SSD1357

Advance Information

128 RGB x 128 Dot Matrix
OLED/PLED Segment/Common Driver with Controller

Appendix: IC Revision history of SSD1357 Specification

Version	Change Items	Effective Date
0.10	$1^{\text {st }}$ release	27 -May-16
0.20	P. 9-10 Updated D_SEL and I IREF in Pin Description P. 19 Updated 256 color depth description in GDDRAM P. 22 Updated SEG/COM Drivers description P. 26 Updated Power ON and OFF sequence description P. 28 Updated DC Characteristic parameters P. 29 Updated AC Characteristic parameters P. 35 Updated application example	$23-$-Sep-16
1.0	Updated to Advance Information	
1.1	P. 20 Updated Table 6-8 Read Data bus usage under different bus width and color depth mode P. 21 Updated SEG/COM Driving block description P. 22 Updated Figure 6-13 Segment and Common Driver Block Diagram	003 03-Apr-19

CONTENTS

1 GENERAL DESCRIPTION 6
2 FEATURES 6
3 ORDERING INFORMATION 6
4 BLOCK DIAGRAM 7
5 PIN DESCRIPTION 8
6 FUNCTIONAL BLOCK DESCRIPTIONS 11
6.1 MCU InTERFACE SELECTION 11
6.1.1 MCU Parallel 6800-series Interface 11
6.1.2 MCU Parallel 8080-series Interface 12
6.1.3 MCU Serial Interface (4-wire SPI) 13
6.1.4 MCU Serial Interface (3-wire SPI) 14
6.1.5 MCU I ${ }^{2}$ C Interface 15
6.2 Command Decoder 18
6.3 Oscillator Circuit and Display Time Generator 18
6.4 Reset Circuit 19
6.5 GDDRAM 19
6.5.1 GDDRAM structure 19
6.5.2 Data bus to RAM mapping under different input mode 20
6.6 SEG/COM DRIVING BLOCK 21
6.7 SEG / COM DRIVERS 22
6.8 Gray Scale Decoder 25
6.9 Power On and OFF Sequence 26
7 MAXIMUM RATINGS 27
8 DC CHARACTERISTICS 28
9 AC CHARACTERISTICS 29
10 APPLICATION EXAMPLE 35

TABLES

Table 3-1: ORdERING Information 6
Table 5-1: Pin description 8
TABLE 5-2: BUS Interface Selection 9
TABLE 6-1 : MCU INTERFACE ASSIGNMENT UNDER DIFFERENT BUS INTERFACE MODE 11
TABLE 6-2 : CONTROL PINS OF 6800 INTERFACE 11
TABLE 6-3 : CONTROL PINS OF 8080 INTERFACE 13
TABLE 6-4 : Control pins of 4-wire Serial interface 13
Table 6-5 : Control pins of 3-WIRE SERIAL interface 14
Table 6-6: 65k Color Depth Graphic Display Data Ram Structure 19
TabLE 6-7 : WRITE DATA BUS USAGE UNDER DIFFERENT BUS WIDTH AND COLOR DEPTH MODE 20
TABLE 6-8 : READ DATA BUS USAGE UNDER DIFFERENT BUS WIDTH AND COLOR DEPTH MODE 20
Table 7-1 : MaXimum Ratings 27
Table 9-1 : AC Characteristics 29
Table 9-2 : 6800-Series MCU Parallel Interface Timing Characteristics 30
Table 9-3: 8080-Series MCU Parallel Interface Timing Characteristics 31
Table 9-4 : Serial Interface Timing Characteristics (4-wire SPI) 32
Table 9-5 : Serial Interface Timing Characteristics (3-wire SPI) 33
TABLE 9-6 : I ${ }^{2}$ C Interface Timing Characteristics 34

FIGURES

Figure 4-1: SSD1357 Block Diagram 7
Figure 6-1 : Data read back procedure - insertion of dummy read 12
Figure 6-2 : EXAMPLE OF Write procedure in 8080 parallel interface mode12
Figure 6-3 : Example of Read procedure in 8080 Parallel interface mode 12
FIGURE 6-4 : DISPLAY DATA READ BACK PROCEDURE - INSERTION OF DUMMY READ 13
Figure 6-5 : Write procedure in 4-wire Serial interface mode 14
Figure 6-6 : Write procedure in 3-wire Serial interface mode 14
Figure 6-7 : $\mathrm{I}^{2} \mathrm{C}$-bus data Format 16
Figure 6-8 : Definition of the Start and Stop Condition 17
Figure 6-9 : DEFInition of the acknowledgement condition 17
Figure 6-10 : DEFinition of the data transfer condition 17
Figure 6-11 : Oscillator Circuit and Display Time Generator 18
Figure 6-12 : I Iref Current Setting by Resistor Value 21
Figure 6-13 : Segment and Common Driver Block Diagram 22
Figure 6-14 : Segment and Common Driver Signal Waveform 23
Figure 6-15 : Gray Scale Control in Segment 24
Figure 6-16 : Relation between GdDram content and gray scale table entry for three colors in 65K COLOR MODE. 25
Figure 6-17 : ILLUSTRATION OF RELATION BETWEEN GRAPHIC DISPLAY RAM VALUE AND GRAY SCALE CONTROL 25
Figure 6-18 : The Power ON seQuence 26
Figure 6-19: The Power OFF sequence 26
Figure 9-1 : 6800-SERIES MCU PARALLEL INTERFACE CHARACTERISTICS 30
FIGURE 9-2 : 8080-SERIES MCU PARALLEL INTERFACE CHARACTERISTICS 31
Figure 9-3 : SERIAL INTERFACE CHARACTERISTICS (4-wIRE SPI) 32
Figure 9-4 : SERIAL interface characteristics (3-wire SPI) 33
Figure 9-5: $\mathrm{I}^{2} \mathrm{C}$ interface Timing characteristics 34
FIGURE 10-1 : SSD1357Z APPLICATION EXAMPLE FOR 16-BIT 8080-PARALLEL INTERFACE MODE 35

1 GENERAL DESCRIPTION

SSD1357 is a single-chip CMOS OLED/PLED driver with controller for organic/polymer light emitting diode dot-matrix graphic display. It consists of 384 segments and 128 commons output, supporting up to 128 RGB x 128 dot matrix display. This IC is designed for Common Cathode type OLED/PLED panel.

SSD1357 has embedded Graphic Display Data RAM (GDDRAM). Data/Commands are sent from general MCU through the hardware selectable 8,16 bits 6800-/8080-series compatible Parallel Interface, $I^{2} \mathrm{C}$ Interface, or Serial Peripheral Interface. It supports 256 -step contrast and 65 K color control. SSD1357 is suitable for portable applications such as wearable electronics with vivid color OLED display.

- Resolution: 128RGB x 128 dot matrix panel

$$
\begin{array}{lll}
\circ & \mathrm{V}_{\mathrm{DD}}=1.65 \mathrm{~V}-3.5 \mathrm{~V} & \text { (MCU interface logic level \& low voltage power supply) } \\
\circ & \mathrm{V}_{\mathrm{CC}}=8.0 \mathrm{~V}-18.0 \mathrm{~V} & \text { (Panel driving power supply) }
\end{array}
$$

- Segment maximum source current: 320uA
- Common maximum sink current: 80 mA
- Pin selectable MCU Interfaces:
- 8/16 bits 6800/8080-series parallel Interface
- 3/4 wire Serial Peripheral Interface
- $I^{2} C$ Interface
- 256 step brightness current control for the each color component plus 16 step master current
- Support color depth of 256 and 65 k
- Support 3 individual Gamma Look Up Tables (GLUT) for R, G, B
- Color Swapping Function (RGB - BGR)
- Row re-mapping and Column re-mapping
- Screen saving continuous scrolling function in both horizontal and vertical direction
- Screen saving infinite content scrolling function
- Programmable Frame Rate
- Power On Reset (POR)
- On-Chip Oscillator
- Chip layout for COG, COF
- Operating temperature range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

3 ORDERING INFORMATION

Table 3-1: Ordering Information

Ordering Part Number	SEG	COM	Package Form	Remark
				\circ Min SEG pad pitch : 27um SSD1357Z Min COM pad pitch : 33.4um 128RGB 128 COG Min I/O pad pitch : 55um 0 Die thickness: 250um Bump height: nominal 12um

Figure 4-1: SSD1357 Block Diagram

5 PIN DESCRIPTION

Key:

$\mathrm{I}=$ Input	NC $=$ Not Connected
$\mathrm{O}=$ Output	Pull LOW $=$ connect to Ground
$\mathrm{I} / \mathrm{O}=$ Bi-directional (input/output)	Pull HIGH= connect to VD
P = Power pin	

Table 5-1: Pin description

Pin Name	Pin Type	Description
$\mathrm{V}_{\text {DD }}$	P	Power supply pin for core logic operation. A capacitor should be connected between this pin and $\mathrm{V}_{\text {ss. }}$.
$\mathrm{V}_{\text {CC }}$	P	Power supply for panel driving voltage. This is also the most positive power voltage supply pin. A capacitor should be connected between this pin and $\mathrm{V}_{\text {ss }}$.
V_{p}	P	This pin is the segment pre-charge voltage reference pin. A capacitor can be connected between this pin and $\mathrm{V}_{\text {ss }}$ to improve vision performance. No external power supply is allowed to connect to this pin.
T0	P	Reserved pin. This pin should be kept NC
T1	P	Reserved pin. This pin should be kept NC
V_{pp}	P	Reserved pin. It must be connected to V_{DD}.
BGGND	P	Reserved pin. It must be connected to $\mathrm{V}_{\text {ss }}$.
$\mathrm{V}_{\text {ss }}$	P	Ground pin. It must be connected to external ground.
$\mathrm{V}_{\text {LSS }}$	P	Analog system ground pin. It must be connected to external ground.
VSL	P	This is segment voltage (output low level) reference pin. This pin has to connect with resistor and diode to ground (details depends on application).
$\mathrm{V}_{\text {LH }}$	P	Logic high (same voltage level as V_{DD}) for internal connection of input and I/O pins. No need to connect to external power source.
$\mathrm{V}_{\text {LL }}$	P	Logic low (same voltage level as $\mathrm{V}_{\text {ss }}$) for internal connection of input and I/O pins. No need to connect to external ground.
$\mathrm{V}_{\text {com }}$	P	COM signal deselected voltage level. A capacitor should be connected between this pin and $\mathrm{V}_{\text {Ss }}$.
VBREF	O	This is a reserved pin. It should be kept NC.

Pin Name	Pin Type	Description
R/W\# (WR\#)	I	This pin is read / write control input pin connecting to the MCU interface. When 6800 interface mode is selected, this pin will be used as Read/Write (R/W\#) selection input. Read mode will be carried out when this pin is pulled HIGH and write mode when LOW. When 8080 interface mode is selected, this pin will be the Write (WR\#) input. Data write operation is initiated when this pin is pulled LOW and the chip is selected. When serial or $\mathrm{I}^{2} \mathrm{C}$ interface is selected, this pin must be connected to $\mathrm{V}_{\text {SS }}$.
E (RD\#)	I	This pin is MCU interface input. When 6800 interface mode is selected, this pin will be used as the Enable (E) signal. Read/write operation is initiated when this pin is pulled HIGH and the chip is selected. When 8080 interface mode is selected, this pin receives the Read (RD\#) signal. Read operation is initiated when this pin is pulled LOW and the chip is selected. When serial or $\mathrm{I}^{2} \mathrm{C}$ interface is selected, this pin must be connected to $\mathrm{V}_{\text {sS }}$.
D[15:0]	I/O	These pins are bi-directional data bus connecting to the MCU data bus. Unused pins are recommended to tie LOW. When serial interface mode is selected, D0 will be the serial clock input: SCLK; D1 will be the serial data input: SDIN. When $\mathrm{I}^{2} \mathrm{C}$ mode is selected, D 2 , D 1 should be tied together and serve as $\mathrm{SDA}_{\text {out }}$, $\mathrm{SDA}_{\text {in }}$ in application and D0 is the serial clock input, SCL.
D_SEL	I	Should be connected to $\mathrm{V}_{\text {SS }}$.
FR	O	This pin outputs RAM write synchronization signal. Proper timing between MCU data writing and frame display timing can be achieved to prevent tearing effect. It should be kept NC if it is not used.
$\begin{aligned} & \text { SA[127:0] } \\ & \text { SB[127:0] } \\ & \text { SC[127:0] } \end{aligned}$	O	These pins provide the OLED segment driving signals. These pins are $\mathrm{V}_{\text {ss }}$ state when display is OFF. The 384 segment pins are divided into 3 groups, SA, SB and SC. Each group can have different color settings for color A, B and C .
COM[127:0]	O	These pins provide the Common switch signals to the OLED panel.
NC	-	This is dummy pin. It should be kept NC.

6 FUNCTIONAL BLOCK DESCRIPTIONS

6.1 MCU Interface selection

SSD1357 MCU interface consist of 16 data pins and 5 control pins. The pin assignment at different interface mode is summarized in Table 6-1. Different MCU mode can be set by hardware selection on BS[2:0] pins (please refer to Table 5-1: Pin description for BS[2:0] setting).

Table 6-1 : MCU interface assignment under different bus interface mode

	Data/Command Interface																Control Signal				
	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	E	R/W\#	CS\#	D/C\#	RES\#
8 -bit 8080	Tie Low								D[7:0]								RD\#	WR\#	CS\#	D/C\#	RES\#
8 -bit 6800	Tie Low								D[7:0]								E	R/W\#	CS\#	D/C\#	RES\#
16-bit 8080	D[15:0]																RD\#	WR\#	CS\#	D/C\#	RES\#
16 -bit 6800	D[15:0]																E	R/W\#	CS\#	D/C\#	RES\#
3-wire SPI	Tie Low														SDIN	SCLK		Low	CS\#	Tie Low	RES\#
4 -wire SPI	Tie Low														SDIN	SCLK	T	Low	CS\#	D/C\#	RES\#
$\mathrm{I}^{2} \mathrm{C}$	Tie Low														$\mathrm{SDA}_{\text {IN }}$	SCL	Tie Low			SA0	RES\#

6.1.1 MCU Parallel 6800-series Interface

The parallel interface consists of 16 bi-directional data pins (D[15:0]), R/W\#, D/C\#, E and CS\#.
A LOW in R/W\# indicates WRITE operation and HIGH in R/W\# indicates READ operation.
A LOW in D/C\# indicates COMMAND read/write and HIGH in D/C\# indicates DATA read/write.
The E input serves as data latch signal while CS is LOW. Data is latched at the falling edge of E signal.

Table 6-2 : Control pins of 6800 interface

Function	E	R/W\#	CS\#	D/C\#
Write command	\downarrow	L	L	L
Read status	\downarrow	H	L	L
Write data	\downarrow	L	L	H
Read data	\downarrow	H	L	H

Note

${ }^{(1)} \downarrow$ stands for falling edge of signal
H stands for HIGH in signal
L stands for LOW in signal
In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 6-1.

Figure 6-1 : Data read back procedure - insertion of dummy read

Databus

6.1.2 MCU Parallel 8080-series Interface

The parallel interface consists of 16 bi-directional data pins (D[15:0]), RD\#, WR\#, D/C\# and CS\#.
A LOW in D/C\# indicates COMMAND read/write and HIGH in D/C\# indicates DATA read/write. A rising edge of RD\# input serves as a data READ latch signal while CS\# is kept LOW.
A rising edge of WR\# input serves as a data/command WRITE latch signal while CS\# is kept LOW.

Figure 6-2 : Example of Write procedure in 8080 parallel interface mode

Figure 6-3 : Example of Read procedure in 8080 parallel interface mode

Table 6-3 : Control pins of 8080 interface

Function	RD\#	WR\#	CS\#	D/C\#
Write command	H	\uparrow	L	L
Read status	\uparrow	H	L	L
Write data	H	\uparrow	L	H
Read data	\uparrow	H	L	H

Note

${ }^{(1)} \uparrow$ stands for rising edge of signal
${ }^{(2)} \mathrm{H}$ stands for HIGH in signal
${ }^{(3)} \mathrm{L}$ stands for LOW in signal
In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 6-4.

Figure 6-4 : Display data read back procedure - insertion of dummy read

6.1.3 MCU Serial Interface (4-wire SPI)

The 4-wire serial interface consists of serial clock: SCLK, serial data: SDIN, D/C\#, CS\#. In 4-wire SPI mode, D0 acts as SCLK, D1 acts as SDIN. For the unused data pins from D2 to D7, E(RD\#) and R/W\#(WR\#) can be connected to an external ground.

Table 6-4 : Control pins of 4-wire Serial interface

Function	E	R/W\#	CS\#	D/C\#	D0
Write command	Tie LOW	Tie LOW	L	L	\uparrow
Write data	Tie LOW	Tie LOW	L	H	\uparrow

Note
${ }^{(1)} \mathrm{H}$ stands for HIGH in signal
${ }^{(2)} \mathrm{L}$ stands for LOW in signal
${ }^{(3)} \uparrow$ stands for rising edge of signal
SDIN is shifted into an 8-bit shift register on every rising edge of SCLK in the order of D7, D6, .. D0. D/C\# is sampled on every eight clocks and the data byte in the shift register is written to the Graphic Display Data RAM (GDDRAM) or command register in the same clock. D/C\# should keep its stage from the start to the end of operation.

Under serial mode, only write operations are allowed.
Figure 6-5 : Write procedure in 4-wire Serial interface mode

6.1.4 MCU Serial Interface (3-wire SPI)

The 3-wire serial interface consists of serial clock SCLK, serial data SDIN and CS\#.
In 3-wire SPI mode, D0 acts as SCLK, D1 acts as SDIN. For the unused data pins from D2 to D7, R/W\# (WR\#), $\mathrm{E}(\mathrm{RD} \#$) and $\mathrm{D} / \mathrm{C} \#$ can be connected to an external ground.

The operation is similar to 4 -wire serial interface while D/C\# pin is not used. There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/C\# bit, D7 to D0 bit. The D/C\# bit (first bit of the sequential data) will determine the following data byte in the shift register is written to the Display Data RAM ($\mathrm{D} / \mathrm{C} \#$ bit $=1$) or the command register ($\mathrm{D} / \mathrm{C} \#$ bit $=0$).

Under serial mode, only write operations are allowed.
Table 6-5 : Control pins of 3-wire Serial interface

Function	E(RD\#)	R/W\#(WR\#)	CS\#	D/C\#	D0
Note					
Nrite command	Tie LOW	Tie LOW	L	Tie LOW	\uparrow
(1) L stands for LOW in signal	(2) \uparrow stands for rising edge of signal				

Figure 6-6 : Write procedure in 3-wire Serial interface mode

6.1.5 MCU I²C Interface

The $\mathrm{I}^{2} \mathrm{C}$ communication interface consists of slave address bit SA0, $\mathrm{I}^{2} \mathrm{C}$-bus data signal SDA ($\mathrm{SDA}_{\text {out }} / \mathrm{D}_{2}$ for output and $\mathrm{SDA}_{\text {II }} / \mathrm{D}_{1}$ for input) and $\mathrm{I}^{2} \mathrm{C}$-bus clock signal $\mathrm{SCL}\left(\mathrm{D}_{0}\right)$. Both the data and clock signals must be connected to pull-up resistors. RES\# is used for the initialization of device.
a) Slave address bit (SA0)

SSD1357 has to recognize the slave address before transmitting or receiving any information by the $\mathrm{I}^{2} \mathrm{C}$-bus. The device will respond to the slave address following by the slave address bit ("SA0" bit) and the read/write select bit ("R/W\#" bit) with the following byte format,
$b_{7} b_{6} b_{5} b_{4} b_{3} b_{2} b_{1} \quad b_{0}$
011110 SA0 R/W\#
"SA0" bit provides an extension bit for the slave address. Either " 0111100 " or " 0111101 ", can be selected as the slave address of SSD1357. D/C\# pin acts as SA0 for slave address selection.
" $\mathrm{R} / \mathrm{W} \#$ " bit is used to determine the operation mode of the $\mathrm{I}^{2} \mathrm{C}$-bus interface. $\mathrm{R} / \mathrm{W} \#=1$, it is in read mode. $\mathrm{R} / \mathrm{W} \#=0$, it is in write mode.
b) $\mathrm{I}^{2} \mathrm{C}$-bus data signal (SDA)

SDA acts as a communication channel between the transmitter and the receiver. The data and the acknowledgement are sent through the SDA.

It should be noticed that the ITO track resistance and the pulled up resistance at "SDA" pin becomes a voltage potential divider. As a result, the acknowledgement would not be possible to attain a valid logic 0 level in "SDA".
"SDA ${ }_{\text {IN }}$ " and "SDAout" are tied together and serve as SDA. The "SDA ${ }_{\text {IN }}$ " pin must be connected to act as SDA. The "SDAout" pin may be disconnected. When "SDA Out" pin is disconnected, the acknowledgement signal will be ignored in the $\mathrm{I}^{2} \mathrm{C}$-bus.
c) $\mathrm{I}^{2} \mathrm{C}$-bus clock signal (SCL)

The transmission of information in the $\mathrm{I}^{2} \mathrm{C}$-bus is following a clock signal, SCL. Each transmission of data bit is taken place during a single clock period of SCL.

6.1.5.1 $\quad I^{2} \mathrm{C}$-bus Write data

The $\mathrm{I}^{2} \mathrm{C}$-bus interface gives access to write data and command into the device. Please refer to Figure 6-7 for the write mode of $\mathrm{I}^{2} \mathrm{C}$-bus in chronological order.

Figure 6-7 : $I^{2} \mathrm{C}$-bus data format

6.1.5.2 Write mode for $\mathrm{I}^{\mathbf{2}} \mathrm{C}$

1) The master device initiates the data communication by a start condition. The definition of the start condition is shown in Figure 6-8. The start condition is established by pulling the SDA from HIGH to LOW while the SCL stays HIGH.
2) The slave address is following the start condition for recognition use. For the SSD1357, the slave address is either "b0111100" or "b0111101" by changing the SA0 to LOW or HIGH (D/C pin acts as SA0).
3) The write mode is established by setting the $\mathrm{R} / \mathrm{W} \#$ bit to logic " 0 ".
4) An acknowledgement signal will be generated after receiving one byte of data, including the slave address and the R / W \# bit. Please refer to the
5) Figure 6-9 for the graphical representation of the acknowledge signal. The acknowledge bit is defined as the SDA line is pulled down during the HIGH period of the acknowledgement related clock pulse.
6) After the transmission of the slave address, either the control byte or the data byte may be sent across the SDA. A control byte mainly consists of Co and D/C\# bits following by six " 0 " 's.
a. If the Co bit is set as logic " 0 ", the transmission of the following information will contain data bytes only.
b. The $\mathrm{D} / \mathrm{C} \#$ bit determines the next data byte is acted as a command or a data. If the $\mathrm{D} / \mathrm{C} \#$ bit is set to logic " 0 ", it defines the following data byte as a command. If the D/C\# bit is set to logic " 1 ", it defines the following data byte as a data which will be stored at the GDDRAM. The GDDRAM column address pointer will be increased by one automatically after each data write.
7) Acknowledge bit will be generated after receiving each control byte or data byte.
8) The write mode will be finished when a stop condition is applied. The stop condition is also defined in Figure 6-8. The stop condition is established by pulling the "SDA in" from LOW to HIGH while the "SCL" stays HIGH.

Figure 6-8 : Definition of the Start and Stop Condition

Figure 6-9 : Definition of the acknowledgement condition

Please be noted that the transmission of the data bit has some limitations.

1. The data bit, which is transmitted during each SCL pulse, must keep at a stable state within the "HIGH" period of the clock pulse. Please refer to the Figure 6-10 for graphical representations. Except in start or stop conditions, the data line can be switched only when the SCL is LOW.
2. Both the data line (SDA) and the clock line (SCL) should be pulled up by external resistors.

Figure 6-10 : Definition of the data transfer condition

6.2 Command Decoder

This module determines whether the input data is interpreted as data or command. Data is interpreted based upon the input of the $\mathrm{D} / \mathrm{C} \#$ pin.

If D/C\# pin is HIGH, D[7:0] is interpreted as display data written to Graphic Display Data RAM (GDDRAM). If it is LOW, the input at $\mathrm{D}[7: 0]$ is interpreted as a command. Then data input will be decoded and written to the corresponding command register.

6.3 Oscillator Circuit and Display Time Generator

Figure 6-11 : Oscillator Circuit and Display Time Generator

This module is an on-chip LOW power RC oscillator circuitry. The operation clock (CLK) can be generated either from internal oscillator or external source CL pin. This selection is done by CLS pin. If CLS pin is pulled HIGH, internal oscillator is chosen and CL should be connected to Vss. Pulling CLS pin LOW disables internal oscillator and external clock must be connected to CL pins for proper operation. When the internal oscillator is selected, its output frequency Fosc can be changed by command B3h A[7:4].

The display clock (DCLK) for the Display Timing Generator is derived from CLK. The division factor "D" can be programmed from 1 to 256 by command B3h

$$
\text { DCLK }=\text { Fosc } / \mathrm{D}
$$

The frame frequency of display is determined by the following formula.

$$
\mathrm{F}_{\mathrm{FRM}}=\frac{\mathrm{F}_{\text {osc }}}{\mathrm{D} \times \mathrm{K} \times \text { No.of Mux }}
$$

where

- D stands for clock divide ratio. It is set by command B3h A[3:0]. The divide ratio has the range from 1 to 256.
- K is the number of display clocks per row. The value is derived by
$\mathrm{K}=$ Phase 1 period + Phase 2 period $+\mathrm{K}_{\text {。 }}$
$=8+16+145=169$ at power on reset (that is K_{o} is a constant that equals to 145)
Please refer to Section 6.7 "SEG / COM Drivers" for the details of the "Phase".
- Number of multiplex ratio is set by command CAh. The power on reset value is 127 (i.e. 128MUX).
- Fosc is the oscillator frequency. It can be changed by command B3h A[7:4]. The higher the register setting results in higher frequency.

6.4 Reset Circuit

When RES\# input is LOW, the chip is initialized with the following status:

1. Display is OFF
2. 128 MUX Display Mode
3. Normal segment and display data column address and row address mapping (SEG0 mapped to address 00h and COM0 mapped to address 00h)
4. Shift register data clear in serial interface
5. Display start line is set at display RAM address 0
6. Column address counter is set at 0
7. Normal scan direction of the COM outputs
8. Command A2h, B1h, B3h, BBh, BEh are locked by command FDh

6.5 GDDRAM

6.5.1 GDDRAM structure

The GDDRAM is a bit mapped static RAM holding the pattern to be displayed. The RAM size is $128 \times 128 \times$ 16bits. For mechanical flexibility, re-mapping on both Segment and Common outputs can be selected by software. Each pixel has 16-bit data. Sub-pixels for color A, C have 5 bits and B have 6 bits. The arrangement of data pixel in graphic display data RAM is shown in Table 66.

Table 6-6: 65k Color Depth Graphic Display Data RAM Structure

Segment	Normal	0			1			2	$\ldots \ldots$	\ldots	126		127	
Address	Remapped	127			126			125	\ldots	\ldots	1		0	
Color		A	B	C	A	B	C	A			C	A	B	C
			B5			B5			\ldots	\ldots			B5	
		A4	B4	C4	A4	B4	C4	A4	C4	A4	B4	C4
		A3	B3	C3	A3	B3	C3	A3	\ldots	\ldots	C3	A3	B3	C3
		A2	B2	C2	A2	B2	C2	A2	C2	A2	B2	C2
		A1	B1	Cl	A1	B1	Cl	A1	\ldots	\ldots	Cl	Al	B1	Cl
		A0	B0	C0	A0	B0	C0	A0	\ldots	\ldots	C 0	A0	B0	C0
Normal ${ }^{\text {Remapped }}$														
0	127	5	6	5	5	6	5	5	\ldots	\ldots	5	5	6	5
1	126	5	6	5	5	6	5	5	\ldots	5	5	6	5
2	125	5	6	5	5	6	5	5	\ldots	\ldots	5	5	6	5
3	124	5	\bigcirc	5	5	6	5	5	\ldots	\ldots	5	5	6	5
4	123	5	6	5	5	6	5	5	\ldots	\ldots	5	5	6	5
5	122	5	6	5	5	6	5	5	\ldots	\cdots	5	5	6	5
6	121	5	6 V	5	5	6	5	5	\ldots	\ldots	5	5	6	5
7	120	5	6	no. of bit	this ce		5	5	\ldots	\ldots	5	5	6	5
:	:	:	:	.	:	.	.	.	\ldots	\ldots	,	,	:	:
:	:	:	:	:	:	:	:	:	\ldots	\ldots	:	.	:	:
:	:	:	:	:	:	:	.	:	\ldots	\ldots	:	:	:	:
123	4	5	6	5	5	6	5	5	\ldots	\ldots	5	5	6	5
124	3	5	6	5	5	6	5	5	\ldots	\ldots	5	5	6	5
125	2	5	6	5	5	6	5	5	\ldots	5	5	6	5
126	1	5	6	5	5	6	5	5	\ldots	\ldots	5	5	6	5
127	0	5	6	5	5	6	5	5	\ldots	\ldots	5	5	6	5
SEG	output	SA0	SB0	SC0	SA1	SB1	SC1	SA2	\ldots	\cdots	SC126	SA127	SB127	SC127

Common output
COM0
COM1
COM2
COM3
COM4
COM5
COM6
COM7
$:$
$:$
$:$
$:$
COM124
COM125
COM126
COM127

6.5.2 Data bus to RAM mapping under different input mode

Table 6-7 : Write Data bus usage under different bus width and color depth mode

Write data			Data bus															
Bus width	Color depth	Input order	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
8bits / Serial	256		X	X	X	X	X	X	X	X	C4	C3	C2	B5	B4	B3	A4	A3
8bits / Serial	65k	1st	X	X	X	X	X	X	X	X	C4	C3	C2	C1	C0	B5	B4	B3
		2nd	X	X	X	X	X	X	X	X	B2	B1	B0	A4	A3	A2	A1	A0
8bits / Serial	Pseudo 262k	1st	X	X	X	X	X	X	X	X	X	X	C4	C3	C2	C1	C0	X
		2nd	X	X	X	X	X	X	X	X	X	X	B5	B4	B3	B2	B1	B0
		3 rd	X	X	X	X	X	X	X	X	X	X	A4	A3	A2	A1	A0	X
16bits	65k		C4	C3	C2	C1	C0	B5	B4	B3	B2	B1	B0	A4	A3	A2	A1	A0
16bits	Pseudo262k format 1	1st	X	X	X	X	X	X	X	X	X	X	C4	C3	C2	C1	C0	X
		2nd	X	X	B5	B4	B3	B2	B1	B0	X	X	A4	A3	A2	A1	A0	X
16bits	Pseudo 262k format 2	1st	X	X	C14	C13	C12	C11	C10	X	X	X	B15	B14	B13	B12	B11	B10
		2nd	X	X	A14	A13	A12	A11	A10	X	X	X	C 24	C 23	C 22	C 21	C20	X
		3rd	X	X	B25	B24	B23	B22	B21	B20	X	X	A24	A23	A22	A21	A20	X

Table 6-8 : Read Data bus usage under different bus width and color depth mode

Read data			Data bus															
Bus width	Color depth	Input order	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
8bits	256		X	X	X	X	X	X	X	X	C4	C3	C2	B5	B4	B3	A4	A3
8bits	65k	1st	X	X	X	X	X	X	X	X	C4	C3	C2	C1	C0	B5	B4	B3
		2nd	X	X	X	X	X	X	X	X	B2	B1	B0	A4	A3	A2	A1	A0
8bits	Pseudo 262k	1st	X	X	X	X	X	X	X	X	X	X	C4	C3	C2	C1	C0	X
		2nd	X	X	X	X	X	X	X	X	X	X	B5	B4	B3	B2	B1	B0
		3rd	X	X	X	X	X	X	X	X	X	X	A4	A3	A2	A1	A0	X
16bits	65k		C4	C3	C2	C1	C0	B5	B4	B3	B2	B1	B0	A4	A3	A2	A1	A0
16bits	Pseudo 262k format 1	1st	X	X	X	X	X	X	X	X	X	X	C4	C3	C2	C1	C0	X
		2nd	X	X	B5	B4	B3	B2	B1	B0	X	X	A4	A3	A2	A1	A0	X
16bits	Pseudo 262k format 2	1st	X	X	C14	Cl_{3}	Cl_{2}	C11	C10	X	X	X	B15	B14	B_{13}	B12	B11	B10
		2 nd	X	X	A14	A13	A12	A11	A10	X	X	X	C24	C23	C22	C21	C20	X
		3rd	X	X	B25	B24	B23	B22	B21	B20	X	X	A24	A23	A22	A21	A20	X

6.6 SEG/COM Driving block

This block is used to derive the incoming power sources into the different levels of internal use voltage and current.

- V_{CC} is the most positive voltage supply.
- $\mathrm{V}_{\text {сомн }}$ is the Common deselected level. It is internally regulated.
- $\mathrm{V}_{\text {LSS }}$ is the ground path of the analog and panel current.
- $\mathrm{I}_{\text {REF }}$ is a reference current source for segment current drivers $\mathrm{I}_{\text {SEG. }}$. The relationship between reference current and segment current of a color is:

$$
\mathrm{I}_{\mathrm{SEG}}=\text { Contrast } / 8 \times \mathrm{I}_{\mathrm{REF}}
$$

in which the contrast (1~255) is set by Set Contrast command C1h
When external $\mathrm{I}_{\text {REF }}$ is used, the magnitude of $\mathrm{I}_{\text {REF }}$ is controlled by the value of resistor, which is connected between $\mathrm{I}_{\text {REF }}$ pin and $\mathrm{V}_{\text {SS }}$ as shown in Figure 6-12. It is recommended to set $\mathrm{I}_{\text {REF }}$ to $10 \pm 2 \mathrm{uA}$ so as to achieve $\mathrm{I}_{\text {SEG }}=320 \mathrm{uA}$ at maximum contrast 255.

Figure 6-12 : I ImeF Current Setting by Resistor Value

Since the voltage at $\mathrm{I}_{\text {REF }}$ pin is $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$, the value of resistor R 1 can be found as below:

$$
\text { For } \mathrm{I}_{\mathrm{REF}}=10 \mathrm{uA}, \mathrm{~V}_{\mathrm{CC}}=12 \mathrm{~V}:
$$

$$
\begin{aligned}
\mathrm{R} 1 & =\left(\text { Voltage at } \mathrm{I}_{\mathrm{REF}}-\mathrm{V}_{\mathrm{SS}}\right) / \mathrm{I}_{\mathrm{REF}} \\
& \approx(12-2) / 10 \mathrm{uA} \\
& =1 \mathrm{M} \Omega
\end{aligned}
$$

6.7 SEG / COM Drivers

Segment drivers consist of 384 (128×3 colors) current sources to drive OLED panel. The driving current can be adjusted from 0 to 320 uA with 256 steps by contrast setting command (C1h). Common drivers generate scanning voltage pulse. The block diagrams and waveforms of the segment and common driver are shown as follow.

Figure 6-13 : Segment and Common Driver Block Diagram

The commons are scanned sequentially, row by row. If a row is not selected, all the pixels on the row are in reverse bias by driving those commons to voltage $\mathrm{V}_{\text {сомн }}$ as shown in Figure 6-14.

In the scanned row, the pixels on the row will be turned ON or OFF by sending the corresponding data signal to the segment pins. If the pixel is turned OFF, the segment current is disabled and the Reset switch is enabled. On the other hand, the segment drives to $\mathrm{I}_{\text {SEG }}$ when the pixel is turned ON.

Figure 6-14 : Segment and Common Driver Signal Waveform

There are four phases to driving an OLED a pixel. In phase 1, the pixel is reset by the segment driver to $\mathrm{V}_{\mathrm{Lss}}$ in order to discharge the previous data charge stored in the parasitic capacitance along the segment electrode. The period of phase 1 can be programmed by command B1h A[3:0]. An OLED panel with larger capacitance requires a longer period for discharging.

In phase 2, first pre-charge is performed. The pixel is driven to attain the corresponding voltage level V_{P} from $\mathrm{V}_{\text {LSS. }}$. The amplitude of V_{P} can be programmed by the command BBh. The period of phase 2 can be programmed by command B1h A[7:4]. If the capacitance value of the pixel of OLED panel is larger, a longer period is required to charge up the capacitor to reach the desired voltage.

In phase 3, the OLED pixel is driven to the targeted driving voltage through second pre-charge. The second pre-charge can control the speed of the charging process. The period of phase 3 can be programmed by command B6h.

Last phase (phase 4) is current drive stage. The current source in the segment driver delivers constant current to the pixel. The driver IC employs PWM (Pulse Width Modulation) method to control the gray scale of each pixel individually. The gray scale can be programmed into different Gamma settings by command B8h, BCh, BDh / B9h. The bigger gamma setting in the current drive stage results in brighter pixels and vice versa (Details refer to Section 6.8). This is shown in the following figure.

Figure 6-15 : Gray Scale Control in Segment

After finishing phase 4, the driver IC will go back to phase 1 to display the next row image data. This four-step cycle is run continuously to refresh image display on OLED panel.

The length of phase 4 is defined by command B8h "Master Look Up Table for Gray Scale Pulse width (Color A,B,C)" or B9h "Use Built-in Linear LUT" or Individual Look Up Table for Gray Scale Pulse width (Color A/B/C) BCh, B8h, BDh. In the table, the gray scale is defined in incremental way, with reference to the length of previous table entry.

6.8 Gray Scale Decoder

The gray scale effect is generated by controlling the pulse width of segment drivers in current drive phase.
The gray scale tables store the corresponding pulse widths of the 31 gray scale levels for Color A, C and 63 gray scale levels for Color B through the software commands $\mathrm{B} 8 \mathrm{~h}, \mathrm{~B} 9 \mathrm{~h}, \mathrm{BCh}$ and BDh . The wider the pulse width, the brighter the pixel will be. The maximum pulse width setting is 124 DCLKS. Colors A, B and C are using 3 individual gray scale tables.

As shown in Figure 6-16, color A, C sub-pixel RAM data has 5 bits, represent the 31 gray scale levels from GS1 to GS31. And color B sub-pixel RAM data has 6 bits, represent the 63 gray scale levels from GS1 to GS63.

Figure 6-16 : Relation between GDDRAM content and gray scale table entry for three colors in 65 K color mode

Color A, C			Color B		
RAM data (5 bits)	Gray Scale	Default pulse width of GS[1:31] in terms of DCLK	RAM data (6 bits)	Gray Scale	Default pulse width of GS[1:63] in terms of DCLK
00001	GS1	0	000001	GS1	
00010	GS2	4	000010	GS2	0
00011	GS3	8	000011	GS3	2
00100	GS4	12	000100	GS4	4
$:$			$:$	$:$	6
$:$			$:$	$:$	$:$
11101	GS29	112	111101	GS61	$:$
11110	GS30	116	111110	GS62	120
11111	GS31	120	11111	GS63	124

GS1 has only pre-charge but no current drive stage. The duration of different GS are programmable by command B 8 h for color B, BCh for color A, BDh for color C and the maximum pulse width setting is 124 DCLKs.

When setting the Gray Scale Table (by B8h, BCh, BDh command), the rules below must follow:

1) The 63 gray scale levels are entered after command $B 8 h$ for color B. The 31 gray scale levels are entered after command BCh or BDh for color A, C. Note that command B8h has to be inputted before BCh and BDh command.
2) The gray scale is defined in incremental way, with reference to the length of previous table entry:

Setting of GS1 has to be $>=0$
Setting of GS2 has to be > Setting of GS1
Setting of GS3 has to be > Setting of GS2
Setting of GS63 has to be > Setting of GS62
Figure 6-17 : Illustration of relation between graphic display RAM value and gray scale control

Gray scale table

Gray Scale		Value/DCLK	
A,C	B	A,C	B
GS1	GS1	0	0
GS2	GS2	4	2
GS3	GS3	8	4
$:$	$:$	$:$	$:$
GS29	GS61	112	120
GS30	GS62	116	122
GS31	GS63	120	124

Color A,C RAM data $=00010($ GS2 $)$
Color B RAM data $=000011($ GS3 $)$ pulse width $=4$ DCLKs

6.9 Power ON and OFF sequence

The following figures illustrate the recommended power ON and power OFF sequence of SSD1357.

Power ON sequence:

1. Power ON VDD
2. After V_{DD} become stable, wait at least $20 \mathrm{~ms}\left(\mathrm{t}_{0}\right)$, set RES\# pin LOW (logic low) for at least $3 \mathrm{us}\left(\mathrm{t}_{1}\right)^{(4)}$ and then HIGH (logic high).
3. After set RES\# pin LOW (logic low), wait for at least 3us (t_{2}). Then Power ON $\mathrm{V}_{\mathrm{CC}}{ }^{(1)}$
4. After V_{CC} become stable, send command AFh for display ON. SEG/COM will be ON after 200 ms $\left(\mathrm{t}_{\mathrm{AF}}\right)$.
5. After V_{DD} become stable, wait for at least 300 ms to send command.

Figure 6-18 : The Power ON sequence

Power OFF sequence:

1. Send command AEh for display OFF.
2. Power OFF $\mathrm{V}_{\mathrm{CC}}{ }^{(1),(2)}$
3. Power OFF V_{DD} after $\mathrm{t}_{\mathrm{OFF}}{ }^{(4)}$ (where Minimum $\mathrm{t}_{\mathrm{OFF}}=0 \mathrm{~ms}$, typical $\mathrm{t}_{\mathrm{OFF}}=100 \mathrm{~ms}$)

Figure 6-19 : The Power OFF sequence

Note:

${ }^{(1)} \mathrm{V}_{\mathrm{CC}}$ should be kept float (i.e. disable) when it is OFF.
${ }^{(2)}$ Power Pins ($\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{CC}}$) can never be pulled to ground under any circumstance.
${ }^{(3)}$ The register values are reset after t_{1}.
${ }^{(4)} \mathrm{V}_{\mathrm{DD}}$ should not be Power OFF before V_{CC} Power OFF.

7 MAXIMUM RATINGS

Table 7-1 : Maximum Ratings
(Voltage Reference to V_{SS})

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to 19.0	V
		-0.3 to 4.0	V
$\mathrm{~V}_{\mathrm{SEG}}$	SEG output voltage	0 to V_{CC}	V
$\mathrm{V}_{\mathrm{COM}}$	COM output voltage	0 to $0.9^{*} \mathrm{~V}_{\mathrm{CC}}$	V
V_{in}	Input voltage	$\mathrm{Vss}-0.3$ to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

*Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description.
*This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

8 DC CHARACTERISTICS

Conditions (Unless otherwise specified):
Voltage referenced to V_{SS}
$\mathrm{V}_{\mathrm{DD}}=1.65$ to 3.5 V
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Table 8-1 : DC Characteristics

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Unit
V_{CC}	Operating Voltage	-	8	-	18	V
VDD	Low voltage power supply, power Supply for I/O pins	-	1.65	-	3.5	V
VOH	High Logic Output Level	Iout $=100 \mathrm{uA}$	$0.9 * V_{\text {DD }}$	-	V ${ }_{\text {dD }}$	V
VoL	Low Logic Output Level	Iout $=100 \mathrm{uA}$	0	-	$0.1 * V_{\text {DD }}$	V
$\mathrm{V}_{\text {IH }}$	High Logic Input Level	-	$0.8 * \mathrm{~V}_{\mathrm{DD}}$	-	V_{DD}	V
$\mathrm{V}_{\text {IL }}$	Low Logic Input Level	- ${ }^{-}$	0	-	$0.2 * \mathrm{~V}_{\mathrm{DD}}$	V
IsLP_VDD	Vdd Sleep mode Current	$\mathrm{V}_{\mathrm{DD}}=2.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=16 \mathrm{~V}$ Display OFF, No panel attached	-	-	10	uA
ISLP_VCC	$\mathrm{V}_{\text {CC }}$ Sleep mode Current	$\mathrm{V}_{\mathrm{DD}}=2.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=16 \mathrm{~V}$, Display OFF, No panel attached	-	-	10	uA
IDD	VDd Supply Current	$\mathrm{V}_{\mathrm{DD}}=2.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=16 \mathrm{~V}$, Display ON, No panel attached, contrast $=\mathrm{FFh}$	-	720	800	uA
I_{CC}	VCC Supply Current	$\mathrm{V}_{\mathrm{DD}}=2.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=16 \mathrm{~V}$, Display ON, No panel attached, contrast $=\mathrm{FFh}$	-	2.1	2.4	mA
ISEG	Segment Output Current Setting$\mathrm{V}_{\mathrm{CC}}=18 \mathrm{~V}, \mathrm{I}_{\mathrm{REF}}=10 \mathrm{uA}$	Contrast = FF	-	320	-	uA
		Contrast $=$ BF	-	240	-	uA
		Contrast $=7 \mathrm{~F}$	-	160	-	uA
Dev	Segment output current uniformity	$\begin{array}{\|l} \hline \text { Dev }=\left(\mathrm{ISEG}_{\text {SE }}-\mathrm{IMID}\right) / \mathrm{I}_{\text {MID }} \\ \mathrm{I}_{\text {MID }}=\left(\mathrm{I}_{\text {MAX }}+\mathrm{I}_{\mathrm{MIN}}\right) / 2 \\ \mathrm{I}_{\text {SEG }}=\text { Segment current at contrast FF } \end{array}$	-3	-	3	\%
Adj. Dev	Adjacent pin output current uniformity $($ contrast setting $=\mathrm{FFh})$	Adj Dev = $(\mathrm{I}[\mathrm{n}]-\mathrm{I}[\mathrm{n}+1]) /(\mathrm{I}[\mathrm{n}]+\mathrm{I}[\mathrm{n}+1])$	-2	-	2	\%

9 AC CHARACTERISTICS

Conditions (Unless otherwise specified):

Voltage referenced to V_{SS}
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Table 9-1 : AC Characteristics

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
Fosc $^{(1)}$	Oscillation Frequency of Display Timing Generator	$\mathrm{V}_{\mathrm{DD}}=2.8 \mathrm{~V}$	2.1	2.3	2.5	MHz
FFRM	Frame Frequency for 128 MUX Mode	128x128 Graphic Display Mode, Display ON, Internal Oscillator Enabled	-	Fosc * $1 /\left(\mathrm{D}^{*} \mathrm{~K}^{*} 128\right)$ (2)	-	Hz
$\mathrm{t}_{\text {RES }}$	Reset low pulse width (RES\#)	-	3	-	-	us

Note

${ }^{(1)}$ Fosc stands for the frequency value of the internal oscillator and the value is measured when command B3h $\mathrm{A}[7: 4]$ is in default value, and B3h $\mathrm{A}[3: 0]$ is in [0001].
${ }^{(2)} \mathrm{D}$: divide ratio set by command $\mathrm{B} 3 \mathrm{~h} \mathrm{~A}[3: 0]$
K: Phase 1 period + Phase 2 period $+X$
X : DCLKs in current drive period

Table 9-2 : 6800-Series MCU Parallel Interface Timing Characteristics
$\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=1.65 \mathrm{~V}\right.$ to $3.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Min	Typ	Max	Unit
t $_{\text {CYCLE }}$	Clock Cycle Time (write)	300	-	-	ns
t_{AS}	Address Setup Time	24	-	-	ns
t_{AH}	Address Hold Time	0	-	-	ns
$\mathrm{t}_{\mathrm{DSW}}$	Write Data Setup Time	40	-	-	ns
$\mathrm{t}_{\mathrm{DHW}}$	Write Data Hold Time	7	-	-	ns
$\mathrm{t}_{\mathrm{DHR}}$	Read Data Hold Time	20	-	-	ns
t_{OH}	Output Disable Time	-	-	70	ns
$\mathrm{t}_{\mathrm{ACC}}$	Access Time	-	-	140	ns
$\mathrm{PW}_{\mathrm{CSL}}$	Chip Select Low Pulse Width (read) Chip Select Low Pulse Width (write)				
$\mathrm{PW}_{\mathrm{CSH}}$	Chip Select High Pulse Width (read) Chip Select High Pulse Width (write)	60	-	-	ns
t_{R}	Rise Time	60			
60	-	-	ns		
t_{F}	Fall Time	-	-	15	ns

Figure 9-1: 6800 series MCU parallel interface characteristics

Note
${ }^{(1)}$ when 8 bit used: D[7:0] instead; when 16 bit used: D[15:0] instead.

Table 9-3 : 8080-Series MCU Parallel Interface Timing Characteristics
$\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=1.65 \mathrm{~V}\right.$ to $\left.3.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{t}_{\text {CYCLE }}$	Clock Cycle Time (write)	300	-	-	ns
t_{AS}	Address Setup Time	10	-	-	ns
t_{AH}	Address Hold Time	0	-	-	ns
tosw	Write Data Setup Time	40	-	-	ns
t ${ }_{\text {DHW }}$	Write Data Hold Time	7	-	-	ns
ther	Read Data Hold Time	20	-	-	ns
toh	Output Disable Time	-	-	46	ns
$\mathrm{t}_{\mathrm{ACC}}$	Access Time	-	-	140	ns
tPWLR	Read Low Time	150	-	-	ns
tPWLW	Write Low Time	60	-	-	ns
tPWHR	Read High Time	60	-	-	ns
tPWHW	Write High Time	60	-	-	ns
tR	Rise Time	-	-	15	ns
t_{F}	Fall Time	-	-	15	ns
tcs	Chip select setup time	0	-	-	ns
tCSH	Chip select hold time to read signal	0	-	-	ns
$\mathrm{t}_{\text {CSF }}$	Chip select hold time	20	-	-	ns

Figure 9-2 : 8080-series MCU parallel interface characteristics

Note
${ }^{(1)}$ when 8 bit used: D[7:0] instead; when 16 bit used: [15:0] instead.

Table 9-4 : Serial Interface Timing Characteristics (4-wire SPI)
$\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=1.65 \mathrm{~V}\right.$ to $\left.3.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{t}_{\text {cycle }}$	Clock Cycle Time	100	-	-	ns
t_{AS}	Address Setup Time	15	-	-	ns
t_{AH}	Address Hold Time	42	-	-	ns
$\mathrm{t}_{\mathrm{CSS}}$	Chip Select Setup Time	20	-	-	ns
$\mathrm{t}_{\text {CSH }}$	Chip Select Hold Time	10	-	-	ns
$\mathrm{t}_{\mathrm{DSW}}$	Write Data Setup Time	15	-	-	ns
$\mathrm{t}_{\text {DHW }}$	Write Data Hold Time	20	-	-	ns
$\mathrm{t}_{\mathrm{CLLL}}$	Clock Low Time	20	-	-	ns
$\mathrm{t}_{\text {CLKH }}$	Clock High Time	20	-	-	ns
t_{R}	Rise Time	-	-	15	ns
t_{F}	Fall Time	-	-	15	ns

Figure 9-3 : Serial interface characteristics (4-wire SPI)

Table 9-5 : Serial Interface Timing Characteristics (3-wire SPI)
$\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=1.65 \mathrm{~V}\right.$ to $\left.3.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Min	Typ	Max	Uni \mathbf{t}
$\mathrm{t}_{\text {cycle }}$	Clock Cycle Time	100	-	-	ns
$\mathrm{t}_{\mathrm{CSS}}$	Chip Select Setup Time	20	-	-	ns
$\mathrm{t}_{\mathrm{CSH}}$	Chip Select Hold Time	44	-	-	ns
$\mathrm{t}_{\mathrm{DSW}}$	Write Data Setup Time	15	-	-	ns
$\mathrm{t}_{\mathrm{DHW}}$	Write Data Hold Time	20	-	-	ns
$\mathrm{t}_{\mathrm{CLKL}}$	Clock Low Time	20	-	-	ns
$\mathrm{t}_{\mathrm{CLKH}}$	Clock High Time	20	-	-	ns
t_{R}	Rise Time	-	-	15	ns
t_{F}	Fall Time	-	-	15	ns

Figure 9-4 : Serial interface characteristics (3-wire SPI)

Table 9-6 : I $^{2} \mathrm{C}$ Interface Timing Characteristics
$\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=1.65 \mathrm{~V}\right.$ to $\left.3.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{t}_{\text {cycle }}$	Clock Cycle Time	2.5	-	-	us
$\mathrm{t}_{\text {HSTART }}$	Start condition Hold Time	0.6	-	-	us
t_{HD}	Data Hold Time (for "SDAout" pin)	0	-	-	ns
	Data Hold Time (for "SDAIN" pin)	300	-	-	ns
$\mathrm{t}_{\text {SD }}$	Data Setup Time	100	-	-	ns
$\mathrm{t}_{\text {SSTART }}$	Start condition Setup Time (Only relevant for a repeated Start condition)	0.6	-	-	us
$\mathrm{t}_{\text {SSTOP }}$	Stop condition Setup Time	0.6	-	-	us
t_{R}	Rise Time for data and clock pin	-	-	300	ns
t_{F}	Fall Time for data and clock pin	-	-	300	ns
$\mathrm{t}_{\text {IDLE }}$	Idle Time before a new transmission can start	1.3	-	-	us

Figure 9-5 : $I^{2} \mathrm{C}$ interface Timing characteristics

10 APPLICATION EXAMPLE

Figure 10-1 : SSD1357Z application example for 16-bit 8080-parallel interface mode
The configuration for 16-bit 8080-parallel interface mode is shown in the following diagram: $\left(\mathrm{V}_{\mathrm{DD}}=2.8 \mathrm{~V}\right.$, external $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{I}_{\text {REF }}=10 \mathrm{uA}$

SSD1357Z

Voltage at $I_{\text {ref }}=V_{C C}-2 V$. For $V_{C C}=12 V$, Iref $=10 u A$:
R1 $=\left(\right.$ Voltage at $\left.I_{\text {ref }}-V_{s s}\right) / I_{\text {ref }}$
$=(12-2) / 10 u$
$=1 \mathrm{M} \Omega$
$\mathrm{R} 2=50 \Omega, 1 / 8 \mathrm{~W}^{(1)}$
D1 ~ D2: $\mathrm{V}_{\mathrm{th}}=0.7 \mathrm{~V}, 1 \mathrm{~N} 4148{ }^{(1)}$
C2: $1 \mathrm{uF}, \mathrm{C} 1, \mathrm{C} 3 \mathrm{a}: 4.7 \mathrm{uF}, \mathrm{C} 3 \mathrm{~b}: 0.1 \mathrm{uF}^{(1)}$

Note

${ }^{(1)}$ The values are recommended value. Select appropriate value against module application.
${ }^{(2)}$ It is recommended to tie $V_{\text {LSS }}$ and $V_{S S}$ at one common ground point to minimize circulating ground noise.

Solomon Systech reserves the right to make changes without notice to any products herein．Solomon Systech makes no warranty，representation or guarantee regarding the suitability of its products for any particular purpose，nor does Solomon Systech assume any liability arising out of the application or use of any product or circuit，and specifically disclaims any，and all，liability，including without limitation consequential or incidental damages．＂Typical＂parameters can and do vary in different applications．All operating parameters，including＂Typical＂must be validated for each customer application by the customer＇s technical experts．Solomon Systech does not convey any license under its patent rights nor the rights of others． Solomon Systech products are not designed，intended，or authorized for use as components in systems intended for surgical implant into the body，or other applications intended to support or sustain life，or for any other application in which the failure of the Solomon Systech product could create a situation where personal injury or death may occur．Should Buyer purchase or use Solomon Systech products for any such unintended or unauthorized application，Buyer shall indemnify and hold Solomon Systech and its offices，employees，subsidiaries，affiliates，and distributors harmless against all claims，costs，damages，and expenses，and reasonable attorney fees arising out of，directly or indirectly，any claim of personal injury or death associated with such unintended or unauthorized use，even if such claim alleges that Solomon Systech was negligent regarding the design or manufacture of the part．

The product（s）listed in this datasheet comply with Directive 2011／65／EU of the European Parliament and of the council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment and People＇s Republic of China Electronic Industry Standard GB／T 26572－2011＂Requirements for concentration limits for certain hazardous substances in electronic information products（电子电器产品中限用物質的限用要求）＂．Hazardous Substances test report is available upon request．

Appendix III: SSD1357 Command Table and Command Description

1 COMMAND TABLE

Table 1-1: SSD1357 Command Table
$(D / C \#=0, R / W \#(W R \#)=0, E(R D \#)=1)$ unless specific setting is stated
Single byte command (D/C\# = 0), Multiple byte command (D/C\# = 0 for first byte, $\mathrm{D} / \mathrm{C} \#=1$ for other bytes)

Fundamental Command Table											
D/C\#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
$\begin{aligned} & \hline 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \hline 15 \\ \mathrm{~A}[6: 0] \\ \mathrm{B}[6: 0] \end{gathered}$	$\begin{aligned} & 0 \\ & * \\ & * \end{aligned}$	$\begin{gathered} \hline 0 \\ \mathrm{~A}_{6} \\ \mathrm{~B}_{6} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~A}_{5} \\ \mathrm{~B}_{5} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~A}_{4} \\ \mathrm{~B}_{4} \end{gathered}$	$\begin{gathered} \hline 0 \\ \mathrm{~A}_{3} \\ \mathrm{~B}_{3} \end{gathered}$	$\begin{gathered} \hline 1 \\ \mathrm{~A}_{2} \\ \mathrm{~B}_{2} \end{gathered}$	$\left\lvert\, \begin{gathered} 0 \\ \mathrm{~A}_{1} \\ \mathrm{~B}_{1} \end{gathered}\right.$	$\begin{gathered} \hline 1 \\ \mathrm{~A}_{0} \\ \mathrm{~B}_{0} \end{gathered}$	Set Column Address	A[6:0]: Start Address. [reset=0] B[6:0]: End Address. [reset=127] Range from 0 to 127
$\begin{aligned} & \hline 0 \\ & 1 \end{aligned}$	$\begin{gathered} \hline 75 \\ \mathrm{~A}[6: 0] \\ \mathrm{B}[6: 0] \end{gathered}$	$\begin{aligned} & \hline 0 \\ & * \\ & * \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{~A}_{6} \\ \mathrm{~B}_{6} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~A}_{5} \\ \mathrm{~B}_{5} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~A}_{4} \\ \mathrm{~B}_{4} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~A}_{3} \\ \mathrm{~B}_{3} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~A}_{2} \\ \mathrm{~B}_{2} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~A}_{1} \\ \mathrm{~B}_{1} \end{gathered}$	$\begin{gathered} \hline 1 \\ \mathrm{~A}_{0} \\ \mathrm{~B}_{0} \end{gathered}$	Set Row Address	A[6:0]: Start Address. [reset=0] B[6:0]: End Address. [reset=127] Range from 0 to 127
0	5C	0	1	0	1	1	1	0	0	Write RAM Command	Enable MCU to write Data into RAM
0	5D	0	1	0	1	1	1	0	1	Read RAM Command	Enable MCU to read Data from RAM
$\begin{aligned} & \hline 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{array}{\|c\|} \mathrm{A} 0 \\ \mathrm{~A}[7: 0] \\ \mathrm{B}[7: 0] \end{array}$	$\begin{gathered} 1 \\ \mathrm{~A}_{7} \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ \hline \mathrm{~A}_{6} \\ 0 \end{gathered}$	$\begin{gathered} \hline 1 \\ \mathrm{~A}_{5} \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~A}_{4} \\ 0 \end{gathered}$	$\begin{array}{\|c\|} \hline 0 \\ \mathrm{~A}_{3} \\ 0 \end{array}$	$\begin{gathered} 0 \\ \mathrm{~A}_{2} \\ 0 \end{gathered}$	$\begin{array}{\|c\|} \hline 0 \\ \mathrm{~A}_{1} \\ 0 \end{array}$	$\begin{gathered} \hline 0 \\ \mathrm{~A}_{0} \\ 0 \end{gathered}$	Set Re-map / Color Depth (Display RAM to Panel)	A[0]=0b, Horizontal address increment [reset] $A[0]=1 b$, Vertical address increment $\mathrm{A}[1]=0 \mathrm{~b}$, Column address 0 is mapped to SEG0 [reset] $\mathrm{A}[1]=1 \mathrm{~b}$, Column address 127 is mapped to SEG0 A[2]=0b, Color sequence: A \rightarrow B \rightarrow C [reset] $\mathrm{A}[2]=1 \mathrm{~b}$, Color sequence is swapped: $\mathrm{C} \rightarrow \mathrm{B} \rightarrow \mathrm{A}$ A[3]=0b, Reserved [reset] A[3]=1b, Reserved A[4]=0b, Scan from COM0 to COM[N -1] [reset] $A[4]=1 b$, Scan from COM[N-1] to COM0. Where N is the Multiplex ratio. A[5]=0b, Disable COM Split Odd Even A[5]=1b, Enable COM Split Odd Even [reset] A[7:6] Set Color Depth, 00b: 256color 01b: 65k color [reset] 10b: 262k color 11b Pseudo 262k color, 16-bit format 2 Refer to SSD1357 datasheet Table 6-6 for details

Fundamental Command Table

D/C\#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{array}{c\|} \hline \mathrm{A} 1 \\ \mathrm{~A}[6: 0] \end{array}$	$\begin{aligned} & 1 \\ & * \end{aligned}$	$\begin{gathered} 0 \\ \mathrm{~A}_{6} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~A}_{5} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~A}_{4} \end{gathered}$	$\begin{array}{\|c\|} \hline 0 \\ \mathrm{~A}_{3} \end{array}$	$\begin{gathered} 0 \\ \mathrm{~A}_{2} \end{gathered}$	$\begin{array}{\|c} \hline 0 \\ \mathrm{~A}_{1} \end{array}$	$\begin{gathered} 1 \\ \mathrm{~A}_{0} \end{gathered}$	Set Display Start Line	Set vertical scroll by RAM from 0~127. [reset=00h]
$\begin{aligned} & \hline 0 \\ & 1 \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{A} 2 \\ \mathrm{~A}[6: 0] \end{array}$	1	$\begin{gathered} 0 \\ \mathrm{~A}_{6} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~A}_{5} \end{gathered}$	$\begin{gathered} \hline 0 \\ \mathrm{~A}_{4} \end{gathered}$	$\begin{gathered} \hline 0 \\ \mathrm{~A}_{3} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~A}_{2} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~A}_{1} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~A}_{0} \end{gathered}$	Set Display Offset	Set vertical scroll by Row from 0-127. [reset=00h]
0	A4~A7	1	0	1	0	0	1	X_{1}	X_{0}	Set Display Mode	A4h: All OFF A5h: All ON (All pixels have GS63) A6h : Reset to normal display [reset] A7h: Inverse Display (GS0 -> GS63, GS1 -> GS62,)
0	AE~AF	1	0	1	0	1	1	1	X_{0}	Set Sleep mode ON/OFF	$\begin{aligned} & \text { AEh }=\text { Sleep mode On (Display OFF) } \\ & \text { AFh = Sleep mode OFF (Display ON) } \end{aligned}$
$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{array}{\|c\|} \mathrm{B} 1 \\ \mathrm{~A}[7: 0] \end{array}$	$\begin{gathered} 1 \\ \mathrm{~A}_{7} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~A}_{6} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~A}_{5} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~A}_{4} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~A}_{3} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~A}_{2} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~A}_{1} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~A}_{0} \end{gathered}$	Set Reset (Phase 1) / Pre-charge (Phase 2) period	```A[3:0] Phase 1 period of 2~30 DCLK(s) clocks [reset=0100b] A[3:0]: 0 invalid \(1=2\) DCLKs \(2=4\) DCLKs \(15=30\) DCLKs A[7:4] Phase 2 period of 2~30 DCLK(s) clocks [reset=1000b] A[7:4]: 0 invalid \(1=2\) DCLKs \(2=4\) DCLKs \(15=30 \mathrm{DCLKs}\)``` Note ${ }^{(1)} 0$ DCLK is invalid in phase $1 \&$ phase 2

Fundamental Command Table

Fundamental Command Table

Fundamental Command Table

Fundamental Command Table											
D/C\#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{gathered} \hline \mathrm{FD} \\ \mathrm{~A}[7: 0] \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~A}_{7} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~A}_{6} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~A}_{5} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~A}_{4} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~A}_{3} \end{gathered}$	1 $\mathrm{~A}_{2}$	$\begin{gathered} 0 \\ \mathrm{~A}_{1} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~A}_{0} \end{gathered}$	Set Command Lock	A[7:0]: MCU protection status [reset $=12 \mathrm{~h}$] $\mathrm{A}[7: 0]=12 \mathrm{~h}$, Unlock OLED driver IC MCU interface from entering command [reset] $A[7: 0]=16 \mathrm{~h}$, Lock OLED driver IC MCU interface from entering command Note ${ }^{(1)}$ The locked OLED driver IC MCU interface prohibits all commands and memory access except the FDh command.

Note

${ }^{(1)}$ "*" stands for "Don't care".

Table 1-2: SSD1357 Graphic Acceleration Command List

Set $(G A C)(D / C \#=0, R / W \#(W R \#)=0, E(R D \#)=1)$ unless specific setting is stated
Single byte command ($\mathrm{D} / \mathrm{C} \#=0$), Multiple byte command (D/C\# = 0 for first byte, $\mathrm{D} / \mathrm{C} \#=1$ for other bytes)

Graphic acceleration command											
D/C\#	Hex	D7	D6	D5	D4	D3	D2	D2	D0	Command	Description
$\begin{aligned} & \hline 0 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{array}{\|c\|} \hline 96 \\ \mathrm{~A}[7: 0] \\ \mathrm{B}[6: 0] \\ \mathrm{C}[7: 0] \\ \mathrm{D}[6: 0] \\ \mathrm{E}[1: 0] \end{array}$	$\begin{gathered} 1 \\ \mathrm{~A}_{7} \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~A}_{6} \\ \mathrm{~B}_{6} \\ \mathrm{C}_{6} \\ \mathrm{D}_{6} \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~A}_{5} \\ \mathrm{~B}_{5} \\ \mathrm{C}_{5} \\ \mathrm{D}_{5} \\ 0 \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~A}_{4} \\ \mathrm{~B}_{4} \\ \mathrm{C}_{4} \\ \mathrm{D}_{4} \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~A}_{3} \\ \mathrm{~B}_{3} \\ \mathrm{C}_{3} \\ \mathrm{D}_{3} \\ 0 \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~A}_{2} \\ \mathrm{~B}_{2} \\ \mathrm{C}_{2} \\ \mathrm{D}_{2} \\ 0 \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~A}_{1} \\ \mathrm{~B}_{1} \\ \mathrm{C}_{1} \\ \mathrm{D}_{1} \\ \mathrm{E}_{1} \end{gathered}$	0 A_{0} B_{0} C_{0} D_{0} E_{0}	Horizontal Scroll	
0	9E	1	0	0	1	1	1	1	0	Stop Moving	Stop horizontal scroll Note After sending 9Eh command to stop the scrolling action, the ram data needs to be rewritten
0	9F	1	0	0	1	1	1	1	1	Start Moving	Start horizontal scroll

Note

(2) "*" stands for "Don't care".

2 COMMAND DESCRIPTION

2.1 Set Column Address (15h)

This triple byte command specifies column start address and end address of the display data RAM. This command also sets the column address pointer to column start address. This pointer is used to define the current read/write column address in graphic display data RAM. If horizontal address increment mode is enabled by command A0h, after finishing read/write one column data, it is incremented automatically to the next column address. Whenever the column address pointer finishes accessing the end column address, it is reset back to start column address and the row address is incremented to the next row.

2.2 Set Row Address (75h)

This triple byte command specifies row start address and end address of the display data RAM. This command also sets the row address pointer to row start address. This pointer is used to define the current read/write row address in graphic display data RAM. If vertical address increment mode is enabled by command A0h, after finishing read/write one row data, it is incremented automatically to the next row address. Whenever the row address pointer finishes accessing the end row address, it is reset back to start row address.

For example, column start address is set to 2 and column end address is set to 125 , row start address is set to 1 and row end address is set to 126 . Horizontal address increment mode is enabled by command A0h. In this case, the graphic display data RAM column accessible range is from column 2 to column 125 and from row 1 to row 126 only. In addition, the column address pointer is set to 2 and row address pointer is set to 1 . After finishing read/write one pixel of data, the column address is increased automatically by 1 to access the next RAM location for next read/write operation(solid line in Figure 2-1). Whenever the column address pointer finishes accessing the end column 125, it is reset back to column 2 and row address is automatically increased by 1 (solid line in Figure 2-1). While the end row 126 and end column 125 RAM location is accessed, the row address is reset back to 1 and the column address is reset back to 2(dotted line in Figure 2-1)

Figure 2-1 : Example of Column and Row Address Pointer Movement

	Col 0	Col 1	Col 2	Col125	Col126	Col127
Row 0								
Row 1			ィ			\longrightarrow		
Row 2						\longrightarrow		
$:$ $:$ $:$						-		
Row 125			14	3		\longrightarrow		
Row 126						\rightarrow		
Row 127			1			'		
1								

2.3 Write RAM Command (5Ch)

After entering this single byte command, data entries will be written into the display RAM until another command is written. Address pointer is increased accordingly. This command must be sent before write data into RAM.

2.4 Read RAM Command (5Dh)

After entering this single byte command, data is read from display RAM until another command is written. Address pointer is increased accordingly. This command must be sent before read data from RAM.

2.5 Set Re-map \& Color Depth (A0h)

This command has multiple configurations and each bit setting is described as follows:

- Address increment mode (A[0])

When $\mathrm{A}[0]$ is set to 0 , the driver is set as horizontal address increment mode. After the display RAM is read / written, the column address pointer is increased automatically by 1 . If the column address pointer reaches column end address, the column address pointer is reset to column start address and row address pointer is increased by 1 . The sequence of movement of the row and column address point for horizontal address increment mode is shown in Figure 2-2.

Figure 2-2 : Address Pointer Movement of Horizontal Address Increment Mode

	Col 0	Col 1	\ldots	Col 126	Col 127
Row 0					\rightarrow
Row 1	4				\rightarrow
:	4	:	:	.	-
Row 126	<				\rightarrow
Row 127	4				\rightarrow

When $\mathrm{A}[0]$ is set to 1 , the driver is set to vertical address increment mode. After the display RAM is read / written, the row address pointer is increased automatically by 1 . If the row address pointer reaches the row end address, the row address pointer is reset to row start address and column address pointer is increased by 1 . The sequence of movement of the row and column address point for vertical address increment mode is shown in Figure 2-3.

Figure 2-3: Address Pointer Movement of Vertical Address Increment Mode

	Col 0	Col 1	$\ldots \ldots$	Col 126	Col 127
Row 0					\ldots
Row 1					$\ldots .$.
$:$					$:$

- Column Address Remap (A[1])

This command bit is made for increasing the layout flexibility of segment signals in OLED module with segment arranged from left to right (when $\mathrm{A}[1]$ is set to 0) or vice versa (when $\mathrm{A}[1]$ is set to 1), as demonstrated in Figure 2-4.
$\mathrm{A}[1]=0$ (reset): RAM Column $0 \sim 127$ maps to Col0~Col127
$\mathrm{A}[1]=1:$ RAM Column $0 \sim 127$ maps to $\mathrm{Col127} \sim \mathrm{Col} 0$

- Color Remap (A[2])
$\mathrm{A}[2]=0$ (reset): color sequence $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C}$
$\mathrm{A}[2]=1$: color sequence $\mathrm{C} \rightarrow \mathrm{B} \rightarrow \mathrm{A}$
- COM scan direction Remap (A[4])

This command bit determines the scanning direction of the common for flexible layout of common signals in OLED module either from up to down or vice versa.
A[1] = 0 (reset): Scan from up to down
$\mathrm{A}[1]=1$: Scan from bottom to up
Details of pin arrangement can be found in Figure 2-4.

- Odd even split of COM pins (A[5])

This command bit can set the odd even arrangement of COM pins.
$\mathrm{A}[5]=0$ (reset): Disable COM split odd even, pin assignment of common is in sequential as COM127 COM126...COM 65 COM64...SEG479...SEG0...COM0 COM1...COM62 COM63
$\mathrm{A}[5]=1$: Enable COM split odd even, pin assignment of common is in odd even split as COM127 COM125...COM3 COM1...SEG479...SEG0...COM0 COM2...COM124 COM126
Details of pin arrangement can be found in Figure 2-4.

Figure 2-4 : COM Pins Hardware Configuration (MUX ratio: 128)

- Display color mode (A[7:6])

Select either $262 \mathrm{k}, 65 \mathrm{k}$ or 256 color mode.

2.6 Set Display Start Line (A1h)

This command is used to set Display Start Line register to determine starting address of display RAM to be displayed by selecting a value from 0 to 127 . Figure $2-5$ shows an example of using this command when MUX ratio $=128$ and MUX ratio $=100$ and Display Start Line $=28$. In there, "Row" means the graphic display data RAM row.

Figure 2-5 : Example of Set Display Start Line with no Remap

	128	128	100	100	MUX ratio (CAh)
COM Pin	0	28	0	28	Display start line (A1h)
COM0	Row0	Row28	Row0	Row28	
COM1	Row1	Row29	Row1	Row29	
COM2	Row2	Row30	Row2	Row30	
COM3	Row3	Row31	Row3	Row31	
COM4	Row4	Row32	Row4	Row32	
COM5	Row5	Row33	Row5	Row33	
COM6	Row6	Row34	Row6	Row34	
-	:	:	:	:	
:	:	:	:	:	
:	:	:	:	:	
-	:	:	:	:	
COM95	Row95	Row123	Row95	Row124	
COM96	Row96	Row124	Row96	Row125	
COM97	Row97	Row125	Row97	Row126	
COM98	Row98	Row126	Row98	Row127	
COM99	Row99	Row127	Row99	Row0	
COM100	Row100	Row0	-	-	
COM101	Row101	Row1	-	-	
COM102	Row102	Row2	-	-	
COM103	Row103	Row3	-	-	
COM104	Row104	Row4	-	-	
COM105	Row105	Row5	-	-	
COM106	Row106	Row6	-	-	
COM107	Row107	Row7	-	-	
COM108	Row108	Row8	-	-	
COM109	Row109	Row9	-	-	
COM110	Row110	Row10	-	-	
COM111	Row111	Row11	-	-	
COM112	Row112	Row12	-	-	
COM113	Row113	Row13	-	-	
COM114	Row114	Row14	-	-	
COM115	Row115	Row15	-	-	
COM116	Row116	Row16	-	-	
COM117	Row117	Row17	-	-	
COM118	Row118	Row18	-	-	
COM119	Row119	Row19	-	-	
COM120	Row120	Row20	-	-	
COM121	Row121	Row21	-	-	
COM122	Row122	Row22	-	-	
COM123	Row123	Row23	-	-	
COM124	Row124	Row24	-	-	
COM125	Row125	Row25	-	-	
COM126	Row126	Row26	-	-	
COM127	Row127	Row27	-	-	
Display example	SOLOMON SYSTECH (a)	(b)	(c)	SOLOMON SYSTECH (d)	SOLOMON SYSTECH (GDDARAM)

2.7 Set Display Offset (A2h)

This command specifies the mapping of display start line (it is assumed that COM0 is the display start line, display start line register equals to 0) to one of COM0-127. For example, to move the COM16 towards the COM0 direction for 16 lines, $\mathrm{A}[7: 0]$ should be given by 00010000 . The figure below shows an example of this command. In there, "Row" means the graphic display data RAM row.

Figure 2-6 : Example of Set Display Offset with no Remap

	a	b	c	Case
	128	96	96	MUX ratio (CAh)
	0	0	32	Display offset (A2h A[7:0])
COM0	Row0	Row0	Row32	
COM1	Row1	Row1	Row33	
COM2	Row2	Row2	Row34	
COM61	Row61	Row61	Row93	
COM62	Row62	Row62	Row94	
COM63	Row63	Row63	Row95	
COM64	Row64	Row64	-	
COM65	Row65	Row65	-	
COM66	Row66	Row66	-	
:	\square	:	:	
COM93	Row93	Row93	-	
COM94	Row94	Row94	-	
COM95	Row95	Row95	-	
COM96	Row96	-	Row0	
COM97	Row97	-	Row1	
COM98	Row98	-	Row2	
		:		
COM125	Row125	-	Row29	
COM126	Row126	-	Row30	
COM127	Row127	-	Row31	
Display example		(c)	(d)	

2.8 Set Display Mode (A4h~A7h)

These are single byte command and they are used to set Normal Display, Entire Display ON, Entire Display OFF and Inverse Display.

- All OFF (A4h)

Force the entire display to be at gray scale level "GS0" regardless of the contents of the display data RAM as shown in Figure 2-7.

Figure 2-7 : Example of Entire Display OFF

| 2 | |
| :--- | :--- | :--- |
| SOLOMON
 SYSTECH | |
| GDDRAM | Display |

- Set Entire Display ON (A5h)

Force the entire display to be at gray scale "GS63" regardless of the contents of the display data RAM as shown in Figure 2-8.

Figure 2-8 : Example of Entire Display ON

- Set Entire Display OFF (A6h)

Reset the above effect and turn the data to ON at the corresponding gray level. Figure 2-9 shows an example of Normal Display.

Figure 2-9 : Example of Normal Display

| SOLOMON
 SYSTEGH SOLOMON
 SYSTECH
 GDDRAM Display${ }^{2}$ | |
| :---: | :---: | :---: |

- Inverse Display (A7h)

The gray level of display data are swapped such that "GS0" \leftrightarrow "GS63", "GS1" \leftrightarrow "GS62", \ldots Figure 2-10 shows an example of inverse display.

Figure 2-10 : Example of Inverse Display

SOLOMON SYSTEGH	SOLOMON SYSTECH	
GDDRAM	Display	

2.9 Set Sleep mode ON/OFF (AEh / AFh)

These single byte commands are used to turn the OLED panel display ON or OFF.
When the display is OFF (command AEh), the segment is in $\mathrm{V}_{\text {SS }}$ state and common is in high impedance state.

2.10 Set Phase Length (B1h)

This double byte command sets the length of phase 1 and 2 of segment waveform of the driver.

- Phase 1 (A[3:0]): Set the period from 2 to 30 in the unit of 2 DCLKs. A larger capacitance of the OLED pixel may require longer period to discharge the previous data charge completely.
- Phase $2(\mathrm{~A}[7: 4])$: Set the period from 2 to 30 in the unit of 2DCLKs. A longer period is needed to charge up a larger capacitance of the OLED pixel to the target voltage V_{P}.

2.11 Set Front Clock Divider / Oscillator Frequency (B3h)

This double byte command consists of two functions:

- Front Clock Divide Ratio (A[3:0])

Set the divide ratio to generate DCLK (Display Clock) from CLK. The divide ratio is from 1 to 8 , with reset value $=0$. Please refer to SSD1357 datasheet Section 6.3 for the detail relationship of DCLK and CLK.

- Oscillator Frequency (A[7:4])

Program the oscillator frequency Fosc which is the source of CLK if CLS pin is pulled HIGH. The 4bit value results in 16 different frequency settings being available.

2.12 Set Second Pre-charge period (B6h)

This double byte command is used to set the phase 3 second pre-charge period. The period of phase 3 can be programmed by command B6h and it is ranged from 1 to 15 DCLK's.

2.13 Look Up Table for Gray Scale Pulse width (B8h, BCh, BDh)

This command is used to set each individual gray scale level of Color A, B and C for the display. Except gray scale levels GSO that has no pre charge and current drive, each gray scale level is programmed in the length of current drive stage pulse width with unit of DCLK. The longer the length of the pulse width, the brighter the OLED pixel when it's turned ON.

Following the command B 8 h , the user has to set the gray scale setting for GS1B, GS2B, \ldots, GS62B, GS63B one by one in sequence for LUT of color B. GS1 can be set as gamma setting 0 , which means there is only pre-charge phase but no current drive phase. Refer to SSD1357 datasheet Section 6.8 for details. Command B 8 h should be input before command BCh and BDh , to select LUT for color B, A and C .

After setting B8h command, BCh and BDh commands are used to set gray scale setting for color A and color C respectively. Following the command BCh , the user has to set the gray scale setting for GS1A, GS2A, ..., GS30A, GS31A one by one in sequence for LUT of color A. While following the command BDh, the user has to set the gray scale setting for GS1C, GS2C, ..., GS30C, GS31C one by one in sequence for LUT of color C.

The setting of gray scale table entry can perform gamma correction on OLED panel display. Since the perception of the brightness scale shall match the image data value in display data RAM, appropriate gray scale table setting like the example shown below (Figure 2-) can compensate this effect.

Figure 2-12 : Example of Gamma correction by Gamma Look Up table setting

2.14 Use Built-in Linear LUT (B9h)

This single byte command reloads the preset linear Gray Scale table. For color B, GS0 $=$ Gamma Setting 0 , GS1 $=$ Gamma Setting 0, GS2 $=$ Gamma Setting 2, GS3 $=$ Gamma Setting 4,... GS62 $=$ Gamma Setting 122, GS63 $=$ Gamma Setting 124. Refer to SSD1357 datasheet Section 6.8 for details.

2.15 Set Pre-charge voltage (BBh)

This double byte command sets the first pre-charge voltage (phase 2) level of segment pins. The level of precharge voltage is programmed with reference to V_{CC}.

2.16 Set Vcomн Voltage (BEh)

This double byte command sets the high voltage level of common pins, $\mathrm{V}_{\text {сомн }}$. The level of $\mathrm{V}_{\text {сомн }}$ is programmed with reference to V_{CC}.

2.17 Set Contrast Current for Color A,B,C (C1h)

This command is used to set Contrast Setting of the display. The chip has 256 contrast steps from 00 h to FFh. The segment output current I increases linearly with the contrast step, which results in brighter display.

2.18 Master Contrast Current Control (C7h)

This double byte command is to control the segment output current by a scaling factor. The chip has 16 master control steps, with the factor ranges from $1[0000 \mathrm{~b}]$ to 16 [1111b - default]. The smaller the master current value, the dimmer the OLED panel display is set.
For example, if original segment output current is 160 uA at scale factor $=16$, setting scale factor to 8 would reduce the current to 80 uA .

2.19 Set Multiplex Ratio (CAh)

This double byte command switches default 1:128 multiplex mode to any multiplex mode from 4 to 128 . For example, when multiplex ratio is set to 16 , only 16 common pins are enabled. The starting and the ending of the enabled common pins are depended on the setting of "Display Offset" register programmed by command A2h. Figure 2-5 and Figure 2-6 show examples of setting the multiplex ratio through command CAh.

2.20 Set Command Lock (FDh)

This command is used to lock the OLED driver IC from accepting any command except itself. After entering FDh 16h (A[2]=1b), the OLED driver IC will not respond to any newly-entered command (except FDh 12h $\mathrm{A}[2]=0 \mathrm{~b}$) and there will be no memory access. This is call "Lock" state. That means the OLED driver IC ignore all the commands (except FDh 12h A[2]=0b) during the "Lock" state.

Entering FDh 12h (A[2]=0b) can unlock the OLED driver IC. That means the driver IC resume from the "Lock" state. And the driver IC will then respond to the command and memory access.

