
 

Adafruit HUSB238 USB Type C Power

Delivery Breakout

Created by Liz Clark

 

https://learn.adafruit.com/adafruit-husb238-usb-type-c-power-delivery-breakout

Last updated on 2023-10-24 04:18:58 PM EDT

©Adafruit Industries Page 1 of 18



3

6

7

7

16

17

Table of Contents

Overview

Pinouts

• Power Pins

• I2C

• USB Type C Port and Data Pins

• Jumpers

Python Docs

Arduino

• Wiring

• Library Installation

• Simple Test

• Test All Voltages Example

Arduino Docs

Downloads

• Files

• Schematic and Fab Print

©Adafruit Industries Page 2 of 18



Overview 

The HUSB238 USB PD sink chip is neat in that you can either use jumpers (really,

resistor selection) to set the desired power delivery voltage and current or you can

use I2C for dynamic querying and setting.

We've built a nice Adafruit USB Type C Power Delivery Dummy Breakout board

around the HUSB238 to make it very easy to configure and integrate without having

to solder any tiny resistors.

 

 

©Adafruit Industries Page 3 of 18



It's perfect for use with USB Type C wall adapters that can provide multiple voltages,

the standard offerings are 5V, 9V, 12V, 15V, 18V and 20V. This HUSB238 breakout

plugs into the USB C cable and then over the CC lines will negotiate the PD request

and commands. For example we can ask what voltages are available and then pick

the highest one. Or if you need a specific voltage it will specifically select that one.

This breakout will be handy for projects where you need a lot more than 5V @ 2A

power: this adapter can give up to 20V at 5A - yes you can get 100W over USB C! -

and you could buck that down to get a ton of current at 5V or 12V if that's needed. Or

use it to convert a DC or battery-powered device into a USB C powered one!

 

 

©Adafruit Industries Page 4 of 18



Jumper-configured usage is simple: by default its hard-wired for 5V 1A output since

that's what USB C will always provide at first. Cut the 5V jumper and solder closed the

9V, 12V, 15V, 18V or 20V jumper to select the resistor that sets the voltage. You can

also select the desired current from 2A to 3A, although we have found that this isn't

as essential, you could always just pull as much as the adapter will provide. No

microcontroller or microcomputer is required!

I2C-configured usage is a little more challenging. Since the Vout can be as high as

20V, we don't have an onboard voltage regulator or pullup resistors. Connect to a

microcontroller or microcomputer board that has a separate power supply (or that can

regulate from up-to-20V if you plan on selecting that high) and I2C pull-up resistors to

your desired logic level. Then use the Arduino library and example code () to query

the USB Type C PD source for available voltages and currents and select the desired

voltage dynamically. When configuring over I2C, the jumper settings are used on

startup until the I2C commands come over.

Comes with a small bit of header and a terminal block so you can decide whether you

want to use it in a breadboard, or free-wired.

 

©Adafruit Industries Page 5 of 18

https://github.com/adafruit/Adafruit_HUSB238


Pinouts 

The default I2C address is 0x08.

Power Pins

V+ - This is the voltage output (Vout) pin. This pin will output the voltage

selected from the HUSB238. It is also available from the + pin from the terminal

block.

GND - Common ground for power and logic. It is also available from the - pin

from the terminal block.

I2C

Since the Vout can be as high as 20V, we don't have an onboard voltage regulator or

pull-up resistors on the I2C lines. Connect these pins to a microcontroller or

microcomputer board that has a separate power supply (or that can regulate from up-

to-20V if you plan on selecting that high) and I2C pull-up resistors to your desired

logic level. When configuring over I2C, the jumper settings are used on startup until

the I2C commands come over.

SCL - I2C clock pin, connect to your microcontroller's I2C clock line.

SDA - I2C data pin, connect to your microcontroller's I2C data line.

 

• 

• 

• 

• 

When configuring over I2C, the jumper settings are used on startup until the I2C 

commands come over. 

©Adafruit Industries Page 6 of 18



USB Type C Port and Data Pins

At the top of the board is the USB type C port. You'll use this port to plug into a USB C

PD wall adapter with a USB C cable. The USB data pins are broken out on the board:

Data Plus (labeled D+ on the board silk) and Data Minus (labeled D- on the board silk).

Jumpers

A series of jumpers are used to determine the voltage and current requested from the

PD adapter. By default, the 5V and 1A jumpers are closed. You can cut these jumpers

to change voltages and/or amps.

Amp Jumpers

1A - The one amp jumper. Closed by default. Cut the jumper to change

amperage.

2A - The two amps jumper. Open by default. Solder it closed to select.

To select 3A, leave both the 1A and 2A jumpers open.

Voltage Jumpers

5V - The 5V jumper. Closed by default. Cut the jumper to change voltages.

9V - The 9V jumper. Open by default. Solder it closed to select.

12V - The 12V jumper. Open by default. Solder it closed to select.

15V - The 15V jumper. Open by default. Solder it closed to select.

18V - The 18V jumper. Open by default. Solder it closed to select.

To select 20V, or the highest available voltage from your adapter, leave all of the

voltage jumpers open.

Python Docs 

Python Docs () 

Arduino 

Using the HUSB238 breakout with Arduino involves wiring up the breakout to your

Arduino-compatible microcontroller, installing the Adafruit_HUSB238 () library,

• 

• 

• 

• 

• 

• 

• 

©Adafruit Industries Page 7 of 18

https://docs.circuitpython.org/projects/husb238/en/latest/
https://github.com/adafruit/Adafruit_HUSB238


plugging in a USB C PD power supply to the breakout and running the provided

example code. It's important to note that when you are controlling the breakout over

I2C, the jumper settings on the board are used on startup until the I2C commands

come over.

Wiring

Here is an Adafruit Metro wired up to the breakout. For testing, you can connect the +

and - outputs from the breakout to a multimeter with alligator clips. You'll set the

multimeter to read DC voltage (labeled with a "V" and one dashed and one solid line).

 

USB C PD power supply to breakout USB

C port 

Board GND to breakout GND (black wire) 

Board SCL to breakout SCL (yellow wire) 

Board SDA to breakout SDA (blue wire) 

Breakout + to multimeter positive (red

wire) 

Breakout - to multimeter negative (black

wire) 

Digital Multimeter - Model 9205B+ 

This massive multimeter has everything

but the kitchen sink included. It's a great

addition to any workbench or toolbox.  It's

low cost, simple to use, and has a big

clear...

https://www.adafruit.com/product/2034 

Library Installation

You can install the Adafruit_HUSB238 library for Arduino using the Library Manager in

the Arduino IDE.

When configuring over I2C, the jumper settings are used on startup until the I2C 

commands come over. 

©Adafruit Industries Page 8 of 18

https://learn.adafruit.com//assets/124719
https://learn.adafruit.com//assets/124719
https://www.adafruit.com/product/2034
https://www.adafruit.com/product/2034


Click the Manage Libraries ... menu item, search for Adafruit_HUSB238, and select

the Adafruit HUSB238 library:

If asked about dependencies, click "Install all".

If the "Dependencies" window does not come up, then you already have the

dependencies installed.

Simple Test

#include <Wire.h>

#include "Adafruit_HUSB238.h"

Adafruit_HUSB238 husb238;

 

 

 

If the dependencies are already installed, you must make sure you update them 

through the Arduino Library Manager before loading the example! 

©Adafruit Industries Page 9 of 18



void setup() {

  Serial.begin(115200);

  while (!Serial) delay(10);

  Serial.println("Adafruit HUSB238 Test Sketch");

  // Initialize the HUSB238

  if (husb238.begin(HUSB238_I2CADDR_DEFAULT, &Wire)) {

    Serial.println("HUSB238 initialized successfully.");

  } else {

    Serial.println("Couldn't find HUSB238, check your wiring?");

    while (1);

  }

}

void loop() {

  delay(1000);  // Add a delay to prevent flooding the serial output

  Serial.println(F("----------------------------------------------"));

  

  // Determine whether attached or unattached

  bool attached = husb238.isAttached();

  Serial.print("Attachment Status: ");

  Serial.println(attached ? "Attached" : "Unattached");

  if (! attached) return;

  

  // Test getCCStatus function

  bool ccStatus = husb238.getCCdirection();

  Serial.print("CC Direction: ");

  Serial.println(ccStatus ? "CC1 connected" : "CC2 Connected");

  // Check if we can get responses to our PD queries!

  HUSB238_ResponseCodes pdResponse = husb238.getPDResponse();

  Serial.print("USB PD query response: ");

  switch (pdResponse) {

    case NO_RESPONSE:

      Serial.println("No response");

      break;

    case SUCCESS:

      Serial.println("Success");

      break;

    case INVALID_CMD_OR_ARG:

      Serial.println("Invalid command or argument");

      break;

    case CMD_NOT_SUPPORTED:

      Serial.println("Command not supported");

      break;

    case TRANSACTION_FAIL_NO_GOOD_CRC:

      Serial.println("Transaction fail");

      break;

    default:

      Serial.println("Unknown response code");

      break;

  }

  if (pdResponse != SUCCESS)

    return;

  // Is there a default 5V 'contract' voltage available

  bool contractV = husb238.get5VContractV();

  Serial.print("5V Contract Voltage: ");

  Serial.print(contractV ? "5V" : "Other");

  

  // How much current can we get?

  HUSB238_5VCurrentContract contractA = husb238.get5VContractA();

  Serial.print(" & Current: ");

  switch (contractA) {

    case CURRENT5V_DEFAULT:

      Serial.println("Default current");

©Adafruit Industries Page 10 of 18



      break;

    case CURRENT5V_1_5_A:

      Serial.println("1.5A");

      break;

    case CURRENT5V_2_4_A:

      Serial.println("2.4A");

      break;

    case CURRENT5V_3_A:

      Serial.println("3A");

      break;

    default:

      Serial.println("Unknown current");

      break;

  }

  // What is the actual voltage being output right now?

  HUSB238_VoltageSetting srcVoltage = husb238.getPDSrcVoltage();

  Serial.print("Source Voltage: ");

  switch (srcVoltage) {

    case UNATTACHED:

      Serial.println("Unattached");

      break;

    case PD_5V:

      Serial.println("5V");

      break;

    case PD_9V:

      Serial.println("9V");

      break;

    case PD_12V:

      Serial.println("12V");

      break;

    case PD_15V:

      Serial.println("15V");

      break;

    case PD_18V:

      Serial.println("18V");

      break;

    case PD_20V:

      Serial.println("20V");

      break;

    default:

      Serial.println("Unknown voltage setting");

      break;

  }

  // What is the max current available right now?

  HUSB238_CurrentSetting srcCurrent = husb238.getPDSrcCurrent();

  Serial.print("Source Current: ");

  printCurrentSetting(srcCurrent);

  Serial.println();

  // What voltages and currents are available from this adapter?

  Serial.println("Available PD Voltages and Current Detection Test:");

  for (int i = PD_SRC_5V; i <= PD_SRC_20V; i++) {

    bool voltageDetected = husb238.isVoltageDetected((HUSB238_PDSelection)i);

    switch ((HUSB238_PDSelection)i) {

      case PD_SRC_5V:

        Serial.print("5V");

        break;

      case PD_SRC_9V:

        Serial.print("9V");

        break;

      case PD_SRC_12V:

        Serial.print("12V");

        break;

      case PD_SRC_15V:

        Serial.print("15V");

        break;

©Adafruit Industries Page 11 of 18



      case PD_SRC_18V:

        Serial.print("18V");

        break;

      case PD_SRC_20V:

        Serial.print("20V");

        break;

      default:

        continue;

    }

    Serial.print(voltageDetected ? " Available" : " Unavailable");

    // Loop over currents if voltage is detected

    if (voltageDetected) {

      HUSB238_CurrentSetting currentDetected = 

husb238.currentDetected((HUSB238_PDSelection)i);

      Serial.print(" - Max current: ");

      printCurrentSetting(currentDetected);

    }

    Serial.println();

  }

  // Override whatever the jumpers on the board say, and get a specific voltage!

  husb238.selectPD(PD_SRC_5V);  // Select 5V

  // Uncomment one of the following lines to select a different PD:

  // husb238.selectPD(PD_SRC_9V);  // Select 9V

  // husb238.selectPD(PD_SRC_12V);  // Select 12V

  // husb238.selectPD(PD_SRC_15V);  // Select 15V

  // husb238.selectPD(PD_SRC_18V);  // Select 18V

  // husb238.selectPD(PD_SRC_20V);  // Select 20V

  // Perform the actual PD voltage request!

  husb238.requestPD();

  // Test getSelectedPD function

  HUSB238_PDSelection selectedPD = husb238.getSelectedPD();

  Serial.print("Currently Selected PD Output: ");

  switch (selectedPD) {

    case PD_NOT_SELECTED:

      Serial.println("Not Selected");

      break;

    case PD_SRC_5V:

      Serial.println("5V");

      break;

    case PD_SRC_9V:

      Serial.println("9V");

      break;

    case PD_SRC_12V:

      Serial.println("12V");

      break;

    case PD_SRC_15V:

      Serial.println("15V");

      break;

    case PD_SRC_18V:

      Serial.println("18V");

      break;

    case PD_SRC_20V:

      Serial.println("20V");

      break;

    default:

      Serial.println("Unknown");

      break;

  }

}

void printCurrentSetting(HUSB238_CurrentSetting srcCurrent) {

  switch (srcCurrent) {

    case CURRENT_0_5_A:

      Serial.print("0.5A ");

©Adafruit Industries Page 12 of 18



      break;

    case CURRENT_0_7_A:

      Serial.print("0.7A ");

      break;

    case CURRENT_1_0_A:

      Serial.print("1.0A ");

      break;

    case CURRENT_1_25_A:

      Serial.print("1.25A ");

      break;

    case CURRENT_1_5_A:

      Serial.print("1.5A ");

      break;

    case CURRENT_1_75_A:

      Serial.print("1.75A ");

      break;

    case CURRENT_2_0_A:

      Serial.print("2.0A ");

      break;

    case CURRENT_2_25_A:

      Serial.print("2.25A ");

      break;

    case CURRENT_2_50_A:

      Serial.print("2.50A ");

      break;

    case CURRENT_2_75_A:

      Serial.print("2.75A ");

      break;

    case CURRENT_3_0_A:

      Serial.print("3.0A ");

      break;

    case CURRENT_3_25_A:

      Serial.print("3.25A ");

      break;

    case CURRENT_3_5_A:

      Serial.print("3.5A ");

      break;

    case CURRENT_4_0_A:

      Serial.print("4.0A ");

      break;

    case CURRENT_4_5_A:

      Serial.print("4.5A ");

      break;

    case CURRENT_5_0_A:

      Serial.print("5.0A ");

      break;

    default:

      break;

  }

}

Upload the sketch to your board and open up the Serial Monitor (Tools -> Serial

Monitor) at 115200 baud. You'll see the HUSB238 recognized over I2C by the code. It

will set the voltage to 5V over I2C. Then, it will query the attached PD adapter to see

which voltage and current combinations are available and print the currently set

voltage.

©Adafruit Industries Page 13 of 18



Test All Voltages Example

 

For this example, it's best to test with the

output from the breakout connected to a

multimeter in DC voltage mode. DC

voltage mode is labeled with a V and two

lines, one dashed and one solid. For

information on using a multimeter, check

out this guide. ()

Multimeters Learn Guide

#include <Wire.h>

#include "Adafruit_HUSB238.h"

Adafruit_HUSB238 husb238;

void setup() {

  Serial.begin(115200);

  while (!Serial) delay(10);

  Serial.println("Adafruit HUSB238 Test Sketch");

  // Initialize the HUSB238

  if (husb238.begin(HUSB238_I2CADDR_DEFAULT, &Wire)) {

    Serial.println("HUSB238 initialized successfully.");

  } else {

    Serial.println("Couldn't find HUSB238, check your wiring?");

    while (1);

  }

}

 

©Adafruit Industries Page 14 of 18

https://learn.adafruit.com//assets/124724
https://learn.adafruit.com//assets/124724
https://learn.adafruit.com/multimeters/overview
https://learn.adafruit.com/multimeters/overview
https://learn.adafruit.com/multimeters/overview
https://learn.adafruit.com/multimeters/overview


void loop() {

  delay(1000);  // Add a delay to prevent flooding the serial output

  Serial.println(F("----------------------------------------------"));

  if (! husb238.isAttached()) 

    return;

  if (husb238.getPDResponse() != SUCCESS)

    return;

  // What voltages and currents are available from this adapter?

  Serial.println("Available PD Voltages and Current Detection Test:");

  for (int i = PD_SRC_5V; i <= PD_SRC_20V; i++) {

    bool voltageDetected = husb238.isVoltageDetected((HUSB238_PDSelection)i);

    switch ((HUSB238_PDSelection)i) {

      case PD_SRC_5V:

        Serial.print("5V");

        break;

      case PD_SRC_9V:

        Serial.print("9V");

        break;

      case PD_SRC_12V:

        Serial.print("12V");

        break;

      case PD_SRC_15V:

        Serial.print("15V");

        break;

      case PD_SRC_18V:

        Serial.print("18V");

        break;

      case PD_SRC_20V:

        Serial.print("20V");

        break;

      default:

        continue;

    }

    Serial.println(voltageDetected ? " Available" : " Unavailable");

    Serial.println("\tSetting new PD voltage");

    // Change to that voltage

    husb238.selectPD((HUSB238_PDSelection)i);

    // Perform the actual PD voltage request!

    husb238.requestPD();

    delay(2000);

  }

}

©Adafruit Industries Page 15 of 18



Upload the sketch to your board and open up the Serial Monitor (Tools -> Serial

Monitor) at 115200 baud. You'll see the HUSB238 recognized over I2C by the code.

Then, it will try setting a new voltage one after the other. As the Serial Monitor

updates, you should see the same voltage read by your multimeter.

Arduino Docs 

Arduino Docs () 

 

 

©Adafruit Industries Page 16 of 18

https://adafruit.github.io/Adafruit_HUSB238/html/index.html


Downloads 

Files

HUSB238 Datasheet () 

EagleCAD PCB Files on GitHub () 

3D models on GitHub () 

Fritzing object in the Adafruit Fritzing Library () 

Schematic and Fab Print

• 

• 

• 

• 

 

©Adafruit Industries Page 17 of 18

https://cdn-learn.adafruit.com/assets/assets/000/125/150/original/husb238_datasheet_full.pdf?1697209172
https://github.com/adafruit/Adafruit-USB-Type-C-Power-Delivery-Dummy-Breakout-PCB
https://github.com/adafruit/Adafruit_CAD_Parts/tree/main/5807%20HUSB238%20Breakout
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20HUSB238%20USB-C%20PD%20Breakout.fzpz


 

©Adafruit Industries Page 18 of 18


	Adafruit HUSB238 USB Type C Power Delivery Breakout
	Table of Contents
	Overview
	Pinouts
	Python Docs
	Arduino
	Arduino Docs
	Downloads


	Overview
	Pinouts
	Power Pins
	I2C
	USB Type C Port and Data Pins
	Jumpers
	Amp Jumpers
	Voltage Jumpers


	Python Docs
	Arduino
	Wiring
	Library Installation
	Simple Test
	Test All Voltages Example

	Arduino Docs
	Downloads
	Files
	Schematic and Fab Print


