

Adafruit CAN Pal

Created by Liz Clark

https://learn.adafruit.com/adafruit-can-pal

Last updated on 2023-03-28 04:24:59 PM EDT

©Adafruit Industries Page 1 of 13

3

6

7

12

12

Table of Contents

Overview

Pinouts

• Terminal Block Pins

• Power Pins

• CAN Logic Pins

• Termination On/Off Switch

CircuitPython

• CircuitPython Microcontroller Wiring

• CircuitPython Usage

• CAN Sender Example

• CAN Listener Example

• Going Further

Python Docs

Downloads

• Files

• Schematic and Fab Print

©Adafruit Industries Page 2 of 13

Overview

If you'd like to connect a board with native CAN Peripheral support, the Adafruit CAN

Pal Transceiver will take the 3V logic level signals and convert them to CAN logic

levels with the differential signaling required to communicate. Note that not all chips

have a CAN peripheral! Some that we know do have it are the ESP32/ESP32-S2/

ESP32-S3 () (note that ESP32 calls this interface TWAI not CAN) series of chips, SAME

51 (), STM32F405 (), and Teensy 4 ().

©Adafruit Industries Page 3 of 13

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/twai.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/twai.html
https://www.adafruit.com/product/4759
https://www.adafruit.com/product/4759
https://www.adafruit.com/product/4382
https://www.adafruit.com/product/4323

Check the product documentation for the board you are wiring this to, making sure

that the chip has CAN support and the RX and TX pins are brought out for you to

connect the transceiver to! Despite sharing the 'RX' and 'TX' name with UART, they're

not at all the same interface.

CAN Bus is a small-scale networking standard (), originally designed for cars and, yes,

busses, but is now used for many robotics or sensor networks that need better range

and addressing than I2C, and don't have the pins or computational ability to talk on

Ethernet. CAN is 2 wire differential, which means it's good for long distances and

noisy environments.

Messages are sent at about 1Mbps rate - you set the frequency for the bus and then

all 'joiners' must match it, and have an address before the packet so that each node

can listen in to messages just for it. New nodes can be attached easily because they

just need to connect to the two data lines anywhere in the shared net. Each CAN

devices sends messages whenever it wants, and thanks to some clever data

encoding, can detect if there's a message collision and retransmit later.

©Adafruit Industries Page 4 of 13

https://en.wikipedia.org/wiki/CAN_bus

We've added a few nice extras to this breakout pal to make it useful in many common

CAN scenarios:

TJA1051/T3 () can communicate with 3.3V-5V logic for use with modern

microcontrollers.

5V charge-pump voltage generator (), so even though you are running 3.3V

power and logic on most modern microcontroller boards, it will generate a nice

clean 5V as required by the transceiver. No separate 5V power required!

3.5mm terminal block () that can be soldered in to get quick access to the High

and Low data lines as well as a ground pin.

2 x 60 ohm termination resistor on board (120 ohm in series), you can remove or

activate the termination easily by flipping the onboard switch.

Each order comes with an assembled 'pal, terminal block and header. You will need to

solder in the header yourself but it's a quick task.

•

•

•

•

©Adafruit Industries Page 5 of 13

https://www.nxp.com/products/interfaces/can-transceivers/can-with-flexible-data-rate/high-speed-can-transceiver:TJA1051
https://www.nxp.com/products/interfaces/can-transceivers/can-with-flexible-data-rate/high-speed-can-transceiver:TJA1051
https://www.adafruit.com/product/3661
https://www.adafruit.com/product/3661
https://www.adafruit.com/product/725

Pinouts

Terminal Block Pins

On the front of the board are the three pins for the included 3.5 mm terminal block. It

is outlined in white on the silk.

L - the CAN low signal for the CAN Bus standard.

Middle pin (unlabeled) - common ground shared between the two CAN

connections

H - the CAN high signal for the CAN Bus standard.

Both CAN L and CAN H are connected to a 5V charge-pump voltage generator ().

Even if you are using 3.3V logic, it will generate a nice clean 5V as required by the

CAN Bus transceiver.

Power Pins

Vcc - this is the power pin. Since the transceiver chip uses 3-5 VDC, to power

the board, give it the same power as the logic level of your microcontroller - e.g.

for a 5V micro like Arduino, use 5V.

GND - common ground for power and logic.

CAN Logic Pins

RX - CAN receive/input pin for boards with a CAN peripheral.

TX - CAN transmit/output pin for boards with a CAN peripheral.

•

•

•

•

•

•

•

©Adafruit Industries Page 6 of 13

https://www.adafruit.com/product/3661
https://www.adafruit.com/product/3661

Check the product documentation for the board you are wiring this to, to make sure

that:

The chip has CAN support

The RX and TX pins are brought out for you to connect the transceiver to

Despite sharing the 'RX' and 'TX' name with UART, they're not at all the same

interface.

SLNT - can be pulled high to put the TJA1051/3 transceiver into silent mode. In

silent mode, the transmitter is disabled, releasing the bus pins to a recessive

state.

CANH - the CAN high signal for the CAN Bus standard.

CANL - the CAN low signal for the CAN Bus standard.

Termination On/Off Switch

The board has two 60 ohm resistors (120 ohm in series) connected between CANH

and CANL. You can disable the terminator by setting the Termination switch OFF, if

your bus is already terminated. Otherwise, keep the switch set to ON to enable the

termination resistors.

CircuitPython

It's easy to use the CAN Pal with CircuitPython and the built-in canio () module. This

module allows you to easily write Python code that lets you utilize your board's

onboard CAN peripheral with the CAN Pal transceiver.

Note that not all chips have a CAN peripheral! Some that we know do have it are the

ESP32/ESP32-S2/ESP32-S3 () (note that ESP32 calls this interface TWAI not CAN)

series of chips, SAME51 (), STM32F405 (), and Teensy 4 ().

CircuitPython Microcontroller Wiring

First, wire up a CAN Pal to your board exactly as shown below. You're going to do this

twice so you have two CAN pals identically connected to two microcontrollers.

Here's an example of wiring a QT Py ESP32-S2 to the CAN Pal on a breadboard with 0

.100" pitch headers:

1.

2.

•

•

•

©Adafruit Industries Page 7 of 13

https://docs.circuitpython.org/en/latest/shared-bindings/canio/index.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/twai.html
https://www.adafruit.com/product/4759
https://www.adafruit.com/product/4382
https://www.adafruit.com/product/4323

QT Py 3.3V to CAN Pal VCC (red wire)

QT Py GND to CAN Pal GND (black wire)

QT Py RX to CAN Pal RX (green wire)

QT Py TX to CAN Pal TX (blue wire)

Then, connect the two CAN Pal CAN Bus connections together via the 3.5 mm

terminal blocks:

CAN Pal 0 L to CAN Pal 1 L (yellow wire)

CAN Pal 0 GND to CAN Pal 1 GND (black

wire)

CAN Pal 0 H to CAN Pal 1 H (pink wire)

CircuitPython Usage

To use with CircuitPython, you need to update code.py with the example script. There

are no additional libraries needed since the code is utilizing core modules.

In the examples below, click the Download Project Bundle button below to download

the the code.py file in a zip file. Extract the contents of the zip file, and copy the code.

py file to your CIRCUITPY drive.

©Adafruit Industries Page 8 of 13

https://learn.adafruit.com//assets/119774
https://learn.adafruit.com//assets/119774
https://learn.adafruit.com//assets/119775
https://learn.adafruit.com//assets/119775

CAN Sender Example

On line 22, change the RX and TX pin definitions to board.RX and board.TX :

can = canio.CAN(rx=board.RX, tx=board.TX, baudrate=250_000, auto_restart=True)

Then, upload the code to one of the QT Py ESP32-S2's.

SPDX-FileCopyrightText: 2020 Jeff Epler for Adafruit Industries

#

SPDX-License-Identifier: MIT

import struct

import time

import board

import canio

import digitalio

If the CAN transceiver has a standby pin, bring it out of standby mode

if hasattr(board, 'CAN_STANDBY'):

 standby = digitalio.DigitalInOut(board.CAN_STANDBY)

 standby.switch_to_output(False)

If the CAN transceiver is powered by a boost converter, turn on its supply

if hasattr(board, 'BOOST_ENABLE'):

 boost_enable = digitalio.DigitalInOut(board.BOOST_ENABLE)

 boost_enable.switch_to_output(True)

Use this line if your board has dedicated CAN pins. (Feather M4 CAN and Feather

STM32F405)

can = canio.CAN(rx=board.CAN_RX, tx=board.CAN_TX, baudrate=250_000,

auto_restart=True)

On ESP32S2 most pins can be used for CAN. Uncomment the following line to use

IO5 and IO6

#can = canio.CAN(rx=board.IO6, tx=board.IO5, baudrate=250_000, auto_restart=True)

old_bus_state = None

count = 0

while True:

 bus_state = can.state

 if bus_state != old_bus_state:

 print(f"Bus state changed to {bus_state}")

 old_bus_state = bus_state

 now_ms = (time.monotonic_ns() // 1_000_000) & 0xffffffff

 print(f"Sending message: count={count} now_ms={now_ms}")

 message = canio.Message(id=0x408, data=struct.pack("<II", count, now_ms))

 can.send(message)

 time.sleep(.5)

 count += 1

©Adafruit Industries Page 9 of 13

CAN Listener Example

On line 22, change the RX and TX pin definitions to board.RX and board.TX :

can = canio.CAN(rx=board.RX, tx=board.TX, baudrate=250_000, auto_restart=True)

Then, upload the code to the remaining QT Py ESP32-S2.

SPDX-FileCopyrightText: 2020 Jeff Epler for Adafruit Industries

#

SPDX-License-Identifier: MIT

import struct

import board

import canio

import digitalio

If the CAN transceiver has a standby pin, bring it out of standby mode

if hasattr(board, 'CAN_STANDBY'):

 standby = digitalio.DigitalInOut(board.CAN_STANDBY)

 standby.switch_to_output(False)

If the CAN transceiver is powered by a boost converter, turn on its supply

if hasattr(board, 'BOOST_ENABLE'):

 boost_enable = digitalio.DigitalInOut(board.BOOST_ENABLE)

 boost_enable.switch_to_output(True)

Use this line if your board has dedicated CAN pins. (Feather M4 CAN and Feather

STM32F405)

can = canio.CAN(rx=board.CAN_RX, tx=board.CAN_TX, baudrate=250_000,

auto_restart=True)

On ESP32S2 most pins can be used for CAN. Uncomment the following line to use

IO5 and IO6

#can = canio.CAN(rx=board.IO6, tx=board.IO5, baudrate=250_000, auto_restart=True)

listener = can.listen(matches=[canio.Match(0x408)], timeout=.9)

old_bus_state = None

old_count = -1

while True:

 bus_state = can.state

 if bus_state != old_bus_state:

 print(f"Bus state changed to {bus_state}")

 old_bus_state = bus_state

 message = listener.receive()

 if message is None:

 print("No messsage received within timeout")

 continue

 data = message.data

 if len(data) != 8:

 print(f"Unusual message length {len(data)}")

 continue

 count, now_ms = struct.unpack("<II", data)

 gap = count - old_count

 old_count = count

 print(f"received message: count={count} now_ms={now_ms}")

©Adafruit Industries Page 10 of 13

 if gap != 1:

 print(f"gap: {gap}")

In the REPL, you'll be able to see the message count and timestamp as they are sent

and received. For the QT Py ESP32-S2 running the Sender example, the REPL will

look like this:

For the QT Py ESP32-S2 running the Listener example, the REPL will look like this:

Going Further

For more information on using CAN Bus with CircuitPython, check out the CAN Bus

with CircuitPython: Using the canio module Learn Guide ().

©Adafruit Industries Page 11 of 13

https://learn.adafruit.com/using-canio-circuitpython/overview
https://learn.adafruit.com/using-canio-circuitpython/overview

CAN Bus with CircuitPython: Using

the canio module

Python Docs

Python Docs ()

Downloads

Files

TJA1051/3 Datasheet ()

EagleCAD PCB files on GitHub ()

Fritzing object in the Adafruit Fritzing Library ()

Schematic and Fab Print

•

•

•

©Adafruit Industries Page 12 of 13

https://learn.adafruit.com/using-canio-circuitpython/overview
https://docs.circuitpython.org/en/latest/shared-bindings/canio/index.html
https://cdn-learn.adafruit.com/assets/assets/000/119/531/original/TJA1051.pdf?1679491410
https://github.com/adafruit/Adafruit-CAN-Pal-PCB
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20CAN%20Pal%20Breakout.fzpz

©Adafruit Industries Page 13 of 13

	Adafruit CAN Pal
	Table of Contents
	Overview
	Pinouts
	CircuitPython
	Python Docs
	Downloads

	Overview
	Pinouts
	Terminal Block Pins
	Power Pins
	CAN Logic Pins
	Termination On/Off Switch

	CircuitPython
	CircuitPython Microcontroller Wiring
	CircuitPython Usage
	CAN Sender Example
	CAN Listener Example
	Going Further

	Python Docs
	Downloads
	Files
	Schematic and Fab Print

