Adafruit Metro M7 1011 with AirLift

Created by lady ada

https://learn.adafruit.com/adafruit-metro-m7-with-airlift

Last updated on 2023-04-04 02:12:43 PM EDT

©Adafruit Industries Page 1 of 162

Table of Contents

Overview

Pinouts

« Power

« i.MX RT1011 Processor

« ESP32 WiFi Co-Processor
» Logic Pins

« NeoPixel

« STEMMA QT

« Onboard LEDs

« Reset Button and Reset Pin
« Boot Mode Switches

« Debug Interface

Install CircuitPython
« CircuitPython Quickstart

Installing the Mu Editor
« Download and Install Mu

« Starting Up Mu

» Using Mu

The CIRCUITPY Drive
« Boards Without CIRCUITPY

Creating and Editing Code
« Creating Code

- Editing Code

« Back to Editing Code...

« Naming Your Program File

Exploring Your First CircuitPython Program
« Imports & Libraries

« Setting Up The LED

« Loop-de-loops

« What Happens When My Code Finishes Running?

« What if | Don't Have the Loop?

Connecting to the Serial Console

« Are you using Mu?

- Serial Console Issues or Delays on Linux
« Setting Permissions on Linux

« Using Something Else?

Interacting with the Serial Console

The REPL

« Entering the REPL
« Interacting with the REPL
» Returning to the Serial Console

©Adafruit Industries

19

22

24

25

30

33

36

39

Page 2 of 162

CircuitPython Libraries

« The Adafruit Learn Guide Project Bundle
» The Adafruit CircuitPython Library Bundle

- Downloading the Adafruit CircuitPython Library Bundle

« The CircuitPython Community Library Bundle

« Downloading the CircuitPython Community Library Bundle

« Understanding the Bundle

« Example Files

« Copying Libraries to Your Board

« Understanding Which Libraries to Install

« Example: ImportError Due to Missing Library

« Library Install on Non-Express Boards

« Updating CircuitPython Libraries and Examples
« CircUp CLI Tool

CircuitPython Documentation

« CircuitPython Core Documentation
« CircuitPython Library Documentation

Recommended Editors

« Recommended editors

« Recommended only with particular settings or add-ons

«» Editors that are NOT recommended

Advanced Serial Console on Windows
« Windows 7 and 8.1

« What's the COM?

« Install Putty

Advanced Serial Console on Mac

« What's the Port?
« Connect with screen

Advanced Serial Console on Linux

« What's the Port?
« Connect with screen
« Permissions on Linux

Frequently Asked Questions

« Using Older Versions

« Python Arithmetic

« Wireless Connectivity

« Asyncio and Interrupts
- Status RGB LED

« Memory Issues

« Unsupported Hardware

Troubleshooting

« Always Run the Latest Version of CircuitPython and Libraries
« | have to continue using CircuitPython 5.x or earlier. Where can | find compatible libraries?

» Bootloader (boardnameBOOT) Drive Not Present

« Windows Explorer Locks Up When Accessing boardnameBOOT Drive
« Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied
« CIRCUITPY Drive Does Not Appear or Disappears Quickly

« Device Errors or Problems on Windows

©Adafruit Industries

44

55

62

63

67

69

73

79

Page 3 of 162

« Serial Console in Mu Not Displaying Anything

« code.py Restarts Constantly

« CircuitPython RGB Status Light

« CircuitPython 7.0.0 and Later

« CircuitPython 6.3.0 and earlier

- Serial console showing ValueError: Incompatible .mpy file
« CIRCUITPY Drive Issues

- Safe Mode

« To erase CIRCUITPY: storage.erase_filesystem()

« Erase CIRCUITPY Without Access to the REPL

« For the specific boards listed below:

« For SAMD21 non-Express boards that have a UF2 bootloader:

« For SAMD21 non-Express boards that do not have a UF2 bootloader:

« Running Out of File Space on SAMD21 Non-Express Boards
» Delete something!

» Use tabs

« On MacOS?

» Prevent & Remove MacOS Hidden Files

« Copy Files on MacOS Without Creating Hidden Files

« Other MacOS Space-Saving Tips

« Device Locked Up or Boot Looping

Welcome to the Community!

« Adafruit Discord
« CircuitPython.org
« Adafruit GitHub

« Adafruit Forums
« Read the Docs

CircuitPython Essentials

Blink

« LED Location
« Blinking an LED

Digital Input
« LED and Button
« Controlling the LED with a Button

Analog In

- Analog to Digital Converter (ADC)
- Potentiometers

« Hardware

« Wire Up the Potentiometer

- Reading Analog Pin Values

« Reading Analog Voltage Values

NeoPixel

» NeoPixel Location

« NeoPixel Color and Brightness
+ RGB LED Colors

« NeoPixel Rainbow

12C

« 12C and CircuitPython
« Necessary Hardware

©Adafruit Industries

97

106

108

110

13

119

125

Page 4 of 162

« Wiring the MCP9808
« Find Your Sensor

+ 12C Sensor Data

« Where's my 12C?

PWM Audio

« Necessary Hardware

« Wiring the STEMMA Speaker
« PWM Tone Playback

« PWM WAV File Playback

I12S Audio

« 12S and CircuitPython

« Necessary Hardware

» Wiring the MAX98357A

« 12S Tone Playback

« 12S WAV File Playback

« CircuitPython 12S-Compatible Pin Combinations

CircuitPython BLE

« CircuitPython BLE UART Example

- Update the AirLift Firmware

« Install CircuitPython Libraries

« Install the Adafruit Bluefruit LE Connect App

« BLE Example

- Talk to the AirLift via the Bluefruit LE Connect App

Create Your settings.toml File

- settings.toml File Example
« Accessing Your settings.toml Information in code.py

CircuitPython WiFi

« CircuitPython Microcontroller Pinout
« CircuitPython Setup
« CircuitPython Usage

Installing the Bootloader
« Step 1. Install SPSDK to get the sdphost tool

Upgrading ESP32 AirLift Firmware

« Upload Passthrough Code

« Download NINA Firmware

« Upload NINA Firmware

« Verify the New Firmware Version

« (Advanced) Upload NINA Firmware with ESPTool.py

Downloads

- Files
« Schematic and Fab Print

©Adafruit Industries

132

135

141

147

149

152

154

161

Page 5 of 162

©Adafruit Industries Page 6 of 162

Overview

Q

[ECTTE .ngTX RX
Ori{~ mg _ Jm

Get ready for our fastest Metro ever - the NXP i.MX RT1011 microcontroller powers this
board with a 500 MHz ARM Cortex M7 processor. There's 4 MB of execute-in-place
QSPI for firmware + disk storage and 128KB of SRAM in-chip.

Currently there we have support for using this board with CircuitPython. There is no
Arduino support at this time.

©Adafruit Industries Page 7 of 162

Features:

« NXP i.MX RT1011 processor - ARM Cortex M7 processor running at 500 MHz,
with 128KB SRAM and high speed USB!

« AirLift WiFi Co-processor, with TLS/SSL support, plenty of RAM for sockets,
communication is over SPIl and it has CircuitPython library support ready to go
for fast wireless integration.

+ 4MB of QSPI XIP Flash.

« Power options - 6-12VDC barrel jack or USB type C.

« UNO-shape so shields can plug in.

« Reset button - Click to restart, double-click to enter UF2 bootloader.

« Boot-mode switches to get into the ROM bootloader (you can always reload
code over USB if TinyUF2 gets corrupted somehow).

« SWD connector for advanced debugging access.

« On/Off switch

« STEMMA QT connector for I2C devices.

» On/User LEDs + status NeoPixel.

« Works with CircuitPython!

« 53.2mm x 72mm /2" x 2.8"

« Height (w/ barrel jack): 14.8mm / 0.6"

+ Weight: 22.5g

Pinouts

o6 :_“g

MELFTS i

-5 RTIONS -

©Adafruit Industries Page 8 of 162

Adafruit Me 7 iMX RT1011 witkh
htt fruit.com/produc

Power

l » =
ALY

There are two ways that you can power the Metro M7 1011:

« USB-C port- This is used for both powering and programming the board. You
can power it with any USB C cable. When USB is plugged in it will charge the
Lipoly battery.

« DC Jack - The DC Jack is a 5.5mm/2.1mm center-positive DC connector, which is
the most common available. Provide about 6V-12V here to power the Metro M7
1011.

« DC Jack On/Off Switch - This switch can turn incoming power from the DC jack
on or off. It only controls the DC jack, it has no affect on the USB port.

©Adafruit Industries Page 9 of 162

The following pins are related to power on the Metro M7 1011:

« 3.3V - this is the output from the 3.3V regulator, it can supply 500mA peak.

« 5V - this is the output from the 5V regulator (when DC jack is used), or from
USB. It can supply Y500mA peak from USB and Y800mA peak from DC.

+ GND - this is the common ground for all power and logic.

« VIN - this is the higher of the DC jack or USB voltage. So if the DC jack is
plugged in and 9V, Vin is 9V. If only USB connected, this will be 5V.

i.MX RT1011 Processor

The Metro M7 1011 is powered by the NXP i.MX RT1011 processor. This is an ARM
Cortex M7 processor running at 500 MHz. It has 128KB of SRAM in-chip, along with
high speed USB.

©Adafruit Industries Page 10 of 162

ESP32 WiFi Co-Processor

The WiFi capability uses an Espressif ESP32 Wi-Fi coprocessor, aka the AirLift, with
TLS/SSL support built-in. Communication is over SPI and it has CircuitPython library
support ready to go for fast wireless integration with the following pins:

« MOSI pin (board.ESP_MOSI)

« MISO pin (board.ESP_MISO)

« SCK pin (board.ESP_SCK)

« CS pin (board.ESP_CS)

» Ready/Busy pin (board.ESP _BUSY)

» Reset pin (board.ESP_RESET)

« ESP RX/TX pins (board.ESP_RX and board.ESP _TX) are shared with the M7 R
X/TX pins. There's a resistor between the M7's RX line and the ESP32 module so
that a device connected on the RX pin will override the communication from the
ESP32 module.

« You can also connect to the ESP32 RTS pin (used in some serial contexts) on bo
ard.ESP_RTS

« The ESP32 GPIOO pin for bootloader enable is connected to board.ESP_GPIO0O0

©Adafruit Industries Page 11 of 162

Logic Pins

“grmss

o il

These are the general purpose I/O pin set for the microcontroller.

Top Row:

« DO/ RX - GPIO DO, also receive (input) pin/RX for UART. This pin is shared with
the ESP32 RX pin. There is a resistor between DO/RX and the ESP32 RX pins so
that a device that is connected to DO/RX will override the communication from
the ESP32 RX pin.

« D1/ TX - GPIO D1, also transmit (output) pin/TX for UART

« D2 through D12 - These are general purpose GPIO

« D13 - GPIO D13 and is connected to the red LED marked D13 next to the reset
button.

« SDA - the 12C data pin. There's a 10K pull up on this pin to 3V already installed

« SCL - the I12C clock pin. There's a 10K pull up on this pin to 3V already installed

Bottom Row:

« AO - This pin is analog output AO. You can set the raw voltage to anything from O
to 3.3V. Unlike PWM outputs this is a true analog output.
« Al1thru A5 - These are analog inputs as well as digital I1/O pins.

©Adafruit Industries Page 12 of 162

Right side:

« SCK/MOSI/MISO - These are the hardware SPI pins, are are connected to the
2x3 header on the right hand side. These are also used by the ESP32 so they
should not be used for anything but SPI connectivity - not for GPIO.

NeoPixel

« NeoPixel LED - This addressable RGB NeoPixel LED, labeled NEO on the board,
works both as a status LED (in CircuitPython and the bootloader), and can be
controlled with code. It is available in CircuitPython as board.NEOPIXEL .

©Adafruit Industries Page 13 of 162

STEMMA QT

QO
v ,\uuu_;u_‘_) Qoo

[T WTX ’X

M 0= mg

/

This JST SH 4-pin STEMMA QT () connector breaks out 12C (SCL, SDA, 3.3V, GND). It
allows you to connect to various breakouts and sensors with STEMMA QT connectors
() or to other things using assorted associated accessories (). It works great with any
STEMMA QT or Qwiic sensor/device. You can also use it with Grove 12C devices
thanks to this handy cable ().

In CircuitPython, this port can be accessed with board.STEMMA I2C() .

©Adafruit Industries Page 14 of 162

https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/category/1018
https://www.adafruit.com/category/1018
https://www.adafruit.com/category/1018
https://www.adafruit.com/category/1018
https://www.adafruit.com/?q=JST%20SH%204
https://www.adafruit.com/product/4528

Onboard LEDs

Vol Q
QT nTX]

FED £57) 4
-]"'Z-"»’.]? ren)] 0
nairems 2| e

« Power LED - Above the USB-C port, on the front of the board, is the power LED,
labeled ON. It is the green LED.

« Red LED- This little red LED, labeled D13 on the board, is on or blinks during
certain operations (such as pulsing when in the bootloader), and is controllable
in code. It is available in CircuitPython as board.LED.

©Adafruit Industries Page 15 of 162

Reset Button and Reset Pin

Q
: Q00000
ﬁVHV_-—_vW|TX Rx‘ :

| M Ofi{~ ma

. ?"ln -

« Reset button - The reset button restarts the board and helps enter the
bootloader. You can click it once to reset the board without unplugging the USB
cable or battery. Alternatively, tap once, and then tap again while the NeoPixel
status LED is purple to enter the UF2 bootloader (needed to load CircuitPython).

« The RST pin can be used to reset the board. Tie to ground manually to reset the
board.

©Adafruit Industries Page 16 of 162

Boot Mode Switches

i i O
000000
) S ol
Heiin me < A
y B

dOéBlZAoWX
readon) |
YS3YCLEOHIUIMIN

The photo shows both switches in the OFF position, but for normal operation BO
should be OFF and B1 should be ON.

The boot mode switches (labeled BOOT SEL on the board silk) are used to get into
the ROM bootloader. The switch has two individual switches: BO and B1. The photo
shows both switches in the OFF position, but for normal operation BO should be OFF
and B1 should be ON.

The individual switches are set to ON (or 1) when they are moved next to the ON text
on the switch housing and OFF (or 0) when they are moved next to their labels on the
board silk. You can find more information on entering the bootloader with these
switches on the Installing the Bootloader page () in this guide.

©Adafruit Industries Page 17 of 162

https://learn.adafruit.com/adafruit-metro-m7-with-airlift/installing-bootloader

Debug Interface

If you'd like to do more advanced development, trace-debugging, or not use the
bootloader, we have the SWD interface exposed. You can use any 2x5 0.05" pitch
SWD interface to connect. We suggest a J-Link.

©Adafruit Industries

SEGGER J-Link BASE - JTAG/SWD
Debugger

The SEGGER J-Link BASE is identical to
the cheaper J-Link EDU model except for
the terms of...
https://www.adafruit.com/product/2209

Page 18 of 162

https://www.adafruit.com/product/2209
https://www.adafruit.com/product/2209
https://www.adafruit.com/product/2209

SEGGER J-Link EDU Mini - JTAG/SWD
Debugger

Doing some serious development on any
ARM-based platform, and tired of 'printf’
plus an LED to debug? A proper JTAG/
SWD HW debugger can make debugging
more of a pleasure and...
https://www.adafruit.com/product/3571

You'll need an adapter and cable to convert the 2x10 JTAG cable to SWD.

10-pin 2x5 Socket-Socket 1.27mm IDC
(SWD) Cable - 150mm long

These little cables are handy when
programming or debugging a tiny board
that uses 10-pin 1.27mm (0.05") pitch SWD
programming connectors. We see these
connectors often on ARM...
https://www.adafruit.com/product/1675

JTAG (2x10 2.54mm) to SWD (2x5 1.27mm)
Cable Adapter Board

This adapter board is designed for
adapting a 'classic' 2x10 (0.1"/2.54mm
pitch) JTAG cable to a slimmer 2x5 (0.05"/
1.27mm pitch) SWD Cable. It's helpful...
https://www.adafruit.com/product/2094

Install CircuitPython

CircuitPython () is a derivative of MicroPython () designed to simplify experimentation
and education on low-cost microcontrollers. It makes it easier than ever to get
prototyping by requiring no upfront desktop software downloads. Simply copy and
edit files on the CIRCUITPY drive to iterate.

©Adafruit Industries Page 19 of 162

https://www.adafruit.com/product/3571
https://www.adafruit.com/product/3571
https://www.adafruit.com/product/3571
https://www.adafruit.com/product/1675
https://www.adafruit.com/product/1675
https://www.adafruit.com/product/1675
https://www.adafruit.com/product/2094
https://www.adafruit.com/product/2094
https://www.adafruit.com/product/2094
https://github.com/adafruit/circuitpython
https://micropython.org

CircuitPython Quickstart

Follow this step-by-step to quickly get CircuitPython running on your board.

Download the latest version of

CircuitPython for this board via
circuitpython.org

&4 Macintosh...

. ELENEEIIMGELEN Click the link above to download the latest
CircuitPython UF2 file.

Network

{2} kattni . . .

&y Save it wherever is convenient for you.
L. Applications

[-..] Desktop

:" Documents

. Downloads

) Pictures

Q
DGR A0 QAL AQQ0
Torsgr X R |

N ST AR

i) M TR

fo

Plug your board into your computer, using a known-good data-sync cable, directly, or
via an adapter if needed.

Click the reset button once (highlighted in red above), and then click it again when
you see the RGB status LED(s) (highlighted in green above) turn red (approximately

©Adafruit Industries Page 20 of 162

https://circuitpython.org/board/metro_m7_1011/
https://learn.adafruit.com//assets/102129
https://learn.adafruit.com//assets/102129

half a second later). Sometimes it helps to think of it as a "slow double-click" of the
reset button.

Once successful, you will see the RGB status LED(s) turn green (highlighted in green
above). If you see red, try another port, or if you're using an adapter or hub, try
without the hub, or different adapter or hub.

If double-clicking doesn't work the first time, try again. Sometimes it can take a few
tries to get the rhythm right!

A lot of people end up using charge-only USB cables and it is very frustrating! Make
sure you have a USB cable you know is good for data sync.

) 3D Objects

Today (1)
P Desktop

B Documents
Downloads

= METROM7BOOT (k)

adafruit-circuitpy

thon-metro_m7_

1011-en_US-8.0.3
uf2

You will see a new disk drive appear called
METROM7BOOQT.

Drag the adafruit_circuitpython_etc.uf2 file
to METROM7BOOT.

adafrut-crcutpy
thon-m 7

& METROM7B8OQT (K

= METROM7BOOTIH)

o Network + Copy to METROM7BOOT (k)

©Adafruit Industries Page 21 of 162

https://learn.adafruit.com//assets/119388
https://learn.adafruit.com//assets/119388
https://learn.adafruit.com//assets/119389
https://learn.adafruit.com//assets/119389

®
<

Locations

Macintosh HD ’ ’ S
B creurrpy . SO, The BOOT drive will disappear and a new

@ Network disk drive called CIRCUITPY will appear.

Favorites
2 atn That's it!
A Applications
=] Desktop
' Documents
©) Downloads
[Pictures

Installing the Mu Editor

Mu is a simple code editor that works with the Adafruit CircuitPython boards. It's
written in Python and works on Windows, MacOS, Linux and Raspberry Pi. The serial
console is built right in so you get immediate feedback from your board's serial

output!

Mu is our recommended editor - please use it (unless you are an experienced

coder with a favorite editor already!).

Download and Install Mu

@ - mose Downgen
Oodowith M a shupie Pythes o for baghner Download Mu from https://codewith.mu ().
[oot | v |
e+ (2 » @@ a e (2o Click the Download link for downloads and
o installation instructions.

Click Start Here to find a wealth of other
information, including extensive tutorials
and and how-to's.

01 M 1 Tty WAy S | e et weng e rorgee @ SR T ot 8 Sreraed e S e Comers by o 38 &

©Adafruit Industries Page 22 of 162

https://learn.adafruit.com//assets/102130
https://learn.adafruit.com//assets/102130
https://learn.adafruit.com//assets/105677
https://learn.adafruit.com//assets/105677
https://codewith.mu/
https://github.com/mu-editor/mu/issues

See https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors

and https://learn.adafruit.com/welcome-to-circuitpython/pycharm-and-

circuitpython for other editors to use.

Starting Up Mu

Please select the desired mode then click "OK", Otherwise, click "Cancel”.

BBC micro:bat
Write MicroPython for the BBC micro:bit

CircuitPython
Write code for boards running CircuitPython.

ESP MicroPython
Write MicroPython on ESP8266/ESP32 boards.

Lego MicroPython
Write MicroPython directly on Lego Spike devices.

Pyboard MicroPython
Use MicroPython on the Pyboard line of boards

Change mode at any time by dicking the *"Mode* button containing Mu's logo.

Cancel

Could not find an attached CircuitPython
device.

Python files for CircuitPython devices are stored on the
device. Therefore, to edit these files you need to have
the device plugged in. Until you plug in a device, Mu
will use the directory found here:
[Users/kattni/mu_code

...t0 store your code.

Using Mu

The first time you start Mu, you will be
prompted to select your 'mode' - you can
always change your mind later. For now
please select CircuitPython!

The current mode is displayed in the lower
right corner of the window, next to the
"gear" icon. If the mode says "Microbit" or
something else, click the Mode button in
the upper left, and then choose
"CircuitPython" in the dialog box that
appears.

Mu attempts to auto-detect your board on
startup, so if you do not have a
CircuitPython board plugged in with a
CIRCUITPY drive available, Mu will inform
you where it will store any code you save
until you plug in a board.

To avoid this warning, plug in a board and
ensure that the CIRCUITPY drive is
mounted before starting Mu.

You can now explore Mu! The three main sections of the window are labeled below;
the button bar, the text editor, and the serial console / REPL.

©Adafruit Industries

Page 23 of 162

https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors
https://learn.adafruit.com/welcome-to-circuitpython/pycharm-and-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython/pycharm-and-circuitpython
https://learn.adafruit.com//assets/105681
https://learn.adafruit.com//assets/105681
https://learn.adafruit.com//assets/105679
https://learn.adafruit.com//assets/105679

00 M 1.0.3 - code.py
Mode New Load Save Serial Plotter Zoom-in Zoom-out Theme Check Heip Quit
ode.py

1

Auto-reload 1is on. Simply save files over USB to run them or enter REPL to
disable.

Press any key to enter the REPL. Use CTRL-D to reload.

Now you're ready to code! Let's keep going...

The CIRCUITPY Drive

When CircuitPython finishes installing, or you plug a CircuitPython board into your
computer with CircuitPython already installed, the board shows up on your computer
as a USB drive called CIRCUITPY.

The CIRCUITPY drive is where your code and the necessary libraries and files will live.
You can edit your code directly on this drive and when you save, it will run
automatically. When you create and edit code, you'll save your code in a code.py file
located on the CIRCUITPY drive. If you're following along with a Learn guide, you can
paste the contents of the tutorial example into code.py on the CIRCUITPY drive and
save it to run the example.

With a fresh CircuitPython install, on your CIRCUITPY drive, you'll find a code.py file
containing print("Hello World!") and an empty lib folder. If your CIRCUITPY
drive does not contain a code.py file, you can easily create one and save it to the
drive. CircuitPython looks for code.py and executes the code within the file
automatically when the board starts up or resets. Following a change to the contents
of CIRCUITPY, such as making a change to the code.py file, the board will reset, and
the code will be run. You do not need to manually run the code. This is what makes it
so easy to get started with your project and update your code!

Note that all changes to the contents of CIRCUITPY, such as saving a new file,
renaming a current file, or deleting an existing file will trigger a reset of the board.

©Adafruit Industries Page 24 of 162

o000 i CIRCUITPY
< H = LIERERIEE Q
Devices Name Date Modified ~ Size Kind

Q Macintosh HD >

[2) Time Machine & H
- |
a
£ cireurrey = boot_out.txt January 1, 2000 at 12:00 AM 102 bytes Plain Text

Favorites code.py Today at 1:26 PM 641 bytes Python script

@} Kattni > [lib Today at 3:55 PM 35KB Folder

#; Applications
[Desktop

© Downloads
@ Documents

i1 Pictures . CIRCUITPY

Boards Without CIRCUITPY

CircuitPython is available for some microcontrollers that do not support native USB.
Those boards cannot present a CIRCUITPY drive. This includes boards using ESP32
or ESP32-C3 microcontrollers.

On these boards, there are alternative ways to transfer and edit files. You can use the
Thonny editor (), which uses hidden commands sent to the REPL to read and write

files. Or you can use the CircuitPython web workflow, introduced in Circuitpython 8.
The web workflow provides browser-based WiFi access to the CircuitPython
filesystem. These guides will help you with the web workflow:

« CircuitPython on ESP32 Quick Start ()
« CircuitPython Web Workflow Code Editor Quick Start ()

Creating and Editing Code

One of the best things about CircuitPython is how simple it is to get code up and
running. This section covers how to create and edit your first CircuitPython program.

To create and edit code, all you'll need is an editor. There are many options. Adafruit
strongly recommends using Mu! It's designed for CircuitPython, and it's really simple
and easy to use, with a built in serial console!

If you don't or can't use Mu, there are a number of other editors that work quite well.
The Recommended Editors page () has more details. Otherwise, make sure you do
"Eject" or "Safe Remove" on Windows or "sync" on Linux after writing a file if you

aren't using Mu. (This is not a problem on MacOS.)

©Adafruit Industries Page 25 of 162

https://thonny.org
https://learn.adafruit.com/circuitpython-with-esp32-quick-start
https://learn.adafruit.com/getting-started-with-web-workflow-using-the-code-editor
https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors

Creating Code

Installing CircuitPython generates a

code.py file on your CIRCUITPY drive. To
Lml eda :a: R begin your own program, open your editor,
and load the code.py file from the
CIRCUITPY drive.

If you are using Mu, click the Load button
in the button bar, navigate to the
CIRCUITPY drive, and choose code.py.

Copy and paste the following code into your editor:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:

led.value = True
time.sleep(0.5)
led.value = alse
time.sleep(0.5)

The KB2040, QT Py and the Trinkeys do not have a built-in little red LED! There is
an addressable RGB NeoPixel LED. The above example will NOT work on the
KB2040, QT Py or the Trinkeys!

If you're using a KB2040, QT Py or a Trinkey, please download the NeoPixel blink

example ().

The NeoPixel blink example uses the onboard NeoPixel, but the time code is the

same. You can use the linked NeoPixel Blink example to follow along with this

guide page.

©Adafruit Industries Page 26 of 162

https://learn.adafruit.com//assets/105703
https://learn.adafruit.com//assets/105703
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Welcome_to_CircuitPython/code.py
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Welcome_to_CircuitPython/code.py

G000000000000

9099 00

Mode Load Save Serial Plotter Zoom-~in

Save the nt Python script

board
digitalio
time

5 led digitalio.Digita
6 led.direction digita

It will look like this. Note that under the
while True: line, the next four lines
begin with four spaces to indent them, and
they're indented exactly the same amount.
All the lines before that have no spaces
before the text.

Save the code.py file on your CIRCUITPY
drive.

The little LED should now be blinking. Once per half-second.

Congratulations, you've just run your first CircuitPython program!

On most boards you'll find a tiny red LED.

On the ItsyBitsy nRF52840, you'll find a tiny blue LED.

On QT Py MO, QT Py RP2040, and the Trinkey series, you will find only an RGB
NeoPixel LED.

©Adafruit Industries

Page 27 of 162

https://learn.adafruit.com//assets/105704
https://learn.adafruit.com//assets/105704
https://learn.adafruit.com//assets/105705
https://learn.adafruit.com//assets/105705

Editing Code

=t e it Poemel || Sy To edit code, open the code.py file on your
Load & Python script CIRCUITPY drive into your editor.

Make the desired changes to your code.
Save the file. That's it!

Your code changes are run as soon as the file is done saving.

There's one warning before you continue...

Don't click reset or unplug your board!

The CircuitPython code on your board detects when the files are changed or written
and will automatically re-start your code. This makes coding very fast because you
save, and it re-runs. If you unplug or reset the board before your computer finishes
writing the file to your board, you can corrupt the drive. If this happens, you may lose
the code you've written, so it's important to backup your code to your computer
regularly.

There are a couple of ways to avoid filesystem corruption.

1. Use an editor that writes out the file completely when you save it.

Check out the Recommended Editors page () for details on different editing options.

If you are dragging a file from your host computer onto the CIRCUITPY drive, you

still need to do step 2. Eject or Sync (below) to make sure the file is completely
written.

©Adafruit Industries Page 28 of 162

https://learn.adafruit.com//assets/105706
https://learn.adafruit.com//assets/105706
https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors

2. Eject or Sync the Drive After Writing

If you are using one of our not-recommended-editors, not all is lost! You can still make
it work.

On Windows, you can Eject or Safe Remove the CIRCUITPY drive. It won't actually
eject, but it will force the operating system to save your file to disk. On Linux, use the
sync command in a terminal to force the write to disk.

You also need to do this if you use Windows Explorer or a Linux graphical file
manager to drag a file onto CIRCUITPY.

Oh No | Did Something Wrong and Now The CIRCUITPY
Drive Doesn't Show Up!!!
Don't worry! Corrupting the drive isn't the end of the world (or your board!). If this

happens, follow the steps found on the Troubleshooting () page of every board
guide to get your board up and running again.

Back to Editing Code...

Now! Let's try editing the program you added to your board. Open your code.py file
into your editor. You'll make a simple change. Change the first 0.5 to 0.1. The code
should look like this:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
led.value = True
time.sleep(0.1)
led.value = False
time.sleep(0.5)

Leave the rest of the code as-is. Save your file. See what happens to the LED on your
board? Something changed! Do you know why?

You don't have to stop there! Let's keep going. Change the second 0.5 to 0.1 soit
looks like this:

©Adafruit Industries Page 29 of 162

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting

while True:
led.value =
time.sleep(0.1)
led.value = False
time.sleep(0.1)

True

Now it blinks really fast! You decreased the both time that the code leaves the LED on
and off!

Now try increasing both of the 0.1 to 1. Your LED will blink much more slowly
because you've increased the amount of time that the LED is turned on and off.

Well done! You're doing great! You're ready to start into new examples and edit them
to see what happens! These were simple changes, but major changes are done using
the same process. Make your desired change, save it, and get the results. That's
really all there is to it!

Naming Your Program File

CircuitPython looks for a code file on the board to run. There are four options: code.tx
t, code.py, main.txt and main.py. CircuitPython looks for those files, in that order, and
then runs the first one it finds. While code.py is the recommended name for your code
file, it is important to know that the other options exist. If your program doesn't seem
to be updating as you work, make sure you haven't created another code file that's
being read instead of the one you're working on.

Exploring Your First CircuitPython Program
First, you'll take a look at the code you're editing.

Here is the original code again:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:

led.value = True
time.sleep(0.5)
led.value = False
time.sleep(0.5)

©Adafruit Industries Page 30 of 162

Imports & Libraries

Each CircuitPython program you run needs to have a lot of information to work. The
reason CircuitPython is so simple to use is that most of that information is stored in
other files and works in the background. The files built into CircuitPython are called m
odules, and the files you load separately are called libraries. Modules are built into
CircuitPython. Libraries are stored on your CIRCUITPY drive in a folder called lib.

import board
import digitalio
import time

The import statements tells the board that you're going to use a particular library or
module in your code. In this example, you imported three modules: board,
digitalio, and time. All three of these modules are built into CircuitPython, so no
separate library files are needed. That's one of the things that makes this an excellent
first example. You don't need anything extra to make it work!

These three modules each have a purpose. The first one, board, gives you access to
the hardware on your board. The second, digitalio, lets you access that hardware
as inputs/outputs. The third, time, let's you control the flow of your code in multiple
ways, including passing time by 'sleeping".

Setting Up The LED

The next two lines setup the code to use the LED.

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

Your board knows the red LED as LED . So, you initialise that pin, and you set it to
output. You set led to equal the rest of that information so you don't have to type it
all out again later in our code.

Loop-de-loops

The third section starts with a while statement. while True: essentially means,
"forever do the following:". while True: creates aloop. Code will loop "while" the
condition is "true" (vs. false), and as True is never False, the code will loop forever.
All code that is indented under while True: is "inside" the loop.

©Adafruit Industries Page 31 of 162

Inside our loop, you have four items:

while True:
led.value = True
time.sleep(0.5)
led.value = False
time.sleep(0.5)

First, you have led.value = True. This line tells the LED to turn on. On the next
line, you have time.sleep(0.5) . This line is telling CircuitPython to pause running
code for 0.5 seconds. Since this is between turning the led on and off, the led will be
on for 0.5 seconds.

The next two lines are similar. led.value = False tells the LED to turn off, and tim
e.sleep(0.5) tells CircuitPython to pause for another 0.5 seconds. This occurs
between turning the led off and back on so the LED will be off for 0.5 seconds too.

Then the loop will begin again, and continue to do so as long as the code is running!

So, when you changed the first 0.5 to 0.1, you decreased the amount of time that
the code leaves the LED on. So it blinks on really quickly before turning off!

Great job! You've edited code in a CircuitPython program!

What Happens When My Code Finishes Running?

When your code finishes running, CircuitPython resets your microcontroller board to
prepare it for the next run of code. That means any set up you did earlier no longer
applies, and the pin states are reset.

For example, try reducing the code snippet above by eliminating the loop entirely,
and replacing it with led.value = True. The LED will flash almost too quickly to
see, and turn off. This is because the code finishes running and resets the pin state,
and the LED is no longer receiving a signal.

To that end, most CircuitPython programs involve some kind of loop, infinite or
otherwise.

©Adafruit Industries Page 32 of 162

What if | Don't Have the Loop?

If you don't have the loop, the code will run to the end and exit. This can lead to some
unexpected behavior in simple programs like this since the "exit" also resets the state
of the hardware. This is a different behavior than running commands via REPL. So if
you are writing a simple program that doesn't seem to work, you may need to add a
loop to the end so the program doesn't exit.

The simplest loop would be:

while True:
pass

And remember - you can press CTRL+C to exit the loop.

See also the Behavior section in the docs ().

Connecting to the Serial Console

One of the staples of CircuitPython (and programming in general!) is something called
a "print statement". This is a line you include in your code that causes your code to
output text. A print statement in CircuitPython (and Python) looks like this:

print("Hello, world!")
This line in your code.py would result in:
Hello, world!

However, these print statements need somewhere to display. That's where the serial
console comes in!

The serial console receives output from your CircuitPython board sent over USB and
displays it so you can see it. This is necessary when you've included a print statement
in your code and you'd like to see what you printed. It is also helpful for
troubleshooting errors, because your board will send errors and the serial console will
display those too.

The serial console requires an editor that has a built in terminal, or a separate

©Adafruit Industries Page 33 of 162

https://circuitpython.readthedocs.io/en/latest/README.html#behavior

terminal program. A terminal is a program that gives you a text-based interface to
perform various tasks.

Are you using Mu?

If so, good news! The serial console is built into Mu and will autodetect your board
making using the serial console really really easy.

First, make sure your CircuitPython board
is plugged in.

3:3::0' e If you open Mu without a board plugged

Python files for CircuitPython devices are stored on the in you may encounter the error seen here

device. Therefore, to edit these files you need to have
the device plugged in. Until you plug in a device, Mu

will use the directory found hers: letting you know no CircuitPython board
[Users/kattni/mu_code was found and indicating where your code
R e will be stored until you plug in a board.

If you are using Windows 7, make sure you

installed the drivers ().

Once you've opened Mu with your board plugged in, look for the Serial button in the
button bar and click it.

0000000

Load Save Serial Plotter Zoom-in Zoom-out

Open a serial connection to your device.

The Mu window will split in two, horizontally, and display the serial console at the
bottom.

Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.
code.py output:
Hello, world!

Code done running.

Press any key to enter the REPL. Use CTRL-D to reload.

If nothing appears in the serial console, it may mean your code is done running

or has no print statements in it. Click into the serial console part of Mu, and press
CTRL+D to reload.

©Adafruit Industries Page 34 of 162

https://learn.adafruit.com//assets/105925
https://learn.adafruit.com//assets/105925
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers

Serial Console Issues or Delays on Linux

If you're on Linux, and are seeing multi-second delays connecting to the serial
console, or are seeing "AT" and other gibberish when you connect, then the
modemmanager service might be interfering. Just remove it; it doesn't have much use
unless you're still using dial-up modems.

To remove modemmanager , type the following command at a shell:

sudo apt purge modemmanager

Setting Permissions on Linux

On Linux, if you see an error box something like the one below when you press the S
erial button, you need to add yourself to a user group to have permission to connect
to the serial console.

Mu
Cannot connect to device on port /dev/ttyACMO

“ Click on the device's reset button, wait a few
seconds and then try again.

& ok

On Ubuntu and Debian, add yourself to the dialout group by doing:

sudo adduser $USER dialout

After running the command above, reboot your machine to gain access to the group.
On other Linux distributions, the group you need may be different. See the Advanced
Serial Console on Linux () for details on how to add yourself to the right group.

Using Something Else?

If you're not using Mu to edit, are using or if for some reason you are not a fan of its
built in serial console, you can run the serial console from a separate program.

©Adafruit Industries Page 35 of 162

https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux

Windows requires you to download a terminal program. Check out the Advanced

Serial Console on Windows page for more details. ()

MacOS has Terminal built in, though there are other options available for download. E
heck the Advanced Serial Console on Mac page for more details. ()

Linux has a terminal program built in, though other options are available for
download. Check the Advanced Serial Console on Linux page for more details. ()

Once connected, you'll see something like the following.

Auto-reload is on. Simply save files over USB to run them or enter REPL to disab
le.

code.py output:

Hello, world!

Code done running.

Press any key to enter the REPL. Use CTRL-D to reload.

Interacting with the Serial Console

Once you've successfully connected to the serial console, it's time to start using it.

The code you wrote earlier has no output to the serial console. So, you're going to
edit it to create some output.

Open your code.py file into your editor, and include a print statement. You can print
anything you like! Just include your phrase between the quotation marks inside the
parentheses. For example:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
print("Hello, CircuitPython!")
led.value = True
time.sleep(1)
led.value = False
time.sleep(1)

Save your file.

Now, let's go take a look at the window with our connection to the serial console.

©Adafruit Industries Page 36 of 162

file:///home/welcome-to-circuitpython/advanced-serial-console-on-windows
file:///home/welcome-to-circuitpython/advanced-serial-console-on-windows
file:///home/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux
file:///home/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux

4., screen

cuitPython!
i1tPython!
Python!
1tPython!
rcuitPython!

o O O

o o

Excellent! Our print statement is showing up in our console! Try changing the printed
text to something else.

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
print("Hello back to you!")

led.value = True
time.sleep(1)
led.value = False
time.sleep(1)

Keep your serial console window where you can see it. Save your file. You'll see what
the serial console displays when the board reboots. Then you'll see your new change!

4, screen

1tPython!
i1tPython!
k (most recent call last):
ile "code.py", Lline 11, in <module>
KeyboardInterrupt:
soft reboot

on. Simply save files over USB to run them or enter REPL to disab

le.

code.py output:

Hello back to you!
Llo back to you!

The Traceback (most recent call last): istelling you the last thing your board
was doing before you saved your file. This is normal behavior and will happen every
time the board resets. This is really handy for troubleshooting. Let's introduce an error
SO you can see how it is used.

Delete the e atthe end of True from the line led.value = True so thatit says le
d.value = Tru

import board
import digitalio
import time

©Adafruit Industries Page 37 of 162

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
print("Hello back to you!")

led.value = Tru
time.sleep(1)
led.value = False
time.sleep(1l)

Save your file. You will notice that your red LED will stop blinking, and you may have a
colored status LED blinking at you. This is because the code is no longer correct and
can no longer run properly. You need to fix it!

Usually when you run into errors, it's not because you introduced them on purpose.
You may have 200 lines of code, and have no idea where your error could be hiding.
This is where the serial console can help. Let's take a look!

ecent call last):
ile "code.py", Lline 13, in <module>
KeyboardInterrupt:
soft reboot

Auto-reload is on. Simply save files over USB to run them or enter REPL to disab
le

ode.py output:

Hello back to you!

Traceback (most recent call last):
File "code.py", line 10, in <module>

NameError: name 'Tru' is not defined

The Traceback (most recent call last): istelling you that the last thing it was
able torun was line 10 in your code. The next line is your error. NameError: name
'‘Tru' is not defined . This error might not mean a lot to you, but combined with
knowing the issue is on line 10, it gives you a great place to start!

Go back to your code, and take a look at line 10. Obviously, you know what the
problem is already. But if you didn't, you'd want to look at line 10 and see if you could
figure it out. If you're still unsure, try googling the error to get some help. In this case,
you know what to look for. You spelled True wrong. Fix the typo and save your file.

©Adafruit Industries Page 38 of 162

le.

code.py output:

Hello back to you!

Traceback (most recent call last):
File "code.py", line 10, in <module>

NameError: name 'Tru' is not defined

Press any key to enter the REPL. Use CTRL-D to reload.
soft reboot

Auto-reload is on. Simply save files over USB to run them or enter REPL to disab
Le.

code.py output:

Hello back to you!

Hello back to you!

Nice job fixing the error! Your serial console is streaming and your red LED Is blinking
again.

The serial console will display any output generated by your code. Some sensors,
such as a humidity sensor or a thermistor, receive data and you can use print
statements to display that information. You can also use print statements for
troubleshooting, which is called "print debugging". Essentially, if your code isn't
working, and you want to know where it's failing, you can put print statements in
various places to see where it stops printing.

The serial console has many uses, and is an amazing tool overall for learning and
programming!

The REPL

The other feature of the serial connection is the Read-Evaluate-Print-Loop, or REPL.
The REPL allows you to enter individual lines of code and have them run immediately.
It's really handy if you're running into trouble with a particular program and can't
figure out why. It's interactive so it's great for testing new ideas.

Entering the REPL

To use the REPL, you first need to be connected to the serial console. Once that
connection has been established, you'll want to press CTRL+C.

If there is code running, in this case code measuring distance, it will stop and you'll

see Press any key to enter the REPL. Use CTRL-D to reload. Follow those
instructions, and press any key on your keyboard.

©Adafruit Industries Page 39 of 162

The Traceback (most recent call last): istelling you the last thing your board
was doing before you pressed Ctrl + C and interrupted it. The KeyboardInterrupt

is you pressing CTRL+C. This information can be handy when troubleshooting, but for
now, don't worry about it. Just note that it is expected behavior.

cee Default (tio)
Distance:

Distance:

Distance:

Distance: 3.

Distance: 6.5 cm

Traceback (most recent call last):

File "code.py", line 43, in <module>
KeyboardInterrupt:

Code done running.

Press any key to enter the REPL. Use CTRL-D to reload.

If your code.py file is empty or does not contain a loop, it will show an empty output
and Code done running. . There is no information about what your board was
doing before you interrupted it because there is no code running.

ceoe Default (tio)

Auto-reload is on. Simply save files over USB to run them or enter REPL to disab
le.

code.py output:

Code done running.

Press any key to enter the REPL. Use CTRL-D to reload.

If you have no code.py on your CIRCUITPY drive, you will enter the REPL immediately
after pressing CTRL+C. Again, there is no information about what your board was
doing before you interrupted it because there is no code running.

cee Default (tio)
Auto-reload is on. Simply save files over USB to run them or enter REPL to disab
le.

Code done running.

Press any key to enter the REPL. Use CTRL-D to reload.

Regardless, once you press a key you'll see a >>> prompt welcoming you to the
REPL!

ceoe Default (tio)

Adafruit CircuitPython 7.0.0 on 2821-10-26; Adafruit Feather RP2040 with rp2040

2 |

If you have trouble getting to the >>> prompt, try pressing Ctrl + C a few more times.

©Adafruit Industries Page 40 of 162

The first thing you get from the REPL is information about your board.

Adafruit CircuitPython 7.0.0 on 2021-16-26; Adafruit Feather RP2040 with rp2040

This line tells you the version of CircuitPython you're using and when it was released.
Next, it gives you the type of board you're using and the type of microcontroller the
board uses. Each part of this may be different for your board depending on the
versions you're working with.

This is followed by the CircuitPython prompt.

Interacting with the REPL

From this prompt you can run all sorts of commands and code. The first thing you'll do
isrun help() . This will tell you where to start exploring the REPL. To run code in the
REPL, type it in next to the REPL prompt.

Type help() nextto the promptin the REPL.

[X J Default (tio)

Adafruit CircuitPython 7.0.0 on 2021-10-26; Adafruit Feather RP2040 with rp2040
>>> help()

Then press enter. You should then see a message.
oee® Default (tio)

Adafruit CircuitPython 7.0.0 on 2021-10-26; Adafruit Feather RP2040 with rp2040
>>> help()

Welcome to Adafruit CircuitPython 7.0.0!

Visit circuitpython.org for more information.

To Llist built-in modules type “help("modules")".
>>>

First part of the message is another reference to the version of CircuitPython you're
using. Second, a URL for the CircuitPython related project guides. Then... wait. What's
this? To list built-in modules type "help("modules") . Remember the
modules you learned about while going through creating code? That's exactly what
this is talking about! This is a perfect place to start. Let's take a look!

Type help("modules") into the REPL next to the prompt, and press enter.

©Adafruit Industries Page 41 of 162

>>> help("modules")

—-main__ board

-bleio builtins
adafruit_bus_device
adafruit_pixelbuf collections
aesio countio

alarm digitalio
analogio displayio
array errno

atexit fontio
audiobusio framebufferio
audiocore gc

audiomixer [EMER
audiomp3 imagecapture
audiopwmio 10

binascii json
bitbangio keypad
bitmaptools math

bitops microcontroller
Plus any modules on the filesystem
>>>

micropython
msgpack

busio

onewireio

0s
paralleldisplay
pulseio

pwmio

qrio

rainbowio
random

re

rgbmatrix
rotaryio

rp2pio

rtc
sdcardio
sharpdisplay

storage

struct
neopixel_write
synthio

sys

terminalio
time

touchio

usb_cdc
usb_hid
usb_midi
vectorio
watchdog

supervisor

This is a list of all the core modules built into CircuitPython, including board .

Remember, board contains all of the pins on the board that you can use in your
code. From the REPL, you are able to see that list!

Type import board into the REPL and press enter. It'll go to a new prompt. It might
look like nothing happened, but that's not the case! If you recall, the import
statement simply tells the code to expect to do something with that module. In this

case, it's telling the REPL that you plan to do something with that module.

>>> import board
22>

Next, type dir(board) into the REPL and press enter.

>>> dir(board)

['__class__', '__name__', 'AG', 'A1', 'A2', 'A3'

'D4', 'D5', 'D '‘Dg', 'I2C', 'LED',

, 'SPI', 'TX', 'UART', 'board_id']

'Dg', 'D1', 'D16',
'MISO', 'MOSI',

'D11', 'D12'
'"NEOPIXEL', 'R

This is a list of all of the pins on your board that are available for you to use in your

code. Each board's list will differ slightly depending on the number of pins available.
Do you see LED ? That's the pin you used to blink the red LED!

The REPL can also be used to run code. Be aware that any code you enter into the

REPL isn't saved anywhere. If you're testing something new that you'd like to keep,

make sure you have it saved somewhere on your computer as well!

Every programmer in every programming language starts with a piece of code that
says, "Hello, World." You're going to say hello to something else. Type into the REPL:

print("Hello, CircuitPython!")

©Adafruit Industries

Page 42 of 162

Then press enter.

>>> print("Hello, CircuitPython")

That's all there is to running code in the REPL! Nice job!

You can write single lines of code that run stand-alone. You can also write entire
programs into the REPL to test them. Remember that nothing typed into the REPL is
saved.

There's a lot the REPL can do for you. It's great for testing new ideas if you want to
see if a few new lines of code will work. It's fantastic for troubleshooting code by
entering it one line at a time and finding out where it fails. It lets you see what
modules are available and explore those modules.

Try typing more into the REPL to see what happens!

Everything typed into the REPL is ephemeral. Once you reload the REPL or return
to the serial console, nothing you typed will be retained in any memory space. So
be sure to save any desired code you wrote somewhere else, or you'll lose it
when you leave the current REPL instance!

Returning to the Serial Console

When you're ready to leave the REPL and return to the serial console, simply press CT
RL+D. This will reload your board and reenter the serial console. You will restart the
program you had running before entering the REPL. In the console window, you'll see
any output from the program you had running. And if your program was affecting
anything visual on the board, you'll see that start up again as well.

You can return to the REPL at any time!

N N J Default (tio)
Auto-reload is on. Simply save files over USB to run them or enter REPL to disab
le.

Code done running.

Press any key to enter the REPL. Use CTRL-D to reload.

©Adafruit Industries Page 43 of 162

CircuitPython Libraries

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to
download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.
Please update CircuitPython and then visit https://circuitpython.org/libraries to
download the latest Library Bundle.

Each CircuitPython program you run needs to have a lot of information to work. The
reason CircuitPython is so simple to use is that most of that information is stored in
other files and works in the background. These files are called libraries. Some of them
are built into CircuitPython. Others are stored on your CIRCUITPY drive in a folder
called lib. Part of what makes CircuitPython so great is its ability to store code
separately from the firmware itself. Storing code separately from the firmware makes
it easier to update both the code you write and the libraries you depend.

Your board may ship with a lib folder already, it's in the base directory of the drive. If
not, simply create the folder yourself. When you first install CircuitPython, an empty lib
directory will be created for you.

[] 8 cIrcuITPY
<

Locations
Macintosh HD

A circurTpY
@ Network

Favorites

kattni R boot_out.txt
A Applications B code.py

2] Desktop » Il lib

i’ Documents

O Downloads)

CircuitPython libraries work in the same way as regular Python modules so the Python

docs () are an excellent reference for how it all should work. In Python terms, you can
place our library files in the lib directory because it's part of the Python path by
default.

One downside of this approach of separate libraries is that they are not built in. To

use them, one needs to copy them to the CIRCUITPY drive before they can be used.
Fortunately, there is a library bundle.

©Adafruit Industries Page 44 of 162

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://docs.python.org/3/tutorial/modules.html
https://docs.python.org/3/tutorial/modules.html

The bundle and the library releases on GitHub also feature optimized versions of the
libraries with the .mpy file extension. These files take less space on the drive and
have a smaller memory footprint as they are loaded.

Due to the regular updates and space constraints, Adafruit does not ship boards with
the entire bundle. Therefore, you will need to load the libraries you need when you
begin working with your board. You can find example code in the guides for your
board that depends on external libraries.

Either way, as you start to explore CircuitPython, you'll want to know how to get
libraries on board.

The Adafruit Learn Guide Project Bundle

The quickest and easiest way to get going with a project from the Adafruit Learn
System is by utilising the Project Bundle. Most guides now have a Download Project
Bundle button available at the top of the full code example embed. This button
downloads all the necessary files, including images, etc., to get the guide project up
and running. Simply click, open the resulting zip, copy over the right files, and you're
good to go!

The first step is to find the Download Project Bundle button in the guide you're
working on.

The Download Project Bundle button is only available on full demo code

embedded from GitHub in a Learn guide. Code snippets will NOT have the
button available.

> Circuit Playground Express: Piano in the Key of Lime > Piano in the Key of Lime

Piano in the Key of [v EN][[Save][£} Subscribe]
Lime

Now we'll take everything we learned and put it together!

Be sure to save your current code.py if you've changed anything you'd like to
keep. Download the following file. Rename it to cod save it to your
Circuit Playground Express.

Circuit Playground 1 Copy Cote
ExpreSS: Pia.no in # SPDX-FileCopyrightText: 2017 Kattni Rembor for Adafruit Industries
the Key of Lime :

SPDX-License-Identifier: MIT

By Kattni Rembor
from adafruit_circuitplayground import cp

Create a full scale tone piano using
S 1ot while True:
CircuitPython, capacitive touch and if cp.switch:

some cute little fruits. print("Slide switch off!™)
co.pixels.fill((a. 8. 8))

©Adafruit Industries Page 45 of 162

When you copy the contents of the Project Bundle to your CIRCUITPY drive, it
will replace all the existing content! If you don't want to lose anything, ensure you
copy your current code to your computer before you copy over the new Project
Bundle content!

The Download Project Bundle button downloads a zip file. This zip contains a series
of directories, nested within which is the code.py, any applicable assets like images or
audio, and the lib/ folder containing all the necessary libraries. The following zip was
downloaded from the Piano in the Key of Lime guide.

Downloads

Name

CIRCUITPY
Macintosh HD n PianoInTheKeyOfLime.zip

circuitpytho... v B Piano_In_The_Key_Of_Lime

Network B PianolnTheKeyOfLime

n README.txt

kattni

B CircuitPython 7.x
Desktop

Applications > I lib

Documents ! code.py

The Piano in the Key of Lime guide was chosen as an example. That guide is
specific to Circuit Playground Express, and cannot be used on all boards. Do not
expect to download that exact bundle and have it work on your non-CPX
microcontroller.

When you open the zip, you'll find some nested directories. Navigate through them
until you find what you need. You'll eventually find a directory for your CircuitPython
version (in this case, 7.x). In the version directory, you'll find the file and directory you
need: code.py and lib/. Once you find the content you need, you can copy it all over
to your CIRCUITPY drive, replacing any files already on the drive with the files from
the freshly downloaded zip.

In some cases, there will be other files such as audio or images in the same

directory as code.py and lib/. Make sure you include all the files when you copy

things over!

©Adafruit Industries Page 46 of 162

Once you copy over all the relevant files, the project should begin running! If you find
that the project is not running as expected, make sure you've copied ALL of the
project files onto your microcontroller board.

That's all there is to using the Project Bundle!

The Adafruit CircuitPython Library Bundle

Adafruit provides CircuitPython libraries for much of the hardware they provide,
including sensors, breakouts and more. To eliminate the need for searching for each
library individually, the libraries are available together in the Adafruit CircuitPython
Library Bundle. The bundle contains all the files needed to use each library.

Downloading the Adafruit CircuitPython Library Bundle

You can download the latest Adafruit CircuitPython Library Bundle release by clicking
the button below. The libraries are being constantly updated and improved, so you'll
always want to download the latest bundle.

Match up the bundle version with the version of CircuitPython you are running. For
example, you would download the 6.x library bundle if you're running any version of
CircuitPython 6, or the 7.x library bundle if you're running any version of CircuitPython
7, etc. If you mix libraries with major CircuitPython versions, you will get incompatible
mpy errors due to changes in library interfaces possible during major version
changes.

Click to visit circuitpython.org for the

latest Adafruit CircuitPython Library
Bundle

Download the bundle version that matches your CircuitPython firmware version. If you
don't know the version, check the version info in boot_out.txt file on the CIRCUITPY
drive, or the initial prompt in the CircuitPython REPL. For example, if you're running
v7.0.0, download the 7.x library bundle.

There's also a py bundle which contains the uncompressed python files, you probably
don't want that unless you are doing advanced work on libraries.

©Adafruit Industries Page 47 of 162

https://circuitpython.org/libraries

The CircuitPython Community Library
Bundle

The CircuitPython Community Library Bundle is made up of libraries written and
provided by members of the CircuitPython community. These libraries are often
written when community members encountered hardware not supported in the
Adafruit Bundle, or to support a personal project. The authors all chose to submit
these libraries to the Community Bundle make them available to the community.

These libraries are maintained by their authors and are not supported by Adafruit. As
you would with any library, if you run into problems, feel free to file an issue on the
GitHub repo for the library. Bear in mind, though, that most of these libraries are
supported by a single person and you should be patient about receiving a response.
Remember, these folks are not paid by Adafruit, and are volunteering their personal
time when possible to provide support.

Downloading the CircuitPython Community Library Bundle

You can download the latest CircuitPython Community Library Bundle release by
clicking the button below. The libraries are being constantly updated and improved,
so you'll always want to download the latest bundle.

Click for the latest CircuitPython

Community Library Bundle release

The link takes you to the latest release of the CircuitPython Community Library
Bundle on GitHub. There are multiple versions of the bundle available. Download the
bundle version that matches your CircuitPython firmware version. If you don't know
the version, check the version info in boot_out.txt file on the CIRCUITPY drive, or the
initial prompt in the CircuitPython REPL. For example, if you're running v7.0.0,
download the 7.x library bundle.

Understanding the Bundle

After downloading the zip, extract its contents. This is usually done by double clicking
on the zip. On Mac OSX, it places the file in the same directory as the zip.

©Adafruit Industries Page 48 of 162

https://github.com/adafruit/CircuitPython_Community_Bundle/releases

Il Downloads

oo o NI

Date Added
» [adafruit-circuitpython-bundle-7.x-mpy-20211024 Today, 12:15

E. adafruit-circuitpython-bundle-7.x-mpy-20211024.zip Today, 12:15

Open the bundle folder. Inside you'll find two information files, and two folders. One
folder is the lib bundle, and the other folder is the examples bundle.

o M adafruit-circuitpython-bundle-7.x-mpy-20211024
< h e e}

Locations Date Added
lacintosh HD
B cireuitpY

@ Network - requirements

examples Today, 12:15

1)

. Applications VERSIONS.txt

[==) Desktop
README..txt

' Documents

Now open the lib folder. When you open the folder, you'll see a large number of .mpy
files, and folders.

Date Added
[£4] Macintosh HD
B creuitPy a
@ Network » B adafruit_ads1x15

. adafruit_74hc595.mpy Today, 13

. adafruit_adt7410.mpy

A, Applications . adafruit_adx|34x.mpy

Example Files

All example files from each library are now included in the bundles in an examples
directory (as seen above), as well as an examples-only bundle. These are included for
two main reasons:

« Allow for quick testing of devices.
« Provide an example base of code, that is easily built upon for individualized
purposes.

©Adafruit Industries Page 49 of 162

M examples
) T

Date Added

Macintosh HD

e h 74hc595_8_led.py Today, 13

@ Network 74hc595_simpletest.py
ez | adafruit_io_http

@ kattni

A Applications adafruit_io_mqtt

[=) Desktop

Documents adafruit_io_simpletest.py

Copying Libraries to Your Board

First open the lib folder on your CIRCUITPY drive. Then, open the lib folder you
extracted from the downloaded zip. Inside you'll find a number of folders and .mpy
files. Find the library you'd like to use, and copy it to the lib folder on CIRCUITPY.

If the library is a directory with multiple .mpy files in it, be sure to copy the entire
folder to CIRCUITPY/lib.

This also applies to example files. Open the examples folder you extracted from the
downloaded zip, and copy the applicable file to your CIRCUITPY drive. Then, rename
it to code.py to run it.

If a library has multiple .mpy files contained in a folder, be sure to copy the entire

folder to CIRCUITPY/lib.

Understanding Which Libraries to Install

You now know how to load libraries on to your CircuitPython-compatible
microcontroller board. You may now be wondering, how do you know which libraries
you need to install? Unfortunately, it's not always straightforward. Fortunately, there is
an obvious place to start, and a relatively simple way to figure out the rest. First up:
the best place to start.

When you look at most CircuitPython examples, you'll see they begin with one or
more import statements. These typically look like the following:

« import library or module

©Adafruit Industries Page 50 of 162

However, import statements can also sometimes look like the following:

« from library or module import name
« from library or module.subpackage import name
« from library or module import name as local name

They can also have more complicated formats, such as includinga try / except
block, etc.

The important thing to know is that an import statement will always include the
name of the module or library that you're importing.

Therefore, the best place to start is by reading through the import statements.

Here is an example import list for you to work with in this section. There is no setup or
other code shown here, as the purpose of this section involves only the import list.

import time

import board

import neopixel

import adafruit lis3dh

import usb hid

from adafruit hid.consumer control import ConsumerControl

from adafruit hid.consumer _control code import ConsumerControlCode

Keep in mind, not all imported items are libraries. Some of them are almost always
built-in CircuitPython modules. How do you know the difference? Time to visit the
REPL.

In the Interacting with the REPL section () on The REPL page () in this guide, the
help("modules") command is discussed. This command provides a list of all of the
built-in modules available in CircuitPython for your board. So, if you connect to the

serial console on your board, and enter the REPL, you can run help("modules") to
see what modules are available for your board. Then, as you read through the impor
t statements, you can, for the purposes of figuring out which libraries to load, ignore
the statement that import modules.

The following is the list of modules built into CircuitPython for the Feather RP2040.

Your list may look similar or be anything down to a significant subset of this list for
smaller boards.

©Adafruit Industries Page 51 of 162

https://learn.adafruit.com/welcome-to-circuitpython/the-repl#interacting-with-the-repl-2977486-14
https://learn.adafruit.com/welcome-to-circuitpython/the-repl

>>> help("modules")

—-main__ board micropython
-bleio builtins msgpack
adafruit_bus_dev busio
adafruit_pixelbuf c onewireio
aesio (o0 0s

alarm C alio paralleldisplay
analogio displayio pulseio

array errno pwmio

atexit fontio

audiobusio framebufferio

audiocore

audiomixer ge SS re

audiomp3 imagecapture rgbmatrix

audiopwmi i0 rotaryio vectorio
json rp2pio watchdog
keypad rtc
math sdcardio
microcontroller sharpdisplay

Now that you know what you're looking for, it's time to read through the import
statements. The first two, time and board, are on the modules list above, so they're
built-in.

The next one, neopixel, is not on the module list. That means it's your first library!
So, you would head over to the bundle zip you downloaded, and search for neopixel.
There is a neopixel.mpy file in the bundle zip. Copy it over to the lib folder on your ClI
RCUITPY drive. The following one, adafruit lis3dh, is also not on the module list.
Follow the same process for adafruit_lis3dh, where you'll find adafruit_lis3dh.mpy,
and copy that over.

The fifth one is usb hid, and it is in the modules list, so it is built in. Often all of the
built-in modules come first in the import list, but sometimes they don't! Don't assume
that everything after the first library is also a library, and verify each import with the
modules list to be sure. Otherwise, you'll search the bundle and come up empty!

The final two imports are not as clear. Remember, when import statements are
formatted like this, the first thing after the from is the library name. In this case, the
library name is adafruit hid . A search of the bundle will find an adafruit_hid folder.
When a library is a folder, you must copy the entire folder and its contents as it is in
the bundle to the lib folder on your CIRCUITPY drive. In this case, you would copy the
entire adafruit_hid folder to your CIRCUITPY/lib folder.

Notice that there are two imports that begin with adafruit hid . Sometimes you will
need to import more than one thing from the same library. Regardless of how many
times you import the same library, you only need to load the library by copying over
the adafruit_hid folder once.

That is how you can use your example code to figure out what libraries to load on
your CircuitPython-compatible board!

©Adafruit Industries Page 52 of 162

There are cases, however, where libraries require other libraries internally. The
internally required library is called a dependency. In the event of library
dependencies, the easiest way to figure out what other libraries are required is to
connect to the serial console and follow along with the ImportError printed there.
The following is a very simple example of an ImportError, but the conceptis the
same for any missing library.

Example: ImportError Due to Missing
Library

If you choose to load libraries as you need them, or you're starting fresh with an
existing example, you may end up with code that tries to use a library you haven't yet
loaded. This section will demonstrate what happens when you try to utilise a library
that you don't have loaded on your board, and cover the steps required to resolve the
issue.

This demonstration will only return an error if you do not have the required library
loaded into the lib folder on your CIRCUITPY drive.

Let's use a modified version of the Blink example.

import board
import time
import simpleio

led = simpleio.DigitalQOut(board.LED)

while True:
led.value = True
time.sleep(0.5)
led.value = False
time.sleep(0.5)

Save this file. Nothing happens to your board. Let's check the serial console to see
what's going on.

L

Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.
output:
k (most recent call last):
'code.py", line 3, in <module>

: no module named 'simpleio’
Code done running.

Press any key to enter the REPL. Use CTRL-D to reload.

©Adafruit Industries Page 53 of 162

You have an ImportError. It says thereis no module named 'simpleio' . That's
the one you just included in your code!

Click the link above to download the correct bundle. Extract the lib folder from the
downloaded bundle file. Scroll down to find simpleio.mpy. This is the library file you're
looking for! Follow the steps above to load an individual library file.

The LED starts blinking again! Let's check the serial console.

y key to enter the REPL. Use CTRL-D to reload.

on. Simply save files over USB to run them or enter REPL to disable.

No errors! Excellent. You've successfully resolved an ImportError!

If you run into this error in the future, follow along with the steps above and choose
the library that matches the one you're missing.

Library Install on Non-Express Boards

If you have an MO non-Express board such as Trinket MO, Gemma MO, QT Py MO, or
one of the MO Trinkeys, you'll want to follow the same steps in the example above to
install libraries as you need them. Remember, you don't need to wait for an ImportEr
ror if you know what library you added to your code. Open the library bundle you
downloaded, find the library you need, and drag it to the lib folder on your CIRCUITPY
drive.

You can still end up running out of space on your MO non-Express board even if you
only load libraries as you need them. There are a number of steps you can use to try
to resolve this issue. You'll find suggestions on the Troubleshooting page ().

Updating CircuitPython Libraries and
Examples

Libraries and examples are updated from time to time, and it's important to update the
files you have on your CIRCUITPY drive.

©Adafruit Industries Page 54 of 162

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting

To update a single library or example, follow the same steps above. When you drag
the library file to your lib folder, it will ask if you want to replace it. Say yes. That's it!

A new library bundle is released every time there's an update to a library. Updates

include things like bug fixes and new features. It's important to check in every so
often to see if the libraries you're using have been updated.

CircUp CLI Tool

There is a command line interface (CLI) utility called CircUp () that can be used to
easily install and update libraries on your device. Follow the directions on the install

page within the CircUp learn guide (). Once you've got it installed you run the
command circup update in aterminal to interactively update all libraries on the
connected CircuitPython device. See the usage page in the CircUp guide () for a full
list of functionality

CircuitPython Documentation

You've learned about the CircuitPython built-in modules and external libraries. You
know that you can find the modules in CircuitPython, and the libraries in the Library
Bundles. There are guides available that explain the basics of many of the modules
and libraries. However, there's sometimes more capabilities than are necessarily
showcased in the guides, and often more to learn about a module or library. So,
where can you find more detailed information? That's when you want to look at the
AP| documentation.

The entire CircuitPython project comes with extensive documentation available on
Read the Docs. This includes both the CircuitPython core () and the Adafruit
CircuitPython libraries ().

CircuitPython Core Documentation

The CircuitPython core documentation () covers many of the details you might want to

know about the CircuitPython core and related topics. It includes APl and usage info,
a design guide and information about porting CircuitPython to new boards,
MicroPython info with relation to CircuitPython, and general information about the
project.

©Adafruit Industries Page 55 of 162

https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/install-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/install-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/usage
https://circuitpython.readthedocs.io/
https://circuitpython.readthedocs.io/projects/bundle/en/latest/
https://circuitpython.readthedocs.io/projects/bundle/en/latest/
https://circuitpython.readthedocs.io/

Adafruit CircuitPython

Docs » Adafruit CircuitPython API Reference © Edit on GitHub

Adafruit CircuitPython API Reference

Welcome to the API reference documentation for Adafruit CircuitPython. This contains low-level
API reference docs which may link out to separate “getting started” guides. Adafruit has many
excellent tutorials available through the Adafruit Learning System.

Python Libraries and

CircuitPython

L ﬁmu?ﬂ

Architecture
Porting

Adding +10 support to other ports

MicroPython libraries

Glossary

The main page covers the basics including where to download CircuitPython, how to
contribute, differences from MicroPython, information about the project structure, and
a full table of contents for the rest of the documentation.

The list along the left side leads to more information about specific topics.

The first section is APl and Usage. This is where you can find information about how
to use individual built-in core modules, such as time and digitalio, details about
the supported ports, suggestions for troubleshooting, and basic info and links to the li
brary bundles. The Core Modules section also includes the Support Matrix, which is a
table of which core modules are available on which boards.

The second section is Design and Porting Reference. It includes a design guide, archit
ecture information, details on porting, and adding module support to other ports.

The third section is MicroPython Specific. It includes information on MicroPython and
related libraries, and a glossary of terms.

The fourth and final section is About the Project. It includes further information
including details on building, testing, and debugging CircuitPython, along with various
other useful links including the Adafruit Community Code of Conduct.

Whether you're a seasoned pro or new to electronics and programming, you'll find a

wealth of information to help you along your CircuitPython journey in the
documentation!

©Adafruit Industries Page 56 of 162

CircuitPython Library Documentation

The Adafruit CircuitPython libraries are documented in a very similar fashion. Each
library has its own page on Read the Docs. There is a comprehensive list available her
e (). Otherwise, to view the documentation for a specific library, you can visit the o
éitHub repository for the library, and find the link in the README.

For the purposes of this page, the LED Animation library () documentation will be

featured. There are two links to the documentation in each library GitHub repo. The
first one is the docs badge near the top of the README.

README.rst

Introduction

docs |passing| < online] () Build C1 [passing

Perform a variety of LED animation tasks

The second place is the Documentation section of the README. Scroll down to find it,
and click on Read the Docs to get to the documentation.

Documentation

AP| documentation for this library can be found on

Now that you know how to find it, it's time to take a look at what to expect.

Not all library documentation will look exactly the same, but this will give you

some idea of what to expect from library docs.

The Introduction page is generated from the README, so it includes all the same info,
such as PyPl installation instructions, a quick demo, and some build details. It also
includes a full table of contents for the rest of the documentation (which is not part of
the GitHub README). The page should look something like the following.

LED_Animation Library
Docs » Introduction © Edit on GitHu

Introduction
Introduction

423 rine
Simple test Perform a variety of LED animation tasks

The left side contains links to the rest of the documentation, divided into three
separate sections: Examples, APl Reference, and Other Links.

©Adafruit Industries Page 57 of 162

https://circuitpython.readthedocs.io/projects/bundle/en/latest/
https://circuitpython.readthedocs.io/projects/bundle/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_LED_Animation

Examples

The Examples section () is a list of library examples. This list contains anywhere from a
small selection to the full list of the examples available for the library.

This section will always contain at least one example - the simple test example.

LED_Animation Library

Docs » Simple test © Edit on GitHub

Simple test

Ensure your device works with this simple test.

Simple test

The simple test example is usually a basic example designed to show your setup is
working. It may require other libraries to run. Keep in mind, it's simple - it won't
showcase a comprehensive use of all the library features.

The LED Animation simple test demonstrates the Blink animation.

Simple test

Ensure your device works with this simple test.

ples/led_animation_simpl py

1 # SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
2 # SPDX-License-Identifier: MIT

3

4 "

5 This simpletest example displays the Blink animation.

6

7 For NeoPixel FeatherWing. Update pixel_pin and pixel_num to match your wiring if using
8 a different form of NeoPixels.

g nuw

10 import board

11 import neopixel

12 from adafruit_led_animation.animation.blink import Blink

13 from adafruit_led_animation.color import RED

14

15 # Update to match the pin connected to your NeoPixels

16 pixel_pin = board.D6

17 # Update to match the number of NeoPixels you have connected

18 pixel_num = 32

19

20 pixels = neopixel.NeoPixel(pixel_pin, pixel_num, brightness=0.5, auto_write=False)
21

22 blink = Blink(pixels, speed=0.5, color=RED)

23

24 while True:
25 blink.animate()

In some cases, you'll find a longer list, that may include examples that explore other
features in the library. The LED Animation documentation includes a series of
examples, all of which are available in the library. These examples include
demonstrations of both basic and more complex features. Simply click on the example
that interests you to view the associated code.

©Adafruit Industries Page 58 of 162

https://circuitpython.readthedocs.io/projects/led-animation/en/latest/examples.html

Basic Animations

D the basic animati

wples/led_animation_basic_animations.py

1# SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
2 # SPDX-License-Identifier: MIT
3

.
S This example displays the basic animations in sequence, at a five second interval.

When there are multiple links in the Examples section, all of the example content
is, in actuality, on the same page. Each link after the first is an anchor link to the

specified section of the page. Therefore, you can also view all the available
examples by scrolling down the page.

You can view the rest of the examples by clicking through the list or scrolling down
the page. These examples are fully working code. Which is to say, while they may rely
on other libraries as well as the library for which you are viewing the documentation,
they should not require modification to otherwise work.

API| Reference

The API Reference section () includes a list of the library functions and classes. The
API (Application Programming Interface) of a library is the set of functions and classes
the library provides. Essentially, the API defines how your program interfaces with the

functions and classes that you call in your code to use the library.

There is always at least one list item included. Libraries for which the code is included
in a single Python (.py) file, will only have one item. Libraries for which the code is
multiple Python files in a directory (called subpackages) will have multiple items in this
list. The LED Animation library has a series of subpackages, and therefore, multiple
items in this list.

Click on the first item in the list to begin viewing the API Reference section.

© adafruit_led_anination.snination

Implementation Notes Docs » adafruit_led_animation.animation © Edit on GitHub

adafruit_led_animation.animation

Animation base class for CircuitPython helper library for LED animations.

As with the Examples section, all of the API Reference content is on a single

page, and the links under APl Reference are anchor links to the specified section
of the page.

©Adafruit Industries Page 59 of 162

https://circuitpython.readthedocs.io/projects/led-animation/en/latest/api.html

When you click on an item in the API Reference section, you'll find details about the
classes and functions in the library. In the case of only one item in this section, all the
available functionality of the library will be contained within that first and only
subsection. However, in the case of a library that has subpackages, each item will
contain the features of the particular subpackage indicated by the link. The
documentation will cover all of the available functions of the library, including more
complex ones that may not interest you.

The first list item is the animation subpackage. If you scroll down, you'll begin to see
the available features of animation. They are listed alphabetically. Each of these
things can be called in your code. It includes the name and a description of the
specific function you would call, and if any parameters are necessary, lists those with
a description as well.

class adafruit_led_animation.animation.Animation(pixel_object, speed, color, peers=None, paused=False,
name=None)

Base class for animations.
add_cycle_complete_receiver{callback)
Adds an additional callback when the cycle completes.
Parameters

callback - Additional callback to trigger when a cycle completes. The callback is passed
the animation object instance.

after_draw()

Animation subclasses may implement after_draw() to do operations after the main draw() is
called.

You can view the other subpackages by clicking the link on the left or scrolling down
the page. You may be interested in something a little more practical. Here is an
example. To use the LED Animation library Comet animation, you would run the
following example.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT

This example animates a jade comet that bounces from end to end of the strip.

For QT Py Haxpress and a NeoPixel strip. Update pixel pin and pixel num to match
your wiring if
using a different board or form of NeoPixels.

This example will run on SAMD21 (M@) Express boards (such as Circuit Playground
Express or QT Py
Haxpress), but not on SAMD21 non-Express boards (such as QT Py or Trinket).

import board
import neopixel

from adafruit led animation.animation.comet import Comet
from adafruit led animation.color import JADE

©Adafruit Industries Page 60 of 162

Update to match the pin connected to your NeoPixels

pixel pin = board.A3

Update to match the number of NeoPixels you have connected
pixel num = 30

pixels = neopixel.NeoPixel(pixel pin, pixel num, brightness=0.5, auto write=False)
comet = Comet(pixels, speed=0.02, color=JADE, tail length=10, bounce=True)

while True:
comet.animate()

Note the line where you create the comet object. There are a number of items inside
the parentheses. In this case, you're provided with a fully working example. But what
if you want to change how the comet works? The code alone does not explain what
the options mean.

So, in the APl Reference documentation list, click the
adafruit led animation.animation.comet link and scroll down a bit until you
see the following.

class adafruit_led_animation.animation.comet.Comet{pixel_object, speed, color, tail_length=0, reverse=False,
bounce=False, name=None, ring=False)

A comet animation.
Parameters
pixel_object - The initialised LED object.
speed (float) - Animation speed in seconds, e.g. 0.1 .
color - Animation colorin (r, g, b) tuple, or exeeeeee hex format.

tail_length (int) - The length of the comet. Defaults to 25% of the length of the
pixel_object . Automatically compensates for a minimum of 2 and a maximum of the length
of the pixel_object .

reverse (bool) - Animates the comet in the reverse order. Defaults to False .
bounce (bool) - Comet will bounce back and forth. Defaults to True .

ring (bool) - Ring mode. Defaults to Fatse .

Look familiar? It is! This is the documentation for setting up the comet object. It
explains what each argument provided in the comet setup in the code meant, as well
as the other available features. For example, the code includes speed=0.02. The
documentation clarifies that this is the "Animation speed in seconds". The code
doesn'tinclude ring. The documentation indicates this is an available setting that
enables "Ring mode".

This type of information is available for any function you would set up in your code. If
you need clarification on something, wonder whether there's more options available,
or are simply interested in the details involved in the code you're writing, check out
the documentation for the CircuitPython libraries!

©Adafruit Industries Page 61 of 162

Other Links

This section is the same for every library. It includes a list of links to external sites,
which you can visit for more information about the CircuitPython Project and Adafruit.

That covers the CircuitPython library documentation! When you are ready to go
beyond the basic library features covered in a guide, or you're interested in
understanding those features better, the library documentation on Read the Docs has
you covered!

Recommended Editors

The CircuitPython code on your board detects when the files are changed or written
and will automatically re-start your code. This makes coding very fast because you
save, and it re-runs.

However, you must wait until the file is done being saved before unplugging or
resetting your board! On Windows using some editors this can sometimes take up to
90 seconds, on Linux it can take 30 seconds to complete because the text editor
does not save the file completely. Mac OS does not seem to have this delay, which is
nice!

This is really important to be aware of. If you unplug or reset the board before your
computer finishes writing the file to your board, you can corrupt the drive. If this
happens, you may lose the code you've written, so it's important to backup your code
to your computer regularly.

To avoid the likelihood of filesystem corruption, use an editor that writes out the file
completely when you save it. Check out the list of recommended editors below.

Recommended editors

- mu () is an editor that safely writes all changes (it's also our recommended
editor!)
- emacs () is also an editor that will fully write files on save ()

« Sublime Text () safely writes all changes

« Visual Studio Code () appears to safely write all changes

« gedit on Linux appears to safely write all changes

« IDLE (), in Python 3.8.1 or later, was fixed () to write all changes immediately

« Thonny () fully writes files on save

©Adafruit Industries Page 62 of 162

https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor
https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/manual/html_node/emacs/Customize-Save.html
https://www.sublimetext.com/
https://code.visualstudio.com/
https://docs.python.org/3/library/idle.html
https://bugs.python.org/issue36807
https://thonny.org/

Recommended only with particular settings or add-ons

- vim () / vi safely writes all changes. But set up vim to not write swapfiles () (.swp
files: temporary records of your edits) to CIRCUITPY. Run vim with vim -n, set
the no swapfile option, or setthe directory option to write swapfiles
elsewhere. Otherwise the swapfile writes trigger restarts of your program.

« The PyCharm IDE () is safe if "Safe Write" is turned on in Settings->System
Settings->Synchronization (true by default).

- If you are using Atom (), install the fsync-on-save package () or the language-
circuitpython package () so that it will always write out all changes to files on CIR
CUITPY.

« SlickEdit () works only if you add a macro to flush the disk ().

The editors listed below are specifically NOT recommended!

Editors that are NOT recommended

« notepad (the default Windows editor) and Notepad++ can be slow to write, so
the editors above are recommended! If you are using notepad, be sure to eject
the drive.

« IDLE in Python 3.8.0 or earlier does not force out changes immediately.

« nano (on Linux) does not force out changes.

« geany (on Linux) does not force out changes.

« Anything else - Other editors have not been tested so please use a
recommended one!

Advanced Serial Console on Windows

Windows 7 and 8.1

If you're using Windows 7 (or 8 or 8.1), you'll need to install drivers. See the Windows 7
and 8.1 Drivers page () for details. You will not need to install drivers on Mac, Linux or
Windows 10.

You are strongly encouraged to upgrade to Windows 10 if you are still using Windows
7 or Windows 8 or 8.1. Windows 7 has reached end-of-life and no longer receives
security updates. A free upgrade to Windows 10 is still available ().

©Adafruit Industries Page 63 of 162

http://www.vim.org/
http://www.vim.org/
https://vi.stackexchange.com/a/179
https://www.jetbrains.com/pycharm/
https://atom.io/
https://atom.io/
https://atom.io/packages/fsync-on-save
https://atom.io/packages/language-circuitpython
https://atom.io/packages/language-circuitpython
https://www.slickedit.com/
https://www.slickedit.com/
https://forums.adafruit.com/viewtopic.php?f=57&t=144412#p713290
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://www.zdnet.com/article/heres-how-you-can-still-get-a-free-windows-10-upgrade/

What's the COM?

First, you'll want to find out which serial port your board is using. When you plug your
board in to USB on your computer, it connects to a serial port. The port is like a door
through which your board can communicate with your computer using USB.

You'll use Windows Device Manager to determine which port the board is using. The
easiest way to determine which port the board is using is to first check without the
board plugged in. Open Device Manager. Click on Ports (COM & LPT). You should find
something already in that list with (COM#) after it where # is a number.

& Device Manager -] X
Eile Action View Help
¢ mE HdmlRe

v & blackbox
> i Audio inputs and outputs
> [Computer
> wm Disk drives
[Display adapters
> s Human Interface Devices
> @ IDE ATA/ATAPI controllers
i IEEE 1394 host controllers
» s Imaging devices
=2 Keyboards
> (‘ Mice and other pointing devices
> [Monitors
3 Network adapters
i@ Ports (COM & LPT)
i Communications Port (COM1)
» [Print queues

<

> = Printers
» [Processors
» Smart card readers
> [l Smart cards
> B Software devices
i| Sound, video and game controllers
» S Storage controllers
= System devices
> § Universal Serial Bus controllers
> 0 WSD Print Provider

Now plug in your board. The Device Manager list will refresh and a new item will
appear under Ports (COM & LPT). You'll find a different (COM#) after this item in the
list.

©Adafruit Industries Page 64 of 162

& Device Manager -] X
File Action View Help
e m D Hdml =

v & blackbox
» i} Audio inputs and outputs
» @ Computer
wa Disk drives
> [Display adapters
{5 Human Interface Devices
@ IDE ATA/ATAPI controllers
> @ IEEE 1394 host controllers
> o Imaging devices

> =2 Keyboards
> m Mice and other pointing devices
[Monitors
(3 Network adapters
> Portable Devices
i@ Ports (COM &LPT)
i Communications Port (COM1)
i USB Serial Device (COM3)
1 Print queues
> F3 Printers
3 Processors
Ly Smart card readers
> [Smart cards
> B Software devices
> M Sound, video and game controllers
> Su Storage controllers
@ System devices
§ Universal Serial Bus controllers
> = WSD Print Provider

<

Sometimes the item will refer to the name of the board. Other times it may be called
something like USB Serial Device, as seen in the image above. Either way, there is a
new (COM#) following the name. This is the port your board is using.

Install Putty

If you're using Windows, you'll need to download a terminal program. You're going to
use PuUTTY.

The first thing to do is download the latest version of PuTTY (). You'll want to
download the Windows installer file. It is most likely that you'll need the 64-bit version.

Download the file and install the program on your machine. If you run into issues, you
can try downloading the 32-bit version instead. However, the 64-bit version will work
on most PCs.

Now you need to open PuTTY.

« Under Connection type: choose the button next to Serial.

« In the box under Serial line, enter the serial port you found that your board is
using.

- In the box under Speed, enter 115200. This called the baud rate, which is the
speed in bits per second that data is sent over the serial connection. For boards
with built in USB it doesn't matter so much but for ESP8266 and other board

©Adafruit Industries Page 65 of 162

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

with a separate chip, the speed required by the board is 115200 bits per second.
So you might as well just use 115200!

If you want to save those settings for later, use the options under Load, save or delete
a stored session. Enter a name in the box under Saved Sessions, and click the Save
button on the right.

#R PuTTY Configuration ? X
Category:
=- Session Basic options for your PuTTY session
T L'oglglng Specify the destination you want to connect to
=) Termina
Serial line Speed
Keyboard
- Bel [com3) | [115200
; - Features Connection type: ~ ~ ~
=) Window (ORaw (OTelnet (ORlogin ()SSH (@ Serial
- Appearance
o) Load, save or delete a stored session
Behaviour
- Translation Saved Sessions
- Selection
Colours | Defautt Settings ' Load
=] Connection =
Data Save
Proxy
- Telnet Delete
Rlogin
+- SSH
Sevidl C_Iose window on exit: B
() Aways (O Never (® Onlyon clean exit
About Help Open Cancel

Once your settings are entered, you're ready to connect to the serial console. Click
"Open" at the bottom of the window. A new window will open.

EP COM3 - PuTTY - m] X

©Adafruit Industries Page 66 of 162

If no code is running, the window will either be blank or will look like the window
above. Now you're ready to see the results of your code.

Great job! You've connected to the serial console!

Advanced Serial Console on Mac

Connecting to the serial console on Mac does not require installing any drivers or
extra software. You'll use a terminal program to find your board, and screen to
connect to it. Terminal and screen both come installed by default.

What's the Port?

First you'll want to find out which serial port your board is using. When you plug your
board in to USB on your computer, it connects to a serial port. The port is like a door
through which your board can communicate with your computer using USB.

The easiest way to determine which port the board is using is to first check without
the board plugged in. Open Terminal and type the following:

ls /dev/tty.*

Each serial connection shows up in the /dev/ directory. It has a name that starts with
tty. . The command ls shows you a list of items in a directory. You can use * as a
wildcard, to search for files that start with the same letters but end in something
different. In this case, you're asking to see all of the listings in /dev/ that start with t
ty. and end in anything. This will show us the current serial connections.

000 4. bash
bash E bash

Last login: Fri Dec 8 17:55:09 on ttys003

1936 kattnifirobocrepe:~ $ Ls /dev/tty.*

/dev/tty.Bluetooth-Incoming-Por

1937 kattnifrobocrepe:~ $ ||

©Adafruit Industries Page 67 of 162

Now, plug your board. In Terminal, type:

ls /dev/tty.*

This will show you the current serial connections, which will now include your board.

00 4. bash
bash 81 bash
Last login: Fri Dec 8 17:55:09 on ttys0e3

1936 kattniflrobocrepe:~ $ Ls /dev/tty.*

/dev/tty.Bluetooth-Incoming-Por

1937 kattnifirobocrepe:~ $ Ls /dev/tty.*

/dev/tty.Bluetooth-Incoming-Portll/dev/tty .usbmoden141441

1937 Kattnifrobocrepe:~ $ I

A new listing has appeared called /dev/tty.usbmodem141441 . The tty.usbmodeml
41441 part of this listing is the name the example board is using. Yours will be called

something similar.

Using Linux, a new listing has appeared called /dev/ttyACMO . The ttyACMO part of
this listing is the name the example board is using. Yours will be called something

similar.

Connect with screen

Now that you know the name your board is using, you're ready connect to the serial
console. You're going to use a command called screen.The screen command is
included with MacOS. To connect to the serial console, use Terminal. Type the

following command, replacing board name with the name you found your board is

using:

screen /dev/tty.board name 115200

The first part of this establishes using the screen command. The second part tells

screen the name of the board you're trying to use. The third part tells screen what
baud rate to use for the serial connection. The baud rate is the speed in bits per
second that data is sent over the serial connection. In this case, the speed required

by the board is 115200 bits per second.

©Adafruit Industries

Page 68 of 162

[N ee’ 4. bash
bash 81 bash €2

Last login: Fri Dec 8 17:55:09 on ttys003

1936 kattniflrobocrepe:~ $ Ls /dev/tty.=*

/dev/tty.Bluetooth-Incoming-Por

1937 kattniflrobocrepe:~ $ Ls /dev/tty.x*

/dev/tty.Bluetooth-Incoming-Portll/dev/tty . usbmoden141441

1937 kattnifirobocrepe:~ $ screen /dev/tty.usbmodem141441 11523.’]'

Press enter to run the command. It will open in the same window. If no code is
running, the window will be blank. Otherwise, you'll see the output of your code.

Great job! You've connected to the serial console!

Advanced Serial Console on Linux

Connecting to the serial console on Linux does not require installing any drivers, but
you may need to install screen using your package manager. You'll use a terminal
program to find your board, and screen to connect to it. There are a variety of
terminal programs such as gnome-terminal (called Terminal) or Konsole on KDE.

The tio program works as well to connect to your board, and has the benefit of
automatically reconnecting. You would need to install it using your package manager.

What's the Port?

First you'll want to find out which serial port your board is using. When you plug your
board in to USB on your computer, it connects to a serial port. The port is like a door
through which your board can communicate with your computer using USB.

The easiest way to determine which port the board is using is to first check without
the board plugged in. Open your terminal program and type the following:

ls /dev/ttyACM*
Each serial connection shows up in the /dev/ directory. It has a name that starts with tt

yACM. The command ls shows you a list of items in a directory. You can use * as a
wildcard, to search for files that start with the same letters but end in something

©Adafruit Industries Page 69 of 162

different. In this case, You're asking to see all of the listings in /dev/ that start with ttyA
CM and end in anything. This will show us the current serial connections.

In the example below, the error is indicating that are no current serial connections
starting with ttyACM.

sommersoft@thespacebetween: ~

File Edit View Search Terminal Help
sommersoft@thespacebetween:~$ 1s /dev/ttyACM*

1s: cannot access '/dev/ttyACM*': No such file or directory
sommersoft@thespacebetween:~$

Now plug in your board. In your terminal program, type:

ls /dev/ttyACM*

This will show you the current serial connections, which will now include your board.

sommersoft@thespacebetween: ~

File Edit View Search Terminal Help

sommersoft@thespacebetween:~$ 1s /dev/ttyACM*

1s: cannot access '/dev/ttyACM*': No such file or directory
sommersoft@thespacebetween:~$ 1s /dev/ttyACM*

J/dev/ttyACMO

sommersoft@thespacebetween:~$ D

A new listing has appeared called /dev/ttyACMO. The ttyACMO part of this listing is
the name the example board is using. Yours will be called something similar.

Connect with screen

Now that you know the name your board is using, you're ready connect to the serial
console. You'll use a command called screen. You may need to install it using the
package manager.

©Adafruit Industries Page 70 of 162

To connect to the serial console, use your terminal program. Type the following
command, replacing board name with the name you found your board is using:

screen /dev/tty.board name 115200

The first part of this establishes using the screen command. The second part tells
screen the name of the board you're trying to use. The third part tells screen what
baud rate to use for the serial connection. The baud rate is the speed in bits per
second that data is sent over the serial connection. In this case, the speed required
by the board is 115200 bits per second.

File Edit View Search Terminal Help

sommersoft@thespacebetween:~$ 1ls /dev/ttyACM*

1s: cannot access '/dev/ttyACM*': No such file or directory
sommersoft@thespacebetween:~$ 1ls /dev/ttyACM*

J/dev/ttyACMO

sommersoft@thespacebetween:~$ screen /dev/ttyACMO 11520dD

Press enter to run the command. It will open in the same window. If no code is
running, the window will be blank. Otherwise, you'll see the output of your code.

Great job! You've connected to the serial console!

Permissions on Linux

If you try to run screen and it doesn't work, then you may be running into an issue
with permissions. Linux keeps track of users and groups and what they are allowed to
do and not do, like access the hardware associated with the serial connection for
running screen . So if you see something like this:

P Y Y

ackbar@desk: ~

ackbar@desk:~$ screen /dev/ttyACMO
[screen is terminating]
ackbar@desk:~$ l

©Adafruit Industries Page 71 of 162

then you may need to grant yourself access. There are generally two ways you can do
this. The first is to just run screen using the sudo command, which temporarily
gives you elevated privileges.

O S ® ackbar@desk: ~

ackbar@desk:~$ screen /dev/ttyACMO
[screen is terminating]

ackbar@desk:~$ sudo screen /dev/ttyACMO
[sudo] password for ackbar: l

Once you enter your password, you should be in:

' Y-Xo

ackbar@desk: ~

Auto-reload is on. Simply save files over USB to run them or enter REPL to disab
le.

Press any key to enter the REPL. Use CTRL-D to reload.

Adafruit CircuitPython 2.1.0 on 2017-10-17; Adafruit Trinket MO with samd2lel8

>>>

The second way is to add yourself to the group associated with the hardware. To
figure out what that group is, use the command 1ls -1 as shown below. The group
name is circled in red.

Then use the command adduser to add yourself to that group. You need elevated

privileges to do this, so you'll need to use sudo . In the example below, the group is a
dm and the user is ackbar.

-

ackbar@desk: ~

ackbar@desk:~$ 1s -1 _/dev/ttyACMO

crw-rw---- 1 rootiadm 166, © Dec 21 08:29 /dev/ttyACMO
ackbar@desk:~$ sudo adduser ackbar (adm

Adding user “ackbar' to group ‘adm' ...

Adding user ackbar to group adm
Done.
ackbar@desk:~$ l

After you add yourself to the group, you'll need to logout and log back in, or in some
cases, reboot your machine. After you log in again, verify that you have been added

to the group using the command groups . If you are still not in the group, reboot and
check again.

©Adafruit Industries Page 72 of 162

O S ® ackbar@desk: ~

ackbar@desk:~$ groups
ackbar adm sudo
ackbar@desk:~$]

And now you should be able to run screen without using sudo.

O S @ ackbar@desk: ~

ackbar@desk:~$ groups

ackbar adm sudo

ackbar@desk:~$ screen /dev/ttyACMO 115200[]

And you're in:
O S ® ackbar@desk: ~

Auto-reload is on. Simply save files over USB to run them or enter REPL to disab
le.

Press any key to enter the REPL. Use CTRL-D to reload.

Adafruit CircuitPython 2.1.0 on 2017-10-17; Adafruit Trinket M@ with samd2lel8
>>> I

The examples above use screen, but you can also use other programs, such as put
ty or picocom, if you prefer.

Frequently Asked Questions

These are some of the common questions regarding CircuitPython and CircuitPython
microcontrollers.

What are some common acronyms to know?

CP or CPy = CircuitPython ()

CPC = Circuit Playground Classic () (does not run CircuitPython)
CPX = Circuit Playground Express ()

CPB = Circuit Playground Bluefruit ()

©Adafruit Industries Page 73 of 162

https://circuitpython.org
https://www.adafruit.com/product/3000
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/4333

Using Older Versions

As CircuitPython development continues and there are new releases, Adafruit
will stop supporting older releases. Visit https://circuitpython.org/downloads to
download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.
Please update CircuitPython and then visit https://circuitpython.org/libraries to
download the latest Library Bundle.

| have to continue using CircuitPython 6.x or earlier.
Where can | find compatible libraries?

We are no longer building or supporting the CircuitPython 6.x or earlier library
bundles. We highly encourage you to update CircuitPython to the latest version ()
and use the current version of the libraries (). However, if for some reason you
cannot update, here are the last available library bundles for older versions:

« 2.x bundle ()
« 3.x bundle ()
« 4.x bundle ()
« 5.x bundle ()
« 6.X bundle ()

Python Arithmetic

Does CircuitPython support floating-point numbers?

All CircuitPython boards support floating point arithmetic, even if the
microcontroller chip does not support floating point in hardware. Floating point
numbers are stored in 30 bits, with an 8-bit exponent and a 22-bit mantissa. Note
that this is two bits less than standard 32-bit single-precision floats. You will get
about 5-1/2 digits of decimal precision.

(The broadcom port may provide 64-bit floats in some cases.)

©Adafruit Industries Page 74 of 162

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-2.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-3.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20200707/adafruit-circuitpython-bundle-4.x-mpy-20200707.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20210129/adafruit-circuitpython-bundle-5.x-mpy-20210129.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20211213/adafruit-circuitpython-bundle-6.x-mpy-20211213.zip

Does CircuitPython support long integers, like regular
Python?

Python long integers (integers of arbitrary size) are available on most builds, except
those on boards with the smallest available firmware size. On these boards,
integers are stored in 31 bits.

Boards without long integer support are mostly SAMD21 ("MOQ") boards without an
external flash chip, such as the Adafruit Gemma MO, Trinket MO, QT Py MO, and the
Trinkey series. There are also a number of third-party boards in this category.
There are also a few small STM third-party boards without long integer support.

time.localtime(), time.mktime(), time.time() , and
time.monotonic ns() are available only on builds with long integers.

Wireless Connectivity

How do | connect to the Internet with CircuitPython?

If you'd like to include WiFi in your project, your best bet is to use a board that is
running natively on ESP32 chipsets - those have WiFi built in!

If your development board has an SPI port and at least 4 additional pins, you can
check out this guide () on using AirLift with CircuitPython - extra wiring is required
and some boards like the MacroPad or NeoTrellis do not have enough available
pins to add the hardware support.

For further project examples, and guides about using AirLift with specific hardware,
check out the Adafruit Learn System ().

How do | do BLE (Bluetooth Low Energy) with
CircuitPython?

The nRF52840 and nRF52833 boards have the most complete BLE
implementation. Your program can act as both a BLE central and peripheral. As a
central, you can scan for advertisements, and connect to an advertising board. As a
peripheral, you can advertise, and you can create services available to a central.
Pairing and bonding are supported.

ESP32-C3 and ESP32-S3 boards currently provide an incomplete () BLE
implementation. Your program can act as a central, and connect to a peripheral.

©Adafruit Industries Page 75 of 162

https://learn.adafruit.com/adafruit-io-basics-airlift
https://learn.adafruit.com/search?q=airlift
https://github.com/adafruit/circuitpython/issues/5926

You can advertise, but you cannot create services. You cannot advertise
anonymously. Pairing and bonding are not supported.

The ESP32 could provide a similar implementation, but it is not yet available. Note
that the ESP32-5S2 does not have Bluetooth capability.

On most other boards with adequate firmware space, BLE is available for use with
AirLift () or other NINA-FW-based co-processors. Some boards have this
coprocessor on board, such as the PyPortal (). Currently, this implementation only
supports acting as a BLE peripheral. Scanning and connecting as a central are not
yet implemented. Bonding and pairing are not supported.

Are there other ways to communicate by radio with
CircuitPython?

Check out Adafruit's RFM boards ()for simple radio communication supported by
CircuitPython, which can be used over distances of 100m to over a km, depending
on the version. The RFM SAMD21 MO boards can be used, but they were not
designed for CircuitPython, and have limited RAM and flash space; using the RFM
breakouts or FeatherWings with more capable boards will be easier.

Asyncio and Interrupts

Is there asyncio support in CircuitPython?

There is support for asyncio starting with CircuitPython 7.1.0, on all boards except
the smallest SAMD21 builds. Read about using it in the Cooperative Multitasking in
CircuitPython () Guide.

Does CircuitPython support interrupts?

No. CircuitPython does not currently support interrupts - please use asyncio for
multitasking / 'threaded' control of your code

Status RGB LED

©Adafruit Industries Page 76 of 162

https://learn.adafruit.com/adafruit-airlift-breakout/circuitpython-ble
https://learn.adafruit.com/adafruit-airlift-breakout/circuitpython-ble
https://learn.adafruit.com/adafruit-pyportal/circuitpython-ble
https://www.adafruit.com/?q=rfm&sort=BestMatch
https://learn.adafruit.com/cooperative-multitasking-in-circuitpython
https://learn.adafruit.com/cooperative-multitasking-in-circuitpython

My RGB NeoPixel/DotStar LED is blinking funny colors -
what does it mean?

The status LED can tell you what's going on with your CircuitPython board. Read
more here for what the colors mean! ()

Memory Issues

What is a MemoryError?

Memory allocation errors happen when you're trying to store too much on the
board. The CircuitPython microcontroller boards have a limited amount of memory
available. You can have about 250 lines of code on the MO Express boards. If you
try to import too many libraries, a combination of large libraries, or run a program
with too many lines of code, your code will fail to run and you will receive a
MemoryError in the serial console.

What do | do when | encounter a MemoryError?

Try resetting your board. Each time you reset the board, it reallocates the memory.
While this is unlikely to resolve your issue, it's a simple step and is worth trying.

Make sure you are using .mpy versions of libraries. All of the CircuitPython libraries
are available in the bundle in a .mpy format which takes up less memory than .py
format. Be sure that you're using the latest library bundle () for your version of
CircuitPython.

If that does not resolve your issue, try shortening your code. Shorten comments,
remove extraneous or unneeded code, or any other clean up you can do to
shorten your code. If you're using a lot of functions, you could try moving those
into a separate library, creating a .mpy of that library, and importing it into your
code.

You can turn your entire file into a .mpy and import that into code.py. This means
you will be unable to edit your code live on the board, but it can save you space.

Can the order of my import statements affect memory?

It can because the memory gets fragmented differently depending on allocation
order and the size of objects. Loading .mpy files uses less memory so its
recommended to do that for files you aren't editing.

©Adafruit Industries Page 77 of 162

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#circuitpython-rgb-status-light-2978455-24
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#circuitpython-rgb-status-light-2978455-24
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases

How can | create my own .mpy files?

You can make your own .mpy versions of files with mpy-cross .

You can download mpy-cross for your operating system from here (). Builds are
available for Windows, macOS, x64 Linux, and Raspberry Pi Linux. Choose the
latest mpy-cross whose version matches the version of CircuitPython you are
using.

To make a .mpy file, run ./mpy-cross path/to/yourfile.py to create a
yourfile.mpy in the same directory as the original file.

How do | check how much memory | have free?

Run the following to see the number of bytes available for use:

import gc
gc.mem free()

Unsupported Hardware

Is ESP8266 or ESP32 supported in CircuitPython? Why
not?

We dropped ESP8266 support as of 4.x - For more information please read about it
here ()!

As of CircuitPython 8.x we have started to support ESP32 and ESP32-C3 and have
added a WiFi workflow for wireless coding! ()

We also support ESP32-S2 & ESP32-S3, which have native USB.

Does Feather MO support WINC15007?
No, WINC1500 will not fit into the MO flash space.

Can AVRs such as ATmega328 or ATmega2560 run
CircuitPython?

No.

©Adafruit Industries Page 78 of 162

https://adafruit-circuit-python.s3.amazonaws.com/index.html?prefix=bin/mpy-cross/
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-for-esp8266
https://learn.adafruit.com/circuitpython-with-esp32-quick-start
https://learn.adafruit.com/circuitpython-with-esp32-quick-start

Troubleshooting

From time to time, you will run into issues when working with CircuitPython. Here are
a few things you may encounter and how to resolve them.

As CircuitPython development continues and there are new releases, Adafruit
will stop supporting older releases. Visit https://circuitpython.org/downloads to
download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.
Please update CircuitPython and then visit https://circuitpython.org/libraries to
download the latest Library Bundle.

Always Run the Latest Version of
CircuitPython and Libraries

As CircuitPython development continues and there are new releases, Adafruit will
stop supporting older releases. You need to update to the latest CircuitPython. ().

You need to download the CircuitPython Library Bundle that matches your version of
CircuitPython. Please update CircuitPython and then download the latest bundle ().

As new versions of CircuitPython are released, Adafruit will stop providing the
previous bundles as automatically created downloads on the Adafruit CircuitPython
Library Bundle repo. If you must continue to use an earlier version, you can still
download the appropriate version of mpy-cross from the particular release of
CircuitPython on the CircuitPython repo and create your own compatible .mpy library
files. However, it is best to update to the latest for both CircuitPython and the library
bundle.

| have to continue using CircuitPython 5.x or earlier.
Where can | find compatible libraries?

Adafruit is no longer building or supporting the CircuitPython 5.x or earlier library
bundles. You are highly encourged to update CircuitPython to the latest version () and

use the current version of the libraries (). However, if for some reason you cannot

update, links to the previous bundles are available in the FAQ ().

©Adafruit Industries Page 79 of 162

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://learn.adafruit.com/welcome-to-circuitpython/frequently-asked-questions#faq-3105289

Bootloader (boardnameBOOT) Drive Not
Present

You may have a different board.

Only Adafruit Express boards and the SAMD21 non-Express boards ship with the UF2
bootloader ()installed. The Feather MO Basic, Feather MO Adalogger, and similar
boards use a regular Arduino-compatible bootloader, which does not show a boardna
meBOOT drive.

MakeCode

If you are running a MakeCode () program on Circuit Playground Express, press the
reset button just once to get the CPLAYBOOT drive to show up. Pressing it twice will
not work.

MacOS

DriveDx and its accompanything SAT SMART Driver can interfere with seeing the
BOOT drive. See this forum post () for how to fix the problem.

Windows 10

Did you install the Adafruit Windows Drivers package by mistake, or did you upgrade
to Windows 10 with the driver package installed? You don't need to install this
package on Windows 10 for most Adafruit boards. The old version (v1.5) can interfere
with recognizing your device. Go to Settings -> Apps and uninstall all the "Adafruit"
driver programs.

Windows 7 or 8.1

To use a CircuitPython-compatible board with Windows 7 or 8.1, you must install a
driver. Installation instructions are available here ().

It is recommended () that you upgrade to Windows 10 if possible; an upgrade is

probably still free for you. Check here ().

©Adafruit Industries Page 80 of 162

file:///home/deploy/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader
file:///home/deploy/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader
file:///home/deploy/makecode/sharing-and-saving?view=all#step-1-bootloader-mode
https://forums.adafruit.com/viewtopic.php?f=58&t=161917&p=799309#p799215
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9

The Windows Drivers installer was last updated in November 2020 (v2.5.0.0) .
Windows 7 drivers for CircuitPython boards released since then, including

RP2040 boards, are not yet available. The boards work fine on Windows 10. A
new release of the drivers is in process.

You should now be done! Test by unplugging and replugging the board. You should
see the CIRCUITPY drive, and when you double-click the reset button (single click on
Circuit Playground Express running MakeCode), you should see the appropriate boar
dnameBOOT drive.

Let us know in the Adafruit support forums () or on the Adafruit Discord () if this does
not work for you!

Windows Explorer Locks Up When
Accessing boardnameBOOT Drive

On Windows, several third-party programs that can cause issues. The symptom is that
you try to access the boardnameBOOT drive, and Windows or Windows Explorer
seems to lock up. These programs are known to cause trouble:

« AIDA64: to fix, stop the program. This problem has been reported to AIDA6G4.
They acquired hardware to test, and released a beta version that fixes the
problem. This may have been incorporated into the latest release. Please let us
know in the forums if you test this.

- Hard Disk Sentinel

« Kaspersky anti-virus: To fix, you may need to disable Kaspersky completely.
Disabling some aspects of Kaspersky does not always solve the problem. This
problem has been reported to Kaspersky.

« ESET NOD32 anti-virus: There have been problems with at least version
9.0.386.0, solved by uninstallation.

Copying UF2 to boardnameBOOT Drive
Hangs at 0% Copied

On Windows, a Western Dlgital (WD) utility that comes with their external USB drives
can interfere with copying UF2 files to the boardnameBOOT drive. Uninstall that utility
to fix the problem.

©Adafruit Industries Page 81 of 162

https://forums.adafruit.com
https://adafru.it/discord

CIRCUITPY Drive Does Not Appear or
Disappears Quickly

Kaspersky anti-virus can block the appearance of the CIRCUITPY drive. There has not
yet been settings change discovered that prevents this. Complete uninstallation of
Kaspersky fixes the problem.

Norton anti-virus can interfere with CIRCUITPY. A user has reported this problem on
Windows 7. The user turned off both Smart Firewall and Auto Protect, and CIRCUITPY
then appeared.

Sophos Endpoint security software can cause CIRCUITPY to disappear () and the
BOOT drive to reappear. It is not clear what causes this behavior.

Device Errors or Problems on Windows

Windows can become confused about USB device installations. This is particularly
true of Windows 7 and 8.1. It is recommended () that you upgrade to Windows 10 if

possible; an upgrade is probably still free for you: see this @ ().

If not, try cleaning up your USB devices. Use Uwe Sieber's Device Cleanup Tool () (on

that page, scroll down to "Device Cleanup Tool"). Download and unzip the tool.
Unplug all the boards and other USB devices you want to clean up. Run the tool as
Administrator. You will see a listing like this, probably with many more devices. It is
listing all the USB devices that are not currently attached.

oy
CIN
File Devices Options Help
Non-present devices:
Device Name : Last used Class Senvice Enumerator COM Pot
wes Adafrut Rotary Trinkey M USB Device 19 Minutes DiskDrive disk USBSTOR
CIRCUITPY 19 Minetes WPD WUDFWpdFs SWD
CircuitPython Audio 19 Minutes MEDIA usbaudio usB
§ CircuitPython usb_midi ports[0] 19 Minutes SoftwareDevice SwWD
§ CircuitPython usb_midi ports[0] 19 Minutes SoftwareDevice SwWD
+ HID-compliant system multi-axis controller 19 Minutes HIDClass HID
¥ USB Composte Device 19 Minutes usB usbcegp usB
+ USB Input Device 19 Minutes HIDClass HidUsb usB
¥ USB Mass Storage Device 19 Minutes usB USBSTOR usB
i USB Serial Device (COM3) 19 Minutes Ports usbser use Ccom3
wer Volume 19 Minutes Volume volume STORAGE
Non-present Devices: 11 Selected Devices: 0

©Adafruit Industries Page 82 of 162

https://forums.adafruit.com/viewtopic.php?f=60&t=187629
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://www.cnet.com/tech/services-and-software/windows-10-download/
https://www.uwe-sieber.de/misc_tools_e.html

Select all the devices you want to remove, and then press Delete. It is usually safe
just to select everything. Any device that is removed will get a fresh install when you
plug it in. Using the Device Cleanup Tool also discards all the COM port assignments
for the unplugged boards. If you have used many Arduino and CircuitPython boards,
you have probably seen higher and higher COM port numbers used, seemingly
without end. This will fix that problem.

Serial Console in Mu Not Displaying
Anything

There are times when the serial console will accurately not display anything, such as,
when no code is currently running, or when code with no serial output is already
running before you open the console. However, if you find yourself in a situation
where you feel it should be displaying something like an error, consider the following.

Depending on the size of your screen or Mu window, when you open the serial
console, the serial console panel may be very small. This can be a problem. A basic
CircuitPython error takes 10 lines to display!

Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.
code.py output:
Traceback (most recent call last):
File "code.py", line 7
SyntaxError: invalid syntax

Press any key to enter the REPL. Use CTRL-D to reload.

More complex errors take even more lines!

Therefore, if your serial console panel is five lines tall or less, you may only see blank
lines or blank lines followed by Press any key to enter the REPL. Use CTRL-D
to reload. . If this is the case, you need to either mouse over the top of the panel to
utilise the option to resize the serial panel, or use the scrollbar on the right side to
scroll up and find your message.

Adafruit CircuitPython REPL |
A

SCROLL BACK TO FIND OUTPUT AAA '

Press any key to enter the REPL. Use CTRL-D to reload.

Where is my error?

v
Adafruit O

This applies to any kind of serial output whether it be error messages or print
statements. So before you start trying to debug your problem on the hardware side,

©Adafruit Industries Page 83 of 162

be sure to check that you haven't simply missed the serial messages due to serial
output panel height.

code.py Restarts Constantly

CircuitPython will restart code.py if you or your computer writes to something on the
CIRCUITPY drive. This feature is called auto-reload, and lets you test a change to your
program immediately.

Some utility programs, such as backup, anti-virus, or disk-checking apps, will write to
the CIRCUITPY as part of their operation. Sometimes they do this very frequently,
causing constant restarts.

Acronis True Image and related Acronis programs on Windows are known to cause
this problem. It is possible to prevent this by disabling the " (JAcronis Managed

Machine Service Mini" ().

If you cannot stop whatever is causing the writes, you can disable auto-reload by
putting this code in boot.py or code.py:

import supervisor

supervisor.disable autoreload()

CircuitPython RGB Status Light

Nearly all CircuitPython-capable boards have a single NeoPixel or DotStar RGB LED
on the board that indicates the status of CircuitPython. A few boards designed before
CircuitPython existed, such as the Feather MO Basic, do not.

Circuit Playground Express and Circuit Playground Bluefruit have multiple RGB LEDs,
but do NOT have a status LED. The LEDs are all green when in the bootloader. In
versions before 7.0.0, they do NOT indicate any status while running CircuitPython.

CircuitPython 7.0.0 and Later

The status LED blinks were changed in CircuitPython 7.0.0 in order to save battery
power and simplify the blinks. These blink patterns will occur on single color LEDs
when the board does not have any RGB LEDs. Speed and blink count also vary for
this reason.

©Adafruit Industries Page 84 of 162

https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder
https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder
https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder

On start up, the LED will blink YELLOW multiple times for 1 second. Pressing the
RESET button (or on Espressif, the BOOT button) during this time will restart the board
and then enter safe mode. On Bluetooth capable boards, after the yellow blinks, there
will be a set of faster blue blinks. Pressing reset during the BLUE blinks will clear
Bluetooth information and start the device in discoverable mode, so it can be used

with a BLE code editor.

Once started, CircuitPython will blink a pattern every 5 seconds when no user code is

running to indicate why the code stopped:

« 1 GREEN blink: Code finished without error.

- 2 RED blinks: Code ended due to an exception. Check the serial console for

details.

« 3 YELLOW blinks: CircuitPython is in safe mode. No user code was run. Check

the serial console for safe mode reason.

When in the REPL, CircuitPython will set the status LED to WHITE. You can change the
LED color from the REPL. The status indicator will not persist on non-NeoPixel or

DotStar LEDs.

The CircuitPython Boot Sequence

Version 7.0 and later

Bootloader Mode
Reset LED solid red

usB i .
| RESET | g LED Pulses slowly,
C°""?eded RGB LED Green

RESET o
not pushed . =
go to User 2

Code LED Pulses quickly, RGB LED red

The bootloader
tums on th
Red LED §

Boardis
powered B
on and
bootloader
code starts

Wait 500

milliseconds M8

to see if M
RESET pushe

: e —

User Code Mode Reset Red LED blinks

Safe Mode: board is a
USB drive, code.py and
boot py are not run

RESET
pushed . Yes|
within 1000ms

Run user code:

ARDUINO Code
i boot.py runs then code.py

Type
? RGB LED

blinks Yellow

RESET

v pushed .Yes
CircuitPython waits an i within 1000ms,
additional 1000ms for a ?

RESET to Safe Mode

Code starts immedi erased,

BLE
the device will be discoverable and

ly 3 !
LED blinks fast blue for Bluetooth boards the blue LED will be solid (not blink)

Version 7.00 @Adafruit L

CircuitPython 6.3.0 and earlier

Here's what the colors and blinking mean:

« steady GREEN: code.py (or code.txt, main.py, or main.txt) is running

©Adafruit Industries

Page 85 of 162

« pulsing GREEN: code.py (etc.) has finished or does not exist

steady YELLOW at start up: (4.0.0-alpha.5 and newer) CircuitPython is waiting for

a reset to indicate that it should start in safe mode

pulsing YELLOW: Circuit Python is in safe mode: it crashed and restarted
steady WHITE: REPL is running
steady BLUE: boot.py is running

Colors with multiple flashes following indicate a Python exception and then indicate
the line number of the error. The color of the first flash indicates the type of error:

« GREEN: IndentationError
« CYAN: SyntaxError

« WHITE: NameError

« ORANGE: OSError

« PURPLE: ValueError

« YELLOW: other error

These are followed by flashes indicating the line number, including place value. WHIT
E flashes are thousands' place, BLUE are hundreds' place, YELLOW are tens' place,
and CYAN are one's place. So for example, an error on line 32 would flash YELLOW
three times and then CYAN two times. Zeroes are indicated by an extra-long dark gap.

©Adafruit Industries

The CircuitPython Boot Sequence

Bootloader Mode

Boardis
powered
on and
bootloader
code starts

1

The bootloader

RESET pushed

Reset
LED solid red

RESET
pushed

RESET
not pushed
go to User
Code

usB
> Connected
?

tums on the
Red LED

Yes ulses slo

'Y,
RGB LED Green

Wait 500
milliseconds
to see if

No

LED Pulses quickly.
RGB LED red

User Code Mode Red LED blinks Safe Mode: board is a USB drive,
Reset 3 times code.py and boot.py are not run
ARDUINO Code il Bootloader
S0 Piihon, _ Sestse RESET ™ ves . - 48
Y,E additional . T pake

Code starts immediately

pushed
2

700ms for a
RESET to
Safe Mode

No

RGB LED
is Yellow

Run user code
Boot py runs then code.py

L Version 1.00 @Adafruit

Page 86 of 162

Serial console showing ValueError:
Incompatible .mpy file

This error occurs when importing a module that is stored as a .mpy binary file that
was generated by a different version of CircuitPython than the one its being loaded
into. In particular, the mpy binary format changed between CircuitPython versions 6.x
and 7.x, 2.x and 3.x, and 1.x and 2.x.

So, for instance, if you upgraded to CircuitPython 7.x from 6.x you’ll need to download
a newer version of the library that triggered the error on import . All libraries are
available in the Adafruit bundle ().

CIRCUITPY Drive Issues

You may find that you can no longer save files to your CIRCUITPY drive. You may find
that your CIRCUITPY stops showing up in your file explorer, or shows up as NO_NAM
E. These are indicators that your filesystem has issues. When the CIRCUITPY disk is
not safely ejected before being reset by the button or being disconnected from USB,
it may corrupt the flash drive. It can happen on Windows, Mac or Linux, though it is
more common on Windows.

Be aware, if you have used Arduino to program your board, CircuitPython is no longer
able to provide the USB services. You will need to reload CircuitPython to resolve this
situation.

The easiest first step is to reload CircuitPython. Double-tap reset on the board so you
get a boardnameBOOT drive rather than a CIRCUITPY drive, and copy the latest
version of CircuitPython (.uf2) back to the board. This may restore CIRCUITPY
functionality.

If reloading CircuitPython does not resolve your issue, the next step is to try putting
the board into safe mode.

Safe Mode

Whether you've run into a situation where you can no longer edit your code.py on
your CIRCUITPY drive, your board has gotten into a state where CIRCUITPY is read-
only, or you have turned off the CIRCUITPY drive altogether, safe mode can help.

©Adafruit Industries Page 87 of 162

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest

Safe mode in CircuitPython does not run any user code on startup, and disables auto-
reload. This means a few things. First, safe mode bypasses any code in boot.py
(where you can set CIRCUITPY read-only or turn it off completely). Second, it does not
run the code in code.py. And finally, it does not automatically soft-reload when data is
written to the CIRCUITPY drive.

Therefore, whatever you may have done to put your board in a non-interactive state,
safe mode gives you the opportunity to correct it without losing all of the data on the
CIRCUITPY drive.

Entering Safe Mode in CircuitPython 7.x and Later

To enter safe mode when using CircuitPython 7.x, plug in your board or hit reset
(highlighted in red above). Immediately after the board starts up or resets, it waits
1000ms. On some boards, the onboard status LED will blink yellow during that time. If
you press reset during that 1000ms, the board will start up in safe mode. It can be
difficult to react to the yellow LED, so you may want to think of it simply as a "slow"
double click of the reset button. (Remember, a fast double click of reset enters the
bootloader.)

Entering Safe Mode in CircuitPython 6.x

To enter safe mode when using CircuitPython 6.x, plug in your board or hit reset
(highlighted in red above). Immediately after the board starts up or resets, it waits
700ms. On some boards, the onboard status LED (highlighted in green above) will
turn solid yellow during this time. If you press reset during that 700ms, the board will
start up in safe mode. It can be difficult to react to the yellow LED, so you may want to
think of it simply as a slow double click of the reset button. (Remember, a fast double
click of reset enters the bootloader.)

In Safe Mode

Once you've entered safe mode successfully in CircuitPython 6.x, the LED will pulse
yellow.

If you successfully enter safe mode on CircuitPython 7.x, the LED will intermittently
blink yellow three times.

If you connect to the serial console, you'll find the following message.

©Adafruit Industries Page 88 of 162

Auto-reload is off.
Running in safe mode! Not running saved code.

CircuitPython is in safe mode because you pressed the reset button during boot.
Press again to exit safe mode.

Press any key to enter the REPL. Use CTRL-D to reload.

You can now edit the contents of the CIRCUITPY drive. Remember, your code will not
run until you press the reset button, or unplug and plug in your board, to get out of
safe mode.

At this point, you'll want to remove any user code in code.py and, if present, the boot.
py file from CIRCUITPY. Once removed, tap the reset button, or unplug and plug in
your board, to restart CircuitPython. This will restart the board and may resolve your
drive issues. If resolved, you can begin coding again as usual.

If safe mode does not resolve your issue, the board must be completely erased and
CircuitPython must be reloaded onto the board.

You WILL lose everything on the board when you complete the following steps. If

possible, make a copy of your code before continuing.

To erase CIRCUITPY: storage.erase filesystem()

CircuitPython includes a built-in function to erase and reformat the filesystem. If you
have a version of CircuitPython older than 2.3.0 on your board, you can update to the
newest version () to do this.

1. Connect to the CircuitPython REPL () using Mu or a terminal program.
2. Type the following into the REPL:

>>> import storage
>>> storage.erase filesystem()

CIRCUITPY will be erased and reformatted, and your board will restart. That's it!

Erase CIRCUITPY Without Access to the REPL

If you can't access the REPL, or you're running a version of CircuitPython previous to
2.3.0 and you don't want to upgrade, there are options available for some specific
boards.

©Adafruit Industries Page 89 of 162

file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

The options listed below are considered to be the "old way" of erasing your board.
The method shown above using the REPL is highly recommended as the best method
for erasing your board.

For the specific boards listed below:

If the board you are trying to erase is listed below, follow the steps to use the file to
erase your board.

1. Download the correct erase file:

Circuit Playground Express

Feather MO Express

Feather M4 Express

Metro MO Express

Metro M4 Express QSPI Eraser

Trellis M4 Express (QSPI)

Grand Central M4 Express (QSPI)

PyPortal M4 Express (QSPI)

Circuit Playground Bluefruit (QSPI)

Monster M4SK (QSPI)

PyBadge/PyGamer QSPI Eraser.UF2

©Adafruit Industries Page 90 of 162

https://cdn-learn.adafruit.com/assets/assets/000/048/745/original/flash_erase_express.ino.circuitplay.uf2?1512152080
https://cdn-learn.adafruit.com/assets/assets/000/048/746/original/flash_erase_express.ino.feather_m0_express.uf2?1512152098
https://cdn-learn.adafruit.com/assets/assets/000/076/217/original/flash_erase.ino.feather_m4.uf2
https://cdn-learn.adafruit.com/assets/assets/000/048/747/original/flash_erase_express.ino.metro_m0.uf2?1512152103
https://cdn-learn.adafruit.com/assets/assets/000/073/820/original/Metro_M4_QSPI_Eraser.UF2?1553805937
https://cdn-learn.adafruit.com/assets/assets/000/067/535/original/Trellis_M4_QSPI_Eraser.UF2?1544719380
https://cdn-learn.adafruit.com/assets/assets/000/069/314/original/GC_M4_QSPI_Erase.UF2?1547404471
https://cdn-learn.adafruit.com/assets/assets/000/072/252/original/PYPORTAL_QSPI_Eraser.UF2?1551738305
https://cdn-learn.adafruit.com/assets/assets/000/082/950/original/CP_Bluefruit_QSPI_Erase.UF2?1572026649
https://cdn-learn.adafruit.com/assets/assets/000/083/330/original/M4SK_QSPI_Eraser.UF2?1572551433
https://cdn-learn.adafruit.com/assets/assets/000/083/331/original/PyBadge_QSPI_Eraser.UF2?1572551613

CLUE_Flash_Erase.UF2

Matrix_Portal_M4_(QSPI).UF2

2. Double-click the reset button on the board to bring up the boardnameBOOT

3. Drag the erase .uf2 file to the boardnameBOOT drive.

4. The status LED will turn yellow or blue, indicating the erase has started.

5. After approximately 15 seconds, the status LED will light up green. On the
NeoTrellis M4 this is the first NeoPixel on the grid

6. Double-click the reset button on the board to bring up the boardnameBOOT d
rive.

7. Drag the appropriate latest release of CircuitPython () .uf2 file to the boardnam
eBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer
again.

If the LED flashes red during step 5, it means the erase has failed. Repeat the steps
starting with 2.

If you haven't already downloaded the latest release of CircuitPython for your board,

check out the installation page (). You'll also need to load your code and reinstall your

libraries!

For SAMD21 non-Express boards that have a UF2
bootloader:

Any SAMD21-based microcontroller that does not have external flash available is
considered a SAMD21 non-Express board. Non-Express boards that have a UF2
bootloader include Trinket MO, GEMMA MO, QT Py MO, and the SAMD21-based
Trinkey boards.

If you are trying to erase a SAMD21 non-Express board, follow these steps to erase
your board.

1. Download the erase file:

SAMD21 non-Express Boards

©Adafruit Industries Page 91 of 162

https://cdn-learn.adafruit.com/assets/assets/000/088/454/original/CLUE_Flash_Erase.UF2?1581873830
https://cdn-learn.adafruit.com/assets/assets/000/098/741/original/Matrix_Portal_M4_%28QSPI%29.UF2?1611076081
https://circuitpython.org/downloads
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
https://cdn-learn.adafruit.com/assets/assets/000/048/748/original/erase_m0.uf2

2. Double-click the reset button on the board to bring up the boardnameBOOT
drive.

3. Drag the erase .uf2 file to the boardnameBOOT drive.

4. The boot LED will start flashing again, and the boardnameBOOT drive will
reappeatr.

5. Drag the appropriate latest release CircuitPython () .uf2 file to the
boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer
again.

If you haven't already downloaded the latest release of CircuitPython for your board,

check out the installation page () YYou'll also need to load your code and reinstall

your libraries!

For SAMD21 non-Express boards that do not have a UF2
bootloader:

Any SAMD21-based microcontroller that does not have external flash available is
considered a SAMD21 non-Express board. Non-Express boards that do not have a
UF2 bootloader include the Feather MO Basic Proto, Feather Adalogger, or the
Arduino Zero.

If you are trying to erase a non-Express board that does not have a UF2 bootloader, f
ollow these directions to reload CircuitPython using bossac (), which will erase and
re-create CIRCUITPY.

Running Out of File Space on SAMD21 Non-
Express Boards

Any SAMD21-based microcontroller that does not have external flash available is
considered a SAMD21 non-Express board. This includes boards like the Trinket MO,
GEMMA MO, QT Py MO, and the SAMD21-based Trinkey boards.

The file system on the board is very tiny. (Smaller than an ancient floppy disk.) So, its

likely you'll run out of space but don't panic! There are a number of ways to free up
space.

©Adafruit Industries Page 92 of 162

https://circuitpython.org/downloads
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/non-uf2-installation
file:///home/welcome-to-circuitpython/non-uf2-installation
file:///home/welcome-to-circuitpython/non-uf2-installation

Not enough disk space to copy
“adafruit_si7021.mpy"

- Additional 3 KB of disk space is required to copy this
file. You can manage disk space by removing items
from the Storage section of About This Mac.

Cancel Manage Disk Space

Delete something!

The simplest way of freeing up space is to delete files from the drive. Perhaps there
are libraries in the lib folder that you aren't using anymore or test code that isn't in
use. Don't delete the lib folder completely, though, just remove what you don't need.

The board ships with the Windows 7 serial driver too! Feel free to delete that if you
don't need it or have already installed it. It's “12KiB or so.

Use tabs

One unique feature of Python is that the indentation of code matters. Usually the
recommendation is to indent code with four spaces for every indent. In general, that
is recommended too. However, one trick to storing more human-readable code is to
use a single tab character for indentation. This approach uses 1/4 of the space for
indentation and can be significant when you're counting bytes.

On MacOS?

MacOS loves to generate hidden files. Luckily you can disable some of the extra
hidden files that macOS adds by running a few commands to disable search indexing
and create zero byte placeholders. Follow the steps below to maximize the amount of
space available on macOS.

Prevent & Remove MacOS Hidden Files

First find the volume name for your board. With the board plugged in run this
command in a terminal to list all the volumes:

1s -1 /Volumes

©Adafruit Industries Page 93 of 162

Look for a volume with a name like CIRCUITPY (the default for CircuitPython). The full
path to the volume is the /Volumes/CIRCUITPY path.

Now follow the steps from this question () to run these terminal commands that stop

hidden files from being created on the board:

mdutil -i off /Volumes/CIRCUITPY

cd /Volumes/CIRCUITPY

rm -rf .{, .}{fseventsd,Spotlight-V*,Trashes}

mkdir .fseventsd

touch .fseventsd/no log .metadata never index .Trashes
cd -

Replace /Volumes/CIRCUITPY in the commands above with the full path to your
board's volume if it's different. At this point all the hidden files should be cleared from
the board and some hidden files will be prevented from being created.

Alternatively, with CircuitPython 4.x and above, the special files and folders
mentioned above will be created automatically if you erase and reformat the
filesystem. WARNING: Save your files first! Do this in the REPL:

>>> import storage
>>> storage.erase filesystem()

However there are still some cases where hidden files will be created by MacOS. In
particular if you copy a file that was downloaded from the internet it will have special
metadata that MacOS stores as a hidden file. Luckily you can run a copy command
from the terminal to copy files without this hidden metadata file. See the steps below.

Copy Files on MacOS Without Creating Hidden Files

Once you've disabled and removed hidden files with the above commands on macOS
you need to be careful to copy files to the board with a special command that
prevents future hidden files from being created. Unfortunately you cannot use drag
and drop copy in Finder because it will still create these hidden extended attribute
files in some cases (for files downloaded from the internet, like Adafruit's modules).

To copy a file or folder use the -X option for the cp command in a terminal. For
example to copy a file_name.mpy file to the board use a command like:

cp -X file name.mpy /Volumes/CIRCUITPY

©Adafruit Industries Page 94 of 162

http://apple.stackexchange.com/questions/6707/how-to-stop-os-x-from-writing-spotlight-and-trash-files-to-memory-cards-and-usb/7135#7135

(Replace file_name.mpy with the name of the file you want to copy.)

Or to copy a folder and all of the files and folders contained within, use a command
like:

cp -rX folder to copy /Volumes/CIRCUITPY

If you are copying to the lib folder, or another folder, make sure it exists before
copying.

if 1ib does not exist, you'll create a file named lib !

cp -X file name.mpy /Volumes/CIRCUITPY/lib

This is safer, and will complain if a lib folder does not exist.
cp -X file name.mpy /Volumes/CIRCUITPY/lib/

Other MacOS Space-Saving Tips

If you'd like to see the amount of space used on the drive and manually delete hidden
files here's how to do so. First, move into the Volumes/ directory with c¢d /Volumes/,
and then list the amount of space used on the CIRCUITPY drive with the df
command.

000 Default (-bash)

Last login: Thu Oct 28 17:19:15 on ttys608

7039 kattnifrobocrepe:~ $ cd /Volumes/

7040 kattnifrobocrepe: $ df -h CIRCUITPY/
Filesystem Size Used Avail Capacity iused ifree %iused Mounted on
/dev/disk2s1 47Ki 46Ki 1.0Ki 98’ 512 0 100% /Volumes/CIRCUITPY

7041 kattnifirobocrepe: o |

That's not very much space left! The next step is to show a list of the files currently on
the CIRCUITPY drive, including the hidden files, using the ls command. You cannot
use Finder to do this, you must do it via command line!

7041 kattnifrobocrepe: $ Ls -a CIRCUITPY/

.idea

7042 kattnifrobocrepe: o |

There are a few of the hidden files that MacOS loves to generate, all of which begin
with a ._ before the file name. Remove the ._ files using the rm command. You can

©Adafruit Industries Page 95 of 162

remove them all once by running rm CIRCUITPY/. *.The * acts as a wildcard to
apply the command to everything that begins with ._ at the same time.

7042 Ra:tvx@robccrcpc: $ rm CIRCUITPY/._*

7043 kattnifrobocrepe: $ I

Finally, you can run df again to see the current space used.

7043 kattnifirobocrepe: $ df -h CIRCUITPY/
Filesystem Size Used Avail Capacity iused ifree %iused Mounted on
/dev/disk2s1 47Ki 34Ki 13Ki 73/ 512 @ 100% /Volumes/CIRCUITPY

7044 kattnifrobocrepe: $ I

Nice! You have 12Ki more than before! This space can now be used for libraries and
code!

Device Locked Up or Boot Looping

In rare cases, it may happen that something in your code.py or boot.py files causes
the device to get locked up, or even go into a boot loop. A boot loop occurs when the
board reboots repeatedly and never fully loads. These are not caused by your
everyday Python exceptions, typically it's the result of a deeper problem within
CircuitPython. In this situation, it can be difficult to recover your device if CIRCUITPY
is not allowing you to modify the code.py or boot.py files. Safe mode is one recovery
option. When the device boots up in safe mode it will not run the code.py or boot.py
scripts, but will still connect the CIRCUITPY drive so that you can remove or modify
those files as needed.

The method used to manually enter safe mode can be different for different devices.
It is also very similar to the method used for getting into bootloader mode, which is a
different thing. So it can take a few tries to get the timing right. If you end up in
bootloader mode, no problem, you can try again without needing to do anything else.

For most devices:

Press the reset button, and then when the RGB status LED blinks yellow, press the
reset button again. Since your reaction time may not be that fast, try a "slow" double
click, to catch the yellow LED on the second click.

For ESP32-S2 based devices:

Press and release the reset button, then press and release the boot button about 3/4
of a second later.

©Adafruit Industries Page 96 of 162

Refer to the diagrams above for boot sequence details.

Welcome to the Community!

CircuitPython is a programming language that's super simple to get started with and
great for learning. It runs on microcontrollers and works out of the box. You can plug it
in and get started with any text editor. The best part? CircuitPython comes with an
amazing, supportive community.

Everyone is welcome! CircuitPython is Open Source. This means it's available for
anyone to use, edit, copy and improve upon. This also means CircuitPython becomes
better because of you being a part of it. Whether this is your first microcontroller
board or you're a seasoned software engineer, you have something important to offer
the Adafruit CircuitPython community. This page highlights some of the many ways
you can be a part of it!

©Adafruit Industries Page 97 of 162

Adafruit Discord

The Adafruit Discord server is the best place to start. Discord is where the community
comes together to volunteer and provide live support of all kinds. From general
discussion to detailed problem solving, and everything in between, Discord is a digital
maker space with makers from around the world.

There are many different channels so you can choose the one best suited to your
needs. Each channel is shown on Discord as "#channelname". There's the #help-with-
projects channel for assistance with your current project or help coming up with ideas
for your next one. There's the #show-and-tell channel for showing off your newest
creation. Don't be afraid to ask a question in any channel! If you're unsure, #general is
a great place to start. If another channel is more likely to provide you with a better
answer, someone will guide you.

The help with CircuitPython channel is where to go with your CircuitPython questions.
#help-with-circuitpython is there for new users and developers alike so feel free to
ask a question or post a comment! Everyone of any experience level is welcome to
join in on the conversation. Your contributions are important! The #circuitpython-dev
channel is available for development discussions as well.

The easiest way to contribute to the community is to assist others on Discord.
Supporting others doesn't always mean answering questions. Join in celebrating
successes! Celebrate your mistakes! Sometimes just hearing that someone else has
gone through a similar struggle can be enough to keep a maker moving forward.

The Adafruit Discord is the 24x7x365 hackerspace that you can bring your
granddaughter to.

©Adafruit Industries Page 98 of 162

Visit https://adafru.it/discord ()to sign up for Discord. Everyone is looking forward to
meeting you!

CircuitPython.org

The easiest way to program
microcontrollers

CircuitPython is a programming language
designed to simplify experimenting and
learning to code on low-cost microcontroller

-
000000000000

boards.

Beyond the Adafruit Learn System, which you are viewing right now, the best place to
find information about CircuitPython is circuitpython.org (). Everything you need to get
started with your new microcontroller and beyond is available. You can do things like
download CircuitPython for your microcontroller () or download the latest

CircuitPython Library bundle (), or check out which single board computers support

Blinka (). You can also get to various other CircuitPython related things like Awesome
Cir—cuiththon or the Python for Microcontrollers newsletter. This is all incredibly
useful, but it isn't necessarily community related. So why is it included here? The Cont
ributing page ().

Contributing

If you'd like to contribute to the CircuitPython project, the CircuitPython libraries are a great way to begin. This page is
updated with daily status information from the CircuitPython libraries, including open pull requests, open issues and library
infrastructure issues.

Do you write a language other than English? Another great way to contribute to the project is to contribute new localizations
(translations) of CircuitPython, or update current localizations, using Weblate.

If this is your first time contributing, or you'd like to see our recommended contribution workflow, we have a guide on
Contributing to CircuitPython with Git and Github. You can also find us in the #circuitpython channel on the Adafruit Discord.

Have an idea for a new driver or library? File an issue on the CircuitPython repo!

CircuitPython itself is written in C. However, all of the Adafruit CircuitPython libraries
are written in Python. If you're interested in contributing to CircuitPython on the
Python side of things, check out circuitpython.org/contributing (). You'll find
information pertaining to every Adafruit CircuitPython library GitHub repository, giving

you the opportunity to join the community by finding a contributing option that works
for you.

Note the date on the page next to Current Status for:

©Adafruit Industries Page 99 of 162

https://adafru.it/discord
https://circuitpython.org
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/libraries
https://circuitpython.org/blinka
https://circuitpython.org/blinka
https://circuitpython.org/contributing
https://circuitpython.org/contributing
https://circuitpython.org/contributing

Current Status for Tue, Nov 02, 2021

If you submit any contributions to the libraries, and do not see them reflected on the
Contributing page, it could be that the job that checks for new updates hasn't yet run
for today. Simply check back tomorrow!

Now, a look at the different options.
Pull Requests

The first tab you'll find is a list of open pull requests.

Pull Requests Open Issues Library Infrastructure Issues CircuitPython Localization
I

This is the current status of open pull requests and issues across all of the library repos.
Open Pull Requests

« Adafruit_CircuitPython_AdafruitiO
o Call wifi.connect() after wifi.reset() (Open 113 days)

* Adafruit_CircuitPython_ADS1x15
o Supress f-string recommendation in .pylintrc (Open 1 days)

* Adafruit_CircuitPython_ADT7410
o Adding critical temp features (Open 168 days)

GitHub pull requests, or PRs, are opened when folks have added something to an
Adafruit CircuitPython library GitHub repo, and are asking for Adafruit to add, or
merge, their changes into the main library code. For PRs to be merged, they must first
be reviewed. Reviewing is a great way to contribute! Take a look at the list of open
pull requests, and pick one that interests you. If you have the hardware, you can test
code changes. If you don't, you can still check the code updates for syntax. In the
case of documentation updates, you can verify the information, or check it for spelling
and grammar. Once you've checked out the update, you can leave a comment letting
us know that you took a look. Once you've done that for a while, and you're more
comfortable with it, you can consider joining the CircuitPythonLibrarians review team.
The more reviewers we have, the more authors we can support. Reviewing is a crucial
part of an open source ecosystem, CircuitPython included.

Open Issues

The second tab you'll find is a list of open issues.

©Adafruit Industries Page 100 of 162

Pull Requests Open Issues Library Infrastructure Issues CircuitPython Localization

Sort by issue labels | All v

Open Issues

* Adafruit_CircuitPython_74HC595
o Missing Type Annotations (Open 34 days)

* Adafruit_CircuitPython_AdafruitlO
o Missing Type Annotations (Open 34 days)
o use of . and dot and groups (using circuitpython) (Open 125 days)

GitHub issues are filed for a number of reasons, including when there is a bug in the

library or example code, or when someone wants to make a feature request. Issues

are a great way to find an opportunity to contribute directly to the libraries by
updating code or documentation. If you're interested in contributing code or
documentation, take a look at the open issues and find one that interests you.

If you're not sure where to start, you can search the issues by label. Labels are
applied to issues to make the goal easier to identify at a first glance, or to indicate the
difficulty level of the issue. Click on the dropdown next to "Sort by issue labels" to see

the list of available labels, and click on one to choose it.

Sort by issue labels [S4.\
Good first issue

Open Issues Documentation
Hacktoberfest
e Adafruit_Circy il

Bug
Enhancement
o Adafruit_Circy S plls e S5
o Missing Question or
Support
Help wanted

o Adafruit_CircuUi il
o ad1115 tdALEESLGIEN r

o Missing

o use of. i

If you're new to everything, new to contributing to open source, or new to

contributing to the CircuitPython project, you can choose "Good first issue". Issues
with that label are well defined, with a finite scope, and are intended to be easy for

someone new to figure out.

If you're looking for something a little more complicated, consider "Bug" or
"Enhancement”. The Bug label is applied to issues that pertain to problems or failures

found in the library. The Enhancement label is applied to feature requests.

©Adafruit Industries

Page 101 of 162

Don't let the process intimidate you. If you're new to Git and GitHub, there is a guide ()
to walk you through the entire process. As well, there are always folks available on Di
scord () to answer questions.

Library Infrastructure Issues

The third tab you'll find is a list of library infrastructure issues.

Pull Requests Open Issues Library Infrastructure Issues CircuitPython Localization

Library Infrastructure Issues

The following are issues with the library infrastructure. Having a standard library structure greatly improves overall
maintainability. Accordingly, we have a series of checks to ensure the standard is met. Most of these are changes that can be
made via a pull request, however there are a few checks reported here that require changes to GitHub settings. If you are
interested in addressing any of these issues, please feel free to contact us with any questions.

This section is generated by a script that runs checks on the libraries, and then
reports back where there may be issues. It is made up of a list of subsections each
containing links to the repositories that are experiencing that particular issue. This
page is available mostly for internal use, but you may find some opportunities to
contribute on this page. If there's an issue listed that sounds like something you could
help with, mention it on Discord, or file an issue on GitHub indicating you're working
to resolve that issue. Others can reply either way to let you know what the scope of it
might be, and help you resolve it if necessary.

CircuitPython Localization

The fourth tab you'll find is the CircuitPython Localization tab.

Pull Requests Open Issues Library Infrastructure Issues CircuitPython Localization

CircuitPython Translation with Weblate

1,100 18 I 60%
STRINGS LANGUAGES ' TRANSLATED

If you speak another language, you can help translate CircuitPython! The translations
apply to informational and error messages that are within the CircuitPython core. It
means that folks who do not speak English have the opportunity to have these
messages shown to them in their own language when using CircuitPython. This is

©Adafruit Industries Page 102 of 162

https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github
https:adafru.it/discord
https:adafru.it/discord

incredibly important to provide the best experience possible for all users.
CircuitPython uses Weblate to translate, which makes it much simpler to contribute
translations. You will still need to know some CircuitPython-specific practices and a
few basics about coding strings, but as with any CircuitPython contributions, folks are
there to help.

Regardless of your skill level, or how you want to contribute to the CircuitPython
project, there is an opportunity available. The Contributing page () is an excellent
place to start!

Adafruit GitHub

Pull requests Issues Marketplace Explore

adafruit / circuitpython @uUnwatch~ 69 YrUnstar 256 YFork 1,357
forked from ython/micropython

<> Code Issues 73 Pull requests 4 Insights

CircuitPython - a Python implementation for teaching coding with microcontrollers

circuitpython

{® 9,856 commits ¥ 32 branches 73 releases 42 206 contributors

Whether you're just beginning or are life-long programmer who would like to
contribute, there are ways for everyone to be a part of the CircuitPython project. The
CircuitPython core is written in C. The libraries are written in Python. GitHub is the
best source of ways to contribute to the CircuitPython core (), and the CircuitPython
libraries (). If you need an account, visit https://github.com/ () and sign up.

If you're new to GitHub or programming in general, there are great opportunities for
you. For the CircuitPython core, head over to the CircuitPython repository on GitHub,
click on "Issues ()", and you'll find a list that includes issues labeled "good first issue ()"
. For the IibrTies, head over to the Contributing page Issues list (), and use the drop

down menu to search for "good first issue ()". These issues are things that have been

identified as something that someone with any level of experience can help with.
These issues include options like updating documentation, providing feedback, and
fixing simple bugs. If you need help getting started with GitHub, there is an excellent
guide on Contributing to CircuitPython with Git and GitHub ().

@ OneWire BusDevice FITH Q2
#338 opened 29 days ago by tannewt Long term
® Feather MO Adalogger does not have D8 or D7 D7

#323 opened on Oct 13 by ladyada " 3.0

@ Audit and fix native API for methods that accept and ignore extra args.
#321 opened on Oct 12 by tannewt Long term

Already experienced and looking for a challenge? Checkout the rest of either issues
list and you'll find plenty of ways to contribute. You'll find all sorts of things, from new

©Adafruit Industries Page 103 of 162

https://circuitpython.org/contributing
https://github.com/adafruit/circuitpython
https://circuitpython.org/contributing/open-issues
https://circuitpython.org/contributing/open-issues
https://github.com/
https://github.com/adafruit/circuitpython/issues
https://github.com/adafruit/circuitpython/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22
https://circuitpython.org/contributing/open-issues
https://circuitpython.org/contributing/open-issues?label=good-first-issue
https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github

driver requests, to library bugs, to core module updates. There's plenty of
opportunities for everyone at any level!

When working with or using CircuitPython or the CircuitPython libraries, you may find
problems. If you find a bug, that's great! The team loves bugs! Posting a detailed issue
to GitHub is an invaluable way to contribute to improving CircuitPython. For
CircuitPython itself, file an issue here (). For the libraries, file an issue on the specific
library repository on GitHub. Be sure to include the steps to replicate the issue as well
as any other information you think is relevant. The more detail, the better!

Testing new software is easy and incredibly helpful. Simply load the newest version of
CircuitPython or a library onto your CircuitPython hardware, and use it. Let us know
about any problems you find by posting a new issue to GitHub. Software testing on
both stable and unstable releases is a very important part of contributing
CircuitPython. The developers can't possibly find all the problems themselves! They
need your help to make CircuitPython even better.

On GitHub, you can submit feature requests, provide feedback, report problems and
much more. If you have questions, remember that Discord and the Forums are both
there for help!

Adafruit Forums

Forum Index oa

ADAFRUIT CUSTOMER SUPPORT FORUMS

Thanks for stopping by! These forums are for Adafruit customers who need assistance with their m
purchases from Adafruit Industries. Our staff can only assist Adafruit customers, thank you!

GENERAL FORUMS Topics Posts Last post

B=| ANNOUNCEMENTS 275 1466 by delly
Forum announcement ts Thu Sep 21, 2017 7:32 am

The Adafruit Forums () are the perfect place for support. Adafruit has wonderful paid
support folks to answer any questions you may have. Whether your hardware is giving
you issues or your code doesn't seem to be working, the forums are always there for
you to ask. You need an Adafruit account to post to the forums. You can use the same
account you use to order from Adafruit.

While Discord may provide you with quicker responses than the forums, the forums
are a more reliable source of information. If you want to be certain you're getting an
Adafruit-supported answer, the forums are the best place to be.

©Adafruit Industries Page 104 of 162

https://github.com/adafruit/circuitpython/issues
https://forums.adafruit.com

There are forum categories that cover all kinds of topics, including everything
Adafruit. The Adafruit CircuitPython () category under "Supported Products & Projects"
is the best place to post your CircuitPython questions.

Forum Index > Supported Products & Projects > Adafruit CircuitPython & User Settings « View your posts « View unread replies 8

Adafruit CircuitPython

Moderators: adafruit_support_bill, adafruit

@ Mark topics read « 4154 topics - Page 10f 84 . 12345 ... 84

Please be positive and constructive with your questions and comments.

ANNOUNCEMENTS
i | CIRCUITPYTHON 7.2.0 ALPHA 1 RELEASED! 0 20 by danhalbert .

by danhalbert » Tue Dec 28, 2021 11:55 pm Tue Dec 28, 2021 11:55 pm
*j | CIRCUITPYTHON 71.0 RELEASED! 1 32 by rpiloverbd

by danhalbert » Tue Dec 28, 2021 12:01 pm Wed Dec 29, 20215:53 am
i | SAMDS1(M4) BOARD USERS: UPDATE YOUR BOOTLOADERS TO >=V3.9.0 10 2428 by Guest .

by danhalbert » Fri May 08, 2020 12:55 pm Sat Aug 15, 2020 11:28 pm

Be sure to include the steps you took to get to where you are. If it involves wiring,
post a picture! If your code is giving you trouble, include your code in your post!
These are great ways to make sure that there's enough information to help you with
your issue.

You might think you're just getting started, but you definitely know something that
someone else doesn't. The great thing about the forums is that you can help others
too! Everyone is welcome and encouraged to provide constructive feedback to any of
the posted questions. This is an excellent way to contribute to the community and
share your knowledge!

Read the Docs

Adafruit CircuitPython

Docs » Core Modules » augioio — Support for audio input and output © Edit on GitHub
audioio — Support for audio input and output
© Core Modules The audioio module contains classes to provide access to audio 10.
Support Matrix
Libraries
& Modules

anatogio — Analog hardware * Aud t = Output an analog audio signal

support

auttsbusio — Support for sudio All classes change hardware state and should be deinitialized when they are no longer needed if the

input and output over digital bus - - o
. program continues after use. To do so, either call geinit() or use a context manager. See Lifetime

audioto — Support for audio input
and output

and ContextManagers for more info.

vitbangio — Digital protocols

implemented by the CPU © Previous Next©

Read the Docs () is a an excellent resource for a more detailed look at the
CircuitPython core and the CircuitPython libraries. This is where you'll find things like
APl documentation and example code. For an in depth look at viewing and
understanding Read the Docs, check out the CircuitPython Documentation () page!

©Adafruit Industries Page 105 of 162

https://forums.adafruit.com/viewforum.php?f=60
https://circuitpython.readthedocs.io/
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-documentation

Here is blinky:

import time
import digitalio
import board

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT
while True:

led.value = True

time.sleep(0.1)

led.value = False

time.sleep(0.1)

CircuitPython Essentials

CIrcli

L

You've been introduced to CircuitPython, and worked through getting everything set
up. What's next? CircuitPython Essentials!

There are a number of core modules built into CircuitPython, which can be used along
side the many CircuitPython libraries available. The following pages demonstrate
some of these modules. Each page presents a different concept including a code
example with an explanation. All of the examples are designed to work with your
microcontroller board.

Time to get started learning the CircuitPython essentials!
Some examples require external components, such as switches or sensors. You'll find
wiring diagrams where applicable to show you how to wire up the necessary

components to work with each example.

The following components are needed to complete all of the examples:

©Adafruit Industries Page 106 of 162

STEMMA Wired Tactile Push-Button Pack -
5 Color Pack

Little clicky switches are standard input
"buttons" on electronic projects. These
are just like our Colorful Round...
https://www.adafruit.com/product/4431

STEMMA Wired Potentiometer Breakout
Board - 10K ohm Linear

For the easiest way possible to measure
twists, turn to this STEMMA potentiometer
breakout (ha!). This plug-n-play pot comes
with a JST-PH 2mm connector and a
matching
https://www.adafruit.com/product/4493

STEMMA JST PH 2mm 3-Pin to Male
Header Cable - 200mm

This cable will let you turn a JST PH 3-pin
cable port into 3 individual wires with
high-quality 0.1" male header plugs on the
end. We're carrying these to match up
with our...
https://www.adafruit.com/product/3893

Adafruit MCP9808 High Accuracy 12C
Temperature Sensor Breakout

The MCP9808 digital temperature sensor
is one of the more accurate/precise we've
ever seen, with a typical accuracy of
+0.25°C over the sensor's -40°C to...
https://www.adafruit.com/product/5027

©Adafruit Industries Page 107 of 162

https://www.adafruit.com/product/4431
https://www.adafruit.com/product/4431
https://www.adafruit.com/product/4431
https://www.adafruit.com/product/4493
https://www.adafruit.com/product/4493
https://www.adafruit.com/product/4493
https://www.adafruit.com/product/3893
https://www.adafruit.com/product/3893
https://www.adafruit.com/product/3893
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027

STEMMA QT / Qwiic JST SH 4-Pin Cable -
50mm Long

This 4-wire cable is 50mm /1.9" long and
fitted with JST SH female 4-pin
connectors on both ends. Compared with
the chunkier JST PH these are 1mm pitch
instead of 2mm, but...
https://www.adafruit.com/product/4399

Blink

In learning any programming language, you often begin with some sort of Hello,
World! program. In CircuitPython, Hello, World! is blinking an LED. Blink is one of the
simplest programs in CircuitPython. It involves three built-in modules, two lines of set
up, and a short loop. Despite its simplicity, it shows you many of the basic concepts
needed for most CircuitPython programs, and provides a solid basis for more complex
projects. Time to get blinky!

LED Location

The built-in LED is located between the USB-C port and the reset button. It's labeled
D13 on the silk.

) g M Of{~ mag ;i‘rg |
SR SEH (R
~J ()] Ol

)

4
B
H
g‘

s

]

©Adafruit Industries Page 108 of 162

https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399

Blinking an LED

In the example below, click the Download Project Bundle button below to download
the necessary libraries and the code.py file in a zip file. Extract the contents of the zip
file, open the directory CircuitPython_Templates/blink/ and then click on the directory
that matches the version of CircuitPython you're using and copy the contents of that
directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

v @ CIRCUITPY

| 2

R boot_out.txt

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT

"""CircuitPython Blink Example - the CircuitPython 'Hello, World!'"""
import time

import board

import digitalio

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OQUTPUT

while True:
led.value = True
time.sleep(0.5)
led.value = False
time.sleep(0.5)

The built-in LED begins blinking!

Note that the code is a little less "Pythonic" than it could be. It could also be written as
led.value = not led.value with asingle time.sleep(0.5) . That way is more
difficult to understand if you're new to programming, so the example is a bit longer
than it needed to be to make it easier to read.

It's important to understand what is going on in this program.
First you import three modules: time, board and digitalio . This makes these

modules available for use in your code. All three are built-in to CircuitPython, so you
don't need to download anything to get started.

©Adafruit Industries Page 109 of 162

Next, you set up the LED. To interact with hardware in CircuitPython, your code must
let the board know where to look for the hardware and what to do with it. So, you
create a digitalio.DigitalInOut() object, provide it the LED pin using the boar
d module, and save it to the variable led. Then, you tell the pin to act as an

OUTPUT .

Finally, you create a while True: loop. This means all the code inside the loop will
repeat indefinitely. Inside the loop, you set led.value = True which powers on the
LED. Then, you use time.sleep(0.5) to tell the code to wait half a second before
moving on to the next line. The next line sets led.value = False which turns the
LED off. Then you use another time.sleep(0.5) to wait half a second before
starting the loop over again.

With only a small update, you can control the blink speed. The blink speed is
controlled by the amount of time you tell the code to wait before moving on using
time.sleep() . The example uses 0.5, which is one half of one second. Try
increasing or decreasing these values to see how the blinking changes.

That's all there is to blinking an LED using CircuitPython!

Digital Input

The CircuitPython digitalio module has many applications. The basic Blink
program sets up the LED as a digital output. You can just as easily set up a digital
input such as a button to control the LED. This example builds on the basic Blink
example, but now includes setup for a button switch. Instead of using the time
module to blink the LED, it uses the status of the button switch to control whether the
LED is turned on or off.

©Adafruit Industries Page 110 of 162

LED and Button

You'll attach a button to the Metro M7 to
control the onboard LED.

Button input to board pin 5 (blue wire)
Button ground to board GND (black wire)

fritzing

Controlling the LED with a Button

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT

CircuitPython Digital Input Example - Blinking an LED using a button switch.

import board
import digitalio

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

button = digitalio.DigitalInOut(board.D5)
button.switch to input(pull=digitalio.Pull.UP)

while True:
if not button.value:
led.value = True
else:
led.value = False

Now, press the button. The LED lights up! Let go of the button and the LED turns off.

©Adafruit Industries Page 111 of 162

https://learn.adafruit.com//assets/119340
https://learn.adafruit.com//assets/119340

Note that the code is a little less "Pythonic" than it could be. It could also be written as
led.value = not button.value. That way is more difficult to understand if you're
new to programming, so the example is a bit longer than it needed to be to make it
easier to read.

First you import two modules: board and digitalio . This makes these modules
available for use in your code. Both are built-in to CircuitPython, so you don't need to
download anything to get started.

Next, you set up the LED. To interact with hardware in CircuitPython, your code must
let the board know where to look for the hardware and what to do with it. So, you
create a digitalio.DigitalInOut() object, provide it the LED pin using the boar
d module, and save it to the variable led. Then, you tell the pin to act as an

OUTPUT .

You include setup for the button as well. It is similar to the LED setup, except the
button is an INPUT, and requires a pull up.

Inside the loop, you check to see if the button is pressed, and if so, turn on the LED.
Otherwise the LED is off.

That's all there is to controlling an LED with a button switch!

©Adafruit Industries Page 112 of 162

Analog In

Your microcontroller board has both digital and analog signal capabilities. Some pins
are analog, some are digital, and some are capable of both. Check the Pinouts page
in this guide for details about your board.

Analog signals are different from digital signals in that they can be any voltage and
can vary continuously and smoothly between voltages. An analog signal is like a
dimmer switch on a light, whereas a digital signal is like a simple on/off switch.

Digital signals only can ever have two states, they are either are on (high logic level
voltage like 3.3V) or off (low logic level voltage like OV / ground).

By contrast, analog signals can be any voltage in-between on and off, such as 1.8V or
0.001V or 2.98V and so on.

VALUE

TIME

Analog signals are continuous values which means they can be an infinite number of
different voltages. Think of analog signals like a floating point or fractional number,
they can smoothly transiting to any in-between value like 1.8V, 1.81V, 1.801V, 1.8001V,
1.80001V and so forth to infinity.

Many devices use analog signals, in particular sensors typically output an analog
signal or voltage that varies based on something being sensed like light, heat,
humidity, etc.

Analog to Digital Converter (ADC)

An analog-to-digital-converter, or ADC, is the key to reading analog signals and
voltages with a microcontroller. An ADC is a device that reads the voltage of an
analog signal and converts it into a digital, or numeric, value. The microcontroller

©Adafruit Industries Page 113 of 162

can’t read analog signals directly, so the analog signal is first converted into a
numeric value by the ADC.

The black line below shows a digital signal over time, and the red line shows the
converted analog signal over the same amount of time.

VALUE
—

74
4

TIME

Once that analog signal has been converted by the ADC, the microcontroller can use
those digital values any way you like!

Potentiometers

A potentiometer is a small variable resistor that you can twist a knob or shaft to
change its resistance. It has three pins. By twisting the knob on the potentiometer you
can change the resistance of the middle pin (called the wiper) to be anywhere within
the range of resistance of the potentiometer.

By wiring the potentiometer to your board in a special way (called a voltage divider)

you can turn the change in resistance into a change in voltage that your board’s
analog to digital converter can read.

©Adafruit Industries Page 114 of 162

33

3.0

27

24

21

18

15

12

0.9

OUTPUT VOLTAGE

0.6

w

Vin = 3.3V
KNOB POSITION

0.0

To wire up a potentiometer as a voltage divider:

Connect one outside pin to ground
Connect the other outside pin to voltage in
(e.g. 3.3V)

Connect the middle pin to an analog pin
(e.g. AO)

Hardware

In addition to your microcontroller board, you will need the following hardware to
follow along with this example.

Potentiometer

©Adafruit Industries Page 115 of 162

https://learn.adafruit.com//assets/102481
https://learn.adafruit.com//assets/102481

STEMMA Wired Potentiometer Breakout
Board - 10K ohm Linear

For the easiest way possible to measure
twists, turn to this STEMMA potentiometer
breakout (ha!). This plug-n-play pot comes
with a JST-PH 2mm connector and a
matching
https://www.adafruit.com/product/4493

Wire Up the Potentiometer

Connect the potentiometer to your board as follows.

Pot ground to board GND (black wire)
Pot wiper to board pin AO (white wire)
Pot VIN to board 3.3V (red wire)

fritzing

Reading Analog Pin Values

CircuitPython makes it easy to read analog pin values. Simply import two modules, set
up the pin, and then print the value inside a loop.

You'll need to connect to the serial console () to see the values printed out.

In the example below, click the Download Project Bundle button below to download
the necessary libraries and the code.py file in a zip file. Extract the contents of the zip
file, open the directory CircuitPython_Templates/analog_pin_values/ and then click
on the directory that matches the version of CircuitPython you're using and copy the
contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

©Adafruit Industries Page 116 of 162

https://www.adafruit.com/product/4493
https://www.adafruit.com/product/4493
https://www.adafruit.com/product/4493
https://learn.adafruit.com//assets/119368
https://learn.adafruit.com//assets/119368
https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

v @ CIRCUITPY
> 8

R boot_out.txt
R code.py
v lib

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT

"""CircuitPython analog pin value example"""

import time

import board

import analogio

analog pin = analogio.AnalogIn(board.AQ)
while True:

print(analog pin.value)
time.sleep(0.1)

Now, rotate the potentiometer to see the values change.

Default (SCREEN)

What do these values mean? In CircuitPython ADC values are put into the range of 16-
bit unsigned values. This means the possible values you’ll read from the ADC fall
within the range of O to 65535 (or 26 - 1). When you twist the potentiometer knob to
be near ground, or as far to the left as possible, you see a value close to zero. When
you twist it as far to the right as possible, near 3.3 volts, you see a value close to
65535. You'’re seeing almost the full range of 16-bit values!

The code is simple. You begin by importing three modules: time, board and analo
gio . All three modules are built into CircuitPython, so you don't need to download
anything to get started.

©Adafruit Industries Page 117 of 162

Then, you set up the analog pin by creating an analogio.AnalogIn() object,
providing it the desired pin using the board module, and saving it to the variable
analog pin.

Finally, in the loop, you print out the analog value with analog pin.value, including
a time.sleep() to slow down the values to a human-readable rate.

Reading Analog Voltage Values

These values don't necessarily equate to anything obvious. You can get an idea of the
rotation of the potentiometer based on where in the range the value falls, but not
without doing some math. Remember, you wired up the potentiometer as a voltage
divider. By adding a simple function to your code, you can get a more human-
readable value from the potentiometer.

You'll need to connect to the serial console () to see the values printed out.

In the example below, click the Download Project Bundle button below to download
the necessary libraries and the code.py file in a zip file. Extract the contents of the zip
file, open the directory CircuitPython_Templates/analog_voltage_values/ and then
click on the directory that matches the version of CircuitPython you're using and copy
the contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

v @ CIRCUITPY
> 8

R boot_out.txt
R code.py
v ib

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT

"""CircuitPython analog voltage value example"""

import time

import board

import analogio

analog _pin = analogio.AnalogIn(board.AQ)

def get voltage(pin):
return (pin.value * 3.3) / 65535

while True:

©Adafruit Industries Page 118 of 162

https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

print(get _voltage(analog pin))
time.sleep(0.1)

Now, rotate the potentiometer to see the values change.

o000 Default (SCREEN)
.52978
29819
.29819
.43633
.697705
.000805664
.00725097
.0

.40185
.48144
.29819
.29919

2
3
3
2
0
0
0
0
1
7
3
3

Now the values range from around O to 3.3! Note that you may not get all the way to
O or 3.3. This is normal.

The example code begins with the same imports and pin setup.

This time, you include the get voltage helper. This function requires that you
provide an analog pin. It then maps the raw analog values, 0 to 65535, to the
voltage values, 0 to 3.3 . It does the math so you don't have to!

Finally, inside the loop, you provide the function with your analog pin, and print the
resulting values.

That's all there is to reading analog voltage values using CircuitPython!

NeoPixel

Your board has a built-in RGB NeoPixel status LED. You can use CircuitPython code to
control the color and brightness of this LED. It is also used to indicate the bootloader
status and errors in your CircuitPython code.

A NeoPixel is what Adafruit calls the WS281x family of addressable RGB LEDs. It
contains three LEDs - a red one, a green one and a blue one - along side a driver chip
in a tiny package controlled by a single pin. They can be used individually (as in the
built-in LED on your board), or chained together in strips or other creative form
factors. NeoPixels do not light up on their own; they require a microcontroller. So, it's
super convenient that the NeoPixel is built in to your microcontroller board!

©Adafruit Industries Page 119 of 162

This page will cover using CircuitPython to control the status RGB NeoPixel built into
your microcontroller. You'll learn how to change the color and brightness, and how to
make a rainbow. Time to get started!

NeoPixel Location

The NeoPixel is located on the top side of the board, between the reset button and
the digital I/0O pins. It is labeled NEO on the board silk.

o o r 5 o : oA N\
[} rey = || (E9) O~ mg O"'Sv (i
JE Sl ETCION N TR

il

NeoPixel Color and Brightness

To use with CircuitPython, you need to first install a few libraries, into the lib folder on
your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download
Project Bundle button below to download the necessary libraries and the code.py file
in a zip file. Extract the contents of the zip file, open the directory CircuitPython_Temp
lates/status_led_one_neopixel_rgb/ and then click on the directory that matches the
version of CircuitPython you're using and copy the contents of that directory to your C
IRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

©Adafruit Industries Page 120 of 162

v @ CIRCUITPY

R boot_out.txt
R code.py
v b
R adafruit_pixelbuf.mpy
R neopixel.mpy

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: MIT
"""CircuitPython status NeoPixel red, green, blue example."""

import time

import board

import neopixel

pixel = neopixel.NeoPixel(board.NEOPIXEL, 1)
pixel.brightness = 0.3

while True:

pixel.fill((255 0, 0))
time.sleep(0.5)
pixel.fill((®, 255, 0))
time.sleep(0.5)
pixel.fill((0, 0, 255))
time.sleep(0.5)

The built-in NeoPixel begins blinking red, then green, then blue, and repeats!

" _e» adafruit

~
>
>
>
>
>
>
~
>
? -
’

First you import two modules, time and board, and one library, neopixel . This
makes these modules and libraries available for use in your code. The first two are
modules built-in to CircuitPython, so you don't need to download anything to use

©Adafruit Industries

Page 121 of 162

those. The neopixel library is separate, which is why you needed to install it before
getting started.

Next, you set up the NeoPixel LED. To interact with hardware in CircuitPython, your
code must let the board know where to look for the hardware and what to do with it.
So, you create a neopixel.NeoPixel() object, provide it the NeoPixel LED pin
using the board module, and tell it the number of LEDs. You save this object to the
variable pixel.

Then, you set the NeoPixel brightness using the brightness attribute. brightness
expects float between 0 and 1.0 . A float is essentially a number with a decimal in it.
The brightness value represents a percentage of maximum brightness; 0 is 0% and
1.0 is 100%. Therefore, setting pixel.brightness = 0.3 sets the brightness to
30%. The default brightness, which is to say the brightness if you don't explicitly set it,
is 1.0. The default is really bright! That is why there is an option available to easily
change the brightness.

Inside the loop, you turn the NeoPixel red for 0.5 seconds, green for 0.5 seconds, and
blue for 0.5 seconds.

To turn the NeoPixel red, you "fill" it with an RGB value. Check out the section below
for details on RGB colors. The RGB value forred is (255, 0, 0) . Note that the RGB
value includes the parentheses. The fill() attribute expects the full RGB value
including those parentheses. That is why there are two pairs of parentheses in the
code.

You can change the RGB values to change the colors that the NeoPixel cycles
through. Check out the list below for some examples. You can make any color of the
rainbow with the right RGB value combination!

That's all there is to changing the color and setting the brightness of the built-in
NeoPixel LED!

RGB LED Colors

RGB LED colors are set using a combination of red, green, and blue, in the form of an
(R, G, B) tuple. Each member of the tuple is set to a number between 0 and 255 that
determines the amount of each color present. Red, green and blue in different
combinations can create all the colors in the rainbow! So, for example, to set an LED
to red, the tuple would be (255, 0, 0), which has the maximum level of red, and
no green or blue. Green would be (0, 255, 0), etc. For the colors between, you

©Adafruit Industries Page 122 of 162

set a combination, such as cyan whichis (0, 255, 255) , with equal amounts of
green and blue. If you increase all values to the same level, you get white! If you
decrease all the values to O, you turn the LED off.

Common colors include:

. red: (255, 0, 0)

« green: (0, 255, 0)

« blue: (0, 0, 255)
«cyan: (0, 255, 255)

. purple: (255, 0, 255)
« yellow: (255, 255, 0)
- white: (255, 255, 255)
« black (off): (0, 0, 0)

NeoPixel Rainbow

You should have already installed the library necessary to use the built-in NeoPixel
LED. If not, follow the steps at the beginning of the NeoPixel Color and Brightness
section to install it.

In the example below, click the Download Project Bundle button below to download
the necessary libraries and the code.py file in a zip file. Extract the contents of the zip
file, open the directory CircuitPython_Templates/status_led_one_neopixel_rainbow/
and then click on the directory that matches the version of CircuitPython you're using
and copy the contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

v & CIRCUITPY
>

R boot_out.txt

R adafruit_pixelbuf.mpy
R neopixel.mpy

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT

"""CircuitPython status NeoPixel rainbow example."""

import time

import board

from rainbowio import colorwheel

©Adafruit Industries Page 123 of 162

import neopixel

pixel = neopixel.NeoPixel(board.NEOPIXEL, 1)
pixel.brightness = 0.3

def rainbow(delay):
for color value in range(255):
pixel[0] = colorwheel(color_value)
time.sleep(delay)

while True:
rainbow(0.02)

The NeoPixel displays a rainbow cycle!

This example builds on the previous example.

First, you import the same three modules and libraries. In addition to those, you
import colorwheel .

The NeoPixel hardware setup and brightness setting are the same.

Next, you have the rainbow() helper function. This helper displays the rainbow
cycle. It expects a delay in seconds. The higher the number of seconds provided for
delay, the slower the rainbow will cycle. The helper cycles through the values of the
color wheel to create a rainbow of colors.

Inside the loop, you call the rainbow helper with a 0.2 second delay, by including rai

nbow(0.2) .

©Adafruit Industries Page 124 of 162

That's all there is to making rainbows using the built-in NeoPixel LED!

12C

Cioe

&?_’4 1} ng ’;. "lff,’s?.'& .
i i

The 12C, or inter-integrated circuit (), is a 2-wire protocol for communicating with
simple sensors and devices, which means it uses two connections, or wires, for

transmitting and receiving data. One connection is a clock, called SCL. The other is
the data line, called SDA. Each pair of clock and data pins are referred to as a bus.

Typically, there is a device that acts as a controller and sends requests to the target
devices on each bus. In this case, your microcontroller board acts as the controller,
and the sensor breakout acts as the target. Historically, the controller is referred to as
the master, and the target is referred to as the slave, so you may run into that
terminology elsewhere. The official terminology is controller and target ().

Multiple I12C devices can be connected to the same clock and data lines. Each [2C
device has an address, and as long as the addresses are different, you can connect
them at the same time. This means you can have many different sensors and devices
all connected to the same two pins.

Both 12C connections require pull-up resistors, and most Adafruit I2C sensors and

breakouts have pull-up resistors built in. If you're using one that does not, you'll need
to add your own 2.2-10kQ pull-up resistors from SCL and SDA to 3.3V.

|12C and CircuitPython

CircuitPython supports many 12C devices, and makes it super simple to interact with
them. There are libraries available for many 12C devices in the CircuitPython Library

Bundle (). (If you don't see the sensor you're looking for, keep checking back, more
are being written all the time!)

©Adafruit Industries Page 125 of 162

https://en.wikipedia.org/wiki/I%C2%B2C
https://adafruit.com/controller-peripheral
https://circuitpython.readthedocs.io/projects/bundle/en/latest/#table-of-contents
https://circuitpython.readthedocs.io/projects/bundle/en/latest/#table-of-contents

In this section, you'll learn how to scan the 12C bus for all connected devices. Then
you'll learn how to interact with an 12C device.

Necessary Hardware

You'll need the following additional hardware to complete the examples on this page.

Adafruit MCP9808 High Accuracy 12C
Temperature Sensor Breakout

The MCP9808 digital temperature sensor
is one of the more accurate/precise we've
ever seen, with a typical accuracy of
+0.25°C over the sensor's -40°C to...
https://www.adafruit.com/product/5027

emp: 24.19C
o

S s ceoasesesse

i

STEMMA QT / Qwiic JST SH 4-Pin Cable -
50mm Long

This 4-wire cable is 50mm /1.9" long and
fitted with JST SH female 4-pin
connectors on both ends. Compared with
the chunkier JST PH these are 1mm pitch
instead of 2mm, but...
https://www.adafruit.com/product/4399

While the examples here will be using the Adafruit MCP9808 (), a high accuracy
temperature sensor, the overall process is the same for just about any I12C sensor or

device.

The first thing you'll want to do is get the sensor connected so your board has 12C to
talk to.

Wiring the MCP9808

The MCP9808 comes with a STEMMA QT connector, which makes wiring it up quite
simple and solder-free.

©Adafruit Industries Page 126 of 162

https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/5027

Simply connect the STEMMA QT cable
from the STEMMA QT port on your
board to the STEMMA QT port on the
MCP9808.

fritzing

Find Your Sensor

The first thing you'll want to do after getting the sensor wired up, is make sure it's
wired correctly. You're going to do an I12C scan to see if the board is detected, and if it
is, print out its 12C address.

Save the following to your CIRCUITPY drive as code.py.
Click the Download Project Bundle button below to download the necessary libraries
and the code.py file in a zip file. Extract the contents of the zip file, find your

CircuitPython version, and copy the matching code.py file to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

v @ CIRCUITPY
>0

[
B boot_out.txt
R code.py

v lib

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT

"""CircuitPython I2C Device Address Scan"""

import time

import board

i2c = board.I2C() # uses board.SCL and board.SDA

i2c = board.STEMMA I2C() # For using the built-in STEMMA QT connector on a
microcontroller

To create I2C bus on specific pins

import busio

i2c = busio.I2C(board.GP1, board.GPO) # Pi Pico RP2040

while not i2c.try lock():

©Adafruit Industries Page 127 of 162

https://learn.adafruit.com//assets/119371
https://learn.adafruit.com//assets/119371

pass

try:
while True:
print(
"I2C addresses found:",
[hex(device address) for device address in i2c.scan()],

)
time.sleep(2)

finally: # unlock the i2c bus when ctrl-c'ing out of the loop
i2c.unlock()

Auto-reload is on. Simply save files over USB to run them or enter REPL to

If you run this and it seems to hang, try manually unlocking your 12C bus by running
the following two commands from the REPL.

import board
board.I2C().unlock()

First you create the i2c object, using board.I2C() . This convenience routine
creates and saves a busio.I2C object using the default pins board.SCL and
board.SDA . If the object has already been created, then the existing object is
returned. No matter how many times you call board.I2C() , it will return the same
object. This is called a singleton.

To be able to scan it, you need to lock the 12C down so the only thing accessing it is
the code. So next you include a loop that waits until 12C is locked and then continues
on to the scan function.

Last, you have the loop that runs the actual scan, 12c scan() . Because 12C typically
refers to addresses in hex form, the example includes this bit of code that formats the
results into hex format: [hex(device address) for device address in
i2c.scan()].

Open the serial console to see the results! The code prints out an array of addresses.
You've connected the MCP9808 which has a 7-bit I2C address of Ox18. The result for
this sensoris I2C addresses found: ['0x18'] .If no addresses are returned, refer
back to the wiring diagrams to make sure you've wired up your sensor correctly.

©Adafruit Industries Page 128 of 162

|2C Sensor Data

Now you know for certain that your sensor is connected and ready to go. Time to find
out how to get the data from the sensor!

Save the following to your CIRCUITPY drive as code.py.

Click the Download Project Bundle button below to download the necessary libraries
and the code.py file in a zip file. Extract the contents of the zip file, find your
CircuitPython version, and copy the matching entire lib folder and code.py file to your
CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

v @ CIRCUITPY
<
M
N
R boot_out.txt

R code.py
v i lib
» @ adafruit_bus_device
» @ adafruit_register
R adafruit_mcp9808.mpy

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT

"""CircuitPython I2C MCP9808 Temperature Sensor Example"""

import time

import board

import adafruit mcp9808

i2c = board.I2C() # uses board.SCL and board.SDA

i2c = board.STEMMA I2C() # For using the built-in STEMMA QT connector on a
microcontroller

import busio

i2c = busio.I2C(board.SCL1, board.SDAl) # For QT Py RP2040, QT Py ESP32-S2
mcp9808 = adafruit mcp9808.MCP9808(1i2c)

while True:
temperature _celsius = mcp9808.temperature
temperature fahrenheit = temperature celsius * 9 / 5 + 32
print("Temperature: {:.2f} C {:.2f} F ".format(temperature celsius,
temperature fahrenheit))
time.sleep(2)

©Adafruit Industries Page 129 of 162

This code begins the same way as the scan code, except this time, you create your
sensor object using the sensor library. You call it mcp9808 and provide it the i2c
object.

Then you have a simple loop that prints out the temperature reading using the sensor
object you created. Finally, there's a time.sleep(2) , so it only prints once every two
seconds. Connect to the serial console to see the results. Try touching the MCP9808
with your finger to see the values change!

Where's my [2C?

On many microcontrollers, you have the flexibility of using a wide range of pins for
I2C. On some types of microcontrollers, any pin can be used for I2C! Other chips
require using bitbangio, but can also use any pins for 12C. There are further
microcontrollers that may have fixed 12C pins.

Given the many different types of microcontroller boards available, it's impossible to
guarantee anything other than the labeled 'SDA' and 'SCL' pins. So, if you want some
other setup, or multiple 12C interfaces, how will you find those pins? Easy! Below is a
handy script.

Save the following to your CIRCUITPY drive as code.py.
Click the Download Project Bundle button below to download the necessary libraries
and the code.py file in a zip file. Extract the contents of the zip file, find your

CircuitPython version, and copy the matching code.py file to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

v @ CIRCUITPY
> 8

|l
R boot_out.txt
R code.py

v ib

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT

"""CircuitPython I2C possible pin-pair identifying script"""

import board

import busio

from microcontroller import Pin

def is hardware i2c(scl, sda):

©Adafruit Industries Page 130 of 162

try:
p = busio.I2C(scl, sda)
p.deinit()
return True
except ValueError:
return False
except RuntimeError:
return True

def get unique pins():
exclude = [
getattr(board, p)
for p in [

This is not an exhaustive list of unexposed pins. Your results
may include other pins that you cannot easily connect to.

"NEOPIXEL",
"DOTSTAR_CLOCK",
"DOTSTAR_DATA",
"APA102 SCK",
"APA102 MOSI",
n LEDII ,
"SWITCH",
"BUTTON",
"ACCELEROMETER INTERRUPT",
"VOLTAGE MONITOR",
"MICROPHONE CLOCK",
"MICROPHONE DATA",
]
if p in dir(board)
]
pins = [
pin

for pin in [getattr(board, p) for p in dir(board)]

if isinstance(pin, Pin) and pin not in exclude
]
unique = []
for p in pins:
if p not in unique:
unique.append(p)
return unique

for scl pin in get unique pins():
for sda _pin in get unique pins():
if scl pin is sda pin:
continue
if is hardware i2c(scl pin, sda pin):

print("SCL pin:", scl pin, "\t SDA pin:", sda pin)

Now, connect to the serial console and check out the output! The results print out a

nice handy list of SCL and SDA pin pairs that support 12C.

The output for the Metro M7 is extremely long! The screenshot shows only the

beginning. Run the script yourself to see the full output!

©Adafruit Industries

Page 131 of 162

vitPython REP

Auto

.py output:
pin:
pin:
pin:
pin:
pin:
pin:

pin:
pin:
pin:
pin:

CL pin:
pin:
pin:
pin:
pin:
pin:
pin:

L

oad 1is

board
board
board
board
boa
boa
board
board
boa
boa
boa
boa
boa
board
board

on.

Simply save files over USB to run them or enter REPL to disable.

SDA

pin:
pin:
pin:
A pin:
pin:
pin:
pin:
pin:
pin:
pin:
pin:
pin:
pin:
pin:
pin:
A pin:
A pin:

board.
board.
board.
board.
board.
board.
board.
board.
board.
board.
board.
board.
board.
board.

.D6

board

board.

board.

Al
A2
A3
A4
A5
DO
D1
D10
D11
D12
D2
D3
D4
D5

D7
D8

This example only runs once, so if you do not see any output when you connect
to the serial console, try CTRL+D to reload.

PWM Audio

CircuitPython comes with audiopwmio , which provides built-in audio output support
using pulse width modulation (PWM).

PWM converts the audio signal to a series of rectangular waveforms, or frequencies.
By varying the PWM frequency, you can generate tones and play, pause and resume
audio files. The faster your microcontroller is, the better sound quality you'll be able
to achieve with PWM audio.

audiopwmio Documentation

Necessary Hardware

You'll need the following additional hardware to complete the examples on this page.

©Adafruit Industries

Adafruit STEMMA Speaker - Plug and Play
Audio Amplifier

Hey, have you heard the good news? With
Adafruit STEMMA boards you can easily
and safely plug sensors and devices
together, like this Adafruit STEMMA
Speaker - Plug and Play...
https://www.adafruit.com/product/3885

Page 132 of 162

https://docs.circuitpython.org/en/latest/shared-bindings/audiopwmio/index.html
https://www.adafruit.com/product/3885
https://www.adafruit.com/product/3885
https://www.adafruit.com/product/3885

STEMMA JST PH 2mm 3-Pin to Male
Header Cable - 200mm

This cable will let you turn a JST PH 3-pin
cable port into 3 individual wires with
high-quality 0.1" male header plugs on the
end. We're carrying these to match up
with our...
https://www.adafruit.com/product/3893

Wiring the STEMMA Speaker

Connect the STEMMA Speaker to your microcontroller as follows.

STEMMA Speaker SIG to Metro pin A1
(white wire)

STEMMA Speaker GND to Metro GND
(black wire)

Speaker Speaker VIN to Metro 3.3V (red
wire)

fritzing

PWM Tone Playback

The first example generates one period of a sine wave and then loops it to generate a
tone. You can change the volume and the frequency (in Hz) of the tone by changing
the associated variables. Inside the loop, you play the tone for one second and stop it
for one second.

Update your code.py to the following.
Click the Download Project Bundle button below to download the necessary libraries
and the code.py file in a zip file. Extract the contents of the zip file, open the folder

that matches your CircuitPython version, and copy the code.py file to your CIRCUITPY
drive.

©Adafruit Industries Page 133 of 162

https://www.adafruit.com/product/3893
https://www.adafruit.com/product/3893
https://www.adafruit.com/product/3893
https://learn.adafruit.com//assets/119947
https://learn.adafruit.com//assets/119947

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

CircuitPython PWM Audio Out tone example

Plays a tone for one second on, one

second off, in a loop.

import time

import array

import math

import board

from audiocore import RawSample

from audiopwmio import PWMAudioOut as AudioOut

audio = AudioOut(board.Al)

tone volume = 0.1 # Increase this to increase the volume of the tone.
frequency = 440 # Set this to the Hz of the tone you want to generate.
length = 8000 // frequency
sine wave = array.array("H", [0] * length)
for i in range(length):
sine wave[i] = int((1 + math.sin(math.pi * 2 * i / length)) * tone volume * (2
** 15 - 1))

sine wave sample = RawSample(sine wave)

while True:

audio.play(sine wave sample, loop=True)
time.sleep(1)
audio.stop()
time.sleep(1l)

Now you'll hear one second of a 440Hz tone, and one second of silence.

You can try changing the 440 Hz of the tone to produce a tone of a different pitch.
Try changing the number of seconds in time.sleep() to produce longer or shorter
tones.

PWM WAV File Playback

The second example plays a WAV file. You open the file in a readable format. Then,
you play the file and, once finished, print Done playing! to the serial console. You
can use any supported wave file ().

Update your code.py to the following.

Click the Download Project Bundle button below to download the necessary libraries
and the code.py file in a zip file. Extract the contents of the zip file, open the folder
that matches your CircuitPython version, and copy the StreetChicken.wav file and the
code.py file to your CIRCUITPY drive.

©Adafruit Industries Page 134 of 162

https://learn.adafruit.com/circuitpython-essentials/circuitpython-audio-out#play-a-wave-file

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

CircuitPython PWM Audio Out WAV example
Play a WAV file once.

import board
from audiocore import WaveFile
from audiopwmio import PWMAudioOut as AudioOut

audio = AudioOut(board.Al)

with open("StreetChicken.wav", "rb") as wave file:
wave = WaveFile(wave file)
print("Playing wav file!")
audio.play(wave)
while audio.playing:
pass

print("Done!")

Now you'll hear the wave file play, and on completion, print Done Playing! to the
serial console.

You can play a different WAV file by updating “StreetChicken.wav" to be the name
of your CircuitPython-compatible WAV file.

You can do other things while the WAV file plays! There is a pass in this example
where you can include other code, such as code to blink an LED.

12S Audio

I12S, or Inter-IC Sound, is a standard for transmitting digital audio data. It requires at
least three connections. The first connection is a clock, called bit clock (BCLK, or
sometimes written as serial clock or SCK). The second connection, which determines
the channel (left or right) being sent, is called word select (WS). When stereo data is
sent, WS is toggled so that the left and right channels are sent alternately, one data
word at a time. The third connection, which transmits the data, is called serial data (S
D).

Typically, there is a transmitter device which generates the bit clock, word select
signal, and the data, and sends them to a receiver device. In this case, your
microcontroller acts as the transmitter, and an I2S breakout acts as the receiver. The
MAX98357A () is an example of an I12S class D amplifier that allows you to connect
directly to a speaker such as this one ().

©Adafruit Industries Page 135 of 162

https://www.adafruit.com/product/3006
https://www.adafruit.com/product/4445

12S and CircuitPython

CircuitPython supports sending I12S audio signals using the audiobusio module,
making it simple to use the 12S interface with your microcontroller.

In this section, you'll learn how to use CircuitPython to play different types of audio
using I12S, including tones and WAV files.

Necessary Hardware

You'll need the following additional hardware to complete the examples on this page.

Adafruit 12S 3W Class D Amplifier
Breakout - MAX98357A

Listen to this good news - we now have
an all in one digital audio amp breakout
board that works incredibly well with the
https://www.adafruit.com/product/3006

Mono Enclosed Speaker with Plain Wires -
3W 4 Ohm

Listen up! This single 2.8" x 1.2"

speaker is the perfect addition to any
audio project where you need 4 ohm
impedance and 3W or less of power. We...
https://www.adafruit.com/product/4445

©Adafruit Industries Page 136 of 162

https://www.adafruit.com/product/3006
https://www.adafruit.com/product/3006
https://www.adafruit.com/product/3006
https://www.adafruit.com/product/4445
https://www.adafruit.com/product/4445
https://www.adafruit.com/product/4445

Premium Male/Male Jumper Wires - 20 x
6" (150mm)

These Male/Male Jumper Wires are handy
for making wire harnesses or jumpering
between headers on PCB's. These
premium jumper wires are 6" (150mm)
long and come in a...
https://www.adafruit.com/product/1957

Wiring the MAX98357A

Connect the MAX98357A breakout to your microcontroller as follows.

MAX98357A LRC to Metro pin D9
MAX98357A BCLK to Metro pin D10
MAX98357A DIN to Metro pin D12
MAX98357A GND to Metro GND
MAX98357A Vin to Metro 3.3V

Speaker GND to MAX98357A speaker -
input

Speaker positive to MAX98357A speaker +
input

12S Tone Playback

The first example generates one period of a sine wave and then loops it to generate a
tone. You can change the volume and the frequency (in Hz) of the tone by changing
the associated variables. Inside the loop, you play the tone for one second and stop it
for one second.

Update your code.py to the following.
Click the Download Project Bundle button below to download the necessary libraries
and the code.py file in a zip file. Extract the contents of the zip file, open the folder

that matches your CircuitPython version, and copy the code.py file to your CIRCUITPY
drive.

©Adafruit Industries Page 137 of 162

https://www.adafruit.com/product/1957
https://www.adafruit.com/product/1957
https://www.adafruit.com/product/1957
https://learn.adafruit.com//assets/119921
https://learn.adafruit.com//assets/119921

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT
CircuitPython I2S Tone playback example.
Plays a tone for one second on, one
second off, in a loop.

import time

import array

import math

import audiocore

import board

import audiobusio

audio = audiobusio.I2SOQut(board.D10, board.D9, board.D12)

tone volume = 0.1 # Increase this to increase the volume of the tone.
frequency = 440 # Set this to the Hz of the tone you want to generate.
length = 8000 // frequency
sine wave = array.array("h", [0] * length)
for i in range(length):
sine wave[i] = int((math.sin(math.pi * 2 * i / length)) * tone volume * (2 ** 15
- 1))

sine wave sample = audiocore.RawSample(sine wave)

while True:
audio.play(sine wave sample, loop=True)
time.sleep(1)
audio.stop()
time.sleep(1

Now you'll hear one second of a 440Hz tone, and one second of silence.

You can try changing the 440 Hz of the tone to produce a tone of a different pitch.
Try changing the number of seconds in time.sleep() to produce longer or shorter
tones.

12S WAV File Playback

The second example plays a WAV file. You open the file in a readable format. Then,
you play the file and, once finished, print Done playing! to the serial console. You
can use any supported wave file ().

Update your code.py to the following.

Click the Download Project Bundle button below to download the necessary libraries
and the code.py file in a zip file. Extract the contents of the zip file, open the folder
that matches your CircuitPython version, and copy the StreetChicken.wav file and the
code.py file to your CIRCUITPY drive.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT

©Adafruit Industries Page 138 of 162

https://learn.adafruit.com/circuitpython-essentials/circuitpython-audio-out#play-a-wave-file

CircuitPython I2S WAV file playback.
Plays a WAV file once.

import audiocore
import board
import audiobusio

audio = audiobusio.I2SOQut(board.D10, board.D9, board.D12)

with open("StreetChicken.wav", "rb") as wave file:
wav = audiocore.WaveFile(wave file)

print("Playing wav file!")
audio.play(wav)
while audio.playing:

pass

print("Done!")

Now you'll hear the wave file play, and on completion, print Done Playing! to the
serial console.

You can play a different WAV file by updating “StreetChicken.wav" to be the name
of your CircuitPython-compatible WAV file.

You can do other things while the WAV file plays! There is a pass in this example
where you can include other code, such as code to blink an LED.

CircuitPython 12S-Compatible Pin Combinations

I12S audio is supported on specific pins. The good news is, there's a simple way to find
out which pins support audio playback.

In the example below, click the Download Project Bundle button below to download
the necessary libraries and the code.py file in a zip file. Extract the contents of the zip
file, open the directory CircuitPython_Templates/i2s_find_pins/ and then click on the
directory that matches the version of CircuitPython you're using and copy the
contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

v @ CIRCUITPY
>

R boot_out.txt

©Adafruit Industries Page 139 of 162

Then, connect to the serial console () to see a list of pins printed out. This file runs

only once, so if you do not see anything in the output, press CTRL+D to reload and
run the code again.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT

CircuitPython I2S Pin Combination Identification Script
import board

import audiobusio

from microcontroller import Pin

def is hardware i2s(bit clock, word select, data):
try:
p = audiobusio.I2SOut(bit clock, word select, data)
p.deinit()
return True
except ValueError:
return False

def get unique pins():
exclude = [
getattr(board, p)
for p in [
This is not an exhaustive list of unexposed pins. Your results
may include other pins that you cannot easily connect to.
"NEOPIXEL",
"DOTSTAR_CLOCK",
"DOTSTAR_DATA",
"APA102 SCK",
"APA102 MOSI",
"LED",
"SWITCH",
"BUTTON",
]
if p in dir(board)
]
pins = [
pin
for pin in [getattr(board, p) for p in dir(board)]
if isinstance(pin, Pin) and pin not in exclude
]
unique = []
for p in pins:
if p not in unique:
unique.append(p)
return unique

for bit clock pin in get unique pins():
for word select pin in get unique pins():
for data_pin in get _unique pins():
if bit clock pin is word select pin or bit clock pin is data pin or
word select pin \
is data pin:
continue
if is hardware i2s(bit clock pin, word select pin, data pin):
print("Bit clock pin:", bit clock pin, "\t Word select pin:",
word select pin,
"\t Data pin:", data_pin)
else:
pass

©Adafruit Industries Page 140 of 162

https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

For details about the I12S API, check out the CircuitPython docs ().

CircuitPython BLE

CircuitPython BLE UART Example

It's easy to use Adafruit AirLift ESP32 co-processor boards for Bluetooth Low Energy
(BLE) with CircuitPython. When you reset the ESP32, you can put it in WiFi mode (the
default), or in BLE mode; you cannot use both modes simultaneously.

Here's a simple example of using BLE to connect CircuitPython with the Bluefruit
Connect app. Use CircuitPython 6.0.0 or later.

Note: Don't confuse the ESP32 with the ESP32-S2, which is a different module with a
similar name. The ESP32-S2 does not support BLE.

Currently the AirLift support for CircuitPython only provides BLE peripheral
support. BLE central is under development. So you cannot connect to BLE

devices like Heart Rate monitors, etc., but you can act as a BLE peripheral

yourself.

Update the AirLift Firmware

You will need to update the AirLift's firmware to at least version 1.7.1. Previous versions
of the AirLift firmware do not support BLE.

Follow the instructions in the guide below, and come back to this page when you've
upgraded the AirLift's firmware:

Upgrading ESP32 AirLift Firmware

Install CircuitPython Libraries

First make sure you are running the latest version of Adafruit CircuitPython () for your
board.

©Adafruit Industries Page 141 of 162

https://circuitpython-jake.readthedocs.io/en/latest/shared-bindings/audiobusio/I2SOut.html
https://learn.adafruit.com/adafruit-metro-m7-with-airlift/upgrading-esp32-airlift-firmware
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython

Next you'll need to install the necessary libraries to use the hardware. Thankfully, we
can do this in one go. In the example below, click the Download Project Bundle button
below to download the necessary libraries and the code.py file in a zip file. Extract the
contents of the zip file, and copy the entire lib folder and the code.py file to your CIRC
UITPY drive.

Your CIRCUITPY/lib folder should contain the following folders and files:

- /adafruit_airlift

. /adafruit_ble

- /adafruit_bus_device
- /adafruit_esp32spi

« adafruit_requests.mpy

v @ CIRCUITPY
>

B boot_out.txt

R code.py
v lib
adafruit_airlift
adafruit_ble
adafruit_bus_device
adafruit_esp32sp
R adafruit_requests.mpy

-
<=
-
-

Install the Adafruit Bluefruit LE Connect App

The Adafruit Bluefruit LE Connect iOS and Android apps allow you to connect to BLE
peripherals that provide a over-the-air "UART" service. Follow the instructions in the B
luefruit LE Connect Guide () to download and install the app on your phone or tablet.

BLE Example

For the Metro M7, comment out line 19 and uncomment line 28 so that ESP32() is
instantiated with board.TX and board.RX as tx and rx:

If you are using a Metro M4 Airlift Lite, PyPortal,

or MatrixPortal, you can use the default pin settings.
Leave this DEFAULT line uncommented.

If you are using a board with pre-defined ESP32 Pins:
esp32 = ESP32()

HoHHH R

If you are using a Metro M7 **QR**
if you are using CircuitPython 6.0.0 or earlier,

H# H

©Adafruit Industries Page 142 of 162

https://learn.adafruit.com/bluefruit-le-connect/
https://learn.adafruit.com/bluefruit-le-connect/

on PyPortal and PyPortal Titano only, use the pin settings
below. Comment out the DEFAULT line above and uncomment

the line below. For CircuitPython 6.1.0, the pin names

have changed for these boards, and the DEFAULT line

above is correct.

esp32 = ESP32(tx=board.TX, rx=board.RX)

SPDX-FileCopyrightText: 2020 Dan Halbert, written for Adafruit Industries
#
SPDX-License-Identifier: Unlicense

pylint: disable=unused-import

import board

import busio

from digitalio import DigitalInOut

from adafruit ble import BLERadio

from adafruit ble.advertising.standard import ProvideServicesAdvertisement
from adafruit ble.services.nordic import UARTService

from adafruit esp32spi import adafruit esp32spi

from adafruit airlift.esp32 import ESP32

If you are using a Metro M4 Airlift Lite, PyPortal,

or MatrixPortal, you can use the default pin settings.
Leave this DEFAULT line uncommented.

If you are using a board with pre-defined ESP32 Pins:
esp32 = ESP32()

If you are using a Metro M7 **QR**

if you are using CircuitPython 6.0.0 or earlier,

on PyPortal and PyPortal Titano only, use the pin settings
below. Comment out the DEFAULT line above and uncomment
the line below. For CircuitPython 6.1.0, the pin names
have changed for these boards, and the DEFAULT line

above is correct.

esp32 = ESP32(tx=board.TX, rx=board.RX)

If you are using an AirLift FeatherWing or AirLift Bitsy Add-On,
use the pin settings below. Comment out the DEFAULT line above
and uncomment the lines below.
If you are using an AirLift Breakout, check that these
choices match the wiring to your microcontroller board,
or change them as appropriate.
esp32 = ESP32(
reset=board.D12,
gpio0=board.D10,
busy=board.D11,
chip select=board.D13,
tx=board.TX,
rx=board.RX,
)

If you are using an AirLift Shield,
use the pin settings below. Comment out the DEFAULT line above
and uncomment the lines below.
esp32 = ESP32(
reset=board.D5,
gpio0=board.D6,
busy=board.D7,
chip select=board.D10,
tx=board.TX,
rx=board.RX,

HHHFHFHBFHBEHEE HHHHHBFHRBHHFHFRHHH O HHHH B

©Adafruit Industries Page 143 of 162

adapter = esp32.start bluetooth()

ble = BLERadio(adapter)
uart = UARTService()
advertisement = ProvideServicesAdvertisement(uart)

while True:
ble.start advertising(advertisement)
print("waiting to connect")
while not ble.connected:
pass
print("connected: trying to read input")
while ble.connected:
Returns b'' if nothing was read.
one byte = uart.read(1l)
if one byte:
print(one_byte)
uart.write(one_byte)

Talk to the AirLift via the Bluefruit LE Connect App

Start the Bluefruit LE Connect App on your phone or tablet. You should see a
CIRCUITPY device available to connect to. Tap the Connect button (1):

©Adafruit Industries Page 144 of 162

al Verizon = 3:43 PM

Select Device

v Filter: with UART &
Q :

RSSI >=

Show unnamed devices

Must have UART Service

» Multiple UART mode

CIRCUITPY9816

"[H Uart capable

You'll then see a list of Bluefruit Connect functions ("modules"). Choose the UART
module (2):

©Adafruit Industries Page 145 of 162

al Verizon = 3:43 PM

Modules

CIRCUITPY9816
all -56 dBm

Info

UART

Plotter

-4 -
- -
-

Pin 1/O
Controller

AHRS/Calibration

B & =-

Thermal Camera

On the UART module page, you can type a string and press Send (3). You'll see that
string entered, and then see it echoed back (echoing is in gray).

©Adafruit Industries Page 146 of 162

al Verizon = < 28% ®

abc

There's an echo in here!

LY

Sent: 29 bytes Received: 29 bytes

Create Your settings.toml File

If you've worked on WiFi projects with CircuitPython before, you're probably familiar
with the secrets.py file. This file is a Python file that is stored on your CIRCUITPY drive
that contains all of your secret WiFi information, such as your SSID, SSID password
and any API keys for loT services.

As of CircuitPython 8 (), there is support for a settings.toml file. Similar to secrets.py,
the settings.toml file separates your sensitive information from your main code.py file.

Your settings.toml file should be stored in the main directory of your CIRCUITPY
drive. It should not be in a folder.

©Adafruit Industries Page 147 of 162

https://circuitpython.org/downloads

settings.toml File Example

Here is an example on how to format your settings.toml file.

Comments are supported
CIRCUITPY _WIFI SSID="guest wifi"
CIRCUITPY WIFI PASSWORD="guessable"
CIRCUITPY_WEB API PORT=80

CIRCUITPY _WEB API PASSWORD="passwOrd"
test variable="this is a test"

thumbs up="\U0001f44d"

In a settings.toml file, it's important to keep these factors in mind:

« Strings are wrapped in double quotes; ex: "your-string-here"
- Integers are not quoted and may be written in decimal with optional sign (+1, -
1, 1000) or hexadecimal (Oxabcd).

° Floats, octal (00567) and binary (0b11011) are not supported.

« Use \u escapes for weird characters, \x and \ooo escapes are not available
in .toml files

o Example: \U0001f44d for (thumbs up emoji)and \u20ac for € (EUR
sign)

« Unicode emoji, and non-ASCII characters, stand for themselves as long as you're
careful to save in "UTF-8 without BOM" format

e name: | settingstomi

When your settings.toml file is ready, you
can save it in your text editor with the
toml extension.

©Adafruit Industries Page 148 of 162

https://learn.adafruit.com//assets/117071
https://learn.adafruit.com//assets/117071

Accessing Your settings.toml Information in code.py

In your code.py file, you'll need to import the os library to access the settings.toml
file. Your settings are accessed with the os.getenv() function. You'll pass your
settings entry to the function to import it into the code.py file.

import os
print(os.getenv("test variable"))
CircuitPython REPL

code.py output:
this is a test

Code done running.

Press any key to enter the REPL. Use CTRL-D to reload.

In the upcoming CircuitPython WiFi examples, you'll see how the settings.toml file is
used for connecting to your SSID and accessing your API keys.

CircuitPython WiFi

It's easy to use the Adafruit AirLift breakout with CircuitPython and the Adafruit
CircuitPython ESP32SPI () module. This module allows you to easily add WiFi to your
project.

The ESP32SPI library requires a microcontroller with “128KB of RAM or more.

The SAMD21 will not work.

CircuitPython Microcontroller Pinout

The ESP32's pins on the Metro M7 are as follows:
esp32 cs = DigitalInOut(board.ESP CS)

esp32 ready = DigitalInQut(board.ESP_BUSY)
esp32 reset = DigitalInQut(board.ESP_RESET)

©Adafruit Industries Page 149 of 162

https://github.com/adafruit/Adafruit_CircuitPython_ESP32SPI
https://github.com/adafruit/Adafruit_CircuitPython_ESP32SPI

CircuitPython Setup

First make sure you are running the latest version of Adafruit CircuitPython () for your
board.

Next you'll need to install the necessary libraries to use the hardware. Thankfully, we
can do this in one go. In the example below, click the Download Project Bundle button
below to download the necessary libraries and the code.py file in a zip file. Extract the
contents of the zip file, and copy the entire lib folder and the code.py file to your CIRC
UITPY drive.

Your CIRCUITPY/lib folder should contain the following folders and files:

- /adafruit_bus_device
« /adafruit_esp32spi
« adafruit_requests.mpy

v @ CIRCUITPY
>0
[
la

R boot_out.txt

R code.py
v ib

» @ adafruit_bus_device
» @ adafruit_esp32sp
R adafruit_requests.mpy

CircuitPython Usage

Copy the following code to your code.py file on your microcontroller:

SPDX-FileCopyrightText: 2019 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import os

import board

import busio

from digitalio import DigitalInOut

import adafruit requests as requests

import adafruit esp32spi.adafruit esp32spi socket as socket
from adafruit esp32spi import adafruit esp32spi

print("ESP32 SPI webclient test")

"http://wifitest.adafruit.com/testwifi/index.html"
"http://api.coindesk.com/v1l/bpi/currentprice/USD.json"

TEXT URL
JSON_URL

If you are using a board with pre-defined ESP32 Pins:

©Adafruit Industries Page 150 of 162

https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython

esp32 _cs = DigitalInOut(board.ESP_CS)
esp32 ready = DigitalInQut(board.ESP BUSY)
esp32 reset = DigitalInQut(board.ESP_RESET)

busio.SPI(board.SCK, board.MOSI, board.MISO)
adafruit esp32spi.ESP_SPIcontrol(spi, esp32 cs, esp32 ready, esp32 reset)

spi
esp

requests.set socket(socket, esp)

if esp.status == adafruit esp32spi.WL IDLE STATUS:
print("ESP32 found and in idle mode")

print("Firmware vers.", esp.firmware version)

print("MAC addr:", [hex(i) for i in esp.MAC _address])

for ap in esp.scan_networks():
print ("\t%s\t\tRSSI: %d" % (str(ap["ssid"], "utf-8"), ap["rssi"l))

print("Connecting to AP...")
while not esp.is connected:
try:
esp.connect AP(os.getenv('CIRCUITPY WIFI SSID'),
os.getenv('CIRCUITPY WIFI PASSWORD'))
except OSError as e:
print("could not connect to AP, retrying: ", e)
continue
print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)
print("My IP address is", esp.pretty ip(esp.ip_address))
print(
"IP lookup adafruit.com: %s" %
esp.pretty ip(esp.get _host by name("adafruit.com"))
)

print("Ping google.com: %d ms" % esp.ping("google.com"))

esp. debug = True

print("Fetching text from", TEXT_ URL)
r = requests.get(TEXT URL)

print("-" * 40)

print(r.text)

print("-" * 40)

r.close()

print()

print("Fetching json from", JSON URL)
r = requests.get(JSON_URL)

print("-" * 40)

print(r.json())

print("-" * 40)

r.close()

print("Done!")

Connect to the serial console () to see the output. It should look something like the

following:

©Adafruit Industries Page 151 of 162

https://learn.adafruit.com/welcome-to-circuitpython/interacting-with-the-serial-console

0 M

A
C
C

Make sure you see the same output! If you don't, check your wiring. Note that we've
changed the pinout in the code example above to reflect the CircuitPython
Microcontroller Pinout at the top of this page.

Once you've succeeded, continue onto the next page!

If you can read the Firmware and MAC address but fails on scanning SSIDs,
check your power supply, you may be running out of juice to the ESP32 and it's
resetting

Installing the Bootloader

The i.MX RT has built-in bootloader in ROM that implements the NXP Serial Download
Protocol (SDP), which can be used to load & execute TinyUF2 to SRAM
with spdhost tool via USB.

The built-in ROM bootloader is unerasable, which means your board is never 'bricked'
- it can always be restored to factory firmware! We don't use the ROM bootloader for
general purpose code upload because it's not as easy to use as TinyUF2 which allows
drag-and-dropping of firmware UF2 files. However, if you ever have to factory-reset
the board, or if you are developing with NXP software that expects to talk directly to
the ROM bootloader, this page is for you!

©Adafruit Industries Page 152 of 162

Step 1. Install SPSDK to get the sdphost tool

Install the NXP SPSDK with pip install spsdk.More details are described in the S
PSDK Installation Guide (). If you are running Linux, make sure your user has
permission for accessing hidraw.

Power up your board with the Boot Mode
switch setto BOOT MODE[1:0]=01 to
—— enter Serial Download mode. That means
e woll = B b the Boot Select BO switch is 'on' (next to
pe il . the ON text) Boot Select B1 switch is 'off'
1 L (not next to the ON text).

T

Note that the Serial Download mode will automatically run with blank flash, so if you
have a fresh QSPI flash chip, the boot select switch doesn't matter

tinyuf2-metro_m7_1011.bin

Download the tinyuf2-metro_m7_1011.bin binary firmware file and place it into the
directory you are running python3 from, then run:

sdphost -v -u 0x1fc9,0x0145 -- write-file 0x20206400 tinyuf2-
metro m7 1011.bin
sdphost -u 0x1fc9,0x0145 jump-address 0x20207000

To upload the binary file to RAM memory and then jump to the main() function
(which is not at the exact same address!) which will burn the bootloader to FLASH.

©Adafruit Industries Page 153 of 162

https://spsdk.readthedocs.io/en/latest/usage/installation.html
https://spsdk.readthedocs.io/en/latest/usage/installation.html
https://learn.adafruit.com//assets/119442
https://learn.adafruit.com//assets/119442
https://cdn-learn.adafruit.com/assets/assets/000/118/080/original/tinyuf2-metro_m7_1011.bin?1675442427

® [Desktop — -bash — 80x17 I
0@ /Desktop$ sdphost -v -u 0x1fc9,0x0145 -- write-file .
0x20206400 tinyuf2-metro_m7_1011.bin

INFO:1libusbsio:Loading SIO library: /opt/homebrew/lib/python3.9/site-packages/1i
busbsio/bin/osx_arm64/1ibusbsio.dylib ”
INFO:libusbsio:HID enumeration[105553135459328]: initialized metro_m7_1011.bin

INFO:1libusbsio:HID enumeration[105553135459328]: finished, total 16 devices
INFO:spsdk.sdp.sdp:Connect: SE Blank RT Family (@x1F(C9, @0x0145) [.

tinyuf2-

INFO:1libusbsio.hidapi.dev:Opening HID device at path: 'b'DevSrvsID:4295368868""
INFO:libusbsio.hidapi.dev:HID device 4872533456 is now open
INFO:spsdk.sdp.sdp:TX-CMD: WriteFile(address=0x20206400, length=34092)
INFO:1libusbsio.hidapi.dev:HID device 4872533456 closed METROM7BOOT
Status (HAB mode) = 1450735702 (@x56787856) Hab Is Disabled (Unlocked).
Response status = 2290649224 (0x88888888) Write File Success.

yada@ ~/Desktop$ sdphost -u 0x1fc9,0x0145 jump-address 0x20
207000
Status (HAB mode) = 1450735702 (@x56787856) Hab Is Disabled (Unlocked).

0@ -/Desktop$

|

Now change both Boot Mode switches

to BOOT MODE[1:0]=10 to leave the ROM
bootloader mode. That means the Boot
Select BO switch is 'off' (not next to the ON
text) Boot Select B1 switch is 'on' (next to
the ON text).

Upgrading ESP32 AirLift Firmware

Upload Passthrough Code

First, you'll need to upload the code below to allow your board to act as a
programmer for the ESP32 AirLift module.

Back up any code and files on your CIRCUITPY drive. The code will overwrite the
drive's contents. You should not end up losing any files on the QSPI flash, but it's a
good idea to back them up anyways.

Download the UF2 file for your board and save it to your computer's Desktop.

esp32programmer-

metro_m7_1011-0.12.3.uf2

To enter bootloader mode, start with your board unplugged from USB. Next, find the
reset button on your board. It's a small, black button, and on most of the boards, it will
be the only button available.

©Adafruit Industries Page 154 of 162

https://learn.adafruit.com//assets/119444
https://learn.adafruit.com//assets/119444
https://cdn-learn.adafruit.com/assets/assets/000/119/397/original/esp32programmer-metro_m7_1011-0.12.3.uf2?1678719595

#-E.‘i"."’,’

Tap this button twice to enter the bootloader. If it doesn't work on the first try, don't be
discouraged. The rhythm of the taps needs to be correct and sometimes it takes a
few tries. Once successful, the RGB LED on the board will flash red and then stay
green. A new drive will show up on your computer. The drive will be called METROM7
BOOT where METROMY7 is a reference to your specific board.

For example, a Feather will have FEATHERBOOT and a Trinket will have TRINKETBOO
T etc. Going forward we'll just call the boot drive BOOT.

) 3D Objects Today (1)
§ Desktop
B Documents
Downloads

= METROM7BOOT (i) You will see a new disk drive appear
dof called METROM7BOOT. The board is now
adafruit- uf(u)tp,
Son:meID M in bootloader mode.

Find the .UF2 file you downloaded and drag that file to the new drive on your
computer.

©Adafruit Industries Page 155 of 162

https://learn.adafruit.com//assets/119398
https://learn.adafruit.com//assets/119398

3D Objects Today (1)
P Desktop

B Documents

Downloads

adafruit-circuitpy

thon-metro_m7_

1011-en_US-8.0.3
uf2

= METROM7BOOT (&
= METROM7BOOT (k)

% Network + Copy to METROM7BOOT (I:)

The board's LED should flash and the drive will disappear. Your board should re-

enumerate USB and appear as a COM or Serial port on your computer. Make a note of

the serial port by checking the Device Manager (Windows) or typing 1s /dev/cu* or
/dev/tty* (Mac or Linux) in a terminal.

Edev/ cu. Bluetooth-Incoming-Powdev/ cu. usbmodeml43220’
Edev/ cu. Bluetooth-Incoming-Po#dev/ cu. usbmodem143220’

Download NINA Firmware

Click the link below to download the latest version of the NINA firmware. Unzip it and
save the .bin file to your desktop.

To support BLE on the ESP32 AirLift, you'll need to download NINA firmware
version 1.71, or later.

Download the latest nina-fw .bin file

Next, you'll need to flash the firmware to your ESP32 AirLift module.

If you're using the Google Chrome browser or Microsoft Edge (version 89 or later),
you may follow the instructions below for programming using your board.

©Adafruit Industries Page 156 of 162

https://github.com/adafruit/nina-fw/releases/latest

For advanced users who have esptool.py installed, skip to the bottom of the page.

Upload NINA Firmware

Next, you'll need to upload the new version of NINA firmware to your ESP32 AirLift. To
do this, we'll use the web-based implementation of the flasher tool for Espressif chips,
ESPTool. You will need to be running Google Chrome or Microsoft Edge (version 89 or
later) to follow the steps below.

Safari and Firefox, etc. are not supported because we need Web Serial and only
Chrome is supporting it to the level needed. If you're using an unsupported browser,
you'll need to either switch to Google Chrome or upload NINA firmware using the
Python esptool.py program from your computer (Scroll down to Upload NINA
Firmware with esptool.py,)

Please ensure you are running Google Chrome or Microsoft Edge (version 89 or
later) before following the steps below. Esptool-js is based on Web Serial APl and
ONLY works for Google Chrome and Microsoft Edge, version 89 or later.

On your Google Chrome browser, navigate to https://adafruit.github.io/
Adafruit_WebSerial_ESPTool/ ()

In the top-right corner, select 115200 as the baud rate and click the Connect button.

115200 Baud v N QLT[1o

You will get a pop-up asking you to select the board's COM or Serial port.

. If there are a lot of boards and ports appearing in this list and you're not sure
what to select - remove all other USB devices so only your board is attached,
that way there's no confusion over multiple ports!

Click Connect.

©Adafruit Industries Page 157 of 162

https://adafruit.github.io/Adafruit_WebSerial_ESPTool/
https://adafruit.github.io/Adafruit_WebSerial_ESPTool/

® O ® @ ESPWebFlasher x 4+
< C () (@ nabucasa.github.io/esp-web-flasher/

nabucasa.github.io wants to connect to a serial port

cu.BLTH

cu.Bluetooth-Incoming-Port

ESP Pico (cu.usbmodem0000000000001)

Cancel

ESP Web Flasher loaded.
Connecting...
Connected successfully. Upon success, you will see that it is

Try hard reset. . . .
Chip type ESP32 connected and will print out a unique MAC

Connected to ESP32 . e
MAC Address: C4:4F:33:@E:A1:29 address identifying the board.

Uploading stub...

Running stub... Once you have successfully connected, a
Stub is now running...)
Detecting Flash Size command toolbar will appear at the top of
FlashId: 0x164020
Flash Manufacturer: 20 the screen.
Flash Device: 4016
Auto-detected Flash size: 4MB
sher
— - : .

Offset: 0x[0__ | Verify that the offset is OxO and choose

Offset: 0x [0 &, Choose a file the NINA_....bin file you downloaded

Offset: 0x [0 (&a Choose a file) above.

Offset: 0x [0 (& Choose afile...)

(CErase) (_Program Click the program button to flash the

firmware to your ESP32 AirLift.

©Adafruit Industries Page 158 of 162

https://learn.adafruit.com//assets/114169
https://learn.adafruit.com//assets/114169
https://learn.adafruit.com//assets/114171
https://learn.adafruit.com//assets/114171

ESP Web Flasher

Offset: Ox 0 (nma_wio217—)

ESPTool will take a few minutes to write
firmware to your device. After it's
complete, the progress bar will disappear
and the console will print "To run the new

firmware,..."
ESP Web Flasher
omet o] (T Press the Reset button (or, on the RP2040
omet.oxf] (cafie) Pico, unplug your device from USB power)
—-— J to get out of the ROM bootloader.

Verify the New Firmware Version

To verify everything is working correctly, we'll load up some CircuitPython code.

If you were previously using your ESP32 project with CircuitPython, you'll need to first
reinstall CircuitPython firmware for your board. The QSPI flash should have retained
its contents. If you don't see anything on the CIRCUITPY volume, copy files from the
backup you made earlier to CIRCUITPY.

To verify the new ESP32 WiFi firmware version is correct, follow the Connect to WiFi
step in this guide () and come back here when you've successfully run the code. The

REPL output should display the firmware version you flashed.

©Adafruit Industries Page 159 of 162

https://learn.adafruit.com//assets/114172
https://learn.adafruit.com//assets/114172
https://learn.adafruit.com//assets/114173
https://learn.adafruit.com//assets/114173
https://learn.adafruit.com/adafruit-pyportal/internet-connect#connect-to-wifi-17-4
https://learn.adafruit.com/adafruit-pyportal/internet-connect#connect-to-wifi-17-4

code.py output:
ESP32 SPI webclient test
ESP32 found and in idle mode
Firmware vers. bytearray(b'1.7.4\x00')
MAC addr: ['Oxc4', '0x83', 'Ox11', 'ox12', 'Oxcf', 'Oxas4']
RSSI: -54
RSSI: -65
RSSI: -73

Connecting to AP...
Connected to ° RSSI: -52
My IP address is 192.168.1.155

(Advanced) Upload NINA Firmware with ESPTool.py

For advanced users who have esptool.py installed, run the following commands on
your command line:

If you're using macOS or Linux - run the following command, replacing
/dev/ttyACMO with the serial port of your board and NINA W102-1.6.0 with the
binary file you're flashing to the ESP32.

esptool.py --port /dev/ttyACMO --before no reset --baud 115200
write flash 0 NINA W102-1.6.0.bin

If you're using Windows - run the following command, replacing COM7 with the serial
port of your board and NINA W102-1.6.0 with the binary file you're flashing to the
ESP32

esptool.py --port COM7 --before no reset --baud 115200 write flash 0
NINA W102-1.6.0.bin

The command should detect the ESP32 and will take a minute or two to upload the
firmware.

« If ESPTool doesn't detect the ESP32, make sure you've uploaded the correct .UF
2 file to the bootloader and are using the correct serial port.

Once the firmware is fully uploaded, press the Reset button (or, on the RP2040 Pico,
unplug your device from USB power) to get out of the ROM bootloader mode.

©Adafruit Industries Page 160 of 162

$ esy py --f
esptool.py v2.7
Serial port /dev/cu.usbmodem1432201

ust

Detecting chip type... ESP32

Chip is ESP32DOWDQ6 (revision 1)

Features: WiFi, BT, Dual Core, 240MHz, VRef calibration in efuse, Coding Scheme None
Crystal is 40MHz

MAC: c4:4f:33:0d:5c:19

Uploading stub...

Configuring flash size...

Auto-detected Flash size: 4MB

Compressed 1154048 bytes to 622216...

Wrote 1154048 bytes (622216 compressed) at 0x00000000 in 204.7 seconds (effective 45.1 kbit/s)...
Hash of data verified.

Leaving...
Hard resetting via RTS pin...

Downloads

Files

« NXP i.MX1011 product page with resources ()

« NXP i.MX1011 Data Sheet ()

« NXP i.MX1011 Technical Reference ()

- EagleCAD PCB files on GitHub ()

« Fritzing object in the Adafruit Fritzing Library ()

« Firmware Erase UF2 ()

Schematic and Fab Print

©Adafruit Industries Page 161 of 162

https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt1010-crossover-mcu-with-arm-cortex-m7-core:i.MX-RT1010
https://cdn-learn.adafruit.com/assets/assets/000/119/382/original/IMXRT1010CEC_Data_Sheet.pdf?1678478258
https://cdn-learn.adafruit.com/assets/assets/000/119/383/original/IMXRT1010RM_Reference_Manual.pdf?1678478276
https://github.com/adafruit/Adafruit-Metro-M7-with-AirLift-PCB
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20Metro%20M7%20iMX%20RT1011%20with%20AirLift.fzpz
https://cdn-learn.adafruit.com/assets/assets/000/119/445/original/erase_firmware-metro_m7_1011-0.13.0.uf2?1678809313

©Adafruit Industries Page 162 of 162

	Adafruit Metro M7 1011 with AirLift
	Table of Contents
	Overview
	Pinouts
	Install CircuitPython
	Installing the Mu Editor
	The CIRCUITPY Drive
	Creating and Editing Code
	Exploring Your First CircuitPython Program
	Connecting to the Serial Console
	Interacting with the Serial Console
	The REPL
	CircuitPython Libraries
	CircuitPython Documentation
	Recommended Editors
	Advanced Serial Console on Windows
	Advanced Serial Console on Mac
	Advanced Serial Console on Linux
	Frequently Asked Questions
	Troubleshooting
	Welcome to the Community!
	CircuitPython Essentials
	Blink
	Digital Input
	Analog In
	NeoPixel
	I2C
	PWM Audio
	I2S Audio
	CircuitPython BLE
	Create Your settings.toml File
	CircuitPython WiFi
	Installing the Bootloader
	Upgrading ESP32 AirLift Firmware
	Downloads

	Overview
	Pinouts
	Power
	i.MX RT1011 Processor
	ESP32 WiFi Co-Processor
	Logic Pins
	NeoPixel
	STEMMA QT
	Onboard LEDs
	Reset Button and Reset Pin
	Boot Mode Switches
	Debug Interface

	Install CircuitPython
	CircuitPython Quickstart

	Installing the Mu Editor
	Download and Install Mu
	Starting Up Mu
	Using Mu

	The CIRCUITPY Drive
	Boards Without CIRCUITPY

	Creating and Editing Code
	Creating Code
	Editing Code
	Your code changes are run as soon as the file is done saving.
	1. Use an editor that writes out the file completely when you save it.
	2. Eject or Sync the Drive After Writing

	Oh No I Did Something Wrong and Now The CIRCUITPY Drive Doesn't Show Up!!!
	Back to Editing Code...

	Naming Your Program File
	Exploring Your First CircuitPython Program
	Imports & Libraries
	Setting Up The LED
	Loop-de-loops
	What Happens When My Code Finishes Running?
	What if I Don't Have the Loop?

	Connecting to the Serial Console
	Are you using Mu?
	Serial Console Issues or Delays on Linux
	Setting Permissions on Linux

	Using Something Else?
	Interacting with the Serial Console
	The REPL
	Entering the REPL
	Interacting with the REPL

	Returning to the Serial Console
	CircuitPython Libraries
	The Adafruit Learn Guide Project Bundle
	The Adafruit CircuitPython Library Bundle
	Downloading the Adafruit CircuitPython Library Bundle

	The CircuitPython Community Library Bundle
	Downloading the CircuitPython Community Library Bundle

	Understanding the Bundle
	Example Files
	Copying Libraries to Your Board

	Understanding Which Libraries to Install
	Example: ImportError Due to Missing Library
	Library Install on Non-Express Boards
	Updating CircuitPython Libraries and Examples
	CircUp CLI Tool

	CircuitPython Documentation
	CircuitPython Core Documentation
	CircuitPython Library Documentation
	Examples
	API Reference
	Other Links

	Recommended Editors
	Recommended editors
	Recommended only with particular settings or add-ons
	Editors that are NOT recommended

	Advanced Serial Console on Windows
	Windows 7 and 8.1
	What's the COM?
	Install Putty
	Advanced Serial Console on Mac
	What's the Port?
	Connect with screen

	Advanced Serial Console on Linux
	What's the Port?
	Connect with screen
	Permissions on Linux

	Frequently Asked Questions
	What are some common acronyms to know?
	Using Older Versions
	I have to continue using CircuitPython 6.x or earlier. Where can I find compatible libraries?
	Python Arithmetic
	Does CircuitPython support floating-point numbers?
	Does CircuitPython support long integers, like regular Python?
	Wireless Connectivity
	How do I connect to the Internet with CircuitPython?
	How do I do BLE (Bluetooth Low Energy) with CircuitPython?
	Are there other ways to communicate by radio with CircuitPython?
	Asyncio and Interrupts
	Is there asyncio support in CircuitPython?
	Does CircuitPython support interrupts?
	Status RGB LED
	My RGB NeoPixel/DotStar LED is blinking funny colors - what does it mean?
	Memory Issues
	What is a MemoryError?
	What do I do when I encounter a MemoryError?
	Can the order of my import statements affect memory?
	How can I create my own .mpy files?
	How do I check how much memory I have free?
	Unsupported Hardware
	Is ESP8266 or ESP32 supported in CircuitPython? Why not?
	Does Feather M0 support WINC1500?
	Can AVRs such as ATmega328 or ATmega2560 run CircuitPython?

	Troubleshooting
	Always Run the Latest Version of CircuitPython and Libraries
	I have to continue using CircuitPython 5.x or earlier. Where can I find compatible libraries?

	Bootloader (boardnameBOOT) Drive Not Present
	You may have a different board.
	MakeCode
	MacOS
	Windows 10
	Windows 7 or 8.1

	Windows Explorer Locks Up When Accessing boardnameBOOT Drive
	Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied
	CIRCUITPY Drive Does Not Appear or Disappears Quickly
	Device Errors or Problems on Windows
	Serial Console in Mu Not Displaying Anything
	code.py Restarts Constantly
	CircuitPython RGB Status Light
	CircuitPython 7.0.0 and Later
	CircuitPython 6.3.0 and earlier

	Serial console showing ValueError: Incompatible .mpy file
	CIRCUITPY Drive Issues
	Safe Mode
	Entering Safe Mode in CircuitPython 7.x and Later
	Entering Safe Mode in CircuitPython 6.x
	In Safe Mode

	To erase CIRCUITPY: storage.erase_filesystem()
	Erase CIRCUITPY Without Access to the REPL
	For the specific boards listed below:
	For SAMD21 non-Express boards that have a UF2 bootloader:
	For SAMD21 non-Express boards that do not have a UF2 bootloader:

	Running Out of File Space on SAMD21 Non-Express Boards
	Delete something!
	Use tabs
	On MacOS?
	Prevent & Remove MacOS Hidden Files
	Copy Files on MacOS Without Creating Hidden Files
	Other MacOS Space-Saving Tips

	Device Locked Up or Boot Looping
	Welcome to the Community!
	Adafruit Discord
	CircuitPython.org
	Pull Requests
	Open Issues
	Library Infrastructure Issues
	CircuitPython Localization

	Adafruit GitHub
	Adafruit Forums
	Read the Docs

	CircuitPython Essentials
	Blink
	LED Location
	Blinking an LED

	Digital Input
	LED and Button
	Controlling the LED with a Button

	Analog In
	Analog to Digital Converter (ADC)
	Potentiometers
	Hardware
	Wire Up the Potentiometer
	Reading Analog Pin Values
	Reading Analog Voltage Values

	NeoPixel
	NeoPixel Location
	NeoPixel Color and Brightness
	RGB LED Colors
	NeoPixel Rainbow

	I2C
	I2C and CircuitPython
	Necessary Hardware
	Wiring the MCP9808
	Find Your Sensor
	I2C Sensor Data
	Where's my I2C?

	PWM Audio
	Necessary Hardware
	Wiring the STEMMA Speaker
	PWM Tone Playback
	PWM WAV File Playback

	I2S Audio
	I2S and CircuitPython
	Necessary Hardware
	Wiring the MAX98357A
	I2S Tone Playback
	I2S WAV File Playback
	CircuitPython I2S-Compatible Pin Combinations

	CircuitPython BLE
	CircuitPython BLE UART Example
	Update the AirLift Firmware
	Install CircuitPython Libraries
	Install the Adafruit Bluefruit LE Connect App
	BLE Example
	Talk to the AirLift via the Bluefruit LE Connect App

	Create Your settings.toml File
	settings.toml File Example
	Accessing Your settings.toml Information in code.py

	CircuitPython WiFi
	CircuitPython Microcontroller Pinout
	CircuitPython Setup
	CircuitPython Usage

	Installing the Bootloader
	Step 1. Install SPSDK to get the sdphost tool

	Upgrading ESP32 AirLift Firmware
	Upload Passthrough Code
	Download NINA Firmware
	Upload NINA Firmware

	Verify the New Firmware Version
	(Advanced) Upload NINA Firmware with ESPTool.py

	Downloads
	Files
	Schematic and Fab Print

