

Adafruit Qualia ESP32-S3 for RGB-666

Displays

Created by Melissa LeBlanc-Williams

https://learn.adafruit.com/adafruit-qualia-esp32-s3-for-rgb666-displays

Last updated on 2023-10-20 10:53:17 AM EDT

©Adafruit Industries Page 1 of 199

7

11

16

19

20

26

28

33

36

Table of Contents

Overview

Pinouts

• Microcontroller and WiFi

• 40-Pin Display Connector

• IO Expander

• Stemma QT Connector

• Reset and Boot0 Pins

• Debug Pin

• SPI Pins

• Analog Connector/Pins

• Buttons

• Backlight Jumpers

• IO Expander Address Jumpers

• Parallel Interface Jumpers

CircuitPython

• CircuitPython Quickstart

The CIRCUITPY Drive

• Boards Without CIRCUITPY

CircuitPython Pins and Modules

• CircuitPython Pins

• import board

• I2C, SPI, and UART

• What Are All the Available Names?

• Microcontroller Pin Names

• CircuitPython Built-In Modules

Installing the Mu Editor

• Download and Install Mu

• Starting Up Mu

• Using Mu

Creating and Editing Code

• Creating Code

• Editing Code

• Back to Editing Code...

• Naming Your Program File

Exploring Your First CircuitPython Program

• Imports & Libraries

• Setting Up The LED

• Loop-de-loops

• What Happens When My Code Finishes Running?

• What if I Don't Have the Loop?

Connecting to the Serial Console

• Are you using Mu?

• Serial Console Issues or Delays on Linux

©Adafruit Industries Page 2 of 199

39

42

46

57

64

65

69

71

75

• Setting Permissions on Linux

• Using Something Else?

Interacting with the Serial Console

The REPL

• Entering the REPL

• Interacting with the REPL

• Returning to the Serial Console

CircuitPython Libraries

• The Adafruit Learn Guide Project Bundle

• The Adafruit CircuitPython Library Bundle

• Downloading the Adafruit CircuitPython Library Bundle

• The CircuitPython Community Library Bundle

• Downloading the CircuitPython Community Library Bundle

• Understanding the Bundle

• Example Files

• Copying Libraries to Your Board

• Understanding Which Libraries to Install

• Example: ImportError Due to Missing Library

• Library Install on Non-Express Boards

• Updating CircuitPython Libraries and Examples

• CircUp CLI Tool

CircuitPython Documentation

• CircuitPython Core Documentation

• CircuitPython Library Documentation

Recommended Editors

• Recommended editors

• Recommended only with particular settings or add-ons

• Editors that are NOT recommended

Advanced Serial Console on Windows

• Windows 7 and 8.1

• What's the COM?

• Install Putty

Advanced Serial Console on Mac

• What's the Port?

• Connect with screen

Advanced Serial Console on Linux

• What's the Port?

• Connect with screen

• Permissions on Linux

Frequently Asked Questions

• Using Older Versions

• Python Arithmetic

• Wireless Connectivity

• Asyncio and Interrupts

• Status RGB LED

• Memory Issues

©Adafruit Industries Page 3 of 199

80

98

107

110

115

119

• Unsupported Hardware

Troubleshooting

• Always Run the Latest Version of CircuitPython and Libraries

• I have to continue using CircuitPython 7.x or earlier. Where can I find compatible libraries?

• Bootloader (boardnameBOOT) Drive Not Present

• Windows Explorer Locks Up When Accessing boardnameBOOT Drive

• Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied

• CIRCUITPY Drive Does Not Appear or Disappears Quickly

• Device Errors or Problems on Windows

• Serial Console in Mu Not Displaying Anything

• code.py Restarts Constantly

• CircuitPython RGB Status Light

• CircuitPython 7.0.0 and Later

• CircuitPython 6.3.0 and earlier

• Serial console showing ValueError: Incompatible .mpy file

• CIRCUITPY Drive Issues

• Safe Mode

• To erase CIRCUITPY: storage.erase_filesystem()

• Erase CIRCUITPY Without Access to the REPL

• For the specific boards listed below:

• For SAMD21 non-Express boards that have a UF2 bootloader:

• For SAMD21 non-Express boards that do not have a UF2 bootloader:

• Running Out of File Space on SAMD21 Non-Express Boards

• Delete something!

• Use tabs

• On MacOS?

• Prevent & Remove MacOS Hidden Files

• Copy Files on MacOS Without Creating Hidden Files

• Other MacOS Space-Saving Tips

• Device Locked Up or Boot Looping

Welcome to the Community!

• Adafruit Discord

• CircuitPython.org

• Adafruit GitHub

• Adafruit Forums

• Read the Docs

Create Your settings.toml File

• CircuitPython settings.toml File

• settings.toml File Tips

• Accessing Your settings.toml Information in code.py

CircuitPython Internet Test

• The settings.toml File

Converting Arduino_GFX init strings to CircuitPython

• Using Arduino_GFX Init Codes

• Using Init Code Files

• Script Output

Determining Timings

• Using a Data Sheet

• Fill in the Settings

• Experimenting with Settings

©Adafruit Industries Page 4 of 199

123

135

139

142

146

149

153

156

160

171

• Testing your Settings with CircuitPython

CircuitPython Display Setup

• Example TFT_PINS

• Example TFT_TIMINGS

• I/O Expander

• Display Initialization Code

• Sending Initialization Code via I2C IO Expander

• I2C Bus Speed

• Constructing the framebuffer and the display

• Dot clocks

CircuitPython Touch Display Usage

• Determining the I2C Address

• Initializing the Touch Controller

• Reading from the Touch Controller

• Example

Qualia S3 RGB-666 with TL021WVC02 2.1" 480x480 Round Display

• Initialization Codes

• Timings

• Example

Qualia S3 RGB-666 with TL034WVS05 3.4" 480x480 Square Display

• Initialization Codes

• Timings

• Example

Qualia S3 RGB-666 with TL040HDS20 4.0" 720x720 Square Display

• Initialization Codes

• Timings

• Example

Qualia S3 RGB-666 with TL032FWV01 3.2" 320x820 Bar Display

• Initialization Codes

• Timings

• Example

Arduino IDE Setup

Using with Arduino IDE

• Blink

• Select ESP32-S2/S3 Board in Arduino IDE

• Launch ESP32-S2/S3 ROM Bootloader

• Load Blink Sketch

WiFi Test

• WiFi Connection Test

• Secure Connection Example

• JSON Parsing Demo

Usage with Adafruit IO

• Install Libraries

• Adafruit IO Setup

• Code Usage

©Adafruit Industries Page 5 of 199

179

182

184

185

198

Arduino Rainbow Demo

Arduino Touch Display Usage

• Determining the I2C Address

• Initializing the Touch Controller

• Reading from the Touch Controller

• Example

Install UF2 Bootloader

Factory Reset

• Factory Reset Firmware UF2

• Factory Reset and Bootloader Repair

• Download .bin and Enter Bootloader

• Step 1. Download the factory-reset-and-bootloader.bin file

• Step 2. Enter ROM bootloader mode

• The WebSerial ESPTool Method

• Connect

• Erase the Contents

• Program the ESP32-S2/S3

• The esptool Method (for advanced users)

• Install ESPTool.py

• Test the Installation

• Connect

• Erase the Flash

• Installing the Bootloader

• Reset the board

• Older Versions of Chrome

• The Flash an Arduino Sketch Method

• Arduino IDE Setup

• Load the Blink Sketch

Downloads

• Schematic

• Fab Print

©Adafruit Industries Page 6 of 199

Overview

There are things everyone loves: ice cream, kittens, and honkin' large TFT LCD

screens. We're no strangers to small TFT's - from our itsy 1.14" color display () that

graces many-a-TFT-Feather to our fancy 3.5" 320x480 () breakout screen. But most

people who dabble or engineer with microcontrollers know that you sort of 'top out' at

320x480 - that's the largest resolution you can use with every day SPI or 8-bit 8080

interfaces. After that, you're in TTL-interface TFT land, where displays no longer have

an internal memory buffer and instead the controller has to continuously write

scanline data over a 16, 18 or 24 pin interface.

©Adafruit Industries Page 7 of 199

https://www.adafruit.com/search?q=1.14+tft
https://www.adafruit.com/product/2050

RGB TTL interface TFT displays can get big: they start out at around 4.3" diagonal

480x272, and can get to 800x480, 800x600 or even 720x720. For displays that big,

you need a lot of video RAM (800x480 at 24 bit color is just over 1MB), plenty of spare

GPIO to dedicate, and a peripheral that will DMA the video RAM out to the display

continuously. This is a setup familiar to people working with hefty microcontrollers or

microcomputers, the sort of device that run cell phones, or your car's GPS navigation

screen. But until now, nearly impossible to use on low cost microcontrollers.

The ESP32-S3 is the first low-cost microcontroller that has a built in peripheral that

can drive TTL displays, and it can come with enough PSRAM to buffer those large

images. For example, on the Adafruit Qualia ESP32-S3 for TTL RGB-666 Displays, we

use a S3 module with 16 MB of Flash and 8 MB of octal PSRAM. Using the built in RGB

display peripheral you can display graphics, images, animations or even video

(cinepak, natch!) with near-instantaneous updates since the whole screen gets

updated about 30 frames per second (FPS).

This dev board is designed to make it easy for you to explore displays that use the

'secondary standard' 40-pin RGB-666 connector. This pin order is most commonly

seen on square, round and bar displays. You'll want to compare the display you're

using to this datasheet (), and if it matches, you'll probably be good! One nice thing

about this connector ordering is that it also includes pins for capacitive touch overlay,

and we wire those up to the ESP32-S3's I2C port so you can also have touch control

with your display.

©Adafruit Industries Page 8 of 199

https://cdn-shop.adafruit.com/product-files/5792/Specification_TL021WVC02CT-B1323B.pdf
https://cdn-shop.adafruit.com/product-files/5792/Specification_TL021WVC02CT-B1323B.pdf

Don't forget! This is just the development board, a display is not included. Use any

RGB-666 pinout display with or without a touch overlay. Note that you will need to

program in the driver initialization code, dimensions, and pulse widths in your

programming language. Here are some known-working displays that you can use in

Arduino and CircuitPython:

2.1" 480x480 Round with Capacitive Touch ()

2.1" 480x480 Round without Touch ()

4" 720x720 Square with Capacitive Touch ()

4" 720x720 Round without Touch ()

4.6" 960x320 Rectangular Bar ()

On the Qualia board we have the S3 modules, with 16 pins connected to the TFT for

5-6-5 RGB color, plus HSync, VSync, Data Enable and Pixel Clock. There's a constant

current backlight control circuit using the TPS61169 () which can get up to 30V

forward voltage and can be configured for 25mA-200mA in 25mA increments (default

is 25mA). Power and programming is provided over a USB C connector, wired to the

S3's native USB port. For debugging, the hardware UART TX pin is available as well.

•

•

•

•

•

©Adafruit Industries Page 9 of 199

https://www.adafruit.com/product/5792
https://www.adafruit.com/product/5806
https://www.adafruit.com/product/5794
https://www.adafruit.com/product/5793
https://www.adafruit.com/product/5805
https://www.ti.com/product/TPS61169/part-details/TPS61169DCKR

Since almost every GPIO is used, and almost all RGB-666 displays need to be

initialized over SPI, we put a PCA9554 () I/O expander on the shared I2C bus. Arduino

or CircuitPython can be instructed on how to use the expander to reset and init the

display you have if necessary. The remaining expander pins are connected to two

right-angle buttons, and the display backlight.

The expander is what lets us have a full 4-pin SPI port and two more analog GPIO pins

- enough to wire up an MMC in 1-wire SDIO mode along with an I2S amplifier to make

an A/V playback demo (). Maybe we can even eat ice cream while watching kitten

vids! There is also the shared I2C port, we provide a Stemma QT / Qwiic port for easy

addition of any sensor or device you like.

©Adafruit Industries Page 10 of 199

https://www.ti.com/product/PCA9554
https://www.youtube.com/watch?v=pEjw-bCQ-lQ
https://www.youtube.com/watch?v=pEjw-bCQ-lQ

Pinouts

Microcontroller and WiFi

The main processor chip is

the Espressif ESP32-S3 with 3.3v logic/

power. It has 16MB of Flash and 8MB of

RAM.

The ESP32-S3 comes with WiFi and

Bluetooth LE baked right in, though

CircuitPython only supports WiFi at this

time, not BLE on the S3 chip

40-Pin Display Connector

Not all 40-pin displays have the power pins in the same place. Hooking up a non

RGB666 display with the Qualia S3 risks damaging the display.

©Adafruit Industries Page 11 of 199

https://learn.adafruit.com//assets/124796
https://learn.adafruit.com//assets/124796

There is a 40-pin display connector to

connect your display. Displays should be

connected with the pins of the cable down

towards the board and the colored side

facing you.

IO Expander

The Qualia S3 includes a PCA9554 IO

Expander. The IO Expander is connected

via the I2C bus. The main purpose of the

expander is to add additional pins to

communicate with the display.

The default address of the IO expander is

0x3F, but it can be changed by soldering

jumpers on the reverse side in case it

interferes with another I2C device.

Stemma QT Connector

There is a 4-pin Stemma QT connector on

the left. The I2C has pullups to 3.3V power.

In CircuitPython, you can use the STEMMA

connector

with board.SCL and board.SDA ,

or board.STEMMA_I2C() .

©Adafruit Industries Page 12 of 199

https://learn.adafruit.com//assets/124797
https://learn.adafruit.com//assets/124797
https://learn.adafruit.com//assets/124800
https://learn.adafruit.com//assets/124800
https://learn.adafruit.com//assets/124799
https://learn.adafruit.com//assets/124799

Reset and Boot0 Pins

Reset is the Reset pin. Tie to ground to

manually reset the ESP32-S3.

Tying Boot0 to ground while resetting will

place the ESP32-S3 in ROM bootloader

mode.

Debug Pin

If you'd like to do lower level debugging,

we have the ESP32-S3's TXD0 debug pin

exposed as TX0 to view messages.

To read, you would connect a Serial UART

cable Receive connection here and the

cable ground connection to the GND pin.

©Adafruit Industries Page 13 of 199

https://learn.adafruit.com//assets/124801
https://learn.adafruit.com//assets/124801
https://learn.adafruit.com//assets/124803
https://learn.adafruit.com//assets/124803

SPI Pins

The SPI pins of the ESP32-S3 are exposed

for communication with other SPI

hardware.

Each of these pins can alternatively be

used for digital I/O:

SCK is connected to board.TFT_SCK

Arduino 5 .

MISO is connected to board.TFT_MISO

Arduino 6 .

MOSI is connected to board.TFT_MOSI

Arduino 7 .

CS is connected to board.TFT_CS

Arduino 15 and includes a 10K Pull-up

resistor.

Analog Connector/Pins

On the bottom side towards the right,

there is a connector labeled A0. This is

a 3-pin JST analog connector for sensors,

NeoPixels, or analog output or input.

For the JST connected, there is a jumper

above that can be cut and soldered to use

3V instead of 5V.

Along the bottom there are also pins

labeled A0 and A1 .

Each of these pins can be used for analog

inputs or digital I/O.

©Adafruit Industries Page 14 of 199

https://learn.adafruit.com//assets/124804
https://learn.adafruit.com//assets/124804
https://learn.adafruit.com//assets/124805
https://learn.adafruit.com//assets/124805

Buttons

There are three buttons along the left side

of the Qualia S3.

The Reset button is located in the top

position. Click it once to re-start your

firmware. Click it again after about a half

second to enter bootloader mode.

The UP button is located in the middle and

is connected to the IO expander

The DN button, or Down button, is located

on the bottom and is connected to the IO

expander.

The expander implements a light pullup for

each of the buttons and pressing either of

them pulls the input low.

The Boot0 button is located between the

up button and the Microcontroller. Hold it

while pressing reset to enter ROM

Bootloader mode.

Backlight Jumpers

Soldering the bottom PWM jumper allows

using Pin A1 to control the backlight of

the display.

By default, 25mA is provided to the

backlight, but additional amperage can be

set by soldering the top jumpers to

provide up to 200mA if needed.

©Adafruit Industries Page 15 of 199

https://learn.adafruit.com//assets/124806
https://learn.adafruit.com//assets/124806
https://learn.adafruit.com//assets/124807
https://learn.adafruit.com//assets/124807

IO Expander Address Jumpers

On the reverse, are a couple of solderable

jumpers to change the I2C address of the

IO Expander. By default, both jumpers are

set to high, providing a default address of

0x3F. However, it can be set between

0x3B-0x3F.

Parallel Interface Jumpers

The IM0 and IM1 jumpers are for selecting

the mode of the parallel interface for the

display. The default selection should work

for most displays.

CircuitPython

CircuitPython () is a derivative of MicroPython () designed to simplify experimentation

and education on low-cost microcontrollers. It makes it easier than ever to get

prototyping by requiring no upfront desktop software downloads. Simply copy and

edit files on the CIRCUITPY drive to iterate.

CircuitPython Quickstart

Follow this step-by-step to quickly get CircuitPython running on your board.

©Adafruit Industries Page 16 of 199

https://learn.adafruit.com//assets/124808
https://learn.adafruit.com//assets/124808
https://learn.adafruit.com//assets/124809
https://learn.adafruit.com//assets/124809
https://github.com/adafruit/circuitpython
https://micropython.org

This microcontroller requires the latest unstable (development) release of

CircuitPython. Click below to visit the downloads page on circuitpython.org for your

board. Then, Browse S3 under Absolute Newest.

Download the latest version of

CircuitPython for this board via

circuitpython.org

Click the link above to download the latest

CircuitPython UF2 file.

Save it wherever is convenient for you.

Plug your board into your computer, using a known-good data-sync cable, directly, or

via an adapter if needed.

The Qualia S3 does not have a RGB status LED

©Adafruit Industries Page 17 of 199

https://circuitpython.org/board/adafruit_qualia_s3_rgb666/
https://learn.adafruit.com//assets/102129
https://learn.adafruit.com//assets/102129

Double-click the reset button (highlighted in red above), and you will see the RGB

status LED(s) turn green (highlighted in green above). If you see red, try another port,

or if you're using an adapter or hub, try without the hub, or different adapter or hub.

For this board, tap reset and wait about a half a second and then tap reset again.

If double-clicking doesn't work the first time, try again. Sometimes it can take a few

tries to get the rhythm right!

A lot of people end up using charge-only USB cables and it is very frustrating! Make

sure you have a USB cable you know is good for data sync.

You will see a new disk drive appear called

TFT_S3BOOT.

Drag the adafruit_circuitpython_etc.uf2 file

to TFT_S3BOOT.

This board does not have a Neopixel, so you will need to just double tap the

reset button.

Some boards may not have a UF2 bootloader installed. If double-clicking does

not work, follow the instructions on the "Install UF2 Bootloader" page in this

guide.

©Adafruit Industries Page 18 of 199

https://learn.adafruit.com//assets/124832
https://learn.adafruit.com//assets/124832
https://learn.adafruit.com//assets/124889
https://learn.adafruit.com//assets/124889

The BOOT drive will disappear and a new

disk drive called CIRCUITPY will appear.

That's it!

The CIRCUITPY Drive

When CircuitPython finishes installing, or you plug a CircuitPython board into your

computer with CircuitPython already installed, the board shows up on your computer

as a USB drive called CIRCUITPY.

The CIRCUITPY drive is where your code and the necessary libraries and files will live.

You can edit your code directly on this drive and when you save, it will run

automatically. When you create and edit code, you'll save your code in a code.py file

located on the CIRCUITPY drive. If you're following along with a Learn guide, you can

paste the contents of the tutorial example into code.py on the CIRCUITPY drive and

save it to run the example.

With a fresh CircuitPython install, on your CIRCUITPY drive, you'll find a code.py file

containing print("Hello World!") and an empty lib folder. If your CIRCUITPY

drive does not contain a code.py file, you can easily create one and save it to the

drive. CircuitPython looks for code.py and executes the code within the file

automatically when the board starts up or resets. Following a change to the contents

of CIRCUITPY, such as making a change to the code.py file, the board will reset, and

the code will be run. You do not need to manually run the code. This is what makes it

so easy to get started with your project and update your code!

Note that all changes to the contents of CIRCUITPY, such as saving a new file,

renaming a current file, or deleting an existing file will trigger a reset of the board.

©Adafruit Industries Page 19 of 199

https://learn.adafruit.com//assets/102130
https://learn.adafruit.com//assets/102130

Boards Without CIRCUITPY

CircuitPython is available for some microcontrollers that do not support native USB.

Those boards cannot present a CIRCUITPY drive. This includes boards using ESP32

or ESP32-C3 microcontrollers.

On these boards, there are alternative ways to transfer and edit files. You can use the

Thonny editor (), which uses hidden commands sent to the REPL to read and write

files. Or you can use the CircuitPython web workflow, introduced in Circuitpython 8.

The web workflow provides browser-based WiFi access to the CircuitPython

filesystem. These guides will help you with the web workflow:

CircuitPython on ESP32 Quick Start ()

CircuitPython Web Workflow Code Editor Quick Start ()

CircuitPython Pins and Modules

CircuitPython is designed to run on microcontrollers and allows you to interface with

all kinds of sensors, inputs and other hardware peripherals. There are tons of guides

showing how to wire up a circuit, and use CircuitPython to, for example, read data

from a sensor, or detect a button press. Most CircuitPython code includes hardware

setup which requires various modules, such as board or digitalio . You import

these modules and then use them in your code. How does CircuitPython know to look

for hardware in the specific place you connected it, and where do these modules

come from?

This page explains both. You'll learn how CircuitPython finds the pins on your

microcontroller board, including how to find the available pins for your board and

what each pin is named. You'll also learn about the modules built into CircuitPython,

including how to find all the modules available for your board.

•

•

©Adafruit Industries Page 20 of 199

https://thonny.org
https://learn.adafruit.com/circuitpython-with-esp32-quick-start
https://learn.adafruit.com/getting-started-with-web-workflow-using-the-code-editor

CircuitPython Pins

When using hardware peripherals with a CircuitPython compatible microcontroller,

you'll almost certainly be utilising pins. This section will cover how to access your

board's pins using CircuitPython, how to discover what pins and board-specific

objects are available in CircuitPython for your board, how to use the board-specific

objects, and how to determine all available pin names for a given pin on your board.

import board

When you're using any kind of hardware peripherals wired up to your microcontroller

board, the import list in your code will include import board . The board module is

built into CircuitPython, and is used to provide access to a series of board-specific

objects, including pins. Take a look at your microcontroller board. You'll notice that

next to the pins are pin labels. You can always access a pin by its pin label. However,

there are almost always multiple names for a given pin.

To see all the available board-specific objects and pins for your board, enter the REPL

(>>>) and run the following commands:

import board

dir(board)

Here is the output for the QT Py SAMD21. You may have a different board, and this list

will vary, based on the board.

The following pins have labels on the physical QT Py SAMD21 board: A0, A1, A2, A3,

SDA, SCL, TX, RX, SCK, MISO, and MOSI. You see that there are many more entries

available in board than the labels on the QT Py.

You can use the pin names on the physical board, regardless of whether they seem to

be specific to a certain protocol.

For example, you do not have to use the SDA pin for I2C - you can use it for a button

or LED.

©Adafruit Industries Page 21 of 199

On the flip side, there may be multiple names for one pin. For example, on the QT Py

SAMD21, pin A0 is labeled on the physical board silkscreen, but it is available in

CircuitPython as both A0 and D0 . For more information on finding all the names for a

given pin, see the What Are All the Available Pin Names? () section below.

The results of dir(board) for CircuitPython compatible boards will look similar to

the results for the QT Py SAMD21 in terms of the pin names, e.g. A0, D0, etc.

However, some boards, for example, the Metro ESP32-S2, have different styled pin

names. Here is the output for the Metro ESP32-S2.

Note that most of the pins are named in an IO# style, such as IO1 and IO2. Those pins

on the physical board are labeled only with a number, so an easy way to know how to

access them in CircuitPython, is to run those commands in the REPL and find the pin

naming scheme.

I2C, SPI, and UART

You'll also see there are often (but not always!) three special board-specific objects

included: I2C , SPI , and UART - each one is for the default pin-set used for each of

the three common protocol busses they are named for. These are called singletons.

What's a singleton? When you create an object in CircuitPython, you are instantiating

('creating') it. Instantiating an object means you are creating an instance of the object

with the unique values that are provided, or "passed", to it.

For example, When you instantiate an I2C object using the busio module, it expects

two pins: clock and data, typically SCL and SDA. It often looks like this:

i2c = busio.I2C(board.SCL, board.SDA)

Then, you pass the I2C object to a driver for the hardware you're using. For example,

if you were using the TSL2591 light sensor and its CircuitPython library, the next line

of code would be:

If your code is failing to run because it can't find a pin name you provided, verify

that you have the proper pin name by running these commands in the REPL.

©Adafruit Industries Page 22 of 199

https://learn.adafruit.com/circuitpython-essentials/circuitpython-pins-and-modules#what-are-all-the-available-names-3082670-14

tsl2591 = adafruit_tsl2591.TSL2591(i2c)

However, CircuitPython makes this simpler by including the I2C singleton in the boa

rd module. Instead of the two lines of code above, you simply provide the singleton

as the I2C object. So if you were using the TSL2591 and its CircuitPython library, the

two above lines of code would be replaced with:

tsl2591 = adafruit_tsl2591.TSL2591(board.I2C())

This eliminates the need for the busio module, and simplifies the code. Behind the

scenes, the board.I2C() object is instantiated when you call it, but not before, and

on subsequent calls, it returns the same object. Basically, it does not create an object

until you need it, and provides the same object every time you need it. You can call

board.I2C() as many times as you like, and it will always return the same object.

What Are All the Available Names?

Many pins on CircuitPython compatible microcontroller boards have multiple names,

however, typically, there's only one name labeled on the physical board. So how do

you find out what the other available pin names are? Simple, with the following script!

Each line printed out to the serial console contains the set of names for a particular

pin.

On a microcontroller board running CircuitPython, first, connect to the serial console.

In the example below, click the Download Project Bundle button below to download

the necessary libraries and the code.py file in a zip file. Extract the contents of the zip

file, open the directory CircuitPython_Essentials/Pin_Map_Script/ and then click on

the directory that matches the version of CircuitPython you're using and copy the

contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

The board.I2C(), board.SPI(), and board.UART() singletons do not exist on all

boards. They exist if there are board markings for the default pins for those

devices.

The UART/SPI/I2C singletons will use the 'default' bus pins for each board - often

labeled as RX/TX (UART), MOSI/MISO/SCK (SPI), or SDA/SCL (I2C). Check your

board documentation/pinout for the default busses.

©Adafruit Industries Page 23 of 199

SPDX-FileCopyrightText: 2020 anecdata for Adafruit Industries

SPDX-FileCopyrightText: 2021 Neradoc for Adafruit Industries

SPDX-FileCopyrightText: 2021-2023 Kattni Rembor for Adafruit Industries

SPDX-FileCopyrightText: 2023 Dan Halbert for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""CircuitPython Essentials Pin Map Script"""

import microcontroller

import board

try:

 import cyw43 # raspberrypi

except ImportError:

 cyw43 = None

board_pins = []

for pin in dir(microcontroller.pin):

 if (isinstance(getattr(microcontroller.pin, pin), microcontroller.Pin) or

 (cyw43 and isinstance(getattr(microcontroller.pin, pin), cyw43.CywPin))):

 pins = []

 for alias in dir(board):

 if getattr(board, alias) is getattr(microcontroller.pin, pin):

 pins.append(f"board.{alias}")

 # Add the original GPIO name, in parentheses.

 if pins:

 # Only include pins that are in board.

 pins.append(f"({str(pin)})")

 board_pins.append(" ".join(pins))

for pins in sorted(board_pins):

 print(pins)

Here is the result when this script is run on QT Py SAMD21:

Each line represents a single pin. Find the line containing the pin name that's labeled

on the physical board, and you'll find the other names available for that pin. For

example, the first pin on the board is labeled A0. The first line in the output is board.

A0 board.D0 (PA02) . This means that you can access pin A0 in CircuitPython using

both board.A0 and board.D0 .

©Adafruit Industries Page 24 of 199

The pins in parentheses are the microcontroller pin names. See the next section for

more info on those.

You'll notice there are two "pins" that aren't labeled on the board but appear in the

list: board.NEOPIXEL and board.NEOPIXEL_POWER . Many boards have several of

these special pins that give you access to built-in board hardware, such as an LED or

an on-board sensor. The QT Py SAMD21 only has one on-board extra piece of

hardware, a NeoPixel LED, so there's only the one available in the list. But you can

also control whether or not power is applied to the NeoPixel, so there's a separate pin

for that.

That's all there is to figuring out the available names for a pin on a compatible

microcontroller board in CircuitPython!

Microcontroller Pin Names

The pin names available to you in the CircuitPython board module are not the same

as the names of the pins on the microcontroller itself. The board pin names are

aliases to the microcontroller pin names. If you look at the datasheet for your

microcontroller, you'll likely find a pinout with a series of pin names, such as "PA18" or

"GPIO5". If you want to get to the actual microcontroller pin name in CircuitPython,

you'll need the microcontroller.pin module. As with board , you can run dir(mi

crocontroller.pin) in the REPL to receive a list of the microcontroller pin names.

CircuitPython Built-In Modules

There is a set of modules used in most CircuitPython programs. One or more of these

modules is always used in projects involving hardware. Often hardware requires

installing a separate library from the Adafruit CircuitPython Bundle. But, if you try to

find board or digitalio in the same bundle, you'll come up lacking. So, where do

these modules come from? They're built into CircuitPython! You can find an

comprehensive list of built-in CircuitPython modules and the technical details of their

functionality from CircuitPython here () and the Python-like modules included here ().

However, not every module is available for every board due to size constraints or

hardware limitations. How do you find out what modules are available for your board?

©Adafruit Industries Page 25 of 199

https://circuitpython.readthedocs.io/en/latest/shared-bindings/index.html#modules
https://circuitpython.readthedocs.io/en/latest/docs/library/index.html

There are two options for this. You can check the support matrix (), and search for

your board by name. Or, you can use the REPL.

Plug in your board, connect to the serial console and enter the REPL. Type the

following command.

help("modules")

That's it! You now know two ways to find all of the modules built into CircuitPython for

your compatible microcontroller board.

Installing the Mu Editor

Mu is a simple code editor that works with the Adafruit CircuitPython boards. It's

written in Python and works on Windows, MacOS, Linux and Raspberry Pi. The serial

console is built right in so you get immediate feedback from your board's serial

output!

Mu is our recommended editor - please use it (unless you are an experienced

coder with a favorite editor already!).

©Adafruit Industries Page 26 of 199

https://circuitpython.readthedocs.io/en/latest/shared-bindings/support_matrix.html#

Download and Install Mu

Download Mu from https://codewith.mu ().

Click the Download link for downloads and

installation instructions.

Click Start Here to find a wealth of other

information, including extensive tutorials

and and how-to's.

Starting Up Mu

The first time you start Mu, you will be

prompted to select your 'mode' - you can

always change your mind later. For now

please select CircuitPython!

The current mode is displayed in the lower

right corner of the window, next to the

"gear" icon. If the mode says "Microbit" or

something else, click the Mode button in

the upper left, and then choose

"CircuitPython" in the dialog box that

appears.

Windows users: due to the nature of MSI installers, please remove old versions of

Mu before installing the latest version.

©Adafruit Industries Page 27 of 199

https://learn.adafruit.com//assets/105677
https://learn.adafruit.com//assets/105677
https://codewith.mu/
https://learn.adafruit.com//assets/105681
https://learn.adafruit.com//assets/105681

Mu attempts to auto-detect your board on

startup, so if you do not have a

CircuitPython board plugged in with a

CIRCUITPY drive available, Mu will inform

you where it will store any code you save

until you plug in a board.

To avoid this warning, plug in a board and

ensure that the CIRCUITPY drive is

mounted before starting Mu.

Using Mu

You can now explore Mu! The three main sections of the window are labeled below;

the button bar, the text editor, and the serial console / REPL.

Now you're ready to code! Let's keep going...

Creating and Editing Code

One of the best things about CircuitPython is how simple it is to get code up and

running. This section covers how to create and edit your first CircuitPython program.

To create and edit code, all you'll need is an editor. There are many options. Adafruit

strongly recommends using Mu! It's designed for CircuitPython, and it's really simple

and easy to use, with a built in serial console!

©Adafruit Industries Page 28 of 199

https://learn.adafruit.com//assets/105679
https://learn.adafruit.com//assets/105679

If you don't or can't use Mu, there are a number of other editors that work quite well.

The Recommended Editors page () has more details. Otherwise, make sure you do

"Eject" or "Safe Remove" on Windows or "sync" on Linux after writing a file if you

aren't using Mu. (This is not a problem on MacOS.)

Creating Code

Installing CircuitPython generates a

code.py file on your CIRCUITPY drive. To

begin your own program, open your editor,

and load the code.py file from the

CIRCUITPY drive.

If you are using Mu, click the Load button

in the button bar, navigate to the

CIRCUITPY drive, and choose code.py.

Copy and paste the following code into your editor:

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 led.value = True

 time.sleep(0.5)

 led.value = False

 time.sleep(0.5)

If you're using a KB2040, QT Py or a Trinkey, please download the NeoPixel blink

example ().

The KB2040, QT Py and the Trinkeys do not have a built-in little red LED! There is

an addressable RGB NeoPixel LED. The above example will NOT work on the

KB2040, QT Py or the Trinkeys!

The NeoPixel blink example uses the onboard NeoPixel, but the time code is the

same. You can use the linked NeoPixel Blink example to follow along with this

guide page.

©Adafruit Industries Page 29 of 199

https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors
https://learn.adafruit.com//assets/105703
https://learn.adafruit.com//assets/105703
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Welcome_to_CircuitPython/code.py
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Welcome_to_CircuitPython/code.py

It will look like this. Note that under the

while True: line, the next four lines

begin with four spaces to indent them, and

they're indented exactly the same amount.

All the lines before that have no spaces

before the text.

Save the code.py file on your CIRCUITPY

drive.

The little LED should now be blinking. Once per half-second.

Congratulations, you've just run your first CircuitPython program!

On most boards you'll find a tiny red LED.

On the ItsyBitsy nRF52840, you'll find a tiny blue LED.

On QT Py M0, QT Py RP2040, and the Trinkey series, you will find only an RGB

NeoPixel LED.

©Adafruit Industries Page 30 of 199

https://learn.adafruit.com//assets/105704
https://learn.adafruit.com//assets/105704
https://learn.adafruit.com//assets/105705
https://learn.adafruit.com//assets/105705

Editing Code

To edit code, open the code.py file on your

CIRCUITPY drive into your editor.

Make the desired changes to your code.

Save the file. That's it!

Your code changes are run as soon as the file is done saving.

There's one warning before you continue...

The CircuitPython code on your board detects when the files are changed or written

and will automatically re-start your code. This makes coding very fast because you

save, and it re-runs. If you unplug or reset the board before your computer finishes

writing the file to your board, you can corrupt the drive. If this happens, you may lose

the code you've written, so it's important to backup your code to your computer

regularly.

There are a couple of ways to avoid filesystem corruption.

1. Use an editor that writes out the file completely when you save it.

Check out the Recommended Editors page () for details on different editing options.

Don't click reset or unplug your board!

If you are dragging a file from your host computer onto the CIRCUITPY drive, you

still need to do step 2. Eject or Sync (below) to make sure the file is completely

written.

©Adafruit Industries Page 31 of 199

https://learn.adafruit.com//assets/105706
https://learn.adafruit.com//assets/105706
https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors

2. Eject or Sync the Drive After Writing

If you are using one of our not-recommended-editors, not all is lost! You can still make

it work.

On Windows, you can Eject or Safe Remove the CIRCUITPY drive. It won't actually

eject, but it will force the operating system to save your file to disk. On Linux, use the

sync command in a terminal to force the write to disk.

You also need to do this if you use Windows Explorer or a Linux graphical file

manager to drag a file onto CIRCUITPY.

Oh No I Did Something Wrong and Now The CIRCUITPY

Drive Doesn't Show Up!!!

Don't worry! Corrupting the drive isn't the end of the world (or your board!). If this

happens, follow the steps found on the Troubleshooting () page of every board

guide to get your board up and running again.

Back to Editing Code...

Now! Let's try editing the program you added to your board. Open your code.py file

into your editor. You'll make a simple change. Change the first 0.5 to 0.1 . The code

should look like this:

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 led.value = True

 time.sleep(0.1)

 led.value = False

 time.sleep(0.5)

Leave the rest of the code as-is. Save your file. See what happens to the LED on your

board? Something changed! Do you know why?

You don't have to stop there! Let's keep going. Change the second 0.5 to 0.1 so it

looks like this:

while True:

 led.value = True

©Adafruit Industries Page 32 of 199

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting

 time.sleep(0.1)

 led.value = False

 time.sleep(0.1)

Now it blinks really fast! You decreased the both time that the code leaves the LED on

and off!

Now try increasing both of the 0.1 to 1 . Your LED will blink much more slowly

because you've increased the amount of time that the LED is turned on and off.

Well done! You're doing great! You're ready to start into new examples and edit them

to see what happens! These were simple changes, but major changes are done using

the same process. Make your desired change, save it, and get the results. That's

really all there is to it!

Naming Your Program File

CircuitPython looks for a code file on the board to run. There are four options: code.tx

t, code.py, main.txt and main.py. CircuitPython looks for those files, in that order, and

then runs the first one it finds. While code.py is the recommended name for your code

file, it is important to know that the other options exist. If your program doesn't seem

to be updating as you work, make sure you haven't created another code file that's

being read instead of the one you're working on.

Exploring Your First CircuitPython Program

First, you'll take a look at the code you're editing.

Here is the original code again:

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 led.value = True

 time.sleep(0.5)

 led.value = False

 time.sleep(0.5)

©Adafruit Industries Page 33 of 199

Imports & Libraries

Each CircuitPython program you run needs to have a lot of information to work. The

reason CircuitPython is so simple to use is that most of that information is stored in

other files and works in the background. The files built into CircuitPython are called m

odules, and the files you load separately are called libraries. Modules are built into

CircuitPython. Libraries are stored on your CIRCUITPY drive in a folder called lib.

import board

import digitalio

import time

The import statements tells the board that you're going to use a particular library or

module in your code. In this example, you imported three modules: board ,

digitalio , and time . All three of these modules are built into CircuitPython, so no

separate library files are needed. That's one of the things that makes this an excellent

first example. You don't need anything extra to make it work!

These three modules each have a purpose. The first one, board , gives you access to

the hardware on your board. The second, digitalio , lets you access that hardware

as inputs/outputs. The third, time , let's you control the flow of your code in multiple

ways, including passing time by 'sleeping'.

Setting Up The LED

The next two lines setup the code to use the LED.

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

Your board knows the red LED as LED . So, you initialise that pin, and you set it to

output. You set led to equal the rest of that information so you don't have to type it

all out again later in our code.

Loop-de-loops

The third section starts with a while statement. while True: essentially means,

"forever do the following:". while True: creates a loop. Code will loop "while" the

condition is "true" (vs. false), and as True is never False, the code will loop forever.

All code that is indented under while True: is "inside" the loop.

Inside our loop, you have four items:

©Adafruit Industries Page 34 of 199

while True:

 led.value = True

 time.sleep(0.5)

 led.value = False

 time.sleep(0.5)

First, you have led.value = True . This line tells the LED to turn on. On the next

line, you have time.sleep(0.5) . This line is telling CircuitPython to pause running

code for 0.5 seconds. Since this is between turning the led on and off, the led will be

on for 0.5 seconds.

The next two lines are similar. led.value = False tells the LED to turn off, and tim

e.sleep(0.5) tells CircuitPython to pause for another 0.5 seconds. This occurs

between turning the led off and back on so the LED will be off for 0.5 seconds too.

Then the loop will begin again, and continue to do so as long as the code is running!

So, when you changed the first 0.5 to 0.1 , you decreased the amount of time that

the code leaves the LED on. So it blinks on really quickly before turning off!

Great job! You've edited code in a CircuitPython program!

What Happens When My Code Finishes Running?

When your code finishes running, CircuitPython resets your microcontroller board to

prepare it for the next run of code. That means any set up you did earlier no longer

applies, and the pin states are reset.

For example, try reducing the code snippet above by eliminating the loop entirely,

and replacing it with led.value = True . The LED will flash almost too quickly to

see, and turn off. This is because the code finishes running and resets the pin state,

and the LED is no longer receiving a signal.

To that end, most CircuitPython programs involve some kind of loop, infinite or

otherwise.

What if I Don't Have the Loop?

If you don't have the loop, the code will run to the end and exit. This can lead to some

unexpected behavior in simple programs like this since the "exit" also resets the state

of the hardware. This is a different behavior than running commands via REPL. So if

©Adafruit Industries Page 35 of 199

you are writing a simple program that doesn't seem to work, you may need to add a

loop to the end so the program doesn't exit.

The simplest loop would be:

while True:

 pass

And remember - you can press CTRL+C to exit the loop.

See also the Behavior section in the docs ().

Connecting to the Serial Console

One of the staples of CircuitPython (and programming in general!) is something called

a "print statement". This is a line you include in your code that causes your code to

output text. A print statement in CircuitPython (and Python) looks like this:

print("Hello, world!")

This line in your code.py would result in:

Hello, world!

However, these print statements need somewhere to display. That's where the serial

console comes in!

The serial console receives output from your CircuitPython board sent over USB and

displays it so you can see it. This is necessary when you've included a print statement

in your code and you'd like to see what you printed. It is also helpful for

troubleshooting errors, because your board will send errors and the serial console will

display those too.

The serial console requires an editor that has a built in terminal, or a separate

terminal program. A terminal is a program that gives you a text-based interface to

perform various tasks.

Are you using Mu?

If so, good news! The serial console is built into Mu and will autodetect your board

making using the serial console really really easy.

©Adafruit Industries Page 36 of 199

https://circuitpython.readthedocs.io/en/latest/README.html#behavior

First, make sure your CircuitPython board

is plugged in.

If you open Mu without a board plugged

in, you may encounter the error seen here,

letting you know no CircuitPython board

was found and indicating where your code

will be stored until you plug in a board.

If you are using Windows 7, make sure you

installed the drivers ().

Once you've opened Mu with your board plugged in, look for the Serial button in the

button bar and click it.

The Mu window will split in two, horizontally, and display the serial console at the

bottom.

Serial Console Issues or Delays on Linux

If you're on Linux, and are seeing multi-second delays connecting to the serial

console, or are seeing "AT" and other gibberish when you connect, then the

modemmanager service might be interfering. Just remove it; it doesn't have much use

unless you're still using dial-up modems.

To remove modemmanager , type the following command at a shell:

If nothing appears in the serial console, it may mean your code is done running

or has no print statements in it. Click into the serial console part of Mu, and press

CTRL+D to reload.

©Adafruit Industries Page 37 of 199

https://learn.adafruit.com//assets/105925
https://learn.adafruit.com//assets/105925
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers

sudo apt purge modemmanager

Setting Permissions on Linux

On Linux, if you see an error box something like the one below when you press the S

erial button, you need to add yourself to a user group to have permission to connect

to the serial console.

On Ubuntu and Debian, add yourself to the dialout group by doing:

sudo adduser $USER dialout

After running the command above, reboot your machine to gain access to the group.

On other Linux distributions, the group you need may be different. See the Advanced

Serial Console on Linux () for details on how to add yourself to the right group.

Using Something Else?

If you're not using Mu to edit, are using or if for some reason you are not a fan of its

built in serial console, you can run the serial console from a separate program.

Windows requires you to download a terminal program. Check out the Advanced

Serial Console on Windows page for more details. ()

MacOS has Terminal built in, though there are other options available for download. C

heck the Advanced Serial Console on Mac page for more details. ()

Linux has a terminal program built in, though other options are available for

download. Check the Advanced Serial Console on Linux page for more details. ()

Once connected, you'll see something like the following.

©Adafruit Industries Page 38 of 199

https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux
file:///home/welcome-to-circuitpython/advanced-serial-console-on-windows
file:///home/welcome-to-circuitpython/advanced-serial-console-on-windows
file:///home/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux
file:///home/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux

Interacting with the Serial Console

Once you've successfully connected to the serial console, it's time to start using it.

The code you wrote earlier has no output to the serial console. So, you're going to

edit it to create some output.

Open your code.py file into your editor, and include a print statement. You can print

anything you like! Just include your phrase between the quotation marks inside the

parentheses. For example:

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 print("Hello, CircuitPython!")

 led.value = True

 time.sleep(1)

 led.value = False

 time.sleep(1)

Save your file.

Now, let's go take a look at the window with our connection to the serial console.

Excellent! Our print statement is showing up in our console! Try changing the printed

text to something else.

import board

import digitalio

import time

©Adafruit Industries Page 39 of 199

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 print("Hello back to you!")

 led.value = True

 time.sleep(1)

 led.value = False

 time.sleep(1)

Keep your serial console window where you can see it. Save your file. You'll see what

the serial console displays when the board reboots. Then you'll see your new change!

The Traceback (most recent call last): is telling you the last thing your board

was doing before you saved your file. This is normal behavior and will happen every

time the board resets. This is really handy for troubleshooting. Let's introduce an error

so you can see how it is used.

Delete the e at the end of True from the line led.value = True so that it says le

d.value = Tru

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 print("Hello back to you!")

 led.value = Tru

 time.sleep(1)

 led.value = False

 time.sleep(1)

Save your file. You will notice that your red LED will stop blinking, and you may have a

colored status LED blinking at you. This is because the code is no longer correct and

can no longer run properly. You need to fix it!

©Adafruit Industries Page 40 of 199

Usually when you run into errors, it's not because you introduced them on purpose.

You may have 200 lines of code, and have no idea where your error could be hiding.

This is where the serial console can help. Let's take a look!

The Traceback (most recent call last): is telling you that the last thing it was

able to run was line 10 in your code. The next line is your error: NameError: name

'Tru' is not defined . This error might not mean a lot to you, but combined with

knowing the issue is on line 10, it gives you a great place to start!

Go back to your code, and take a look at line 10. Obviously, you know what the

problem is already. But if you didn't, you'd want to look at line 10 and see if you could

figure it out. If you're still unsure, try googling the error to get some help. In this case,

you know what to look for. You spelled True wrong. Fix the typo and save your file.

Nice job fixing the error! Your serial console is streaming and your red LED Is blinking

again.

The serial console will display any output generated by your code. Some sensors,

such as a humidity sensor or a thermistor, receive data and you can use print

©Adafruit Industries Page 41 of 199

statements to display that information. You can also use print statements for

troubleshooting, which is called "print debugging". Essentially, if your code isn't

working, and you want to know where it's failing, you can put print statements in

various places to see where it stops printing.

The serial console has many uses, and is an amazing tool overall for learning and

programming!

The REPL

The other feature of the serial connection is the Read-Evaluate-Print-Loop, or REPL.

The REPL allows you to enter individual lines of code and have them run immediately.

It's really handy if you're running into trouble with a particular program and can't

figure out why. It's interactive so it's great for testing new ideas.

Entering the REPL

To use the REPL, you first need to be connected to the serial console. Once that

connection has been established, you'll want to press CTRL+C.

If there is code running, in this case code measuring distance, it will stop and you'll

see Press any key to enter the REPL. Use CTRL-D to reload. Follow those

instructions, and press any key on your keyboard.

The Traceback (most recent call last): is telling you the last thing your board

was doing before you pressed Ctrl + C and interrupted it. The KeyboardInterrupt

is you pressing CTRL+C. This information can be handy when troubleshooting, but for

now, don't worry about it. Just note that it is expected behavior.

If your code.py file is empty or does not contain a loop, it will show an empty output

and Code done running. . There is no information about what your board was

doing before you interrupted it because there is no code running.

©Adafruit Industries Page 42 of 199

If you have no code.py on your CIRCUITPY drive, you will enter the REPL immediately

after pressing CTRL+C. Again, there is no information about what your board was

doing before you interrupted it because there is no code running.

Regardless, once you press a key you'll see a >>> prompt welcoming you to the

REPL!

If you have trouble getting to the >>> prompt, try pressing Ctrl + C a few more times.

The first thing you get from the REPL is information about your board.

This line tells you the version of CircuitPython you're using and when it was released.

Next, it gives you the type of board you're using and the type of microcontroller the

board uses. Each part of this may be different for your board depending on the

versions you're working with.

This is followed by the CircuitPython prompt.

Interacting with the REPL

From this prompt you can run all sorts of commands and code. The first thing you'll do

is run help() . This will tell you where to start exploring the REPL. To run code in the

REPL, type it in next to the REPL prompt.

Type help() next to the prompt in the REPL.

©Adafruit Industries Page 43 of 199

Then press enter. You should then see a message.

First part of the message is another reference to the version of CircuitPython you're

using. Second, a URL for the CircuitPython related project guides. Then... wait. What's

this? To list built-in modules type `help("modules")`. Remember the

modules you learned about while going through creating code? That's exactly what

this is talking about! This is a perfect place to start. Let's take a look!

Type help("modules") into the REPL next to the prompt, and press enter.

This is a list of all the core modules built into CircuitPython, including board .

Remember, board contains all of the pins on the board that you can use in your

code. From the REPL, you are able to see that list!

Type import board into the REPL and press enter. It'll go to a new prompt. It might

look like nothing happened, but that's not the case! If you recall, the import

statement simply tells the code to expect to do something with that module. In this

case, it's telling the REPL that you plan to do something with that module.

Next, type dir(board) into the REPL and press enter.

©Adafruit Industries Page 44 of 199

This is a list of all of the pins on your board that are available for you to use in your

code. Each board's list will differ slightly depending on the number of pins available.

Do you see LED ? That's the pin you used to blink the red LED!

The REPL can also be used to run code. Be aware that any code you enter into the

REPL isn't saved anywhere. If you're testing something new that you'd like to keep,

make sure you have it saved somewhere on your computer as well!

Every programmer in every programming language starts with a piece of code that

says, "Hello, World." You're going to say hello to something else. Type into the REPL:

print("Hello, CircuitPython!")

Then press enter.

That's all there is to running code in the REPL! Nice job!

You can write single lines of code that run stand-alone. You can also write entire

programs into the REPL to test them. Remember that nothing typed into the REPL is

saved.

There's a lot the REPL can do for you. It's great for testing new ideas if you want to

see if a few new lines of code will work. It's fantastic for troubleshooting code by

entering it one line at a time and finding out where it fails. It lets you see what

modules are available and explore those modules.

Try typing more into the REPL to see what happens!

Everything typed into the REPL is ephemeral. Once you reload the REPL or return

to the serial console, nothing you typed will be retained in any memory space. So

be sure to save any desired code you wrote somewhere else, or you'll lose it

when you leave the current REPL instance!

©Adafruit Industries Page 45 of 199

Returning to the Serial Console

When you're ready to leave the REPL and return to the serial console, simply press CT

RL+D. This will reload your board and reenter the serial console. You will restart the

program you had running before entering the REPL. In the console window, you'll see

any output from the program you had running. And if your program was affecting

anything visual on the board, you'll see that start up again as well.

You can return to the REPL at any time!

CircuitPython Libraries

Each CircuitPython program you run needs to have a lot of information to work. The

reason CircuitPython is so simple to use is that most of that information is stored in

other files and works in the background. These files are called libraries. Some of them

are built into CircuitPython. Others are stored on your CIRCUITPY drive in a folder

called lib. Part of what makes CircuitPython so great is its ability to store code

separately from the firmware itself. Storing code separately from the firmware makes

it easier to update both the code you write and the libraries you depend.

Your board may ship with a lib folder already, it's in the base directory of the drive. If

not, simply create the folder yourself. When you first install CircuitPython, an empty lib

directory will be created for you.

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to

download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

©Adafruit Industries Page 46 of 199

https://circuitpython.org/downloads
https://circuitpython.org/libraries

CircuitPython libraries work in the same way as regular Python modules so the Python

docs () are an excellent reference for how it all should work. In Python terms, you can

place our library files in the lib directory because it's part of the Python path by

default.

One downside of this approach of separate libraries is that they are not built in. To

use them, one needs to copy them to the CIRCUITPY drive before they can be used.

Fortunately, there is a library bundle.

The bundle and the library releases on GitHub also feature optimized versions of the

libraries with the .mpy file extension. These files take less space on the drive and

have a smaller memory footprint as they are loaded.

Due to the regular updates and space constraints, Adafruit does not ship boards with

the entire bundle. Therefore, you will need to load the libraries you need when you

begin working with your board. You can find example code in the guides for your

board that depends on external libraries.

Either way, as you start to explore CircuitPython, you'll want to know how to get

libraries on board.

The Adafruit Learn Guide Project Bundle

The quickest and easiest way to get going with a project from the Adafruit Learn

System is by utilising the Project Bundle. Most guides now have a Download Project

Bundle button available at the top of the full code example embed. This button

downloads all the necessary files, including images, etc., to get the guide project up

and running. Simply click, open the resulting zip, copy over the right files, and you're

good to go!

The first step is to find the Download Project Bundle button in the guide you're

working on.

©Adafruit Industries Page 47 of 199

https://docs.python.org/3/tutorial/modules.html
https://docs.python.org/3/tutorial/modules.html

The Download Project Bundle button downloads a zip file. This zip contains a series

of directories, nested within which is the code.py, any applicable assets like images or

audio, and the lib/ folder containing all the necessary libraries. The following zip was

downloaded from the Piano in the Key of Lime guide.

The Download Project Bundle button is only available on full demo code

embedded from GitHub in a Learn guide. Code snippets will NOT have the

button available.

When you copy the contents of the Project Bundle to your CIRCUITPY drive, it

will replace all the existing content! If you don't want to lose anything, ensure you

copy your current code to your computer before you copy over the new Project

Bundle content!

The Piano in the Key of Lime guide was chosen as an example. That guide is

specific to Circuit Playground Express, and cannot be used on all boards. Do not

©Adafruit Industries Page 48 of 199

When you open the zip, you'll find some nested directories. Navigate through them

until you find what you need. You'll eventually find a directory for your CircuitPython

version (in this case, 7.x). In the version directory, you'll find the file and directory you

need: code.py and lib/. Once you find the content you need, you can copy it all over

to your CIRCUITPY drive, replacing any files already on the drive with the files from

the freshly downloaded zip.

Once you copy over all the relevant files, the project should begin running! If you find

that the project is not running as expected, make sure you've copied ALL of the

project files onto your microcontroller board.

That's all there is to using the Project Bundle!

The Adafruit CircuitPython Library Bundle

Adafruit provides CircuitPython libraries for much of the hardware they provide,

including sensors, breakouts and more. To eliminate the need for searching for each

library individually, the libraries are available together in the Adafruit CircuitPython

Library Bundle. The bundle contains all the files needed to use each library.

Downloading the Adafruit CircuitPython Library Bundle

You can download the latest Adafruit CircuitPython Library Bundle release by clicking

the button below. The libraries are being constantly updated and improved, so you'll

always want to download the latest bundle.

Match up the bundle version with the version of CircuitPython you are running. For

example, you would download the 6.x library bundle if you're running any version of

CircuitPython 6, or the 7.x library bundle if you're running any version of CircuitPython

7, etc. If you mix libraries with major CircuitPython versions, you will get incompatible

mpy errors due to changes in library interfaces possible during major version

changes.

expect to download that exact bundle and have it work on your non-CPX

microcontroller.

In some cases, there will be other files such as audio or images in the same

directory as code.py and lib/. Make sure you include all the files when you copy

things over!

©Adafruit Industries Page 49 of 199

Click to visit circuitpython.org for the

latest Adafruit CircuitPython Library

Bundle

Download the bundle version that matches your CircuitPython firmware version. If you

don't know the version, check the version info in boot_out.txt file on the CIRCUITPY

drive, or the initial prompt in the CircuitPython REPL. For example, if you're running

v7.0.0, download the 7.x library bundle.

There's also a py bundle which contains the uncompressed python files, you probably

don't want that unless you are doing advanced work on libraries.

The CircuitPython Community Library

Bundle

The CircuitPython Community Library Bundle is made up of libraries written and

provided by members of the CircuitPython community. These libraries are often

written when community members encountered hardware not supported in the

Adafruit Bundle, or to support a personal project. The authors all chose to submit

these libraries to the Community Bundle make them available to the community.

These libraries are maintained by their authors and are not supported by Adafruit. As

you would with any library, if you run into problems, feel free to file an issue on the

GitHub repo for the library. Bear in mind, though, that most of these libraries are

supported by a single person and you should be patient about receiving a response.

Remember, these folks are not paid by Adafruit, and are volunteering their personal

time when possible to provide support.

Downloading the CircuitPython Community Library Bundle

You can download the latest CircuitPython Community Library Bundle release by

clicking the button below. The libraries are being constantly updated and improved,

so you'll always want to download the latest bundle.

Click for the latest CircuitPython

Community Library Bundle release

The link takes you to the latest release of the CircuitPython Community Library

Bundle on GitHub. There are multiple versions of the bundle available. Download the

bundle version that matches your CircuitPython firmware version. If you don't know

©Adafruit Industries Page 50 of 199

https://circuitpython.org/libraries
https://github.com/adafruit/CircuitPython_Community_Bundle/releases

the version, check the version info in boot_out.txt file on the CIRCUITPY drive, or the

initial prompt in the CircuitPython REPL. For example, if you're running v7.0.0,

download the 7.x library bundle.

Understanding the Bundle

After downloading the zip, extract its contents. This is usually done by double clicking

on the zip. On Mac OSX, it places the file in the same directory as the zip.

Open the bundle folder. Inside you'll find two information files, and two folders. One

folder is the lib bundle, and the other folder is the examples bundle.

Now open the lib folder. When you open the folder, you'll see a large number of .mpy

files, and folders.

Example Files

All example files from each library are now included in the bundles in an examples

directory (as seen above), as well as an examples-only bundle. These are included for

two main reasons:

Allow for quick testing of devices.

•

©Adafruit Industries Page 51 of 199

Provide an example base of code, that is easily built upon for individualized

purposes.

Copying Libraries to Your Board

First open the lib folder on your CIRCUITPY drive. Then, open the lib folder you

extracted from the downloaded zip. Inside you'll find a number of folders and .mpy

files. Find the library you'd like to use, and copy it to the lib folder on CIRCUITPY.

If the library is a directory with multiple .mpy files in it, be sure to copy the entire

folder to CIRCUITPY/lib.

This also applies to example files. Open the examples folder you extracted from the

downloaded zip, and copy the applicable file to your CIRCUITPY drive. Then, rename

it to code.py to run it.

Understanding Which Libraries to Install

You now know how to load libraries on to your CircuitPython-compatible

microcontroller board. You may now be wondering, how do you know which libraries

you need to install? Unfortunately, it's not always straightforward. Fortunately, there is

an obvious place to start, and a relatively simple way to figure out the rest. First up:

the best place to start.

When you look at most CircuitPython examples, you'll see they begin with one or

more import statements. These typically look like the following:

import library_or_module

•

If a library has multiple .mpy files contained in a folder, be sure to copy the entire

folder to CIRCUITPY/lib.

•

©Adafruit Industries Page 52 of 199

However, import statements can also sometimes look like the following:

from library_or_module import name

from library_or_module.subpackage import name

from library_or_module import name as local_name

They can also have more complicated formats, such as including a try / except

block, etc.

The important thing to know is that an import statement will always include the

name of the module or library that you're importing.

Therefore, the best place to start is by reading through the import statements.

Here is an example import list for you to work with in this section. There is no setup or

other code shown here, as the purpose of this section involves only the import list.

import time

import board

import neopixel

import adafruit_lis3dh

import usb_hid

from adafruit_hid.consumer_control import ConsumerControl

from adafruit_hid.consumer_control_code import ConsumerControlCode

Keep in mind, not all imported items are libraries. Some of them are almost always

built-in CircuitPython modules. How do you know the difference? Time to visit the

REPL.

In the Interacting with the REPL section () on The REPL page () in this guide, the

help("modules") command is discussed. This command provides a list of all of the

built-in modules available in CircuitPython for your board. So, if you connect to the

serial console on your board, and enter the REPL, you can run help("modules") to

see what modules are available for your board. Then, as you read through the impor

t statements, you can, for the purposes of figuring out which libraries to load, ignore

the statement that import modules.

The following is the list of modules built into CircuitPython for the Feather RP2040.

Your list may look similar or be anything down to a significant subset of this list for

smaller boards.

•

•

•

©Adafruit Industries Page 53 of 199

https://learn.adafruit.com/welcome-to-circuitpython/the-repl#interacting-with-the-repl-2977486-14
https://learn.adafruit.com/welcome-to-circuitpython/the-repl

Now that you know what you're looking for, it's time to read through the import

statements. The first two, time and board , are on the modules list above, so they're

built-in.

The next one, neopixel , is not on the module list. That means it's your first library!

So, you would head over to the bundle zip you downloaded, and search for neopixel.

There is a neopixel.mpy file in the bundle zip. Copy it over to the lib folder on your CI

RCUITPY drive. The following one, adafruit_lis3dh , is also not on the module list.

Follow the same process for adafruit_lis3dh, where you'll find adafruit_lis3dh.mpy,

and copy that over.

The fifth one is usb_hid , and it is in the modules list, so it is built in. Often all of the

built-in modules come first in the import list, but sometimes they don't! Don't assume

that everything after the first library is also a library, and verify each import with the

modules list to be sure. Otherwise, you'll search the bundle and come up empty!

The final two imports are not as clear. Remember, when import statements are

formatted like this, the first thing after the from is the library name. In this case, the

library name is adafruit_hid . A search of the bundle will find an adafruit_hid folder.

When a library is a folder, you must copy the entire folder and its contents as it is in

the bundle to the lib folder on your CIRCUITPY drive. In this case, you would copy the

entire adafruit_hid folder to your CIRCUITPY/lib folder.

Notice that there are two imports that begin with adafruit_hid . Sometimes you will

need to import more than one thing from the same library. Regardless of how many

times you import the same library, you only need to load the library by copying over

the adafruit_hid folder once.

That is how you can use your example code to figure out what libraries to load on

your CircuitPython-compatible board!

©Adafruit Industries Page 54 of 199

There are cases, however, where libraries require other libraries internally. The

internally required library is called a dependency. In the event of library

dependencies, the easiest way to figure out what other libraries are required is to

connect to the serial console and follow along with the ImportError printed there.

The following is a very simple example of an ImportError , but the concept is the

same for any missing library.

Example: ImportError Due to Missing

Library

If you choose to load libraries as you need them, or you're starting fresh with an

existing example, you may end up with code that tries to use a library you haven't yet

loaded. This section will demonstrate what happens when you try to utilise a library

that you don't have loaded on your board, and cover the steps required to resolve the

issue.

This demonstration will only return an error if you do not have the required library

loaded into the lib folder on your CIRCUITPY drive.

Let's use a modified version of the Blink example.

import board

import time

import simpleio

led = simpleio.DigitalOut(board.LED)

while True:

 led.value = True

 time.sleep(0.5)

 led.value = False

 time.sleep(0.5)

Save this file. Nothing happens to your board. Let's check the serial console to see

what's going on.

©Adafruit Industries Page 55 of 199

You have an ImportError . It says there is no module named 'simpleio' . That's

the one you just included in your code!

Click the link above to download the correct bundle. Extract the lib folder from the

downloaded bundle file. Scroll down to find simpleio.mpy. This is the library file you're

looking for! Follow the steps above to load an individual library file.

The LED starts blinking again! Let's check the serial console.

No errors! Excellent. You've successfully resolved an ImportError !

If you run into this error in the future, follow along with the steps above and choose

the library that matches the one you're missing.

Library Install on Non-Express Boards

If you have an M0 non-Express board such as Trinket M0, Gemma M0, QT Py M0, or

one of the M0 Trinkeys, you'll want to follow the same steps in the example above to

install libraries as you need them. Remember, you don't need to wait for an ImportEr

ror if you know what library you added to your code. Open the library bundle you

downloaded, find the library you need, and drag it to the lib folder on your CIRCUITPY

drive.

You can still end up running out of space on your M0 non-Express board even if you

only load libraries as you need them. There are a number of steps you can use to try

to resolve this issue. You'll find suggestions on the Troubleshooting page ().

Updating CircuitPython Libraries and

Examples

Libraries and examples are updated from time to time, and it's important to update the

files you have on your CIRCUITPY drive.

To update a single library or example, follow the same steps above. When you drag

the library file to your lib folder, it will ask if you want to replace it. Say yes. That's it!

©Adafruit Industries Page 56 of 199

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting

A new library bundle is released every time there's an update to a library. Updates

include things like bug fixes and new features. It's important to check in every so

often to see if the libraries you're using have been updated.

CircUp CLI Tool

There is a command line interface (CLI) utility called CircUp () that can be used to

easily install and update libraries on your device. Follow the directions on the install

page within the CircUp learn guide (). Once you've got it installed you run the

command circup update in a terminal to interactively update all libraries on the

connected CircuitPython device. See the usage page in the CircUp guide () for a full

list of functionality

CircuitPython Documentation

You've learned about the CircuitPython built-in modules and external libraries. You

know that you can find the modules in CircuitPython, and the libraries in the Library

Bundles. There are guides available that explain the basics of many of the modules

and libraries. However, there's sometimes more capabilities than are necessarily

showcased in the guides, and often more to learn about a module or library. So,

where can you find more detailed information? That's when you want to look at the

API documentation.

The entire CircuitPython project comes with extensive documentation available on

Read the Docs. This includes both the CircuitPython core () and the Adafruit

CircuitPython libraries ().

CircuitPython Core Documentation

The CircuitPython core documentation () covers many of the details you might want to

know about the CircuitPython core and related topics. It includes API and usage info,

a design guide and information about porting CircuitPython to new boards,

MicroPython info with relation to CircuitPython, and general information about the

project.

©Adafruit Industries Page 57 of 199

https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/install-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/install-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/usage
https://circuitpython.readthedocs.io/
https://circuitpython.readthedocs.io/projects/bundle/en/latest/
https://circuitpython.readthedocs.io/projects/bundle/en/latest/
https://circuitpython.readthedocs.io/

The main page covers the basics including where to download CircuitPython, how to

contribute, differences from MicroPython, information about the project structure, and

a full table of contents for the rest of the documentation.

The list along the left side leads to more information about specific topics.

The first section is API and Usage. This is where you can find information about how

to use individual built-in core modules, such as time and digitalio , details about

the supported ports, suggestions for troubleshooting, and basic info and links to the li

brary bundles. The Core Modules section also includes the Support Matrix, which is a

table of which core modules are available on which boards.

The second section is Design and Porting Reference. It includes a design guide, archit

ecture information, details on porting, and adding module support to other ports.

The third section is MicroPython Specific. It includes information on MicroPython and

related libraries, and a glossary of terms.

The fourth and final section is About the Project. It includes further information

including details on building, testing, and debugging CircuitPython, along with various

other useful links including the Adafruit Community Code of Conduct.

Whether you're a seasoned pro or new to electronics and programming, you'll find a

wealth of information to help you along your CircuitPython journey in the

documentation!

©Adafruit Industries Page 58 of 199

CircuitPython Library Documentation

The Adafruit CircuitPython libraries are documented in a very similar fashion. Each

library has its own page on Read the Docs. There is a comprehensive list available her

e (). Otherwise, to view the documentation for a specific library, you can visit the

GitHub repository for the library, and find the link in the README.

For the purposes of this page, the LED Animation library () documentation will be

featured. There are two links to the documentation in each library GitHub repo. The

first one is the docs badge near the top of the README.

The second place is the Documentation section of the README. Scroll down to find it,

and click on Read the Docs to get to the documentation.

Now that you know how to find it, it's time to take a look at what to expect.

The Introduction page is generated from the README, so it includes all the same info,

such as PyPI installation instructions, a quick demo, and some build details. It also

includes a full table of contents for the rest of the documentation (which is not part of

the GitHub README). The page should look something like the following.

The left side contains links to the rest of the documentation, divided into three

separate sections: Examples, API Reference, and Other Links.

Not all library documentation will look exactly the same, but this will give you

some idea of what to expect from library docs.

©Adafruit Industries Page 59 of 199

https://circuitpython.readthedocs.io/projects/bundle/en/latest/
https://circuitpython.readthedocs.io/projects/bundle/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_LED_Animation

Examples

The Examples section () is a list of library examples. This list contains anywhere from a

small selection to the full list of the examples available for the library.

This section will always contain at least one example - the simple test example.

The simple test example is usually a basic example designed to show your setup is

working. It may require other libraries to run. Keep in mind, it's simple - it won't

showcase a comprehensive use of all the library features.

The LED Animation simple test demonstrates the Blink animation.

In some cases, you'll find a longer list, that may include examples that explore other

features in the library. The LED Animation documentation includes a series of

examples, all of which are available in the library. These examples include

demonstrations of both basic and more complex features. Simply click on the example

that interests you to view the associated code.

©Adafruit Industries Page 60 of 199

https://circuitpython.readthedocs.io/projects/led-animation/en/latest/examples.html

You can view the rest of the examples by clicking through the list or scrolling down

the page. These examples are fully working code. Which is to say, while they may rely

on other libraries as well as the library for which you are viewing the documentation,

they should not require modification to otherwise work.

API Reference

The API Reference section () includes a list of the library functions and classes. The

API (Application Programming Interface) of a library is the set of functions and classes

the library provides. Essentially, the API defines how your program interfaces with the

functions and classes that you call in your code to use the library.

There is always at least one list item included. Libraries for which the code is included

in a single Python (.py) file, will only have one item. Libraries for which the code is

multiple Python files in a directory (called subpackages) will have multiple items in this

list. The LED Animation library has a series of subpackages, and therefore, multiple

items in this list.

Click on the first item in the list to begin viewing the API Reference section.

When you click on an item in the API Reference section, you'll find details about the

classes and functions in the library. In the case of only one item in this section, all the

When there are multiple links in the Examples section, all of the example content

is, in actuality, on the same page. Each link after the first is an anchor link to the

specified section of the page. Therefore, you can also view all the available

examples by scrolling down the page.

As with the Examples section, all of the API Reference content is on a single

page, and the links under API Reference are anchor links to the specified section

of the page.

©Adafruit Industries Page 61 of 199

https://circuitpython.readthedocs.io/projects/led-animation/en/latest/api.html

available functionality of the library will be contained within that first and only

subsection. However, in the case of a library that has subpackages, each item will

contain the features of the particular subpackage indicated by the link. The

documentation will cover all of the available functions of the library, including more

complex ones that may not interest you.

The first list item is the animation subpackage. If you scroll down, you'll begin to see

the available features of animation. They are listed alphabetically. Each of these

things can be called in your code. It includes the name and a description of the

specific function you would call, and if any parameters are necessary, lists those with

a description as well.

You can view the other subpackages by clicking the link on the left or scrolling down

the page. You may be interested in something a little more practical. Here is an

example. To use the LED Animation library Comet animation, you would run the

following example.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: MIT

"""

This example animates a jade comet that bounces from end to end of the strip.

For QT Py Haxpress and a NeoPixel strip. Update pixel_pin and pixel_num to match

your wiring if

using a different board or form of NeoPixels.

This example will run on SAMD21 (M0) Express boards (such as Circuit Playground

Express or QT Py

Haxpress), but not on SAMD21 non-Express boards (such as QT Py or Trinket).

"""

import board

import neopixel

from adafruit_led_animation.animation.comet import Comet

from adafruit_led_animation.color import JADE

Update to match the pin connected to your NeoPixels

pixel_pin = board.A3

Update to match the number of NeoPixels you have connected

pixel_num = 30

©Adafruit Industries Page 62 of 199

pixels = neopixel.NeoPixel(pixel_pin, pixel_num, brightness=0.5, auto_write=False)

comet = Comet(pixels, speed=0.02, color=JADE, tail_length=10, bounce=True)

while True:

 comet.animate()

Note the line where you create the comet object. There are a number of items inside

the parentheses. In this case, you're provided with a fully working example. But what

if you want to change how the comet works? The code alone does not explain what

the options mean.

So, in the API Reference documentation list, click the

adafruit_led_animation.animation.comet link and scroll down a bit until you

see the following.

Look familiar? It is! This is the documentation for setting up the comet object. It

explains what each argument provided in the comet setup in the code meant, as well

as the other available features. For example, the code includes speed=0.02 . The

documentation clarifies that this is the "Animation speed in seconds". The code

doesn't include ring . The documentation indicates this is an available setting that

enables "Ring mode".

This type of information is available for any function you would set up in your code. If

you need clarification on something, wonder whether there's more options available,

or are simply interested in the details involved in the code you're writing, check out

the documentation for the CircuitPython libraries!

©Adafruit Industries Page 63 of 199

Other Links

This section is the same for every library. It includes a list of links to external sites,

which you can visit for more information about the CircuitPython Project and Adafruit.

That covers the CircuitPython library documentation! When you are ready to go

beyond the basic library features covered in a guide, or you're interested in

understanding those features better, the library documentation on Read the Docs has

you covered!

Recommended Editors

The CircuitPython code on your board detects when the files are changed or written

and will automatically re-start your code. This makes coding very fast because you

save, and it re-runs.

However, you must wait until the file is done being saved before unplugging or

resetting your board! On Windows using some editors this can sometimes take up to

90 seconds, on Linux it can take 30 seconds to complete because the text editor

does not save the file completely. Mac OS does not seem to have this delay, which is

nice!

This is really important to be aware of. If you unplug or reset the board before your

computer finishes writing the file to your board, you can corrupt the drive. If this

happens, you may lose the code you've written, so it's important to backup your code

to your computer regularly.

To avoid the likelihood of filesystem corruption, use an editor that writes out the file

completely when you save it. Check out the list of recommended editors below.

Recommended editors

mu () is an editor that safely writes all changes (it's also our recommended

editor!)

emacs () is also an editor that will fulIy write files on save ()

Sublime Text () safely writes all changes

Visual Studio Code () appears to safely write all changes

gedit on Linux appears to safely write all changes

IDLE (), in Python 3.8.1 or later, was fixed () to write all changes immediately

Thonny () fully writes files on save

•

•

•

•

•

•

•

©Adafruit Industries Page 64 of 199

https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor
https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/manual/html_node/emacs/Customize-Save.html
https://www.sublimetext.com/
https://code.visualstudio.com/
https://docs.python.org/3/library/idle.html
https://bugs.python.org/issue36807
https://thonny.org/

Recommended only with particular settings or add-ons

vim () / vi safely writes all changes. But set up vim to not write swapfiles () (.swp

files: temporary records of your edits) to CIRCUITPY. Run vim with vim -n , set

the no swapfile option, or set the directory option to write swapfiles

elsewhere. Otherwise the swapfile writes trigger restarts of your program.

The PyCharm IDE () is safe if "Safe Write" is turned on in Settings->System

Settings->Synchronization (true by default).

If you are using Atom (), install the fsync-on-save package () or the language-

circuitpython package () so that it will always write out all changes to files on CIR

CUITPY.

SlickEdit () works only if you add a macro to flush the disk ().

Editors that are NOT recommended

notepad (the default Windows editor) and Notepad++ can be slow to write, so

the editors above are recommended! If you are using notepad, be sure to eject

the drive.

IDLE in Python 3.8.0 or earlier does not force out changes immediately.

nano (on Linux) does not force out changes.

geany (on Linux) does not force out changes.

Anything else - Other editors have not been tested so please use a

recommended one!

Advanced Serial Console on Windows

Windows 7 and 8.1

If you're using Windows 7 (or 8 or 8.1), you'll need to install drivers. See the Windows 7

and 8.1 Drivers page () for details. You will not need to install drivers on Mac, Linux or

Windows 10.

You are strongly encouraged to upgrade to Windows 10 if you are still using Windows

7 or Windows 8 or 8.1. Windows 7 has reached end-of-life and no longer receives

security updates. A free upgrade to Windows 10 is still available ().

•

•

•

•

The editors listed below are specifically NOT recommended!

•

•

•

•

•

©Adafruit Industries Page 65 of 199

http://www.vim.org/
http://www.vim.org/
https://vi.stackexchange.com/a/179
https://www.jetbrains.com/pycharm/
https://atom.io/
https://atom.io/
https://atom.io/packages/fsync-on-save
https://atom.io/packages/language-circuitpython
https://atom.io/packages/language-circuitpython
https://www.slickedit.com/
https://www.slickedit.com/
https://forums.adafruit.com/viewtopic.php?f=57&t=144412#p713290
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://www.zdnet.com/article/heres-how-you-can-still-get-a-free-windows-10-upgrade/

What's the COM?

First, you'll want to find out which serial port your board is using. When you plug your

board in to USB on your computer, it connects to a serial port. The port is like a door

through which your board can communicate with your computer using USB.

You'll use Windows Device Manager to determine which port the board is using. The

easiest way to determine which port the board is using is to first check without the

board plugged in. Open Device Manager. Click on Ports (COM & LPT). You should find

something already in that list with (COM#) after it where # is a number.

Now plug in your board. The Device Manager list will refresh and a new item will

appear under Ports (COM & LPT). You'll find a different (COM#) after this item in the

list.

©Adafruit Industries Page 66 of 199

Sometimes the item will refer to the name of the board. Other times it may be called

something like USB Serial Device, as seen in the image above. Either way, there is a

new (COM#) following the name. This is the port your board is using.

Install Putty

If you're using Windows, you'll need to download a terminal program. You're going to

use PuTTY.

The first thing to do is download the latest version of PuTTY (). You'll want to

download the Windows installer file. It is most likely that you'll need the 64-bit version.

Download the file and install the program on your machine. If you run into issues, you

can try downloading the 32-bit version instead. However, the 64-bit version will work

on most PCs.

Now you need to open PuTTY.

Under Connection type: choose the button next to Serial.

In the box under Serial line, enter the serial port you found that your board is

using.

In the box under Speed, enter 115200. This called the baud rate, which is the

speed in bits per second that data is sent over the serial connection. For boards

with built in USB it doesn't matter so much but for ESP8266 and other board

with a separate chip, the speed required by the board is 115200 bits per second.

So you might as well just use 115200!

•

•

•

©Adafruit Industries Page 67 of 199

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

If you want to save those settings for later, use the options under Load, save or delete

a stored session. Enter a name in the box under Saved Sessions, and click the Save

button on the right.

Once your settings are entered, you're ready to connect to the serial console. Click

"Open" at the bottom of the window. A new window will open.

If no code is running, the window will either be blank or will look like the window

above. Now you're ready to see the results of your code.

©Adafruit Industries Page 68 of 199

Great job! You've connected to the serial console!

Advanced Serial Console on Mac

Connecting to the serial console on Mac does not require installing any drivers or

extra software. You'll use a terminal program to find your board, and screen to

connect to it. Terminal and screen both come installed by default.

What's the Port?

First you'll want to find out which serial port your board is using. When you plug your

board in to USB on your computer, it connects to a serial port. The port is like a door

through which your board can communicate with your computer using USB.

The easiest way to determine which port the board is using is to first check without

the board plugged in. Open Terminal and type the following:

ls /dev/tty.*

Each serial connection shows up in the /dev/ directory. It has a name that starts with

tty. . The command ls shows you a list of items in a directory. You can use * as a

wildcard, to search for files that start with the same letters but end in something

different. In this case, you're asking to see all of the listings in /dev/ that start with t

ty. and end in anything. This will show us the current serial connections.

Now, plug your board. In Terminal, type:

ls /dev/tty.*

©Adafruit Industries Page 69 of 199

This will show you the current serial connections, which will now include your board.

A new listing has appeared called /dev/tty.usbmodem141441 . The tty.usbmodem1

41441 part of this listing is the name the example board is using. Yours will be called

something similar.

Using Linux, a new listing has appeared called /dev/ttyACM0 . The ttyACM0 part of

this listing is the name the example board is using. Yours will be called something

similar.

Connect with screen

Now that you know the name your board is using, you're ready connect to the serial

console. You're going to use a command called screen . The screen command is

included with MacOS. To connect to the serial console, use Terminal. Type the

following command, replacing board_name with the name you found your board is

using:

screen /dev/tty.board_name 115200

The first part of this establishes using the screen command. The second part tells

screen the name of the board you're trying to use. The third part tells screen what

baud rate to use for the serial connection. The baud rate is the speed in bits per

second that data is sent over the serial connection. In this case, the speed required

by the board is 115200 bits per second.

©Adafruit Industries Page 70 of 199

Press enter to run the command. It will open in the same window. If no code is

running, the window will be blank. Otherwise, you'll see the output of your code.

Great job! You've connected to the serial console!

Advanced Serial Console on Linux

Connecting to the serial console on Linux does not require installing any drivers, but

you may need to install screen using your package manager. You'll use a terminal

program to find your board, and screen to connect to it. There are a variety of

terminal programs such as gnome-terminal (called Terminal) or Konsole on KDE.

The tio program works as well to connect to your board, and has the benefit of

automatically reconnecting. You would need to install it using your package manager.

What's the Port?

First you'll want to find out which serial port your board is using. When you plug your

board in to USB on your computer, it connects to a serial port. The port is like a door

through which your board can communicate with your computer using USB.

The easiest way to determine which port the board is using is to first check without

the board plugged in. Open your terminal program and type the following:

ls /dev/ttyACM*

Each serial connection shows up in the /dev/ directory. It has a name that starts with tt

yACM. The command ls shows you a list of items in a directory. You can use * as a

wildcard, to search for files that start with the same letters but end in something

©Adafruit Industries Page 71 of 199

different. In this case, You're asking to see all of the listings in /dev/ that start with ttyA

CM and end in anything. This will show us the current serial connections.

In the example below, the error is indicating that are no current serial connections

starting with ttyACM.

Now plug in your board. In your terminal program, type:

ls /dev/ttyACM*

This will show you the current serial connections, which will now include your board.

A new listing has appeared called /dev/ttyACM0. The ttyACM0 part of this listing is

the name the example board is using. Yours will be called something similar.

Connect with screen

Now that you know the name your board is using, you're ready connect to the serial

console. You'll use a command called screen . You may need to install it using the

package manager.

©Adafruit Industries Page 72 of 199

To connect to the serial console, use your terminal program. Type the following

command, replacing board_name with the name you found your board is using:

screen /dev/tty.board_name 115200

The first part of this establishes using the screen command. The second part tells

screen the name of the board you're trying to use. The third part tells screen what

baud rate to use for the serial connection. The baud rate is the speed in bits per

second that data is sent over the serial connection. In this case, the speed required

by the board is 115200 bits per second.

Press enter to run the command. It will open in the same window. If no code is

running, the window will be blank. Otherwise, you'll see the output of your code.

Great job! You've connected to the serial console!

Permissions on Linux

If you try to run screen and it doesn't work, then you may be running into an issue

with permissions. Linux keeps track of users and groups and what they are allowed to

do and not do, like access the hardware associated with the serial connection for

running screen . So if you see something like this:

then you may need to grant yourself access. There are generally two ways you can do

this. The first is to just run screen using the sudo command, which temporarily

gives you elevated privileges.

©Adafruit Industries Page 73 of 199

Once you enter your password, you should be in:

The second way is to add yourself to the group associated with the hardware. To

figure out what that group is, use the command ls -l as shown below. The group

name is circled in red.

Then use the command adduser to add yourself to that group. You need elevated

privileges to do this, so you'll need to use sudo . In the example below, the group is a

dm and the user is ackbar.

After you add yourself to the group, you'll need to logout and log back in, or in some

cases, reboot your machine. After you log in again, verify that you have been added

to the group using the command groups . If you are still not in the group, reboot and

check again.

And now you should be able to run screen without using sudo .

©Adafruit Industries Page 74 of 199

And you're in:

The examples above use screen , but you can also use other programs, such as put

ty or picocom , if you prefer.

Frequently Asked Questions

These are some of the common questions regarding CircuitPython and CircuitPython

microcontrollers.

What are some common acronyms to know?

CP or CPy = CircuitPython ()

CPC = Circuit Playground Classic () (does not run CircuitPython)

CPX = Circuit Playground Express ()

CPB = Circuit Playground Bluefruit ()

Using Older Versions

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to

download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

©Adafruit Industries Page 75 of 199

https://circuitpython.org
https://www.adafruit.com/product/3000
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/4333
https://circuitpython.org/downloads
https://circuitpython.org/libraries

I have to continue using CircuitPython 7.x or earlier.

Where can I find compatible libraries?

We are no longer building or supporting the CircuitPython 7.x or earlier library

bundles. We highly encourage you to update CircuitPython to the latest version ()

and use the current version of the libraries (). However, if for some reason you

cannot update, here are the last available library bundles for older versions:

2.x bundle ()

3.x bundle ()

4.x bundle ()

5.x bundle ()

6.x bundle ()

7.x bundle ()

Python Arithmetic

Does CircuitPython support floating-point numbers?

All CircuitPython boards support floating point arithmetic, even if the

microcontroller chip does not support floating point in hardware. Floating point

numbers are stored in 30 bits, with an 8-bit exponent and a 22-bit mantissa. Note

that this is two bits less than standard 32-bit single-precision floats. You will get

about 5-1/2 digits of decimal precision.

(The broadcom port may provide 64-bit floats in some cases.)

Does CircuitPython support long integers, like regular

Python?

Python long integers (integers of arbitrary size) are available on most builds, except

those on boards with the smallest available firmware size. On these boards,

integers are stored in 31 bits.

Boards without long integer support are mostly SAMD21 ("M0") boards without an

external flash chip, such as the Adafruit Gemma M0, Trinket M0, QT Py M0, and the

Trinkey series. There are also a number of third-party boards in this category.

There are also a few small STM third-party boards without long integer support.

time.localtime() , time.mktime() , time.time() , and

time.monotonic_ns() are available only on builds with long integers.

•

•

•

•

•

•

©Adafruit Industries Page 76 of 199

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-2.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-3.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20200707/adafruit-circuitpython-bundle-4.x-mpy-20200707.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20210129/adafruit-circuitpython-bundle-5.x-mpy-20210129.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20211213/adafruit-circuitpython-bundle-6.x-mpy-20211213.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20231003/adafruit-circuitpython-bundle-7.x-mpy-20231003.zip

Wireless Connectivity

How do I connect to the Internet with CircuitPython?

If you'd like to include WiFi in your project, your best bet is to use a board that is

running natively on ESP32 chipsets - those have WiFi built in!

If your development board has an SPI port and at least 4 additional pins, you can

check out this guide () on using AirLift with CircuitPython - extra wiring is required

and some boards like the MacroPad or NeoTrellis do not have enough available

pins to add the hardware support.

For further project examples, and guides about using AirLift with specific hardware,

check out the Adafruit Learn System ().

How do I do BLE (Bluetooth Low Energy) with

CircuitPython?

The nRF52840 and nRF52833 boards have the most complete BLE

implementation. Your program can act as both a BLE central and peripheral. As a

central, you can scan for advertisements, and connect to an advertising board. As a

peripheral, you can advertise, and you can create services available to a central.

Pairing and bonding are supported.

ESP32-C3 and ESP32-S3 boards currently provide an incomplete () BLE

implementation. Your program can act as a central, and connect to a peripheral.

You can advertise, but you cannot create services. You cannot advertise

anonymously. Pairing and bonding are not supported.

The ESP32 could provide a similar implementation, but it is not yet available. Note

that the ESP32-S2 does not have Bluetooth capability.

On most other boards with adequate firmware space, BLE is available for use with

AirLift () or other NINA-FW-based co-processors. Some boards have this

coprocessor on board, such as the PyPortal (). Currently, this implementation only

supports acting as a BLE peripheral. Scanning and connecting as a central are not

yet implemented. Bonding and pairing are not supported.

©Adafruit Industries Page 77 of 199

https://learn.adafruit.com/adafruit-io-basics-airlift
https://learn.adafruit.com/search?q=airlift
https://github.com/adafruit/circuitpython/issues/5926
https://learn.adafruit.com/adafruit-airlift-breakout/circuitpython-ble
https://learn.adafruit.com/adafruit-airlift-breakout/circuitpython-ble
https://learn.adafruit.com/adafruit-pyportal/circuitpython-ble

Are there other ways to communicate by radio with

CircuitPython?

Check out Adafruit's RFM boards ()for simple radio communication supported by

CircuitPython, which can be used over distances of 100m to over a km, depending

on the version. The RFM SAMD21 M0 boards can be used, but they were not

designed for CircuitPython, and have limited RAM and flash space; using the RFM

breakouts or FeatherWings with more capable boards will be easier.

Asyncio and Interrupts

Is there asyncio support in CircuitPython?

There is support for asyncio starting with CircuitPython 7.1.0, on all boards except

the smallest SAMD21 builds. Read about using it in the Cooperative Multitasking in

CircuitPython () Guide.

Does CircuitPython support interrupts?

No. CircuitPython does not currently support interrupts - please use asyncio for

multitasking / 'threaded' control of your code

Status RGB LED

My RGB NeoPixel/DotStar LED is blinking funny colors -

what does it mean?

The status LED can tell you what's going on with your CircuitPython board. Read

more here for what the colors mean! ()

Memory Issues

What is a MemoryError?

Memory allocation errors happen when you're trying to store too much on the

board. The CircuitPython microcontroller boards have a limited amount of memory

available. You can have about 250 lines of code on the M0 Express boards. If you

try to import too many libraries, a combination of large libraries, or run a program

with too many lines of code, your code will fail to run and you will receive a

MemoryError in the serial console.

©Adafruit Industries Page 78 of 199

https://www.adafruit.com/?q=rfm&sort=BestMatch
https://learn.adafruit.com/cooperative-multitasking-in-circuitpython
https://learn.adafruit.com/cooperative-multitasking-in-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#circuitpython-rgb-status-light-2978455-24
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#circuitpython-rgb-status-light-2978455-24

What do I do when I encounter a MemoryError?

Try resetting your board. Each time you reset the board, it reallocates the memory.

While this is unlikely to resolve your issue, it's a simple step and is worth trying.

Make sure you are using .mpy versions of libraries. All of the CircuitPython libraries

are available in the bundle in a .mpy format which takes up less memory than .py

format. Be sure that you're using the latest library bundle () for your version of

CircuitPython.

If that does not resolve your issue, try shortening your code. Shorten comments,

remove extraneous or unneeded code, or any other clean up you can do to

shorten your code. If you're using a lot of functions, you could try moving those

into a separate library, creating a .mpy of that library, and importing it into your

code.

You can turn your entire file into a .mpy and import that into code.py. This means

you will be unable to edit your code live on the board, but it can save you space.

Can the order of my import statements affect memory?

It can because the memory gets fragmented differently depending on allocation

order and the size of objects. Loading .mpy files uses less memory so its

recommended to do that for files you aren't editing.

How can I create my own .mpy files?

You can make your own .mpy versions of files with mpy-cross .

You can download mpy-cross for your operating system from here (). Builds are

available for Windows, macOS, x64 Linux, and Raspberry Pi Linux. Choose the

latest mpy-cross whose version matches the version of CircuitPython you are

using.

To make a .mpy file, run ./mpy-cross path/to/yourfile.py to create a

yourfile.mpy in the same directory as the original file.

How do I check how much memory I have free?

Run the following to see the number of bytes available for use:

©Adafruit Industries Page 79 of 199

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://adafruit-circuit-python.s3.amazonaws.com/index.html?prefix=bin/mpy-cross/

import gc

gc.mem_free()

Unsupported Hardware

Is ESP8266 or ESP32 supported in CircuitPython? Why

not?

We dropped ESP8266 support as of 4.x - For more information please read about it

here ()!

As of CircuitPython 8.x we have started to support ESP32 and ESP32-C3 and have

added a WiFi workflow for wireless coding! ()

We also support ESP32-S2 & ESP32-S3, which have native USB.

Does Feather M0 support WINC1500?

No, WINC1500 will not fit into the M0 flash space.

Can AVRs such as ATmega328 or ATmega2560 run

CircuitPython?

No.

Troubleshooting

From time to time, you will run into issues when working with CircuitPython. Here are

a few things you may encounter and how to resolve them.

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to

download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

©Adafruit Industries Page 80 of 199

https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-for-esp8266
https://learn.adafruit.com/circuitpython-with-esp32-quick-start
https://learn.adafruit.com/circuitpython-with-esp32-quick-start
https://circuitpython.org/downloads
https://circuitpython.org/libraries

Always Run the Latest Version of

CircuitPython and Libraries

As CircuitPython development continues and there are new releases, Adafruit will

stop supporting older releases. You need to update to the latest CircuitPython. ().

You need to download the CircuitPython Library Bundle that matches your version of

CircuitPython. Please update CircuitPython and then download the latest bundle ().

As new versions of CircuitPython are released, Adafruit will stop providing the

previous bundles as automatically created downloads on the Adafruit CircuitPython

Library Bundle repo. If you must continue to use an earlier version, you can still

download the appropriate version of mpy-cross from the particular release of

CircuitPython on the CircuitPython repo and create your own compatible .mpy library

files. However, it is best to update to the latest for both CircuitPython and the library

bundle.

I have to continue using CircuitPython 7.x or earlier.

Where can I find compatible libraries?

Adafruit is no longer building or supporting the CircuitPython 7.x or earlier library

bundles. You are highly encourged to update CircuitPython to the latest version () and

use the current version of the libraries (). However, if for some reason you cannot

update, links to the previous bundles are available in the FAQ ().

Bootloader (boardnameBOOT) Drive Not

Present

You may have a different board.

Only Adafruit Express boards and the SAMD21 non-Express boards ship with the UF2

bootloader ()installed. The Feather M0 Basic, Feather M0 Adalogger, and similar

boards use a regular Arduino-compatible bootloader, which does not show a boardna

meBOOT drive.

©Adafruit Industries Page 81 of 199

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://learn.adafruit.com/welcome-to-circuitpython/frequently-asked-questions#faq-3105289
file:///home/deploy/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader
file:///home/deploy/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader

MakeCode

If you are running a MakeCode () program on Circuit Playground Express, press the

reset button just once to get the CPLAYBOOT drive to show up. Pressing it twice will

not work.

macOS

DriveDx and its accompanything SAT SMART Driver can interfere with seeing the

BOOT drive. See this forum post () for how to fix the problem.

Windows 10

Did you install the Adafruit Windows Drivers package by mistake, or did you upgrade

to Windows 10 with the driver package installed? You don't need to install this

package on Windows 10 for most Adafruit boards. The old version (v1.5) can interfere

with recognizing your device. Go to Settings -> Apps and uninstall all the "Adafruit"

driver programs.

Windows 7 or 8.1

To use a CircuitPython-compatible board with Windows 7 or 8.1, you must install a

driver. Installation instructions are available here ().

It is recommended () that you upgrade to Windows 10 if possible; an upgrade is

probably still free for you. Check here ().

You should now be done! Test by unplugging and replugging the board. You should

see the CIRCUITPY drive, and when you double-click the reset button (single click on

Circuit Playground Express running MakeCode), you should see the appropriate boar

dnameBOOT drive.

Let us know in the Adafruit support forums () or on the Adafruit Discord () if this does

not work for you!

The Windows Drivers installer was last updated in November 2020 (v2.5.0.0) .

Windows 7 drivers for CircuitPython boards released since then, including

RP2040 boards, are not available. There are no plans to release drivers for new

boards. The boards work fine on Windows 10.

©Adafruit Industries Page 82 of 199

file:///home/deploy/makecode/sharing-and-saving?view=all#step-1-bootloader-mode
https://forums.adafruit.com/viewtopic.php?f=58&t=161917&p=799309#p799215
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://forums.adafruit.com
https://adafru.it/discord

Windows Explorer Locks Up When

Accessing boardnameBOOT Drive

On Windows, several third-party programs that can cause issues. The symptom is that

you try to access the boardnameBOOT drive, and Windows or Windows Explorer

seems to lock up. These programs are known to cause trouble:

AIDA64: to fix, stop the program. This problem has been reported to AIDA64.

They acquired hardware to test, and released a beta version that fixes the

problem. This may have been incorporated into the latest release. Please let us

know in the forums if you test this.

Hard Disk Sentinel

Kaspersky anti-virus: To fix, you may need to disable Kaspersky completely.

Disabling some aspects of Kaspersky does not always solve the problem. This

problem has been reported to Kaspersky.

ESET NOD32 anti-virus: There have been problems with at least version

9.0.386.0, solved by uninstallation.

Copying UF2 to boardnameBOOT Drive

Hangs at 0% Copied

On Windows, a Western DIgital (WD) utility that comes with their external USB drives

can interfere with copying UF2 files to the boardnameBOOT drive. Uninstall that utility

to fix the problem.

CIRCUITPY Drive Does Not Appear or

Disappears Quickly

Kaspersky anti-virus can block the appearance of the CIRCUITPY drive. There has not

yet been settings change discovered that prevents this. Complete uninstallation of

Kaspersky fixes the problem.

Norton anti-virus can interfere with CIRCUITPY. A user has reported this problem on

Windows 7. The user turned off both Smart Firewall and Auto Protect, and CIRCUITPY

then appeared.

Sophos Endpoint security software can cause CIRCUITPY to disappear () and the

BOOT drive to reappear. It is not clear what causes this behavior.

•

•

•

•

©Adafruit Industries Page 83 of 199

https://forums.adafruit.com/viewtopic.php?f=60&t=187629

Samsung Magician can cause CIRCUITPY to disappear (reported here () and here ()).

Device Errors or Problems on Windows

Windows can become confused about USB device installations. This is particularly

true of Windows 7 and 8.1. It is recommended () that you upgrade to Windows 10 if

possible; an upgrade is probably still free for you: see this link ().

If not, try cleaning up your USB devices. Use Uwe Sieber's Device Cleanup Tool () (on

that page, scroll down to "Device Cleanup Tool"). Download and unzip the tool.

Unplug all the boards and other USB devices you want to clean up. Run the tool as

Administrator. You will see a listing like this, probably with many more devices. It is

listing all the USB devices that are not currently attached.

Select all the devices you want to remove, and then press Delete. It is usually safe

just to select everything. Any device that is removed will get a fresh install when you

plug it in. Using the Device Cleanup Tool also discards all the COM port assignments

for the unplugged boards. If you have used many Arduino and CircuitPython boards,

you have probably seen higher and higher COM port numbers used, seemingly

without end. This will fix that problem.

Serial Console in Mu Not Displaying

Anything

There are times when the serial console will accurately not display anything, such as,

when no code is currently running, or when code with no serial output is already

running before you open the console. However, if you find yourself in a situation

where you feel it should be displaying something like an error, consider the following.

©Adafruit Industries Page 84 of 199

https://forums.adafruit.com/viewtopic.php?t=205159
https://forums.adafruit.com/viewtopic.php?p=987596#p987596
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://www.cnet.com/tech/services-and-software/windows-10-download/
https://www.uwe-sieber.de/misc_tools_e.html

Depending on the size of your screen or Mu window, when you open the serial

console, the serial console panel may be very small. This can be a problem. A basic

CircuitPython error takes 10 lines to display!

Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.

code.py output:

Traceback (most recent call last):

 File "code.py", line 7

SyntaxError: invalid syntax

Press any key to enter the REPL. Use CTRL-D to reload.

More complex errors take even more lines!

Therefore, if your serial console panel is five lines tall or less, you may only see blank

lines or blank lines followed by Press any key to enter the REPL. Use CTRL-D

to reload. . If this is the case, you need to either mouse over the top of the panel to

utilise the option to resize the serial panel, or use the scrollbar on the right side to

scroll up and find your message.

This applies to any kind of serial output whether it be error messages or print

statements. So before you start trying to debug your problem on the hardware side,

be sure to check that you haven't simply missed the serial messages due to serial

output panel height.

code.py Restarts Constantly

CircuitPython will restart code.py if you or your computer writes to something on the

CIRCUITPY drive. This feature is called auto-reload, and lets you test a change to your

program immediately.

Some utility programs, such as backup, anti-virus, or disk-checking apps, will write to

the CIRCUITPY as part of their operation. Sometimes they do this very frequently,

causing constant restarts.

Acronis True Image and related Acronis programs on Windows are known to cause

this problem. It is possible to prevent this by disabling the " ()Acronis Managed

Machine Service Mini" ().

©Adafruit Industries Page 85 of 199

https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder
https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder
https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder

If you cannot stop whatever is causing the writes, you can disable auto-reload by

putting this code in boot.py or code.py:

import supervisor

supervisor.runtime.autoreload = False

CircuitPython RGB Status Light

Nearly all CircuitPython-capable boards have a single NeoPixel or DotStar RGB LED

on the board that indicates the status of CircuitPython. A few boards designed before

CircuitPython existed, such as the Feather M0 Basic, do not.

Circuit Playground Express and Circuit Playground Bluefruit have multiple RGB LEDs,

but do NOT have a status LED. The LEDs are all green when in the bootloader. In

versions before 7.0.0, they do NOT indicate any status while running CircuitPython.

CircuitPython 7.0.0 and Later

The status LED blinks were changed in CircuitPython 7.0.0 in order to save battery

power and simplify the blinks. These blink patterns will occur on single color LEDs

when the board does not have any RGB LEDs. Speed and blink count also vary for

this reason.

On start up, the LED will blink YELLOW multiple times for 1 second. Pressing the

RESET button (or on Espressif, the BOOT button) during this time will restart the board

and then enter safe mode. On Bluetooth capable boards, after the yellow blinks, there

will be a set of faster blue blinks. Pressing reset during the BLUE blinks will clear

Bluetooth information and start the device in discoverable mode, so it can be used

with a BLE code editor.

Once started, CircuitPython will blink a pattern every 5 seconds when no user code is

running to indicate why the code stopped:

1 GREEN blink: Code finished without error.

2 RED blinks: Code ended due to an exception. Check the serial console for

details.

3 YELLOW blinks: CircuitPython is in safe mode. No user code was run. Check

the serial console for safe mode reason.

•

•

•

©Adafruit Industries Page 86 of 199

When in the REPL, CircuitPython will set the status LED to WHITE. You can change the

LED color from the REPL. The status indicator will not persist on non-NeoPixel or

DotStar LEDs.

CircuitPython 6.3.0 and earlier

Here's what the colors and blinking mean:

steady GREEN: code.py (or code.txt, main.py, or main.txt) is running

pulsing GREEN: code.py (etc.) has finished or does not exist

steady YELLOW at start up: (4.0.0-alpha.5 and newer) CircuitPython is waiting for

a reset to indicate that it should start in safe mode

pulsing YELLOW: Circuit Python is in safe mode: it crashed and restarted

steady WHITE: REPL is running

steady BLUE: boot.py is running

Colors with multiple flashes following indicate a Python exception and then indicate

the line number of the error. The color of the first flash indicates the type of error:

GREEN: IndentationError

CYAN: SyntaxError

WHITE: NameError

ORANGE: OSError

PURPLE: ValueError

YELLOW: other error

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 87 of 199

These are followed by flashes indicating the line number, including place value. WHIT

E flashes are thousands' place, BLUE are hundreds' place, YELLOW are tens' place,

and CYAN are one's place. So for example, an error on line 32 would flash YELLOW

three times and then CYAN two times. Zeroes are indicated by an extra-long dark gap.

Serial console showing ValueError:

Incompatible .mpy file

This error occurs when importing a module that is stored as a .mpy binary file that

was generated by a different version of CircuitPython than the one its being loaded

into. In particular, the mpy binary format changed between CircuitPython versions 6.x

and 7.x, 2.x and 3.x, and 1.x and 2.x.

So, for instance, if you upgraded to CircuitPython 7.x from 6.x you’ll need to download

a newer version of the library that triggered the error on import . All libraries are

available in the Adafruit bundle ().

CIRCUITPY Drive Issues

You may find that you can no longer save files to your CIRCUITPY drive. You may find

that your CIRCUITPY stops showing up in your file explorer, or shows up as NO_NAM

E. These are indicators that your filesystem has issues. When the CIRCUITPY disk is

not safely ejected before being reset by the button or being disconnected from USB,

it may corrupt the flash drive. It can happen on Windows, Mac or Linux, though it is

more common on Windows.

©Adafruit Industries Page 88 of 199

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest

Be aware, if you have used Arduino to program your board, CircuitPython is no longer

able to provide the USB services. You will need to reload CircuitPython to resolve this

situation.

The easiest first step is to reload CircuitPython. Double-tap reset on the board so you

get a boardnameBOOT drive rather than a CIRCUITPY drive, and copy the latest

version of CircuitPython (.uf2) back to the board. This may restore CIRCUITPY

functionality.

If reloading CircuitPython does not resolve your issue, the next step is to try putting

the board into safe mode.

Safe Mode

Whether you've run into a situation where you can no longer edit your code.py on

your CIRCUITPY drive, your board has gotten into a state where CIRCUITPY is read-

only, or you have turned off the CIRCUITPY drive altogether, safe mode can help.

Safe mode in CircuitPython does not run any user code on startup, and disables auto-

reload. This means a few things. First, safe mode bypasses any code in boot.py

(where you can set CIRCUITPY read-only or turn it off completely). Second, it does not

run the code in code.py. And finally, it does not automatically soft-reload when data is

written to the CIRCUITPY drive.

Therefore, whatever you may have done to put your board in a non-interactive state,

safe mode gives you the opportunity to correct it without losing all of the data on the

CIRCUITPY drive.

Entering Safe Mode in CircuitPython 7.x and Later

To enter safe mode when using CircuitPython 7.x, plug in your board or hit reset

(highlighted in red above). Immediately after the board starts up or resets, it waits

1000ms. On some boards, the onboard status LED will blink yellow during that time. If

you press reset during that 1000ms, the board will start up in safe mode. It can be

difficult to react to the yellow LED, so you may want to think of it simply as a "slow"

double click of the reset button. (Remember, a fast double click of reset enters the

bootloader.)

©Adafruit Industries Page 89 of 199

Entering Safe Mode in CircuitPython 6.x

To enter safe mode when using CircuitPython 6.x, plug in your board or hit reset

(highlighted in red above). Immediately after the board starts up or resets, it waits

700ms. On some boards, the onboard status LED (highlighted in green above) will

turn solid yellow during this time. If you press reset during that 700ms, the board will

start up in safe mode. It can be difficult to react to the yellow LED, so you may want to

think of it simply as a slow double click of the reset button. (Remember, a fast double

click of reset enters the bootloader.)

In Safe Mode

Once you've entered safe mode successfully in CircuitPython 6.x, the LED will pulse

yellow.

If you successfully enter safe mode on CircuitPython 7.x, the LED will intermittently

blink yellow three times.

If you connect to the serial console, you'll find the following message.

Auto-reload is off.

Running in safe mode! Not running saved code.

CircuitPython is in safe mode because you pressed the reset button during boot.

Press again to exit safe mode.

Press any key to enter the REPL. Use CTRL-D to reload.

You can now edit the contents of the CIRCUITPY drive. Remember, your code will not

run until you press the reset button, or unplug and plug in your board, to get out of

safe mode.

At this point, you'll want to remove any user code in code.py and, if present, the boot.

py file from CIRCUITPY. Once removed, tap the reset button, or unplug and plug in

your board, to restart CircuitPython. This will restart the board and may resolve your

drive issues. If resolved, you can begin coding again as usual.

If safe mode does not resolve your issue, the board must be completely erased and

CircuitPython must be reloaded onto the board.

You WILL lose everything on the board when you complete the following steps. If

possible, make a copy of your code before continuing.

©Adafruit Industries Page 90 of 199

To erase CIRCUITPY: storage.erase_filesystem()

CircuitPython includes a built-in function to erase and reformat the filesystem. If you

have a version of CircuitPython older than 2.3.0 on your board, you can update to the

newest version () to do this.

Connect to the CircuitPython REPL () using Mu or a terminal program.

Type the following into the REPL:

>>> import storage

>>> storage.erase_filesystem()

CIRCUITPY will be erased and reformatted, and your board will restart. That's it!

Erase CIRCUITPY Without Access to the REPL

If you can't access the REPL, or you're running a version of CircuitPython previous to

2.3.0 and you don't want to upgrade, there are options available for some specific

boards.

The options listed below are considered to be the "old way" of erasing your board.

The method shown above using the REPL is highly recommended as the best method

for erasing your board.

For the specific boards listed below:

If the board you are trying to erase is listed below, follow the steps to use the file to

erase your board.

 1. Download the correct erase file:

Circuit Playground Express

Feather M0 Express

Feather M4 Express

1.

2.

If at all possible, it is recommended to use the REPL to erase your CIRCUITPY

drive. The REPL method is explained above.

©Adafruit Industries Page 91 of 199

file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/kattni-connecting-to-the-serial-console
https://cdn-learn.adafruit.com/assets/assets/000/048/745/original/flash_erase_express.ino.circuitplay.uf2?1512152080
https://cdn-learn.adafruit.com/assets/assets/000/048/746/original/flash_erase_express.ino.feather_m0_express.uf2?1512152098
https://cdn-learn.adafruit.com/assets/assets/000/076/217/original/flash_erase.ino.feather_m4.uf2

Metro M0 Express

Metro M4 Express QSPI Eraser

Trellis M4 Express (QSPI)

Grand Central M4 Express (QSPI)

PyPortal M4 Express (QSPI)

Circuit Playground Bluefruit (QSPI)

Monster M4SK (QSPI)

PyBadge/PyGamer QSPI Eraser.UF2

CLUE_Flash_Erase.UF2

Matrix_Portal_M4_(QSPI).UF2

RP2040 boards (flash_nuke.uf2)

 2. Double-click the reset button on the board to bring up the boardnameBOOT

drive.

 3. Drag the erase .uf2 file to the boardnameBOOT drive.

 4. The status LED will turn yellow or blue, indicating the erase has started.

 5. After approximately 15 seconds, the status LED will light up green. On the

NeoTrellis M4 this is the first NeoPixel on the grid

 6. Double-click the reset button on the board to bring up the boardnameBOOT d

rive.

 7. Drag the appropriate latest release of CircuitPython () .uf2 file to the boardnam

eBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer

again.

©Adafruit Industries Page 92 of 199

https://cdn-learn.adafruit.com/assets/assets/000/048/747/original/flash_erase_express.ino.metro_m0.uf2?1512152103
https://cdn-learn.adafruit.com/assets/assets/000/073/820/original/Metro_M4_QSPI_Eraser.UF2?1553805937
https://cdn-learn.adafruit.com/assets/assets/000/067/535/original/Trellis_M4_QSPI_Eraser.UF2?1544719380
https://cdn-learn.adafruit.com/assets/assets/000/069/314/original/GC_M4_QSPI_Erase.UF2?1547404471
https://cdn-learn.adafruit.com/assets/assets/000/072/252/original/PYPORTAL_QSPI_Eraser.UF2?1551738305
https://cdn-learn.adafruit.com/assets/assets/000/082/950/original/CP_Bluefruit_QSPI_Erase.UF2?1572026649
https://cdn-learn.adafruit.com/assets/assets/000/083/330/original/M4SK_QSPI_Eraser.UF2?1572551433
https://cdn-learn.adafruit.com/assets/assets/000/083/331/original/PyBadge_QSPI_Eraser.UF2?1572551613
https://cdn-learn.adafruit.com/assets/assets/000/088/454/original/CLUE_Flash_Erase.UF2?1581873830
https://cdn-learn.adafruit.com/assets/assets/000/098/741/original/Matrix_Portal_M4_%28QSPI%29.UF2?1611076081
https://cdn-learn.adafruit.com/assets/assets/000/101/659/original/flash_nuke.uf2
https://circuitpython.org/downloads

If the LED flashes red during step 5, it means the erase has failed. Repeat the steps

starting with 2.

If you haven't already downloaded the latest release of CircuitPython for your board,

check out the installation page (). You'll also need to load your code and reinstall your

libraries!

For SAMD21 non-Express boards that have a UF2

bootloader:

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. Non-Express boards that have a UF2

bootloader include Trinket M0, GEMMA M0, QT Py M0, and the SAMD21-based

Trinkey boards.

If you are trying to erase a SAMD21 non-Express board, follow these steps to erase

your board.

 1. Download the erase file:

SAMD21 non-Express Boards

 2. Double-click the reset button on the board to bring up the boardnameBOOT

drive.

 3. Drag the erase .uf2 file to the boardnameBOOT drive.

 4. The boot LED will start flashing again, and the boardnameBOOT drive will

reappear.

 5. Drag the appropriate latest release CircuitPython () .uf2 file to the

boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer

again.

If you haven't already downloaded the latest release of CircuitPython for your board,

check out the installation page () YYou'll also need to load your code and reinstall

your libraries!

©Adafruit Industries Page 93 of 199

file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
https://cdn-learn.adafruit.com/assets/assets/000/048/748/original/erase_m0.uf2
https://circuitpython.org/downloads
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython

For SAMD21 non-Express boards that do not have a UF2

bootloader:

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. Non-Express boards that do not have a

UF2 bootloader include the Feather M0 Basic Proto, Feather Adalogger, or the

Arduino Zero.

If you are trying to erase a non-Express board that does not have a UF2 bootloader, f

ollow these directions to reload CircuitPython using bossac (), which will erase and

re-create CIRCUITPY.

Running Out of File Space on SAMD21 Non-

Express Boards

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. This includes boards like the Trinket M0,

GEMMA M0, QT Py M0, and the SAMD21-based Trinkey boards.

The file system on the board is very tiny. (Smaller than an ancient floppy disk.) So, its

likely you'll run out of space but don't panic! There are a number of ways to free up

space.

Delete something!

The simplest way of freeing up space is to delete files from the drive. Perhaps there

are libraries in the lib folder that you aren't using anymore or test code that isn't in

use. Don't delete the lib folder completely, though, just remove what you don't need.

The board ships with the Windows 7 serial driver too! Feel free to delete that if you

don't need it or have already installed it. It's ~12KiB or so.

©Adafruit Industries Page 94 of 199

file:///home/welcome-to-circuitpython/non-uf2-installation
file:///home/welcome-to-circuitpython/non-uf2-installation
file:///home/welcome-to-circuitpython/non-uf2-installation

Use tabs

One unique feature of Python is that the indentation of code matters. Usually the

recommendation is to indent code with four spaces for every indent. In general, that

is recommended too. However, one trick to storing more human-readable code is to

use a single tab character for indentation. This approach uses 1/4 of the space for

indentation and can be significant when you're counting bytes.

On MacOS?

MacOS loves to generate hidden files. Luckily you can disable some of the extra

hidden files that macOS adds by running a few commands to disable search indexing

and create zero byte placeholders. Follow the steps below to maximize the amount of

space available on macOS.

Prevent & Remove MacOS Hidden Files

First find the volume name for your board. With the board plugged in run this

command in a terminal to list all the volumes:

ls -l /Volumes

Look for a volume with a name like CIRCUITPY (the default for CircuitPython). The full

path to the volume is the /Volumes/CIRCUITPY path.

Now follow the steps from this question () to run these terminal commands that stop

hidden files from being created on the board:

mdutil -i off /Volumes/CIRCUITPY

cd /Volumes/CIRCUITPY

rm -rf .{,_.}{fseventsd,Spotlight-V*,Trashes}

mkdir .fseventsd

touch .fseventsd/no_log .metadata_never_index .Trashes

cd -

Replace /Volumes/CIRCUITPY in the commands above with the full path to your

board's volume if it's different. At this point all the hidden files should be cleared from

the board and some hidden files will be prevented from being created.

Alternatively, with CircuitPython 4.x and above, the special files and folders

mentioned above will be created automatically if you erase and reformat the

filesystem. WARNING: Save your files first! Do this in the REPL:

©Adafruit Industries Page 95 of 199

http://apple.stackexchange.com/questions/6707/how-to-stop-os-x-from-writing-spotlight-and-trash-files-to-memory-cards-and-usb/7135#7135

>>> import storage

>>> storage.erase_filesystem()

However there are still some cases where hidden files will be created by MacOS. In

particular if you copy a file that was downloaded from the internet it will have special

metadata that MacOS stores as a hidden file. Luckily you can run a copy command

from the terminal to copy files without this hidden metadata file. See the steps below.

Copy Files on MacOS Without Creating Hidden Files

Once you've disabled and removed hidden files with the above commands on macOS

you need to be careful to copy files to the board with a special command that

prevents future hidden files from being created. Unfortunately you cannot use drag

and drop copy in Finder because it will still create these hidden extended attribute

files in some cases (for files downloaded from the internet, like Adafruit's modules).

To copy a file or folder use the -X option for the cp command in a terminal. For

example to copy a file_name.mpy file to the board use a command like:

cp -X file_name.mpy /Volumes/CIRCUITPY

(Replace file_name.mpy with the name of the file you want to copy.)

Or to copy a folder and all of the files and folders contained within, use a command

like:

cp -rX folder_to_copy /Volumes/CIRCUITPY

If you are copying to the lib folder, or another folder, make sure it exists before

copying.

if lib does not exist, you'll create a file named lib !

cp -X file_name.mpy /Volumes/CIRCUITPY/lib

This is safer, and will complain if a lib folder does not exist.

cp -X file_name.mpy /Volumes/CIRCUITPY/lib/

Other MacOS Space-Saving Tips

If you'd like to see the amount of space used on the drive and manually delete hidden

files here's how to do so. First, move into the Volumes/ directory with cd /Volumes/ ,

and then list the amount of space used on the CIRCUITPY drive with the df

command.

©Adafruit Industries Page 96 of 199

That's not very much space left! The next step is to show a list of the files currently on

the CIRCUITPY drive, including the hidden files, using the ls command. You cannot

use Finder to do this, you must do it via command line!

There are a few of the hidden files that MacOS loves to generate, all of which begin

with a ._ before the file name. Remove the ._ files using the rm command. You can

remove them all once by running rm CIRCUITPY/._* . The * acts as a wildcard to

apply the command to everything that begins with ._ at the same time.

Finally, you can run df again to see the current space used.

Nice! You have 12Ki more than before! This space can now be used for libraries and

code!

Device Locked Up or Boot Looping

In rare cases, it may happen that something in your code.py or boot.py files causes

the device to get locked up, or even go into a boot loop. A boot loop occurs when the

board reboots repeatedly and never fully loads. These are not caused by your

everyday Python exceptions, typically it's the result of a deeper problem within

CircuitPython. In this situation, it can be difficult to recover your device if CIRCUITPY

is not allowing you to modify the code.py or boot.py files. Safe mode is one recovery

option. When the device boots up in safe mode it will not run the code.py or boot.py

©Adafruit Industries Page 97 of 199

scripts, but will still connect the CIRCUITPY drive so that you can remove or modify

those files as needed.

The method used to manually enter safe mode can be different for different devices.

It is also very similar to the method used for getting into bootloader mode, which is a

different thing. So it can take a few tries to get the timing right. If you end up in

bootloader mode, no problem, you can try again without needing to do anything else.

For most devices:

Press the reset button, and then when the RGB status LED blinks yellow, press the

reset button again. Since your reaction time may not be that fast, try a "slow" double

click, to catch the yellow LED on the second click.

For ESP32-S2 based devices:

Press and release the reset button, then press and release the boot button about 3/4

of a second later.

Refer to the diagrams above for boot sequence details.

Welcome to the Community!

CircuitPython is a programming language that's super simple to get started with and

great for learning. It runs on microcontrollers and works out of the box. You can plug it

in and get started with any text editor. The best part? CircuitPython comes with an

amazing, supportive community.

Everyone is welcome! CircuitPython is Open Source. This means it's available for

anyone to use, edit, copy and improve upon. This also means CircuitPython becomes

better because of you being a part of it. Whether this is your first microcontroller

board or you're a seasoned software engineer, you have something important to offer

©Adafruit Industries Page 98 of 199

the Adafruit CircuitPython community. This page highlights some of the many ways

you can be a part of it!

Adafruit Discord

The Adafruit Discord server is the best place to start. Discord is where the community

comes together to volunteer and provide live support of all kinds. From general

discussion to detailed problem solving, and everything in between, Discord is a digital

maker space with makers from around the world.

There are many different channels so you can choose the one best suited to your

needs. Each channel is shown on Discord as "#channelname". There's the #help-with-

projects channel for assistance with your current project or help coming up with ideas

for your next one. There's the #show-and-tell channel for showing off your newest

creation. Don't be afraid to ask a question in any channel! If you're unsure, #general is

a great place to start. If another channel is more likely to provide you with a better

answer, someone will guide you.

The help with CircuitPython channel is where to go with your CircuitPython questions.

#help-with-circuitpython is there for new users and developers alike so feel free to

ask a question or post a comment! Everyone of any experience level is welcome to

join in on the conversation. Your contributions are important! The #circuitpython-dev

channel is available for development discussions as well.

The easiest way to contribute to the community is to assist others on Discord.

Supporting others doesn't always mean answering questions. Join in celebrating

successes! Celebrate your mistakes! Sometimes just hearing that someone else has

gone through a similar struggle can be enough to keep a maker moving forward.

©Adafruit Industries Page 99 of 199

The Adafruit Discord is the 24x7x365 hackerspace that you can bring your

granddaughter to.

Visit https://adafru.it/discord ()to sign up for Discord. Everyone is looking forward to

meeting you!

CircuitPython.org

Beyond the Adafruit Learn System, which you are viewing right now, the best place to

find information about CircuitPython is circuitpython.org (). Everything you need to get

started with your new microcontroller and beyond is available. You can do things like

download CircuitPython for your microcontroller () or download the latest

CircuitPython Library bundle (), or check out which single board computers support

Blinka (). You can also get to various other CircuitPython related things like Awesome

CircuitPython or the Python for Microcontrollers newsletter. This is all incredibly

useful, but it isn't necessarily community related. So why is it included here? The Cont

ributing page ().

CircuitPython itself is written in C. However, all of the Adafruit CircuitPython libraries

are written in Python. If you're interested in contributing to CircuitPython on the

Python side of things, check out circuitpython.org/contributing (). You'll find

information pertaining to every Adafruit CircuitPython library GitHub repository, giving

you the opportunity to join the community by finding a contributing option that works

for you.

©Adafruit Industries Page 100 of 199

https://adafru.it/discord
https://circuitpython.org
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/libraries
https://circuitpython.org/blinka
https://circuitpython.org/blinka
https://circuitpython.org/contributing
https://circuitpython.org/contributing
https://circuitpython.org/contributing

Note the date on the page next to Current Status for:

If you submit any contributions to the libraries, and do not see them reflected on the

Contributing page, it could be that the job that checks for new updates hasn't yet run

for today. Simply check back tomorrow!

Now, a look at the different options.

Pull Requests

The first tab you'll find is a list of open pull requests.

GitHub pull requests, or PRs, are opened when folks have added something to an

Adafruit CircuitPython library GitHub repo, and are asking for Adafruit to add, or

merge, their changes into the main library code. For PRs to be merged, they must first

be reviewed. Reviewing is a great way to contribute! Take a look at the list of open

pull requests, and pick one that interests you. If you have the hardware, you can test

code changes. If you don't, you can still check the code updates for syntax. In the

case of documentation updates, you can verify the information, or check it for spelling

and grammar. Once you've checked out the update, you can leave a comment letting

us know that you took a look. Once you've done that for a while, and you're more

comfortable with it, you can consider joining the CircuitPythonLibrarians review team.

The more reviewers we have, the more authors we can support. Reviewing is a crucial

part of an open source ecosystem, CircuitPython included.

Open Issues

The second tab you'll find is a list of open issues.

©Adafruit Industries Page 101 of 199

GitHub issues are filed for a number of reasons, including when there is a bug in the

library or example code, or when someone wants to make a feature request. Issues

are a great way to find an opportunity to contribute directly to the libraries by

updating code or documentation. If you're interested in contributing code or

documentation, take a look at the open issues and find one that interests you.

If you're not sure where to start, you can search the issues by label. Labels are

applied to issues to make the goal easier to identify at a first glance, or to indicate the

difficulty level of the issue. Click on the dropdown next to "Sort by issue labels" to see

the list of available labels, and click on one to choose it.

If you're new to everything, new to contributing to open source, or new to

contributing to the CircuitPython project, you can choose "Good first issue". Issues

with that label are well defined, with a finite scope, and are intended to be easy for

someone new to figure out.

If you're looking for something a little more complicated, consider "Bug" or

"Enhancement". The Bug label is applied to issues that pertain to problems or failures

found in the library. The Enhancement label is applied to feature requests.

©Adafruit Industries Page 102 of 199

Don't let the process intimidate you. If you're new to Git and GitHub, there is a guide ()

to walk you through the entire process. As well, there are always folks available on Di

scord () to answer questions.

Library Infrastructure Issues

The third tab you'll find is a list of library infrastructure issues.

This section is generated by a script that runs checks on the libraries, and then

reports back where there may be issues. It is made up of a list of subsections each

containing links to the repositories that are experiencing that particular issue. This

page is available mostly for internal use, but you may find some opportunities to

contribute on this page. If there's an issue listed that sounds like something you could

help with, mention it on Discord, or file an issue on GitHub indicating you're working

to resolve that issue. Others can reply either way to let you know what the scope of it

might be, and help you resolve it if necessary.

CircuitPython Localization

The fourth tab you'll find is the CircuitPython Localization tab.

If you speak another language, you can help translate CircuitPython! The translations

apply to informational and error messages that are within the CircuitPython core. It

means that folks who do not speak English have the opportunity to have these

messages shown to them in their own language when using CircuitPython. This is

incredibly important to provide the best experience possible for all users.

©Adafruit Industries Page 103 of 199

https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github
https:adafru.it/discord
https:adafru.it/discord

CircuitPython uses Weblate to translate, which makes it much simpler to contribute

translations. You will still need to know some CircuitPython-specific practices and a

few basics about coding strings, but as with any CircuitPython contributions, folks are

there to help.

Regardless of your skill level, or how you want to contribute to the CircuitPython

project, there is an opportunity available. The Contributing page () is an excellent

place to start!

Adafruit GitHub

Whether you're just beginning or are life-long programmer who would like to

contribute, there are ways for everyone to be a part of the CircuitPython project. The

CircuitPython core is written in C. The libraries are written in Python. GitHub is the

best source of ways to contribute to the CircuitPython core (), and the CircuitPython

libraries (). If you need an account, visit https://github.com/ () and sign up.

If you're new to GitHub or programming in general, there are great opportunities for

you. For the CircuitPython core, head over to the CircuitPython repository on GitHub,

click on "Issues ()", and you'll find a list that includes issues labeled "good first issue ()"

. For the libraries, head over to the Contributing page Issues list (), and use the drop

down menu to search for "good first issue ()". These issues are things that have been

identified as something that someone with any level of experience can help with.

These issues include options like updating documentation, providing feedback, and

fixing simple bugs. If you need help getting started with GitHub, there is an excellent

guide on Contributing to CircuitPython with Git and GitHub ().

Already experienced and looking for a challenge? Checkout the rest of either issues

list and you'll find plenty of ways to contribute. You'll find all sorts of things, from new

driver requests, to library bugs, to core module updates. There's plenty of

opportunities for everyone at any level!

©Adafruit Industries Page 104 of 199

https://circuitpython.org/contributing
https://github.com/adafruit/circuitpython
https://circuitpython.org/contributing/open-issues
https://circuitpython.org/contributing/open-issues
https://github.com/
https://github.com/adafruit/circuitpython/issues
https://github.com/adafruit/circuitpython/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22
https://circuitpython.org/contributing/open-issues
https://circuitpython.org/contributing/open-issues?label=good-first-issue
https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github

When working with or using CircuitPython or the CircuitPython libraries, you may find

problems. If you find a bug, that's great! The team loves bugs! Posting a detailed issue

to GitHub is an invaluable way to contribute to improving CircuitPython. For

CircuitPython itself, file an issue here (). For the libraries, file an issue on the specific

library repository on GitHub. Be sure to include the steps to replicate the issue as well

as any other information you think is relevant. The more detail, the better!

Testing new software is easy and incredibly helpful. Simply load the newest version of

CircuitPython or a library onto your CircuitPython hardware, and use it. Let us know

about any problems you find by posting a new issue to GitHub. Software testing on

both stable and unstable releases is a very important part of contributing

CircuitPython. The developers can't possibly find all the problems themselves! They

need your help to make CircuitPython even better.

On GitHub, you can submit feature requests, provide feedback, report problems and

much more. If you have questions, remember that Discord and the Forums are both

there for help!

Adafruit Forums

The Adafruit Forums () are the perfect place for support. Adafruit has wonderful paid

support folks to answer any questions you may have. Whether your hardware is giving

you issues or your code doesn't seem to be working, the forums are always there for

you to ask. You need an Adafruit account to post to the forums. You can use the same

account you use to order from Adafruit.

While Discord may provide you with quicker responses than the forums, the forums

are a more reliable source of information. If you want to be certain you're getting an

Adafruit-supported answer, the forums are the best place to be.

There are forum categories that cover all kinds of topics, including everything

Adafruit. The Adafruit CircuitPython () category under "Supported Products & Projects"

is the best place to post your CircuitPython questions.

©Adafruit Industries Page 105 of 199

https://github.com/adafruit/circuitpython/issues
https://forums.adafruit.com
https://forums.adafruit.com/viewforum.php?f=60

Be sure to include the steps you took to get to where you are. If it involves wiring,

post a picture! If your code is giving you trouble, include your code in your post!

These are great ways to make sure that there's enough information to help you with

your issue.

You might think you're just getting started, but you definitely know something that

someone else doesn't. The great thing about the forums is that you can help others

too! Everyone is welcome and encouraged to provide constructive feedback to any of

the posted questions. This is an excellent way to contribute to the community and

share your knowledge!

Read the Docs

Read the Docs () is a an excellent resource for a more detailed look at the

CircuitPython core and the CircuitPython libraries. This is where you'll find things like

API documentation and example code. For an in depth look at viewing and

understanding Read the Docs, check out the CircuitPython Documentation () page!

©Adafruit Industries Page 106 of 199

https://circuitpython.readthedocs.io/
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-documentation

Create Your settings.toml File

CircuitPython works with WiFi-capable boards to enable you to make projects that

have network connectivity. This means working with various passwords and API keys.

As of CircuitPython 8 (), there is support for a settings.toml file. This is a file that is

stored on your CIRCUITPY drive, that contains all of your secret network information,

such as your SSID, SSID password and any API keys for IoT services. It is designed to

separate your sensitive information from your code.py file so you are able to share

your code without sharing your credentials.

CircuitPython previously used a secrets.py file for this purpose. The settings.toml file

is quite similar.

CircuitPython settings.toml File

This section will provide a couple of examples of what your settings.toml file should

look like, specifically for CircuitPython WiFi projects in general.

The most minimal settings.toml file must contain your WiFi SSID and password, as that

is the minimum required to connect to WiFi. Copy this example, paste it into your setti

ngs.toml, and update:

your_wifi_ssid

your_wifi_password

CIRCUITPY_WIFI_SSID = "your_wifi_ssid"

CIRCUITPY_WIFI_PASSWORD = "your_wifi_password"

Your settings.toml file should be stored in the main directory of your CIRCUITPY

drive. It should not be in a folder.

•

•

©Adafruit Industries Page 107 of 199

https://circuitpython.org/downloads

Many CircuitPython network-connected projects on the Adafruit Learn System involve

using Adafruit IO. For these projects, you must also include your Adafruit IO username

and key. Copy the following example, paste it into your settings.toml file, and update:

your_wifi_ssid

your_wifi_password

your_aio_username

your_aio_key

CIRCUITPY_WIFI_SSID = "your_wifi_ssid"

CIRCUITPY_WIFI_PASSWORD = "your_wifi_password"

AIO_USERNAME = "your_aio_username"

AIO_KEY = "your_aio_key"

Some projects use different variable names for the entries in the settings.toml file. For

example, a project might use AIO_ID in the place of AIO_USERNAME . If you run into

connectivity issues, one of the first things to check is that the names in the

settings.toml file match the names in the code.

settings.toml File Tips

Here is an example settings.toml file.

Comments are supported

CIRCUITPY_WIFI_SSID = "guest wifi"

CIRCUITPY_WIFI_PASSWORD = "guessable"

CIRCUITPY_WEB_API_PORT = 80

CIRCUITPY_WEB_API_PASSWORD = "passw0rd"

test_variable = "this is a test"

thumbs_up = "\U0001f44d"

In a settings.toml file, it's important to keep these factors in mind:

Strings are wrapped in double quotes; ex: "your-string-here"

Integers are not quoted and may be written in decimal with optional sign (+1 , -

1 , 1000) or hexadecimal (0xabcd).

Floats, octal (0o567) and binary (0b11011) are not supported.

•

•

•

•

Not every project uses the same variable name for each entry in the settings.toml

file! Always verify it matches the code.

•

•

◦

©Adafruit Industries Page 108 of 199

Use \u escapes for weird characters, \x and \ooo escapes are not available

in .toml files

Example: \U0001f44d for (thumbs up emoji) and \u20ac for € (EUR

sign)

Unicode emoji, and non-ASCII characters, stand for themselves as long as you're

careful to save in "UTF-8 without BOM" format

When your settings.toml file is ready, you

can save it in your text editor with the

.toml extension.

Accessing Your settings.toml Information in code.py

In your code.py file, you'll need to import the os library to access the settings.toml

file. Your settings are accessed with the os.getenv() function. You'll pass your

settings entry to the function to import it into the code.py file.

import os

print(os.getenv("test_variable"))

In the upcoming CircuitPython WiFi examples, you'll see how the settings.toml file is

used for connecting to your SSID and accessing your API keys.

•

◦

•

©Adafruit Industries Page 109 of 199

https://learn.adafruit.com//assets/117071
https://learn.adafruit.com//assets/117071

CircuitPython Internet Test

One of the great things about the ESP32 is the built-in WiFi capabilities. This page

covers the basics of getting connected using CircuitPython.

The first thing you need to do is update your code.py to the following. Click the Downl

oad Project Bundle button below to download the necessary libraries and the code.py

file in a zip file. Extract the contents of the zip file, and copy the entire lib folder and

the code.py file to your CIRCUITPY drive.

SPDX-FileCopyrightText: 2020 Brent Rubell for Adafruit Industries

#

SPDX-License-Identifier: MIT

import os

import ipaddress

import ssl

import wifi

import socketpool

import adafruit_requests

URLs to fetch from

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"

JSON_QUOTES_URL = "https://www.adafruit.com/api/quotes.php"

JSON_STARS_URL = "https://api.github.com/repos/adafruit/circuitpython"

print("ESP32-S2 WebClient Test")

print(f"My MAC address: {[hex(i) for i in wifi.radio.mac_address]}")

print("Available WiFi networks:")

for network in wifi.radio.start_scanning_networks():

 print("\t%s\t\tRSSI: %d\tChannel: %d" % (str(network.ssid, "utf-8"),

 network.rssi, network.channel))

wifi.radio.stop_scanning_networks()

print(f"Connecting to {os.getenv('CIRCUITPY_WIFI_SSID')}")

wifi.radio.connect(os.getenv("CIRCUITPY_WIFI_SSID"),

os.getenv("CIRCUITPY_WIFI_PASSWORD"))

print(f"Connected to {os.getenv('CIRCUITPY_WIFI_SSID')}")

print(f"My IP address: {wifi.radio.ipv4_address}")

ping_ip = ipaddress.IPv4Address("8.8.8.8")

ping = wifi.radio.ping(ip=ping_ip)

retry once if timed out

if ping is None:

 ping = wifi.radio.ping(ip=ping_ip)

if ping is None:

 print("Couldn't ping 'google.com' successfully")

else:

 # convert s to ms

 print(f"Pinging 'google.com' took: {ping * 1000} ms")

pool = socketpool.SocketPool(wifi.radio)

requests = adafruit_requests.Session(pool, ssl.create_default_context())

print(f"Fetching text from {TEXT_URL}")

response = requests.get(TEXT_URL)

print("-" * 40)

©Adafruit Industries Page 110 of 199

print(response.text)

print("-" * 40)

print(f"Fetching json from {JSON_QUOTES_URL}")

response = requests.get(JSON_QUOTES_URL)

print("-" * 40)

print(response.json())

print("-" * 40)

print()

print(f"Fetching and parsing json from {JSON_STARS_URL}")

response = requests.get(JSON_STARS_URL)

print("-" * 40)

print(f"CircuitPython GitHub Stars: {response.json()['stargazers_count']}")

print("-" * 40)

print("Done")

Your CIRCUITPY drive should resemble the following.

To get connected, the next thing you need to do is update the settings.toml file.

The settings.toml File

We expect people to share tons of projects as they build CircuitPython WiFi widgets.

What we want to avoid is people accidentally sharing their passwords or secret

tokens and API keys. So, we designed all our examples to use a settings.toml file, that

is on your CIRCUITPY drive, to hold secret/private/custom data. That way you can

share your main project without worrying about accidentally sharing private stuff.

If you have a fresh install of CircuitPython on your board, the initial settings.toml file

on your CIRCUITPY drive is empty.

To get started, you can update the settings.toml on your CIRCUITPY drive to contain

the following code.

SPDX-FileCopyrightText: 2023 Adafruit Industries

#

SPDX-License-Identifier: MIT

This is where you store the credentials necessary for your code.

The associated demo only requires WiFi, but you can include any

©Adafruit Industries Page 111 of 199

credentials here, such as Adafruit IO username and key, etc.

CIRCUITPY_WIFI_SSID = "your-wifi-ssid"

CIRCUITPY_WIFI_PASSWORD = "your-wifi-password"

This file should contain a series of Python variables, each assigned to a string. Each

variable should describe what it represents (say wifi_ssid), followed by an = (equal

s sign), followed by the data in the form of a Python string (such as "my-wifi-

password" including the quote marks).

At a minimum you'll need to add/update your WiFi SSID and WiFi password, so do that

now!

As you make projects you may need more tokens and keys, just add them one line at

a time. See for example other tokens such as one for accessing GitHub or the

Hackaday API. Other non-secret data like your timezone can also go here.

For the correct time zone string, look at http://worldtimeapi.org/timezones () and

remember that if your city is not listed, look for a city in the same time zone, for

example Boston, New York, Philadelphia, Washington DC, and Miami are all on the

same time as New York.

Of course, don't share your settings.toml - keep that out of GitHub, Discord or other

project-sharing sites.

If you connect to the serial console, you should see something like the following:

Don't share your settings.toml file! It has your passwords and API keys in it!

©Adafruit Industries Page 112 of 199

http://worldtimeapi.org/timezones

In order, the example code...

Checks the ESP32's MAC address.

print(f"My MAC address: {[hex(i) for i in wifi.radio.mac_address]}")

Performs a scan of all access points and prints out the access point's name (SSID),

signal strength (RSSI), and channel.

print("Available WiFi networks:")

for network in wifi.radio.start_scanning_networks():

 print("\t%s\t\tRSSI: %d\tChannel: %d" % (str(network.ssid, "utf-8"),

 network.rssi, network.channel))

wifi.radio.stop_scanning_networks()

Connects to the access point you defined in the settings.toml file, and prints out its

local IP address.

print(f"Connecting to {os.getenv('WIFI_SSID')}")

wifi.radio.connect(os.getenv("WIFI_SSID"), os.getenv("WIFI_PASSWORD"))

print(f"Connected to {os.getenv('WIFI_SSID')}")

print(f"My IP address: {wifi.radio.ipv4_address}")

Attempts to ping a Google DNS server to test connectivity. If a ping fails, it returns

None . Initial pings can sometimes fail for various reasons. So, if the initial ping is

successful (is not None), it will print the echo speed in ms. If the initial ping fails, it

©Adafruit Industries Page 113 of 199

will try one more time to ping, and then print the returned value. If the second ping

fails, it will result in "Ping google.com: None ms" being printed to the serial

console. Failure to ping does not always indicate a lack of connectivity, so the code

will continue to run.

ping_ip = ipaddress.IPv4Address("8.8.8.8")

ping = wifi.radio.ping(ip=ping_ip) * 1000

if ping is not None:

 print(f"Ping google.com: {ping} ms")

else:

 ping = wifi.radio.ping(ip=ping_ip)

 print(f"Ping google.com: {ping} ms")

The code creates a socketpool using the wifi radio's available sockets. This is

performed so we don't need to re-use sockets. Then, it initializes a a new instance of

the requests () interface - which makes getting data from the internet really really

easy.

pool = socketpool.SocketPool(wifi.radio)

requests = adafruit_requests.Session(pool, ssl.create_default_context())

To read in plain-text from a web URL, call requests.get - you may pass in either a

http, or a https url for SSL connectivity.

print(f"Fetching text from {TEXT_URL}")

response = requests.get(TEXT_URL)

print("-" * 40)

print(response.text)

print("-" * 40)

Requests can also display a JSON-formatted response from a web URL using a call to

requests.get .

print(f"Fetching json from {JSON_QUOTES_URL}")

response = requests.get(JSON_QUOTES_URL)

print("-" * 40)

print(response.json())

print("-" * 40)

Finally, you can fetch and parse a JSON URL using requests.get . This code snippet

obtains the stargazers_count field from a call to the GitHub API.

print(f"Fetching and parsing json from {JSON_STARS_URL}")

response = requests.get(JSON_STARS_URL)

print("-" * 40)

print(f"CircuitPython GitHub Stars: {response.json()['stargazers_count']}")

print("-" * 40)

©Adafruit Industries Page 114 of 199

http://docs.python-requests.org/en/master/

OK you now have your ESP32 board set up with a proper settings.toml file and can

connect over the Internet. If not, check that your settings.toml file has the right SSID

and password and retrace your steps until you get the Internet connectivity working!

Converting Arduino_GFX init strings to

CircuitPython

If you would like to generate the init code for CircuitPython, you can do so in a couple

of ways with the conversion script below. In both ways you will need to run it using

Python on your computer. Start by saving the code below as convert_initcode.py.

convert_initcode.py

MIT license

import re

(

 BEGIN_WRITE,

 WRITE_COMMAND_8,

 WRITE_COMMAND_16,

 WRITE_DATA_8,

 WRITE_DATA_16,

 WRITE_BYTES,

 WRITE_C8_D8,

 WRITE_C8_D16,

 WRITE_C16_D16,

 END_WRITE,

 DELAY,

) = range(11)

class Encoder:

 def __init__(self):

 self.content = bytearray()

 self.reset()

 def command(self, command):

 if self.pending_command is not None:

 self.flush()

 self.pending_command = command

 self.pending_data = bytearray()

 def data(self, data):

 self.pending_data.append(data)

 def delay(self, value):

 self.pending_delay = value

 def flush(self):

 if self.pending_command is not None:

Not all 40-pin displays have the power pins in the same place. Hooking up a non

RGB-666 display with the Qualia S3 risks damaging the display.

The conversion script is intended to be run using Python and not CircuitPython

on a computer with plenty of memory.

©Adafruit Industries Page 115 of 199

 self.content.append(self.pending_command)

 len_and_delay = len(self.pending_data) | (bool(self.pending_delay) << 7)

 self.content.append(len_and_delay)

 self.content.extend(self.pending_data)

 if self.pending_delay:

 self.content.append(self.pending_delay)

 print(f" {bytes(self.content)}")

 self.reset()

 def reset(self):

 self.pending_command = None

 self.pending_data = bytearray()

 self.pending_delay = 0

 self.content = bytearray()

def translate_init_operations(*initcode):

 initcode = iter(initcode)

 encoder = Encoder()

 print("init_code = bytes((")

 for op in initcode:

 if op in (BEGIN_WRITE, END_WRITE):

 continue

 elif op == WRITE_COMMAND_8:

 encoder.command(next(initcode))

 elif op == WRITE_C8_D8:

 encoder.command(next(initcode))

 encoder.data(next(initcode))

 elif op == WRITE_C8_D16:

 encoder.command(next(initcode))

 encoder.data(next(initcode))

 encoder.data(next(initcode))

 elif op == WRITE_BYTES:

 for _ in range(next(initcode)):

 encoder.data(next(initcode))

 elif op == DELAY:

 encoder.delay(next(initcode))

 else:

 raise ValueError(f"Invalid operation 0x{op:02x}")

 encoder.flush()

 print("))")

def translate_init_file(initcode_filename):

 initcode_regex = r"\(*0x([0-9a-fA-F]+) *\);"

 command_data_regex = r"\(*0x([0-9a-fA-F]+), *0x([0-9a-fA-F]+) *\);"

 delay_regex = r"\(*(\d+) *\);"

 # Init code files are inconsistent in their naming of command, data, and delay

functions

 command8_values = ("SPI_WriteComm", "W_C", "WriteCommand", "WriteComm")

 data_values = ("SPI_WriteData", "W_D", "WriteParameter", "WriteData")

 delay_values = ("Delayms", "Delay", "Delay_ms")

 encoder = Encoder()

 def get_command8(line):

 for command in command8_values:

 if command in line:

 encoder.command(get_initcode8(line))

 return True

 return False

 def get_data(line):

 for data in data_values:

©Adafruit Industries Page 116 of 199

 if data in line:

 encoder.data(get_initcode8(line))

 return True

 return False

 def get_delay(line):

 for delay in delay_values:

 if delay in line:

 encoder.delay(get_delay_value(line))

 return True

 return False

 def get_initcode8(line):

 match = re.search(initcode_regex, line)

 if match:

 return int(match.group(1), 16)

 raise ValueError(f"Warning: could not parse initcode in line '{line}'")

 def get_initcode16(line):

 match = re.search(command_data_regex, line)

 if match:

 command = int(match.group(1), 16)

 data = int(match.group(2), 16)

 return command, data

 raise ValueError(f"Warning: could not parse initcode in line '{line}'")

 def get_delay_value(line):

 match = re.search(delay_regex, line)

 if match:

 return int(match.group(1))

 raise ValueError(f"Warning: could not parse delay in line '{line}'")

 with open(initcode_filename, encoding='utf-8', errors='ignore') as f:

 print("init_code = bytes((")

 for line in f.readlines():

 line = line.strip()

 # Remove comments or commented out code

 line = line.split("//")[0]

 if get_command8(line):

 continue

 if get_data(line):

 continue

 if get_delay(line):

 continue

 if "Wrt_Reg_3052" in line:

 command, data = get_initcode16(line)

 encoder.command(command)

 encoder.data(data)

 encoder.flush()

 print("))")

To use the code, you can just import the conversion script into your own code:

from convert_initcode import *

Using Arduino_GFX Init Codes

The first method is to convert the codes from the Arduino_GFX library, which can be

found at https://github.com/moononournation/Arduino_GFX (). The initialization codes

for the dot clock displays are found inside of src/display/Arduino_RGB_Display.h () by

searching for the display's model number.

©Adafruit Industries Page 117 of 199

https://github.com/moononournation/Arduino_GFX
https://github.com/moononournation/Arduino_GFX/blob/master/src/display/Arduino_RGB_Display.h

In your main script, just call translate_init_operations() like this:

translate_init_operations(

WRITE_COMMAND_8, 0xFF,

WRITE_BYTES, 5, 0x77, 0x01, 0x00, 0x00, 0x13,

WRITE_C8_D8, 0xEF, 0x08,

...

)

These operations are supported: COMMAND_8 , C8_D8 , C8_D16 , WRITE_BYTES .

Adding support for WRITE_DATA_8 and WRITE_DATA_16 "should be easy" but it was

not used in any examples so far.

It's assumed that BEGIN_WRITE / END_WRITE are not 'important'. However, DELAY is

accounted for.

Using Init Code Files

The second method is by using one of the init code files found on the product page

for the display. Near the bottom of the page under Technical Details, most of the

displays have a link to a file containing the init codes. Just save the file to your

computer as something like display_init_codes.txt.

Then to convert the file, in your main script, just run translate_init_file() like

this:

translate_init_file("display_init_codes.txt")

©Adafruit Industries Page 118 of 199

Script Output

After running your script, you should see output like the following:

Determining Timings

If you have your own RGB-666 display, you may wish to use it with the Qualia ESP32-

S3. The main pieces of information that you will need to find are:

Display Width

Display Height

Horizontal and Vertical:

Sync Pulse Width in milliseconds

Front Porch in milliseconds

Back Porch in milliseconds

Pieces of Information that are helpful, but can be determined by trial and error

include:

Frequency of the Display Clock

Signal Polarities for the following:

Horizontal Idle

Vertical Idle

Data Enable Idle

Pixel Clock Active

Pixel Clock Idle

•

•

•

◦

◦

◦

•

•

◦

◦

◦

◦

◦

©Adafruit Industries Page 119 of 199

Using a Data Sheet

The one of the best places to start looking for this information is the data sheet for

the display. Data sheets may contain a diagram that will give you most of those

values:

For the display width and height, these are in pixels and should be easy to find.

In the above diagram, you can see for instance the HP (or Horizontal Period) split up

into hpw (or Horizontal Sync Pulse Width), hbp (or Horizontal Back Porch), hdisp (or

Horizontal Display, which is the visible area), and hfp (or Horizontal Front Porch). For

the vertical, this is the same except vs is used for the Vertical Sync Pulse Width.

When a display is drawn, the horizontal and vertical periods are split up into these

sections. The Sync Pulse Widths are used by the display to keep everything in sync

and the Front and Back Porch are blanking periods and are carried over from VGA

when CRTs (or Cathode Ray Tubes) were used to give a little extra time for signals to

synchronize or allow the electron beam to move to a different place.

While many data sheets will explicitly give you these values, occasionally you may be

given values such as the total period time, one of the porch values and the timing of

Some displays ignore many of the timing settings and use ones set through the

init codes.

©Adafruit Industries Page 120 of 199

the display data, which you can use to calculate any missing values, which is why it's

important to understand how the timings are used.

You can also use the diagram to figure out the Horizontal and Vertical Idle Polarity by

looking at the lines underneath and to the left. In the case of the above diagram, both

of the signals have a high idle state, which is the part of the signal where it is out of

the sync pulse phase.

Fill in the Settings

For the timings in CircuitPython, a dictionary is used. You can use the following code

as a template and you will want to replace anywhere you see [Number] with the

actual numerical value and anywhere you see [True/False] with a boolean value.

tft_timings = {

 "frequency": [Number],

 "width": [Number],

 "height": [Number],

 "hsync_pulse_width": [Number],

 "hsync_back_porch": [Number],

 "hsync_front_porch": [Number],

 "hsync_idle_low": [True/False],

 "vsync_pulse_width": [Number],

 "vsync_back_porch": [Number],

 "vsync_front_porch": [Number],

 "vsync_idle_low": [True/False],

 "pclk_active_high": [True/False],

 "pclk_idle_high": [True/False],

 "de_idle_high": [True/False],

}

Experimenting with Settings

To get the remainder of the settings, you may need to experiment a bit. You can take

a look at some of the other displays that are similar to get a good starting point. From

there, start making adjustments until you get an image that looks correct. If you notice

that any changes you are making seem to have little effect, then it is likely using

settings from the init codes. In this case, you may need to consult the data sheet for

the controller and figure out which code is causing issues. You also may try getting

the init codes from different sources and see which ones work the best.

Testing your Settings with CircuitPython

So you are at a point where everything seems correct, it's time to test that it all looks

good. If the settings are off just a bit, you may notice certain colors look a bit glitchy

©Adafruit Industries Page 121 of 199

and you will need to continue experimenting with the settings to fix it. You can fill in

your timing settings and run this script to test that everything looks good:

from displayio import release_displays

release_displays()

import random

import displayio

import time

import busio

import board

import dotclockframebuffer

from framebufferio import FramebufferDisplay

init_code = bytes((...))

board.I2C().deinit()

i2c = busio.I2C(board.SCL, board.SDA, frequency=400_000)

tft_io_expander = dict(board.TFT_IO_EXPANDER)

dotclockframebuffer.ioexpander_send_init_sequence(i2c, init_sequence_tl032,

**tft_io_expander)

i2c.deinit()

tft_pins = dict(board.TFT_PINS)

tft_timings = {...}

bitmap = displayio.Bitmap(256, 7*64, 65535)

fb = dotclockframebuffer.DotClockFramebuffer(**tft_pins, **tft_timings)

display = FramebufferDisplay(fb, auto_refresh=False)

Create a TileGrid to hold the bitmap

tile_grid = displayio.TileGrid(bitmap,

pixel_shader=displayio.ColorConverter(input_colorspace=displayio.Colorspace.RGB565))

Create a Group to hold the TileGrid

group = displayio.Group()

Add the TileGrid to the Group

group.append(tile_grid)

Add the Group to the Display

display.root_group = group

display.auto_refresh = True

for i in range(256):

 b = i >> 3

 g = (i >> 2) << 5

 r = b << 11

 for j in range(64):

 bitmap[i, j] = b

 bitmap[i, j+64] = b|g

 bitmap[i, j+128] = g

 bitmap[i, j+192] = g|r

 bitmap[i, j+256] = r

 bitmap[i, j+320] = r|b

 bitmap[i, j+384] = r|g|b

Loop forever so you can enjoy your image

while True:

 time.sleep(1)

 display.auto_refresh = False

 group.x = random.randint(0, 32)

 group.y = random.randint(0, 32)

©Adafruit Industries Page 122 of 199

 display.auto_refresh = True

 pass

If your settings are slightly off, it may look like the following:

Once everything is set correctly, the above image should look like this:

CircuitPython Display Setup

Not all 40-pin displays have the power pins in the same place. Hooking up a non

RGB-666 display with the Qualia S3 risks damaging the display.

©Adafruit Industries Page 123 of 199

To set up a display, you need to have several major pieces of information:

The GPIO connections for the display (TFT_PINS)

The I/O expander configuration (TFT_IO_EXPANDER)

The resolution and "timings" of the display (TFT_TIMINGS), which also includes

information about the polarity of certain signals.

The initialization code of the display (TFT_INIT_SEQUENCE)

Luckily, this guide provides all the information for the displays that are sold in the

Adafruit shop. However, if you have a different display, you will need to find the

information in the data sheet.

If a board is designed for dot clock TFT displays, the GPIO connections are listed in b

oard.TFT_PINS . Otherwise, it depends on how the display is connected.

If the board is designed for a single display, then the timings are listed in board.TFT_

TIMINGS .

These values are used in the display constructor with the ** so that each element

becomes a separate argument to the function.

If the board's built in display requires an initialization sequence, then this is given as

board.TFT_INIT_SEQUENCE . If the SPI bus is on an I2C I/O expander the settings for

the I/O expander are in board.TFT_IO_EXPANDER , intended to be expanded with

** .

If a board is tied to a specific display, then board definition can initialize the dot clock

TFT display. For example, this is done with the Espressif ESP32-S3 LCD EV board:

#include "py/objtuple.h"

#include "boards/espressif_esp32s3_lcd_ev/board.h"

#include "shared-bindings/board/__init__.h"

#include "shared-module/displayio/__init__.h"

STATIC const mp_rom_map_elem_t tft_io_expander_table[] = {

 { MP_ROM_QSTR(MP_QSTR_i2c_address), MP_ROM_INT(0x20)},

 { MP_ROM_QSTR(MP_QSTR_gpio_address), MP_ROM_INT(1)},

 { MP_ROM_QSTR(MP_QSTR_gpio_data_len), MP_ROM_INT(1)},

 { MP_ROM_QSTR(MP_QSTR_gpio_data), MP_ROM_INT(0xF1)},

 { MP_ROM_QSTR(MP_QSTR_cs_bit), MP_ROM_INT(1)},

 { MP_ROM_QSTR(MP_QSTR_mosi_bit), MP_ROM_INT(3)},

 { MP_ROM_QSTR(MP_QSTR_clk_bit), MP_ROM_INT(2)},

 { MP_ROM_QSTR(MP_QSTR_i2c_init_sequence), &i2c_init_byte_obj},

};

MP_DEFINE_CONST_DICT(tft_io_expander_dict, tft_io_expander_table);

STATIC const mp_rom_obj_tuple_t tft_r_pins = {

 {&mp_type_tuple},

 5,

•

•

•

•

©Adafruit Industries Page 124 of 199

 {

 MP_ROM_PTR(&pin_GPIO1),

 MP_ROM_PTR(&pin_GPIO2),

 MP_ROM_PTR(&pin_GPIO42),

 MP_ROM_PTR(&pin_GPIO41),

 MP_ROM_PTR(&pin_GPIO40),

 }

};

STATIC const mp_rom_obj_tuple_t tft_g_pins = {

 {&mp_type_tuple},

 6,

 {

 MP_ROM_PTR(&pin_GPIO21),

 MP_ROM_PTR(&pin_GPIO47),

 MP_ROM_PTR(&pin_GPIO48),

 MP_ROM_PTR(&pin_GPIO45),

 MP_ROM_PTR(&pin_GPIO38),

 MP_ROM_PTR(&pin_GPIO39),

 }

};

STATIC const mp_rom_obj_tuple_t tft_b_pins = {

 {&mp_type_tuple},

 5,

 {

 MP_ROM_PTR(&pin_GPIO10),

 MP_ROM_PTR(&pin_GPIO11),

 MP_ROM_PTR(&pin_GPIO12),

 MP_ROM_PTR(&pin_GPIO13),

 MP_ROM_PTR(&pin_GPIO14),

 }

};

STATIC const mp_rom_map_elem_t tft_pins_table[] = {

 { MP_ROM_QSTR(MP_QSTR_de), MP_ROM_PTR(&pin_GPIO17) },

 { MP_ROM_QSTR(MP_QSTR_vsync), MP_ROM_PTR(&pin_GPIO3) },

 { MP_ROM_QSTR(MP_QSTR_hsync), MP_ROM_PTR(&pin_GPIO46) },

 { MP_ROM_QSTR(MP_QSTR_dclk), MP_ROM_PTR(&pin_GPIO9) },

 { MP_ROM_QSTR(MP_QSTR_red), MP_ROM_PTR(&tft_r_pins) },

 { MP_ROM_QSTR(MP_QSTR_green), MP_ROM_PTR(&tft_g_pins) },

 { MP_ROM_QSTR(MP_QSTR_blue), MP_ROM_PTR(&tft_b_pins) },

};

MP_DEFINE_CONST_DICT(tft_pins_dict, tft_pins_table);

STATIC const mp_rom_map_elem_t tft_timings_table[] = {

 { MP_ROM_QSTR(MP_QSTR_frequency), MP_ROM_INT(6500000) }, // nominal 16MHz, but

display is unstable/tears at that frequency

 { MP_ROM_QSTR(MP_QSTR_width), MP_ROM_INT(480) },

 { MP_ROM_QSTR(MP_QSTR_height), MP_ROM_INT(480) },

 { MP_ROM_QSTR(MP_QSTR_hsync_pulse_width), MP_ROM_INT(13) },

 { MP_ROM_QSTR(MP_QSTR_hsync_front_porch), MP_ROM_INT(20) },

 { MP_ROM_QSTR(MP_QSTR_hsync_back_porch), MP_ROM_INT(40) },

 { MP_ROM_QSTR(MP_QSTR_hsync_idle_low), MP_ROM_FALSE },

 { MP_ROM_QSTR(MP_QSTR_vsync_pulse_width), MP_ROM_INT(15) },

 { MP_ROM_QSTR(MP_QSTR_vsync_front_porch), MP_ROM_INT(20) },

 { MP_ROM_QSTR(MP_QSTR_vsync_back_porch), MP_ROM_INT(40) },

 { MP_ROM_QSTR(MP_QSTR_vsync_idle_low), MP_ROM_FALSE },

 { MP_ROM_QSTR(MP_QSTR_de_idle_high), MP_ROM_FALSE },

 { MP_ROM_QSTR(MP_QSTR_pclk_active_high), MP_ROM_FALSE },

 { MP_ROM_QSTR(MP_QSTR_pclk_idle_high), MP_ROM_FALSE },

};

MP_DEFINE_CONST_DICT(tft_timings_dict, tft_timings_table);

STATIC const mp_rom_map_elem_t board_module_globals_table[] = {

 CIRCUITPYTHON_BOARD_DICT_STANDARD_ITEMS

 { MP_ROM_QSTR(MP_QSTR_TFT_PINS), MP_ROM_PTR(&tft_pins_dict) },

 { MP_ROM_QSTR(MP_QSTR_TFT_TIMINGS), MP_ROM_PTR(&tft_timings_dict) },

©Adafruit Industries Page 125 of 199

 { MP_ROM_QSTR(MP_QSTR_TFT_IO_EXPANDER), MP_ROM_PTR(&tft_io_expander_dict) },

 { MP_ROM_QSTR(MP_QSTR_TFT_INIT_SEQUENCE), &display_init_byte_obj},

 { MP_ROM_QSTR(MP_QSTR_I2S_SCK), MP_ROM_PTR(&pin_GPIO16) },

 { MP_ROM_QSTR(MP_QSTR_I2S_MCLK), MP_ROM_PTR(&pin_GPIO5) },

 { MP_ROM_QSTR(MP_QSTR_I2S_WS), MP_ROM_PTR(&pin_GPIO7) },

 { MP_ROM_QSTR(MP_QSTR_I2S_SDO), MP_ROM_PTR(&pin_GPIO6) },

 { MP_ROM_QSTR(MP_QSTR_TX), MP_ROM_PTR(&pin_GPIO43) },

 { MP_ROM_QSTR(MP_QSTR_RX), MP_ROM_PTR(&pin_GPIO44) },

 { MP_ROM_QSTR(MP_QSTR_SCL), MP_ROM_PTR(DEFAULT_I2C_BUS_SCL) },

 { MP_ROM_QSTR(MP_QSTR_SDA), MP_ROM_PTR(DEFAULT_I2C_BUS_SDA) },

 { MP_ROM_QSTR(MP_QSTR_DISPLAY), MP_ROM_PTR(&displays[0].display) },

 // boot mode button can be used in SW as well

 { MP_ROM_QSTR(MP_QSTR_BUTTON), MP_ROM_PTR(&pin_GPIO0) },

 { MP_ROM_QSTR(MP_QSTR_I2C), MP_ROM_PTR(&board_i2c_obj) },

};

MP_DEFINE_CONST_DICT(board_module_globals, board_module_globals_table);

/*

 * This file is part of the MicroPython project, http://micropython.org/

 *

 * The MIT License (MIT)

 *

 * Copyright (c) 2020 Scott Shawcroft for Adafruit Industries

 *

 * Permission is hereby granted, free of charge, to any person obtaining a copy

 * of this software and associated documentation files (the "Software"), to deal

 * in the Software without restriction, including without limitation the rights

 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

 * copies of the Software, and to permit persons to whom the Software is

 * furnished to do so, subject to the following conditions:

 *

 * The above copyright notice and this permission notice shall be included in

 * all copies or substantial portions of the Software.

 *

 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

 * THE SOFTWARE.

 */

#include "supervisor/board.h"

#include "mpconfigboard.h"

#include "shared-bindings/board/__init__.h"

#include "shared-bindings/busio/I2C.h"

#include "shared-bindings/dotclockframebuffer/DotClockFramebuffer.h"

#include "shared-bindings/dotclockframebuffer/__init__.h"

#include "shared-bindings/framebufferio/FramebufferDisplay.h"

#include "shared-bindings/microcontroller/Pin.h"

#include "shared-module/displayio/__init__.h"

#include "boards/espressif_esp32s3_lcd_ev/board.h"

#define MP_DEFINE_BYTES_OBJ(obj_name, bin) mp_obj_str_t obj_name =

{{&mp_type_bytes}, 0, sizeof(bin) - 1, (const byte *)bin}

static const uint8_t display_init_sequence[] = {

 0xf0, 5, 0x55, 0xaa, 0x52, 0x08, 0x00,

 0xf6, 2, 0x5a, 0x87,

 0xc1, 1, 0x3f,

©Adafruit Industries Page 126 of 199

 0xc2, 1, 0x0e,

 0xc6, 1, 0xf8,

 0xc9, 1, 0x10,

 0xcd, 1, 0x25,

 0xf8, 1, 0x8a,

 0xac, 1, 0x45,

 0xa0, 1, 0xdd,

 0xa7, 1, 0x47,

 0xfa, 4, 0x00, 0x00, 0x00, 0x04,

 0x86, 4, 0x99, 0xa3, 0xa3, 0x51,

 0xa3, 1, 0xee,

 0xfd, 3, 0x3c, 0x3c, 0x00,

 0x71, 1, 0x48,

 0x72, 1, 0x48,

 0x73, 2, 0x00, 0x44,

 0x97, 1, 0xee,

 0x83, 1, 0x93,

 0x9a, 1, 0x72,

 0x9b, 1, 0x5a,

 0x82, 2, 0x2c, 0x2c,

 0xb1, 1, 0x10,

 0x6d, 32, 0x00, 0x1f, 0x19, 0x1a, 0x10, 0x0e, 0x0c, 0x0a, 0x02, 0x07, 0x1e,

0x1e, 0x1e, 0x1e, 0x1e, 0x1e, 0x1e, 0x1e, 0x1e, 0x1e, 0x1e, 0x1e, 0x08, 0x01, 0x09,

0x0b, 0x0d, 0x0f, 0x1a, 0x19, 0x1f, 0x00,

 0x64, 16, 0x38, 0x05, 0x01, 0xdb, 0x03, 0x03, 0x38, 0x04, 0x01, 0xdc, 0x03,

0x03, 0x7a, 0x7a, 0x7a, 0x7a,

 0x65, 16, 0x38, 0x03, 0x01, 0xdd, 0x03, 0x03, 0x38, 0x02, 0x01, 0xde, 0x03,

0x03, 0x7a, 0x7a, 0x7a, 0x7a,

 0x66, 16, 0x38, 0x01, 0x01, 0xdf, 0x03, 0x03, 0x38, 0x00, 0x01, 0xe0, 0x03,

0x03, 0x7a, 0x7a, 0x7a, 0x7a,

 0x67, 16, 0x30, 0x01, 0x01, 0xe1, 0x03, 0x03, 0x30, 0x02, 0x01, 0xe2, 0x03,

0x03, 0x7a, 0x7a, 0x7a, 0x7a,

 0x68, 13, 0x00, 0x08, 0x15, 0x08, 0x15, 0x7a, 0x7a, 0x08, 0x15, 0x08, 0x15,

0x7a, 0x7a,

 0x60, 8, 0x38, 0x08, 0x7a, 0x7a, 0x38, 0x09, 0x7a, 0x7a,

 0x63, 8, 0x31, 0xe4, 0x7a, 0x7a, 0x31, 0xe5, 0x7a, 0x7a,

 0x69, 7, 0x04, 0x22, 0x14, 0x22, 0x14, 0x22, 0x08,

 0x6b, 1, 0x07,

 0x7a, 2, 0x08, 0x13,

 0x7b, 2, 0x08, 0x13,

 0xd1, 52, 0x00, 0x00, 0x00, 0x04, 0x00, 0x12, 0x00, 0x18, 0x00, 0x21, 0x00,

0x2a, 0x00, 0x35, 0x00, 0x47, 0x00, 0x56, 0x00, 0x90, 0x00, 0xe5, 0x01, 0x68, 0x01,

0xd5, 0x01, 0xd7, 0x02, 0x36, 0x02, 0xa6, 0x02, 0xee, 0x03, 0x48, 0x03, 0xa0, 0x03,

0xba, 0x03, 0xc5, 0x03, 0xd0, 0x03, 0xe0, 0x03, 0xea, 0x03, 0xfa, 0x03, 0xff,

 0xd2, 52, 0x00, 0x00, 0x00, 0x04, 0x00, 0x12, 0x00, 0x18, 0x00, 0x21, 0x00,

0x2a, 0x00, 0x35, 0x00, 0x47, 0x00, 0x56, 0x00, 0x90, 0x00, 0xe5, 0x01, 0x68, 0x01,

0xd5, 0x01, 0xd7, 0x02, 0x36, 0x02, 0xa6, 0x02, 0xee, 0x03, 0x48, 0x03, 0xa0, 0x03,

0xba, 0x03, 0xc5, 0x03, 0xd0, 0x03, 0xe0, 0x03, 0xea, 0x03, 0xfa, 0x03, 0xff,

 0xd3, 52, 0x00, 0x00, 0x00, 0x04, 0x00, 0x12, 0x00, 0x18, 0x00, 0x21, 0x00,

0x2a, 0x00, 0x35, 0x00, 0x47, 0x00, 0x56, 0x00, 0x90, 0x00, 0xe5, 0x01, 0x68, 0x01,

0xd5, 0x01, 0xd7, 0x02, 0x36, 0x02, 0xa6, 0x02, 0xee, 0x03, 0x48, 0x03, 0xa0, 0x03,

0xba, 0x03, 0xc5, 0x03, 0xd0, 0x03, 0xe0, 0x03, 0xea, 0x03, 0xfa, 0x03, 0xff,

 0xd4, 52, 0x00, 0x00, 0x00, 0x04, 0x00, 0x12, 0x00, 0x18, 0x00, 0x21, 0x00,

0x2a, 0x00, 0x35, 0x00, 0x47, 0x00, 0x56, 0x00, 0x90, 0x00, 0xe5, 0x01, 0x68, 0x01,

0xd5, 0x01, 0xd7, 0x02, 0x36, 0x02, 0xa6, 0x02, 0xee, 0x03, 0x48, 0x03, 0xa0, 0x03,

0xba, 0x03, 0xc5, 0x03, 0xd0, 0x03, 0xe0, 0x03, 0xea, 0x03, 0xfa, 0x03, 0xff,

 0xd5, 52, 0x00, 0x00, 0x00, 0x04, 0x00, 0x12, 0x00, 0x18, 0x00, 0x21, 0x00,

0x2a, 0x00, 0x35, 0x00, 0x47, 0x00, 0x56, 0x00, 0x90, 0x00, 0xe5, 0x01, 0x68, 0x01,

0xd5, 0x01, 0xd7, 0x02, 0x36, 0x02, 0xa6, 0x02, 0xee, 0x03, 0x48, 0x03, 0xa0, 0x03,

0xba, 0x03, 0xc5, 0x03, 0xd0, 0x03, 0xe0, 0x03, 0xea, 0x03, 0xfa, 0x03, 0xff,

 0xd6, 52, 0x00, 0x00, 0x00, 0x04, 0x00, 0x12, 0x00, 0x18, 0x00, 0x21, 0x00,

0x2a, 0x00, 0x35, 0x00, 0x47, 0x00, 0x56, 0x00, 0x90, 0x00, 0xe5, 0x01, 0x68, 0x01,

0xd5, 0x01, 0xd7, 0x02, 0x36, 0x02, 0xa6, 0x02, 0xee, 0x03, 0x48, 0x03, 0xa0, 0x03,

0xba, 0x03, 0xc5, 0x03, 0xd0, 0x03, 0xe0, 0x03, 0xea, 0x03, 0xfa, 0x03, 0xff,

 0x3a, 1, 0x66,

 0x3a, 1, 0x66,

 0x11, 0x80, 120,

 0x29, 0x0,

 0, // trailing NUL for Python bytes() representation

©Adafruit Industries Page 127 of 199

};

MP_DEFINE_BYTES_OBJ(display_init_byte_obj, display_init_sequence);

static const char i2c_bus_init_sequence[] = {

 2, 3, 0xf1, // set GPIO direction

 2, 2, 0, // disable all output inversion

 0, // trailing NUL for Python bytes() representation

};

MP_DEFINE_BYTES_OBJ(i2c_init_byte_obj, i2c_bus_init_sequence);

static const mcu_pin_obj_t *red_pins[] = {

 &pin_GPIO1, &pin_GPIO2, &pin_GPIO42, &pin_GPIO41, &pin_GPIO40

};

static const mcu_pin_obj_t *green_pins[] = {

 &pin_GPIO21, &pin_GPIO47, &pin_GPIO48, &pin_GPIO45, &pin_GPIO38, &pin_GPIO39

};

static const mcu_pin_obj_t *blue_pins[] = {

 &pin_GPIO10, &pin_GPIO11, &pin_GPIO12, &pin_GPIO13, &pin_GPIO14

};

void board_init(void) {

 dotclockframebuffer_framebuffer_obj_t *framebuffer =

&allocate_display_bus_or_raise()->dotclock;

 framebuffer->base.type = &dotclockframebuffer_framebuffer_type;

 common_hal_dotclockframebuffer_framebuffer_construct(

 framebuffer,

 /* de */ &pin_GPIO17,

 /* vsync */ &pin_GPIO3,

 /* hsync */ &pin_GPIO46,

 /* dclk */ &pin_GPIO9,

 /* data */ red_pins, MP_ARRAY_SIZE(red_pins), green_pins,

MP_ARRAY_SIZE(green_pins), blue_pins, MP_ARRAY_SIZE(blue_pins),

 /* frequency */ 12000000,

 /* width x height */ 480, 480,

 /* horizontal: pulse, back & front porch, idle */ 13, 20, 40, false,

 /* vertical: pulse, back & front porch, idle */ 15, 20, 40, false,

 /* de_idle_high */ false,

 /* pclk_active_high */ true,

 /* pclk_idle_high */ false,

 /* overscan_left */ 0

);

 framebufferio_framebufferdisplay_obj_t *disp = &allocate_display_or_raise()-

>framebuffer_display;

 disp->base.type = &framebufferio_framebufferdisplay_type;

 common_hal_framebufferio_framebufferdisplay_construct(

 disp,

 framebuffer,

 0,

 true

);

 busio_i2c_obj_t i2c;

 i2c.base.type = &busio_i2c_type;

 common_hal_busio_i2c_construct(&i2c, DEFAULT_I2C_BUS_SCL, DEFAULT_I2C_BUS_SDA,

400000, 255);

 const int i2c_device_address = 32;

 dotclockframebuffer_ioexpander_spi_bus spibus = {

 .bus = &i2c,

 .i2c_device_address = i2c_device_address,

 .i2c_write_size = 2,

 .addr_reg_shadow = { .u32 = 1 }, // GPIO data at register 1

 .cs_mask = 0x100 << 1, // data payload is at byte 2

 .mosi_mask = 0x100 << 3,

 .clk_mask = 0x100 << 2,

 };

 static const mp_buffer_info_t bufinfo_display_init = { (void

©Adafruit Industries Page 128 of 199

*)display_init_sequence, sizeof(display_init_sequence) - 1 };

 static const mp_buffer_info_t bufinfo_i2c_bus_init = { (void

*)i2c_bus_init_sequence, sizeof(i2c_bus_init_sequence) - 1 };

 dotclockframebuffer_ioexpander_send_init_sequence(&spibus,

&bufinfo_i2c_bus_init, &bufinfo_display_init);

 common_hal_busio_i2c_deinit(&i2c);

}

// Use the MP_WEAK supervisor/shared/board.c versions of routines not defined here.

Example TFT_PINS

The TFT_PINS should be arranged in a Python dict. For the Qualia ESP32-S3, you can

simply use board.TFT_PINS . They should be arranged similar to the Espressif LCD

EV board's TFT_PINS :

{

 "de": microcontroller.pin.GPIO17,

 "vsync": microcontroller.pin.GPIO3,

 "hsync": microcontroller.pin.GPIO46,

 "dclk": microcontroller.pin.GPIO9,

 "red": (

 microcontroller.pin.GPIO1,

 microcontroller.pin.GPIO2,

 microcontroller.pin.GPIO42,

 microcontroller.pin.GPIO41,

 microcontroller.pin.GPIO40,

),

 "green": (

 microcontroller.pin.GPIO21,

 microcontroller.pin.GPIO47,

 microcontroller.pin.GPIO48,

 microcontroller.pin.GPIO45,

 microcontroller.pin.GPIO38,

 microcontroller.pin.GPIO39,

),

 "blue": (

 microcontroller.pin.GPIO10,

 microcontroller.pin.GPIO11,

 microcontroller.pin.GPIO12,

 microcontroller.pin.GPIO13,

 microcontroller.pin.GPIO14,

),

}

Example TFT_TIMINGS

The specific timings can be found in the display datasheet or, for displays sold

through the Adafruit store, on the page for the specific display in this guide.

As an example, here are the timings for the 480x480 display from the Espressif LCD

EVK:

TFT_TIMINGS = {

 "frequency": 6_500_000, # should be 18_000_000,

©Adafruit Industries Page 129 of 199

 "width": 480,

 "height": 480,

 "hsync_pulse_width": 13,

 "hsync_front_porch": 40,

 "hsync_back_porch": 20,

 "vsync_pulse_width": 15,

 "vsync_front_porch": 40,

 "vsync_back_porch": 20,

 "hsync_idle_low": False,

 "vsync_idle_low": False,

 "de_idle_high": False,

 "pclk_active_high": True,

 "pclk_idle_high": False,

}

Timings for the 720x720 square display, which does not require a SPI init sequence,

would look like this:

tft_timings = {

 "frequency": 6_500_000,

 "width": 720,

 "height": 720,

 "hsync_pulse_width": 20,

 "hsync_front_porch": 40,

 "hsync_back_porch": 40,

 "vsync_pulse_width": 10,

 "vsync_front_porch": 40,

 "vsync_back_porch": 40,

 "hsync_idle_low": False,

 "vsync_idle_low": False,

 "de_idle_high": False,

 "pclk_active_high": False,

 "pclk_idle_high": False,

}

I/O Expander

The dotclockframebuffer.ioexpander_send_init_sequence() () function

supports a "generic I2C I/O expander". Generic meaning:

Any I2C address can be used.

Any GPIO register address can be used.

GPIO data can be 1 or 2 bytes (8 or 16 bits).

Arbitrary I2C registers can be initialized for setting direction, pull, inversion, etc.

State of other GPIO bits can be specified explicitly to avoid undesirable pin state

changes.

Here are some values for a PCA9554 expander. This is the IO expander used on the

Qualia ESP32-S3 and the values can be found in board.TFT_IO_EXPANDER :

i2c_address=0x3f

gpio_address=1 (the GPIO output register address)

•

•

•

•

•

•

•

©Adafruit Industries Page 130 of 199

https://docs.circuitpython.org/en/latest/shared-bindings/dotclockframebuffer/index.html#dotclockframebuffer.ioexpander_send_init_sequence
https://docs.circuitpython.org/en/latest/shared-bindings/dotclockframebuffer/index.html#dotclockframebuffer.ioexpander_send_init_sequence

gpio_data_len=1 (1 byte of data)

gpio_data=0xfd (value of other GPIOs on expander)

cs_bit=1 (index of chip select)

mosi_bit=7 (index of data out)

clk_bit=0 (index of clock)

reset_bit=2 (optional index of reset pin)

i2c_init_sequence=b'...' (other register settings, see below)

I2C Initialization Sequence

Using an I2C init sequence lets arbitrary registers on the I/O expander be set.

It is composed of a series of commands, starting with a byte length. Each is sent to

the I/O expander I2C address.

Typical for PCA9554 expander:

i2c_init_sequence=bytes((

 2, 3, 0x78, # set pin direction (register 3) to 0x78 (0-bit is output mode)

 2, 2, 0 # disable output inverts (register 2) to 0

))

Display Initialization Code

Some dot clock displays require "initialization code" to be sent on a unidirectional 3-

wire bus. The data is transmitted in "mode 0", which is 9 bits long. The top bit

specifies whether the code byte is data or a command, with 0 being command and

1 being data.

The structure of the initialization data is a series of commands. Each command can

have associated data and an associated delay:

First byte: 8-bit command value

Second byte: 7-bit data length (may be zero). The top bit (0x80) is set if a delay

byte follows the data

Variable number of bytes: 8-bit data values

Optional: 8-bit delay value.

The delay value, if specified, is in milliseconds. The special delay value of 255 or

0xFF is treated as 500 milliseconds.

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 131 of 199

Display initialization codes are the same as the ones used by displayio.FourWire ()

except that the default after each data block is no delay instead of 10ms.

Example 1

The following byte sequence sends the command 0xfa followed by 4 bytes of data

and no delay:

0xfa, 4, 0x00, 0x00, 0x00, 0x04,

Example 2

The following byte sequence sends the command 0x11, no data, and then delays by a

minimum of 120ms:

0x11, 0x80, 120,

Sending Initialization Code via I2C IO Expander

There is special support for sending initialization code over an I2C IO expander chip.

This requires a series of steps:

Construct the I2C bus object.

Call ioexpander_send_init_sequence() () with the appropriate values

Optionally, deconstruct the I2C bus object so the pins become available.

The gpio_data parameter must be pre-set with the correct value all I/O pins,

because it is not assumed that the current output values can be read back.

I2C Bus Speed

The default clock speed of I2C busses in CircuitPython is 100kHz. In practice, using a

400kHz bus for display initialization works, even if some device on the bus only

supports 100kHz I2C, because a 100kHz device will not hear its own address on the

bus; it will simply stay idle. Doing this can speed display initialization. However, this is

not guaranteed by the I2C specification, so if you encounter trouble, try an I2C bus at

the regular 100kHz speed instead.

Here is the initialization code for the 480x480 square display on the Espressif LCD

EVK, which uses 400kHz for the I2C Bus Speed:

1.

2.

3.

©Adafruit Industries Page 132 of 199

https://docs.circuitpython.org/en/8.2.x/shared-bindings/displayio/index.html#displayio.FourWire
https://docs.circuitpython.org/en/latest/shared-bindings/dotclockframebuffer/index.html#dotclockframebuffer.ioexpander_send_init_sequence
https://docs.circuitpython.org/en/latest/shared-bindings/dotclockframebuffer/index.html#dotclockframebuffer.ioexpander_send_init_sequence

init_sequence = bytes((

 0xf0, 5, 0x55, 0xaa, 0x52, 0x08, 0x00,

 0xf6, 2, 0x5a, 0x87,

 0xc1, 1, 0x3f,

 0xc2, 1, 0x0e,

 0xc6, 1, 0xf8,

 0xc9, 1, 0x10,

 0xcd, 1, 0x25,

 0xf8, 1, 0x8a,

 0xac, 1, 0x45,

 0xa0, 1, 0xdd,

 0xa7, 1, 0x47,

 0xfa, 4, 0x00, 0x00, 0x00, 0x04,

 0x86, 4, 0x99, 0xa3, 0xa3, 0x51,

 0xa3, 1, 0xee,

 0xfd, 3, 0x3c, 0x3c, 0x00,

 0x71, 1, 0x48,

 0x72, 1, 0x48,

 0x73, 2, 0x00, 0x44,

 0x97, 1, 0xee,

 0x83, 1, 0x93,

 0x9a, 1, 0x72,

 0x9b, 1, 0x5a,

 0x82, 2, 0x2c, 0x2c,

 0xb1, 1, 0x10,

 0x6d, 32, 0x00, 0x1f, 0x19, 0x1a, 0x10, 0x0e, 0x0c, 0x0a, 0x02, 0x07, 0x1e,

0x1e, 0x1e, 0x1e, 0x1e, 0x1e, 0x1e, 0x1e, 0x1e, 0x1e, 0x1e, 0x1e, 0x08, 0x01, 0x09,

0x0b, 0x0d, 0x0f, 0x1a, 0x19, 0x1f, 0x00,

 0x64, 16, 0x38, 0x05, 0x01, 0xdb, 0x03, 0x03, 0x38, 0x04, 0x01, 0xdc, 0x03,

0x03, 0x7a, 0x7a, 0x7a, 0x7a,

 0x65, 16, 0x38, 0x03, 0x01, 0xdd, 0x03, 0x03, 0x38, 0x02, 0x01, 0xde, 0x03,

0x03, 0x7a, 0x7a, 0x7a, 0x7a,

 0x66, 16, 0x38, 0x01, 0x01, 0xdf, 0x03, 0x03, 0x38, 0x00, 0x01, 0xe0, 0x03,

0x03, 0x7a, 0x7a, 0x7a, 0x7a,

 0x67, 16, 0x30, 0x01, 0x01, 0xe1, 0x03, 0x03, 0x30, 0x02, 0x01, 0xe2, 0x03,

0x03, 0x7a, 0x7a, 0x7a, 0x7a,

 0x68, 13, 0x00, 0x08, 0x15, 0x08, 0x15, 0x7a, 0x7a, 0x08, 0x15, 0x08, 0x15,

0x7a, 0x7a,

 0x60, 8, 0x38, 0x08, 0x7a, 0x7a, 0x38, 0x09, 0x7a, 0x7a,

 0x63, 8, 0x31, 0xe4, 0x7a, 0x7a, 0x31, 0xe5, 0x7a, 0x7a,

 0x69, 7, 0x04, 0x22, 0x14, 0x22, 0x14, 0x22, 0x08,

 0x6b, 1, 0x07,

 0x7a, 2, 0x08, 0x13,

 0x7b, 2, 0x08, 0x13,

 0xd1, 52, 0x00, 0x00, 0x00, 0x04, 0x00, 0x12, 0x00, 0x18, 0x00, 0x21, 0x00,

0x2a, 0x00, 0x35, 0x00, 0x47, 0x00, 0x56, 0x00, 0x90, 0x00, 0xe5, 0x01, 0x68, 0x01,

0xd5, 0x01, 0xd7, 0x02, 0x36, 0x02, 0xa6, 0x02, 0xee, 0x03, 0x48, 0x03, 0xa0, 0x03,

0xba, 0x03, 0xc5, 0x03, 0xd0, 0x03, 0xe0, 0x03, 0xea, 0x03, 0xfa, 0x03, 0xff,

 0xd2, 52, 0x00, 0x00, 0x00, 0x04, 0x00, 0x12, 0x00, 0x18, 0x00, 0x21, 0x00,

0x2a, 0x00, 0x35, 0x00, 0x47, 0x00, 0x56, 0x00, 0x90, 0x00, 0xe5, 0x01, 0x68, 0x01,

0xd5, 0x01, 0xd7, 0x02, 0x36, 0x02, 0xa6, 0x02, 0xee, 0x03, 0x48, 0x03, 0xa0, 0x03,

0xba, 0x03, 0xc5, 0x03, 0xd0, 0x03, 0xe0, 0x03, 0xea, 0x03, 0xfa, 0x03, 0xff,

 0xd3, 52, 0x00, 0x00, 0x00, 0x04, 0x00, 0x12, 0x00, 0x18, 0x00, 0x21, 0x00,

0x2a, 0x00, 0x35, 0x00, 0x47, 0x00, 0x56, 0x00, 0x90, 0x00, 0xe5, 0x01, 0x68, 0x01,

0xd5, 0x01, 0xd7, 0x02, 0x36, 0x02, 0xa6, 0x02, 0xee, 0x03, 0x48, 0x03, 0xa0, 0x03,

0xba, 0x03, 0xc5, 0x03, 0xd0, 0x03, 0xe0, 0x03, 0xea, 0x03, 0xfa, 0x03, 0xff,

 0xd4, 52, 0x00, 0x00, 0x00, 0x04, 0x00, 0x12, 0x00, 0x18, 0x00, 0x21, 0x00,

0x2a, 0x00, 0x35, 0x00, 0x47, 0x00, 0x56, 0x00, 0x90, 0x00, 0xe5, 0x01, 0x68, 0x01,

0xd5, 0x01, 0xd7, 0x02, 0x36, 0x02, 0xa6, 0x02, 0xee, 0x03, 0x48, 0x03, 0xa0, 0x03,

0xba, 0x03, 0xc5, 0x03, 0xd0, 0x03, 0xe0, 0x03, 0xea, 0x03, 0xfa, 0x03, 0xff,

 0xd5, 52, 0x00, 0x00, 0x00, 0x04, 0x00, 0x12, 0x00, 0x18, 0x00, 0x21, 0x00,

0x2a, 0x00, 0x35, 0x00, 0x47, 0x00, 0x56, 0x00, 0x90, 0x00, 0xe5, 0x01, 0x68, 0x01,

0xd5, 0x01, 0xd7, 0x02, 0x36, 0x02, 0xa6, 0x02, 0xee, 0x03, 0x48, 0x03, 0xa0, 0x03,

0xba, 0x03, 0xc5, 0x03, 0xd0, 0x03, 0xe0, 0x03, 0xea, 0x03, 0xfa, 0x03, 0xff,

 0xd6, 52, 0x00, 0x00, 0x00, 0x04, 0x00, 0x12, 0x00, 0x18, 0x00, 0x21, 0x00,

0x2a, 0x00, 0x35, 0x00, 0x47, 0x00, 0x56, 0x00, 0x90, 0x00, 0xe5, 0x01, 0x68, 0x01,

0xd5, 0x01, 0xd7, 0x02, 0x36, 0x02, 0xa6, 0x02, 0xee, 0x03, 0x48, 0x03, 0xa0, 0x03,

0xba, 0x03, 0xc5, 0x03, 0xd0, 0x03, 0xe0, 0x03, 0xea, 0x03, 0xfa, 0x03, 0xff,

©Adafruit Industries Page 133 of 199

 0x3a, 1, 0x66,

 0x3a, 1, 0x66,

 0x11, 0x80, 120,

 0x29, 0x80, 20

))

expander_addr = 32

bus = busio.I2C(microcontroller.pin.GPIO18, microcontroller.pin.GPIO8,

frequency=400_000)

if not bus.try_lock():

 raise RuntimeError("Bus already locked")

Set direction register

bus.writeto(expander_addr, b"\3\xf1")

Set pull ups

bus.writeto(expander_addr, b"\2\0")

bus.unlock()

t0 = time.monotonic()

ioexpander_send_init_sequence(

 bus=bus,

 i2c_address=expander_addr,

 gpio_address=1,

 gpio_data_len=1,

 gpio_data=0xf1,

 cs_bit=1,

 mosi_bit=3,

 clk_bit=2,

 init_sequence=init_sequence)

t1 = time.monotonic()

print(t1-t0, "s to send init code")

Boards that have a built in display can perform these steps in the board init function

such as the Espressif LCD EV board ().

Constructing the framebuffer and the display

Because most of the heavy lifting is done by setting up the init codes, constructing

the framebuffer and display only requires a couple of lines of code:

fb = DotClockFramebuffer(**TFT_PINS, **TFT_TIMINGS)

disp = FramebufferDisplay(fb, auto_refresh=True)

Dot clocks

The higher the dot clock frequency, the more susceptible the display is to distortions

while doing PSRAM-intensive activities. This looks like portions of the screen shifting

horizontally for a frame, then returning to the normal position.

With IDF 5.1, frequencies up to 16MHz mostly work OK.

©Adafruit Industries Page 134 of 199

https://github.com/adafruit/circuitpython/blob/e39fbf1b26b4fd3b66313e51ccc3db0eba7bd58a/ports/espressif/boards/espressif_esp32s3_lcd_ev/board.c

For most displays, the user can select a lower clock (down to some display-

dependent minimum). This decreases refresh rate but reduces the chance of

distortion.

CircuitPython Touch Display Usage

If you have a display with touch, you can use the Adafruit_CircuitPython_FocalTouch (

) library to read the touch data. The FocalTouch capacitive touch controller is

communicated to by I2C. If you're not sure if you have a touch display, just check if

your display includes a square IC connected off to the side of the main ribbon cable.

Determining the I2C Address

You can scan for I2C devices by connecting to the REPL and typing the following:

import board

i2c = board.I2C()

while i2c.try_lock():

 pass

i2c.scan()

You should see a couple of devices listed. These will be the GPIO expander and the

touch controller. The GPIO Expander is at 0x3F (or 63 in decimal) by default, though

it's possible to change the address with the solderable jumpers on the reverse side.

The other address should be the touch controller. On the TL040HDS20 4.0" square

display, it shows up as 0x48 (or 72 in decimal), but it's possible it may be a different

value on other displays.

©Adafruit Industries Page 135 of 199

https://github.com/adafruit/Adafruit_CircuitPython_FocalTouch

Initializing the Touch Controller

In order to use the controller, it will need to first be initialized. You can use the

following code to initialize it. If your I2C address differs, change it to the appropriate

value.

import board

import busio

import adafruit_focaltouch

i2c = busio.I2C(board.SCL, board.SDA, frequency=100_000)

ft = adafruit_focaltouch.Adafruit_FocalTouch(i2c, address=0x48)

Likely you will have already initialized I2C for using the GPIO expander, so you can

just add the adafruit_focaltouch import line and further down add the initialization line

like this:

import adafruit_focaltouch

...

ft = adafruit_focaltouch.Adafruit_FocalTouch(i2c, address=0x48)

Reading from the Touch Controller

To read from the controller, check if is has been touched in the main loop and if so,

read the the touches. Although this controller can support multiple touches, it seems

to sometimes have difficulty distinguishing between 2 or more touch points. For each

touch point that is reported, you can then read the x and y coordinates.

if ft.touched:

 for touch in ft.touches:

 x = touch["x"]

 y = touch["y"]

Example

Here is a paint demo that works on the TL040HDS20 4.0" Square display. Just click

the Download Project button, unzip it, and copy it over to your CIRCUITPY drive.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

"""

Simple painting demo that draws on the Adafruit Qualia ESP32-S3 RGB666

with the 4.0" square display and FT6206 captouch driver

"""

import displayio

©Adafruit Industries Page 136 of 199

import busio

import board

import dotclockframebuffer

from framebufferio import FramebufferDisplay

import adafruit_focaltouch

displayio.release_displays()

Initialize the Display

tft_pins = dict(board.TFT_PINS)

tft_timings = {

 "frequency": 16000000,

 "width": 720,

 "height": 720,

 "hsync_pulse_width": 2,

 "hsync_front_porch": 46,

 "hsync_back_porch": 44,

 "vsync_pulse_width": 2,

 "vsync_front_porch": 16,

 "vsync_back_porch": 18,

 "hsync_idle_low": False,

 "vsync_idle_low": False,

 "de_idle_high": False,

 "pclk_active_high": False,

 "pclk_idle_high": False,

}

init_sequence_tl040hds20 = bytes()

board.I2C().deinit()

i2c = busio.I2C(board.SCL, board.SDA, frequency=100_000)

tft_io_expander = dict(board.TFT_IO_EXPANDER)

tft_io_expander['i2c_address'] = 0x38 # uncomment for rev B

dotclockframebuffer.ioexpander_send_init_sequence(

 i2c, init_sequence_tl040hds20, **tft_io_expander

)

fb = dotclockframebuffer.DotClockFramebuffer(**tft_pins, **tft_timings)

display = FramebufferDisplay(fb, auto_refresh=False)

Main Program

pixel_size = 6

palette_width = 160

palette_height = display.height // 8

bitmap = displayio.Bitmap(display.width, display.height, 65535)

Create a TileGrid to hold the bitmap

tile_grid = displayio.TileGrid(

 bitmap,

pixel_shader=displayio.ColorConverter(input_colorspace=displayio.Colorspace.RGB565),

)

Create a Group to hold the TileGrid

group = displayio.Group()

Add the TileGrid to the Group

group.append(tile_grid)

Add the Group to the Display

display.root_group = group

display.auto_refresh = True

ft = adafruit_focaltouch.Adafruit_FocalTouch(i2c, address=0x48)

current_color = displayio.ColorConverter().convert(0xFFFFFF)

©Adafruit Industries Page 137 of 199

for i in range(palette_width):

 color_index = i * 255 // palette_width

 rgb565 = displayio.ColorConverter().convert(

 color_index | color_index << 8 | color_index << 16

)

 r_mask = 0xF800

 g_mask = 0x07E0

 b_mask = 0x001F

 for j in range(palette_height):

 bitmap[i, j + palette_height] = rgb565 & b_mask

 bitmap[i, j + palette_height * 2] = rgb565 & (b_mask | g_mask)

 bitmap[i, j + palette_height * 3] = rgb565 & g_mask

 bitmap[i, j + palette_height * 4] = rgb565 & (r_mask | g_mask)

 bitmap[i, j + palette_height * 5] = rgb565 & r_mask

 bitmap[i, j + palette_height * 6] = rgb565 & (r_mask | b_mask)

 bitmap[i, j + palette_height * 7] = rgb565

while True:

 if ft.touched:

 try:

 for touch in ft.touches:

 x = touch["x"]

 y = touch["y"]

 if x < palette_width:

 current_color = bitmap[x, y]

 else:

 for i in range(pixel_size):

 for j in range(pixel_size):

 x_pixel = x - (pixel_size // 2) + i

 y_pixel = y - (pixel_size // 2) + j

 if (

 0 <= x_pixel < display.width

 and 0 <= y_pixel < display.height

):

 bitmap[x_pixel, y_pixel] = current_color

 except RuntimeError:

 pass

To use, just use your finger to paint on the canvas. You can also select a color from

the left. The closer to the edge of the display, the darker, the color will be.

©Adafruit Industries Page 138 of 199

Qualia S3 RGB-666 with TL021WVC02 2.1"

480x480 Round Display

Initialization Codes

Here are the init codes for this display:

init_sequence_tl021wvc02 = bytes((

 0xff, 0x05, 0x77, 0x01, 0x00, 0x00, 0x10,

 0xc0, 0x02, 0x3b, 0x00,

 0xc1, 0x02, 0x0b, 0x02,

 0xc2, 0x02, 0x00, 0x02,

 0xcc, 0x01, 0x10,

 0xcd, 0x01, 0x08,

 0xb0, 0x10, 0x02, 0x13, 0x1b, 0x0d, 0x10, 0x05, 0x08, 0x07, 0x07, 0x24, 0x04,

0x11, 0x0e, 0x2c, 0x33, 0x1d,

 0xb1, 0x10, 0x05, 0x13, 0x1b, 0x0d, 0x11, 0x05, 0x08, 0x07, 0x07, 0x24, 0x04,

0x11, 0x0e, 0x2c, 0x33, 0x1d,

 0xff, 0x05, 0x77, 0x01, 0x00, 0x00, 0x11,

 0xb0, 0x01, 0x5d,

 0xb1, 0x01, 0x43,

 0xb2, 0x01, 0x81,

 0xb3, 0x01, 0x80,

 0xb5, 0x01, 0x43,

 0xb7, 0x01, 0x85,

 0xb8, 0x01, 0x20,

 0xc1, 0x01, 0x78,

 0xc2, 0x01, 0x78,

 0xd0, 0x01, 0x88,

 0xe0, 0x03, 0x00, 0x00, 0x02,

 0xe1, 0x0b, 0x03, 0xa0, 0x00, 0x00, 0x04, 0xa0, 0x00, 0x00, 0x00, 0x20, 0x20,

 0xe2, 0x0d, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00,

 0xe3, 0x04, 0x00, 0x00, 0x11, 0x00,

 0xe4, 0x02, 0x22, 0x00,

 0xe5, 0x10, 0x05, 0xec, 0xa0, 0xa0, 0x07, 0xee, 0xa0, 0xa0, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00,

 0xe6, 0x04, 0x00, 0x00, 0x11, 0x00,

 0xe7, 0x02, 0x22, 0x00,

 0xe8, 0x10, 0x06, 0xed, 0xa0, 0xa0, 0x08, 0xef, 0xa0, 0xa0, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00,

 0xeb, 0x07, 0x00, 0x00, 0x40, 0x40, 0x00, 0x00, 0x00,

 0xed, 0x10, 0xff, 0xff, 0xff, 0xba, 0x0a, 0xbf, 0x45, 0xff, 0xff, 0x54, 0xfb,

0xa0, 0xab, 0xff, 0xff, 0xff,

 0xef, 0x06, 0x10, 0x0d, 0x04, 0x08, 0x3f, 0x1f,

 0xff, 0x05, 0x77, 0x01, 0x00, 0x00, 0x13,

 0xef, 0x01, 0x08,

 0xff, 0x05, 0x77, 0x01, 0x00, 0x00, 0x00,

 0x36, 0x01, 0x00,

 0x3a, 0x01, 0x60,

 0x11, 0x80, 0x64,

 0x29, 0x80, 0x32,

))

If you have issues running the example, you can always test your hardware by

running a UF2 for your display from https://learn.adafruit.com/adafruit-qualia-

esp32-s3-for-rgb666-displays/arduino-rainbow-demo

©Adafruit Industries Page 139 of 199

https://learn.adafruit.com/adafruit-qualia-esp32-s3-for-rgb666-displays/arduino-rainbow-demo
https://learn.adafruit.com/adafruit-qualia-esp32-s3-for-rgb666-displays/arduino-rainbow-demo

Timings

Here are the timing settings for this display:

tft_timings = {

 "frequency": 16_000_000,

 "width": 480,

 "height": 480,

 "hsync_pulse_width": 20,

 "hsync_front_porch": 40,

 "hsync_back_porch": 40,

 "vsync_pulse_width": 10,

 "vsync_front_porch": 40,

 "vsync_back_porch": 40,

 "hsync_idle_low": False,

 "vsync_idle_low": False,

 "de_idle_high": False,

 "pclk_active_high": True,

 "pclk_idle_high": False,

}

Example

Here's an example using those settings:

from displayio import release_displays

release_displays()

import time

import busio

import board

import dotclockframebuffer

from framebufferio import FramebufferDisplay

init_sequence_tl021wvc02 = bytes((

 0xff, 0x05, 0x77, 0x01, 0x00, 0x00, 0x10,

 0xc0, 0x02, 0x3b, 0x00,

 0xc1, 0x02, 0x0b, 0x02,

 0xc2, 0x02, 0x00, 0x02,

 0xcc, 0x01, 0x10,

 0xcd, 0x01, 0x08,

 0xb0, 0x10, 0x02, 0x13, 0x1b, 0x0d, 0x10, 0x05, 0x08, 0x07, 0x07, 0x24, 0x04,

0x11, 0x0e, 0x2c, 0x33, 0x1d,

 0xb1, 0x10, 0x05, 0x13, 0x1b, 0x0d, 0x11, 0x05, 0x08, 0x07, 0x07, 0x24, 0x04,

0x11, 0x0e, 0x2c, 0x33, 0x1d,

 0xff, 0x05, 0x77, 0x01, 0x00, 0x00, 0x11,

 0xb0, 0x01, 0x5d,

 0xb1, 0x01, 0x43,

 0xb2, 0x01, 0x81,

 0xb3, 0x01, 0x80,

 0xb5, 0x01, 0x43,

 0xb7, 0x01, 0x85,

 0xb8, 0x01, 0x20,

 0xc1, 0x01, 0x78,

 0xc2, 0x01, 0x78,

 0xd0, 0x01, 0x88,

 0xe0, 0x03, 0x00, 0x00, 0x02,

 0xe1, 0x0b, 0x03, 0xa0, 0x00, 0x00, 0x04, 0xa0, 0x00, 0x00, 0x00, 0x20, 0x20,

 0xe2, 0x0d, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00,

©Adafruit Industries Page 140 of 199

 0xe3, 0x04, 0x00, 0x00, 0x11, 0x00,

 0xe4, 0x02, 0x22, 0x00,

 0xe5, 0x10, 0x05, 0xec, 0xa0, 0xa0, 0x07, 0xee, 0xa0, 0xa0, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00,

 0xe6, 0x04, 0x00, 0x00, 0x11, 0x00,

 0xe7, 0x02, 0x22, 0x00,

 0xe8, 0x10, 0x06, 0xed, 0xa0, 0xa0, 0x08, 0xef, 0xa0, 0xa0, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00,

 0xeb, 0x07, 0x00, 0x00, 0x40, 0x40, 0x00, 0x00, 0x00,

 0xed, 0x10, 0xff, 0xff, 0xff, 0xba, 0x0a, 0xbf, 0x45, 0xff, 0xff, 0x54, 0xfb,

0xa0, 0xab, 0xff, 0xff, 0xff,

 0xef, 0x06, 0x10, 0x0d, 0x04, 0x08, 0x3f, 0x1f,

 0xff, 0x05, 0x77, 0x01, 0x00, 0x00, 0x13,

 0xef, 0x01, 0x08,

 0xff, 0x05, 0x77, 0x01, 0x00, 0x00, 0x00,

 0x36, 0x01, 0x00,

 0x3a, 0x01, 0x60,

 0x11, 0x80, 0x64,

 0x29, 0x80, 0x32,

))

board.I2C().deinit()

i2c = busio.I2C(board.SCL, board.SDA) #, frequency=400_000)

tft_io_expander = dict(board.TFT_IO_EXPANDER)

#tft_io_expander['i2c_address'] = 0x38 # uncomment for rev B

dotclockframebuffer.ioexpander_send_init_sequence(i2c, init_sequence_tl021wvc02,

**tft_io_expander)

i2c.deinit()

tft_pins = dict(board.TFT_PINS)

tft_timings = {

 "frequency": 16_000_000,

 "width": 480,

 "height": 480,

 "hsync_pulse_width": 20,

 "hsync_front_porch": 40,

 "hsync_back_porch": 40,

 "vsync_pulse_width": 10,

 "vsync_front_porch": 40,

 "vsync_back_porch": 40,

 "hsync_idle_low": False,

 "vsync_idle_low": False,

 "de_idle_high": False,

 "pclk_active_high": True,

 "pclk_idle_high": False,

}

fb = dotclockframebuffer.DotClockFramebuffer(**tft_pins, **tft_timings)

disp = FramebufferDisplay(fb, auto_refresh=False)

while True:

 for info in (tft_pins, tft_timings):

 print("\n" * 24)

 for k, v in info.items():

 print(f"{k:<20} {v}")

 disp.auto_refresh = True

 time.sleep(6)

 disp.auto_refresh = False

Go ahead and save the example you your CircuitPython code.py and run the code.

Your display should now look like this:

©Adafruit Industries Page 141 of 199

Qualia S3 RGB-666 with TL034WVS05 3.4"

480x480 Square Display

Initialization Codes

Here are the init codes for this display:

init_sequence_tl034wvs05 = bytes((

 b'\xff\x05w\x01\x00\x00\x13'

 b'\xef\x01\x08'

 b'\xff\x05w\x01\x00\x00\x10'

 b'\xc0\x02;\x00'

 b'\xc1\x02\x12\n'

 b'\xc2\x02\x07\x03'

 b'\xc3\x01\x02'

 b'\xcc\x01\x10'

 b'\xcd\x01\x08'

 b'\xb0\x10\x0f\x11\x17\x15\x15\t\x0c\x08\x08&\x04Y\x16f-\x1f'

 b'\xb1\x10\x0f\x11\x17\x15\x15\t\x0c\x08\x08&\x04Y\x16f-\x1f'

 b'\xff\x05w\x01\x00\x00\x11'

 b'\xb0\x01m'

 b'\xb1\x01:'

 b'\xb2\x01\x01'

 b'\xb3\x01\x80'

 b'\xb5\x01I'

 b'\xb7\x01\x85'

 b'\xb8\x01 '

 b'\xc1\x01x'

 b'\xc2\x01x'

If you have issues running the example, you can always test your hardware by

running a UF2 for your display from https://learn.adafruit.com/adafruit-qualia-

esp32-s3-for-rgb666-displays/arduino-rainbow-demo

©Adafruit Industries Page 142 of 199

https://learn.adafruit.com/adafruit-qualia-esp32-s3-for-rgb666-displays/arduino-rainbow-demo
https://learn.adafruit.com/adafruit-qualia-esp32-s3-for-rgb666-displays/arduino-rainbow-demo

 b'\xd0\x01\x88'

 b'\xe0\x03\x00\x00\x02'

 b'\xe1\x0b\x07\x00\t\x00\x06\x00\x08\x00\x0033'

 b'\xe2\r\x11\x1133\xf6\x00\xf6\x00\xf6\x00\xf6\x00\x00'

 b'\xe3\x04\x00\x00\x11\x11'

 b'\xe4\x02DD'

 b'\xe5\x10\x0f\xf3=\xff\x11\xf5=\xff\x0b\xef=\xff\r\xf1=\xff'

 b'\xe6\x04\x00\x00\x11\x11'

 b'\xe7\x02DD'

 b'\xe8\x10\x0e\xf2=\xff\x10\xf4=\xff\n\xee=\xff\x0c\xf0=\xff'

 b'\xe9\x026\x00'

 b'\xeb\x07\x00\x01\xe4\xe4D\xaa\x10'

 b'\xec\x02<\x00'

 b'\xed\x10\xffEg\xfa\x01+\xcf\xff\xff\xfc\xb2\x10\xafvT\xff'

 b'\xef\x06\x10\r\x04\x08?\x1f'

 b'\xff\x05w\x01\x00\x00\x00'

 b'5\x01\x00'

 b':\x01f'

 b'\x11\x80x'

 b')\x802'

))

Timings

Here are the timing settings for this display:

tft_timings = {

 "frequency": 16000000,

 "width": 480,

 "height": 480,

 "hsync_pulse_width": 20,

 "hsync_front_porch": 40,

 "hsync_back_porch": 40,

 "vsync_pulse_width": 10,

 "vsync_front_porch": 40,

 "vsync_back_porch": 40,

 "hsync_idle_low": False,

 "vsync_idle_low": False,

 "de_idle_high": False,

 "pclk_active_high": True,

 "pclk_idle_high": False,

}

Example

Here's an example using those settings:

from displayio import release_displays

release_displays()

import displayio

import busio

import board

import dotclockframebuffer

from framebufferio import FramebufferDisplay

tft_pins = dict(board.TFT_PINS)

tft_timings = {

©Adafruit Industries Page 143 of 199

 "frequency": 16000000,

 "width": 480,

 "height": 480,

 "hsync_pulse_width": 20,

 "hsync_front_porch": 40,

 "hsync_back_porch": 40,

 "vsync_pulse_width": 10,

 "vsync_front_porch": 40,

 "vsync_back_porch": 40,

 "hsync_idle_low": False,

 "vsync_idle_low": False,

 "de_idle_high": False,

 "pclk_active_high": True,

 "pclk_idle_high": False,

}

init_sequence_tl034wvs05 = bytes((

 b'\xff\x05w\x01\x00\x00\x13'

 b'\xef\x01\x08'

 b'\xff\x05w\x01\x00\x00\x10'

 b'\xc0\x02;\x00'

 b'\xc1\x02\x12\n'

 b'\xc2\x02\x07\x03'

 b'\xc3\x01\x02'

 b'\xcc\x01\x10'

 b'\xcd\x01\x08'

 b'\xb0\x10\x0f\x11\x17\x15\x15\t\x0c\x08\x08&\x04Y\x16f-\x1f'

 b'\xb1\x10\x0f\x11\x17\x15\x15\t\x0c\x08\x08&\x04Y\x16f-\x1f'

 b'\xff\x05w\x01\x00\x00\x11'

 b'\xb0\x01m'

 b'\xb1\x01:'

 b'\xb2\x01\x01'

 b'\xb3\x01\x80'

 b'\xb5\x01I'

 b'\xb7\x01\x85'

 b'\xb8\x01 '

 b'\xc1\x01x'

 b'\xc2\x01x'

 b'\xd0\x01\x88'

 b'\xe0\x03\x00\x00\x02'

 b'\xe1\x0b\x07\x00\t\x00\x06\x00\x08\x00\x0033'

 b'\xe2\r\x11\x1133\xf6\x00\xf6\x00\xf6\x00\xf6\x00\x00'

 b'\xe3\x04\x00\x00\x11\x11'

 b'\xe4\x02DD'

 b'\xe5\x10\x0f\xf3=\xff\x11\xf5=\xff\x0b\xef=\xff\r\xf1=\xff'

 b'\xe6\x04\x00\x00\x11\x11'

 b'\xe7\x02DD'

 b'\xe8\x10\x0e\xf2=\xff\x10\xf4=\xff\n\xee=\xff\x0c\xf0=\xff'

 b'\xe9\x026\x00'

 b'\xeb\x07\x00\x01\xe4\xe4D\xaa\x10'

 b'\xec\x02<\x00'

 b'\xed\x10\xffEg\xfa\x01+\xcf\xff\xff\xfc\xb2\x10\xafvT\xff'

 b'\xef\x06\x10\r\x04\x08?\x1f'

 b'\xff\x05w\x01\x00\x00\x00'

 b'5\x01\x00'

 b':\x01f'

 b'\x11\x80x'

 b')\x802'

))

board.I2C().deinit()

i2c = busio.I2C(board.SCL, board.SDA)

tft_io_expander = dict(board.TFT_IO_EXPANDER)

#tft_io_expander['i2c_address'] = 0x38 # uncomment for rev B

dotclockframebuffer.ioexpander_send_init_sequence(i2c, init_sequence_tl034wvs05,

**tft_io_expander)

i2c.deinit()

bitmap = displayio.OnDiskBitmap("/display-ruler-720p.bmp")

©Adafruit Industries Page 144 of 199

fb = dotclockframebuffer.DotClockFramebuffer(**tft_pins, **tft_timings)

display = FramebufferDisplay(fb, auto_refresh=False)

Create a TileGrid to hold the bitmap

tile_grid = displayio.TileGrid(bitmap, pixel_shader=bitmap.pixel_shader)

Create a Group to hold the TileGrid

group = displayio.Group()

Add the TileGrid to the Group

group.append(tile_grid)

Add the Group to the Display

display.root_group = group

display.auto_refresh = True

Loop forever so you can enjoy your image

while True:

 pass

Download the following image into the root folder of of your CIRCUITPY drive:

Go ahead and save the example you your CircuitPython code.py and run the code.

Your display should now look like this:

©Adafruit Industries Page 145 of 199

Qualia S3 RGB-666 with TL040HDS20 4.0"

720x720 Square Display

Initialization Codes

Here are the init codes for this display:

init_sequence_tl040hds20 = bytes()

Timings

Here are the timing settings for this display:

tft_timings = {

 "frequency": 16000000,

 "width": 720,

 "height": 720,

 "hsync_pulse_width": 2,

 "hsync_front_porch": 46,

 "hsync_back_porch": 44,

If you have issues running the example, you can always test your hardware by

running a UF2 for your display from https://learn.adafruit.com/adafruit-qualia-

esp32-s3-for-rgb666-displays/arduino-rainbow-demo

This display is the easiest display and needs no initialization.

©Adafruit Industries Page 146 of 199

https://learn.adafruit.com/adafruit-qualia-esp32-s3-for-rgb666-displays/arduino-rainbow-demo
https://learn.adafruit.com/adafruit-qualia-esp32-s3-for-rgb666-displays/arduino-rainbow-demo

 "vsync_pulse_width": 2,

 "vsync_front_porch": 16,

 "vsync_back_porch": 18,

 "hsync_idle_low": False,

 "vsync_idle_low": False,

 "de_idle_high": False,

 "pclk_active_high": False,

 "pclk_idle_high": False,

}

Example

Here's an example using those settings:

from displayio import release_displays

release_displays()

import displayio

import busio

import board

import dotclockframebuffer

from framebufferio import FramebufferDisplay

from microcontroller import pin

tft_pins = dict(board.TFT_PINS)

tft_timings = {

 "frequency": 16000000,

 "width": 720,

 "height": 720,

 "hsync_pulse_width": 2,

 "hsync_front_porch": 46,

 "hsync_back_porch": 44,

 "vsync_pulse_width": 2,

 "vsync_front_porch": 16,

 "vsync_back_porch": 18,

 "hsync_idle_low": False,

 "vsync_idle_low": False,

 "de_idle_high": False,

 "pclk_active_high": False,

 "pclk_idle_high": False,

}

init_sequence_tl040hds20 = bytes()

board.I2C().deinit()

i2c = busio.I2C(board.SCL, board.SDA)

tft_io_expander = dict(board.TFT_IO_EXPANDER)

#tft_io_expander['i2c_address'] = 0x38 # uncomment for rev B

dotclockframebuffer.ioexpander_send_init_sequence(i2c, init_sequence_tl040hds20,

**tft_io_expander)

i2c.deinit()

bitmap = displayio.OnDiskBitmap("/display-ruler-720p.bmp")

fb = dotclockframebuffer.DotClockFramebuffer(**tft_pins, **tft_timings)

display = FramebufferDisplay(fb, auto_refresh=False)

Create a TileGrid to hold the bitmap

tile_grid = displayio.TileGrid(bitmap, pixel_shader=bitmap.pixel_shader)

Create a Group to hold the TileGrid

group = displayio.Group()

©Adafruit Industries Page 147 of 199

Add the TileGrid to the Group

group.append(tile_grid)

Add the Group to the Display

display.root_group = group

display.auto_refresh = True

Loop forever so you can enjoy your image

while True:

 pass

Download the following image into the root folder of of your CIRCUITPY drive:

Go ahead and save the example you your CircuitPython code.py and run the code.

Your display should now look like this:

©Adafruit Industries Page 148 of 199

Qualia S3 RGB-666 with TL032FWV01 3.2"

320x820 Bar Display

Initialization Codes

Here are the init codes for this display:

init_sequence_tl032 = bytes((

 b'\x11\x80d'

 b'\xff\x05w\x01\x00\x00\x13'

 b'\xef\x01\x08'

 b'\xff\x05w\x01\x00\x00\x10'

 b'\xc0\x02\xe5\x02'

 b'\xc1\x02\x0c\n'

 b'\xc2\x02\x07\x0f'

 b'\xc3\x01\x02'

 b'\xcc\x01\x10'

 b'\xcd\x01\x08'

 b'\xb0\x10\x00\x08Q\r\xce\x06\x00\x08\x08\x1d\x02\xd0\x0fo6?'

 b'\xb1\x10\x00\x10O\x0c\x11\x05\x00\x07\x07\x1f\x05\xd3\x11n4?'

 b'\xff\x05w\x01\x00\x00\x11'

 b'\xb0\x01M'

 b'\xb1\x01\x1c'

 b'\xb2\x01\x87'

 b'\xb3\x01\x80'

 b'\xb5\x01G'

 b'\xb7\x01\x85'

 b'\xb8\x01!'

 b'\xb9\x01\x10'

 b'\xc1\x01x'

 b'\xc2\x01x'

 b'\xd0\x81\x88d'

 b'\xe0\x03\x80\x00\x02'

 b'\xe1\x0b\x04\xa0\x00\x00\x05\xa0\x00\x00\x00``'

 b'\xe2\r00``<\xa0\x00\x00=\xa0\x00\x00\x00'

 b'\xe3\x04\x00\x0033'

 b'\xe4\x02DD'

 b'\xe5\x10\x06>\xa0\xa0\x08@\xa0\xa0\nB\xa0\xa0\x0cD\xa0\xa0'

 b'\xe6\x04\x00\x0033'

 b'\xe7\x02DD'

 b'\xe8\x10\x07?\xa0\xa0\tA\xa0\xa0\x0bC\xa0\xa0\rE\xa0\xa0'

 b'\xeb\x07\x00\x01NN\xeeD\x00'

 b"\xed\x10\xff\xff\x04Vr\xff\xff\xff\xff\xff\xff'e@\xff\xff"

 b'\xef\x06\x10\r\x04\x08?\x1f'

 b'\xff\x05w\x01\x00\x00\x13'

 b'\xe8\x02\x00\x0e'

 b'\xff\x05w\x01\x00\x00\x00'

 b'\x11\x80x'

 b'\xff\x05w\x01\x00\x00\x13'

 b'\xe8\x82\x00\x0c\n'

 b'\xe8\x02\x00\x00'

 b'\xff\x05w\x01\x00\x00\x00'

 b'6\x01\x00'

 b':\x01f'

If you have issues running the example, you can always test your hardware by

running a UF2 for your display from https://learn.adafruit.com/adafruit-qualia-

esp32-s3-for-rgb666-displays/arduino-rainbow-demo

©Adafruit Industries Page 149 of 199

https://learn.adafruit.com/adafruit-qualia-esp32-s3-for-rgb666-displays/arduino-rainbow-demo
https://learn.adafruit.com/adafruit-qualia-esp32-s3-for-rgb666-displays/arduino-rainbow-demo

 b'\x11\x80x'

 b')\x80x'

))

Timings

Here are the timing settings for this display:

tft_timings = {

 "frequency": 16000000,

 "width": 320,

 "height": 820,

 "hsync_pulse_width": 3,

 "hsync_back_porch": 251,

 "hsync_front_porch": 150,

 "hsync_idle_low": False,

 "vsync_pulse_width": 6,

 "vsync_back_porch": 90,

 "vsync_front_porch": 100,

 "vsync_idle_low": False,

 "pclk_active_high": False,

 "pclk_idle_high": False,

 "de_idle_high": False,

}

Example

Here's an example using those settings:

from displayio import release_displays

release_displays()

import random

import displayio

import time

import busio

import board

import dotclockframebuffer

from framebufferio import FramebufferDisplay

init_sequence_tl032 = bytes((

 b'\x11\x80d'

 b'\xff\x05w\x01\x00\x00\x13'

 b'\xef\x01\x08'

 b'\xff\x05w\x01\x00\x00\x10'

 b'\xc0\x02\xe5\x02'

 b'\xc1\x02\x0c\n'

 b'\xc2\x02\x07\x0f'

 b'\xc3\x01\x02'

 b'\xcc\x01\x10'

 b'\xcd\x01\x08'

 b'\xb0\x10\x00\x08Q\r\xce\x06\x00\x08\x08\x1d\x02\xd0\x0fo6?'

 b'\xb1\x10\x00\x10O\x0c\x11\x05\x00\x07\x07\x1f\x05\xd3\x11n4?'

 b'\xff\x05w\x01\x00\x00\x11'

 b'\xb0\x01M'

 b'\xb1\x01\x1c'

©Adafruit Industries Page 150 of 199

 b'\xb2\x01\x87'

 b'\xb3\x01\x80'

 b'\xb5\x01G'

 b'\xb7\x01\x85'

 b'\xb8\x01!'

 b'\xb9\x01\x10'

 b'\xc1\x01x'

 b'\xc2\x01x'

 b'\xd0\x81\x88d'

 b'\xe0\x03\x80\x00\x02'

 b'\xe1\x0b\x04\xa0\x00\x00\x05\xa0\x00\x00\x00``'

 b'\xe2\r00``<\xa0\x00\x00=\xa0\x00\x00\x00'

 b'\xe3\x04\x00\x0033'

 b'\xe4\x02DD'

 b'\xe5\x10\x06>\xa0\xa0\x08@\xa0\xa0\nB\xa0\xa0\x0cD\xa0\xa0'

 b'\xe6\x04\x00\x0033'

 b'\xe7\x02DD'

 b'\xe8\x10\x07?\xa0\xa0\tA\xa0\xa0\x0bC\xa0\xa0\rE\xa0\xa0'

 b'\xeb\x07\x00\x01NN\xeeD\x00'

 b"\xed\x10\xff\xff\x04Vr\xff\xff\xff\xff\xff\xff'e@\xff\xff"

 b'\xef\x06\x10\r\x04\x08?\x1f'

 b'\xff\x05w\x01\x00\x00\x13'

 b'\xe8\x02\x00\x0e'

 b'\xff\x05w\x01\x00\x00\x00'

 b'\x11\x80x'

 b'\xff\x05w\x01\x00\x00\x13'

 b'\xe8\x82\x00\x0c\n'

 b'\xe8\x02\x00\x00'

 b'\xff\x05w\x01\x00\x00\x00'

 b'6\x01\x00'

 b':\x01f'

 b'\x11\x80x'

 b')\x80x'

))

board.I2C().deinit()

i2c = busio.I2C(board.SCL, board.SDA, frequency=400_000)

tft_io_expander = dict(board.TFT_IO_EXPANDER)

#tft_io_expander['i2c_address'] = 0x38 # uncomment for rev B

dotclockframebuffer.ioexpander_send_init_sequence(i2c, init_sequence_tl032,

**tft_io_expander)

i2c.deinit()

tft_pins = dict(board.TFT_PINS)

tft_timings = {

 "frequency": 16000000,

 "width": 320,

 "height": 820,

 "hsync_pulse_width": 3,

 "hsync_back_porch": 251,

 "hsync_front_porch": 150,

 "hsync_idle_low": False,

 "vsync_pulse_width": 6,

 "vsync_back_porch": 90,

 "vsync_front_porch": 100,

 "vsync_idle_low": False,

 "pclk_active_high": False,

 "pclk_idle_high": False,

 "de_idle_high": False,

}

#bitmap = displayio.OnDiskBitmap("/display-ruler-720p.bmp")

bitmap = displayio.Bitmap(256, 7*64, 65535)

fb = dotclockframebuffer.DotClockFramebuffer(**tft_pins, **tft_timings)

©Adafruit Industries Page 151 of 199

display = FramebufferDisplay(fb, auto_refresh=False)

Create a TileGrid to hold the bitmap

tile_grid = displayio.TileGrid(bitmap,

pixel_shader=displayio.ColorConverter(input_colorspace=displayio.Colorspace.RGB565))

Create a Group to hold the TileGrid

group = displayio.Group()

Add the TileGrid to the Group

group.append(tile_grid)

Add the Group to the Display

display.root_group = group

display.auto_refresh = True

for i in range(256):

 b = i >> 3

 g = (i >> 2) << 5

 r = b << 11

 for j in range(64):

 bitmap[i, j] = b

 bitmap[i, j+64] = b|g

 bitmap[i, j+128] = g

 bitmap[i, j+192] = g|r

 bitmap[i, j+256] = r

 bitmap[i, j+320] = r|b

 bitmap[i, j+384] = r|g|b

Loop forever so you can enjoy your image

while True:

 time.sleep(1)

 display.auto_refresh = False

 group.x = random.randint(0, 32)

 group.y = random.randint(0, 32)

 display.auto_refresh = True

 pass

Go ahead and save the example you your CircuitPython code.py and run the code.

Your display should now look like this:

©Adafruit Industries Page 152 of 199

Arduino IDE Setup

The first thing you will need to do is to download the latest release of the Arduino

IDE. You will need to be using version 1.8 or higher for this guide

Arduino IDE Download

To use the ESP32-S2/S3 with Arduino, you'll need to follow the steps below for your

operating system. You can also check out the Espressif Arduino repository for the

most up to date details on how to install it ().

After you have downloaded and installed the latest version of Arduino IDE, you will

need to start the IDE and navigate to the Preferences menu. You can access it from

the File menu in Windows or Linux, or the Arduino menu on OS X.

A dialog will pop up just like the one shown below.

The ESP32-S2/S3 bootloader does not have USB serial support for Windows 7 or

8. (See https://github.com/espressif/arduino-esp32/issues/5994) please update

to version 10 which is supported by espressif! Alternatively you can try this

community-crafted Windows 7 driver (https://github.com/kutukvpavel/Esp32-Win7-

VCP-drivers)

©Adafruit Industries Page 153 of 199

https://github.com/espressif/arduino-esp32/issues/5994
https://github.com/kutukvpavel/Esp32-Win7-VCP-drivers
https://github.com/kutukvpavel/Esp32-Win7-VCP-drivers
http://www.arduino.cc/en/Main/Software
https://github.com/espressif/arduino-esp32#using-through-arduino-ide
https://github.com/espressif/arduino-esp32#using-through-arduino-ide

We will be adding a URL to the new Additional Boards Manager URLs option. The list

of URLs is comma separated, and you will only have to add each URL once. New

Adafruit boards and updates to existing boards will automatically be picked up by the

Board Manager each time it is opened. The URLs point to index files that the Board

Manager uses to build the list of available & installed boards.

To find the most up to date list of URLs you can add, you can visit the list of third party

board URLs on the Arduino IDE wiki (). We will only need to add one URL to the IDE in

this example, but you can add multiple URLS by separating them with commas. Copy

and paste the link below into the Additional Boards Manager URLs option in the

Arduino IDE preferences.

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/

package_esp32_index.json

©Adafruit Industries Page 154 of 199

https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls#list-of-3rd-party-boards-support-urls
https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls#list-of-3rd-party-boards-support-urls

If you're an advanced hacker and want the 'bleeding edge' release that may have

fixes (or bugs!) you can check out the dev url instead:

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/

package_esp32_dev_index.json

If you have multiple boards you want to support, say ESP8266 and Adafruit, have

both URLs in the text box separated by a comma (,)

Once done click OK to save the new preference settings.

The next step is to actually install the Board Support Package (BSP). Go to the Tools →

Board → Board Manager submenu. A dialog should come up with various BSPs.

Search for esp32.

Click the Install button and wait for it to finish. Once it is finished, you can close the

dialog.

In the Tools → Board submenu you should see ESP32 Arduino and in that dropdown it

should contain the ESP32 boards along with all the latest ESP32-S2/S3 boards.

Look for the board called Adafruit Qualia ESP32-S3 RGB666.

©Adafruit Industries Page 155 of 199

Manually Resetting ESP32-S3 Boards

Due to an issue in the Espressif code base, boards with an ESP32-S3 need to be

manually reset after uploading code from the Arduino IDE. After your code has been

uploaded to the ESP32-S3, press the reset button. After pressing the reset button,

your code will begin running.

For additional information, you can track the issue () on GitHub in the arduino-esp32

repository.

Using with Arduino IDE

Blink

Now you can upload your first blink sketch!

Plug in the ESP32-S2/S3 board and wait for it to be recognized by the OS (just takes a

few seconds).

Make sure to press the reset button after uploading code from the Arduino IDE to

the ESP32-S3!

©Adafruit Industries Page 156 of 199

https://github.com/espressif/arduino-esp32/issues/6762

Select ESP32-S2/S3 Board in Arduino IDE

On the Arduino IDE, click:

Tools -> Board -> ESP32 Arduino -> Your

Adafruit ESP32-S2/S3 board

The screenshot shows Metro S2 but you

may have a different board. Make sure the

name matches the exact product you

purchased. If you don't see your board,

make sure you have the latest version of

the ESP32 board support package

Launch ESP32-S2/S3 ROM Bootloader

ESP32-S2/S3 support in Arduino uses native USB which can crash. If you ever

DON'T see a serial/COM port, you can always manually enter bootloading mode.

This bootloader is in ROM, it is 'un-brickable' so you can always use this

technique to get into the bootloader. However, after uploading your Arduino

code you MUST press reset to start the sketch

©Adafruit Industries Page 157 of 199

https://learn.adafruit.com//assets/96985
https://learn.adafruit.com//assets/96985
https://learn.adafruit.com//assets/96986
https://learn.adafruit.com//assets/96986

Before we upload a sketch, place your

ESP32-S2/S3 board into ROM bootloader

mode ().

Look for the Reset button and a second

DFU / BOOT0 button

HOLD down the DFU/Boot0 button while

you click Reset. Then release DFU/Boot0

button

The GIF shows a Metro S2 but your board

may look different. It will still have BOOT

and Reset buttons somewhere

It should appear under Tools -> Port as ESP32-S2/S3 Dev Module.

Load Blink Sketch

Now open up this Blink example in a new sketch window

// the setup function runs once when you press reset or power the board

void setup() {

 // initialize built in LED pin as an output.

 pinMode(LED_BUILTIN, OUTPUT);

 // initialize USB serial converter so we have a port created

 Serial.begin();

}

// the loop function runs over and over again forever

void loop() {

Do not select any other port than the one that is called "ESP32S2 Dev Module"

or "ESP32S3 Dev Module"

©Adafruit Industries Page 158 of 199

https://learn.adafruit.com//assets/96987
https://learn.adafruit.com//assets/96987
https://learn.adafruit.com/adafruit-metro-esp32-s2/rom-bootloader#enter-rom-bootloader-mode-3076820-1
https://learn.adafruit.com/adafruit-metro-esp32-s2/rom-bootloader#enter-rom-bootloader-mode-3076820-1
https://learn.adafruit.com/adafruit-metro-esp32-s2/rom-bootloader#enter-rom-bootloader-mode-3076820-1

 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)

 delay(1000); // wait for a second

 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW

 delay(1000); // wait for a second

}

And click upload! After uploading, you may see something like this:

And click upload! After uploading, you may

see something like this, warning you that

we could not get out of reset.

This is normal! Press the RESET button on

your board to launch the sketch

That's it, you will be able to see the red LED blink. You will also see a new serial port

created.

You may call Serial.begin(); in your sketch to create the serial port so don't

forget it, it is not required for other Arduinos or previous ESP boards!

You can now select the new serial port name which will be different than the

bootloader serial port. Arduino IDE will try to use auto-reset to automatically put the

board into bootloader mode when you ask it to upload new code

If you ever DON'T see a serial port, or something is not working out with upload you

can always manually enter bootloader mode:

Reset board into ROM bootloader with DFU/BOOT0 + Reset buttons

Note that we use LED_BUILTIN not pin 13 for the LED pin. That's because we

don't always use pin 13 for the LED on boards. For example, on the Metro ESP32-

S2 the LED is on pin 42!

•

©Adafruit Industries Page 159 of 199

https://learn.adafruit.com//assets/96990
https://learn.adafruit.com//assets/96990

Select the ESP32S2/S3 Dev Board ROM bootloader serial port in Tools->Port

menu

Upload sketch

Click reset button to launch code

WiFi Test

Thanksfully if you have ESP32 sketches, they'll 'just work' with variations of ESP32.

You can find a wide range of examples in the File->Examples->Examples for Adafruit

Metro ESP32-S2 subheading (the name of the board may vary so it could be "Example

s for Adafruit Feather ESP32 V2" etc)

Let's start by scanning the local networks.

Load up the WiFiScan example under Examples->Examples for YOUR BOARDNAME-

>WiFi->WiFiScan

•

•

•

©Adafruit Industries Page 160 of 199

And upload this example to your board. The ESP32 should scan and find WiFi

networks around you.

For ESP32, open the serial monitor, to see the scan begin.

For ESP32-S2, -S3 and -C3, don't forget you have to click Reset after uploading

through the ROM bootloader. Then select the new USB Serial port created by the

ESP32. It will take a few seconds for the board to complete the scan.

If you can not scan any networks, check your power supply. You need a solid power

supply in order for the ESP32 to not brown out. A skinny USB cable or drained battery

can cause issues.

WiFi Connection Test

Now that you can scan networks around you, its time to connect to the Internet!

Copy the example below and paste it into the Arduino IDE:

// SPDX-FileCopyrightText: 2020 Brent Rubell for Adafruit Industries

//

// SPDX-License-Identifier: MIT

/*

 Web client

 This sketch connects to a website (wifitest.adafruit.com/testwifi/index.html)

 using the WiFi module.

 This example is written for a network using WPA encryption. For

©Adafruit Industries Page 161 of 199

 WEP or WPA, change the Wifi.begin() call accordingly.

 This example is written for a network using WPA encryption. For

 WEP or WPA, change the Wifi.begin() call accordingly.

 created 13 July 2010

 by dlf (Metodo2 srl)

 modified 31 May 2012

 by Tom Igoe

 */

#include <WiFi.h>

// Enter your WiFi SSID and password

char ssid[] = "YOUR_SSID"; // your network SSID (name)

char pass[] = "YOUR_SSID_PASSWORD"; // your network password (use for WPA, or

use as key for WEP)

int keyIndex = 0; // your network key Index number (needed

only for WEP)

int status = WL_IDLE_STATUS;

// if you don't want to use DNS (and reduce your sketch size)

// use the numeric IP instead of the name for the server:

//IPAddress server(74,125,232,128); // numeric IP for Google (no DNS)

char server[] = "wifitest.adafruit.com"; // name address for adafruit test

char path[] = "/testwifi/index.html";

// Initialize the Ethernet client library

// with the IP address and port of the server

// that you want to connect to (port 80 is default for HTTP):

WiFiClient client;

void setup() {

 //Initialize serial and wait for port to open:

 Serial.begin(115200);

 while (!Serial) {

 ; // wait for serial port to connect. Needed for native USB port only

 }

 // attempt to connect to Wifi network:

 Serial.print("Attempting to connect to SSID: ");

 Serial.println(ssid);

 WiFi.begin(ssid, pass);

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

 }

 Serial.println("");

 Serial.println("Connected to WiFi");

 printWifiStatus();

 Serial.println("\nStarting connection to server...");

 // if you get a connection, report back via serial:

 if (client.connect(server, 80)) {

 Serial.println("connected to server");

 // Make a HTTP request:

 client.print("GET "); client.print(path); client.println(" HTTP/1.1");

 client.print("Host: "); client.println(server);

 client.println("Connection: close");

 client.println();

 }

}

void loop() {

 // if there are incoming bytes available

 // from the server, read them and print them:

©Adafruit Industries Page 162 of 199

 while (client.available()) {

 char c = client.read();

 Serial.write(c);

 }

 // if the server's disconnected, stop the client:

 if (!client.connected()) {

 Serial.println();

 Serial.println("disconnecting from server.");

 client.stop();

 // do nothing forevermore:

 while (true) {

 delay(100);

 }

 }

}

void printWifiStatus() {

 // print the SSID of the network you're attached to:

 Serial.print("SSID: ");

 Serial.println(WiFi.SSID());

 // print your board's IP address:

 IPAddress ip = WiFi.localIP();

 Serial.print("IP Address: ");

 Serial.println(ip);

 // print the received signal strength:

 long rssi = WiFi.RSSI();

 Serial.print("signal strength (RSSI):");

 Serial.print(rssi);

 Serial.println(" dBm");

}

NOTE: You must change the SECRET_SSID and SECRET_PASS in the example code

to your WiFi SSID and password before uploading this to your board.

After you've set it correctly, upload and check the serial monitor. You should see the

following. If not, go back, check wiring, power and your SSID/password

©Adafruit Industries Page 163 of 199

Secure Connection Example

Many servers today do not allow non-SSL connectivity. Lucky for you the ESP32 has a

great TLS/SSL stack so you can have that all taken care of for you. Here's an example

of a using a secure WiFi connection to connect to the Twitter API.

Copy and paste it into the Arduino IDE:

// SPDX-FileCopyrightText: 2015 Arturo Guadalupi

// SPDX-FileCopyrightText: 2020 Brent Rubell for Adafruit Industries

//

// SPDX-License-Identifier: MIT

/*

This example creates a client object that connects and transfers

data using always SSL.

It is compatible with the methods normally related to plain

connections, like client.connect(host, port).

Written by Arturo Guadalupi

last revision November 2015

*/

#include <WiFiClientSecure.h>

// Enter your WiFi SSID and password

©Adafruit Industries Page 164 of 199

char ssid[] = "YOUR_SSID"; // your network SSID (name)

char pass[] = "YOUR_SSID_PASSWORD"; // your network password (use for WPA, or

use as key for WEP)

int keyIndex = 0; // your network key Index number (needed

only for WEP)

int status = WL_IDLE_STATUS;

// if you don't want to use DNS (and reduce your sketch size)

// use the numeric IP instead of the name for the server:

//IPAddress server(74,125,232,128); // numeric IP for Google (no DNS)

#define SERVER "cdn.syndication.twimg.com"

#define PATH "/widgets/followbutton/info.json?screen_names=adafruit"

// Initialize the SSL client library

// with the IP address and port of the server

// that you want to connect to (port 443 is default for HTTPS):

WiFiClientSecure client;

void setup() {

 //Initialize serial and wait for port to open:

 Serial.begin(115200);

 while (!Serial) {

 ; // wait for serial port to connect. Needed for native USB port only

 }

 // attempt to connect to Wifi network:

 Serial.print("Attempting to connect to SSID: ");

 Serial.println(ssid);

 WiFi.begin(ssid, pass);

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

 }

 Serial.println("");

 Serial.println("Connected to WiFi");

 printWifiStatus();

 client.setInsecure(); // don't use a root cert

 Serial.println("\nStarting connection to server...");

 // if you get a connection, report back via serial:

 if (client.connect(SERVER, 443)) {

 Serial.println("connected to server");

 // Make a HTTP request:

 client.println("GET " PATH " HTTP/1.1");

 client.println("Host: " SERVER);

 client.println("Connection: close");

 client.println();

 }

}

uint32_t bytes = 0;

void loop() {

 // if there are incoming bytes available

 // from the server, read them and print them:

 while (client.available()) {

 char c = client.read();

 Serial.write(c);

 bytes++;

 }

 // if the server's disconnected, stop the client:

 if (!client.connected()) {

 Serial.println();

 Serial.println("disconnecting from server.");

©Adafruit Industries Page 165 of 199

 client.stop();

 Serial.print("Read "); Serial.print(bytes); Serial.println(" bytes");

 // do nothing forevermore:

 while (true);

 }

}

void printWifiStatus() {

 // print the SSID of the network you're attached to:

 Serial.print("SSID: ");

 Serial.println(WiFi.SSID());

 // print your board's IP address:

 IPAddress ip = WiFi.localIP();

 Serial.print("IP Address: ");

 Serial.println(ip);

 // print the received signal strength:

 long rssi = WiFi.RSSI();

 Serial.print("signal strength (RSSI):");

 Serial.print(rssi);

 Serial.println(" dBm");

}

As before, update the ssid and password first, then upload the example to your board.

Note we use WiFiClientSecure client instead of WiFiClient client; to

require a SSL connection! This example will connect to a twitter server to download a

JSON snippet that says how many followers adafruit has

©Adafruit Industries Page 166 of 199

JSON Parsing Demo

This example is a little more advanced - many sites will have API's that give you JSON

data. We will build on the previous SSL example to connect to twitter and get that

JSON data chunk

Then we'll use ArduinoJSON () to convert that to a format we can use and then

display that data on the serial port (which can then be re-directed to a display of some

sort)

First up, use the Library manager to install ArduinoJSON ().

Then load the example JSONdemo by copying the code below and pasting it into

your Arduino IDE.

// SPDX-FileCopyrightText: 2014 Benoit Blanchon

// SPDX-FileCopyrightText: 2014 Arturo Guadalupi

// SPDX-FileCopyrightText: 2020 Brent Rubell for Adafruit Industries

//

// SPDX-License-Identifier: MIT

/*

This example creates a client object that connects and transfers

data using always SSL, then shows how to parse a JSON document in an HTTP response.

It is compatible with the methods normally related to plain

connections, like client.connect(host, port).

Written by Arturo Guadalupi + Copyright Benoit Blanchon 2014-2019

last revision November 2015

*/

#include <WiFiClientSecure.h>

#include <ArduinoJson.h>

#include <Wire.h>

// uncomment the next line if you have a 128x32 OLED on the I2C pins

//#define USE_OLED

// uncomment the next line to deep sleep between requests

//#define USE_DEEPSLEEP

#if defined(USE_OLED)

// Some boards have TWO I2C ports, how nifty. We should use the second one sometimes

#if defined(ARDUINO_ADAFRUIT_QTPY_ESP32S2) || \

 defined(ARDUINO_ADAFRUIT_QTPY_ESP32S3_NOPSRAM) || \

 defined(ARDUINO_ADAFRUIT_QTPY_ESP32_PICO)

 #define OLED_I2C_PORT &Wire1

#else

 #define OLED_I2C_PORT &Wire

#endif

 #include <Adafruit_SSD1306.h>

 Adafruit_SSD1306 display = Adafruit_SSD1306(128, 32, OLED_I2C_PORT);

#endif

// Enter your WiFi SSID and password

char ssid[] = "YOUR_SSID"; // your network SSID (name)

©Adafruit Industries Page 167 of 199

https://arduinojson.org/
https://arduinojson.org/v6/doc/installation/

char pass[] = "YOUR_SSID_PASSWORD"; // your network password (use for WPA, or

use as key for WEP)

int keyIndex = 0; // your network key Index number (needed

only for WEP)

int status = WL_IDLE_STATUS;

// if you don't want to use DNS (and reduce your sketch size)

// use the numeric IP instead of the name for the server:

//IPAddress server(74,125,232,128); // numeric IP for Google (no DNS)

#define SERVER "cdn.syndication.twimg.com"

#define PATH "/widgets/followbutton/info.json?screen_names=adafruit"

void setup() {

 //Initialize serial and wait for port to open:

 Serial.begin(115200);

 // Connect to WPA/WPA2 network

 WiFi.begin(ssid, pass);

 #if defined(USE_OLED)

 setupI2C();

 delay(200); // wait for OLED to reset

 if(!display.begin(SSD1306_SWITCHCAPVCC, 0x3C)) { // Address 0x3C for 128x32

 Serial.println(F("SSD1306 allocation failed"));

 for(;;); // Don't proceed, loop forever

 }

 display.display();

 display.setTextSize(1);

 display.setTextColor(WHITE);

 display.clearDisplay();

 display.setCursor(0,0);

 #else

 // Don't wait for serial if we have an OLED

 while (!Serial) {

 // wait for serial port to connect. Needed for native USB port only

 delay(10);

 }

 #endif

 // attempt to connect to Wifi network:

 Serial.print("Attempting to connect to SSID: ");

 Serial.println(ssid);

 #if defined(USE_OLED)

 display.clearDisplay(); display.setCursor(0,0);

 display.print("Connecting to SSID\n"); display.println(ssid);

 display.display();

 #endif

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

 }

 Serial.println("");

 Serial.println("Connected to WiFi");

 #if defined(USE_OLED)

 display.print("...OK!");

 display.display();

 #endif

 printWifiStatus();

}

uint32_t bytes = 0;

©Adafruit Industries Page 168 of 199

void loop() {

 WiFiClientSecure client;

 client.setInsecure(); // don't use a root cert

 Serial.println("\nStarting connection to server...");

 #if defined(USE_OLED)

 display.clearDisplay(); display.setCursor(0,0);

 display.print("Connecting to "); display.print(SERVER);

 display.display();

 #endif

 // if you get a connection, report back via serial:

 if (client.connect(SERVER, 443)) {

 Serial.println("connected to server");

 // Make a HTTP request:

 client.println("GET " PATH " HTTP/1.1");

 client.println("Host: " SERVER);

 client.println("Connection: close");

 client.println();

 }

 // Check HTTP status

 char status[32] = {0};

 client.readBytesUntil('\r', status, sizeof(status));

 if (strcmp(status, "HTTP/1.1 200 OK") != 0) {

 Serial.print(F("Unexpected response: "));

 Serial.println(status);

 #if defined(USE_OLED)

 display.print("Connection failed, code: "); display.println(status);

 display.display();

 #endif

 return;

 }

 // wait until we get a double blank line

 client.find("\r\n\r\n", 4);

 // Allocate the JSON document

 // Use arduinojson.org/v6/assistant to compute the capacity.

 const size_t capacity = JSON_ARRAY_SIZE(1) + JSON_OBJECT_SIZE(8) + 200;

 DynamicJsonDocument doc(capacity);

 // Parse JSON object

 DeserializationError error = deserializeJson(doc, client);

 if (error) {

 Serial.print(F("deserializeJson() failed: "));

 Serial.println(error.c_str());

 return;

 }

 // Extract values

 JsonObject root_0 = doc[0];

 Serial.println(F("Response:"));

 const char* root_0_screen_name = root_0["screen_name"];

 long root_0_followers_count = root_0["followers_count"];

 Serial.print("Twitter username: "); Serial.println(root_0_screen_name);

 Serial.print("Twitter followers: "); Serial.println(root_0_followers_count);

 #if defined(USE_OLED)

 display.clearDisplay(); display.setCursor(0,0);

 display.setTextSize(2);

 display.println(root_0_screen_name);

 display.println(root_0_followers_count);

 display.display();

 display.setTextSize(1);

 #endif

©Adafruit Industries Page 169 of 199

 // Disconnect

 client.stop();

 delay(1000);

#if defined(USE_DEEPSLEEP)

#if defined(USE_OLED)

 display.clearDisplay();

 display.display();

#endif // OLED

#if defined(NEOPIXEL_POWER)

 digitalWrite(NEOPIXEL_POWER, LOW); // off

#elif defined(NEOPIXEL_I2C_POWER)

 digitalWrite(NEOPIXEL_I2C_POWER, LOW); // off

#endif

 // wake up 1 second later and then go into deep sleep

 esp_sleep_enable_timer_wakeup(10 * 1000UL * 1000UL); // 10 sec

 esp_deep_sleep_start();

#else

 delay(10 * 1000);

#endif

}

void setupI2C() {

 #if defined(ARDUINO_ADAFRUIT_QTPY_ESP32S2) || \

 defined(ARDUINO_ADAFRUIT_QTPY_ESP32S3_NOPSRAM) || \

 defined(ARDUINO_ADAFRUIT_QTPY_ESP32_PICO)

 // ESP32 is kinda odd in that secondary ports must be manually

 // assigned their pins with setPins()!

 Wire1.setPins(SDA1, SCL1);

 #endif

 #if defined(NEOPIXEL_I2C_POWER)

 pinMode(NEOPIXEL_I2C_POWER, OUTPUT);

 digitalWrite(NEOPIXEL_I2C_POWER, HIGH); // on

 #endif

 #if defined(ARDUINO_ADAFRUIT_FEATHER_ESP32S2)

 // turn on the I2C power by setting pin to opposite of 'rest state'

 pinMode(PIN_I2C_POWER, INPUT);

 delay(1);

 bool polarity = digitalRead(PIN_I2C_POWER);

 pinMode(PIN_I2C_POWER, OUTPUT);

 digitalWrite(PIN_I2C_POWER, !polarity);

 #endif

}

void printWifiStatus() {

 // print the SSID of the network you're attached to:

 Serial.print("SSID: ");

 Serial.println(WiFi.SSID());

 // print your board's IP address:

 IPAddress ip = WiFi.localIP();

 Serial.print("IP Address: ");

 Serial.println(ip);

 // print the received signal strength:

 long rssi = WiFi.RSSI();

 Serial.print("signal strength (RSSI):");

 Serial.print(rssi);

 Serial.println(" dBm");

}

By default it will connect to to the Twitter banner image API, parse the username and

followers, and display them.

©Adafruit Industries Page 170 of 199

Usage with Adafruit IO

The ESP32-S2/S3 is an affordable, all-in-one, option for connecting your projects to

the internet using our IoT platform, Adafruit IO ().

For more information and guides about Adafruit IO, check out the Adafruit IO

Basics Series. ()

Install Libraries

In the Arduino IDE, navigate to Sketch -> Include Library->Manage Libraries...

Enter Adafruit IO Arduino into the search box, and click Install on the Adafruit IO

Arduino library option to install version 4.0.0 or higher.

•

©Adafruit Industries Page 171 of 199

https://io.adafruit.com/welcome
https://learn.adafruit.com/series/adafruit-io-basics
https://learn.adafruit.com/series/adafruit-io-basics

When asked to install dependencies, click Install all.

Adafruit IO Setup

If you do not already have an Adafruit IO account, create one now (). Next, navigate to

the Adafruit IO Dashboards page.

We'll create a dashboard to visualize and interact with the data being sent between

your ESP32-S2/S3 board and Adafruit IO.

©Adafruit Industries Page 172 of 199

http://io.adafruit.com/

Click the New Dashboard button.

Name your dashboard My ESP32-S2 or My

ESP32-S3 depending on your board.

Your new dashboard should appear in the

list.

Click the link to be brought to your new

dashboard.

We'll want to turn the board's LED on or off from Adafruit IO. To do this, we'll need to

add a toggle button to our dashboard.

©Adafruit Industries Page 173 of 199

https://learn.adafruit.com//assets/97031
https://learn.adafruit.com//assets/97031
https://learn.adafruit.com//assets/97032
https://learn.adafruit.com//assets/97032
https://learn.adafruit.com//assets/97033
https://learn.adafruit.com//assets/97033

Click the cog at the top right hand corner

of your dashboard.

In the dashboard settings dropdown, click

Create New Block.

Select the toggle block.

Under My Feeds, enter led as a feed

name. Click Create.

Choose the led feed to connect it to the

toggle block. Click Next step.

©Adafruit Industries Page 174 of 199

https://learn.adafruit.com//assets/97038
https://learn.adafruit.com//assets/97038
https://learn.adafruit.com//assets/97039
https://learn.adafruit.com//assets/97039
https://learn.adafruit.com//assets/97040
https://learn.adafruit.com//assets/97040
https://learn.adafruit.com//assets/97041
https://learn.adafruit.com//assets/97041

Under Block Settings,

Change Button On Text to 1

Change Button Off Text to 0

Click Create block

Next up, we'll want to display button press data from your board on Adafruit IO. To do

this, we'll add a gauge block to the Adafruit IO dashboard. A gauge is a read only

block type that shows a fixed range of values.

©Adafruit Industries Page 175 of 199

https://learn.adafruit.com//assets/97044
https://learn.adafruit.com//assets/97044

Click the cog at the top right hand corner

of your dashboard.

In the dashboard settings dropdown, click

Create New Block.

Select the gauge block.

Under My Feeds, enter button as a feed

name.

Click Create.

Choose the button feed to connect it to

the toggle block.

Click Next step.

©Adafruit Industries Page 176 of 199

https://learn.adafruit.com//assets/97046
https://learn.adafruit.com//assets/97046
https://learn.adafruit.com//assets/97047
https://learn.adafruit.com//assets/97047
https://learn.adafruit.com//assets/97048
https://learn.adafruit.com//assets/97048

Under block settings,

Change Block Title to Button Value

Change Gauge Min Value to 0, the

button's state when it's off

Change Gauge Max Value to 1, the button's

state when it's on

Click Create block

Your dashboard should look like the following:

Code Usage

For this example, you will need to open the adafruitio_26_led_btn example included

with the Adafruit IO Arduino library. In the Arduino IDE, navigate to File -> Examples ->

Adafruit IO Arduino -> adafruitio_26_led_btn.

Before uploading this code to the ESP32-S2/S3, you'll need to add your network and

Adafruit IO credentials. Click on the config.h tab in the sketch.

Obtain your Adafruit IO Credentials from navigating to io.adafruit.com and clicking My

Key (). Copy and paste these credentials next to IO_USERNAME and IO_KEY .

©Adafruit Industries Page 177 of 199

https://learn.adafruit.com//assets/97049
https://learn.adafruit.com//assets/97049
https://io.adafruit.com/
https://io.adafruit.com/

Enter your network credentials next to WIFI_SSID and WIFI_PASS .

Click the Upload button to upload your sketch to the ESP32-S2/S3. After uploading, pr

ess the RESET button on your board to launch the sketch.

Open the Arduino Serial monitor and navigate to the Adafruit IO dashboard you

created. You should see the gauge response to button press and the board's LED

light up in response to the Toggle Switch block.

You should also see the ESP32-S2/S3's LED turning on and off when the LED is

toggled:

©Adafruit Industries Page 178 of 199

Arduino Rainbow Demo

We have a Circular Rainbow demo available for the Qualia ESP32-S3 that runs in

Arduino. Below is the code to run it.

// SPDX-FileCopyrightText: 2023 Limor Fried for Adafruit Industries

//

// SPDX-License-Identifier: MIT

#include <Arduino_GFX_Library.h>

#include <Adafruit_FT6206.h>

Arduino_XCA9554SWSPI *expander = new Arduino_XCA9554SWSPI(

 PCA_TFT_RESET, PCA_TFT_CS, PCA_TFT_SCK, PCA_TFT_MOSI,

 &Wire, 0x3F);

Arduino_ESP32RGBPanel *rgbpanel = new Arduino_ESP32RGBPanel(

 TFT_DE, TFT_VSYNC, TFT_HSYNC, TFT_PCLK,

 TFT_R1, TFT_R2, TFT_R3, TFT_R4, TFT_R5,

 TFT_G0, TFT_G1, TFT_G2, TFT_G3, TFT_G4, TFT_G5,

 TFT_B1, TFT_B2, TFT_B3, TFT_B4, TFT_B5,

 1 /* hsync_polarity */, 50 /* hsync_front_porch */, 2 /* hsync_pulse_width */,

44 /* hsync_back_porch */,

 1 /* vsync_polarity */, 16 /* vsync_front_porch */, 2 /* vsync_pulse_width */,

18 /* vsync_back_porch */

// ,1, 30000000

);

Arduino_RGB_Display *gfx = new Arduino_RGB_Display(

// 2.1" 480x480 round display

 480 /* width */, 480 /* height */, rgbpanel, 0 /* rotation */, true /*

auto_flush */,

 expander, GFX_NOT_DEFINED /* RST */, TL021WVC02_init_operations,

sizeof(TL021WVC02_init_operations));

// 2.8" 480x480 round display

// 480 /* width */, 480 /* height */, rgbpanel, 0 /* rotation */, true /*

auto_flush */,

// expander, GFX_NOT_DEFINED /* RST */, TL028WVC01_init_operations,

sizeof(TL028WVC01_init_operations));

// 3.4" 480x480 square display

// 480 /* width */, 480 /* height */, rgbpanel, 0 /* rotation */, true /*

auto_flush */,

// expander, GFX_NOT_DEFINED /* RST */, tl034wvs05_b1477a_init_operations,

sizeof(tl034wvs05_b1477a_init_operations));

// 3.2" 320x820 rectangle bar display

// 320 /* width */, 820 /* height */, rgbpanel, 0 /* rotation */, true /*

auto_flush */,

// expander, GFX_NOT_DEFINED /* RST */, tl032fwv01_init_operations,

sizeof(tl032fwv01_init_operations));

// 4.0" 720x720 square display

// 720 /* width */, 720 /* height */, rgbpanel, 0 /* rotation */, true /*

auto_flush */,

// expander, GFX_NOT_DEFINED /* RST */, NULL, 0);

// 4.0" 720x720 round display

This currently will not compile with version 3.0.0 of the ESP32 Board Support

Package. Please use version 2 of the BSP.

©Adafruit Industries Page 179 of 199

// 720 /* width */, 720 /* height */, rgbpanel, 0 /* rotation */, true /*

auto_flush */,

// expander, GFX_NOT_DEFINED /* RST */, hd40015c40_init_operations,

sizeof(hd40015c40_init_operations));

// needs also the rgbpanel to have these pulse/sync values:

// 1 /* hync_polarity */, 46 /* hsync_front_porch */, 2 /* hsync_pulse_width */,

44 /* hsync_back_porch */,

// 1 /* vsync_polarity */, 50 /* vsync_front_porch */, 16 /* vsync_pulse_width

/, 16 / vsync_back_porch */

uint16_t *colorWheel;

// The FTxxxx based CTP overlays uses hardware I2C (SCL/SDA)

#define I2C_TOUCH_ADDR 0x48 // often but not always 0x38!

Adafruit_FT6206 ctp = Adafruit_FT6206(); // this library also supports

FT5336U!

bool touchOK = false; // we will check if the touchscreen exists

void setup(void)

{

 Serial.begin(115200);

 //while (!Serial) delay(100);

#ifdef GFX_EXTRA_PRE_INIT

 GFX_EXTRA_PRE_INIT();

#endif

 Serial.println("Beginning");

 // Init Display

 Wire.setClock(1000000); // speed up I2C

 if (!gfx->begin()) {

 Serial.println("gfx->begin() failed!");

 }

 Serial.println("Initialized!");

 gfx->fillScreen(BLACK);

 expander->pinMode(PCA_TFT_BACKLIGHT, OUTPUT);

 expander->digitalWrite(PCA_TFT_BACKLIGHT, HIGH);

 colorWheel = (uint16_t *) ps_malloc(gfx->width() * gfx->height() *

sizeof(uint16_t));

 if (colorWheel) {

 generateColorWheel(colorWheel);

 gfx->draw16bitRGBBitmap(0, 0, colorWheel, gfx->width(), gfx->height());

 }

 if (!ctp.begin(0, &Wire, I2C_TOUCH_ADDR)) {

 Serial.println("No touchscreen found");

 touchOK = false;

 } else {

 Serial.println("Touchscreen found");

 touchOK = true;

 }

}

void loop()

{

 if (touchOK && ctp.touched()) {

 TS_Point p = ctp.getPoint(0);

 Serial.printf("(%d, %d)\n", p.x, p.y);

 gfx->fillRect(p.x, p.y, 5, 5, WHITE);

 }

 // use the buttons to turn off

 if (! expander->digitalRead(PCA_BUTTON_DOWN)) {

©Adafruit Industries Page 180 of 199

 expander->digitalWrite(PCA_TFT_BACKLIGHT, LOW);

 }

 // and on the backlight

 if (! expander->digitalRead(PCA_BUTTON_UP)) {

 expander->digitalWrite(PCA_TFT_BACKLIGHT, HIGH);

 }

}

// https://chat.openai.com/share/8edee522-7875-444f-9fea-ae93a8dfa4ec

void generateColorWheel(uint16_t *colorWheel) {

 int width = gfx->width();

 int height = gfx->height();

 int half_width = width / 2;

 int half_height = height / 2;

 float angle;

 uint8_t r, g, b;

 int index, scaled_index;

 for(int y = 0; y < half_height; y++) {

 for(int x = 0; x < half_width; x++) {

 index = y * half_width + x;

 angle = atan2(y - half_height / 2, x - half_width / 2);

 r = uint8_t(127.5 * (cos(angle) + 1));

 g = uint8_t(127.5 * (sin(angle) + 1));

 b = uint8_t(255 - (r + g) / 2);

 uint16_t color = RGB565(r, g, b);

 // Scale this pixel into 4 pixels in the full buffer

 for(int dy = 0; dy < 2; dy++) {

 for(int dx = 0; dx < 2; dx++) {

 scaled_index = (y * 2 + dy) * width + (x * 2 + dx);

 colorWheel[scaled_index] = color;

 }

 }

 }

 }

}

This sketch was written for either of the 2.1" Round 480x480 RGB-666 displays.

Now upload the sketch to your Qualia ESP32-S3 and make sure a round display is

connected. You may need to press the Reset button to reset the microcontroller. You

should now see a circular rainbow appear on the display!

©Adafruit Industries Page 181 of 199

Here are some pre-compiled UF2s for various displays so you can instantly test them!

2.1" Round 480x480

TL021WVC02ColorTest.UF2

TL028WVC01ColorTest.UF2

3.2" Bar 820x320

TL032FWV01ColorTest.UF2

3.4" Square 480x480

TL034WVS05ColorTest.UF2

720x720 test codes may be flickery as its compiled with IDF 4:

HD40015C40ColorTest.UF2

4" Square 720x720

TL040HDS20ColorTest.UF2

Arduino Touch Display Usage

If you have a display with touch, you can use the Adafruit_FT6206_Library () library to

read the touch data. The Capacitive Touch controller is communicated to by I2C. If

©Adafruit Industries Page 182 of 199

https://cdn-learn.adafruit.com/assets/assets/000/125/070/original/TL021WVC02ColorTest.UF2?1697045330
https://cdn-learn.adafruit.com/assets/assets/000/124/973/original/TL028WVC01ColorTest.UF2?1696711432
https://cdn-learn.adafruit.com/assets/assets/000/125/074/original/TL032FWV01ColorTest.UF2?1697045732
https://cdn-learn.adafruit.com/assets/assets/000/125/073/original/TL034WVS05ColorTest.UF2?1697045660
https://cdn-learn.adafruit.com/assets/assets/000/124/978/original/HD40015C40ColorTest.UF2?1696713589
https://cdn-learn.adafruit.com/assets/assets/000/125/077/original/TL040HDS20ColorTest.UF2?1697048038
https://github.com/adafruit/Adafruit_FT6206_Library

you're not sure if you have a touch display, just check if your includes a square IC

connected off to the side of the main ribbon cable.

Determining the I2C Address

You can scan for I2C devices by running the WireScan example. You can find it by

going to File → Examples → Wire → WireScan and uploading the sketch. Once it is

running, open the serial monitor to see which devices it finds.

You should see a couple of devices listed. These will be the GPIO expander and the

touch controller. The GPIO Expander is at 0x3F by default, though it's possible to

change the address with the solderable jumpers on the reverse side. The other

address should be the touch controller. On the TL040HDS20 4.0" square display, it

shows up as 0x48 , but it's possible it may be a different value on other displays.

©Adafruit Industries Page 183 of 199

Initializing the Touch Controller

In order to use the controller, it will need to first be initialized. You can use the

following code to initialize it. If your I2C address differs, change it to the appropriate

value.

#include <Wire.h> // this is needed for FT6206

#include <Adafruit_FT6206.h>

#define I2C_TOUCH_ADDR 0x48 // often but not always 0x48!

Adafruit_FT6206 ctp = Adafruit_FT6206(); // this library also supports FT5336U!

Serial.begin(115200); // To print the output

if (!ctp.begin(0, &Wire, I2C_TOUCH_ADDR)) {

 Serial.println("No touchscreen found");

}

Reading from the Touch Controller

To read from the controller, check if is has been touched in the main loop and if so,

read the x and y coordinates.

if (ctp.touched()) {

 TS_Point p = ctp.getPoint(0);

 Serial.printf("(%d, %d)\n", p.x, p.y);

}

Example

To see an example, check out the Arduino Rainbow Demo Page ().

Install UF2 Bootloader

The Qualia ESP32-S3 RGB-666 ships with a UF2 bootloader which allows the board

to show up as TFT_S3BOOT when you double-tap the reset button, and enables you

to drag and drop UF2 files to update the firmware.

On ESP32-S2/S3, there is no bootloader protection for the UF2 bootloader. That

means it is possible to erase or damage the UF2 bootloader, especially if you upload

If your board has a UF2 bootloader, you do not need to follow the steps on this

page. Try to enter the UF2 bootloader before continuing! Double-tap the reset

button to do so.

©Adafruit Industries Page 184 of 199

https://learn.adafruit.com/adafruit-qualia-esp32-s3-for-rgb666-displays/arduino-rainbow-demo

an Arduino sketch to an ESP32-S2/S3 board that doesn't "know" there's a bootloader

it should not overwrite!

It turns out, however, the ESP32-S2/S3 comes with a second bootloader: the ROM

bootloader. Thanks to the ROM bootloader, you don't have to worry about damaging

the UF2 bootloader. The ROM bootloader can never be disabled or erased, so its

always there if you need it! You can simply re-load the UF2 bootloader from the ROM

bootloader.

If your UF2 bootloader ends up damaged or overwritten, you can follow the steps

found in the Factory Reset and Bootloader Repair () section of the Factory Reset page

in this guide.

Once completed, you'll return to where the board was when you opened the

package. Then you'll be back in business, and able to continue with your existing

plans!

Factory Reset

The Qualia ESP32-S3 microcontroller ships running a circular rainbow gradient

example for the round 480x480 display. It's lovely, but you probably had other plans

for the board. As you start working with your board, you may want to return to the

original code to begin again, or you may find your board gets into a bad state. Either

way, this page has you covered.

You're probably used to seeing the TFT_S3BOOT drive when loading CircuitPython or

Arduino. The TFT_S3BOOT drive is part of the UF2 bootloader, and allows you to

drag and drop files, such as CircuitPython. However, on the ESP32-S3 the UF2

bootloader can become damaged.

Factory Reset Firmware UF2

If you have a bootloader still installed - which means you can double-click to get the T

FT_S3BOOT drive to appear, then you can simply drag this UF2 file over to the BOOT

drive.

To enter bootloader mode, plug in the board into a USB cable with data/sync

capability. Press the reset button once, wait till the RGB LED turns purple, then press

the reset button again. Then drag this file over:

Qualia S3 RGB-666 Factory Reset

©Adafruit Industries Page 185 of 199

https://learn.adafruit.com/adafruit-qualia-esp32-s3-for-rgb666-displays/factory-reset#factory-reset-and-bootloader-repair-3107941
https://github.com/adafruit/Adafruit-Qualia-S3-RGB666-PCB/raw/main/factory-reset/Qualia_S3_RGB666_FactoryReset.uf2

Your board is now back to its factory-shipped state! You can now begin again with

your plans for your board.

Factory Reset and Bootloader Repair

What if you tried double-tapping the reset button, and you still can't get into the UF2

bootloader? Whether your board shipped without the UF2 bootloader, or something

damaged it, this section has you covered.

It turns out, however, the ESP32-S2/S3 comes with a second bootloader: the ROM

bootloader. Thanks to the ROM bootloader, you don't have to worry about damaging

the UF2 bootloader. The ROM bootloader can never be disabled or erased, so its

always there if you need it! You can simply re-load the UF2 bootloader from the ROM

bootloader.

There are two ways to do a factory reset and bootloader repair. The first is using

WebSerial through a Chromium-based browser, and the second is using esptool via

command line. We highly recommend using WebSerial through Chrome/Chromium.

The next section walks you through the prerequisite steps needed for both methods.

Download .bin and Enter Bootloader

Step 1. Download the factory-reset-and-bootloader.bin file

Save the following file wherever is convenient for you. You will need to access it from

the WebSerial ESPTool.

There is no bootloader protection for the UF2 bootloader. That means it is

possible to erase or damage the UF2 bootloader, especially if you upload an

Arduino sketch to an ESP32-S2/S3 board that doesn't "know" there's a

bootloader it should not overwrite!

Completing a factory reset will erase your board's firmware which is also used for

storing CircuitPython/Arduino/Files! Be sure to back up your data first.

Note that this file is approximately 3MB. This is not because the bootloader is

3MB, it is because the bootloader is near the end of the available flash. Most of

the file is empty but its easier to program if you use a combined file.

©Adafruit Industries Page 186 of 199

Qualia S3 RGB-666 Factory Reset

.bin File

Step 2. Enter ROM bootloader mode

Entering the ROM bootloader is easy. Complete the following steps.

Before you start, make sure your ESP32-S2/S3 is plugged into USB port to your

computer using a data/sync cable. Charge-only cables will not work!

To enter the bootloader:

Press and hold the BOOT/DFU button down. Don't let go of it yet!

Press and release the Reset button. You should still have the BOOT/DFU button

pressed while you do this.

Now you can release the BOOT/DFU button.

No USB drive will appear when you've entered the ROM bootloader. This is normal!

Now that you've downloaded the .bin file and entered the bootloader, you're ready to

continue with the factory reset and bootloader repair process. The next two sections

walk you through using WebSerial and esptool .

1.

2.

3.

©Adafruit Industries Page 187 of 199

https://github.com/adafruit/Adafruit-Qualia-S3-RGB666-PCB/raw/main/factory-reset/Qualia_S3_RGB666_FactoryReset.bin

The WebSerial ESPTool Method

This method uses the WebSerial ESPTool through Chrome or a Chromium-based

browser. The WebSerial ESPTool was designed to be a web-capable option for

programming ESP32-S2/S3 boards. It allows you to erase the contents of the

microcontroller and program up to four files at different offsets.

You will have to use a Chromium browser (like Chrome, Opera, Edge...) for this to

work, Safari and Firefox, etc. are not supported because we need Web Serial and only

Chromium is supporting it to the level needed.

Follow the steps to complete the factory reset.

Connect

You should have plugged in only the ESP32-S2/S3 that you intend to flash. That way

there's no confusion in picking the proper port when it's time!

In the Chrome browser visit https://

adafruit.github.io/

Adafruit_WebSerial_ESPTool/ (). You

should see something like the image

shown.

We highly recommend using WebSerial ESPTool method to perform a factory

reset and bootloader repair. However, if you'd rather use esptool via command

line, you can skip this section.

If you're using Chrome 88 or older, see the Older Versions of Chrome section at

the end of this page for instructions on enabling Web Serial.

©Adafruit Industries Page 188 of 199

https://learn.adafruit.com//assets/116445
https://learn.adafruit.com//assets/116445
https://adafruit.github.io/Adafruit_WebSerial_ESPTool/
https://adafruit.github.io/Adafruit_WebSerial_ESPTool/
https://adafruit.github.io/Adafruit_WebSerial_ESPTool/

Press the Connect button in the top right

of the web browser. You will get a pop up

asking you to select the COM or Serial

port.

Remember, you should remove all other

USB devices so only the ESP32-S2/S3

board is attached, that way there's no

confusion over multiple ports!

On some systems, such as MacOS, there

may be additional system ports that

appear in the list.

The JavaScript code will now try to

connect to the ROM bootloader. It may

timeout for a bit until it succeeds. On

success, you will see that it is Connected

and will print out a unique MAC address

identifying the board along with other

information that was detected.

Once you have successfully connected,

the command toolbar will appear.

Erase the Contents

This will erase everything on your board! If you have access, and wish to keep

any code, now is the time to ensure you've backed up everything.

©Adafruit Industries Page 189 of 199

https://learn.adafruit.com//assets/116446
https://learn.adafruit.com//assets/116446
https://learn.adafruit.com//assets/110503
https://learn.adafruit.com//assets/110503
https://learn.adafruit.com//assets/116447
https://learn.adafruit.com//assets/116447

To erase the contents, click the Erase

button. You will be prompted whether you

want to continue. Click OK to continue or if

you changed your mind, just click cancel.

You'll see "Erasing flash memory. Please

wait..." This will eventually be followed by

"Finished." and the amount of time it took

to erase.

Do not disconnect! Immediately continue

on to programming the ESP32-S2/S3.

Program the ESP32-S2/S3

Programming the microcontroller can be done with up to four files at different

locations, but with the board-specific factory-reset.bin file, which you should have

downloaded under Step 1 on this page, you only need to use one file.

Click on the first Choose a file.... (The tool

will only attempt to program buttons with a

file and a unique location.) Then, select the

*-factory-reset.bin file you downloaded in

Step 1 that matches your board.

Verify that the Offset box next to the file

location you used is (0x) 0.

Do not disconnect after erasing! Immediately continue on to the next step!

©Adafruit Industries Page 190 of 199

https://learn.adafruit.com//assets/116448
https://learn.adafruit.com//assets/116448
https://learn.adafruit.com//assets/106947
https://learn.adafruit.com//assets/106947
https://learn.adafruit.com//assets/101574
https://learn.adafruit.com//assets/101574

Once you choose a file, the button text will

change to match your filename. You can

then select the Program button to begin

flashing.

A progress bar will appear and after a

minute or two, you will have written the

firmware.

Once completed, you can skip down to the section titled Reset the Board.

The esptool Method (for advanced users)

Once you have entered ROM bootloader mode, you can then use Espressif's esptool

program () to communicate with the chip! esptool is the 'official' programming tool

and is the most common/complete way to program an ESP chip.

Install ESPTool.py

You will need to use the command line / Terminal to install and run esptool .

You will also need to have pip and Python installed (any version!).

If you used WebSerial ESPTool, you do not need to complete the steps in this

section!

©Adafruit Industries Page 191 of 199

https://learn.adafruit.com//assets/116449
https://learn.adafruit.com//assets/116449
https://learn.adafruit.com//assets/116450
https://learn.adafruit.com//assets/116450
https://github.com/espressif/esptool
https://github.com/espressif/esptool

Install the latest version using pip (you may be able to run pip without the 3 depen

ding on your setup):

pip3 install --upgrade esptool

Then, you can run:

esptool.py

Test the Installation

Run esptool.py in a new terminal/command line and verify you get something like

the below:

Connect

Run the following command, replacing the identifier after --port with the COMxx , /

dev/cu.usbmodemxx or /dev/ttySxx you found above.

esptool.py --port COM88 chip_id

You should get a notice that it connected over that port and found an ESP32-S2/S3.

Make sure you are running esptool v3.0 or higher, which adds ESP32-S2/S3

support.

©Adafruit Industries Page 192 of 199

Erase the Flash

Before programming the board, it is a good idea to erase the flash. Run the following

command.

esptool.py erase_flash

You must be connected (by running the command in the previous section) for this

command to work as shown.

Installing the Bootloader

Run this command and replace the serial port name with your matching port and the

file you just downloaded

esptool.py --port COM88 write_flash 0x0 tinyuf2_combo.bin

Don't forget to change the --port name to match.

There might be a bit of a 'wait' when programming, where it doesn't seem like it's

working. Give it a minute, it has to erase the old flash code which can cause it to

seem like it's not running.

You'll finally get an output like this:

Adjust the bootloader filename accordingly if it differs from tinyuf2_combo.bin.

©Adafruit Industries Page 193 of 199

Once completed, you can continue to the next section.

Reset the board

Now that you've reprogrammed the board, you need to reset it to continue. Click the

reset button to launch the new firmware.

If you have a 480x480 round display plugged in, you should see a circular rainbow

gradient appear on the display.

You've successfully returned your board to a factory reset state!

Older Versions of Chrome

We suggest updating to Chrome 89 or newer, as Web Serial is enabled by default.

If you must continue using an older version of Chrome, follow these steps to enable

Web Serial.

As of chrome 89, Web Serial is already enabled, so this step is only necessary on

older browsers.

©Adafruit Industries Page 194 of 199

If you receive an error like the one shown

when you visit the WebSerial ESPTool site,

you're likely running an older version of

Chrome.

You must be using Chrome 78 or later to

use Web Serial.

To enable Web Serial in Chrome versions

78 through 88:

Visit chrome://flags from within Chrome.

Find and enable the Experimental Web

Platform features

Restart Chrome

The Flash an Arduino Sketch Method

This section outlines flashing an Arduino sketch onto your ESP32-S2/S3 board, which

automatically installs the UF2 bootloader as well.

Arduino IDE Setup

If you don't already have the Arduino IDE installed, the first thing you will need to do

is to download the latest release of the Arduino IDE. ESP32-S2/S3 requires version

1.8 or higher. Click the link to download the latest.

Arduino IDE Download

After you have downloaded and installed the latest version of Arduino IDE, you will

need to start the IDE and navigate to the Preferences menu. You can access it from

the File > Preferences menu in Windows or Linux, or the Arduino > Preferences menu

on OS X.

©Adafruit Industries Page 195 of 199

https://learn.adafruit.com//assets/106929
https://learn.adafruit.com//assets/106929
https://learn.adafruit.com//assets/101562
https://learn.adafruit.com//assets/101562
https://www.arduino.cc/en/software

The Preferences window will open.

In the Additional Boards Manager URLs field, you'll want to add a new URL. The list of

URLs is comma separated, and you will only have to add each URL once. The URLs

point to index files that the Board Manager uses to build the list of available &

installed boards.

Copy the following URL.

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/

package_esp32_dev_index.json

Add the URL to the the Additional Boards Manager URLs field (highlighted in red

below).

Click OK to save and close Preferences.

In the Tools > Boards menu you should see the ESP32 Arduino menu. In the expanded

menu, it should contain the ESP32 boards along with all the latest ESP32-S2 boards.

Now that your IDE is setup, you can continue on to loading the sketch.

Load the Blink Sketch

In the Tools > Boards menu you should see the ESP32 Arduino menu. In the expanded

menu, look for the menu option for the Adafruit Qualia ESP32-S3 RGB666, and click

on it to choose it.

©Adafruit Industries Page 196 of 199

Open the Blink sketch by clicking through File > Examples > 01.Basics > Blink.

Once open, click Upload from the sketch window.

Once successfully uploaded, the little red LED will begin blinking once every second.

At that point, you can now enter the bootloader.

If you change LED_BUILTIN to 13 , the sketch will compile and upload. Be aware

that, once the sketch is loaded, nothing will happen on the board. However, you will

have a bootloader. The updated code would look like this:

void setup() {

 pinMode(13, OUTPUT);

}

void loop() {

 digitalWrite(13, HIGH);

 delay(1000);

 digitalWrite(13, LOW);

 delay(1000);

}

The Qualia ESP32-S3 RGB-666 does not have a little red LED, so the default

Blink sketch will fail.

©Adafruit Industries Page 197 of 199

Alternatively, you could load a different sketch. It doesn't matter which sketch you

use.

Downloads

ESP32-S3 product page with resources ()

ESP32-S3 datasheet ()

ESP32-S3 Technical Reference ()

ST7701 datasheet ()

NV3052C datasheet ()

3D models on GitHub ()

Qualia ESP32-S3 RGB-666 EagleCAD PCB files on GitHub ()

Qualia ESP32-S3 RGB-666 Fritzing object in the Adafruit Fritzing Library ()

Schematic

•

•

•

•

•

•

•

•

©Adafruit Industries Page 198 of 199

https://www.espressif.com/en/products/socs/esp32-s3
https://cdn-learn.adafruit.com/assets/assets/000/110/711/original/esp32-s3_datasheet_en.pdf?1649790878
https://cdn-learn.adafruit.com/assets/assets/000/110/710/original/esp32-s3_technical_reference_manual_en.pdf?1649790877
https://cdn-shop.adafruit.com/product-files/5795/ST7701+Datasheet.pdf
https://cdn-shop.adafruit.com/product-files/5793/NV3052C-Datasheet-V0.2.pdf
https://github.com/adafruit/Adafruit_CAD_Parts/tree/main/5800%20Qualia%20ESP32-S3
https://github.com/adafruit/Adafruit-Qualia-S3-RGB666-PCB
https://github.com/adafruit/Fritzing-Library/raw/master/parts/Adafruit%20Qualia%20S3%20RGB666.fzpz

Fab Print

©Adafruit Industries Page 199 of 199

	Adafruit Qualia ESP32-S3 for RGB-666 Displays
	Table of Contents
	Overview
	Pinouts
	CircuitPython
	The CIRCUITPY Drive
	CircuitPython Pins and Modules
	Installing the Mu Editor
	Creating and Editing Code
	Exploring Your First CircuitPython Program
	Connecting to the Serial Console
	Interacting with the Serial Console
	The REPL
	CircuitPython Libraries
	CircuitPython Documentation
	Recommended Editors
	Advanced Serial Console on Windows
	Advanced Serial Console on Mac
	Advanced Serial Console on Linux
	Frequently Asked Questions
	Troubleshooting
	Welcome to the Community!
	Create Your settings.toml File
	CircuitPython Internet Test
	Converting Arduino_GFX init strings to CircuitPython
	Determining Timings
	CircuitPython Display Setup
	CircuitPython Touch Display Usage
	Qualia S3 RGB-666 with TL021WVC02 2.1" 480x480 Round Display
	Qualia S3 RGB-666 with TL034WVS05 3.4" 480x480 Square Display
	Qualia S3 RGB-666 with TL040HDS20 4.0" 720x720 Square Display
	Qualia S3 RGB-666 with TL032FWV01 3.2" 320x820 Bar Display
	Arduino IDE Setup
	Using with Arduino IDE
	WiFi Test
	Usage with Adafruit IO
	Arduino Rainbow Demo
	Arduino Touch Display Usage
	Install UF2 Bootloader
	Factory Reset
	Downloads

	Overview
	Pinouts
	Microcontroller and WiFi
	40-Pin Display Connector
	IO Expander
	Stemma QT Connector
	Reset and Boot0 Pins
	Debug Pin
	SPI Pins
	Analog Connector/Pins
	Buttons
	Backlight Jumpers
	IO Expander Address Jumpers
	Parallel Interface Jumpers

	CircuitPython
	CircuitPython Quickstart

	The CIRCUITPY Drive
	Boards Without CIRCUITPY

	CircuitPython Pins and Modules
	CircuitPython Pins
	import board
	I2C, SPI, and UART
	What Are All the Available Names?
	Microcontroller Pin Names

	CircuitPython Built-In Modules
	Installing the Mu Editor
	Download and Install Mu
	Starting Up Mu
	Using Mu

	Creating and Editing Code
	Creating Code
	Editing Code
	Your code changes are run as soon as the file is done saving.
	1. Use an editor that writes out the file completely when you save it.
	2. Eject or Sync the Drive After Writing

	Oh No I Did Something Wrong and Now The CIRCUITPY Drive Doesn't Show Up!!!
	Back to Editing Code...

	Naming Your Program File
	Exploring Your First CircuitPython Program
	Imports & Libraries
	Setting Up The LED
	Loop-de-loops
	What Happens When My Code Finishes Running?
	What if I Don't Have the Loop?

	Connecting to the Serial Console
	Are you using Mu?
	Serial Console Issues or Delays on Linux
	Setting Permissions on Linux

	Using Something Else?
	Interacting with the Serial Console
	The REPL
	Entering the REPL
	Interacting with the REPL

	Returning to the Serial Console
	CircuitPython Libraries
	The Adafruit Learn Guide Project Bundle
	The Adafruit CircuitPython Library Bundle
	Downloading the Adafruit CircuitPython Library Bundle

	The CircuitPython Community Library Bundle
	Downloading the CircuitPython Community Library Bundle

	Understanding the Bundle
	Example Files
	Copying Libraries to Your Board

	Understanding Which Libraries to Install
	Example: ImportError Due to Missing Library
	Library Install on Non-Express Boards
	Updating CircuitPython Libraries and Examples
	CircUp CLI Tool

	CircuitPython Documentation
	CircuitPython Core Documentation
	CircuitPython Library Documentation
	Examples
	API Reference
	Other Links

	Recommended Editors
	Recommended editors
	Recommended only with particular settings or add-ons
	Editors that are NOT recommended

	Advanced Serial Console on Windows
	Windows 7 and 8.1
	What's the COM?
	Install Putty
	Advanced Serial Console on Mac
	What's the Port?
	Connect with screen

	Advanced Serial Console on Linux
	What's the Port?
	Connect with screen
	Permissions on Linux

	Frequently Asked Questions
	What are some common acronyms to know?
	Using Older Versions
	I have to continue using CircuitPython 7.x or earlier. Where can I find compatible libraries?
	Python Arithmetic
	Does CircuitPython support floating-point numbers?
	Does CircuitPython support long integers, like regular Python?
	Wireless Connectivity
	How do I connect to the Internet with CircuitPython?
	How do I do BLE (Bluetooth Low Energy) with CircuitPython?
	Are there other ways to communicate by radio with CircuitPython?
	Asyncio and Interrupts
	Is there asyncio support in CircuitPython?
	Does CircuitPython support interrupts?
	Status RGB LED
	My RGB NeoPixel/DotStar LED is blinking funny colors - what does it mean?
	Memory Issues
	What is a MemoryError?
	What do I do when I encounter a MemoryError?
	Can the order of my import statements affect memory?
	How can I create my own .mpy files?
	How do I check how much memory I have free?
	Unsupported Hardware
	Is ESP8266 or ESP32 supported in CircuitPython? Why not?
	Does Feather M0 support WINC1500?
	Can AVRs such as ATmega328 or ATmega2560 run CircuitPython?

	Troubleshooting
	Always Run the Latest Version of CircuitPython and Libraries
	I have to continue using CircuitPython 7.x or earlier. Where can I find compatible libraries?

	Bootloader (boardnameBOOT) Drive Not Present
	You may have a different board.
	MakeCode
	macOS
	Windows 10
	Windows 7 or 8.1

	Windows Explorer Locks Up When Accessing boardnameBOOT Drive
	Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied
	CIRCUITPY Drive Does Not Appear or Disappears Quickly
	Device Errors or Problems on Windows
	Serial Console in Mu Not Displaying Anything
	code.py Restarts Constantly
	CircuitPython RGB Status Light
	CircuitPython 7.0.0 and Later
	CircuitPython 6.3.0 and earlier

	Serial console showing ValueError: Incompatible .mpy file
	CIRCUITPY Drive Issues
	Safe Mode
	Entering Safe Mode in CircuitPython 7.x and Later
	Entering Safe Mode in CircuitPython 6.x
	In Safe Mode

	To erase CIRCUITPY: storage.erase_filesystem()
	Erase CIRCUITPY Without Access to the REPL
	For the specific boards listed below:
	For SAMD21 non-Express boards that have a UF2 bootloader:
	For SAMD21 non-Express boards that do not have a UF2 bootloader:

	Running Out of File Space on SAMD21 Non-Express Boards
	Delete something!
	Use tabs
	On MacOS?
	Prevent & Remove MacOS Hidden Files
	Copy Files on MacOS Without Creating Hidden Files
	Other MacOS Space-Saving Tips

	Device Locked Up or Boot Looping
	Welcome to the Community!
	Adafruit Discord
	CircuitPython.org
	Pull Requests
	Open Issues
	Library Infrastructure Issues
	CircuitPython Localization

	Adafruit GitHub
	Adafruit Forums
	Read the Docs

	Create Your settings.toml File
	CircuitPython settings.toml File
	settings.toml File Tips
	Accessing Your settings.toml Information in code.py

	CircuitPython Internet Test
	The settings.toml File

	Converting Arduino_GFX init strings to CircuitPython
	Using Arduino_GFX Init Codes
	Using Init Code Files
	Script Output

	Determining Timings
	Using a Data Sheet
	Fill in the Settings
	Experimenting with Settings
	Testing your Settings with CircuitPython

	CircuitPython Display Setup
	Example TFT_PINS
	Example TFT_TIMINGS
	I/O Expander
	I2C Initialization Sequence

	Display Initialization Code
	Example 1
	Example 2

	Sending Initialization Code via I2C IO Expander
	I2C Bus Speed
	Constructing the framebuffer and the display
	Dot clocks

	CircuitPython Touch Display Usage
	Determining the I2C Address
	Initializing the Touch Controller
	Reading from the Touch Controller
	Example

	Qualia S3 RGB-666 with TL021WVC02 2.1" 480x480 Round Display
	Initialization Codes
	Timings
	Example

	Qualia S3 RGB-666 with TL034WVS05 3.4" 480x480 Square Display
	Initialization Codes
	Timings
	Example

	Qualia S3 RGB-666 with TL040HDS20 4.0" 720x720 Square Display
	Initialization Codes
	Timings
	Example

	Qualia S3 RGB-666 with TL032FWV01 3.2" 320x820 Bar Display
	Initialization Codes
	Timings
	Example

	Arduino IDE Setup
	Manually Resetting ESP32-S3 Boards

	Using with Arduino IDE
	Blink
	Select ESP32-S2/S3 Board in Arduino IDE
	Launch ESP32-S2/S3 ROM Bootloader
	Load Blink Sketch

	WiFi Test
	WiFi Connection Test
	Secure Connection Example
	JSON Parsing Demo

	Usage with Adafruit IO
	Install Libraries
	Adafruit IO Setup
	Code Usage

	Arduino Rainbow Demo
	Arduino Touch Display Usage
	Determining the I2C Address
	Initializing the Touch Controller
	Reading from the Touch Controller
	Example

	Install UF2 Bootloader
	Factory Reset
	Factory Reset Firmware UF2
	Factory Reset and Bootloader Repair
	Download .bin and Enter Bootloader
	Step 1. Download the factory-reset-and-bootloader.bin file
	Step 2. Enter ROM bootloader mode

	The WebSerial ESPTool Method
	Connect
	Erase the Contents
	Program the ESP32-S2/S3

	The esptool Method (for advanced users)
	Install ESPTool.py
	Test the Installation
	Connect
	Erase the Flash
	Installing the Bootloader

	Reset the board
	Older Versions of Chrome
	The Flash an Arduino Sketch Method
	Arduino IDE Setup
	Load the Blink Sketch

	Downloads
	Schematic
	Fab Print

