/
https://circuitpython.readthedocs.io/projects/bundle/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_LED_Animation

Examples

The Examples section () is a list of library examples. This list contains anywhere from a
small selection to the full list of the examples available for the library.

This section will always contain at least one example - the simple test example.

LED_Animation Library

Docs » Simple test © Edit on GitHub

Simple test

Ensure your device works with this simple test.

Simple test

The simple test example is usually a basic example designed to show your setup is
working. It may require other libraries to run. Keep in mind, it's simple - it won't
showcase a comprehensive use of all the library features.

The LED Animation simple test demonstrates the Blink animation.

Simple test

Ensure your device works with this simple test.

ples/led_animation_simpl Py

1 # SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

2 # SPDX-License-Identifier: MIT

3

4 "

5 This simpletest example displays the Blink animation.

6

7 For NeoPixel FeatherWing. Update pixel_pin and pixel_num to match your wiring if using
8 a different form of NeoPixels.

g mnm

10 import board

11 import neopixel

12 from adafruit_led_animation.animation.blink import Blink

13 from adafruit_led_animation.color import RED

14

15 # Update to match the pin connected to your NeoPixels

16 pixel_pin = board.D6

17 # Update to match the number of NeoPixels you have connected
18 pixel_num = 32

19

20 pixels = neopixel.NeoPixel(pixel_pin, pixel_num, brightness=0.5, auto_write=False)
21

22 blink = Blink(pixels, speed=0.5, color=RED)

23

24 while True:
25 blink.animate()

In some cases, you'll find a longer list, that may include examples that explore other
features in the library. The LED Animation documentation includes a series of
examples, all of which are available in the library. These examples include
demonstrations of both basic and more complex features. Simply click on the example
that interests you to view the associated code.

©Adafruit Industries Page 60 of 199

https://circuitpython.readthedocs.io/projects/led-animation/en/latest/examples.html

Basic Animations

D the basic animati

wples/led_animation_basic_animations.py

1# SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
2 # SPDX-License-Identifier: MIT
3

.
S This example displays the basic animations in sequence, at a five second interval.

When there are multiple links in the Examples section, all of the example content
is, in actuality, on the same page. Each link after the first is an anchor link to the

specified section of the page. Therefore, you can also view all the available
examples by scrolling down the page.

You can view the rest of the examples by clicking through the list or scrolling down
the page. These examples are fully working code. Which is to say, while they may rely
on other libraries as well as the library for which you are viewing the documentation,
they should not require modification to otherwise work.

API| Reference

The API Reference section () includes a list of the library functions and classes. The
API (Application Programming Interface) of a library is the set of functions and classes

the library provides. Essentially, the APl defines how your program interfaces with the
functions and classes that you call in your code to use the library.

There is always at least one list item included. Libraries for which the code is included
in a single Python (.py) file, will only have one item. Libraries for which the code is
multiple Python files in a directory (called subpackages) will have multiple items in this
list. The LED Animation library has a series of subpackages, and therefore, multiple
items in this list.

Click on the first item in the list to begin viewing the API Reference section.

© adafruit_led_anination.snination

Implementation Notes Docs » adafruit_led_animation.animation © Edit on GitHub

adafruit_led_animation.animation

Animation base class for CircuitPython helper library for LED animations.

As with the Examples section, all of the API Reference content is on a single

page, and the links under API Reference are anchor links to the specified section
of the page.

When you click on an item in the APl Reference section, you'll find details about the
classes and functions in the library. In the case of only one item in this section, all the

©Adafruit Industries Page 61 of 199

https://circuitpython.readthedocs.io/projects/led-animation/en/latest/api.html

available functionality of the library will be contained within that first and only
subsection. However, in the case of a library that has subpackages, each item will
contain the features of the particular subpackage indicated by the link. The
documentation will cover all of the available functions of the library, including more
complex ones that may not interest you.

The first list item is the animation subpackage. If you scroll down, you'll begin to see
the available features of animation. They are listed alphabetically. Each of these
things can be called in your code. It includes the name and a description of the
specific function you would call, and if any parameters are necessary, lists those with
a description as well.

class adafruit_led_animation.animation.Animation(pixel_object, speed, color, peers=None, paused=False,
name=None)

Base class for animations.
add_cycle_complete_receiver{callback)
Adds an additional callback when the cycle completes.
Parameters

callback - Additional callback to trigger when a cycle completes. The callback is passed
the animation object instance.

after_draw()

Animation subclasses may implement after_draw() to do operations after the main draw() is
called.

You can view the other subpackages by clicking the link on the left or scrolling down
the page. You may be interested in something a little more practical. Here is an
example. To use the LED Animation library Comet animation, you would run the
following example.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT

This example animates a jade comet that bounces from end to end of the strip.

For QT Py Haxpress and a NeoPixel strip. Update pixel pin and pixel num to match
your wiring if
using a different board or form of NeoPixels.

This example will run on SAMD21 (MO@) Express boards (such as Circuit Playground
Express or QT Py

Haxpress), but not on SAMD21 non-Express boards (such as QT Py or Trinket).
import board

import neopixel

from adafruit led animation.animation.comet import Comet
from adafruit led animation.color import JADE

Update to match the pin connected to your NeoPixels

pixel pin = board.A3

Update to match the number of NeoPixels you have connected
pixel num = 30

©Adafruit Industries Page 62 of 199

pixels = neopixel.NeoPixel(pixel pin, pixel num, brightness=0.5, auto write=False)
comet = Comet(pixels, speed=0.02, color=JADE, tail length=10, bounce=True)

while True:
comet.animate()

Note the line where you create the comet object. There are a number of items inside
the parentheses. In this case, you're provided with a fully working example. But what
if you want to change how the comet works? The code alone does not explain what
the options mean.

So, in the APl Reference documentation list, click the
adafruit led animation.animation.comet link and scroll down a bit until you
see the following.

class adafruit_led_animation.animation.comet.Comet{pixel_object, speed, color, tail_length=0, reverse=False,
bounce=False, name=None, ring=False)

A comet animation.
Parameters
pixel_object - The initialised LED object.
speed (float) - Animation speed in seconds, e.g. 0.1 .
color - Animation colorin (r, g, b) tuple, or exeeeeee hex format.

tail_length (int) - The length of the comet. Defaults to 25% of the length of the
pixel_object . Automatically compensates for a minimum of 2 and a maximum of the length
of the pixel_object .

reverse (bool) - Animates the comet in the reverse order. Defaults to False .
bounce (bool) - Comet will bounce back and forth. Defaults to True .

ring (bool) - Ring mode. Defaults to Fatse .

Look familiar? It is! This is the documentation for setting up the comet object. It
explains what each argument provided in the comet setup in the code meant, as well
as the other available features. For example, the code includes speed=0.02. The
documentation clarifies that this is the "Animation speed in seconds". The code
doesn'tinclude ring. The documentation indicates this is an available setting that
enables "Ring mode".

This type of information is available for any function you would set up in your code. If
you need clarification on something, wonder whether there's more options available,
or are simply interested in the details involved in the code you're writing, check out
the documentation for the CircuitPython libraries!

©Adafruit Industries Page 63 of 199

Other Links

This section is the same for every library. It includes a list of links to external sites,
which you can visit for more information about the CircuitPython Project and Adafruit.

That covers the CircuitPython library documentation! When you are ready to go
beyond the basic library features covered in a guide, or you're interested in
understanding those features better, the library documentation on Read the Docs has
you covered!

Recommended Editors

The CircuitPython code on your board detects when the files are changed or written
and will automatically re-start your code. This makes coding very fast because you
save, and it re-runs.

However, you must wait until the file is done being saved before unplugging or
resetting your board! On Windows using some editors this can sometimes take up to
90 seconds, on Linux it can take 30 seconds to complete because the text editor
does not save the file completely. Mac OS does not seem to have this delay, which is
nice!

This is really important to be aware of. If you unplug or reset the board before your
computer finishes writing the file to your board, you can corrupt the drive. If this
happens, you may lose the code you've written, so it's important to backup your code
to your computer regularly.

To avoid the likelihood of filesystem corruption, use an editor that writes out the file
completely when you save it. Check out the list of recommended editors below.

Recommended editors

- mu () is an editor that safely writes all changes (it's also our recommended
editor!)

-« emacs () is also an editor that will fully write files on save ()

« Sublime Text () safely writes all changes

 Visual Studio Code () appears to safely write all changes

- gedit on Linux appears to safely write all changes
« IDLE (), in Python 3.8.1 or later, was fixed () to write all changes immediately
« Thonny () fully writes files on save

©Adafruit Industries Page 64 of 199

https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor
https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/manual/html_node/emacs/Customize-Save.html
https://www.sublimetext.com/
https://code.visualstudio.com/
https://docs.python.org/3/library/idle.html
https://bugs.python.org/issue36807
https://thonny.org/

Recommended only with particular settings or add-ons

- vim () / vi safely writes all changes. But set up vim to not write swapfiles () (.swp
files: temporary records of your edits) to CIRCUITPY. Run vim with vim -n, set
the no swapfile option, or setthe directory option to write swapfiles
elsewhere. Otherwise the swapfile writes trigger restarts of your program.

« The PyCharm IDE () is safe if "Safe Write" is turned on in Settings->System
Settings->Synchronization (true by default).

- If you are using Atom (), install the fsync-on-save package () or the language-
circuitpython package () so that it will always write out all changes to files on CIR
CUITPY.

« SlickEdit () works only if you add a macro to flush the disk ().

The editors listed below are specifically NOT recommended!

Editors that are NOT recommended

« notepad (the default Windows editor) and Notepad++ can be slow to write, so
the editors above are recommended! If you are using notepad, be sure to eject
the drive.

« IDLE in Python 3.8.0 or earlier does not force out changes immediately.

« nano (on Linux) does not force out changes.

« geany (on Linux) does not force out changes.

« Anything else - Other editors have not been tested so please use a
recommended one!

Advanced Serial Console on Windows

Windows 7 and 8.1

If you're using Windows 7 (or 8 or 8.1), you'll need to install drivers. See the Windows 7
and 8.1 Drivers page () for details. You will not need to install drivers on Mac, Linux or
Windows 10.

You are strongly encouraged to upgrade to Windows 10 if you are still using Windows
7 or Windows 8 or 8.1. Windows 7 has reached end-of-life and no longer receives
security updates. A free upgrade to Windows 10 is still available ().

©Adafruit Industries Page 65 of 199

http://www.vim.org/
http://www.vim.org/
https://vi.stackexchange.com/a/179
https://www.jetbrains.com/pycharm/
https://atom.io/
https://atom.io/
https://atom.io/packages/fsync-on-save
https://atom.io/packages/language-circuitpython
https://atom.io/packages/language-circuitpython
https://www.slickedit.com/
https://www.slickedit.com/
https://forums.adafruit.com/viewtopic.php?f=57&t=144412#p713290
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://www.zdnet.com/article/heres-how-you-can-still-get-a-free-windows-10-upgrade/

What's the COM?

First, you'll want to find out which serial port your board is using. When you plug your
board in to USB on your computer, it connects to a serial port. The port is like a door
through which your board can communicate with your computer using USB.

You'll use Windows Device Manager to determine which port the board is using. The
easiest way to determine which port the board is using is to first check without the
board plugged in. Open Device Manager. Click on Ports (COM & LPT). You should find
something already in that list with (COM#) after it where # is a number.

@ Device Manager - o X
File Action View Help
¢ m D dEm =
v & blackbox
> q Audio inputs and outputs
> [Computer
> wa Disk drives
> [Display adapters
{4 Human Interface Devices
*@ IDE ATA/ATAPI controllers
> @ IEEE 1394 host controllers
> o Imaging devices
> =3 Keyboards

> 0 Mice and other pointing devices
[Monitors
> [Network adapters
v [Ports (COM & LPT)
i Communications Port (COM1)
> = Print queues
> = Printers
> [Processors
> [y Smart card readers
> [Smart cards
B Software devices
> Wy Sound, video and game controllers
> S Storage controllers
> @ System devices
> i Universal Serial Bus controllers
= WSD Print Provider

Now plug in your board. The Device Manager list will refresh and a new item will
appear under Ports (COM & LPT). You'll find a different (COM#) after this item in the
list.

©Adafruit Industries Page 66 of 199

& Device Manager -] X
File Action View Help
e |m D Hml®
v & blackbox
» i} Audio inputs and outputs
& Computer
wa Disk drives
> [Display adapters
{9 Human Interface Devices
@ IDE ATA/ATAPI controllers
» @ IEEE 1394 host controllers
3% Imaging devices

» =2 Keyboards
> 0 Mice and other pointing devices
[Monitors
(3 Network adapters
> Portable Devices
i@ Ports (COM &LPT)
i Communications Port (COM1)
i USB Serial Device (COM3)
1 Print queues
> F3 Printers
3 Processors
Ly Smart card readers
» [l Smart cards
B Software devices
i| Sound, video and game controllers
> S Storage controllers
@ System devices
§ Universal Serial Bus controllers
> = WSD Print Provider

<

Sometimes the item will refer to the name of the board. Other times it may be called
something like USB Serial Device, as seen in the image above. Either way, there is a
new (COM#) following the name. This is the port your board is using.

Install Putty

If you're using Windows, you'll need to download a terminal program. You're going to
use PuTTY.

The first thing to do is download the latest version of PUTTY (). You'll want to
download the Windows installer file. It is most likely that you'll need the 64-bit version.

Download the file and install the program on your machine. If you run into issues, you
can try downloading the 32-bit version instead. However, the 64-bit version will work
on most PCs.

Now you need to open PuTTY.

« Under Connection type: choose the button next to Serial.

« In the box under Serial line, enter the serial port you found that your board is
using.

- In the box under Speed, enter 115200. This called the baud rate, which is the
speed in bits per second that data is sent over the serial connection. For boards
with built in USB it doesn't matter so much but for ESP8266 and other board
with a separate chip, the speed required by the board is 115200 bits per second.
So you might as well just use 115200!

©Adafruit Industries Page 67 of 199

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

If you want to save those settings for later, use the options under Load, save or delete
a stored session. Enter a name in the box under Saved Sessions, and click the Save
button on the right.

PuTTY Configuration ? X
Category:
=] Session Basic options for your PuTTY session
T ;oglglng Specify the destination you want to connect to
=) Termina
Serial line Speed
- Keyboard
Bell [com3] | [115200
- Features C_onnection type: B
—)- Window (ORaw OTelnet (ORlogin () SSH (@ Seral
: Appearance
hird) Load, save or delete a stored session
- Behaviour
Translation Saved Sessions
- Selection
. Colours | Defautt Settings |
—J- Connection =
-Data Save
Proxy
- Telnet Delete
- Rlogin
+- SSH
- Serial Close window on exit:
(OAways (ONever (@ Onlyon clean exit
About Help Open Cancel

Once your settings are entered, you're ready to connect to the serial console. Click
"Open" at the bottom of the window. A new window will open.

P COM3 - PuTTY -] X

If no code is running, the window will either be blank or will look like the window
above. Now you're ready to see the results of your code.

©Adafruit Industries Page 68 of 199

Great job! You've connected to the serial console!

Advanced Serial Console on Mac

Connecting to the serial console on Mac does not require installing any drivers or
extra software. You'll use a terminal program to find your board, and screen to
connect to it. Terminal and screen both come installed by default.

What's the Port?

First you'll want to find out which serial port your board is using. When you plug your
board in to USB on your computer, it connects to a serial port. The port is like a door
through which your board can communicate with your computer using USB.

The easiest way to determine which port the board is using is to first check without
the board plugged in. Open Terminal and type the following:

ls /dev/tty.*

Each serial connection shows up in the /dev/ directory. It has a name that starts with
tty. . The command ls shows you a list of items in a directory. You can use * as a
wildcard, to search for files that start with the same letters but end in something
different. In this case, you're asking to see all of the listings in /dev/ that start with t
ty. and end in anything. This will show us the current serial connections.

00 4. bash
bash 81 bash
Last login: Fri Dec 8 17:55:09 on ttys003

1936 kattnifirobocrepe:~ $ Ls /dev/tty.*

/dev/tty.Bluetooth-Incoming-Por

1937 kattnifrobocrepe:~ $ |]

Now, plug your board. In Terminal, type:

ls /dev/tty.*

©Adafruit Industries Page 69 of 199

This will show you the current serial connections, which will now include your board.

00 4. bash
bash 31 bash %2
Last login: Fri Dec 8 17:55:09 on ttys003

1936 kattnifirobocrepe:~ $ Ls /dev/tty.x*

/dev/tty.Bluetooth-Incoming-Por

1937 kattniflrobocrepe:~ $ Ls /dev/tty.*

/dev/tty.Bluetooth-Incoming-Portfl/dev/tty . usbmodem141441

1937 kattnifirobocrepe:~ $ I

A new listing has appeared called /dev/tty.usbmodeml41441.The tty.usbmodeml
41441 part of this listing is the name the example board is using. Yours will be called
something similar.

Using Linux, a new listing has appeared called /dev/ttyACMO . The ttyACMO part of
this listing is the name the example board is using. Yours will be called something
similar.

Connect with screen

Now that you know the name your board is using, you're ready connect to the serial
console. You're going to use a command called screen.The screen command is
included with MacOS. To connect to the serial console, use Terminal. Type the
following command, replacing board name with the name you found your board is
using:

screen /dev/tty.board name 115200

The first part of this establishes using the screen command. The second part tells
screen the name of the board you're trying to use. The third part tells screen what
baud rate to use for the serial connection. The baud rate is the speed in bits per
second that data is sent over the serial connection. In this case, the speed required
by the board is 115200 bits per second.

©Adafruit Industries Page 70 of 199

[N ee’ 4. bash
bash 81 bash €2

Last login: Fri Dec 8 17:55:09 on ttys003

1936 kattniflrobocrepe:~ $ Ls /dev/tty.=*

/dev/tty.Bluetooth-Incoming-Por

1937 kattniflrobocrepe:~ $ Ls /dev/tty.x*

/dev/tty.Bluetooth-Incoming-Portll/dev/tty . usbmoden141441

1937 kattnifirobocrepe:~ $ screen /dev/tty.usbmodem141441 11523.’]'

Press enter to run the command. It will open in the same window. If no code is
running, the window will be blank. Otherwise, you'll see the output of your code.

Great job! You've connected to the serial console!

Advanced Serial Console on Linux

Connecting to the serial console on Linux does not require installing any drivers, but
you may need to install screen using your package manager. You'll use a terminal
program to find your board, and screen to connect to it. There are a variety of
terminal programs such as gnome-terminal (called Terminal) or Konsole on KDE.

The tio program works as well to connect to your board, and has the benefit of
automatically reconnecting. You would need to install it using your package manager.

What's the Port?

First you'll want to find out which serial port your board is using. When you plug your
board in to USB on your computer, it connects to a serial port. The port is like a door
through which your board can communicate with your computer using USB.

The easiest way to determine which port the board is using is to first check without
the board plugged in. Open your terminal program and type the following:

ls /dev/ttyACM*
Each serial connection shows up in the /dev/ directory. It has a name that starts with tt

yACM. The command 1ls shows you a list of items in a directory. You can use * as a
wildcard, to search for files that start with the same letters but end in something

©Adafruit Industries Page 71 of 199

different. In this case, You're asking to see all of the listings in /dev/ that start with ttyA
CM and end in anything. This will show us the current serial connections.

In the example below, the error is indicating that are no current serial connections
starting with ttyACM.

sommersoft@thespacebetween: ~

File Edit View Search Terminal Help

sommersoft@thespacebetween:~$ 1s /dev/ttyACM*
1s: cannot access '/dev/ttyACM*': No such file or directory
sommersoft@thespacebetween:~$

Now plug in your board. In your terminal program, type:
ls /dev/ttyACM*

This will show you the current serial connections, which will now include your board.

sommersoft@thespacebetween: ~

File Edit View Search Terminal Help

sommersoft@thespacebetween:~$ 1s /dev/ttyACM*

1s: cannot access '/dev/ttyACM*': No such file or directory
sommersoft@thespacebetween:~$ 1s /dev/ttyACM*

J/dev/ttyACMO

sommersoft@thespacebetween:~$ D

A new listing has appeared called /dev/ttyACMO. The ttyACMO part of this listing is
the name the example board is using. Yours will be called something similar.

Connect with screen

Now that you know the name your board is using, you're ready connect to the serial
console. You'll use a command called screen. You may need to install it using the
package manager.

©Adafruit Industries Page 72 of 199

To connect to the serial console, use your terminal program. Type the following
command, replacing board name with the name you found your board is using:

screen /dev/tty.board name 115200

The first part of this establishes using the screen command. The second part tells
screen the name of the board you're trying to use. The third part tells screen what
baud rate to use for the serial connection. The baud rate is the speed in bits per
second that data is sent over the serial connection. In this case, the speed required
by the board is 115200 bits per second.

File Edit View Search Terminal Help

sommersoft@thespacebetween:~$ 1ls /dev/ttyACM*

1s: cannot access '/dev/ttyACM*': No such file or directory
sommersoft@thespacebetween:~$ 1ls /dev/ttyACM*

J/dev/ttyACMO

sommersoft@thespacebetween:~$ screen /dev/ttyACMO 11520dD

Press enter to run the command. It will open in the same window. If no code is
running, the window will be blank. Otherwise, you'll see the output of your code.

Great job! You've connected to the serial console!

Permissions on Linux

If you try to run screen and it doesn't work, then you may be running into an issue
with permissions. Linux keeps track of users and groups and what they are allowed to
do and not do, like access the hardware associated with the serial connection for
running screen . So if you see something like this:

Y- Yo

ackbar@desk: ~

ackbar@desk:~$ screen /dev/ttyACMO
[screen is terminating]
ackbar@desk:~$ I

then you may need to grant yourself access. There are generally two ways you can do
this. The first is to just run screen using the sudo command, which temporarily
gives you elevated privileges.

©Adafruit Industries Page 73 of 199

O S ® ackbar@desk: ~

ackbar@desk:~$ screen /dev/ttyACMO
[screen is terminating]

ackbar@desk:~$ sudo screen /dev/ttyACMO
[sudo] password for ackbar: [j

Once you enter your password, you should be in:

O ®® ackbar@desk: ~

Auto-reload is on. Simply save files over USB to run them or enter REPL to disab
le.

Press any key to enter the REPL. Use CTRL-D to reload.

Adafruit CircuitPython 2.1.0 on 2017-10-17; Adafruit Trinket MO with samd2lel8

>>> l

The second way is to add yourself to the group associated with the hardware. To
figure out what that group is, use the command 1ls -1 as shown below. The group
name is circled in red.

Then use the command adduser to add yourself to that group. You need elevated
privileges to do this, so you'll need to use sudo . In the example below, the group is a
dm and the user is ackbar.

O S ® ackbar@desk: ~

ackbar@desk:~$ 1s -1 /dev/ttyACMO

crw-rw---- 1 rootiadm 166, © Dec 21 08:29 /dev/ttyACMO
ackbar@desk:~$ sudo adduser ackbar (adm

Adding user “ackbar' to group ‘adm' ...

Adding user ackbar to group adm

Done.

ackbar@desk:~$ I

After you add yourself to the group, you'll need to logout and log back in, or in some
cases, reboot your machine. After you log in again, verify that you have been added

to the group using the command groups . If you are still not in the group, reboot and
check again.

O S ® ackbar@desk: ~
ackbar@desk:~$ groups

And now you should be able to run screen without using sudo.

©Adafruit Industries Page 74 of 199

ackbar@desk: ~

ackbar@desk:~$ groups
ackbar adm sudo
ackbar@desk:~$ screen /dev/ttyACMO 115200f

And you're in:

ackbar@desk: ~

Auto-reload is on. Simply save files over USB to run them or enter REPL to disab
le.

Press any key to enter the REPL. Use CTRL-D to reload.

Adafruit CircuitPython 2.1.0 on 2017-10-17; Adafruit Trinket MO with samd2lel8

>>> .

The examples above use screen, but you can also use other programs, such as put
ty or picocom, if you prefer.

Frequently Asked Questions

These are some of the common questions regarding CircuitPython and CircuitPython
microcontrollers.

What are some common acronyms to know?

CP or CPy = CircuitPython ()

CPC = Circuit Playground Classic () (does not run CircuitPython)
CPX = Circuit Playground Express ()

CPB = Circuit Playground Bluefruit ()

Using Older Versions

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to

download the latest version of CircuitPython for your board. You must download
the CircuitPython Library Bundle that matches your version of CircuitPython.
Please update CircuitPython and then visit https://circuitpython.org/libraries to
download the latest Library Bundle.

©Adafruit Industries Page 75 of 199

https://circuitpython.org
https://www.adafruit.com/product/3000
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/4333
https://circuitpython.org/downloads
https://circuitpython.org/libraries

| have to continue using CircuitPython 7.x or earlier.
Where can | find compatible libraries?

We are no longer building or supporting the CircuitPython 7.x or earlier library
bundles. We highly encourage you to update CircuitPython to the latest version ()
and use the current version of the libraries (). However, if for some reason you
cannot update, here are the last available library bundles for older versions:

« 2.x bundle ()
« 3.x bundle ()
« 4.x bundle ()
« 5.x bundle ()
« 6.X bundle ()
« 7.x bundle ()

Python Arithmetic

Does CircuitPython support floating-point numbers?

All CircuitPython boards support floating point arithmetic, even if the
microcontroller chip does not support floating point in hardware. Floating point
numbers are stored in 30 bits, with an 8-bit exponent and a 22-bit mantissa. Note
that this is two bits less than standard 32-bit single-precision floats. You will get
about 5-1/2 digits of decimal precision.

(The broadcom port may provide 64-bit floats in some cases.)

Does CircuitPython support long integers, like regular
Python?

Python long integers (integers of arbitrary size) are available on most builds, except
those on boards with the smallest available firmware size. On these boards,
integers are stored in 31 bits.

Boards without long integer support are mostly SAMD21 ("MOQ") boards without an
external flash chip, such as the Adafruit Gemma MO, Trinket MO, QT Py MO, and the
Trinkey series. There are also a number of third-party boards in this category.
There are also a few small STM third-party boards without long integer support.

time.localtime(), time.mktime(), time.time() , and
time.monotonic ns() are available only on builds with long integers.

©Adafruit Industries Page 76 of 199

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-2.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-3.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20200707/adafruit-circuitpython-bundle-4.x-mpy-20200707.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20210129/adafruit-circuitpython-bundle-5.x-mpy-20210129.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20211213/adafruit-circuitpython-bundle-6.x-mpy-20211213.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20231003/adafruit-circuitpython-bundle-7.x-mpy-20231003.zip

Wireless Connectivity

How do | connect to the Internet with CircuitPython?

If you'd like to include WiFi in your project, your best bet is to use a board that is
running natively on ESP32 chipsets - those have WiFi built in!

If your development board has an SPI port and at least 4 additional pins, you can
check out this guide () on using AirLift with CircuitPython - extra wiring is required
and some boards like the MacroPad or NeoTrellis do not have enough available
pins to add the hardware support.

For further project examples, and guides about using AirLift with specific hardware,
check out the Adafruit Learn System ().

How do | do BLE (Bluetooth Low Energy) with
CircuitPython?

The nRF52840 and nRF52833 boards have the most complete BLE
implementation. Your program can act as both a BLE central and peripheral. As a
central, you can scan for advertisements, and connect to an advertising board. As a
peripheral, you can advertise, and you can create services available to a central.
Pairing and bonding are supported.

ESP32-C3 and ESP32-S3 boards currently provide an incomplete () BLE
implementation. Your program can act as a central, and connect to a peripheral.
You can advertise, but you cannot create services. You cannot advertise
anonymously. Pairing and bonding are not supported.

The ESP32 could provide a similar implementation, but it is not yet available. Note
that the ESP32-S2 does not have Bluetooth capability.

On most other boards with adequate firmware space, BLE is available for use with
AirLift () or other NINA-FW-based co-processors. Some boards have this
coprocessor on board, such as the PyPortal (). Currently, this implementation only
supports acting as a BLE peripheral. Scanning and connecting as a central are not
yet implemented. Bonding and pairing are not supported.

©Adafruit Industries Page 77 of 199

https://learn.adafruit.com/adafruit-io-basics-airlift
https://learn.adafruit.com/search?q=airlift
https://github.com/adafruit/circuitpython/issues/5926
https://learn.adafruit.com/adafruit-airlift-breakout/circuitpython-ble
https://learn.adafruit.com/adafruit-airlift-breakout/circuitpython-ble
https://learn.adafruit.com/adafruit-pyportal/circuitpython-ble

Are there other ways to communicate by radio with
CircuitPython?

Check out Adafruit's RFM boards ()for simple radio communication supported by
CircuitPython, which can be used over distances of 100m to over a km, depending
on the version. The RFM SAMD21 MO boards can be used, but they were not
designed for CircuitPython, and have limited RAM and flash space; using the RFM
breakouts or FeatherWings with more capable boards will be easier.

Asyncio and Interrupts

Is there asyncio support in CircuitPython?

There is support for asyncio starting with CircuitPython 7.1.0, on all boards except
the smallest SAMD21 builds. Read about using it in the Cooperative Multitasking in
CircuitPython () Guide.

Does CircuitPython support interrupts?

No. CircuitPython does not currently support interrupts - please use asyncio for
multitasking / 'threaded' control of your code

Status RGB LED

My RGB NeoPixel/DotStar LED is blinking funny colors -
what does it mean?

The status LED can tell you what's going on with your CircuitPython board. Read
more here for what the colors mean! ()

Memory Issues

What is a MemoryError?

Memory allocation errors happen when you're trying to store too much on the
board. The CircuitPython microcontroller boards have a limited amount of memory
available. You can have about 250 lines of code on the MO Express boards. If you
try to import too many libraries, a combination of large libraries, or run a program
with too many lines of code, your code will fail to run and you will receive a
MemoryError in the serial console.

©Adafruit Industries Page 78 of 199

https://www.adafruit.com/?q=rfm&sort=BestMatch
https://learn.adafruit.com/cooperative-multitasking-in-circuitpython
https://learn.adafruit.com/cooperative-multitasking-in-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#circuitpython-rgb-status-light-2978455-24
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#circuitpython-rgb-status-light-2978455-24

What do | do when | encounter a MemoryError?

Try resetting your board. Each time you reset the board, it reallocates the memory.
While this is unlikely to resolve your issue, it's a simple step and is worth trying.

Make sure you are using .mpy versions of libraries. All of the CircuitPython libraries
are available in the bundle in a .mpy format which takes up less memory than .py
format. Be sure that you're using the latest library bundle () for your version of
CircuitPython.

If that does not resolve your issue, try shortening your code. Shorten comments,
remove extraneous or unneeded code, or any other clean up you can do to
shorten your code. If you're using a lot of functions, you could try moving those
into a separate library, creating a .mpy of that library, and importing it into your
code.

You can turn your entire file into a .mpy and import that into code.py. This means
you will be unable to edit your code live on the board, but it can save you space.

Can the order of my import statements affect memory?

It can because the memory gets fragmented differently depending on allocation
order and the size of objects. Loading .mpy files uses less memory so its
recommended to do that for files you aren't editing.

How can | create my own .mpy files?

You can make your own .mpy versions of files with mpy-cross .

You can download mpy-cross for your operating system from here (). Builds are
available for Windows, macOS, x64 Linux, and Raspberry Pi Linux. Choose the
latest mpy-cross whose version matches the version of CircuitPython you are
using.

To make a .mpy file, run ./mpy-cross path/to/yourfile.py to create a
yourfile.mpy in the same directory as the original file.

How do | check how much memory | have free?

Run the following to see the number of bytes available for use:

©Adafruit Industries Page 79 of 199

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://adafruit-circuit-python.s3.amazonaws.com/index.html?prefix=bin/mpy-cross/

import gc
gc.mem free()

Unsupported Hardware

Is ESP8266 or ESP32 supported in CircuitPython? Why
not?

We dropped ESP8266 support as of 4.x - For more information please read about it
here ()!

As of CircuitPython 8.x we have started to support ESP32 and ESP32-C3 and have
added a WiFi workflow for wireless coding! ()

We also support ESP32-S2 & ESP32-S3, which have native USB.

Does Feather MO support WINC15007?
No, WINC1500 will not fit into the MO flash space.

Can AVRs such as ATmega328 or ATmega2560 run
CircuitPython?

No.

Troubleshooting

From time to time, you will run into issues when working with CircuitPython. Here are
a few things you may encounter and how to resolve them.

As CircuitPython development continues and there are new releases, Adafruit
will stop supporting older releases. Visit https://circuitpython.org/downloads to
download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.
Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

©Adafruit Industries Page 80 of 199

https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-for-esp8266
https://learn.adafruit.com/circuitpython-with-esp32-quick-start
https://learn.adafruit.com/circuitpython-with-esp32-quick-start
https://circuitpython.org/downloads
https://circuitpython.org/libraries

Always Run the Latest Version of
CircuitPython and Libraries

As CircuitPython development continues and there are new releases, Adafruit will
stop supporting older releases. You need to update to the latest CircuitPython. ().

You need to download the CircuitPython Library Bundle that matches your version of
CircuitPython. Please update CircuitPython and then download the latest bundle ().

As new versions of CircuitPython are released, Adafruit will stop providing the
previous bundles as automatically created downloads on the Adafruit CircuitPython
Library Bundle repo. If you must continue to use an earlier version, you can still
download the appropriate version of mpy-cross from the particular release of
CircuitPython on the CircuitPython repo and create your own compatible .mpy library
files. However, it is best to update to the latest for both CircuitPython and the library
bundle.

| have to continue using CircuitPython 7.x or earlier.
Where can | find compatible libraries?

Adafruit is no longer building or supporting the CircuitPython 7.x or earlier library
bundles. You are highly encourged to update CircuitPython to the latest version () and

use the current version of the libraries (). However, if for some reason you cannot

update, links to the previous bundles are available in the FAQ ().

Bootloader (boardnameBOOT) Drive Not
Present

You may have a different board.

Only Adafruit Express boards and the SAMD21 non-Express boards ship with the UF2
bootloader ()installed. The Feather MO Basic, Feather MO Adalogger, and similar_
boards use a regular Arduino-compatible bootloader, which does not show a boardna
meBOOT drive.

©Adafruit Industries Page 81 of 199

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://learn.adafruit.com/welcome-to-circuitpython/frequently-asked-questions#faq-3105289
file:///home/deploy/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader
file:///home/deploy/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader

MakeCode

If you are running a MakeCode () program on Circuit Playground Express, press the
reset button just once to get the CPLAYBOOT drive to show up. Pressing it twice will
not work.

macOS

DriveDx and its accompanything SAT SMART Driver can interfere with seeing the
BOOQOT drive. See this forum post () for how to fix the problem.

Windows 10

Did you install the Adafruit Windows Drivers package by mistake, or did you upgrade
to Windows 10 with the driver package installed? You don't need to install this
package on Windows 10 for most Adafruit boards. The old version (v1.5) can interfere
with recognizing your device. Go to Settings -> Apps and uninstall all the "Adafruit"
driver programs.

Windows 7 or 8.1

To use a CircuitPython-compatible board with Windows 7 or 8.1, you must install a
driver. Installation instructions are available here ().

It is recommended () that you upgrade to Windows 10 if possible; an upgrade is
probably still free for you. Check here ().

The Windows Drivers installer was last updated in November 2020 (v2.5.0.0) .

Windows 7 drivers for CircuitPython boards released since then, including

RP2040 boards, are not available. There are no plans to release drivers for new
boards. The boards work fine on Windows 10.

You should now be done! Test by unplugging and replugging the board. You should
see the CIRCUITPY drive, and when you double-click the reset button (single click on
Circuit Playground Express running MakeCode), you should see the appropriate boar
dnameBOOT drive.

Let us know in the Adafruit support forums () or on the Adafruit Discord () if this does

not work for youl!

©Adafruit Industries Page 82 of 199

file:///home/deploy/makecode/sharing-and-saving?view=all#step-1-bootloader-mode
https://forums.adafruit.com/viewtopic.php?f=58&t=161917&p=799309#p799215
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://forums.adafruit.com
https://adafru.it/discord

Windows Explorer Locks Up When
Accessing boardnameBOOT Drive

On Windows, several third-party programs that can cause issues. The symptom is that
you try to access the boardnameBOOT drive, and Windows or Windows Explorer
seems to lock up. These programs are known to cause trouble:

« AIDAG4: to fix, stop the program. This problem has been reported to AIDAGA4.
They acquired hardware to test, and released a beta version that fixes the
problem. This may have been incorporated into the latest release. Please let us
know in the forums if you test this.

- Hard Disk Sentinel

« Kaspersky anti-virus: To fix, you may need to disable Kaspersky completely.
Disabling some aspects of Kaspersky does not always solve the problem. This
problem has been reported to Kaspersky.

« ESET NOD32 anti-virus: There have been problems with at least version
9.0.386.0, solved by uninstallation.

Copying UF2 to boardnameBOOT Drive
Hangs at 0% Copied

On Windows, a Western Dlgital (WD) utility that comes with their external USB drives
can interfere with copying UF2 files to the boardnameBOOT drive. Uninstall that utility
to fix the problem.

CIRCUITPY Drive Does Not Appear or
Disappears Quickly

Kaspersky anti-virus can block the appearance of the CIRCUITPY drive. There has not
yet been settings change discovered that prevents this. Complete uninstallation of
Kaspersky fixes the problem.

Norton anti-virus can interfere with CIRCUITPY. A user has reported this problem on
Windows 7. The user turned off both Smart Firewall and Auto Protect, and CIRCUITPY
then appeared.

Sophos Endpoint security software can cause CIRCUITPY to disappear () and the
BOOT drive to reappear. It is not clear what causes this behavior.

©Adafruit Industries Page 83 of 199

https://forums.adafruit.com/viewtopic.php?f=60&t=187629

Samsung Magician can cause CIRCUITPY to disappear (reported here () and here ()).

Device Errors or Problems on Windows

Windows can become confused about USB device installations. This is particularly
true of Windows 7 and 8.1. It is recommended () that you upgrade to Windows 10 if

possible; an upgrade is probably still free for you: see this @ ().

If not, try cleaning up your USB devices. Use Uwe Sieber's Device Cleanup Tool () (on

that page, scroll down to "Device Cleanup Tool"). Download and unzip the tool.
Unplug all the boards and other USB devices you want to clean up. Run the tool as
Administrator. You will see a listing like this, probably with many more devices. It is
listing all the USB devices that are not currently attached.

oty
N
File Devices Options Help
Non-present devices:
Device Name : Last used Class Service Enumerator COM Port
wes Adafrut Rotary Trinkey M USB Device 19 Minutes DiskDrive disk USBSTOR
CIRCUITPY 19 Minetes WPD WUDFWpdFs SwD
CircuitPython Audio 19 Minutes MEDIA usbaudio usB
§ CircuitPython usb_midi ports[0] 19 Minutes SoftwareDevice SwWD
§ CircuitPython usb_midi ports[0] 19 Minutes SoftwareDevice SWD
+ HID-compliant system multi-axis controller 19 Minutes HIDClass HID
¥ USB Composte Device 19 Minutes usse usbeegp usB
4 USB Input Device 19 Minutes HIDClass HidUsb usB
¥ USB Mass Storage Device 19 Minutes usB USBSTOR usB
i USB Serial Device (COM3) 19 Minutes Ports usbser usB COM3
wes Volume 19 Minutes Volume volume STORAGE
Non-present Devices: 11 Selected Devices: 0

Select all the devices you want to remove, and then press Delete. It is usually safe
just to select everything. Any device that is removed will get a fresh install when you
plug it in. Using the Device Cleanup Tool also discards all the COM port assignments
for the unplugged boards. If you have used many Arduino and CircuitPython boards,
you have probably seen higher and higher COM port numbers used, seemingly
without end. This will fix that problem.

Serial Console in Mu Not Displaying
Anything

There are times when the serial console will accurately not display anything, such as,
when no code is currently running, or when code with no serial output is already

running before you open the console. However, if you find yourself in a situation
where you feel it should be displaying something like an error, consider the following.

©Adafruit Industries Page 84 of 199

https://forums.adafruit.com/viewtopic.php?t=205159
https://forums.adafruit.com/viewtopic.php?p=987596#p987596
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://www.cnet.com/tech/services-and-software/windows-10-download/
https://www.uwe-sieber.de/misc_tools_e.html

Depending on the size of your screen or Mu window, when you open the serial
console, the serial console panel may be very small. This can be a problem. A basic
CircuitPython error takes 10 lines to display!

Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.
code.py output:
Traceback (most recent call last):
File "code.py", line 7
SyntaxError: invalid syntax

Press any key to enter the REPL. Use CTRL-D to reload.

More complex errors take even more lines!

Therefore, if your serial console panel is five lines tall or less, you may only see blank
lines or blank lines followed by Press any key to enter the REPL. Use CTRL-D
to reload. . If this is the case, you need to either mouse over the top of the panel to
utilise the option to resize the serial panel, or use the scrollbar on the right side to
scroll up and find your message.

Adafruit CircuitPython REPL

Where is my error? |
SCROLL BACK TO FIND OUTPUT AAA '

Press any key to enter the REPL. Use CTRL-D to reload.

v
Adafruit O

This applies to any kind of serial output whether it be error messages or print
statements. So before you start trying to debug your problem on the hardware side,
be sure to check that you haven't simply missed the serial messages due to serial
output panel height.

code.py Restarts Constantly

CircuitPython will restart code.py if you or your computer writes to something on the
CIRCUITPY drive. This feature is called auto-reload, and lets you test a change to your
program immediately.

Some utility programs, such as backup, anti-virus, or disk-checking apps, will write to
the CIRCUITPY as part of their operation. Sometimes they do this very frequently,
causing constant restarts.

Acronis True Image and related Acronis programs on Windows are known to cause
this problem. It is possible to prevent this by disabling the " (JAcronis Managed

Machine Service Mini" ().

©Adafruit Industries Page 85 of 199

https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder
https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder
https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder

If you cannot stop whatever is causing the writes, you can disable auto-reload by
putting this code in boot.py or code.py:

import supervisor

supervisor.runtime.autoreload = False

CircuitPython RGB Status Light

Nearly all CircuitPython-capable boards have a single NeoPixel or DotStar RGB LED
on the board that indicates the status of CircuitPython. A few boards designed before
CircuitPython existed, such as the Feather MO Basic, do not.

Circuit Playground Express and Circuit Playground Bluefruit have multiple RGB LEDs,
but do NOT have a status LED. The LEDs are all green when in the bootloader. In
versions before 7.0.0, they do NOT indicate any status while running CircuitPython.

CircuitPython 7.0.0 and Later

The status LED blinks were changed in CircuitPython 7.0.0 in order to save battery
power and simplify the blinks. These blink patterns will occur on single color LEDs
when the board does not have any RGB LEDs. Speed and blink count also vary for
this reason.

On start up, the LED will blink YELLOW multiple times for 1 second. Pressing the
RESET button (or on Espressif, the BOOT button) during this time will restart the board
and then enter safe mode. On Bluetooth capable boards, after the yellow blinks, there
will be a set of faster blue blinks. Pressing reset during the BLUE blinks will clear
Bluetooth information and start the device in discoverable mode, so it can be used
with a BLE code editor.

Once started, CircuitPython will blink a pattern every 5 seconds when no user code is
running to indicate why the code stopped:

« 1 GREEN blink: Code finished without error.

- 2 RED blinks: Code ended due to an exception. Check the serial console for
details.

« 3 YELLOW blinks: CircuitPython is in safe mode. No user code was run. Check
the serial console for safe mode reason.

©Adafruit Industries Page 86 of 199

When in the REPL, CircuitPython will set the status LED to WHITE. You can change the
LED color from the REPL. The status indicator will not persist on non-NeoPixel or
DotStar LEDs.

The CircuitPython Boot Sequence

Version 7.0 and later

Bootloader Mode
Reee LED solid red

The bootloader |l

Board is turns on th USB —F oy
powered Red LED 8 TRESET] A2 Yes LED Pulses slowly,
on and o pushed ? RGB LED Green
bootloader >R g : .. B
code starts |IW;m 530 . RESET {__No ‘
miliseconds o not pUShed
to seeif M to User
RESET pushed 8 9°C° ¥
0dc LED Pulses quickly, RGB LED red

[
User Code Mode Rest

ARDUINO ~ Code pyﬂwn

Type
?

W Safe Mode: boardis a
USB drive, code.py and

Red LED blinks
boot py are not run

RESET
pushed . Yes|
within 1000ms

RGB LED

| No

RESET
Y pushed Yes
within 1000ms
?

CircuitPython waits an
additional 1000ms fora [}
RESET to Safe Mode

BLE bonding erased,
the device will be discoverable and

LED blinks fast blue for Bluetooth boards the blue LED will be solid (not blink)

ly

Version 7.00 @Adafruit L

CircuitPython 6.3.0 and earlier

Here's what the colors and blinking mean:

« steady GREEN: code.py (or code.txt, main.py, or main.txt) is running

« pulsing GREEN: code.py (etc.) has finished or does not exist

steady YELLOW at start up: (4.0.0-alpha.5 and newer) CircuitPython is waiting for
a reset to indicate that it should start in safe mode

pulsing YELLOW: Circuit Python is in safe mode: it crashed and restarted

steady WHITE: REPL is running

steady BLUE: boot.py is running

Colors with multiple flashes following indicate a Python exception and then indicate
the line number of the error. The color of the first flash indicates the type of error:

« GREEN: IndentationError
« CYAN: SyntaxError

« WHITE: NameError

« ORANGE: OSError

« PURPLE: ValueError

« YELLOW: other error

©Adafruit Industries Page 87 of 199

These are followed by flashes indicating the line number, including place value. WHIT
E flashes are thousands' place, BLUE are hundreds' place, YELLOW are tens' place,
and CYAN are one's place. So for example, an error on line 32 would flash YELLOW
three times and then CYAN two times. Zeroes are indicated by an extra-long dark gap.

The CircuitPython Boot Sequence

Bootloader Mode

Reset
LED solid red

The bootloader
tums on the
Red LED

Board is UsB
powered RESET Yes > LED Pulses slowly,
on and pushed |~ C"“"};C‘ed RGB LED Green

No

bootloader
code starts

Wait 500
milliseconds

to see if
RESET pushed

RESET
not pushed
go to User

Code

LED Pulses quickly.
1 RGB LED red

User Code Mode Red LED blinks Safe Mode: board is a USB drive,
Reset Ftimes code py a

©
ARDUINO Code . fijihon Bootioader ®

waits an
Type additional

? 700ms for a
RESET to
Safe Mode

_~ RESET ™ ves ~ 4B
pushed
2

No

RGB LED
is Yellow
Code starts immediately Boot ll;;unru :ze!:ézd:‘)de o

L Version 1.00 @Adafruit

Serial console showing ValueError:
Incompatible .mpy file

This error occurs when importing a module that is stored as a .mpy binary file that
was generated by a different version of CircuitPython than the one its being loaded
into. In particular, the mpy binary format changed between CircuitPython versions 6.x
and 7.x, 2.x and 3.x, and 1.x and 2.x.

So, for instance, if you upgraded to CircuitPython 7.x from 6.x you’ll need to download
a newer version of the library that triggered the error on import . All libraries are
available in the Adafruit bundle ().

CIRCUITPY Drive Issues

You may find that you can no longer save files to your CIRCUITPY drive. You may find
that your CIRCUITPY stops showing up in your file explorer, or shows up as NO_NAM
E. These are indicators that your filesystem has issues. When the CIRCUITPY disk is
not safely ejected before being reset by the button or being disconnected from USB,
it may corrupt the flash drive. It can happen on Windows, Mac or Linux, though it is
more common on Windows.

©Adafruit Industries Page 88 of 199

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest

Be aware, if you have used Arduino to program your board, CircuitPython is no longer
able to provide the USB services. You will need to reload CircuitPython to resolve this
situation.

The easiest first step is to reload CircuitPython. Double-tap reset on the board so you
get a boardnameBOOT drive rather than a CIRCUITPY drive, and copy the latest
version of CircuitPython (.uf2) back to the board. This may restore CIRCUITPY
functionality.

If reloading CircuitPython does not resolve your issue, the next step is to try putting
the board into safe mode.

Safe Mode

Whether you've run into a situation where you can no longer edit your code.py on
your CIRCUITPY drive, your board has gotten into a state where CIRCUITPY is read-
only, or you have turned off the CIRCUITPY drive altogether, safe mode can help.

Safe mode in CircuitPython does not run any user code on startup, and disables auto-
reload. This means a few things. First, safe mode bypasses any code in boot.py
(where you can set CIRCUITPY read-only or turn it off completely). Second, it does not
run the code in code.py. And finally, it does not automatically soft-reload when data is
written to the CIRCUITPY drive.

Therefore, whatever you may have done to put your board in a non-interactive state,
safe mode gives you the opportunity to correct it without losing all of the data on the
CIRCUITPY drive.

Entering Safe Mode in CircuitPython 7.x and Later

To enter safe mode when using CircuitPython 7.x, plug in your board or hit reset
(highlighted in red above). Inmediately after the board starts up or resets, it waits
1000ms. On some boards, the onboard status LED will blink yellow during that time. If
you press reset during that 1000ms, the board will start up in safe mode. It can be
difficult to react to the yellow LED, so you may want to think of it simply as a "slow"
double click of the reset button. (Remember, a fast double click of reset enters the
bootloader.)

©Adafruit Industries Page 89 of 199

Entering Safe Mode in CircuitPython 6.x

To enter safe mode when using CircuitPython 6.x, plug in your board or hit reset
(highlighted in red above). Inmediately after the board starts up or resets, it waits
700ms. On some boards, the onboard status LED (highlighted in green above) will
turn solid yellow during this time. If you press reset during that 700ms, the board will
start up in safe mode. It can be difficult to react to the yellow LED, so you may want to
think of it simply as a slow double click of the reset button. (Remember, a fast double
click of reset enters the bootloader.)

In Safe Mode

Once you've entered safe mode successfully in CircuitPython 6.x, the LED will pulse
yellow.

If you successfully enter safe mode on CircuitPython 7.x, the LED will intermittently
blink yellow three times.

If you connect to the serial console, you'll find the following message.

Auto-reload is off.
Running in safe mode! Not running saved code.

CircuitPython is in safe mode because you pressed the reset button during boot.
Press again to exit safe mode.

Press any key to enter the REPL. Use CTRL-D to reload.

You can now edit the contents of the CIRCUITPY drive. Remember, your code will not
run until you press the reset button, or unplug and plug in your board, to get out of
safe mode.

At this point, you'll want to remove any user code in code.py and, if present, the boot.
py file from CIRCUITPY. Once removed, tap the reset button, or unplug and plug in
your board, to restart CircuitPython. This will restart the board and may resolve your
drive issues. If resolved, you can begin coding again as usual.

If safe mode does not resolve your issue, the board must be completely erased and
CircuitPython must be reloaded onto the board.

You WILL lose everything on the board when you complete the following steps. If

possible, make a copy of your code before continuing.

©Adafruit Industries Page 90 of 199

To erase CIRCUITPY: storage.erase filesystem()

CircuitPython includes a built-in function to erase and reformat the filesystem. If you
have a version of CircuitPython older than 2.3.0 on your board, you can update to the
newest version () to do this.

1. Connect to the CircuitPython REPL () using Mu or a terminal program.
2. Type the following into the REPL:

>>> import storage
>>> storage.erase filesystem()

CIRCUITPY will be erased and reformatted, and your board will restart. That's it!

Erase CIRCUITPY Without Access to the REPL

If you can't access the REPL, or you're running a version of CircuitPython previous to
2.3.0 and you don't want to upgrade, there are options available for some specific
boards.

The options listed below are considered to be the "old way" of erasing your board.

The method shown above using the REPL is highly recommended as the best method
for erasing your board.

For the specific boards listed below:

If the board you are trying to erase is listed below, follow the steps to use the file to
erase your board.

1. Download the correct erase file:

Circuit Playground Express
Feather MO Express

Feather M4 Express

©Adafruit Industries Page 91 of 199

file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/kattni-connecting-to-the-serial-console
https://cdn-learn.adafruit.com/assets/assets/000/048/745/original/flash_erase_express.ino.circuitplay.uf2?1512152080
https://cdn-learn.adafruit.com/assets/assets/000/048/746/original/flash_erase_express.ino.feather_m0_express.uf2?1512152098
https://cdn-learn.adafruit.com/assets/assets/000/076/217/original/flash_erase.ino.feather_m4.uf2

Metro MO Express

Metro M4 Express QSPI Eraser

Trellis M4 Express (QSPI)

Grand Central M4 Express (QSPI)

PyPortal M4 Express (QSPI)

Circuit Playground Bluefruit (QSPI)

Monster M4SK (QSPI)

PyBadge/PyGamer QSPI Eraser.UF2

CLUE_Flash_Erase.UF2

Matrix_Portal_M4_(QSPI).UF2

RP2040 boards (flash_nuke.uf2)

2. Double-click the reset button on the board to bring up the boardnameBOOT

3. Drag the erase .uf2 file to the boardnameBOOT drive.
4. The status LED will turn yellow or blue, indicating the erase has started.

5. After approximately 15 seconds, the status LED will light up green. On the
NeoTrellis M4 this is the first NeoPixel on the grid
6. Double-click the reset button on the board to bring up the boardnameBOOT d

rive.

7. Drag the appropriate latest release of CircuitPython () .uf2 file to the boardnam

eBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer

again.

©Adafruit Industries

Page 92 of 199

https://cdn-learn.adafruit.com/assets/assets/000/048/747/original/flash_erase_express.ino.metro_m0.uf2?1512152103
https://cdn-learn.adafruit.com/assets/assets/000/073/820/original/Metro_M4_QSPI_Eraser.UF2?1553805937
https://cdn-learn.adafruit.com/assets/assets/000/067/535/original/Trellis_M4_QSPI_Eraser.UF2?1544719380
https://cdn-learn.adafruit.com/assets/assets/000/069/314/original/GC_M4_QSPI_Erase.UF2?1547404471
https://cdn-learn.adafruit.com/assets/assets/000/072/252/original/PYPORTAL_QSPI_Eraser.UF2?1551738305
https://cdn-learn.adafruit.com/assets/assets/000/082/950/original/CP_Bluefruit_QSPI_Erase.UF2?1572026649
https://cdn-learn.adafruit.com/assets/assets/000/083/330/original/M4SK_QSPI_Eraser.UF2?1572551433
https://cdn-learn.adafruit.com/assets/assets/000/083/331/original/PyBadge_QSPI_Eraser.UF2?1572551613
https://cdn-learn.adafruit.com/assets/assets/000/088/454/original/CLUE_Flash_Erase.UF2?1581873830
https://cdn-learn.adafruit.com/assets/assets/000/098/741/original/Matrix_Portal_M4_%28QSPI%29.UF2?1611076081
https://cdn-learn.adafruit.com/assets/assets/000/101/659/original/flash_nuke.uf2
https://circuitpython.org/downloads

If the LED flashes red during step 5, it means the erase has failed. Repeat the steps
starting with 2.

If you haven't already downloaded the latest release of CircuitPython for your board,
check out the installation page (). You'll also need to load your code and reinstall your
libraries!

For SAMD21 non-Express boards that have a UF2
bootloader:

Any SAMD21-based microcontroller that does not have external flash available is
considered a SAMD21 non-Express board. Non-Express boards that have a UF2
bootloader include Trinket MO, GEMMA MO, QT Py MO, and the SAMD21-based
Trinkey boards.

If you are trying to erase a SAMD21 non-Express board, follow these steps to erase
your board.

1. Download the erase file:

SAMD21 non-Express Boards

2. Double-click the reset button on the board to bring up the boardnameBOOT
drive.

3. Drag the erase .uf2 file to the boardnameBOOT drive.

4. The boot LED will start flashing again, and the boardnameBOOT drive will
reappeatr.

5. Drag the appropriate latest release CircuitPython () .uf2 file to the
boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer
again.

If you haven't already downloaded the latest release of CircuitPython for your board,

check out the installation page () YYou'll also need to load your code and reinstall

your libraries!

©Adafruit Industries Page 93 of 199

file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
https://cdn-learn.adafruit.com/assets/assets/000/048/748/original/erase_m0.uf2
https://circuitpython.org/downloads
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython

For SAMD21 non-Express boards that do not have a UF2
bootloader:

Any SAMD21-based microcontroller that does not have external flash available is
considered a SAMD21 non-Express board. Non-Express boards that do not have a
UF2 bootloader include the Feather MO Basic Proto, Feather Adalogger, or the
Arduino Zero.

If you are trying to erase a non-Express board that does not have a UF2 bootloader, f
ollow these directions to reload CircuitPython using bossac (), which will erase and
re-create CIRCUITPY.

Running Out of File Space on SAMD21 Non-
Express Boards

Any SAMD21-based microcontroller that does not have external flash available is
considered a SAMD21 non-Express board. This includes boards like the Trinket MO,
GEMMA MO, QT Py MO, and the SAMD21-based Trinkey boards.

The file system on the board is very tiny. (Smaller than an ancient floppy disk.) So, its
likely you'll run out of space but don't panic! There are a number of ways to free up
space.

Not enough disk space to copy
“adafruit_si7021.mpy"

~ Additional 3 KB of disk space is required to copy this
file. You can manage disk space by removing items
from the Storage section of About This Mac.

Cancel Manage Disk Space

Delete something!
The simplest way of freeing up space is to delete files from the drive. Perhaps there
are libraries in the lib folder that you aren't using anymore or test code that isn't in

use. Don't delete the lib folder completely, though, just remove what you don't need.

The board ships with the Windows 7 serial driver too! Feel free to delete that if you
don't need it or have already installed it. It's “12KiB or so.

©Adafruit Industries Page 94 of 199

file:///home/welcome-to-circuitpython/non-uf2-installation
file:///home/welcome-to-circuitpython/non-uf2-installation
file:///home/welcome-to-circuitpython/non-uf2-installation

Use tabs

One unique feature of Python is that the indentation of code matters. Usually the
recommendation is to indent code with four spaces for every indent. In general, that
is recommended too. However, one trick to storing more human-readable code is to
use a single tab character for indentation. This approach uses 1/4 of the space for
indentation and can be significant when you're counting bytes.

On MacOS?

MacOS loves to generate hidden files. Luckily you can disable some of the extra
hidden files that macOS adds by running a few commands to disable search indexing
and create zero byte placeholders. Follow the steps below to maximize the amount of
space available on macOS.

Prevent & Remove MacOS Hidden Files

First find the volume name for your board. With the board plugged in run this
command in a terminal to list all the volumes:

1s -1 /Volumes

Look for a volume with a name like CIRCUITPY (the default for CircuitPython). The full
path to the volume is the /Volumes/CIRCUITPY path.

Now follow the steps from this question () to run these terminal commands that stop
hidden files from being created on the board:

mdutil -i off /Volumes/CIRCUITPY

cd /Volumes/CIRCUITPY

rm -rf .{, .}{fseventsd,Spotlight-V*,Trashes}

mkdir .fseventsd

touch .fseventsd/no log .metadata never index .Trashes
cd -

Replace /Volumes/CIRCUITPY in the commands above with the full path to your
board's volume if it's different. At this point all the hidden files should be cleared from
the board and some hidden files will be prevented from being created.

Alternatively, with CircuitPython 4.x and above, the special files and folders

mentioned above will be created automatically if you erase and reformat the
filesystem. WARNING: Save your files first! Do this in the REPL:

©Adafruit Industries Page 95 of 199

http://apple.stackexchange.com/questions/6707/how-to-stop-os-x-from-writing-spotlight-and-trash-files-to-memory-cards-and-usb/7135#7135

>>> import storage
>>> storage.erase filesystem()

However there are still some cases where hidden files will be created by MacOS. In
particular if you copy a file that was downloaded from the internet it will have special
metadata that MacOS stores as a hidden file. Luckily you can run a copy command
from the terminal to copy files without this hidden metadata file. See the steps below.

Copy Files on MacOS Without Creating Hidden Files

Once you've disabled and removed hidden files with the above commands on macOS
you need to be careful to copy files to the board with a special command that
prevents future hidden files from being created. Unfortunately you cannot use drag
and drop copy in Finder because it will still create these hidden extended attribute
files in some cases (for files downloaded from the internet, like Adafruit's modules).

To copy a file or folder use the -X option for the cp command in a terminal. For
example to copy a file_name.mpy file to the board use a command like:

cp -X file name.mpy /Volumes/CIRCUITPY
(Replace file_name.mpy with the name of the file you want to copy.)

Or to copy a folder and all of the files and folders contained within, use a command
like:

cp -rX folder to copy /Volumes/CIRCUITPY

If you are copying to the lib folder, or another folder, make sure it exists before
copying.

if 1ib does not exist, you'll create a file named lib !

cp -X file name.mpy /Volumes/CIRCUITPY/lib

This is safer, and will complain if a 1ib folder does not exist.
cp -X file name.mpy /Volumes/CIRCUITPY/lib/

Other MacOS Space-Saving Tips

If you'd like to see the amount of space used on the drive and manually delete hidden
files here's how to do so. First, move into the Volumes/ directory with c¢d /Volumes/,
and then list the amount of space used on the CIRCUITPY drive with the df
command.

©Adafruit Industries Page 96 of 199

o000 Default (-bash)

Last login: Thu Oct 28 17:19:15 on ttys008

7039 kattnifrobocrepe:~ $ cd /Volumes/

7040 kattnifrobocrepe: $ df -h CIRCUITPY/
Filesystem Size Used Avail Capacity iused ifree “%iused Mounted on
/dev/disk2s1 47Ki 46Ki 1.0Ki 98’ 512 0 100% /Volumes/CIRCUITPY

7041 kattnifirobocrepe: o |

That's not very much space left! The next step is to show a list of the files currently on
the CIRCUITPY drive, including the hidden files, using the 1ls command. You cannot
use Finder to do this, you must do it via command line!

7041 kattnifrobocrepe: $ Ls -a CIRCUITPY/

.fseventsd Lib|
.idea

7042 kattnifrobocrepe: ol |

There are a few of the hidden files that MacOS loves to generate, all of which begin
with a ._ before the file name. Remove the ._ files using the rm command. You can
remove them all once by running rm CIRCUITPY/. *.The * acts as a wildcard to
apply the command to everything that begins with ._ at the same time.

7042 kattniflrobocrepe: $ rm CIRCUITPY/._*

7043 kattnifrobocrepe: o |

Finally, you can run df again to see the current space used.

7043 kattnifirobocrepe: $ df -h CIRCUITPY/
Filesystem Size Used Avail Capacity iused ifree %iused Mounted on
/dev/disk2s1 47Ki 34Ki 13Ki 73% 512 @ 100% /Volumes/CIRCUITPY

7044 kattnifirobocrepe: S |

Nice! You have 12Ki more than before! This space can now be used for libraries and
code!

Device Locked Up or Boot Looping

In rare cases, it may happen that something in your code.py or boot.py files causes
the device to get locked up, or even go into a boot loop. A boot loop occurs when the
board reboots repeatedly and never fully loads. These are not caused by your
everyday Python exceptions, typically it's the result of a deeper problem within
CircuitPython. In this situation, it can be difficult to recover your device if CIRCUITPY
is not allowing you to modify the code.py or boot.py files. Safe mode is one recovery
option. When the device boots up in safe mode it will not run the code.py or boot.py

©Adafruit Industries Page 97 of 199

scripts, but will still connect the CIRCUITPY drive so that you can remove or modify
those files as needed.

The method used to manually enter safe mode can be different for different devices.
It is also very similar to the method used for getting into bootloader mode, which is a
different thing. So it can take a few tries to get the timing right. If you end up in

bootloader mode, no problem, you can try again without needing to do anything else.

For most devices:

Press the reset button, and then when the RGB status LED blinks yellow, press the
reset button again. Since your reaction time may not be that fast, try a "slow" double
click, to catch the yellow LED on the second click.

For ESP32-S2 based devices:
Press and release the reset button, then press and release the boot button about 3/4
of a second later.

Refer to the diagrams above for boot sequence details.

Welcome to the Community!

CircuitPython is a programming language that's super simple to get started with and
great for learning. It runs on microcontrollers and works out of the box. You can plug it
in and get started with any text editor. The best part? CircuitPython comes with an
amazing, supportive community.

Everyone is welcome! CircuitPython is Open Source. This means it's available for
anyone to use, edit, copy and improve upon. This also means CircuitPython becomes
better because of you being a part of it. Whether this is your first microcontroller
board or you're a seasoned software engineer, you have something important to offer

©Adafruit Industries Page 98 of 199

the Adafruit CircuitPython community. This page highlights some of the many ways
you can be a part of it!

Adafruit Discord

The Adafruit Discord server is the best place to start. Discord is where the community
comes together to volunteer and provide live support of all kinds. From general
discussion to detailed problem solving, and everything in between, Discord is a digital
maker space with makers from around the world.

There are many different channels so you can choose the one best suited to your
needs. Each channel is shown on Discord as "#channelname". There's the #help-with-
projects channel for assistance with your current project or help coming up with ideas
for your next one. There's the #show-and-tell channel for showing off your newest
creation. Don't be afraid to ask a question in any channel! If you're unsure, #general is
a great place to start. If another channel is more likely to provide you with a better
answer, someone will guide you.

The help with CircuitPython channel is where to go with your CircuitPython questions.
#help-with-circuitpython is there for new users and developers alike so feel free to
ask a question or post a comment! Everyone of any experience level is welcome to
join in on the conversation. Your contributions are important! The #circuitpython-dev
channel is available for development discussions as well.

The easiest way to contribute to the community is to assist others on Discord.
Supporting others doesn't always mean answering questions. Join in celebrating
successes! Celebrate your mistakes! Sometimes just hearing that someone else has
gone through a similar struggle can be enough to keep a maker moving forward.

©Adafruit Industries Page 99 of 199

The Adafruit Discord is the 24x7x365 hackerspace that you can bring your
granddaughter to.

Visit https://adafru.it/discord ()to sign up for Discord. Everyone is looking forward to

meeting you!
CircuitPython.org

gikon

The easiest way to program
microcontrollers

CircuitPython is a programming language
designed to simplify experimenting and
learning to code on low-cost microcontroller
boards.

000000000000

Beyond the Adafruit Learn System, which you are viewing right now, the best place to
find information about CircuitPython is circuitpython.org (). Everything you need to get
started with your new microcontroller and beyond is available. You can do things like
download CircuitPython for your microcontroller () or download the latest
CircuitPython Library bundle (), or check out which single board computers support
Blinka (). You can also get to various other CircuitPython related things like Awesome
CircuitPython or the Python for Microcontrollers newsletter. This is all incredibly
useful, but it isn't necessarily community related. So why is it included here? The Cont

ributing page ().

Contributing

If you'd like to contribute to the CircuitPython project, the CircuitPython libraries are a great way to begin. This page is
updated with daily status information from the CircuitPython libraries, including open pull requests, open issues and library
infrastructure issues.

Do you write a language other than English? Another great way to contribute to the project is to contribute new localizations
(translations) of CircuitPython, or update current localizations, using Weblate.

If this is your first time contributing, or you'd like to see our recommended contribution workflow, we have a guide on
Contributing to CircuitPython with Git and Github. You can also find us in the #circuitpython channel on the Adafruit Discord.

Have an idea for a new driver or library? File an issue on the CircuitPython repo!

CircuitPython itself is written in C. However, all of the Adafruit CircuitPython libraries
are written in Python. If you're interested in contributing to CircuitPython on the
Python side of things, check out circuitpython.org/contributing (). You'll find
information pertaining to every Adafruit CircuitPython library GitHub repository, giving
you the opportunity to join the community by finding a contributing option that works

for you.

©Adafruit Industries Page 100 of 199

https://adafru.it/discord
https://circuitpython.org
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/libraries
https://circuitpython.org/blinka
https://circuitpython.org/blinka
https://circuitpython.org/contributing
https://circuitpython.org/contributing
https://circuitpython.org/contributing

Note the date on the page next to Current Status for:

Current Status for Tue, Nov 02, 2021

If you submit any contributions to the libraries, and do not see them reflected on the
Contributing page, it could be that the job that checks for new updates hasn't yet run
for today. Simply check back tomorrow!

Now, a look at the different options.
Pull Requests

The first tab you'll find is a list of open pull requests.

Pull Requests Open Issues Library Infrastructure Issues CircuitPython Localization
I

This is the current status of open pull requests and issues across all of the library repos.
Open Pull Requests

* Adafruit_CircuitPython_AdafruitiO
o Call wifi.connect() after wifi.reset() (Open 113 days)

* Adafruit_CircuitPython_ADS1x15
o Supress f-string recommendation in .pylintrc (Open 1 days)

* Adafruit_CircuitPython_ADT7410
o Adding critical temp features (Open 168 days)

GitHub pull requests, or PRs, are opened when folks have added something to an
Adafruit CircuitPython library GitHub repo, and are asking for Adafruit to add, or
merge, their changes into the main library code. For PRs to be merged, they must first
be reviewed. Reviewing is a great way to contribute! Take a look at the list of open
pull requests, and pick one that interests you. If you have the hardware, you can test
code changes. If you don't, you can still check the code updates for syntax. In the
case of documentation updates, you can verify the information, or check it for spelling
and grammar. Once you've checked out the update, you can leave a comment letting
us know that you took a look. Once you've done that for a while, and you're more
comfortable with it, you can consider joining the CircuitPythonLibrarians review team.
The more reviewers we have, the more authors we can support. Reviewing is a crucial
part of an open source ecosystem, CircuitPython included.

Open Issues

The second tab you'll find is a list of open issues.

©Adafruit Industries Page 101 of 199

Pull Requests Open Issues Library Infrastructure Issues CircuitPython Localization

Sort by issue labels | All v

Open Issues

* Adafruit_CircuitPython_74HC595
o Missing Type Annotations (Open 34 days)

* Adafruit_CircuitPython_AdafruitlO
o Missing Type Annotations (Open 34 days)
o use of . and dot and groups (using circuitpython) (Open 125 days)

GitHub issues are filed for a number of reasons, including when there is a bug in the
library or example code, or when someone wants to make a feature request. Issues
are a great way to find an opportunity to contribute directly to the libraries by
updating code or documentation. If you're interested in contributing code or
documentation, take a look at the open issues and find one that interests you.

If you're not sure where to start, you can search the issues by label. Labels are
applied to issues to make the goal easier to identify at a first glance, or to indicate the
difficulty level of the issue. Click on the dropdown next to "Sort by issue labels" to see

the list of available labels, and click on one to choose it.

Sort by issue labels [S45\
Good first issue

Documentation
Hacktoberfest

e Adafruit_Circy il

o Missing Bug
Enhancement

e Adafruit_CircyBalE bl L
SRVESne] Question ar

Support

Help wanted

e Adafruit_Circ Sialellle:) &
o ad1115 tdALEEELGIEN r

Open Issues

o use of .

If you're new to everything, new to contributing to open source, or new to

contributing to the CircuitPython project, you can choose "Good first issue". Issues
with that label are well defined, with a finite scope, and are intended to be easy for

someone new to figure out.

If you're looking for something a little more complicated, consider "Bug" or
"Enhancement”. The Bug label is applied to issues that pertain to problems or failures

found in the library. The Enhancement label is applied to feature requests.

©Adafruit Industries

Page 102 of 199

Don't let the process intimidate you. If you're new to Git and GitHub, there is a guide ()
to walk you through the entire process. As well, there are always folks available on Di
scord () to answer questions.

Library Infrastructure Issues

The third tab you'll find is a list of library infrastructure issues.

Pull Requests Open Issues Library Infrastructure Issues CircuitPython Localization

Library Infrastructure Issues

The following are issues with the library infrastructure. Having a standard library structure greatly improves overall
maintainability. Accordingly, we have a series of checks to ensure the standard is met. Most of these are changes that can be
made via a pull request, however there are a few checks reported here that require changes to GitHub settings. If you are
interested in addressing any of these issues, please feel free to contact us with any questions.

This section is generated by a script that runs checks on the libraries, and then
reports back where there may be issues. It is made up of a list of subsections each
containing links to the repositories that are experiencing that particular issue. This
page is available mostly for internal use, but you may find some opportunities to
contribute on this page. If there's an issue listed that sounds like something you could
help with, mention it on Discord, or file an issue on GitHub indicating you're working
to resolve that issue. Others can reply either way to let you know what the scope of it
might be, and help you resolve it if necessary.

CircuitPython Localization

The fourth tab you'll find is the CircuitPython Localization tab.

Pull Requests Open Issues Library Infrastructure Issues CircuitPython Localization

CircuitPython Translation with Weblate

1,100 18
STRINGS LANGUAGES

60%
TRANSLATED

If you speak another language, you can help translate CircuitPython! The translations
apply to informational and error messages that are within the CircuitPython core. It
means that folks who do not speak English have the opportunity to have these
messages shown to them in their own language when using CircuitPython. This is
incredibly important to provide the best experience possible for all users.

©Adafruit Industries Page 103 of 199

https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github
https:adafru.it/discord
https:adafru.it/discord

CircuitPython uses Weblate to translate, which makes it much simpler to contribute
translations. You will still need to know some CircuitPython-specific practices and a
few basics about coding strings, but as with any CircuitPython contributions, folks are
there to help.

Regardless of your skill level, or how you want to contribute to the CircuitPython
project, there is an opportunity available. The Contributing page () is an excellent
place to start!

Adafruit GitHub

O This repository Pull requests Issues Marketplace Explore

adafruit / circuitpython @uUnwatch~ 69 YruUnstar 256 YFork 1,357
for opython

rked from micropython/micropy

<> Code Issues 73 Pull requests 4 Insights

CircuitPython - a Python implementation for teaching coding with microcontrollers

circuitpython

® 9,856 commits U 32 branches 73 releases 42 206 contributors

Whether you're just beginning or are life-long programmer who would like to
contribute, there are ways for everyone to be a part of the CircuitPython project. The
CircuitPython core is written in C. The libraries are written in Python. GitHub is the
best source of ways to contribute to the CircuitPython core (), and the CircuitPython
libraries (). If you need an account, visit https://github.com/ () and sign up.

If you're new to GitHub or programming in general, there are great opportunities for
you. For the CircuitPython core, head over to the CircuitPython repository on GitHub,
click on "Issues ()", and you'll find a list that includes issues labeled "good first issue ()"

. For the libraries, head over to the Contributing page Issues list (), and use the drop
down menu to search for "good first issue ()". These issues are things that have been
identified as something that someone with any level of experience can help with.
These issues include options like updating documentation, providing feedback, and
fixing simple bugs. If you need help getting started with GitHub, there is an excellent
guide on Contributing to CircuitPython with Git and GitHub ().

@ OneWire BusDevice [T D2
#338 opened 29 days ago by tannewt "~ Long term
@ Feather MO Adalogger does not have D8 or D7 D7

#323 opened on Oct 13 by ladyada " 3.0

D Audit and fix native API for methods that accept and ignore extra args.

#321 opened on Oct 12 by tannewt Long term

Already experienced and looking for a challenge? Checkout the rest of either issues
list and you'll find plenty of ways to contribute. You'll find all sorts of things, from new
driver requests, to library bugs, to core module updates. There's plenty of
opportunities for everyone at any level!

©Adafruit Industries Page 104 of 199

https://circuitpython.org/contributing
https://github.com/adafruit/circuitpython
https://circuitpython.org/contributing/open-issues
https://circuitpython.org/contributing/open-issues
https://github.com/
https://github.com/adafruit/circuitpython/issues
https://github.com/adafruit/circuitpython/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22
https://circuitpython.org/contributing/open-issues
https://circuitpython.org/contributing/open-issues?label=good-first-issue
https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github

When working with or using CircuitPython or the CircuitPython libraries, you may find
problems. If you find a bug, that's great! The team loves bugs! Posting a detailed issue
to GitHub is an invaluable way to contribute to improving CircuitPython. For
CircuitPython itself, file an issue here (). For the libraries, file an issue on the specific
library repository on GitHub. Be sure to include the steps to replicate the issue as well
as any other information you think is relevant. The more detail, the better!

Testing new software is easy and incredibly helpful. Simply load the newest version of
CircuitPython or a library onto your CircuitPython hardware, and use it. Let us know
about any problems you find by posting a new issue to GitHub. Software testing on
both stable and unstable releases is a very important part of contributing
CircuitPython. The developers can't possibly find all the problems themselves! They
need your help to make CircuitPython even better.

On GitHub, you can submit feature requests, provide feedback, report problems and
much more. If you have questions, remember that Discord and the Forums are both
there for help!

Adafruit Forums

Forum Index

ADAFRUIT CUSTOMER SUPPORT FORUMS

Thanks for stopping by! These forums are for Adafruit customers who need assistance with their m
purchases from Adafruit Industries. Our staff can only assist Adafruit customers, thank you!

‘GENERAL FORUMS Topics. Posts Last post

E=] ANNOUNCEMENTS 275 1466 by
Forum announcements Thu Sep 21, 2017 7:32 am
Moderators: adafruit_support_bill, adafruit

The Adafruit Forums () are the perfect place for support. Adafruit has wonderful paid
support folks to answer any questions you may have. Whether your hardware is giving
you issues or your code doesn't seem to be working, the forums are always there for
you to ask. You need an Adafruit account to post to the forums. You can use the same
account you use to order from Adafruit.

While Discord may provide you with quicker responses than the forums, the forums
are a more reliable source of information. If you want to be certain you're getting an
Adafruit-supported answer, the forums are the best place to be.

There are forum categories that cover all kinds of topics, including everything
Adafruit. The Adafruit CircuitPython () category under "Supported Products & Projects"
is the best place to post your CircuitPython questions.

©Adafruit Industries Page 105 of 199

https://github.com/adafruit/circuitpython/issues
https://forums.adafruit.com
https://forums.adafruit.com/viewforum.php?f=60

Forum Index > Supported Products & Projects > Adafruit CircuitPython & User Settings « View your posts « View unread replies 8

Adafruit CircuitPython

Moderators: adafruit_support_bill, adafruit

m Q Mark topics read - 4154 topics - Page 10f 84 - 12345 ... 84

Please be positive and constructive with your questions and comments.

ANNOUNCEMENTS
i | CIRCUITPYTHON 7.2.0 ALPHA 1 RELEASED! 0 20 by danhalbert .

by danhalbert » Tue Dec 28, 2021 1:55 pm Tue Dec 28, 2021 11:55 pm
*j | CIRCUITPYTHON 71.0 RELEASED! 1 32 by rpiloverbd

by danhalbert » Tue Dec 28, 2021 12:01 pm Wed Dec 29, 20215:53 am
‘i‘ SAMDS1 (M4) BOARD USERS: UPDATE YOUR BOOTLOADERS TO >=V3.9.0 10 2428 by Guest &

by danhalbert » Fri May 08, 2020 12:55 pm Sat Aug 15, 2020 11:28 pm

TOPICS

Be sure to include the steps you took to get to where you are. If it involves wiring,
post a picture! If your code is giving you trouble, include your code in your post!
These are great ways to make sure that there's enough information to help you with
your issue.

You might think you're just getting started, but you definitely know something that
someone else doesn't. The great thing about the forums is that you can help others
too! Everyone is welcome and encouraged to provide constructive feedback to any of
the posted questions. This is an excellent way to contribute to the community and
share your knowledge!

Read the Docs

Adafruit CircuitPython
Docs » Core Modules » augioto — Support for audio input and output © Edit on GitHub

audioio — Support for audio input and output

© Core Modules The audioio module contains classes to provide access to audio 10.
Support Matrix
Libraries
& Modules

anatogto — Analog hardware ® audicout = Output an analog audio signal

support

sudiobusio — Support for audio All classes change hardware state and should be deinitialized when they are no longer needed if the

input and output over digital bus . N .
program continues after use. To do so, either call geinit() or use a context manager. See Lifetime

audioto — Support for audio lnput and ContextManagers for more info.

and output

vitoangso — Digital protocols .

implemented by the CPU © Previous Next®

Read the Docs () is a an excellent resource for a more detailed look at the
CircuitPython core and the CircuitPython libraries. This is where you'll find things like
API documentation and example code. For an in depth look at viewing and
understanding Read the Docs, check out the CircuitPython Documentation () page!

©Adafruit Industries Page 106 of 199

https://circuitpython.readthedocs.io/
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-documentation

Here is blinky:

import time
import digitalio
import board

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT
while True:

led.value = True

time.sleep(0.1)

led.value = False

time.sleep(0.1)

Create Your settings.toml File

CircuitPython works with WiFi-capable boards to enable you to make projects that
have network connectivity. This means working with various passwords and API keys.
As of CircuitPython 8 (), there is support for a settings.toml file. This is a file that is
stored on your CIRCUITPY drive, that contains all of your secret network information,
such as your SSID, SSID password and any API keys for |loT services. It is designed to
separate your sensitive information from your code.py file so you are able to share

your code without sharing your credentials.

CircuitPython previously used a secrets.py file for this purpose. The settings.toml file

is quite similar.

CircuitPython settings.toml File

This section will provide a couple of examples of what your settings.toml file should
look like, specifically for CircuitPython WiFi projects in general.

The most minimal settings.toml file must contain your WiFi SSID and password, as that

is the minimum required to connect to WiFi. Copy this example, paste it into your setti
ngs.toml, and update:

« your wifi ssid
« your wifi password

CIRCUITPY WIFI SSID = "your wifi ssid"
CIRCUITPY WIFI PASSWORD = "your wifi password"

©Adafruit Industries Page 107 of 199

https://circuitpython.org/downloads

Many CircuitPython network-connected projects on the Adafruit Learn System involve
using Adafruit 10. For these projects, you must also include your Adafruit IO username
and key. Copy the following example, paste it into your settings.toml file, and update:

« your wifi ssid

« your wifi password
your aio username
« your_aio_ key

CIRCUITPY WIFI SSID = "your wifi ssid"
CIRCUITPY WIFI PASSWORD = "your wifi password"
AIO USERNAME = "your aio username"

AIO KEY = "your_aio_ key"

Some projects use different variable names for the entries in the settings.toml file. For
example, a project might use AIO ID in the place of AIO USERNAME . If you run into
connectivity issues, one of the first things to check is that the names in the
settings.toml file match the names in the code.

settings.toml File Tips
Here is an example settings.toml file.

Comments are supported
CIRCUITPY WIFI SSID = "guest wifi"
CIRCUITPY WIFI PASSWORD = "guessable"
CIRCUITPY _WEB API PORT = 80
CIRCUITPY _WEB API PASSWORD = "passwOrd"
test variable = "this is a test"
thumbs up = "\U00O1f44d"

In a settings.toml file, it's important to keep these factors in mind:

« Strings are wrapped in double quotes; ex: "your-string-here"
« Integers are not quoted and may be written in decimal with optional sign (+1, -
1, 1000) or hexadecimal (Oxabcd).

° Floats, octal (00567) and binary (0b11011) are not supported.

©Adafruit Industries Page 108 of 199

« Use \u escapes for weird characters, \x and \ooo escapes are not available
in .toml files

o Example: \U0001f44d for (thumbs up emoji)and \u20ac for € (EUR
sign)

« Unicode emoji, and non-ASCII characters, stand for themselves as long as you're
careful to save in "UTF-8 without BOM" format

name: | settingstomi

When your settings.toml file is ready, you
can save it in your text editor with the
toml extension.

Accessing Your settings.toml Information in code.py

In your code.py file, you'll need to import the os library to access the settings.toml
file. Your settings are accessed with the os.getenv() function. You'll pass your
settings entry to the function to import it into the code.py file.

import os
print(os.getenv("test variable"))
CircuitPython REPL

code.py output:
this is a test

Code done running.

Press any key to enter the REPL. Use CTRL-D to reload.

In the upcoming CircuitPython WiFi examples, you'll see how the settings.toml file is
used for connecting to your SSID and accessing your API keys.

©Adafruit Industries Page 109 of 199

https://learn.adafruit.com//assets/117071
https://learn.adafruit.com//assets/117071

CircuitPython Internet Test

One of the great things about the ESP32 is the built-in WiFi capabilities. This page
covers the basics of getting connected using CircuitPython.

The first thing you need to do is update your code.py to the following. Click the Downl
oad Project Bundle button below to download the necessary libraries and the code.py
file in a zip file. Extract the contents of the zip file, and copy the entire lib folder and
the code.py file to your CIRCUITPY drive.

SPDX-FileCopyrightText: 2020 Brent Rubell for Adafruit Industries
#
SPDX-License-Identifier: MIT

import os

import ipaddress

import ssl

import wifi

import socketpool

import adafruit requests

URLs to fetch from

TEXT URL = "http://wifitest.adafruit.com/testwifi/index.html"

JSON _QUOTES URL = "https://www.adafruit.com/api/quotes.php"
JSON_STARS URL = "https://api.github.com/repos/adafruit/circuitpython”

print("ESP32-S2 WebClient Test")
print(f"My MAC address: {[hex(i) for i in wifi.radio.mac address]}")

print("Available WiFi networks:")
for network in wifi.radio.start scanning networks():
print ("\t%s\t\tRSSI: %d\tChannel: %d" % (str(network.ssid, "utf-8"),
network.rssi, network.channel))
wifi.radio.stop scanning networks()

print(f"Connecting to {os.getenv('CIRCUITPY WIFI SSID')}")
wifi.radio.connect(os.getenv("CIRCUITPY WIFI SSID"),
0s.getenv("CIRCUITPY _WIFI PASSWORD"))

print(f"Connected to {os.getenv('CIRCUITPY WIFI SSID')}")
print(f"My IP address: {wifi.radio.ipv4 address}")

ping ip = ipaddress.IPv4Address("8.8.8.8")
ping = wifi.radio.ping(ip=ping ip)

retry once if timed out
if ping is None:
ping = wifi.radio.ping(ip=ping_ip)

if ping is None:

print("Couldn't ping 'google.com' successfully")
else:

convert s to ms

print(f"Pinging 'google.com' took: {ping * 1000} ms")

pool = socketpool.SocketPool(wifi.radio)
requests = adafruit requests.Session(pool, ssl.create default context())

print(f"Fetching text from {TEXT URL}")

response = requests.get(TEXT_URL)
print("-" * 40)

©Adafruit Industries Page 110 of 199

print(response.text)
print("-" * 40)

print(f"Fetching json from {JSON QUOTES URL}")
response = requests.get(JSON QUOTES URL)
print("-" * 40)

print(response.json())

print("-" * 40)

print()

print(f"Fetching and parsing json from {JSON STARS URL}")

response = requests.get(JSON_STARS URL)

print("-" * 40)

print(f"CircuitPython GitHub Stars: {response.json()['stargazers count']}")
print("-" * 40)

print("Done")

Your CIRCUITPY drive should resemble the following.

v @ CIRCUITPY
>0

R boot_out.txt

B code.py
B settings.tom|
v lib
B adafruit_requests.mpy

To get connected, the next thing you need to do is update the settings.toml file.

The settings.toml File

We expect people to share tons of projects as they build CircuitPython WiFi widgets.
What we want to avoid is people accidentally sharing their passwords or secret
tokens and API keys. So, we designed all our examples to use a settings.toml file, that
is on your CIRCUITPY drive, to hold secret/private/custom data. That way you can
share your main project without worrying about accidentally sharing private stuff.

If you have a fresh install of CircuitPython on your board, the initial settings.toml file
on your CIRCUITPY drive is empty.

To get started, you can update the settings.toml on your CIRCUITPY drive to contain
the following code.

SPDX-FileCopyrightText: 2023 Adafruit Industries
#
SPDX-License-Identifier: MIT

This is where you store the credentials necessary for your code.
The associated demo only requires WiFi, but you can include any

©Adafruit Industries Page 111 of 199

credentials here, such as Adafruit IO username and key, etc.
CIRCUITPY WIFI SSID = "your-wifi-ssid"
CIRCUITPY WIFI PASSWORD = "your-wifi-password"

This file should contain a series of Python variables, each assigned to a string. Each
variable should describe what it represents (say wifi ssid), followed by an = (equal
s sign), followed by the data in the form of a Python string (such as "my-wifi-
password" including the quote marks).

At a minimum you'll need to add/update your WiFi SSID and WiFi password, so do that
now!

As you make projects you may need more tokens and keys, just add them one line at
a time. See for example other tokens such as one for accessing GitHub or the
Hackaday API. Other non-secret data like your timezone can also go here.

For the correct time zone string, look at http://worldtimeapi.org/timezones () and
remember that if your city is not listed, look for a city in the same time zone, for
example Boston, New York, Philadelphia, Washington DC, and Miami are all on the
same time as New York.

Of course, don't share your settings.toml - keep that out of GitHub, Discord or other
project-sharing sites.

If you connect to the serial console, you should see something like the following:

©Adafruit Industries Page 112 of 199

http://worldtimeapi.org/timezones

ee0o 1. screen /Users/brentrubell (screen)

Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.

code.py output:

ESP32-S2 WebClient Test

My MAC addr: ['@x7c', 'oxdf', '@Oxal', 'Ox0', 'Ox52', '0xa0']

Avaliable WiFi networks:
Brunelleschi RSSI: -84 Channel: 6
Transit RSSI: -54 Channel: 1
Fios-5dLNb RSSI: -66 Channel: 1
disconnecteder RSSI: -86 Channel: 1
SKJFios-ZV@07 RSSI: -83 Channel: 11
Fios-QIVUQ RSSI: -83 Channel: 11
Fios-ZV007 RSSI: -85 Channel: 11

RSSI: -58 Channel: 2
RSSI: -76 Channel: 8

NETGEARS2 RSSI: -81 Channel: 10

Connecting to Transit

Connected to Transit!

None

My IP address is 192.168.1.182

Ping google.com: 0.065000 ms

Fetching text from http://wifitest.adafruit.com/testwifi/index.html

This is a test of Adafruit WiFi!
If you can read this, its working :

Fetching json from https://www.adafruit.com/api/quotes.php

[{'text': 'Science, my lad, is made up of mistakes, but they are mistakes which it is u
seful to make, because they lead little by little to the truth', 'author': 'Jules Verne

In order, the example code...

Checks the ESP32's MAC address.

print(f"My MAC address: {[hex(i) for i in wifi.radio.mac address]}")

Performs a scan of all access points and prints out the access point's name (SSID),
signal strength (RSSI), and channel.

print("Available WiFi networks:")
for network in wifi.radio.start scanning networks():
print("\t%s\t\tRSSI: %d\tChannel: %d" % (str(network.ssid, "utf-8"),
network.rssi, network.channel))
wifi.radio.stop scanning networks()

Connects to the access point you defined in the settings.toml file, and prints out its
local IP address.

print(f"Connecting to {os.getenv('WIFI SSID')}")
wifi.radio.connect(os.getenv("WIFI SSID"), os.getenv("WIFI_ PASSWORD"))
print(f"Connected to {os.getenv('WIFI SSID')}")

print(f"My IP address: {wifi.radio.ipv4 address}")

Attempts to ping a Google DNS server to test connectivity. If a ping fails, it returns

None . Initial pings can sometimes fail for various reasons. So, if the initial ping is
successful (1is not None), it will print the echo speed in ms. If the initial ping fails, it

©Adafruit Industries Page 113 of 199

will try one more time to ping, and then print the returned value. If the second ping
fails, it will resultin "Ping google.com: None ms" being printed to the serial
console. Failure to ping does not always indicate a lack of connectivity, so the code
will continue to run.

ping ip = ipaddress.IPv4Address("8.8.8.8")
ping = wifi.radio.ping(ip=ping_ip) * 1000
if ping is not None:

print(f"Ping google.com: {ping} ms")
else:

ping = wifi.radio.ping(ip=ping_ip)

print(f"Ping google.com: {ping} ms")

The code creates a socketpool using the wifi radio's available sockets. This is
performed so we don't need to re-use sockets. Then, it initializes a a new instance of
the requests () interface - which makes getting data from the internet really really
easy.

pool = socketpool.SocketPool(wifi.radio)
requests = adafruit requests.Session(pool, ssl.create default context())

To read in plain-text from a web URL, call requests.get -you may pass in either a
http, or a https url for SSL connectivity.

print(f"Fetching text from {TEXT URL}")
response = requests.get(TEXT_URL)
print("-" * 40)

print(response.text)

print("-" * 40)

Requests can also display a JSON-formatted response from a web URL using a call to
requests.get.

print(f"Fetching json from {JSON QUOTES URL}")
response = requests.get(JSON QUOTES URL)
print("-" * 40)

print(response.json())

print("-" * 40)

Finally, you can fetch and parse a JSON URL using requests.get . This code snippet
obtains the stargazers count field from a call to the GitHub API.

print(f"Fetching and parsing json from {JSON STARS URL}")

response = requests.get(JSON STARS URL)

print("-" * 40)

print(f"CircuitPython GitHub Stars: {response.json()['stargazers count']}")
print("-" * 40)

©Adafruit Industries Page 114 of 199

http://docs.python-requests.org/en/master/

OK you now have your ESP32 board set up with a proper settings.toml file and can
connect over the Internet. If not, check that your settings.toml file has the right SSID
and password and retrace your steps until you get the Internet connectivity working!

Converting Arduino_GFX init strings to
CircuitPython

Not all 40-pin displays have the power pins in the same place. Hooking up a non
RGB-666 display with the Qualia S3 risks damaging the display.

The conversion script is intended to be run using Python and not CircuitPython
on a computer with plenty of memory.

If you would like to generate the init code for CircuitPython, you can do so in a couple
of ways with the conversion script below. In both ways you will need to run it using
Python on your computer. Start by saving the code below as convert_initcode.py.

convert initcode.py
MIT license

import re

(
BEGIN WRITE,
WRITE COMMAND 8,
WRITE_COMMAND 16,
WRITE DATA 8,
WRITE DATA 16,
WRITE_BYTES,
WRITE C8 D8,
WRITE C8 D16,
WRITE C16 D16,
END WRITE,
DELAY,

) = range(1l1)

class Encoder:
def init (self):
self.content = bytearray()
self.reset()

def command(self, command):
if self.pending command is not None:
self.flush()
self.pending command = command
self.pending data = bytearray()

def data(self, data):
self.pending data.append(data)

def delay(self, value):
self.pending delay = value

def flush(self):
if self.pending command is not None:

©Adafruit Industries Page 115 of 199

self.content.append(self.pending command)

len_and delay = len(self.pending data) | (bool(self.pending delay) << 7)
self.content.append(len_and delay)

self.content.extend(self.pending data)

if self.pending delay:
self.content.append(self.pending delay)

print(f" {bytes(self.content)}")
self.reset()

def reset(self):
self.pending command = None
self.pending data = bytearray()
self.pending delay = 0
self.content = bytearray()

def translate init operations(*initcode):
initcode = iter(initcode)
encoder = Encoder()

print("init code = bytes((")
for op in initcode:
if op in (BEGIN WRITE, END WRITE):
continue
elif op == WRITE COMMAND 8:
encoder.command(next(initcode))
elif op == WRITE (C8 D8:
encoder.command(next(initcode))
encoder.data(next(initcode))
elif op == WRITE C8 D16:
encoder.command(next(initcode))
encoder.data(next(initcode))
encoder.data(next(initcode))
elif op == WRITE BYTES:
for in range(next(initcode)):
encoder.data(next(initcode))
elif op == DELAY:
encoder.delay(next(initcode))
else:
raise ValueError(f"Invalid operation Ox{op:02x}")
encoder. flush()
print("))")

def translate init file(initcode filename):
initcode regex = r"\(*0x([0-9a-fA-F]+) *\);"
command_data regex = r"\(*Ox([0-9a-fA-F]+), *Ox([0-9a-fA-F]+) *\);"
delay_regex = r"\(*(\d+) *\);"

Init code files are inconsistent in their naming of command, data, and delay
functions

command8 values = ("SPI WriteComm", "W C", "WriteCommand", "WriteComm")

data values = ("SPI WriteData", "W D", "WriteParameter", "WriteData")

delay values = ("Delayms", "Delay", "Delay ms")

encoder = Encoder()

def get command8(line):
for command in command8 values:
if command in line:
encoder.command(get initcode8(line))
return True
return False

def get data(line):
for data in data values:

©Adafruit Industries Page 116 of 199

if data in line:

encoder.data(get initcode8(line))

return True
return False

def get delay(line):
for delay in delay values:
if delay in line:

encoder.delay(get delay value(line))

return True
return False

def get initcode8(line):

match = re.search(initcode regex, line)

if match:
return int(match.group(l), 16)

raise ValueError(f"Warning: could not

def get initcodel6(line):

match = re.search(command data regex,

if match:

command = int(match.group(1l), 16)

data = int(match.group(2)
return command, data

16)

raise ValueError(f"Warning: could not

def get delay value(line):

match = re.search(delay regex, line)

if match:
return int(match.group(1))

parse initcode in line '{line}'")

parse initcode in line '{line}'")

raise ValueError(f"Warning: could not parse delay in line '{line}'")

with open(initcode filename, encoding='utf-8', errors='ignore') as f:

print("init code = bytes((")
for line in f.readlines():
line = line.strip()

Remove comments or commented out code

line = line.split("//")[0]

if get command8(line):
continue

if get data(line):
continue

if get delay(line):
continue

if "Wrt Reg 3052" in line:

command, data = get initcodel6(line)

encoder.command (command)
encoder.data(data)
encoder. flush()
print("))")

To use the code, you can just import the conversion script into your own code:

from convert initcode import *

Using Arduino_GFX Init Codes

The first method is to convert the codes from the Arduino_GFX library, which can be
found at https://github.com/moononournation/Arduino_GFX (). The initialization codes

for the dot clock displays are found inside of src/display/Arduino_RGB_Display.h () by

searching for the display's model number.

©Adafruit Industries

Page 117 of 199

https://github.com/moononournation/Arduino_GFX
https://github.com/moononournation/Arduino_GFX/blob/master/src/display/Arduino_RGB_Display.h

In your main script, just call translate init operations() like this:

translate init operations(

WRITE COMMAND 8, OXxFF,

WRITE BYTES, 5, 0x77, 0x01, 0x00, 0x00, 0x13,
WRITE C8 D8, OxEF, 0x08,

)

These operations are supported: COMMAND 8, C8 D8, C8 D16, WRITE BYTES.
Adding support for WRITE DATA 8 and WRITE DATA 16 "should be easy" but it was
not used in any examples so far.

It's assumed that BEGIN WRITE /END WRITE are not'important. However, DELAY is
accounted for.

Using Init Code Files

The second method is by using one of the init code files found on the product page
for the display. Near the bottom of the page under Technical Details, most of the
displays have a link to a file containing the init codes. Just save the file to your

S 4

computer as something like display_init_codes.txt.

Watch on (3 YouTube

Technical Details

Display Spec Sheet

ST7701 Datasheet

Display Init Code Listing

Timing Diagram

May We Also Suggest...

Then to convert the file, in your main script, just run translate init file() like
this:

translate init file("display init codes.txt")

©Adafruit Industries Page 118 of 199

Script Output

After running your script, you should see output like the following:

init_code = bytes((
b "\xff\x05w\x01\x00\x00\x13"
b'\xef\x01\x08"

b "\xff\x05w\x01\x00\x00\x10"
b'\xcO\x02w\x00"'
b"\xc1\x02\x11\x0c"
b
b
b
b

"\xc2\x02\x07\x02"
"\xcc\x010"'
"\xb@\x10\x06\xcf\x14\x0c\x0f\x03\x00\n\x07\x1b\x03\x12\x10%6\x1e"
"\xb1\x10\x0c\xd4\x18\x0c\x0e\x06\x03\x06\x08#\x06\x12\x100/\x1f"
b "\xff\x05w\x01\x00\x00\x11"
b'\xb0\x01s"
b'\xb1\x01|"
b'\xb2\x01\x83"
b'\xb3\x01\x80"

Determining Timings

If you have your own RGB-666 display, you may wish to use it with the Qualia ESP32-
S3. The main pieces of information that you will need to find are:

- Display Width
- Display Height
« Horizontal and Vertical:

° Sync Pulse Width in milliseconds
° Front Porch in milliseconds
o Back Porch in milliseconds

Pieces of Information that are helpful, but can be determined by trial and error
include:

« Frequency of the Display Clock
« Signal Polarities for the following:

o Horizontal Idle
Vertical Idle

Data Enable Idle
Pixel Clock Active
Pixel Clock Idle

o

o

o

[¢]

©Adafruit Industries Page 119 of 199

Using a Data Sheet

The one of the best places to start looking for this information is the data sheet for
the display. Data sheets may contain a diagram that will give you most of those

values:
Vertical Sync.
A —
1 Vs Invisible image
= Timing information which cannot be seen on the display
= blank time
vbp DE="0" (low)
VP
vdisp
o
vy vy
Horizontal Sync.
hpw hbp hdisp " hip
HP

For the display width and height, these are in pixels and should be easy to find.

In the above diagram, you can see for instance the HP (or Horizontal Period) split up
into hpw (or Horizontal Sync Pulse Width), hbp (or Horizontal Back Porch), hdisp (or
Horizontal Display, which is the visible area), and hfp (or Horizontal Front Porch). For
the vertical, this is the same except vs is used for the Vertical Sync Pulse Width.

When a display is drawn, the horizontal and vertical periods are split up into these
sections. The Sync Pulse Widths are used by the display to keep everything in sync
and the Front and Back Porch are blanking periods and are carried over from VGA
when CRTs (or Cathode Ray Tubes) were used to give a little extra time for signals to
synchronize or allow the electron beam to move to a different place.

While many data sheets will explicitly give you these values, occasionally you may be
given values such as the total period time, one of the porch values and the timing of

©Adafruit Industries Page 120 of 199

the display data, which you can use to calculate any missing values, which is why it's
important to understand how the timings are used.

You can also use the diagram to figure out the Horizontal and Vertical Idle Polarity by
looking at the lines underneath and to the left. In the case of the above diagram, both
of the signals have a high idle state, which is the part of the signal where it is out of
the sync pulse phase.

Fill in the Settings

For the timings in CircuitPython, a dictionary is used. You can use the following code
as a template and you will want to replace anywhere you see [Number] with the
actual numerical value and anywhere you see [True/False] with a boolean value.

tft timings = {
"frequency": [Number],
"width": [Number],
"height": [Number],

"hsync_pulse width": [Number],
"hsync back porch": [Number],
"hsync_front porch": [Number],
"hsync_idle low": [True/False],

"vsync_pulse width": [Number],
"vsync _back porch": [Number],
"vsync _front porch": [Number],
"vsync_idle low": [True/False],

"pclk active high": [True/Falsel],
"pclk _idle high": [True/False],
"de_idle high": [True/False],

Experimenting with Settings

To get the remainder of the settings, you may need to experiment a bit. You can take
a look at some of the other displays that are similar to get a good starting point. From
there, start making adjustments until you get an image that looks correct. If you notice
that any changes you are making seem to have little effect, then it is likely using
settings from the init codes. In this case, you may need to consult the data sheet for
the controller and figure out which code is causing issues. You also may try getting
the init codes from different sources and see which ones work the best.

Testing your Settings with CircuitPython

So you are at a point where everything seems correct, it's time to test that it all looks
good. If the settings are off just a bit, you may notice certain colors look a bit glitchy

©Adafruit Industries Page 121 of 199

and you will need to continue experimenting with the settings to fix it. You can fill in
your timing settings and run this script to test that everything looks good:

from displayio import release displays
release displays()

import random

import displayio

import time

import busio

import board

import dotclockframebuffer

from framebufferio import FramebufferDisplay

init code = bytes((...))

board.I2C().deinit()

i2c = busio.I2C(board.SCL, board.SDA, frequency=400 000)

tft io expander = dict(board.TFT IO EXPANDER)
dotclockframebuffer.ioexpander send init sequence(i2c, init sequence t1032,
**tft _io expander)

i2c.deinit ()

tft pins = dict(board.TFT_PINS)
tft_timings = {...}

bitmap = displayio.Bitmap (256, 7*64, 65535)
fb = dotclockframebuffer.DotClockFramebuffer(**tft pins, **tft timings)
display = FramebufferDisplay(fb, auto refresh=False)

Create a TileGrid to hold the bitmap
tile grid = displayio.TileGrid(bitmap,
pixel shader=displayio.ColorConverter(input colorspace=displayio.Colorspace.RGB565))

Create a Group to hold the TileGrid
group = displayio.Group()

Add the TileGrid to the Group
group.append(tile grid)

Add the Group to the Display
display.root group = group

display.auto refresh = True

for i in range(256):
b =1 >> 3
g = (i >> 2) << 5
r=>b ≪< 11

for j in range(64):
bitmap[i, j] = b
bitmap[i, j+64] = b|g

bitmap[i, j+128] =g
bitmap[i, j+192] = g|r
bitmap[i, j+256] = r
bitmap[i, j+320] = r|b
bitmap[i, j+384] = r|g|b

Loop forever so you can enjoy your image
while True:
time.sleep(1l)
display.auto_refresh = False
group.x = random.randint (0, 32)
group.y = random.randint (0, 32)

©Adafruit Industries Page 122 of 199

display.auto_refresh = True
pass

If your settings are slightly off, it may look like the following:

CircuitPython Display Setup

Not all 40-pin displays have the power pins in the same place. Hooking up a non

RGB-666 display with the Qualia S3 risks damaging the display.

©Adafruit Industries Page 123 of 199

To set up a display, you need to have several major pieces of information:

« The GPIO connections for the display (TFT_PINS)

« The I/O expander configuration (TFT_IO_EXPANDER)

« The resolution and "timings" of the display (TFT_TIMINGS), which also includes
information about the polarity of certain signals.

« The initialization code of the display (TFT_INIT_SEQUENCE)

Luckily, this guide provides all the information for the displays that are sold in the
Adafruit shop. However, if you have a different display, you will need to find the
information in the data sheet.

If a board is designed for dot clock TFT displays, the GPIO connections are listed in b
oard.TFT PINS. Otherwise, it depends on how the display is connected.

If the board is designed for a single display, then the timings are listed in board.TFT
TIMINGS.

These values are used in the display constructor with the ** so that each element
becomes a separate argument to the function.

If the board's built in display requires an initialization sequence, then this is given as
board.TFT INIT SEQUENCE . If the SPI bus is on an I12C I/O expander the settings for

the I/0O expander are in board.TFT _I0 EXPANDER, intended to be expanded with
* %

If a board is tied to a specific display, then board definition can initialize the dot clock
TFT display. For example, this is done with the Espressif ESP32-S3 LCD EV board:

#include "py/objtuple.h"
#include "boards/espressif esp32s3 lcd ev/board.h"
#include "shared-bindings/board/ init .h"

#include "shared-module/displayio/ init .h"

STATIC const mp _rom map elem t tft io expander table[] = {

MP_ROM QSTR(MP_QSTR i2c address), MP_ROM INT(0x20)},
MP_ROM_QSTR(MP_QSTR gpio_address), MP_ROM INT(1)},

MP_ROM QSTR(MP_QSTR gpio data len), MP_ROM INT(1)},

MP_ROM QSTR(MP_QSTR gpio data), MP_ROM INT(OxF1)},

MP _ROM QSTR(MP_QSTR cs bit), MP_ROM INT(1)},

MP_ROM QSTR(MP_QSTR mosi bit), MP_ROM INT(3)},

MP_ROM QSTR(MP_QSTR clk bit), MP_ROM INT(2)},

MP_ROM QSTR(MP_QSTR i2c init sequence), &i2c _init byte obj},

P e T Y e Y S WoSPE

MP DEFINE CONST DICT(tft io expander dict, tft io expander table);

{

STATIC const mp _rom obj tuple t tft r pins
{&mp_type tuple},
5,

©Adafruit Industries Page 124 of 199

MP_ROM_PTR(&pin GPIO1),
MP_ROM PTR(&pin GPI02),
MP_ROM_PTR(&pin GPI042),
MP_ROM_PTR(&pin GPI041),
MP_ROM PTR(&pin GPI040),

};

STATIC const mp_rom obj tuple t tft g pins = {
{&mp_ type tuple},

’

{
MP_ROM PTR(&pin GPI021),
MP_ROM PTR(&pin GPI047),
MP_ROM PTR(&pin GPI048),
MP_ROM PTR(&pin _GPI045),
MP_ROM PTR(&pin GPI038),
MP_ROM_PTR(&pin_GPI039),

};

STATIC const mp_rom obj tuple t tft b pins = {
{&mp_type tuple},

’

{
MP_ROM_PTR(&pin GPI010),
MP_ROM_PTR(&pin GPIO11),
MP_ROM PTR(&pin GPI012),
MP_ROM_PTR(&pin GPIO013),
MP_ROM_PTR(&pin GPI014),
b

+;

STATIC const mp_rom map elem t tft pins table[] = {

{ MP_ROM QSTR(MP QSTR de), MP ROM PTR(&pin GPIO17) 1},

{ MP_ROM QSTR(MP_QSTR vsync), MP _ROM PTR(&pin GPIO3) },
{ MP_ROM QSTR(MP QSTR hsync), MP ROM PTR(&pin GPIO046) 1},
{ MP_ROM QSTR(MP QSTR dclk), MP ROM PTR(&pin GPIO9) 1},

{ MP_ROM QSTR(MP_QSTR red), MP ROM PTR(&tft r pins) },

{ MP_ROM QSTR(MP QSTR green), MP ROM PTR(&tft g pins) },
{ MP_ROM QSTR(MP_QSTR blue), MP ROM PTR(&tft b pins) },

MﬁiDEFINE7CONST7DICT(tftipinsidict, tft pins table);

STATIC const mp _rom map elem t tft timings table[] = {

{ MP_ROM _QSTR(MP_QSTR frequency), MP_ROM INT(6500000) }, // nominal 16MHz, but

display is unstable/tears at that frequency

MP_ROM QSTR(MP_QSTR width), MP_ROM INT(480) },
MP_ROM_QSTR(MP_QSTR height), MP_ROM_INT(480) },

MP_ROM QSTR(MP_QSTR hsync_pulse width), MP_ROM INT(13)
MP_ROM QSTR(MP_QSTR hsync front porch), MP ROM INT(20)
MP_ROM_QSTR
MP_ROM QSTR
MP_ROM_QSTR
MP_ROM QSTR
MP_ROM QSTR
MP_ROM QSTR
MP_ROM_QSTR
MP_ROM QSTR
MP_ROM QSTR

MP_QSTR hsync idle low), MP_ROM FALSE },
MP QSTR vsync pulse width), MP_ROM INT(15)
MP_QSTR vsync_front _porch), MP_ROM INT(20)

MP QSTR vsync idle low), MP ROM FALSE 1},
MP QSTR de idle high), MP ROM FALSE },

MP _QSTR pclk active high), MP_ROM FALSE },
MP QSTR pclk idle high), MP_ROM FALSE },

R e T Y e N e e L T
GG A A A Ay

MP DEFINE CONST DICT(tft timings dict, tft timings table);

STATIC const mp_rom map elem t board module globals table[] = {

CIRCUITPYTHON BOARD DICT STANDARD ITEMS

{ MP_ROM_QSTR(MP_QSTR_TFT PINS), MP ROM PTR(&tft pins dict) },

MP_QSTR _hsync_back porch), MP_ROM INT(40) }

MP _QSTR vsync back porch), MP_ROM INT(40) }

{ MP_ROM QSTR(MP_QSTR TFT TIMINGS), MP ROM PTR(&tft timings dict) },

©Adafruit Industries

Page 125 of 199

MP_ROM QSTR(MP_QSTR TFT IO EXPANDER), MP_ROM PTR(&tft io expander dict) },
MP_ROM_QSTR(MP_QSTR_TFT INIT SEQUENCE), &display init byte obj},

MP_ROM QSTR(MP_QSTR I2S SCK), MP_ROM_PTR(&pin GPIO16) },
MP_ROM_QSTR(MP_QSTR_I2S MCLK), MP ROM PTR(&pin GPIO5) },
MP_ROM_QSTR(MP_QSTR_I2S WS), MP_ROM PTR(&pin GPIO7) },
MP_ROM QSTR(MP_QSTR_I2S_SD0O), MP_ROM PTR(&pin GPIO06) },

MP_ROM_QSTR(MP_QSTR_TX), MP_ROM PTR(&pin GPI043) },
MP_ROM QSTR(MP_QSTR RX), MP_ROM_PTR(&pin GPI044) },

MP_ROM_QSTR(MP_QSTR_SCL), MP_ROM PTR(DEFAULT I2C BUS SCL) },
MP_ROM_QSTR(MP_QSTR_SDA), MP_ROM PTR(DEFAULT I2C_BUS SDA) 1},

P T e Y e T e e e PSSP

{ MP_ROM_QSTR(MP_QSTR _DISPLAY), MP_ROM PTR(&displays[0].display) },

// boot mode button can be used in SW as well
{ MP_ROM_QSTR(MP_QSTR BUTTON), MP_ROM PTR(&pin_ GPIO0O) 1},

{ MP_ROM QSTR(MP_QSTR I2C), MP ROM PTR(&board i2c obj) 1},
i
MP_DEFINE CONST DICT(board module globals, board module globals table);

~
*

This file is part of the MicroPython project, http://micropython.org/
The MIT License (MIT)
Copyright (c) 2020 Scott Shawcroft for Adafruit Industries

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

X K X K K K K K K K K X K X XK X X X X X X X X

*
~

#include "supervisor/board.h"

#include "mpconfigboard.h"

#include "shared-bindings/board/ _init .h"

#include "shared-bindings/busio/I2C.h"

#include "shared-bindings/dotclockframebuffer/DotClockFramebuffer.h"
#include "shared-bindings/dotclockframebuffer/ init .h"

#include "shared-bindings/framebufferio/FramebufferDisplay.h"
#include "shared-bindings/microcontroller/Pin.h"

#include "shared-module/displayio/ init .h"

#include "boards/espressif esp32s3 lcd ev/board.h"

#define MP _DEFINE BYTES OBJ(obj name, bin) mp obj str t obj name =
{{&mp_type bytes}, 0, sizeof(bin) - 1, (const byte *)bin}

static const uint8 t display init sequence[] = {
Oxf0, 5, 0x55, Oxaa, 0x52, 0x08, 0x00,
o0xf6, 2, 0x5a, 0x87,
Oxcl, 1, Ox3f,

©Adafruit Industries Page 126 of 199

©Adafruit Industries

Oxc2, 1, 0x0Oe,

Oxc6, 1, Oxf8,

0xc9, 1, 0x10,

Oxcd, 1, 0x25,

0xf8, 1, 0x8a,

Oxac, 1, 0x45,

0xa®, 1, Oxdd,

Oxa7, 1, 0x47,

Oxfa, 4, 0x00, O0x00, Ox00, 0x04,
0x86, 4, 0x99, 0xa3, 0xa3, 0x51,
Oxa3, 1, Oxee,

Oxfd, 3, 0x3c, 0x3c, 0x00,
0x71, 1, 0x48,

0x72, 1, 0x48,

0x73, 2, 0x00, 0x44,

0x97, 1, Oxee,

0x83, 1, 0x93,

0x9%a, 1, 0x72,

0x9b, 1, 0Ox5a,

0x82, 2, 0x2c, 0x2c,

Oxbl, 1, 0x10,

Ox6d, 32, 0x00, 0x1f, 0x19, 0Oxla, 0x10, O0x0e, O0x0Oc, OxOa, 0x02, 0x07, Oxle,
Oxle, Oxle, Oxle, Oxle, Oxle, 0Oxle, 0Oxle, 0Oxle, Oxle, 0Oxle, Oxle, 0x08, 0x01, 0x09,
0x0b, 0x0d, O0x0f, Oxla, 0x19, Ox1f, 0x00,

0x64, 16, 0x38, 0x05, 0x01, Oxdb, 0x03, 0x03, 0x38, 0x04, 0x01, Oxdc, 0Ox03,
0x03, O0x7a, Ox7a, 0Ox7a, 0Ox7a,

0x65, 16, 0x38, 0x03, 0x01, Oxdd, 0x03, 0x03, 0x38, 0x02, 0x01, Oxde, 0x03,
0x03, Ox7a, Ox7a, 0Ox7a, 0Ox7a,

0x66, 16, 0x38, 0x01, Ox01, Oxdf, O0x03, 0x03, 0x38, 0x00, 0x01, Oxed, 0Ox03,
0x03, O0x7a, 0x7a, 0x7a, 0x7a,

0x67, 16, 0x30, 0x01, 0x01, Oxel, 0x03, 0x03, 0x30, 0x02, 0x01, Oxe2, 0x03,
0x03, Ox7a, 0Ox7a, 0Ox7a, 0Ox7a,

0x68, 13, 0x00, 0x08, O0x15, 0x08, 0x15, 0x7a, 0x7a, 0x08, 0x15, 0x08, 0x15,
Ox7a, 0Ox7a

Ox60, 8, 0x38, 0x08, 0x7a, 0x7a, 0x38, 0x09, 0x7a, 0Ox7a,
0x63, 8, 0x31, Oxed4, 0Ox7a, 0Ox7a, 0x31l, Oxe5, 0x7a, 0Ox7a,
0x69, 7, 0x04, 0x22, 0x14, 0x22, 0x14, 0x22, 0x08,

Ox6b, 1, 0x07,

0x7a, 2, 0x08, 0x13,

0x7b, 2, 0x08, 0x13,

Oxdl, 52, 0x00, O0x00, 0x00, 0x04, 0x00, 0x12, 0x00, O0x18, 0x00, 0x21, 0x00,
0x2a, 0x00, 0x35, 0x00, 0x47, 0x00, O0x56, 0x00, 0x90, 0x00, Oxe5, 0x01, 0x68, 0x01,
0Oxd5, 0x01, Oxd7, 0x02, 0x36, 0x02, Oxa6, 0x02, Oxee, 0x03, 0x48, 0x03, 0xad, 0x03,
Oxba, 0x03, 0xc5, 0x03, 0xdO, 0x03, O0xeO, 0x03, Oxea, 0x03, Oxfa, 0x03, Oxff,

0xd2, 52, 0x00, 0x00, O0x00, 0x04, 0x00, 0x12, 0x00, 0x18, Ox00, 0x21, 0x00,
0x2a, 0x00, 0x35, 0x00, 0x47, 0x00, 0x56, 0x00, 0x90, 0x00, Oxe5, 0x01, O0x68, 0x01,
0Oxd5, 0x01, Oxd7, 0x02, 0x36, 0x02, Oxa6, 0x02, Oxee, 0x03, 0x48, 0x03, 0xa0, 0x03,
Oxba, 0x03, Oxc5, 0x03, O0xdO, 0x03, O0xeO, 0x03, Oxea, 0x03, Oxfa, 0x03, Oxff,

0xd3, 52, 0x00, 0x00, Ox00, 0x04, 0x00, 0x12, 0x00, 0x18, Ox00, O0x21, 0x00,
0x2a, 0x00, 0x35, 0x00, 0x47, 0x00, O0x56, O0x00, 0x90, 0x00, Oxe5, 0x01, O0x68, 0x01,
0Oxd5, 0x01, Oxd7, 0x02, 0x36, 0x02, Oxa6, 0x02, Oxee, 0x03, 0x48, 0x03, 0xad, 0x03,
Oxba, 0x03, Oxc5, 0x03, 0xdO, 0x03, O0xeO, 0x03, Oxea, 0x03, Oxfa, 0x03, Oxff,

Oxd4, 52, 0x00, O0x00, 0x00, 0x04, 0x00, 0x12, 0x00, O0x18, 0x00, 0x21, 0x00,
Ox2a, O0x00, O0x35, O0x00, 0x47, 0x00, O0x56, 0x00, 0x90, 0x00, Oxe5, 0x01l, 0x68, 0x01,
0xd5, 0x01, 0xd7, 0x02, 0x36, 0x02, Oxa6, 0x02, Oxee, 0x03, 0x48, 0x03, O0xald, 0x03,
Oxba, 0x03, 0xc5, 0x03, OxdO, 0x03, OxeO, 0x03, Oxea, 0x03, Oxfa, 0x03, Oxff,

0xd5, 52, 0x00, 0x00, O0x00, 0x04, 0x00, 0x12, 0x00, 0x18, Ox00, O0x21, 0x00,
0x2a, 0x00, 0x35, 0x00, 0x47, 0x00, 0x56, 0x00, 0x90, 0x00, Oxe5, 0x01, 0x68, 0x01,
Oxd5, 0x01, 0xd7, 0x02, 0x36, 0x02, Oxa6, 0x02, Oxee, 0x03, 0x48, 0x03, O0xad, 0x03,
Oxba, 0x03, Oxc5, 0x03, 0xdO, 0x03, O0xeO, 0x03, Oxea, 0x03, Oxfa, 0x03, Oxff,

0xd6, 52, 0x00, 0x00, O0x00, 0x04, 0x00, 0x12, O0x00, 0x18, Ox00, O0x21, 0x00,
0x2a, 0x00, 0x35, 0x00, O0x47, 0x00, O0x56, O0x00, 0x90, 0x00, Oxe5, 0x01, O0x68, 0x01,
0Oxd5, 0x01, Oxd7, 0x02, 0x36, 0x02, Oxa6, 0x02, Oxee, 0x03, 0x48, 0x03, 0xad, 0x03,
Oxba, 0x03, Oxc5, 0x03, O0xdO, 0x03, O0xeO, 0x03, Oxea, 0x03, Oxfa, 0x03, Oxff,

0x3a, 1, 0x66,

Ox3a, 1, 0x66,

0x11, 0x80, 120,

0x29, 0x0,

0, // trailing NUL for Python bytes() representation

Page 127 of 199

i
MP DEFINE BYTES OBJ(display init byte obj, display init sequence);

static const char i2c _bus init sequence[] = {
2, 3, O0xfl, // set GPIO direction
2, 2, 0, // disable all output inversion
0, // trailing NUL for Python bytes() representation
b
MP_DEFINE BYTES OBJ(i2c init byte obj, i2c bus init sequence);

static const mcu pin obj t *red pins[] = {
&pin GPIO1, &pin GPIO2, &pin GPIO42, &pin GPIO41, &pin GPIO040
b

static const mcu pin obj t *green pins[] = {
&pin GPIO21, &pin GPIO047, &pin GPIO048, &pin GPIN45, &pin GPIO38, &pin GPION39
b

static const mcu pin obj t *blue pins[] = {
&pin GPIO10, &pin GPIO11l, &pin GPIO12, &pin GPIO13, &pin GPIO14
b

void board init(void) {
dotclockframebuffer framebuffer obj t *framebuffer =
&allocate display bus or raise()->dotclock;
framebuffer->base.type = &dotclockframebuffer framebuffer type;

common _hal dotclockframebuffer framebuffer construct(

framebuffer,
/* de */ &pin GPIO17,
/* vsync */ &pin GPIO3,
/* hsync */ &pin GPIO046,
/* dclk */ &pin_GPIO9,
/* data */ red pins, MP_ARRAY SIZE(red pins), green pins,

MP_ARRAY SIZE(green pins), blue pins, MP_ARRAY SIZE(blue pins),
/* frequency */ 12000000,
/* width x height */ 480, 480,
/* horizontal: pulse, back & front porch, idle */ 13, 20, 40, false,
/* vertical: pulse, back & front porch, idle */ 15, 20, 40, false,
/* de _idle high */ false,
/* pclk active high */ true,
/* pclk idle high */ false,
/* overscan_ left */ 0
);

framebufferio framebufferdisplay obj t *disp = &allocate display or raise()-
>framebuffer display;
disp->base.type = &framebufferio framebufferdisplay type;
common_hal framebufferio framebufferdisplay construct(
disp,
framebuffer,
0,
true

);

busio i2c _obj t i2c;

i2c.base.type = &busio i2c type;

common _hal busio i2c construct(&i2c, DEFAULT I2C BUS SCL, DEFAULT I2C BUS SDA,
400000, 255);

const int i2c device address = 32;

dotclockframebuffer ioexpander spi bus spibus = {
.bus = &i2c,
.12c device address = i2c device address,
.12c write size = 2,
.addr_reg shadow = { .u32 =1 }, // GPIO data at register 1
.cs_mask = 0x100 << 1, // data payload is at byte 2
.mosi mask = 0x100 << 3,
.clk mask = 0x100 << 2,
b

static const mp buffer info t bufinfo display init = { (void

©Adafruit Industries Page 128 of 199

*)display init sequence, sizeof(display init sequence) - 1 };
static const mp buffer info t bufinfo i2c bus init = { (void

*)i2c _bus init sequence, sizeof(i2c bus init sequence) - 1 };
dotclockframebuffer ioexpander send init sequence(&spibus,

&bufinfo i2c bus init, &bufinfo display init);

common_hal busio i2c deinit(&i2c);

}

// Use the MP_WEAK supervisor/shared/board.c versions of routines not defined here.

Example TFT_PINS

The TFT_PINS should be arranged in a Python dict. For the Qualia ESP32-S3, you can
simply use board.TFT PINS. They should be arranged similar to the Espressif LCD
EV board's TFT PINS:

"de": microcontroller.pin.GPIO17,
"vsync": microcontroller.pin.GPIO3,
"hsync": microcontroller.pin.GPI046,
"dclk": microcontroller.pin.GPIO9,
"red": (
microcontroller.pin.GPIO1,
microcontroller.pin.GPIO2,
microcontroller.pin.GPIO042,
microcontroller.pin.GPIO41,
microcontroller.pin.GPI040,
),
"green": (
microcontroller.pin.GPIO021,
microcontroller.pin.GPI047,
microcontroller.pin.GPI048,
microcontroller.pin.GPI045,
microcontroller.pin.GPIO038,
microcontroller.pin.GPIO039,
),
"blue": (
microcontroller.pin.GPIO10,
microcontroller.pin.GPIO11,
microcontroller.pin.GPIO12,
microcontroller.pin.GPIO13,
microcontroller.pin.GPI014,

Example TFT_TIMINGS

The specific timings can be found in the display datasheet or, for displays sold
through the Adafruit store, on the page for the specific display in this guide.

As an example, here are the timings for the 480x480 display from the Espressif LCD
EVK:

TFT_TIMINGS = {
"frequency": 6 500 000, # should be 18 000 000,

©Adafruit Industries Page 129 of 199

"width": 480,

"height": 480,

"hsync _pulse width": 13,
"hsync_front porch": 40,
"hsync_back porch": 20,
"vsync _pulse width": 15,
"vsync_front porch": 40,
"vsync_back porch": 20,
"hsync_idle low": False,
"vsync_idle low": False,
"de idle high": False,
"pclk _active high": True,
"pclk _idle high": False,

Timings for the 720x720 square display, which does not require a SPI init sequence,
would look like this:

tft timings = {
"frequency": 6 500 000,
"width": 720,
"height": 720,
"hsync_pulse width": 20,
"hsync_front porch": 40,
"hsync_back porch": 40,
"vsync_pulse width": 10,
"vsync_front porch": 40,
"vsync_back porch": 40,
"hsync_idle low": False,
"vsync_idle low": False,
"de idle _high": False,
"pclk active high": False,
"pclk _idle high": False,

I/O Expander

The dotclockframebuffer.ioexpander send init sequence() () function

supports a "generic 12C I/O expander". Generic meaning:

« Any 12C address can be used.

« Any GPIO register address can be used.

« GPIO data can be 1 or 2 bytes (8 or 16 bits).

« Arbitrary 12C registers can be initialized for setting direction, pull, inversion, etc.

« State of other GPIO bits can be specified explicitly to avoid undesirable pin state
changes.

Here are some values for a PCA9554 expander. This is the 10 expander used on the
Qualia ESP32-S3 and the values can be found in board.TFT I0 EXPANDER:

« 12c address=0x3f
+ gpio address=1 (the GPIO output register address)

©Adafruit Industries Page 130 of 199

https://docs.circuitpython.org/en/latest/shared-bindings/dotclockframebuffer/index.html#dotclockframebuffer.ioexpander_send_init_sequence
https://docs.circuitpython.org/en/latest/shared-bindings/dotclockframebuffer/index.html#dotclockframebuffer.ioexpander_send_init_sequence

- gpio data len=1 (1byte of data)

« gpio data=0xfd (value of other GPIOs on expander)
« cs bit=1 (index of chip select)

« mosi bit=7 (index of data out)

« clk bit=0 (index of clock)

- reset bit=2 (optional index of reset pin)

« 12c init sequence=b'..."' (other register settings, see below)

I12C Initialization Sequence

Using an 12C init sequence lets arbitrary registers on the I/O expander be set.

It is composed of a series of commands, starting with a byte length. Each is sent to
the 1/0 expander 12C address.

Typical for PCA9554 expander:

i2c init sequence=bytes((

2, 3, 0x78, # set pin direction (register 3) to 0x78 (0-bit is output mode)
2, 2, 0 # disable output inverts (register 2) to 0

))

Display Initialization Code

Some dot clock displays require "initialization code" to be sent on a unidirectional 3-
wire bus. The data is transmitted in "mode 0", which is 9 bits long. The top bit
specifies whether the code byte is data or a command, with 0 being command and
1 being data.

The structure of the initialization data is a series of commands. Each command can
have associated data and an associated delay:

. First byte: 8-bit command value

« Second byte: 7-bit data length (may be zero). The top bit (Ox80) is set if a delay
byte follows the data

- Variable number of bytes: 8-bit data values

- Optional: 8-bit delay value.

The delay value, if specified, is in milliseconds. The special delay value of 255 or
OXFF is treated as 500 milliseconds.

©Adafruit Industries Page 131 of 199

Display initialization codes are the same as the ones used by displayio.FourWire ()
except that the default after each data block is no delay instead of 10ms.

Example 1

The following byte sequence sends the command Oxfa followed by 4 bytes of data
and no delay:

Oxfa, 4, Ox00, Ox00, Ox00, O0x04,
Example 2

The following byte sequence sends the command Ox11, no data, and then delays by a
minimum of 120ms:

0x11, 0x80, 120,

Sending Initialization Code via 12C IO Expander

There is special support for sending initialization code over an 12C IO expander chip.
This requires a series of steps:

1. Construct the 12C bus object.
2. Call ioexpander _send init sequence() () with the appropriate values
3. Optionally, deconstruct the 12C bus object so the pins become available.

The gpio data parameter must be pre-set with the correct value all I/O pins,
because it is not assumed that the current output values can be read back.

|12C Bus Speed

The default clock speed of I12C busses in CircuitPython is 100kHz. In practice, using a
400kHz bus for display initialization works, even if some device on the bus only
supports 100kHz 12C, because a 100kHz device will not hear its own address on the
bus; it will simply stay idle. Doing this can speed display initialization. However, this is
not guaranteed by the I12C specification, so if you encounter trouble, try an I12C bus at
the regular 100kHz speed instead.

Here is the initialization code for the 480x480 square display on the Espressif LCD
EVK, which uses 400kHz for the 12C Bus Speed:

©Adafruit Industries Page 132 of 199

https://docs.circuitpython.org/en/8.2.x/shared-bindings/displayio/index.html#displayio.FourWire
https://docs.circuitpython.org/en/latest/shared-bindings/dotclockframebuffer/index.html#dotclockframebuffer.ioexpander_send_init_sequence
https://docs.circuitpython.org/en/latest/shared-bindings/dotclockframebuffer/index.html#dotclockframebuffer.ioexpander_send_init_sequence

init sequence =

bytes ((

©Adafruit Industries

Oxf0, 5, 0x55, Oxaa, 0x52, 0x08, 0x00,

0xf6, 2, 0x5a, 0x87,

Oxcl, 1, Ox3f,

Oxc2, 1, 0x0Oe,

Oxc6, 1, 0Oxf8,

0xc9, 1, 0x10,

Oxcd, 1, 0x25,

O0xf8, 1, 0x8a,

Oxac, 1, 0x45,

Oxa®, 1, Oxdd,

Oxa7, 1, 0x47,

Oxfa, 4, 0x00, 0x00, O0x00, 0x04,

0x86, 4, 0x99, 0xa3, 0xa3, 0x51,

Oxa3, 1, Oxee,

Oxfd, 3, 0x3c, 0x3c, 0x00,

0x71, 1, 0x48,

0x72, 1, 0x48,

0x73, 2, 0x00, 0x44,

0x97, 1, Oxee,

0x83, 1, 0x93,

0x9a, 1, 0x72,

0x9b, 1, 0xb5a,

0x82, 2, 0x2c, 0x2c,

Oxbl, 1, 0x10,

Ox6d, 32, 0x00, 0x1f, 0x19, 0Oxla, 0x10, Ox0e, O0x0Oc, OxOa, 0x02, 0x07, Oxle,
Oxle, Oxle, Oxle, Oxle, Oxle, 0Oxle, 0Oxle, 0Oxle, 0Oxle, 0Oxle, Oxle, 0x08, 0x01, 0x09,
0x0b, 0x0d, Ox0f, Oxla, 0x19, Ox1f, 0x00,

0x64, 16, 0x38, 0x05, 0x01, Oxdb, 0x03, 0x03, 0x38, 0x04, 0x01, Oxdc, 0x03,
0x03, Ox7a, Ox7a, 0Ox7a, 0Ox7a,

0x65, 16, 0x38, 0x03, 0x01, Oxdd, 0x03, 0x03, 0x38, 0x02, 0x01l, Oxde, 0x03,
0x03, Ox7a, Ox7a, Ox7a, 0Ox7a,

0x66, 16, 0x38, 0x01, Ox01, Oxdf, 0x03, 0x03, 0x38, 0x00, 0x01, OxeOd, 0Ox03,
0x03, O0x7a, 0x7a, 0x7a, 0x7a,

0x67, 16, 0x30, 0x01, 0x01, Oxel, 0x03, 0x03, 0x30, 0x02, 0x01, Oxe2, 0x03,
0x03, Ox7a, 0Ox7a, 0Ox7a, 0Ox7a,

0x68, 13, 0x00, 0x08, O0x15, 0x08, 0x15, 0x7a, 0x7a, 0x08, 0x15, 0x08, 0x15,
Ox7a, 0Ox7a,

Ox60, 8, 0x38, 0x08, 0x7a, 0x7a, 0x38, 0x09, 0x7a, 0Ox7a,

0x63, 8, 0x31, Oxed4, 0Ox7a, 0Ox7a, 0x31l, Oxe5, 0x7a, 0Ox7a,

0x69, 7, 0x04, 0x22, 0x14, 0x22, 0x14, 0x22, 0x08,

Ox6b, 1, 0x07,

0x7a, 2, 0x08, 0x13,

0x7b, 2, 0x08, 0x13,

Oxdl, 52, 0x00, 0x00, O0x00, 0x04, 0x00, 0x12, 0x00, 0x18, Ox00, O0x21, 0x00,
Ox2a, O0x00, O0x35, O0x00, 0x47, O0x00, O0x56, 0x00, 0x90, 0x00, Oxe5, 0x01l, 0x68, 0x01,
0Oxd5, 0x01, Oxd7, 0x02, 0x36, 0x02, Oxa6, 0x02, Oxee, 0x03, 0x48, 0x03, 0xad, 0x03,
Oxba, 0x03, Oxc5, 0x03, 0xdO, 0x03, O0xeO, 0x03, Oxea, 0x03, Oxfa, 0x03, Oxff,

0xd2, 52, 0x00, 0x00, O0x00, 0x04, 0x00, 0x12, 0x00, 0x18, Ox00, O0x21, 0x00,
0x2a, 0x00, 0x35, 0x00, 0x47, 0x00, 0x56, 0x00, 0x90, 0x00, Oxe5, 0x01, O0x68, 0x01,
0xd5, 0x01, 0xd7, 0x02, 0x36, 0x02, Oxa6, 0x02, Oxee, 0x03, 0x48, 0x03, O0xald, 0x03,
Oxba, 0x03, Oxc5, 0x03, O0xdO, 0x03, O0xeO, 0x03, Oxea, 0x03, Oxfa, 0x03, Oxff,

0xd3, 52, 0x00, 0x00, O0x00, 0x04, 0x00, 0x12, 0x00, 0x18, Ox00, O0x21, 0x00,
0x2a, 0x00, 0x35, 0x00, 0x47, 0x00, O0x56, 0x00, 0x90, 0x00, Oxe5, 0x01, 0x68, 0x01,
Oxd5, 0x01, Oxd7, 0x02, 0x36, 0x02, Oxa6, 0x02, Oxee, 0x03, 0x48, 0x03, 0xad, 0x03,
Oxba, 0x03, Oxc5, 0x03, 0xdO, 0x03, O0xeO, 0x03, Oxea, 0x03, Oxfa, 0x03, Oxff,

Oxd4, 52, 0x00, O0x00, 0x00, 0x04, 0x00, 0x12, 0x00, O0x18, 0x00, 0x21, 0x00,
Ox2a, O0x00, O0x35, O0x00, 0x47, O0x00, O0x56, 0x00, 0x90, 0x00, Oxe5, 0x01l, 0x68, 0x01,
Oxd5, 0x01, 0xd7, 0x02, 0x36, 0x02, Oxa6, 0x02, Oxee, 0x03, 0x48, O0x03, O0xad, 0x03,
Oxba, 0x03, 0xc5, 0x03, 0xdO, Ox03, OxeO, 0x03, Oxea, 0x03, Oxfa, 0x03, Oxff,

0xd5, 52, 0x00, 0x00, O0x00, 0x04, 0x00, 0x12, 0x00, 0x18, Ox00, O0x21, 0x00,
0x2a, 0x00, 0x35, 0x00, 0x47, 0x00, 0x56, 0x00, 0x90, 0x00, Oxe5, 0x01, 0x68, 0x01,
Oxd5, 0x01, 0xd7, 0x02, 0x36, 0x02, Oxa6, 0x02, Oxee, 0x03, 0x48, 0x03, O0xald, 0x03,
Oxba, 0x03, Oxc5, 0x03, O0xdO, 0x03, O0xeO, 0x03, Oxea, 0x03, Oxfa, 0x03, Oxff,

Oxd6, 52, 0x00, Ox00, 0x00, 0x04, 0x00, 0x12, 0x00, O0x18, 0x00, 0x21, 0x00,
0x2a, 0x00, 0x35, 0x00, O0x47, 0x00, O0x56, 0x00, 0x90, 0x00, Oxe5, 0x01, O0x68, 0x01,
0Oxd5, 0x01, Oxd7, 0x02, 0x36, 0x02, Oxa6, 0x02, Oxee, 0x03, 0x48, 0x03, 0xad, 0x03,
Oxba, 0x03, O0xc5, 0x03, 0xdO, 0x03, O0xeO, 0x03, Oxea, 0x03, Oxfa, 0x03, Oxff,

Page 133 of 199

0Ox3a, 1, 0x66,

Ox3a, 1, 0x66,

0x11, 0x80, 120,

0x29, 0x80, 20
))

expander_addr = 32
bus = busio.I2C(microcontroller.pin.GPI018, microcontroller.pin.GPIO8,
frequency=400_000)

if not bus.try lock():

raise RuntimeError("Bus already locked")
Set direction register
bus.writeto(expander addr, b"\3\xfl")
Set pull ups
bus.writeto(expander_addr, b"\2\0")
bus.unlock()

t0 = time.monotonic()
ioexpander send init sequence(

bus=bus,

i2c_address=expander_addr,

gpio address=1,

gpio_data len=1,

gpio data=0xf1,

cs _bit=1,

mosi bit=3,

clk bit=2,

init sequence=init sequence)
tl = time.monotonic()
print(tl-t0, "s to send init code")

Boards that have a built in display can perform these steps in the board init function
such as the Espressif LCD EV board ().

Constructing the framebuffer and the display

Because most of the heavy lifting is done by setting up the init codes, constructing
the framebuffer and display only requires a couple of lines of code:

fb = DotClockFramebuffer (**TFT_PINS, **TFT_TIMINGS)
disp = FramebufferDisplay(fb, auto_refresh=True)

Dot clocks

The higher the dot clock frequency, the more susceptible the display is to distortions
while doing PSRAM-intensive activities. This looks like portions of the screen shifting
horizontally for a frame, then returning to the normal position.

With IDF 5.1, frequencies up to 16MHz mostly work OK.

©Adafruit Industries Page 134 of 199

https://github.com/adafruit/circuitpython/blob/e39fbf1b26b4fd3b66313e51ccc3db0eba7bd58a/ports/espressif/boards/espressif_esp32s3_lcd_ev/board.c

For most displays, the user can select a lower clock (down to some display-
dependent minimum). This decreases refresh rate but reduces the chance of
distortion.

CircuitPython Touch Display Usage

If you have a display with touch, you can use the Adafruit_CircuitPython_FocalTouch (

) library to read the touch data. The FocalTouch capacitive touch controller is
communicated to by I12C. If you're not sure if you have a touch display, just check if
your display includes a square IC connected off to the side of the main ribbon cable.

| Fec-merzA-w02. i
- TLO3MUSOB, - - =

Determining the 12C Address

You can scan for 12C devices by connecting to the REPL and typing the following:

import board

i2c = board.I2C()
while i2c.try lock():
pass

i2c.scan()

You should see a couple of devices listed. These will be the GPIO expander and the

touch controller. The GPIO Expander is at Ox3F (or 63 in decimal) by default, though
it's possible to change the address with the solderable jumpers on the reverse side.

The other address should be the touch controller. On the TLO40HDS20 4.0" square

display, it shows up as 0x48 (or 72 in decimal), but it's possible it may be a different
value on other displays.

©Adafruit Industries Page 135 of 199

https://github.com/adafruit/Adafruit_CircuitPython_FocalTouch

Initializing the Touch Controller

In order to use the controller, it will need to first be initialized. You can use the
following code to initialize it. If your 12C address differs, change it to the appropriate
value.

import board
import busio
import adafruit focaltouch

i2c = busio.I2C(board.SCL, board.SDA, frequency=100 000)
ft = adafruit focaltouch.Adafruit FocalTouch(i2c, address=0x48)

Likely you will have already initialized I12C for using the GPIO expander, so you can
just add the adafruit_focaltouch import line and further down add the initialization line
like this:

import adafruit focaltouch

ft = adafruit focaltouch.Adafruit FocalTouch(i2c, address=0x48)

Reading from the Touch Controller

To read from the controller, check if is has been touched in the main loop and if so,
read the the touches. Although this controller can support multiple touches, it seems
to sometimes have difficulty distinguishing between 2 or more touch points. For each
touch point that is reported, you can then read the x and y coordinates.

if ft.touched:
for touch in ft.touches:

X = touch["x"]
y = touch["y"]
Example

Here is a paint demo that works on the TLO40HDS20 4.0" Square display. Just click
the Download Project button, unzip it, and copy it over to your CIRCUITPY drive.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

Simple painting demo that draws on the Adafruit Qualia ESP32-S3 RGB666
with the 4.0" square display and FT6206 captouch driver

import displayio

©Adafruit Industries Page 136 of 199

import busio

import board

import dotclockframebuffer

from framebufferio import FramebufferDisplay
import adafruit focaltouch

displayio.release displays()

Initialize the Display
tft _pins = dict(board.TFT_PINS)

tft timings = {
"frequency": 16000000,
"width": 720,
"height": 720,
"hsync _pulse width": 2,
"hsync_front porch": 46,
"hsync_back porch": 44,
"vsync pulse width": 2,
"vsync_front porch": 16,
"vsync_back porch": 18,
"hsync_idle low": False,
"vsync_idle low": False,
"de idle high": False,
"pclk active high": False,
"pclk _idle high": False,
}

init sequence t1040hds20 = bytes()

board.I2C().deinit()
i2c = busio.I2C(board.SCL, board.SDA, frequency=100 000)
tft io expander = dict(board.TFT IO EXPANDER)
tft io expander['i2c address'] = 0x38 # uncomment for rev B
dotclockframebuffer.ioexpander send init sequence(
i2c, init sequence t1040hds20, **tft io expander
)

fb = dotclockframebuffer.DotClockFramebuffer(**tft pins, **tft timings)
display = FramebufferDisplay(fb, auto refresh=False)
Main Program
pixel size = 6
palette width = 160
palette height = display.height // 8
bitmap = displayio.Bitmap(display.width, display.height, 65535)
Create a TileGrid to hold the bitmap
tile grid = displayio.TileGrid(
bitmap,

pixel shader=displayio.ColorConverter(input colorspace=displayio.Colorspace.RGB565),

)

Create a Group to hold the TileGrid
group = displayio.Group()

Add the TileGrid to the Group
group.append(tile grid)

Add the Group to the Display
display.root group = group

display.auto_refresh = True
ft = adafruit focaltouch.Adafruit FocalTouch(i2c, address=0x48)

current color = displayio.ColorConverter().convert(OxFFFFFF)

©Adafruit Industries Page 137 of 199

for 1 in range(palette width):
color index = i * 255 // palette width
rgb565 = displayio.ColorConverter().convert(

color index | color_

)

r mask = 0xF800
g mask = OxO7EOQ
b mask = 0x001F

index << 8 | color index << 16

for j in range(palette height):
bitmap[i, j + palette height] = rgb565 & b mask
2] =

bitmap[i, j + palette height * = rgh565 & (b _mask | g mask)
bitmap[i, j + palette _height * 3] = rgb565 & g mask

bitmap[i, j + palette height * 4] = rgb565 & (r _mask | g mask)
bitmap[i, j + palette height * 5] = rgh565 & r mask

bitmap[i, j + palette height * 6] = rgbh565 & (r_mask | b _mask)
bitmap[i, j + palette height * 7] = rgb565

while True:
if ft.touched:
try:
for touch in ft.

x = touch["x
y = touch["y

touches:
n]
n]

if x < palette width:

current

else:

color = bitmap[x, VY]

for 1 in range(pixel size):

for

except RuntimeError:
pass

j in range(pixel size):

x_pixel = x - (pixel size // 2) + i

y pixel =y - (pixel size // 2) + j
if (
0 <= x_pixel < display.width

and 0 <= y pixel < display.height

bitmap[x pixel, y pixel] = current color

To use, just use your finger to paint on the canvas. You can also select a color from

the left. The closer to the edge of the display, the darker, the color will be.

©Adafruit Industries

Page 138 of 199

Qualia S3 RGB-666 with TLO21WVCO02 21"
480x480 Round Display

If you have issues running the example, you can always test your hardware by

running a UF2 for your display from https://learn.adafruit.com/adafruit-qualia-
esp32-s3-for-rgh666-displays/arduino-rainbow-demo

Initialization Codes

Here are the init codes for this display:

init sequence t1021wvc02 =

Oxff,
0xco,
Oxcl,
0xc2,
Oxcc,
Oxcd,
0xbo,
0x11,

0x0e,

0x05,
0x02,
0x02,
0x02,
0x01,
0x01,
0x10,

0x2c,

0x77,
0x3b,
0x0b,
0x00,
0x10,
0x08,
0x02,

0x01,
0x00,
0x02,
0x02,

bytes((
0x00,

0x00,

0x13, O0x1lb, 0x0d,
0x33, 0x1d,

Oxbl, 0x10, 0x05, 0x13, O0xlb, 0x0d,

0x11,
Oxff,
0Oxbo,
Oxbl,
Oxb2,
Oxb3,
0xb5,
Oxb7,
0Oxb8,
Oxcl,
0Oxc2,
0xdo,
0xe0,
Oxel,
Oxe2,

0x0e,

0x05,
0x01,
0x01,
0x01,
0x01,
0x01,
0x01,
0x01,
0x01,
0x01,
0x01,
0x03,
0x0b,
0x0d,

0x00, 0x00,

Oxe3,
Oxed,
Oxe5,

0x04,
0x02,
0x10,

0x2c,

0x77,
0x5d,
0x43,
0x81,
0x80,
0x43,
0x85,
0x20,
0x78,
0x78,
0x88,
0x00,
0x03,
0x00,

0x01,

0x00,
0Oxal,
0x00,

0x00,
0x22,
0x05,

0x00,
0x00,
Oxec,

0x33, 0x1d,

0x00,

0x02,
0x00,
0x00,
0x11,

0xao,

0x00, 0x00, 0x00, 0x00, 0x00,
Oxe6, 0x04, 0x00, O0x00, 0Ox11,

Oxe7,

0x02,

0x22, 0x00,

Oxe8, 0x10, 0x06, Oxed, 0Oxa0,
Ox00, 0x00, 0x00, O0x00, 0x00,

Oxeb, 0x07, 0x00, 0x00, 0x40,

Oxed, 0x10, Oxff, Oxff, Oxff,

0xa0, Oxab, Oxff,

Oxef,
Oxff,
Oxef,
Oxff,
0x36,
0x3a,
0x11,
0x29,

0x06,
0x05,
0x01,
0x05,
0x01,
0x01,
0x80,
0x80,

©Adafruit Industries

Oxff,
0x10, 0x0d,
0x77, 0x01,
0x08,
0x77,
0x00,
0x60,
0x64,
0x32,

0x01,

Oxff,

0x04,
0x00,

0x00,

0x00,

0x00,
0x00,

0x00,
0xao,
0x00,
Oxal,

0x40,
Oxba,

0x08,
0x00,

0x00,

0x10,

0x10,
0x11,

0Ox11,

0x04,
0x00,

0x07,

0x08,

0x00,
Ox0a,

0Ox3f,
0x13,

0x00,

0x05, 0x08, 0x07, 0x07, 0x24, 0x04,

0x05, 0x08, 0x07, 0x07, 0x24, 0x04,

Oxal,
0x00,

Oxee,

Oxef,

0x00,
Oxbf,

Ox1f,

0x00,
0x00,

0x00,
0x00,

0xa0®, 0xao,

Oxad, 0Oxal,
0x00,

0x45, Oxff,

0x00,
0x00,

0x00,

0x00,

Oxff,

0x20,
0x00,

0x20,
0x00,

0x00, 0x00,

0x00, 0x00,

0x54, 0xfb,

Page 139 of 199

https://learn.adafruit.com/adafruit-qualia-esp32-s3-for-rgb666-displays/arduino-rainbow-demo
https://learn.adafruit.com/adafruit-qualia-esp32-s3-for-rgb666-displays/arduino-rainbow-demo

Timings
Here are the timing settings for this display:

tft timings = {

"frequency": 16 000 000,
"width": 480,

"height": 480,

"hsync _pulse width": 20,
"hsync_front porch": 40,
"hsync_back porch": 40,
"vsync _pulse width": 10,
"vsync_front porch": 40,
"vsync _back porch": 40,

"hsync_idle low": False,
"vsync idle low": False,
"de idle high": False,
"pclk active high": True,
"pclk _idle high": False,

Example
Here's an example using those settings:

from displayio import release displays
release displays()

import time

import busio

import board

import dotclockframebuffer

from framebufferio import FramebufferDisplay

init sequence t1021wvc02 = bytes((

oxff, 0x05, 0x77, 0x01, 0x00, O0x00, 0x10,

OxcO, 0x02, O0x3b, 0x00,

Oxcl, 0x02, 0x0b, 0x02,

Oxc2, 0Ox02, Ox00, 0x02,

Oxcc, Ox01, 0x10,

Oxcd, 0x01, 0x08,

Oxb0, 0x10, 0x02, 0x13, O0xlb, 0x0d, 0x10,
0x11, O0x0e, 0Ox2c, 0x33, 0x1d,

Oxbl, 0x10, O0x05, 0x13, O0xlb, 0x0d, 0Ox11,
0x11, Ox0e, 0Ox2c, 0x33, 0x1ld,

Oxff, 0x05, 0x77, 0x01, 0x00, Ox00, 0x11,

Oxb0, 0x01, 0x5d,

Oxbl, 0x01, 0x43,

Oxb2, 0x01, 0x81,

0xb3, 0x01, 0x80,

Oxb5, 0x01, 0x43,

Oxb7, 0x01, 0x85,

0xb8, 0x01, 0x20,

Oxcl, Ox01, 0x78,

0xc2, 0x01, 0x78,

OxdO, 0x01, 0x88,

Oxed, Ox03, Ox00, Ox00, O0x02,

Oxel, Ox0b, 0x03, Oxad, O0x00, O0x00, 0x04,

Oxe2, 0x0d, 0x00, Ox00, O0x00, O0x00, 0x00,
0x00, 0x00,

©Adafruit Industries

0x05, 0x08, 0x07, 0x07, 0x24, 0x04,

0x05, 0x08, 0x07, 0x07, 0x24, 0x04,

Oxa0, 0x00, 0x00, 0x00, 0x20, 0x20,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

Page 140 of 199

Oxe3, 0x04, 0x00, O0x00, O0x11, 0x00,

Oxed4, 0x02, 0x22, 0x00,

Oxe5, 0x10, 0x05, Oxec, O0xad, Oxad, Ox07, Oxee, Oxabd, Oxabd, Ox00, O0x00, 0x060,
0x00, 0x00, 0x00, 0x00, 0x00,

Oxe6, 0x04, Ox00, Ox00, O0x11, O0x00,

Oxe7, 0x02, 0x22, 0x00,

0xe8, 0x10, O0x06, Oxed, Oxal, Oxal, O0x08, Oxef, Oxald, Oxald, Ox00, Ox00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00,

Oxeb, 0x07, 0x00, 0x00, 0x40, 0x40, 0x00, 0x00, 0x00,

Oxed, 0x10, Oxff, Oxff, Oxff, Oxba, 0x0a, Oxbf, 0x45, Oxff, Oxff, 0x54, 0xfb,
Oxa0, Oxab, Oxff, Oxff, Oxff,

Oxef, 0x06, 0x10, O0x0d, 0x04, 0x08, O0x3f, Ox1f,

Oxff, Ox05, 0x77, 0x01, 0x00, O0x00, 0x13,

Oxef, 0x01, 0x08,

Oxff, Ox05, 0x77, 0x01, Ox00, Ox00, 0x00,

0x36, 0x01, 0x00,

Ox3a, 0x01, 0x60,

0x11, Ox80, 0x64,

0x29, 0x80, 0x32,
))

board.I2C().deinit()

i2c = busio.I2C(board.SCL, board.SDA) #, frequency=400 _000)

tft io expander = dict(board.TFT IO EXPANDER)

#tft io expander['i2c address'] = 0x38 # uncomment for rev B
dotclockframebuffer.ioexpander send init sequence(i2c, init sequence t1021wvc02,
**tft _io expander)

i2c.deinit()

tft pins = dict(board.TFT PINS)

tft timings = {
"frequency": 16 000 000,
"width": 480,
"height": 480,
"hsync pulse width": 20,
"hsync_front porch": 40,
"hsync_back porch": 40,
"vsync pulse width": 10,
"vsync_front porch": 40,
"vsync_back porch": 40,
"hsync_idle low": False,
"vsync_idle low": False,
"de idle high": False,
"pclk _active high": True,
"pclk _idle high": False,
}

fb = dotclockframebuffer.DotClockFramebuffer(**tft pins, **tft timings)
disp = FramebufferDisplay(fb, auto refresh=False)

while True:
for info in (tft pins, tft timings):
print("\n" * 24)
for k, v in info.items():
print(f"{k:&1t;20} {v}")
disp.auto_refresh = True
time.sleep(6)
disp.auto _refresh = False

Go ahead and save the example you your CircuitPython code.py and run the code.
Your display should now look like this:

©Adafruit Industries Page 141 of 199

Qualia S3 RGB-666 with TLO34WVSO05 3.4"
480x480 Square Display

If you have issues running the example, you can always test your hardware by

running a UF2 for your display from https://learn.adafruit.com/adafruit-qualia-
esp32-s3-for-rgb666-displays/arduino-rainbow-demo

Initialization Codes
Here are the init codes for this display:

init sequence t1034wvs05 = bytes((
b ' \XTfF\Xx05w\x01\x00\x00\x13"'
b'\xef\x01\x08"'
b ' \xff\x05w\x01\x00\x00\x10"
b'\xc0\x02;\x00"
b'\xc1\x02\x12\n'
b'\xc2\x02\x07\x03"
b'\xc3\x01\x02'
b'\xcc\x01\x10"'
b'\xcd\x01\x08'
b '\xbO\Xx1O\XOFf\Xx11\x17\x15\x15\t\x0c\x08\x08& \x04Y\x16f-\x1f'
b'\xbI\x10\Xx0F\x1I\x17\x15\x15\t\x0c\x08\x08& \x04Y\x16f-\x1f"
b ' \xff\x05w\x01\x00\x00\x11"
b'\xb0\x01m'
b'\xb1\x01:"'
b'\xb2\x01\x01"'
b'\xb3\x01\x80"
b'\xb5\x01I"'
b'\xb7\x01\x85"
b'\xb8\x01 '
b'\xcl\x01x"'
b'\xc2\x01x"

©Adafruit Industries Page 142 of 199

https://learn.adafruit.com/adafruit-qualia-esp32-s3-for-rgb666-displays/arduino-rainbow-demo
https://learn.adafruit.com/adafruit-qualia-esp32-s3-for-rgb666-displays/arduino-rainbow-demo

b'\xdO\x01\x88"'

b'\xe0\x03\x00\x00\x02"
b'\xel\x0b\x07\x00\t\x00\x06\x00\x08\x00\x0033"
b'\xe2\r\x11\x1133\xf6\x00\xF6\X00\XxTF6\Xx00\XxF6\Xx00\X00"'
b'\xe3\x04\x00\x00\x11\x11"'

b'\xe4\x02DD"'

b '\xe5\X10\XOF\XF3=\XxTfF\X1I\XF5=\xTFf\x0b\xef=\Xxff\r\xfl=\xff'
b'\xeb6\x04\x00\x00\x11\x11"'

b'\xe7\x02DD'
b'\xe8\x10\x0e\xf2=\xff\x10\xf4=\xTff\n\xee=\xff\x0c\xfO=\xff"'
b'\xe9\x026\x00"'

b'\xeb\x07\x00\x01\xed4\xed4D\xaa\x10"'

b'\xec\x02&1t;\x00"'

b ' \xed\x10\xfFfEg\xfa\x01+\xcf\AXFf\xff\xfc\xb2\x10\xafvT\xff"
b'\xef\x06\x10\r\x04\x08?\x1f"

b'\xff\x05w\x01\x00\x00\x00"

b'5\x01\x00"

b':\x01f"'

b'\x11\x80x"

b')\x802"

Timings
Here are the timing settings for this display:

tft timings = {
"frequency": 16000000,
"width": 480,
"height": 480,
"hsync_pulse width": 20,
"hsync_front porch": 40,
"hsync _back porch": 40,
"vsync _pulse width": 10,
"vsync_front porch": 40,
"vsync _back porch": 40,
"hsync_idle low": False,
"vsync_idle low": False,
"de idle high": False,
"pclk _active high": True,
"pclk _idle high": False,

Example
Here's an example using those settings:
from displayio import release displays
release displays()
import displayio
import busio
import board
import dotclockframebuffer
from framebufferio import FramebufferDisplay

tft _pins = dict(board.TFT_PINS)

tft timings = {

©Adafruit Industries Page 143 of 199

}

"frequency": 16000000,
"width": 480,

"height": 480,
"hsync_pulse width": 20,
"hsync_front porch": 40,
"hsync_back porch": 40,
"vsync_pulse width": 10,
"vsync_front porch": 40,
"vsync_back porch": 40,
"hsync idle low": False,
"vsync idle low": False,
"de_idle high": False,
"pclk _active high": True,
"pclk idle high": False,

init sequence t1034wvs05 = bytes((

))

b ' \XTFf\Xx05w\x01\x00\x00\x13"'
b'\xef\x01\x08"'

b ' \xff\x05w\x01\x00\x00\x10"
b'\xcO\x02;\x00"
b'\xc1\x02\x12\n'
b'\xc2\x02\x07\x03"'
b'\xc3\x01\x02"
b'\xcc\x01\x10'
b'\xcd\x01\x08"

b'\xbO\X10\XxOF\Xx1I1\x17\x15\x15\t\x0c\x08\x08& \x04Y\x16f-\x1f"
b'\xb1\x10\x0f\x11\x17\x15\x15\t\x0c\x08\x08&\x04Y\x16f-\x1f"

b '\ xff\x05w\x01\x00\x00\x11"
b'\xbO\x01m'
b'\xbl\x01:"
b'\xb2\x01\x01"
b'\xb3\x01\x80"'
b'\xb5\x01T1"
b'\xb7\x01\x85"
b'\xb8\x01 '
b'\xcl\x01x'
b'\xc2\x01x"
b'\xd0\x01\x88"
b'\xe0\x03\x00\x00\x02"

b'\xel\x0b\x07\x00\t\x00\x06\x00\x08\x00\x0033"
b'\xe2\r\x11\x1133\xf6\x00\xf6\x00\xf6\x00\xf6\x00\x00"

b'\xe3\x04\x00\x00\x11\x11"'
b'\xed4\x02DD'

b'\xe5\x10\Xx0Ff\XTf3=\XTFf\X11I\xF5=\xff\x0b\xef=\xff\r\xfl=\xff"'

b'\xeb6\x04\x00\x00\x11\x11"'
b'\xe7\x02DD'

b'\xe8\x10\x0e\xf2=\xff\x10\xf4=\xff\n\xee=\xff\x0c\xfO=\xff"'

b'\xe9\x026\x00"'

b'\xeb\x07\x00\x01\xed4\xed4D\xaa\x10"'

b'\xec\x02<\x00"

b'\xed\x10\xfFfEg\xfa\x01+\xcfAXTf\xff\xfc\xb2\x10\xafvT\xff"

b'\xef\x06\x10\r\x04\x08?\x1f"
b ' \xff\x05w\x01\x00\x00\x00"
b'5\x01\x00"

b':\x01f"

b'\x11\x80x"

b')\x802'

board.I2C().deinit()

i2c

tft

= busio.I2C(board.SCL, board.SDA)
io expander = dict(board.TFT _I0 EXPANDER)
#tft io expander['i2c address'] = 0x38 # uncomment for rev B

dotclockframebuffer.ioexpander send init sequence(i2c, init sequence t1034wvs05,
**tft io expander)

i2c.

bitmap = displayio.OnDiskBitmap("/display-ruler-720p.bmp")

deinit()

©Adafruit Industries

Page 144 of 199

fb = dotclockframebuffer.DotClockFramebuffer(**tft pins, **tft timings)
display = FramebufferDisplay(fb, auto refresh=False)

Create a TileGrid to hold the bitmap
tile grid = displayio.TileGrid(bitmap, pixel shader=bitmap.pixel shader)

Create a Group to hold the TileGrid
group = displayio.Group()

Add the TileGrid to the Group
group.append(tile grid)

Add the Group to the Display
display.root group = group

display.auto refresh = True
Loop forever so you can enjoy your image

while True:
pass

Download the following image into the root folder of of your CIRCUITPY drive:

R R R R R R R R R R RNy R R RN
a0 500 600 700 £ %00 1600 1100 1280

o0 6A,

)

sop

_e0n EE

2200

Go ahead and save the example you your CircuitPython code.py and run the code.
Your display should now look like this:

©Adafruit Industries Page 145 of 199

Qualia S3 RGB-666 with TLO40HDS20 4.0"
720x720 Square Display

If you have issues running the example, you can always test your hardware by
running a UF2 for your display from https://learn.adafruit.com/adafruit-qualia-
esp32-s3-for-rgb666-displays/arduino-rainbow-demo

Initialization Codes

Here are the init codes for this display:

This display is the easiest display and needs no initialization.

init sequence t1040hds20 = bytes()

Timings
Here are the timing settings for this display:

tft timings = {
"frequency": 16000000,
"width": 720,
"height": 720,
"hsync _pulse width": 2,
"hsync_front porch": 46,
"hsync _back porch": 44,

©Adafruit Industries Page 146 of 199

https://learn.adafruit.com/adafruit-qualia-esp32-s3-for-rgb666-displays/arduino-rainbow-demo
https://learn.adafruit.com/adafruit-qualia-esp32-s3-for-rgb666-displays/arduino-rainbow-demo

"vsync_pulse width": 2,
"vsync_front porch": 16,
"vsync_back porch": 18,
"hsync idle low": False,
"vsync_idle low": False,
"de_idle high": False,
"pclk _active high": False,
"pclk idle high": False,

Example
Here's an example using those settings:

from displayio import release displays
release displays()

import displayio

import busio

import board

import dotclockframebuffer

from framebufferio import FramebufferDisplay
from microcontroller import pin

tft pins = dict(board.TFT_PINS)

tft timings = {
"frequency": 16000000,
"width": 720,
"height": 720,
"hsync _pulse width": 2,
"hsync_front porch": 46,
"hsync_back porch": 44,
"vsync _pulse width": 2,
"vsync_front porch": 16,
"vsync _back porch": 18,
"hsync_idle low": False,
"vsync_idle low": False,
"de idle high": False,
"pclk active high": False,
"pclk _idle high": False,
}

init sequence t1040hds20 = bytes()

board.I2C().deinit()

i2c = busio.I2C(board.SCL, board.SDA)

tft io expander = dict(board.TFT IO EXPANDER)

#tft io expander['i2c address'] = 0x38 # uncomment for rev B
dotclockframebuffer.ioexpander send init sequence(i2c, init sequence t1040hds20,
**tft io expander)

i2c.deinit ()

bitmap = displayio.OnDiskBitmap("/display-ruler-720p.bmp")

fb = dotclockframebuffer.DotClockFramebuffer(**tft pins, **tft timings)
display = FramebufferDisplay(fb, auto refresh=False)

Create a TileGrid to hold the bitmap
tile grid = displayio.TileGrid(bitmap, pixel shader=bitmap.pixel shader)

Create a Group to hold the TileGrid
group = displayio.Group()

©Adafruit Industries Page 147 of 199

Add the TileGrid to the Group
group.append(tile grid)

Add the Group to the Display
display.root group = group

display.auto_refresh = True

Loop forever so you can enjoy your image

while True:
pass

Download the following image into the root folder of of your CIRCUITPY drive:

afruit

Yo

)

00

EVGR,

son

)

)

7280

Go ahead and save the example you your CircuitPython code.py and run the code.
Your display should now look like this:

©Adafruit Industries

Page 148 of 199

Qualia S3 RGB-666 with TLO32FWVO01 3.2"
320x820 Bar Display

If you have issues running the example, you can always test your hardware by

running a UF2 for your display from https://learn.adafruit.com/adafruit-qualia-
esp32-s3-for-rgh666-displays/arduino-rainbow-demo

Initialization Codes
Here are the init codes for this display:

init sequence t1032 = bytes((
b'\x11\x80d"'
b ' \XTFf\X05w\x01\x00\x00\x13"'
b'\xef\x01\x08"
b'\XxTf\Xx05w\x01\x00\x00\x10"'
b'\xcO\x02\xe5\x02"
b'\xcl\x02\x0c\n'
b'\xc2\x02\x07\x0f"'
b'\xc3\x01\x02"
b'\xcc\x01\x10"
b'\xcd\x01\x08"'
b'\xbO\x10\x00\x08Q\ r\xce\x06\x00\x08\x08\x1d\x02\xdO\x0fo67?"'
b'\xb1\x10\x00\x100\x0c\x11\x05\x00\x07\x07\x1f\x05\xd3\x11n4?"'
b'\XTFf\Xx05w\x01\x00\x00\x11"'
b'\xbO\x01M'
b'\xbl\x01\x1lc"'
b \xb2\x01\x87"
b'\xb3\x01\x80"
b'\xb5\x01G"
b'\xb7\x01\x85"
b'\xb8\x01!'"
b'\xb9\x01\x10"
b'\xcl\x01x"'
b'\xc2\x01x"
b'\xd0\x81\x88d"
b'\xe0\x03\x80\x00\x02"'
b'\xel\x0b\x04\xa0\x00\x00\x05\xa0\x00\x00\x00" "'
b'\xe2\r00 "&1t;\xa0\x00\x00=\xa0\x00\x00\x00"
b'\xe3\x04\x00\x0033"
b'\xe4\x02DD"'
b'\xe5\x10\x06> \xa0\xa0\x08@\xa0\xa0\nB\xa0\xad\x0cD\xad\xa0"'
b'\xe6\x04\x00\x0033"
b'\xe7\x02DD"'
b'\xe8\x10\x07?\xa0\xa0\tA\xa0\xa0\x0bC\xab\xa®\re\xad\xa0"
b'\xeb\x07\x00\x01NN\xeeD\x00"
b"\xed\X1O\XTF\XTF\Xx04Vr\xff\xff\xff\xff\xff\xff'e@\xff\xff"
b'\xef\x06\x10\r\x04\x08?\x1f"'
b ' \xff\x05w\x01\x00\x00\x13"
b'\xe8\x02\x00\x0e'
b'\XTFf\Xx05w\x01\x00\x00\x00"'
b'\x11\x80x"
b '\ xff\x05w\x01\x00\x00\x13"
b'\xe8\x82\x00\x0c\n'
b'\xe8\x02\x00\x00"'
b '\ xff\x05w\x01\x00\x00\x00"
b'6\x01\x00"'
b':\x01f'

©Adafruit Industries Page 149 of 199

https://learn.adafruit.com/adafruit-qualia-esp32-s3-for-rgb666-displays/arduino-rainbow-demo
https://learn.adafruit.com/adafruit-qualia-esp32-s3-for-rgb666-displays/arduino-rainbow-demo

b'\x11\x80x"
b')\x80x"

))

Timings

Here are the timing settings for this display:

tft timings = {
"frequency": 16000000,
"width": 320,
"height": 820,

"hsync_pulse width": 3,
"hsync_back porch": 251,
"hsync front porch": 150,
"hsync_idle low": False,

"vsync pulse width": 6,
"vsync_back porch": 90,
"vsync_front porch": 100,
"vsync_idle low": False,

"pclk _active high": False,
"pclk _idle high": False,
"de idle high": False,

Example

Here's an example using those settings:

from displayio import release displays
release displays()

import
import
import
import
import
import

random

displayio

time

busio

board
dotclockframebuffer

from framebufferio import FramebufferDisplay

init sequence t1032 = bytes((
b'\x11\x80d"'
b ' \xff\x05w\x01\x00\x00\x13"
b'\xef\x01\x08"
b'\XxTf\Xx05w\x01\x00\x00\x10"'
b'\xcO\x02\xe5\x02"
b'\xcl\x02\x0c\n'
b'\xc2\x02\x07\x0f"'
b'\xc3\x01\x02"
b'\xcc\x01\x10'
b'\xcd\x01\x08"'
b'\xbO\x10\x00\x08Q\ r\xce\x06\x00\x08\x08\x1d\x02\xd0\x0fo6?"
b'\xb1\x10\x00\x100\x0c\x11\x05\x00\x07\x07\x1f\x05\xd3\x11n4?"'
b ' \XTFf\Xx05w\x01\x00\x00\x11"'
b'\xbO\x01M'
b'\xbl1\x01\x1lc"'

©Adafruit Industries

Page 150 of 199

b \xb2\x01\x87"
b'\xb3\x01\x80"
b'\xb5\x01G"
b'\xb7\x01\x85"
b'\xb8\x01!'"'
b'\xb9\x01\x10"
b'\xcl\x01x"'
b'\xc2\x01x"
b'\xd0\x81\x88d"
b'\xe0\x03\x80\x00\x02"'
b'\xel\x0b\x04\xa0\x00\x00\x05\xa0\x00\x00\x00" "'
b'\xe2\r00 "&1t;\xa0\x00\x00=\xa0\x00\x00\x00"
b'\xe3\x04\x00\x0033"
b'\xe4\x02DD"'
b'\xe5\x10\x06> \xa0\xa0\x08@\xa0\xa0\nB\xa0\xad\x0cD\xad\xa0"'
b'\xe6\x04\x00\x0033"
b'\xe7\x02DD"'
b'\xe8\x10\x07?\xa0\xa0\tA\xa0\xa0\x0bC\xa0\xaO\rE\xad\xa0"'
b'\xeb\x07\x00\x01NN\xeeD\x00"
b"\xed\X1O\XTF\XTF\X04Vr\xffAxff\Xxff\xff\xff\xff'e@\xff\xff"
b'\xef\x06\x10\r\x04\x08?\x1f"
b ' \xff\x05w\x01\x00\x00\x13"
b'\xe8\x02\x00\x0e'
b ' \XTFf\X05w\x01\x00\x00\x00"'
b'\x11\x80x"
b '\ xff\x05w\x01\x00\x00\x13"
b'\xe8\x82\x00\x0c\n'
b'\xe8\x02\x00\x00"'
b '\ xff\x05w\x01\x00\x00\x00"
b'6\x01\x00"'
b':\x01f'
b'\x11\x80x"
b')\x80x'
))

board.I2C().deinit()

i2c = busio.I2C(board.SCL, board.SDA, frequency=400 000)

tft io expander = dict(board.TFT IO EXPANDER)

#tft io expander['i2c address'] = 0x38 # uncomment for rev B
dotclockframebuffer.ioexpander send init sequence(i2c, init sequence t1032,
**tft io expander)

i2c.deinit ()

tft _pins = dict(board.TFT_PINS)

tft timings = {
"frequency": 16000000,
"width": 320,
"height": 820,

"hsync pulse width": 3,
"hsync_back porch": 251,
"hsync_front porch": 150,
"hsync_idle low": False,

"vsync pulse width": 6,
"vsync back porch": 90,
"vsync_front porch": 100,
"vsync_idle low": False,

"pclk active high": False,
"pclk _idle high": False,
"de idle high": False,
}
#bitmap = displayio.OnDiskBitmap("/display-ruler-720p.bmp")

bitmap = displayio.Bitmap(256, 7*64, 65535)
fb = dotclockframebuffer.DotClockFramebuffer(**tft pins, **tft timings)

©Adafruit Industries Page 151 of 199

display = FramebufferDisplay(fb, auto refresh=False)

Create a TileGrid to hold the bitmap
tile grid = displayio.TileGrid(bitmap,
pixel shader=displayio.ColorConverter(input colorspace=displayio.Colorspace.RGB565))

Create a Group to hold the TileGrid
group = displayio.Group()

Add the TileGrid to the Group
group.append(tile grid)

Add the Group to the Display
display.root group = group

display.auto _refresh = True

for i in range(256):

= 1 >> 3

= (1 >> 2) << 5
r=>b ≪< 11

r j in range(64):
bitmap[i, j] = b
bitmap[i, j+641 = b|g

bitmap[i, j+128] = g¢
bitmap[i, j+192] = g|r
bitmap[i, j+256] = r
bitmap[i, j+320] = r|b
bitmap[i, j+384] = r|g|b

Loop forever so you can enjoy your image
while True:
time.sleep(1)
display.auto refresh = False
group.x = random.randint (0, 32)
group.y = random.randint (0, 32)
display.auto refresh = True
pass

Go ahead and save the example you your CircuitPython code.py and run the code.
Your display should now look like this:

©Adafruit Industries Page 152 of 199

Arduino IDE Setup

The first thing you will need to do is to download the latest release of the Arduino
IDE. You will need to be using version 1.8 or higher for this guide

Arduino IDE Download

To use the ESP32-S2/S3 with Arduino, you'll need to follow the steps below for your
operating system. You can also check out the Espressif Arduino repository for the
most up to date details on how to install it ().

After you have downloaded and installed the latest version of Arduino IDE, you will
need to start the IDE and navigate to the Preferences menu. You can access it from
the File menu in Windows or Linux, or the Arduino menu on OS X.

Blink| Arduino 182 F=E)
T .
[File] Edit Sketch Tools Help
! New Ctrl+N
Open... Ctrl+0
Open Recent »
Sketchbook 4 5
Examples 4 -)
e second, then off for one second, repe
Close Ctrl+W
I°l Save Ctrl+S lboard LED you can contrcl. On the UNO, |3
| CavelAs Ctrl+Shift+S pin 13, on MKR1000 on pin 6. LED BUIL]
endent of which board is used.
l Page Setup Ctrl+Shift+P lpin the on-board LED is connected to or
B ur board at https://www.arduinoc.cc/en
Print Ctrl+P -
Preferences Ctrl+Comma hie public domain.
| Quit Ctrl+Q

A dialog will pop up just like the one shown below.

©Adafruit Industries Page 153 of 199

https://github.com/espressif/arduino-esp32/issues/5994
https://github.com/kutukvpavel/Esp32-Win7-VCP-drivers
https://github.com/kutukvpavel/Esp32-Win7-VCP-drivers
http://www.arduino.cc/en/Main/Software
https://github.com/espressif/arduino-esp32#using-through-arduino-ide
https://github.com/espressif/arduino-esp32#using-through-arduino-ide

[) Preferences

Sketchbook location:

/Users/todd/Documents /Arduino Browse
Editor language: = System Default + (requires restart of Arduino)
Editor font size: 10 (requires restart of Arduino)
Show verbose output during: compilation upload
Compiler warnings: = None $

Display line numbers
v Verify code after upload
Use external editor
v Check for updates on startup
v Update sketch files to new extension on save (.pde -> .ino)

v Save when verifying or uploading
Proxy Settings

Server (HTTP): Port (HTTP): 8080
Server: (HTTPS) Port (HTTPS): 8443
Username: Password:

Additional Boards Manager URLs: |

More preferences can be edited directly in the file
/Users /todd/Library/Arduinol15/preferences.txt
(edit only when Arduino is not running)

OK Cancel

We will be adding a URL to the new Additional Boards Manager URLs option. The list
of URLs is comma separated, and you will only have to add each URL once. New
Adafruit boards and updates to existing boards will automatically be picked up by the
Board Manager each time it is opened. The URLs point to index files that the Board
Manager uses to build the list of available & installed boards.

To find the most up to date list of URLs you can add, you can visit the list of third party
board URLs on the Arduino IDE wiki (). We will only need to add one URL to the IDE in
this example, but you can add multiple URLS by separating them with commas. Copy
and paste the link below into the Additional Boards Manager URLs option in the
Arduino IDE preferences.

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/
package esp32 index.json

Editor language: System Default B (requires restart of Arduino)
Editor font size: 12

Interface scale: Automatic 100 % (requires restart of Arduino)

Theme: Default theme [(requires restart of Arduino)

Show verbose output during: compilation upload

Compiler warnings: None <
Display line numbers Enable Code Folding
Verify code after upload Use external editor
Check for updates on startup Save when verifying or uploading

Use accessibility features

Additional Boards Manager URLs: con(en(.com/espressif/arduino-espSZ/gt;)jges/package_esp32_index.jﬂl =]

More preferences can be edited directly in the file

©Adafruit Industries Page 154 of 199

https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls#list-of-3rd-party-boards-support-urls
https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls#list-of-3rd-party-boards-support-urls

If you're an advanced hacker and want the 'bleeding edge' release that may have
fixes (or bugs!) you can check out the dev url instead:

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/
package esp32 dev_index.json

If you have multiple boards you want to support, say ESP8266 and Adafruit, have
both URLs in the text box separated by a comma (,)

Once done click OK to save the new preference settings.

The next step is to actually install the Board Support Package (BSP). Go to the Tools =
Board = Board Manager submenu. A dialog should come up with various BSPs.
Search for esp32.

o o Boards Manager

Type All B esp32

esp32

by Espressif Systems

Boards included in this package:

ESP32 Dev Board, ESP32-S2 Dev Board, ESP32-C3 Dev Board.
More Info

2.0.1 2] Install

Close

Click the Install button and wait for it to finish. Once it is finished, you can close the
dialog.

In the Tools = Board submenu you should see ESP32 Arduino and in that dropdown it
should contain the ESP32 boards along with all the latest ESP32-S2/S3 boards.

Look for the board called Adafruit Qualia ESP32-S3 RGB666.

©Adafruit Industries Page 155 of 199

[0

Auto Format 31 106a] Arduino 1.8.19 ~

Fix Encoding & Reload Adafruit Feather ESP32-52 Reverse TFT
Manage Libraries... oxi Adafruit Feather ESP32-S3 2MB PSRAM
Serial Monitor O AM Adafruit Feather ESP32-S3 No PSRAM
Serial Plotter Adafruit Feather ESP32-S3 TFT

it Feather ESP32-S3 Reverse TF
= = Adafrul

WIFi101 / WIFININA Firmware Updater fruit QT Py ESP32

ESP32 Sketch Data Upload Adafruit QT Py ESP32-C3

Adafruit QT Py ESP32-S2

Core Debug Level: *None*

0PI DOIT ESPduino32

Board: *Adafruit Qualia ESP32-3 ROBE66 > Boards Manager... R et e
Upload Speed: *921600" >
e e s s trevGear 3| Adafrit Boards > Adafruit QT Py ESP32-S3 (4M Flash 2M PSRAM)
e "(‘m e 3| Adafrut SAMD (32-bits ARM Cortox-MO# and CortexcMé) Boards > AdafruttsyBitsy ESP32
A Arduino AVR Boards > Adafruit MatrixPortal ESP32-S3
VoS Cmes MSCOn Boot Ot > Arduino Mbed OS Boards > Adafruit pyCamera S3
USB DFU On Boot: "Disabled” b [;
Upload . *USB-OTG CDC (TinyUSB)* 5 ATtiny10Core bEM v Adafruit Qualia ESP32-53 RGB666
DTN 3 Ao 5 ESP32 Arduino > NodeMCU-325
e _°m" s 5| ESP32 Arduino (Arduino) > MHETLIVEESP320evKIT
S S0 3| ESPB266 Boards (312) > MHET LIVE ESP32MiniKit
Pariton Scheme: TinyUF2 16MB (2MB APP/IL.GMB FATFS)" > Srusa Besearch AVE Bowrds 4| T Rmbkrte
i ! 3| Rospborry PIRP2040 Boards(36.0) > DOITESP32DEVKITVI
>

Manually Resetting ESP32-S3 Boards

Due to an issue in the Espressif code base, boards with an ESP32-S3 need to be
manually reset after uploading code from the Arduino IDE. After your code has been
uploaded to the ESP32-S3, press the reset button. After pressing the reset button,
your code will begin running.

For additional information, you can track the issue () on GitHub in the arduino-esp32
repository.

Using with Arduino IDE

Blink

Now you can upload your first blink sketch!

Plug in the ESP32-S2/S3 board and wait for it to be recognized by the OS (just takes a
few seconds).

©Adafruit Industries Page 156 of 199

https://github.com/espressif/arduino-esp32/issues/6762

Select ESP32-52/S3 Board in Arduino IDE

Tools Help

Auto Format

Archive Sketch

Fix Encoding & Reload
Manage Libraries...
Serial Monitor

Serial Plotter

WIiFi101 / WiFiNINA Firmware Updater

ESP Exception Decoder

Board: "Adafruit Metro ESP32-S2"

On the Arduino IDE, click:

Tools -> Board -> ESP32 Arduino -> Your
Adafruit ESP32-S2/S3 board

The screenshot shows Metro S2 but you
may have a different board. Make sure the
name matches the exact product you
purchased. If you don't see your board,
make sure you have the latest version of
the ESP32 board support package

Launch ESP32-S2/S3 ROM Bootloader

©Adafruit Industries

Page 157 of 199

https://learn.adafruit.com//assets/96985
https://learn.adafruit.com//assets/96985
https://learn.adafruit.com//assets/96986
https://learn.adafruit.com//assets/96986

Tools Help

Auto Format

Archive Sketch

Fix Encoding & Reload
Manage Libraries...
Serial Monitor

Serial Plotter

WiFi101 / WiFiNINA Firmware Updater
ESP Exception Decoder

Board: "Adafruit Metro ESP32-S2"
Upload Speed: "921600"

Serial Connected To: "USB CDC"
CPU Frequency: "240MHz (WiFi)"
Flash Frequency: "80MHz"

Flash Mode: "QIO"

Flash Size: "4MB (32Mb)"

Partition Scheme: "Default 4MB with spiffs (1.2MB APP/1.5MB SPIFFS)"

Core Debug Level: "None"
PSRAM: "Enabled"

Port

Get Board Info

Programmer

Before we upload a sketch, place your
ESP32-S2/S3 board into ROM bootloader
mode ().

Look for the Reset button and a second
DFU / BOOTO button

HOLD down the DFU/BootO button while
you click Reset. Then release DFU/Boot0
button

The GIF shows a Metro S2 but your board
may look different. It will still have BOOT
and Reset buttons somewhere

It should appear under Tools -> Port as ESP32-S2/S3 Dev Module.

B VVVVVVVYVYYVYY

/dev/cu.Bluetooth-Incoming-Port
/dev/cu.BoseQC35II1-SPPDev
/dev/cu.usbmodemO1 (ESP32S2 Dev Module)

Do not select any other port than the one that is called "ESP32S2 Dev Module"
or "ESP32S3 Dev Module"

Load Blink Sketch

Now open up this Blink example in a new sketch window

// the setup function runs once when you press reset or power the board

void setup() {

// initialize built in LED pin as an output.

pinMode(LED BUILTIN, OUTPUT);

// initialize USB serial converter so we have a port created

Serial.begin();

}

// the loop function runs over and over again forever

void loop() {

©Adafruit Industries

Page 158 of 199

https://learn.adafruit.com//assets/96987
https://learn.adafruit.com//assets/96987
https://learn.adafruit.com/adafruit-metro-esp32-s2/rom-bootloader#enter-rom-bootloader-mode-3076820-1
https://learn.adafruit.com/adafruit-metro-esp32-s2/rom-bootloader#enter-rom-bootloader-mode-3076820-1
https://learn.adafruit.com/adafruit-metro-esp32-s2/rom-bootloader#enter-rom-bootloader-mode-3076820-1

digitalWrite(LED BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)

delay(1000); // wait for a second
digitalWrite(LED BUILTIN, LOW); // turn the LED off by making the voltage LOW
delay(1000); // wait for a second

}

Note that we use LED_BUILTIN not pin 13 for the LED pin. That's because we

don't always use pin 13 for the LED on boards. For example, on the Metro ESP32-
S2 the LED is on pin 42!

And click upload! After uploading, you may see something like this:

To suppress this errer, set --afer SpUSN 10 '80_reser.

And click upload! After uploading, you may
see something like this, warning you that
we could not get out of reset.

This is normal! Press the RESET button on
your board to launch the sketch

That's it, you will be able to see the red LED blink. You will also see a new serial port
created.

You may call Serial.begin(); in your sketch to create the serial port so don't
forget it, it is not required for other Arduinos or previous ESP boards!

CPU Frequency: "240MHz (WiFi)"

Flash Frequency: "80MHz"

Flash Mode: "QIO"

Flash Size: "4MB (32Mb)"

Partition Scheme: “Default 4MB with spiffs (1.2MB APP/1.5MB SPIFFS)"

Core Debug Level: “None”
PSRAM: "Disabled”

Port erial p
Get Board Info COM34

COM37 (Adafruit Metro ESP32-52)

Serial ports

P

You can now select the new serial port name which will be different than the
bootloader serial port. Arduino IDE will try to use auto-reset to automatically put the
board into bootloader mode when you ask it to upload new code

If you ever DON'T see a serial port, or something is not working out with upload you
can always manually enter bootloader mode:

- Reset board into ROM bootloader with DFU/BOOTO + Reset buttons

©Adafruit Industries Page 159 of 199

https://learn.adafruit.com//assets/96990
https://learn.adafruit.com//assets/96990

« Select the ESP32S2/S3 Dev Board ROM bootloader serial port in Tools->Port
menu

- Upload sketch

« Click reset button to launch code

WiFi Test

Thanksfully if you have ESP32 sketches, they'll 'just work' with variations of ESP32.
You can find a wide range of examples in the File->Examples->Examples for Adafruit
Metro ESP32-S2 subheading (the name of the board may vary so it could be "Example
s for Adafruit Feather ESP32 V2" etc)

@ Blink | Arduino 1.8.13

File Edit Sketch Tools Help
New Ctrl+N
Open... Ctrl+0
Open Recent >
Sketchbook >ins once when you press reset or power the b
Examples % A
Close Ctrl+W Examples for Adafruit Metro ESP32-52
Save Ctrl+S ArduinoOTA >
SaveAs.. Ctrl+Shift+S BluetoothSerial 5| CTeate
Page Setup Ctrl+Shift+P DNSServer ¢
Print Ctrl+P AL ’
ESP32 >
Preferences Ctrl+Comma ESP32 Async UDP N
Quit Ctrl+Q ESP32 BLE Arduino > (HIGH is th

Let's start by scanning the local networks.

Load up the WiFiScan example under Examples->Examples for YOUR BOARDNAME-
>WiFi->WiFiScan

WiFi ETH_LAN8720
WiFiClientSecure ETH_TLK110
SimpleWiFiServer
WiFiAccessPoint
WiFiBlueToothSwitc
WiFiClient
WiFiClientBasic
WiFiClientEnterpris¢
WiFiClientEvents
WiFiClientStaticlP
WiFilPv6

WiFiMulti

WiFiProv

WiFiScan

Adafruit ADT7410 Library
Adafruit ADXL343
Adafruit AM2320 sensor library

Adafruit APDS9960 Library
Adafruit Arcada Library
Adafruit BLEFirmata
Adafruit BluefruitLE nRF51
Adafruit BME280 Library
Adafruit BME680 Library
Adafruit BMP280 Library

VVyVyVVYyVYVYYVYYY

©Adafruit Industries Page 160 of 199

And upload this example to your board. The ESP32 should scan and find WiFi
networks around you.

For ESP32, open the serial monitor, to see the scan begin.

For ESP32-S2, -S3 and -C3, don't forget you have to click Reset after uploading
through the ROM bootloader. Then select the new USB Serial port created by the
ESP32. It will take a few seconds for the board to complete the scan.

e COM37 = O X
' Send

18:16:20.283 -> scan start

18:16:25.389 -> scan done

18:16:25.389 -> 12 networks found

18:16:25.389 -> 1: adafruit (-54)*

18:16:25.436 -> 2: MySpectrumWiFi73-2G (-56)*

18:16:25.436 -> 3: Sally (-S57)*

18:16:25.436 -> 4: MySpectrumWiFi7C-2G (-58)*

18:16:25.436 -> 5: FiOS-KS7GI (-68)*

18:16:25.436 -> 6: linksys SES 2868 (-76)*

18:16:25.482 -> 7: patricks Network (-76)%*

18:16:25.482 -> 8: eufy RoboVac 30C-FA6e (-79)

18:16:25.482 -> 9: linksys_SES 2868 (-81)*

18:16:25.482 -> 10: VVCBR (-83)*

18:16:25.528 -> 11: FiOS-KS57GI (-83)*

18:16:25.528 -> 12: Patrick (-83)*

18:16:25.528 ->

18:16:30.520 -> scan start

[iitoscroff [£] Show timestamp BothNL&CR v | [115200baud + | | Clear output

If you can not scan any networks, check your power supply. You need a solid power
supply in order for the ESP32 to not brown out. A skinny USB cable or drained battery
can cause issues.

WiFi Connection Test

Now that you can scan networks around you, its time to connect to the Internet!

Copy the example below and paste it into the Arduino IDE:

// SPDX-FileCopyrightText: 2020 Brent Rubell for Adafruit Industries

//

// SPDX-License-Identifier: MIT

/*
Web client

This sketch connects to a website (wifitest.adafruit.com/testwifi/index.html)
using the WiFi module.

This example is written for a network using WPA encryption. For

©Adafruit Industries

Page 161 of 199

WEP or WPA, change the Wifi.begin() call accordingly.

This example is written for a network using WPA encryption. For
WEP or WPA, change the Wifi.begin() call accordingly.

created 13 July 2010
by dlf (Metodo2 srl)
modified 31 May 2012
by Tom Igoe

*/

#include <WiFi.h>

// Enter your WiFi SSID and password

char ssid[] = "YOUR SSID"; // your network SSID (name)

char pass[] = "YOUR SSID PASSWORD"; // your network password (use for WPA, or
use as key for WEP)

int keyIndex = 0; // your network key Index number (needed
only for WEP)

int status = WL _IDLE STATUS;

// if you don't want to use DNS (and reduce your sketch size)

// use the numeric IP instead of the name for the server:

//IPAddress server(74,125,232,128); // numeric IP for Google (no DNS)

char server|[]
char path[]

"wifitest.adafruit.com"; // name address for adafruit test
"/testwifi/index.html";

// Initialize the Ethernet client library

// with the IP address and port of the server

// that you want to connect to (port 80 is default for HTTP):
WiFiClient client;

void setup() {
//Initialize serial and wait for port to open:
Serial.begin(115200);
while (!Serial) {
; // wait for serial port to connect. Needed for native USB port only
}

// attempt to connect to Wifi network:
Serial.print("Attempting to connect to SSID: ");
Serial.println(ssid);

WiFi.begin(ssid, pass)

while (WiFi.status() !
delay(500);
Serial.print(".");

= WL CONNECTED) {

}

Serial.println("");
Serial.println("Connected to WiFi");
printWifiStatus();

Serial.println("\nStarting connection to server...");

// if you get a connection, report back via serial:

if (client.connect(server, 80)) {
Serial.println("connected to server");
// Make a HTTP request:
client.print("GET "); client.print(path); client.println(" HTTP/1.1");
client.print("Host: "); client.println(server);
client.println("Connection: close");
client.println();

}

}

void loop() {
// if there are incoming bytes available
// from the server, read them and print them:

©Adafruit Industries Page 162 of 199

while (client.available()) {
char ¢ = client.read();
Serial.write(c);

}

// if the server's disconnected, stop the client:
if (!client.connected()) {
Serial.println();
Serial.println("disconnecting from server.");
client.stop();

// do nothing forevermore:
while (true) {

delay(100);
b

}
}

void printWifiStatus() {
// print the SSID of the network you're attached to:
Serial.print ("SSID: ");
Serial.println(WiFi.SSID());

// print your board's IP address:
IPAddress ip = WiFi.localIP();
Serial.print("IP Address: ");
Serial.println(ip);

// print the received signal strength:
long rssi = WiFi.RSSI();
Serial.print("signal strength (RSSI):");
Serial.print(rssi);

Serial.println(" dBm");

NOTE: You must change the SECRET_SSID and SECRET_PASS in the example code
to your WiFi SSID and password before uploading this to your board.

// Enter your WiFi SSID and password

char ssid[] = "YOUR_SSID"; // your network SSID (name)

char pass[] = "YOUR_SSID_PASSWORD"; // your network password (use for WPA, or use as key for WEP)
int keyIndex = @; // your network key Index number (needed only for WEP)

After you've set it correctly, upload and check the serial monitor. You should see the
following. If not, go back, check wiring, power and your SSID/password

©Adafruit Industries Page 163 of 199

Attempting to connect to SSID: Transit
Connected to WiFi

SSID: Transit

IP Address: 192.168.1.182

signal strength (RSSI):-57 dBm

Starting connection to server...
connected to server

HTTP/1.1 200 OK

Server: nginx/1.10.3 (Ubuntu)

Date: Wed, 11 Nov 2020 20:51:30 GMT
Content-Type: text/html
Content-Length: 70

Last-Modified: Thu, 16 May 2019 18:21:16 GMT
Connection: close

ETag: "Scddaalc-46"

Accept-Ranges: bytes

This is a test of Adafruit WiFi!
If you can read this, its working :)

disconnecting from server.

Secure Connection Example

Many servers today do not allow non-SSL connectivity. Lucky for you the ESP32 has a
great TLS/SSL stack so you can have that all taken care of for you. Here's an example
of a using a secure WiFi connection to connect to the Twitter API.

Copy and paste it into the Arduino IDE:

// SPDX-FileCopyrightText: 2015 Arturo Guadalupi

// SPDX-FileCopyrightText: 2020 Brent Rubell for Adafruit Industries
//

// SPDX-License-Identifier: MIT

/*
This example creates a client object that connects and transfers
data using always SSL.

It is compatible with the methods normally related to plain
connections, like client.connect(host, port).

Written by Arturo Guadalupi
last revision November 2015

*/
#include <WiFiClientSecure.h>

// Enter your WiFi SSID and password

©Adafruit Industries Page 164 of 199

char ssid[] "YOUR _SSID"; // your network SSID (name)

char pass[] "YOUR SSID PASSWORD"; // your network password (use for WPA, or
use as key for WEP)

int keyIndex = 0; // your network key Index number (needed
only for WEP)

int status = WL_IDLE STATUS;

// if you don't want to use DNS (and reduce your sketch size)

// use the numeric IP instead of the name for the server:

//IPAddress server(74,125,232,128); // numeric IP for Google (no DNS)

#define SERVER "cdn.syndication.twimg.com"
#define PATH "/widgets/followbutton/info.json?screen names=adafruit"

// Initialize the SSL client library

// with the IP address and port of the server

// that you want to connect to (port 443 is default for HTTPS):
WiFiClientSecure client;

void setup() {
//Initialize serial and wait for port to open:
Serial.begin(115200);
while (!Serial) {
; // wait for serial port to connect. Needed for native USB port only
}

// attempt to connect to Wifi network:
Serial.print("Attempting to connect to SSID: ");
Serial.println(ssid);

WiFi.begin(ssid, pass);
while (WiFi.status() '= WL CONNECTED) {
delay(500);
Serial.print(".");

}

Serial.println("");
Serial.println("Connected to WiFi");
printWifiStatus();

client.setInsecure(); // don't use a root cert

Serial.println("\nStarting connection to server...");

// if you get a connection, report back via serial:

if (client.connect(SERVER, 443)) {
Serial.println("connected to server");
// Make a HTTP request:
client.println("GET " PATH " HTTP/1.1");
client.println("Host: " SERVER);
client.println("Connection: close");
client.println();

}

}

uint32 t bytes = 0;

void loop() {
// if there are incoming bytes available
// from the server, read them and print them:
while (client.available()) {
char ¢ = client.read();
Serial.write(c);
bytes++;

}

// if the server's disconnected, stop the client:
if (!client.connected()) {

Serial.println();

Serial.println("disconnecting from server.");

©Adafruit Industries Page 165 of 199

client.stop();
Serial.print("Read "); Serial.print(bytes); Serial.println(" bytes");

// do nothing forevermore:
while (true);

void printWifiStatus() {
// print the SSID of the network you're attached to:
Serial.print("SSID: ");
Serial.println(WiFi.SSID());

// print your board's IP address:
IPAddress ip = WiFi.locallIP();
Serial.print("IP Address: ");
Serial.println(ip);

// print the received signal strength:
long rssi = WiFi.RSSI();
Serial.print("signal strength (RSSI):");
Serial.print(rssi);

Serial.println(" dBm");

As before, update the ssid and password first, then upload the example to your board.

Note we use WiFiClientSecure client instead of WiFiClient client; to
require a SSL connection! This example will connect to a twitter server to download a
JSON snippet that says how many followers adafruit has

Attempting to connect to SSID: Transit
Connected to WiFi

SSID: Transit

IP Address: 192.168.1.182

signal strength (RSSI):-52 dBm

Starting connection to server...

connected to server

HTTP/1.1 200 OK

Accept-Ranges: bytes

Access-Contol-Allow-Origin: platform.twitter.com
Access-Control-Allow-Methods: GET

Age: 12

cache-control: must-revalidate, max-age=600
content-disposition: attachment; filename=json.json
Content-Type: application/json;charset=utf-8
Date: Wed, 11 Nov 2020 20:58:39 GMT

expires: Wed, 11 Nov 2020 21:08:39 GMT
Last-Modified: Wed, 11 Nov 2020 20:58:27 GMT
Server: ECS (agb/52BA)
strict-transport-security: max-age=631138519
timing-allow-origin: *

X-Cache: HIT

x-connection-hash: a50988a902075%ec70520caef6c38bcf
x-content-type-options: nosniff

x-frame-options: SAMEORIGIN

Xx-response-time: 12

x-transaction: 003d88570028acec

x-tw-cdn: VZ

x-tw-cdn: VZ

X-Xss-protection: @

Content-Length: 197

Connection: close

[{"following":false,"id":"20731304","screen_name": "adafruit","name":"adafruit industries","

disconnecting from server.
Read 966 bytes

©Adafruit Industries Page 166 of 199

JSON Parsing Demo

This example is a little more advanced - many sites will have API's that give you JSON
data. We will build on the previous SSL example to connect to twitter and get that
JSON data chunk

Then we'll use ArduinoJSON () to convert that to a format we can use and then
display that data on the serial port (which can then be re-directed to a display of some
sort)

First up, use the Library manager to install ArduinoJSON ().

Then load the example JSONdemo by copying the code below and pasting it into
your Arduino IDE.

// SPDX-FileCopyrightText: 2014 Benoit Blanchon

// SPDX-FileCopyrightText: 2014 Arturo Guadalupi

// SPDX-FileCopyrightText: 2020 Brent Rubell for Adafruit Industries
//

// SPDX-License-Identifier: MIT

/*
This example creates a client object that connects and transfers
data using always SSL, then shows how to parse a JSON document in an HTTP response.

It is compatible with the methods normally related to plain
connections, like client.connect(host, port).

Written by Arturo Guadalupi + Copyright Benoit Blanchon 2014-2019
last revision November 2015

*/

#include <WiFiClientSecure.h>
#include <ArduinoJson.h>
#include <Wire.h>

// uncomment the next line if you have a 128x32 OLED on the I2C pins
//#define USE_OLED

// uncomment the next line to deep sleep between requests

//#define USE_DEEPSLEEP

#if defined (USE _OLED)
// Some boards have TWO I2C ports, how nifty. We should use the second one sometimes
#if defined (ARDUINO ADAFRUIT QTPY ESP32S2) || \
defined (ARDUINO ADAFRUIT QTPY ESP3253 NOPSRAM) || \
defined (ARDUINO ADAFRUIT QTPY ESP32 PICO)
#define OLED I2C PORT &Wirel
#else
#define OLED I2C PORT &Wire
#endif

#include <Adafruit SSD1306.h>
Adafruit SSD1306 display = Adafruit SSD1306(128, 32, OLED I2C PORT);
#endif

// Enter your WiFi SSID and password
char ssid[] = "YOUR SSID"; // your network SSID (name)

©Adafruit Industries Page 167 of 199

https://arduinojson.org/
https://arduinojson.org/v6/doc/installation/

char pass[] = "YOUR _SSID PASSWORD"; // your network password (use for WPA, or
use as key for WEP)

int keyIndex = 0; // your network key Index number (needed
only for WEP)

int status = WL_IDLE STATUS;

// if you don't want to use DNS (and reduce your sketch size)

// use the numeric IP instead of the name for the server:

//IPAddress server(74,125,232,128); // numeric IP for Google (no DNS)

#define SERVER "cdn.syndication.twimg.com"
#define PATH "/widgets/followbutton/info.json?screen names=adafruit"

void setup() {
//Initialize serial and wait for port to open:
Serial.begin(115200);

// Connect to WPA/WPA2 network
WiFi.begin(ssid, pass);

#if defined (USE_OLED)
setupI2C();
delay(200); // wait for OLED to reset

if(!display.begin(SSD1306 SWITCHCAPVCC, 0x3C)) { // Address 0x3C for 128x32
Serial.println(F("SSD1306 allocation failed"));
for(;;); // Don't proceed, loop forever
b
display.display();
display.setTextSize(1l);
display.setTextColor(WHITE);
display.clearDisplay();
display.setCursor(0,0);
#else
// Don't wait for serial if we have an OLED
while (!Serial) {
// wait for serial port to connect. Needed for native USB port only
delay(10);

}

#endif

// attempt to connect to Wifi network:

Serial.print("Attempting to connect to SSID: ");

Serial.println(ssid);

#if defined (USE_OLED)
display.clearDisplay(); display.setCursor(0,0);
display.print("Connecting to SSID\n"); display.println(ssid);
display.display();

#endif

while (WiFi.status() '= WL _CONNECTED) {
delay(500);
Serial.print(".");

}

Serial.println("");
Serial.println("Connected to WiFi");

#if defined(USE_OLED)
display.print("...0K!");
display.display();

#endif

printWifiStatus();
}

uint32 t bytes = 0;

©Adafruit Industries Page 168 of 199

void loop() {
WiFiClientSecure client;
client.setInsecure(); // don't use a root cert

Serial.println("\nStarting connection to server...");

#if defined (USE_OLED)
display.clearDisplay(); display.setCursor(0,0);
display.print("Connecting to "); display.print(SERVER);
display.display();

#endif

// if you get a connection, report back via serial:

if (client.connect(SERVER, 443)) {
Serial.println("connected to server");
// Make a HTTP request:
client.println("GET " PATH " HTTP/1.1");
client.println("Host: " SERVER);
client.println("Connection: close");
client.println();

}

// Check HTTP status
char status[32] = {0};
client.readBytesUntil('\r', status, sizeof(status));
if (strcmp(status, "HTTP/1.1 200 OK") !'= 0) {
Serial.print(F("Unexpected response: "));
Serial.println(status);
#if defined (USE_OLED)
display.print("Connection failed, code: "); display.println(status);
display.display();
#endif

return;

}

// wait until we get a double blank line
client.find("\r\n\r\n", 4);

// Allocate the JSON document

// Use arduinojson.org/v6/assistant to compute the capacity.

const size t capacity = JSON_ARRAY SIZE(1) + JSON OBJECT SIZE(8) + 200;
DynamicJsonDocument doc(capacity);

// Parse JSON object
DeserializationError error = deserializeJson(doc, client);
if (error) {
Serial.print(F("deserializeJson() failed: "));
Serial.println(error.c _str());
return;

}

// Extract values

JsonObject root 0 = doc[0];
Serial.println(F("Response:"));

const char* root 0 screen _name = root O["screen name"];
long root 0 followers count = root O["followers count"];

Serial.print("Twitter username: "); Serial.println(root 0 screen name);
Serial.print("Twitter followers: "); Serial.println(root 0 followers count);
#if defined(USE_OLED)

display.clearDisplay(); display.setCursor(0,0);

display.setTextSize(2);

display.println(root 0 screen name);

display.println(root 0 followers count);

display.display();

display.setTextSize(1l);
#endif

©Adafruit Industries Page 169 of 199

// Disconnect
client.stop();
delay(1000);

#if defined (USE_DEEPSLEEP)

#if defined(USE OLED)
display.clearDisplay();
display.display();

#endif // OLED

#if defined (NEOPIXEL POWER)
digitalWrite(NEOPIXEL POWER, LOW); // off

#elif defined (NEOPIXEL I2C POWER)
digitalWrite (NEOPIXEL I2C POWER, LOW); // off

#endif
// wake up 1 second later and then go into deep sleep
esp_sleep enable timer wakeup(10 * 1000UL * 1000UL); // 10 sec
esp deep sleep start();

#else
delay (10 * 1000);

#endif

}

void setupI2C() {

#if defined (ARDUINO ADAFRUIT QTPY ESP3252) || \
defined (ARDUINO ADAFRUIT QTPY _ESP32S3 NOPSRAM) || \
defined (ARDUINO ADAFRUIT QTPY ESP32 PICO)
// ESP32 is kinda odd in that secondary ports must be manually
// assigned their pins with setPins()!
Wirel.setPins(SDA1, SCL1);

#endif

#if defined (NEOPIXEL I2C POWER)

pinMode (NEOPIXEL I2C POWER, OUTPUT);
digitalWrite(NEOPIXEL I2C POWER, HIGH); // on
#endif

#if defined (ARDUINO ADAFRUIT FEATHER ESP32S2)
// turn on the I2C power by setting pin to opposite of 'rest state'
pinMode (PIN I2C POWER, INPUT);
delay(1l);
bool polarity = digitalRead(PIN_I2C POWER);
pinMode (PIN I2C POWER, OUTPUT);
digitalWrite(PIN I2C POWER, !polarity);
#endif
}

void printWifiStatus() {
// print the SSID of the network you're attached to:
Serial.print("SSID: ");
Serial.println(WiFi.SSID());

// print your board's IP address:
IPAddress ip = WiFi.locallIP();
Serial.print("IP Address: ");
Serial.println(ip);

// print the received signal strength:
long rssi = WiFi.RSSI();
Serial.print("signal strength (RSSI):");
Serial.print(rssi);

Serial.println(" dBm");

By default it will connect to to the Twitter banner image API, parse the username and
followers, and display them.

©Adafruit Industries Page 170 of 199

Attempting to connect to SSID: Transit
Connected to WiFi

SSID: Transit

IP Address: 192.168.1.182

signal strength (RSSI):-54 dBm

Starting connection to server...
connected to server

Response:

Twitter username: adafruit
Twitter followers: 176400

Usage with Adafruit 1O

The ESP32-S2/S3 is an affordable, all-in-one, option for connecting your projects to
the internet using our loT platform, Adafruit 1O ().

« For more information and guides about Adafruit 10, check out the Adafruit 10
Basics Series. ()

Install Libraries

In the Arduino IDE, navigate to Sketch -> Include Library->Manage Libraries...

XY Tools Help

Verify/Compile i Manage Libraries...
Upload #U
Upload Using Programmer {:8U
Export compiled Binary XS :
| Arduin
.. Show Sketch Folder 8K Bridge
EEPROM
Add File... Esplora
Firmata
, to run repeatedly: HID
Keyboard
Mouse
Robot Control

Robot IR Remote
Robot Motor

SPI
SoftwareSerial
SpacebrewYun
Temboo

Enter Adafruit 10 Arduino into the search box, and click Install on the Adafruit IO
Arduino library option to install version 4.0.0 or higher.

©Adafruit Industries Page 171 of 199

https://io.adafruit.com/welcome
https://learn.adafruit.com/series/adafruit-io-basics
https://learn.adafruit.com/series/adafruit-io-basics

[JoN) Library Manager

B tosic i B
rAdafruit 10 Arduino
by Adafruit

Arduino library to access Adafruit 10. Arduino library to access Adafruit I0 using the Adafruit AirLift, ESPB266, ESP32, MO WINC1500,
WICED, MKR1000, Ethernet, or FONA hardware.
More info

Version 4.0.0 Install

When asked to install dependencies, click Install all.

Library Manager
A~

Type All T Topic All < adafruit io

@ Dependencies for library Adafruit 10 Arduino:4.0.0

The library Adafruit IO Arduino:4.0.0 needs some other library

f R rLift, ESP8266, ESP32, MO WINC1500,
dependencies currently not installed:

- WiFi101

Would you IikeWo all the missing dependencies?
Install all nstall 'Adafruit 10 Arduino' only Cancel

Update

T R—

Adafruit 10 Setup

If you do not already have an Adafruit IO account, create one now (). Next
the Adafruit IO Dashboards page.

, havigate to

We'll create a dashboard to visualize and interact with the data being sent between

your ESP32-S2/S3 board and Adafruit 10.

©Adafruit Industries

Page 172 of 199

http://io.adafruit.com/

*adaf ruit Profile

brubell > Dashboards

+ New Dashboard

Create a new Dashboard X

Name
My ESP32-S2

Description

Show Header Image
Header Image

Choose File No file chosen

e header image with breakpoints marked

O LoRa Feather Network lora-feather-network
O My Air Quality Sensor my-air-quality-sensor
) My ESP32-52 my-esp32-s2

O My Garage my-garage

Click the New Dashboard button.

Name your dashboard My ESP32-S2 or My
ESP32-S3 depending on your board.

Your new dashboard should appear in the
list.

Click the link to be brought to your new
dashboard.

We'll want to turn the board's LED on or off from Adafruit IO. To do this, we'll need to

add a toggle button to our dashboard.

©Adafruit Industries

Page 173 of 199

https://learn.adafruit.com//assets/97031
https://learn.adafruit.com//assets/97031
https://learn.adafruit.com//assets/97032
https://learn.adafruit.com//assets/97032
https://learn.adafruit.com//assets/97033
https://learn.adafruit.com//assets/97033

Faatrue

Profile

beubell > Dashboards > My ESP32-52

Create a new block

Feeds Dashboasrds

[Triggers Services |

Dashboard Settings

Dark Made © D
Block Borders © (o0 @)
Dashboard Privacy © "D

Click on the block you would like to add to your dashboard. You can a
switch the block type later if you change your mind

led

il

() HIGH 9 minutes
O win rip over 1year
O moisture 2 1day

O neopixel 2 days

O outdoor-lights #000000 about 2 yet
O relay morning about 3 hot
O temperature 72 1 day

O test 66 2 days

O timecube 45 almost 2 ye

0O zapemail Gary Thompson...1 day
eo

My Feeds

Feed Name Last value Recorded

O battery 55 1 day

O digital 1 about 17 hours

O humidity 10 2 days

O image /9j/4QAWRXhp... 5 months

0 wmghls #000000 about 2 years

& led less than a min...

O will rip over 1 year

O moisture 2 1 day

O neopixel 2 days

O outdoor-lights #000000 about 2 years

©Adafruit Industries

Click the cog at the top right hand corner
of your dashboard.

In the dashboard settings dropdown, click
Create New Block.

Select the toggle block.

Under My Feeds, enter led as a feed
name. Click Create.

Choose the led feed to connect it to the
toggle block. Click Next step.

Page 174 of 199

https://learn.adafruit.com//assets/97038
https://learn.adafruit.com//assets/97038
https://learn.adafruit.com//assets/97039
https://learn.adafruit.com//assets/97039
https://learn.adafruit.com//assets/97040
https://learn.adafruit.com//assets/97040
https://learn.adafruit.com//assets/97041
https://learn.adafruit.com//assets/97041

Publahed Value

e

Under Block Settings,

Change Button On Text to 1
Change Button Off Text to O
Click Create block

*adafruit Profile Feeds Dashboards Devices Triggers Services My Key

brubell > Dashboards > My ESP32-S2

(D

LED

Next up, we'll want to display button press data from your board on Adafruit 10. To do
this, we'll add a gauge block to the Adafruit IO dashboard. A gauge is a read only

block type that shows a fixed range of values.

©Adafruit Industries

Page 175 of 199

https://learn.adafruit.com//assets/97044
https://learn.adafruit.com//assets/97044

Create a new block x

Chick on the block you would like to add to your dashboard. You can always come back and

switch the block type later if you change your mind

=l N
HOm

- . -— -

Click the cog at the top right hand corner

O image /9j/40AWRXhp... 5 months -

O indoor-lights #000000 about 2 years - Of your dashboa rd,

o et ® Inthe dashboard settings dropdown, click
O twill rip over 1 year =

O moisture 2 1dey 6 Create New Block.

O Sneptud 2daye “ Select the gauge block.

O outdoor-lights #000000 about 2 years =

- Under My Feeds, enter button as a feed
O relay morning about 3 hours .

O temperature 72 1day - name.

O test 66 2 days = Clle Create

O timecube 45 almost 2 years -

O zapemai Gery Thompson... day a Choose the button feed to connect it to
E— - | the toggle block.

Click Next step.
Create a Gauge Block

A gauge is a read only block type that shows a fixed range o

Choose a single feed you would like to connect to this gauge¢
feed within a group.

My Feeds

Feed Name Last value
O battery 55

& button

©Adafruit Industries Page 176 of 199

https://learn.adafruit.com//assets/97046
https://learn.adafruit.com//assets/97046
https://learn.adafruit.com//assets/97047
https://learn.adafruit.com//assets/97047
https://learn.adafruit.com//assets/97048
https://learn.adafruit.com//assets/97048

Block settings x

In this final step, you can give your block a title and see a preview of how it will look,

Customize the look and feel of your block with the remaining settings. When you are ready, U n d er b | OCk Settl n gS,

click the *Create Block™ button to send it to your dashboard

Block Titke (optiona Block Preview

Change Block Title to Button Value
Change Gauge Min Value to 0O, the
button's state when it's off

[Button Value]

Gauge Min Value

o l

>ouge Max Value

[| Change Gauge Max Value to 1, the button's
[G 509 ==] state when it's on

Gauge Label Click Create block

Value Gauge A gauge is a read only block type
that shows a ficed range of values.

Low Warning Value

Your dashboard should look like the following:

*adafruir Profile Feeds Dashboards Devices Triggers Services My Key
brubell > Dashboards > My ESP32-52
LED Button Value

(D

Code Usage

For this example, you will need to open the adafruitio_26_led_btn example included
with the Adafruit 10 Arduino library. In the Arduino IDE, navigate to File -> Examples ->
Adafruit 10 Arduino -> adafruitio_26_led_btn.

Before uploading this code to the ESP32-S2/S3, you'll need to add your network and
Adafruit 10 credentials. Click on the config.h tab in the sketch.

Obtain your Adafruit IO Credentials from navigating to io.adafruit.com and clicking My
Key (). Copy and paste these credentials nextto I0_USERNAME and IO KEY.

[NON) adafruitio_26_led_btn - config.h | Arduino 1.8.13

config.h

AA ,- v "
WUl | Ly

// visit io.adafruit.com if you need to create an account,
// or if you need your Adafruit IO key.

#define IO_USERNAME "your_username"

#define IO_KEY "your_key"

NOOUL A WN -

©Adafruit Industries Page 177 of 199

https://learn.adafruit.com//assets/97049
https://learn.adafruit.com//assets/97049
https://io.adafruit.com/
https://io.adafruit.com/

Enter your network credentials nextto WIFI SSID and WIFI PASS.

adafruitio_26_led_btn config.h

#define WIFI_SSID "your_ssid"
#define WIFI_PASS "your_pass”

w N

// uncomment the following line if you are using airlift
//#define USE_AIRLIFT

(o2 IR ¥, I -N

O 00~ O

// uncomment the following line if you are using winc1500
// #define USE_WINC1500

NINNNNNNNNN

Click the Upload button to upload your sketch to the ESP32-S2/S3. After uploading, pr
ess the RESET button on your board to launch the sketch.

Open the Arduino Serial monitor and navigate to the Adafruit IO dashboard you
created. You should see the gauge response to button press and the board's LED
light up in response to the Toggle Switch block.

*adafruit Profile Feeds Dashboards Devices Triggers Services

brubell > Dashboards > My ESP32-S2

LED Button Value

(&

You should also see the ESP32-S2/S3's LED turning on and off when the LED is
toggled:

Dashboards > My ESP32-S2

(D

Novomber 61 2020, EEE:27AM

Button Value

©Adafruit Industries Page 178 of 199

Arduino Rainbow Demo

We have a Circular Rainbow demo available for the Qualia ESP32-S3 that runs in
Arduino. Below is the code to run it.

// SPDX-FileCopyrightText: 2023 Limor Fried for Adafruit Industries

//
// SPDX-License-Identifier: MIT

#include <Arduino GFX Library.h>
#include <Adafruit FT6206.h>

Arduino XCA9554SWSPI *expander = new Arduino XCA9554SWSPI (
PCA TFT RESET, PCA TFT CS, PCA TFT SCK, PCA TFT MOSI,
&Wire, Ox3F);

Arduino ESP32RGBPanel *rgbpanel = new Arduino ESP32RGBPanel(

TFT _DE, TFT _VSYNC, TFT HSYNC, TFT PCLK,

TFT _R1, TFT_R2, TFT_R3, TFT_R4, TFT_R5,

TFT GO, TFT G1, TFT G2, TFT G3, TFT G4, TFT G5,

TFT B1, TFT B2, TFT B3, TFT B4, TFT B5,

1 /* hsync polarity */, 50 /* hsync front porch */, 2 /* hsync pulse width */,
44 /* hsync back porch */,

1 /* vsync polarity */, 16 /* vsync front porch */, 2 /* vsync pulse width */,
18 /* vsync back porch */
// ,1, 30000000

)

Arduino RGB Display *gfx = new Arduino RGB Display(
// 2.1" 480x480 round display

480 /* width */, 480 /* height */, rgbpanel, 0 /* rotation */, true /*
auto flush */,

expander, GFX NOT DEFINED /* RST */, TL021WVCO2 init operations,
sizeof(TLO21WVCO2 init operations));

// 2.8" 480x480 round display

// 480 /* width */, 480 /* height */, rgbpanel, 0 /* rotation */, true /*
auto flush */,

// expander, GFX NOT DEFINED /* RST */, TLO28WVCOl init operations,
sizeof (TLO28WVCO1 init operations));

// 3.4" 480x480 square display

// 480 /* width */, 480 /* height */, rgbpanel, 0 /* rotation */, true /*
auto flush */,

// expander, GFX NOT DEFINED /* RST */, tl1034wvsQ5 bl477a init operations,
sizeof (t1034wvs05 bl477a init operations));

// 3.2" 320x820 rectangle bar display

// 320 /* width */, 820 /* height */, rgbpanel, 0 /* rotation */, true /*
auto flush */,

// expander, GFX NOT DEFINED /* RST */, t1032fwv0@l init operations,
sizeof (t1032fwv0l init operations));

// 4.0" 720x720 square display

// 720 /* width */, 720 /* height */, rgbpanel, 0 /* rotation */, true /*
auto flush */,

// expander, GFX NOT DEFINED /* RST */, NULL, 0);

// 4.0" 720x720 round display

©Adafruit Industries Page 179 of 199

// 720 /* width */, 720 /* height */, rgbpanel, 0 /* rotation */, true /*

auto flush */,

// expander, GFX NOT DEFINED /* RST */, hd40015c40 init operations,
sizeof(hd40015c40 init operations));

// needs also the rgbpanel to have these pulse/sync values:

// 1 /* hync polarity */, 46 /* hsync front porch */, 2 /* hsync pulse width */,
44 /* hsync_back porch */,

// 1 /* vsync polarity */, 50 /* vsync front porch */, 16 /* vsync pulse width
/, 16 / vsync_back porch */

uintlée t *colorWheel;

// The FTxxxx based CTP overlays uses hardware I2C (SCL/SDA)
#define I2C TOUCH ADDR 0x48 // often but not always 0x38!

Adafruit FT6206 ctp = Adafruit FT6206(); // this library also supports
FT5336U!
bool touchOK = false; // we will check if the touchscreen exists

void setup(void)
{
Serial.begin(115200);
//while (!Serial) delay(100);

#ifdef GFX EXTRA PRE_INIT
GFX_EXTRA PRE_INIT();
#endif

Serial.println("Beginning");
// Init Display

Wire.setClock(1000000); // speed up I2C
if (!'gfx->begin()) {

Serial.println("gfx->begin() failed!");
}

Serial.println("Initialized!");
gfx->fillScreen(BLACK);

expander->pinMode (PCA TFT BACKLIGHT, OUTPUT);
expander->digitalWrite(PCA TFT BACKLIGHT, HIGH);

colorWheel = (uintl6 t *) ps malloc(gfx->width() * gfx->height() *
sizeof(uintl6 _t));
if (colorWheel) {
generateColorWheel(colorWheel);
gfx->drawl6bitRGBBitmap (0, 0, colorWheel, gfx->width(), gfx->height());
}

if (!ctp.begin(0, &Wire, I2C TOUCH ADDR)) {
Serial.println("No touchscreen found");
touchOK = false;
} else {
Serial.println("Touchscreen found");
touchOK = true;
}
}

void loop()

if (touchOK && ctp.touched()) {
TS Point p = ctp.getPoint(0);
Serial.printf("(%d, %d)\n", p.x, p.y);
gfx->fillRect(p.x, p.y, 5, 5, WHITE);
}

// use the buttons to turn off
if (! expander->digitalRead(PCA BUTTON DOWN)) {

©Adafruit Industries Page 180 of 199

expander->digitalWrite(PCA TFT BACKLIGHT, LOW);
}
// and on the backlight
if (! expander->digitalRead(PCA BUTTON UP)) {
expander->digitalWrite(PCA TFT BACKLIGHT, HIGH);
}
}

// https://chat.openai.com/share/8edee522-7875-444f-9fea-ae93a8dfadec

void generateColorWheel(uintl6_t *colorWheel) {
int width = gfx->width();
int height = gfx->height();
int half width = width / 2;
int half height = height / 2;
float angle;
uint8 t r, g, b;
int index, scaled index;

for(int y = 0; y < half_height; y++) {
for(int x = 0; x < half width; x++) {
index =y * half width + x;
angle = atan2(y - half_height / 2, x - half _width / 2);

r uint8 t(127.5 * (cos(angle) + 1));
g uint8 t(127.5 * (sin(angle) + 1));
b = uint8 t(255 - (r + g) / 2);

uintle t color = RGB565(r, g, b);

// Scale this pixel into 4 pixels in the full buffer

for(int dy = 0; dy < 2; dy++) {
for(int dx = 0; dx < 2; dx++) {

scaled index = (y * 2 + dy) * width + (x * 2 + dx);

colorWheel[scaled index] = color;

This sketch was written for either of the 2.1" Round 480x480 RGB-666 displays.

Now upload the sketch to your Qualia ESP32-S3 and make sure a round display is
connected. You may need to press the Reset button to reset the microcontroller. You

should now see a circular rainbow appear on the display!

©Adafruit Industries

Page 181 of 199

Here are some pre-compiled UF2s for various displays so you can instantly test them!

2.1" Round 480x480
TLO21WVCO2ColorTest.UF2

TLO28WVCO1ColorTest.UF2

3.2" Bar 820x320
TLO32FWVO1ColorTest.UF2

3.4" Square 480x480
TLO34WVSO5ColorTest.UF2

720x720 test codes may be flickery as its compiled with IDF 4:

HD40015C40ColorTest.UF2

4" Square 720x720
TLO40HDS20ColorTest.UF2

Arduino Touch Display Usage

If you have a display with touch, you can use the Adafruit_FT6206_Library () library to
read the touch data. The Capacitive Touch controller is communicated to by 12C. If

©Adafruit Industries Page 182 of 199

https://cdn-learn.adafruit.com/assets/assets/000/125/070/original/TL021WVC02ColorTest.UF2?1697045330
https://cdn-learn.adafruit.com/assets/assets/000/124/973/original/TL028WVC01ColorTest.UF2?1696711432
https://cdn-learn.adafruit.com/assets/assets/000/125/074/original/TL032FWV01ColorTest.UF2?1697045732
https://cdn-learn.adafruit.com/assets/assets/000/125/073/original/TL034WVS05ColorTest.UF2?1697045660
https://cdn-learn.adafruit.com/assets/assets/000/124/978/original/HD40015C40ColorTest.UF2?1696713589
https://cdn-learn.adafruit.com/assets/assets/000/125/077/original/TL040HDS20ColorTest.UF2?1697048038
https://github.com/adafruit/Adafruit_FT6206_Library

you're not sure if you have a touch display, just check if your includes a square IC
connected off to the side of the main ribbon cable.

Determining the 12C Address

You can scan for 12C devices by running the WireScan example. You can find it by
going to File =» Examples = Wire = WireScan and uploading the sketch. Once it is
running, open the serial monitor to see which devices it finds.

Scanning for I2C
I2C device found
I2C device found
Scanning for I2C
I2C device found
I2C device found

Scannina for T20C

devices ...
at address 0x3F
at address 0x48
devices ...
at address 0x3F
at address 0x48

devwvices

You should see a couple of devices listed. These will be the GPIO expander and the
touch controller. The GPIO Expander is at 0x3F by default, though it's possible to
change the address with the solderable jumpers on the reverse side. The other
address should be the touch controller. On the TLO40HDS20 4.0" square display, it
shows up as 0x48, but it's possible it may be a different value on other displays.

©Adafruit Industries

Page 183 of 199

Initializing the Touch Controller

In order to use the controller, it will need to first be initialized. You can use the
following code to initialize it. If your 12C address differs, change it to the appropriate
value.

#include <Wire.h> // this is needed for FT6206
#include <Adafruit FT6206.h>

#define I2C_TOUCH ADDR 0x48 // often but not always 0x48!
Adafruit FT6206 ctp = Adafruit FT6206(); // this library also supports FT5336U!

Serial.begin(115200); // To print the output

if (!ctp.begin(0, &Wire, I2C TOUCH ADDR)) {
Serial.println("No touchscreen found");
}

Reading from the Touch Controller

To read from the controller, check if is has been touched in the main loop and if so,
read the x and y coordinates.

if (ctp.touched()) {
TS Point p = ctp.getPoint(0);
Serial.printf("(%d, %d)\n", p.x, p.y);

Example

To see an example, check out the Arduino Rainbow Demo Page ().

Install UF2 Bootloader

The Qualia ESP32-S3 RGB-666 ships with a UF2 bootloader which allows the board
to show up as TFT_S3BOOT when you double-tap the reset button, and enables you
to drag and drop UF2 files to update the firmware.

On ESP32-S2/S3, there is no bootloader protection for the UF2 bootloader. That
means it is possible to erase or damage the UF2 bootloader, especially if you upload

©Adafruit Industries Page 184 of 199

https://learn.adafruit.com/adafruit-qualia-esp32-s3-for-rgb666-displays/arduino-rainbow-demo

an Arduino sketch to an ESP32-52/S3 board that doesn't "know" there's a bootloader
it should not overwrite!

It turns out, however, the ESP32-S2/S3 comes with a second bootloader: the ROM
bootloader. Thanks to the ROM bootloader, you don't have to worry about damaging
the UF2 bootloader. The ROM bootloader can never be disabled or erased, so its
always there if you need it! You can simply re-load the UF2 bootloader from the ROM
bootloader.

If your UF2 bootloader ends up damaged or overwritten, you can follow the steps
found in the Factory Reset and Bootloader Repair () section of the Factory Reset page

in this guide.

Once completed, you'll return to where the board was when you opened the
package. Then you'll be back in business, and able to continue with your existing
plans!

Factory Reset

The Qualia ESP32-S3 microcontroller ships running a circular rainbow gradient
example for the round 480x480 display. It's lovely, but you probably had other plans
for the board. As you start working with your board, you may want to return to the
original code to begin again, or you may find your board gets into a bad state. Either
way, this page has you covered.

You're probably used to seeing the TFT_S3BOOT drive when loading CircuitPython or
Arduino. The TFT_S3BOOT drive is part of the UF2 bootloader, and allows you to
drag and drop files, such as CircuitPython. However, on the ESP32-S3 the UF2
bootloader can become damaged.

Factory Reset Firmware UF2

If you have a bootloader still installed - which means you can double-click to getthe T
FT_S3BOOT drive to appear, then you can simply drag this UF2 file over to the BOOT
drive.

To enter bootloader mode, plug in the board into a USB cable with data/sync
capability. Press the reset button once, wait till the RGB LED turns purple, then press

the reset button again. Then drag this file over:

Qualia S3 RGB-666 Factory Reset

©Adafruit Industries Page 185 of 199

https://learn.adafruit.com/adafruit-qualia-esp32-s3-for-rgb666-displays/factory-reset#factory-reset-and-bootloader-repair-3107941
https://github.com/adafruit/Adafruit-Qualia-S3-RGB666-PCB/raw/main/factory-reset/Qualia_S3_RGB666_FactoryReset.uf2

Your board is now back to its factory-shipped state! You can now begin again with
your plans for your board.

Factory Reset and Bootloader Repair

What if you tried double-tapping the reset button, and you still can't get into the UF2
bootloader? Whether your board shipped without the UF2 bootloader, or something
damaged it, this section has you covered.

It turns out, however, the ESP32-S2/S3 comes with a second bootloader: the ROM
bootloader. Thanks to the ROM bootloader, you don't have to worry about damaging
the UF2 bootloader. The ROM bootloader can never be disabled or erased, so its
always there if you need it! You can simply re-load the UF2 bootloader from the ROM
bootloader.

Completing a factory reset will erase your board's firmware which is also used for

storing CircuitPython/Arduino/Files! Be sure to back up your data first.

There are two ways to do a factory reset and bootloader repair. The first is using
WebSerial through a Chromium-based browser, and the second is using esptool via
command line. We highly recommend using WebSerial through Chrome/Chromium.

The next section walks you through the prerequisite steps needed for both methods.

Download .bin and Enter Bootloader

Step 1. Download the factory-reset-and-bootloader.bin file

Save the following file wherever is convenient for you. You will need to access it from
the WebSerial ESPTool.

Note that this file is approximately 3MB. This is not because the bootloader is
3MB, it is because the bootloader is near the end of the available flash. Most of

the file is empty but its easier to program if you use a combined file.

©Adafruit Industries Page 186 of 199

Qualia S3 RGB-666 Factory Reset

.bin File

Step 2. Enter ROM bootloader mode

Entering the ROM bootloader is easy. Complete the following steps.

Before you start, make sure your ESP32-S2/S3 is plugged into USB port to your
computer using a data/sync cable. Charge-only cables will not work!

To enter the bootloader:

1. Press and hold the BOOT/DFU button down. Don't let go of it yet!

2. Press and release the Reset button. You should still have the BOOT/DFU button
pressed while you do this.

3. Now you can release the BOOT/DFU button.

No USB drive will appear when you've entered the ROM bootloader. This is normal!
Now that you've downloaded the .bin file and entered the bootloader, you're ready to

continue with the factory reset and bootloader repair process. The next two sections
walk you through using WebSerial and esptool.

©Adafruit Industries Page 187 of 199

https://github.com/adafruit/Adafruit-Qualia-S3-RGB666-PCB/raw/main/factory-reset/Qualia_S3_RGB666_FactoryReset.bin

The WebSerial ESPTool Method

We highly recommend using WebSerial ESPTool method to perform a factory

reset and bootloader repair. However, if you'd rather use esptool via command
line, you can skip this section.

This method uses the WebSerial ESPTool through Chrome or a Chromium-based
browser. The WebSerial ESPTool was designed to be a web-capable option for
programming ESP32-S2/S3 boards. It allows you to erase the contents of the
microcontroller and program up to four files at different offsets.

You will have to use a Chromium browser (like Chrome, Opera, Edge...) for this to
work, Safari and Firefox, etc. are not supported because we need Web Serial and only
Chromium is supporting it to the level needed.

Follow the steps to complete the factory reset.

If you're using Chrome 88 or older, see the Older Versions of Chrome section at
the end of this page for instructions on enabling Web Serial.
Connect

You should have plugged in only the ESP32-S2/S3 that you intend to flash. That way
there's no confusion in picking the proper port when it's time!

%dafruil

Adafruit ESPTool owekMode (I
In the Chrome browser visit https://

adafruit.github.io/
Adafruit_WebSerial_ESPTool/ (). You
should see something like the image
shown.

©Adafruit Industries Page 188 of 199

https://learn.adafruit.com//assets/116445
https://learn.adafruit.com//assets/116445
https://adafruit.github.io/Adafruit_WebSerial_ESPTool/
https://adafruit.github.io/Adafruit_WebSerial_ESPTool/
https://adafruit.github.io/Adafruit_WebSerial_ESPTool/

-CIpL v © WaIn VI

JSB Serial Device (COMBS) - Paired

ESP Web Flasher loaded.

Connecting...

Connected successfully.

Try hard reset.
Chip type ESP32-S2
Connected to ESP32-S

MAC Address: 7C:DF:A1:06:8D:D@

Uploading stub...
Running stub...

Stub is now running...

Detecting Flash Size
FlashId: 0x164020
Flash Manufacturer:
Flash Device: 4016

Auto-detected Flash size:

Adafruit ESPTool

Offset: Ox [0

OffsetOx[0 | C
ometoxfo | (
ometoxfe | (

CEnu)

Erase the Contents

p

20

o[t [t eo

Press the Connect button in the top right
of the web browser. You will get a pop up
asking you to select the COM or Serial
port.

Remember, you should remove all other
USB devices so only the ESP32-52/S3
board is attached, that way there's no
confusion over multiple ports!

On some systems, such as MacOS, there
may be additional system ports that
appear in the list.

The JavaScript code will now try to
connect to the ROM bootloader. It may
timeout for a bit until it succeeds. On
success, you will see that it is Connected
and will print out a unique MAC address
identifying the board along with other
information that was detected.

Once you have successfully connected,
the command toolbar will appear.

This will erase everything on your board! If you have access, and wish to keep
any code, now is the time to ensure you've backed up everything.

©Adafruit Industries

Page 189 of 199

https://learn.adafruit.com//assets/116446
https://learn.adafruit.com//assets/116446
https://learn.adafruit.com//assets/110503
https://learn.adafruit.com//assets/110503
https://learn.adafruit.com//assets/116447
https://learn.adafruit.com//assets/116447

: ' 3 0
This will erase the entire flash, Click OK to continue.

Cance!
t ESr o0 Dark A
Oftset: 0x[0_]
——
——
Offser:0xf_]

Program

Erasing flash memory. Please wait...

Finished. Took 15899ms to erase.

To erase the contents, click the Erase
button. You will be prompted whether you
want to continue. Click OK to continue or if
you changed your mind, just click cancel.

You'll see "Erasing flash memory. Please
wait..." This will eventually be followed by
"Finished." and the amount of time it took
to erase.

Do not disconnect! Immediately continue
on to programming the ESP32-S2/S3.

Do not disconnect after erasing! Immediately continue on to the next step!

Program the ESP32-52/S3

Programming the microcontroller can be done with up to four files at different
locations, but with the board-specific factory-reset.bin file, which you should have

downloaded under Step 1 on this page, you only need to use one file.

Fie mamas | adalvat crowtpyBhon sdabnst_magieg 29 grayrcrle en S

©Adafruit Industries

Click on the first Choose a file.... (The tool
will only attempt to program buttons with a
file and a unique location.) Then, select the
*-factory-reset.bin file you downloaded in
Step 1that matches your board.

Verify that the Offset box next to the file
location you used is (Ox) O.

Page 190 of 199

https://learn.adafruit.com//assets/116448
https://learn.adafruit.com//assets/116448
https://learn.adafruit.com//assets/106947
https://learn.adafruit.com//assets/106947
https://learn.adafruit.com//assets/101574
https://learn.adafruit.com//assets/101574

uit ESPTool Dark Mode

Offset 0x[0_]
S -
Offset: 0x[F] Once you choose a file, the button text will
omecoxle change to match your filename. You can

(_Erase) (_Program)

then select the Program button to begin
flashing.

ifruit ESPTool Dark Mode (]
Offset: Ox 0

A progress bar will appear and after a
minute or two, you will have written the
firmware.

Once completed, you can skip down to the section titled Reset the Board.

The esptool Method (for advanced users)

If you used WebSerial ESPTool, you do not need to complete the steps in this

section!

Once you have entered ROM bootloader mode, you can then use Espressif's esptool
program () to communicate with the chip! esptool is the 'official' programming tool
and is the most common/complete way to program an ESP chip.

Install ESPTool.py

You will need to use the command line / Terminal to install and run esptool.

You will also need to have pip and Python installed (any version!).

©Adafruit Industries Page 191 of 199

https://learn.adafruit.com//assets/116449
https://learn.adafruit.com//assets/116449
https://learn.adafruit.com//assets/116450
https://learn.adafruit.com//assets/116450
https://github.com/espressif/esptool
https://github.com/espressif/esptool

Install the latest version using pip (you may be able to run pip without the 3 depen
ding on your setup):

pip3 install --upgrade esptool

Then, you can run:

esptool.py

Make sure you are running esptool v3.0 or higher, which adds ESP32-52/S3

support.

Test the Installation

Run esptool.py in a new terminal/command line and verify you get something like
the below:

Connect

Run the following command, replacing the identifier after --port with the COMxx, /
dev/cu.usbmodemxx or /dev/ttySxx you found above.

esptool.py --port COM88 chip id

You should get a notice that it connected over that port and found an ESP32-52/S3.

©Adafruit Industries Page 192 of 199

Erase the Flash

Before programming the board, it is a good idea to erase the flash. Run the following
command.

esptool.py erase flash

You must be connected (by running the command in the previous section) for this
command to work as shown.

Installing the Bootloader

Run this command and replace the serial port name with your matching port and the
file you just downloaded

esptool.py --port COM88 write flash O0x0 tinyuf2 combo.bin

Don't forget to change the --port name to match.

Adjust the bootloader filename accordingly if it differs from tinyuf2_combo.bin.

There might be a bit of a 'wait' when programming, where it doesn't seem like it's
working. Give it a minute, it has to erase the old flash code which can cause it to
seem like it's not running.

You'll finally get an output like this:

©Adafruit Industries Page 193 of 199

reset the chip manually.

--after optio

Once completed, you can continue to the next section.

Reset the board

Now that you've reprogrammed the board, you need to reset it to continue. Click the
reset button to launch the new firmware.

If you have a 480x480 round display plugged in, you should see a circular rainbow
gradient appear on the display.

You've successfully returned your board to a factory reset state!

Older Versions of Chrome

As of chrome 89, Web Serial is already enabled, so this step is only necessary on

older browsers.

We suggest updating to Chrome 89 or newer, as Web Serial is enabled by default.

If you must continue using an older version of Chrome, follow these steps to enable
Web Serial.

©Adafruit Industries Page 194 of 199

If you receive an error like the one shown
when you visit the WebSerial ESPTool site,
you're likely running an older version of
Chrome.

You must be using Chrome 78 or later to
use Web Serial.

WARNING EXPERIMENTAL FEATURES AMEAD! By enabling these features, you could lose browser data or
COMEromise your security or privacy. Enabled features apply % all users of this browser

Intevested in cool new Chrome features? Try ou heta chanos!

To enable Web Serial in Chrome versions

P — 78 through 88:
SR —
— Visit chrome://flags from within Chrome.
R . Find and enable the Experimental Web
Platform features

Temporarily usexpire M36 flags
Terrporariy unespere flags hat ex

v Restart Chrome

The Flash an Arduino Sketch Method

This section outlines flashing an Arduino sketch onto your ESP32-S2/S3 board, which
automatically installs the UF2 bootloader as well.

Arduino IDE Setup

If you don't already have the Arduino IDE installed, the first thing you will need to do
is to download the latest release of the Arduino IDE. ESP32-S2/S3 requires version
1.8 or higher. Click the link to download the latest.

Arduino IDE Download

After you have downloaded and installed the latest version of Arduino IDE, you will
need to start the IDE and navigate to the Preferences menu. You can access it from
the File > Preferences menu in Windows or Linux, or the Arduino > Preferences menu
on OS X.

©Adafruit Industries Page 195 of 199

https://learn.adafruit.com//assets/106929
https://learn.adafruit.com//assets/106929
https://learn.adafruit.com//assets/101562
https://learn.adafruit.com//assets/101562
https://www.arduino.cc/en/software

The Preferences window will open.

In the Additional Boards Manager URLs field, you'll want to add a new URL. The list of
URLs is comma separated, and you will only have to add each URL once. The URLs
point to index files that the Board Manager uses to build the list of available &
installed boards.

Copy the following URL.

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/
package esp32 dev_index.json

Add the URL to the the Additional Boards Manager URLs field (highlighted in red
below).

[J Preferences

Network

Sketchbook location:

/Users/kattni/AdafruitDev/Arduino Sketches Browse
Editor language: System Default (requires restart of Arduino)
Editor font size: 12
Interface scale: Automatic 100 % (requires restart of Arduino)

Theme: Default theme B (requires restart of Arduino)
Show verbose output during: compilation upload
Compiler warnings: None
Display line numbers Enable Code Folding
Verify code after upload Use external editor

Check for updates on startup Save when verifying or uploading

Additional Boards Manager URLs: ent.com/espressif/arduino-esp32/gh-pages/package_esp32_dev_index.json{i |1

/Users/kattni/Library/Arduinol15/preferences.txt

(edit only when Arduino is not running)

oK Cancel

Click OK to save and close Preferences.

In the Tools > Boards menu you should see the ESP32 Arduino menu. In the expanded
menu, it should contain the ESP32 boards along with all the latest ESP32-S2 boards.

Now that your IDE is setup, you can continue on to loading the sketch.

Load the Blink Sketch

In the Tools > Boards menu you should see the ESP32 Arduino menu. In the expanded
menu, look for the menu option for the Adafruit Qualia ESP32-S3 RGB666, and click
on it to choose it.

©Adafruit Industries Page 196 of 199

Open the Blink sketch by clicking through File > Examples > O1.Basics > Blink.

File Edit Sketch Tools Help

New #EN
Open... #0
Open Recent >
Sketchbook >
Examples >

Close #$W 01.Basics AnalogReadSerial
Save £) 02.Digital BareMinimum

Save As... 0 ¥S 03.Analog Blink
04.Communication DigitalReadSerial
05.Control Fade

06.Sensors ReadAnalogVoltage

Page Setup 3P
Print 8P

Once open, click Upload from the sketch window.

L] L Blink | Arduino 1.8.16

// the setup function runs once when you press reset or power the board
void setupQ {

// initialize digital pin LED_BUILTIN as an output
pinMode(LED_BUILTIN, OUTPUT);

}

// the loop function runs over and over again forever

Once successfully uploaded, the little red LED will begin blinking once every second.
At that point, you can now enter the bootloader.

The Qualia ESP32-S3 RGB-666 does not have a little red LED, so the default

Blink sketch will fail.

If you change LED BUILTIN to 13, the sketch will compile and upload. Be aware
that, once the sketch is loaded, nothing will happen on the board. However, you will
have a bootloader. The updated code would look like this:

void setup() {
pinMode (13, OUTPUT);
}

void loop() {
digitalWrite(13, HIGH);
delay(1000);
digitalWrite(13, LOW);
delay(1000);

©Adafruit Industries Page 197 of 199

Alternatively, you could load a different sketch. It doesn't matter which sketch you

use.

Downloads

« ESP32-S3 product page with resources ()

« ESP32-S3 datasheet ()

« ESP32-S3 Technical Reference ()

« ST7701 datasheet ()

+« NV3052C datasheet ()

« 3D models on GitHub ()

» Qualia ESP32-S3 RGB-666 EagleCAD PCB files on GitHub ()

» Qualia ESP32-S3 RGB-666 Fritzing object in the Adafruit Fritzing Library ()

Schematic

66 revs—0O-Q
00

©Adafruit Industries Page 198 of 199

https://www.espressif.com/en/products/socs/esp32-s3
https://cdn-learn.adafruit.com/assets/assets/000/110/711/original/esp32-s3_datasheet_en.pdf?1649790878
https://cdn-learn.adafruit.com/assets/assets/000/110/710/original/esp32-s3_technical_reference_manual_en.pdf?1649790877
https://cdn-shop.adafruit.com/product-files/5795/ST7701+Datasheet.pdf
https://cdn-shop.adafruit.com/product-files/5793/NV3052C-Datasheet-V0.2.pdf
https://github.com/adafruit/Adafruit_CAD_Parts/tree/main/5800%20Qualia%20ESP32-S3
https://github.com/adafruit/Adafruit-Qualia-S3-RGB666-PCB
https://github.com/adafruit/Fritzing-Library/raw/master/parts/Adafruit%20Qualia%20S3%20RGB666.fzpz

Fab Print

©Adafruit Industries Page 199 of 199

	Adafruit Qualia ESP32-S3 for RGB-666 Displays
	Table of Contents
	Overview
	Pinouts
	CircuitPython
	The CIRCUITPY Drive
	CircuitPython Pins and Modules
	Installing the Mu Editor
	Creating and Editing Code
	Exploring Your First CircuitPython Program
	Connecting to the Serial Console
	Interacting with the Serial Console
	The REPL
	CircuitPython Libraries
	CircuitPython Documentation
	Recommended Editors
	Advanced Serial Console on Windows
	Advanced Serial Console on Mac
	Advanced Serial Console on Linux
	Frequently Asked Questions
	Troubleshooting
	Welcome to the Community!
	Create Your settings.toml File
	CircuitPython Internet Test
	Converting Arduino_GFX init strings to CircuitPython
	Determining Timings
	CircuitPython Display Setup
	CircuitPython Touch Display Usage
	Qualia S3 RGB-666 with TL021WVC02 2.1" 480x480 Round Display
	Qualia S3 RGB-666 with TL034WVS05 3.4" 480x480 Square Display
	Qualia S3 RGB-666 with TL040HDS20 4.0" 720x720 Square Display
	Qualia S3 RGB-666 with TL032FWV01 3.2" 320x820 Bar Display
	Arduino IDE Setup
	Using with Arduino IDE
	WiFi Test
	Usage with Adafruit IO
	Arduino Rainbow Demo
	Arduino Touch Display Usage
	Install UF2 Bootloader
	Factory Reset
	Downloads

	Overview
	Pinouts
	Microcontroller and WiFi
	40-Pin Display Connector
	IO Expander
	Stemma QT Connector
	Reset and Boot0 Pins
	Debug Pin
	SPI Pins
	Analog Connector/Pins
	Buttons
	Backlight Jumpers
	IO Expander Address Jumpers
	Parallel Interface Jumpers

	CircuitPython
	CircuitPython Quickstart

	The CIRCUITPY Drive
	Boards Without CIRCUITPY

	CircuitPython Pins and Modules
	CircuitPython Pins
	import board
	I2C, SPI, and UART
	What Are All the Available Names?
	Microcontroller Pin Names

	CircuitPython Built-In Modules
	Installing the Mu Editor
	Download and Install Mu
	Starting Up Mu
	Using Mu

	Creating and Editing Code
	Creating Code
	Editing Code
	Your code changes are run as soon as the file is done saving.
	1. Use an editor that writes out the file completely when you save it.
	2. Eject or Sync the Drive After Writing

	Oh No I Did Something Wrong and Now The CIRCUITPY Drive Doesn't Show Up!!!
	Back to Editing Code...

	Naming Your Program File
	Exploring Your First CircuitPython Program
	Imports & Libraries
	Setting Up The LED
	Loop-de-loops
	What Happens When My Code Finishes Running?
	What if I Don't Have the Loop?

	Connecting to the Serial Console
	Are you using Mu?
	Serial Console Issues or Delays on Linux
	Setting Permissions on Linux

	Using Something Else?
	Interacting with the Serial Console
	The REPL
	Entering the REPL
	Interacting with the REPL

	Returning to the Serial Console
	CircuitPython Libraries
	The Adafruit Learn Guide Project Bundle
	The Adafruit CircuitPython Library Bundle
	Downloading the Adafruit CircuitPython Library Bundle

	The CircuitPython Community Library Bundle
	Downloading the CircuitPython Community Library Bundle

	Understanding the Bundle
	Example Files
	Copying Libraries to Your Board

	Understanding Which Libraries to Install
	Example: ImportError Due to Missing Library
	Library Install on Non-Express Boards
	Updating CircuitPython Libraries and Examples
	CircUp CLI Tool

	CircuitPython Documentation
	CircuitPython Core Documentation
	CircuitPython Library Documentation
	Examples
	API Reference
	Other Links

	Recommended Editors
	Recommended editors
	Recommended only with particular settings or add-ons
	Editors that are NOT recommended

	Advanced Serial Console on Windows
	Windows 7 and 8.1
	What's the COM?
	Install Putty
	Advanced Serial Console on Mac
	What's the Port?
	Connect with screen

	Advanced Serial Console on Linux
	What's the Port?
	Connect with screen
	Permissions on Linux

	Frequently Asked Questions
	What are some common acronyms to know?
	Using Older Versions
	I have to continue using CircuitPython 7.x or earlier. Where can I find compatible libraries?
	Python Arithmetic
	Does CircuitPython support floating-point numbers?
	Does CircuitPython support long integers, like regular Python?
	Wireless Connectivity
	How do I connect to the Internet with CircuitPython?
	How do I do BLE (Bluetooth Low Energy) with CircuitPython?
	Are there other ways to communicate by radio with CircuitPython?
	Asyncio and Interrupts
	Is there asyncio support in CircuitPython?
	Does CircuitPython support interrupts?
	Status RGB LED
	My RGB NeoPixel/DotStar LED is blinking funny colors - what does it mean?
	Memory Issues
	What is a MemoryError?
	What do I do when I encounter a MemoryError?
	Can the order of my import statements affect memory?
	How can I create my own .mpy files?
	How do I check how much memory I have free?
	Unsupported Hardware
	Is ESP8266 or ESP32 supported in CircuitPython? Why not?
	Does Feather M0 support WINC1500?
	Can AVRs such as ATmega328 or ATmega2560 run CircuitPython?

	Troubleshooting
	Always Run the Latest Version of CircuitPython and Libraries
	I have to continue using CircuitPython 7.x or earlier. Where can I find compatible libraries?

	Bootloader (boardnameBOOT) Drive Not Present
	You may have a different board.
	MakeCode
	macOS
	Windows 10
	Windows 7 or 8.1

	Windows Explorer Locks Up When Accessing boardnameBOOT Drive
	Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied
	CIRCUITPY Drive Does Not Appear or Disappears Quickly
	Device Errors or Problems on Windows
	Serial Console in Mu Not Displaying Anything
	code.py Restarts Constantly
	CircuitPython RGB Status Light
	CircuitPython 7.0.0 and Later
	CircuitPython 6.3.0 and earlier

	Serial console showing ValueError: Incompatible .mpy file
	CIRCUITPY Drive Issues
	Safe Mode
	Entering Safe Mode in CircuitPython 7.x and Later
	Entering Safe Mode in CircuitPython 6.x
	In Safe Mode

	To erase CIRCUITPY: storage.erase_filesystem()
	Erase CIRCUITPY Without Access to the REPL
	For the specific boards listed below:
	For SAMD21 non-Express boards that have a UF2 bootloader:
	For SAMD21 non-Express boards that do not have a UF2 bootloader:

	Running Out of File Space on SAMD21 Non-Express Boards
	Delete something!
	Use tabs
	On MacOS?
	Prevent & Remove MacOS Hidden Files
	Copy Files on MacOS Without Creating Hidden Files
	Other MacOS Space-Saving Tips

	Device Locked Up or Boot Looping
	Welcome to the Community!
	Adafruit Discord
	CircuitPython.org
	Pull Requests
	Open Issues
	Library Infrastructure Issues
	CircuitPython Localization

	Adafruit GitHub
	Adafruit Forums
	Read the Docs

	Create Your settings.toml File
	CircuitPython settings.toml File
	settings.toml File Tips
	Accessing Your settings.toml Information in code.py

	CircuitPython Internet Test
	The settings.toml File

	Converting Arduino_GFX init strings to CircuitPython
	Using Arduino_GFX Init Codes
	Using Init Code Files
	Script Output

	Determining Timings
	Using a Data Sheet
	Fill in the Settings
	Experimenting with Settings
	Testing your Settings with CircuitPython

	CircuitPython Display Setup
	Example TFT_PINS
	Example TFT_TIMINGS
	I/O Expander
	I2C Initialization Sequence

	Display Initialization Code
	Example 1
	Example 2

	Sending Initialization Code via I2C IO Expander
	I2C Bus Speed
	Constructing the framebuffer and the display
	Dot clocks

	CircuitPython Touch Display Usage
	Determining the I2C Address
	Initializing the Touch Controller
	Reading from the Touch Controller
	Example

	Qualia S3 RGB-666 with TL021WVC02 2.1" 480x480 Round Display
	Initialization Codes
	Timings
	Example

	Qualia S3 RGB-666 with TL034WVS05 3.4" 480x480 Square Display
	Initialization Codes
	Timings
	Example

	Qualia S3 RGB-666 with TL040HDS20 4.0" 720x720 Square Display
	Initialization Codes
	Timings
	Example

	Qualia S3 RGB-666 with TL032FWV01 3.2" 320x820 Bar Display
	Initialization Codes
	Timings
	Example

	Arduino IDE Setup
	Manually Resetting ESP32-S3 Boards

	Using with Arduino IDE
	Blink
	Select ESP32-S2/S3 Board in Arduino IDE
	Launch ESP32-S2/S3 ROM Bootloader
	Load Blink Sketch

	WiFi Test
	WiFi Connection Test
	Secure Connection Example
	JSON Parsing Demo

	Usage with Adafruit IO
	Install Libraries
	Adafruit IO Setup
	Code Usage

	Arduino Rainbow Demo
	Arduino Touch Display Usage
	Determining the I2C Address
	Initializing the Touch Controller
	Reading from the Touch Controller
	Example

	Install UF2 Bootloader
	Factory Reset
	Factory Reset Firmware UF2
	Factory Reset and Bootloader Repair
	Download .bin and Enter Bootloader
	Step 1. Download the factory-reset-and-bootloader.bin file
	Step 2. Enter ROM bootloader mode

	The WebSerial ESPTool Method
	Connect
	Erase the Contents
	Program the ESP32-S2/S3

	The esptool Method (for advanced users)
	Install ESPTool.py
	Test the Installation
	Connect
	Erase the Flash
	Installing the Bootloader

	Reset the board
	Older Versions of Chrome
	The Flash an Arduino Sketch Method
	Arduino IDE Setup
	Load the Blink Sketch

	Downloads
	Schematic
	Fab Print

