

Adafruit Metro M7 1011 with AirLift

Created by lady ada

https://learn.adafruit.com/adafruit-metro-m7-with-airlift

Last updated on 2023-04-04 02:12:43 PM EDT

©Adafruit Industries Page 1 of 162

7

8

19

22

24

25

30

33

36

39

Table of Contents

Overview

Pinouts

• Power

• i.MX RT1011 Processor

• ESP32 WiFi Co-Processor

• Logic Pins

• NeoPixel

• STEMMA QT

• Onboard LEDs

• Reset Button and Reset Pin

• Boot Mode Switches

• Debug Interface

Install CircuitPython

• CircuitPython Quickstart

Installing the Mu Editor

• Download and Install Mu

• Starting Up Mu

• Using Mu

The CIRCUITPY Drive

• Boards Without CIRCUITPY

Creating and Editing Code

• Creating Code

• Editing Code

• Back to Editing Code...

• Naming Your Program File

Exploring Your First CircuitPython Program

• Imports & Libraries

• Setting Up The LED

• Loop-de-loops

• What Happens When My Code Finishes Running?

• What if I Don't Have the Loop?

Connecting to the Serial Console

• Are you using Mu?

• Serial Console Issues or Delays on Linux

• Setting Permissions on Linux

• Using Something Else?

Interacting with the Serial Console

The REPL

• Entering the REPL

• Interacting with the REPL

• Returning to the Serial Console

©Adafruit Industries Page 2 of 162

44

55

62

63

67

69

73

79

CircuitPython Libraries

• The Adafruit Learn Guide Project Bundle

• The Adafruit CircuitPython Library Bundle

• Downloading the Adafruit CircuitPython Library Bundle

• The CircuitPython Community Library Bundle

• Downloading the CircuitPython Community Library Bundle

• Understanding the Bundle

• Example Files

• Copying Libraries to Your Board

• Understanding Which Libraries to Install

• Example: ImportError Due to Missing Library

• Library Install on Non-Express Boards

• Updating CircuitPython Libraries and Examples

• CircUp CLI Tool

CircuitPython Documentation

• CircuitPython Core Documentation

• CircuitPython Library Documentation

Recommended Editors

• Recommended editors

• Recommended only with particular settings or add-ons

• Editors that are NOT recommended

Advanced Serial Console on Windows

• Windows 7 and 8.1

• What's the COM?

• Install Putty

Advanced Serial Console on Mac

• What's the Port?

• Connect with screen

Advanced Serial Console on Linux

• What's the Port?

• Connect with screen

• Permissions on Linux

Frequently Asked Questions

• Using Older Versions

• Python Arithmetic

• Wireless Connectivity

• Asyncio and Interrupts

• Status RGB LED

• Memory Issues

• Unsupported Hardware

Troubleshooting

• Always Run the Latest Version of CircuitPython and Libraries

• I have to continue using CircuitPython 5.x or earlier. Where can I find compatible libraries?

• Bootloader (boardnameBOOT) Drive Not Present

• Windows Explorer Locks Up When Accessing boardnameBOOT Drive

• Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied

• CIRCUITPY Drive Does Not Appear or Disappears Quickly

• Device Errors or Problems on Windows

©Adafruit Industries Page 3 of 162

97

106

108

110

113

119

125

• Serial Console in Mu Not Displaying Anything

• code.py Restarts Constantly

• CircuitPython RGB Status Light

• CircuitPython 7.0.0 and Later

• CircuitPython 6.3.0 and earlier

• Serial console showing ValueError: Incompatible .mpy file

• CIRCUITPY Drive Issues

• Safe Mode

• To erase CIRCUITPY: storage.erase_filesystem()

• Erase CIRCUITPY Without Access to the REPL

• For the specific boards listed below:

• For SAMD21 non-Express boards that have a UF2 bootloader:

• For SAMD21 non-Express boards that do not have a UF2 bootloader:

• Running Out of File Space on SAMD21 Non-Express Boards

• Delete something!

• Use tabs

• On MacOS?

• Prevent & Remove MacOS Hidden Files

• Copy Files on MacOS Without Creating Hidden Files

• Other MacOS Space-Saving Tips

• Device Locked Up or Boot Looping

Welcome to the Community!

• Adafruit Discord

• CircuitPython.org

• Adafruit GitHub

• Adafruit Forums

• Read the Docs

CircuitPython Essentials

Blink

• LED Location

• Blinking an LED

Digital Input

• LED and Button

• Controlling the LED with a Button

Analog In

• Analog to Digital Converter (ADC)

• Potentiometers

• Hardware

• Wire Up the Potentiometer

• Reading Analog Pin Values

• Reading Analog Voltage Values

NeoPixel

• NeoPixel Location

• NeoPixel Color and Brightness

• RGB LED Colors

• NeoPixel Rainbow

I2C

• I2C and CircuitPython

• Necessary Hardware

©Adafruit Industries Page 4 of 162

132

135

141

147

149

152

154

161

• Wiring the MCP9808

• Find Your Sensor

• I2C Sensor Data

• Where's my I2C?

PWM Audio

• Necessary Hardware

• Wiring the STEMMA Speaker

• PWM Tone Playback

• PWM WAV File Playback

I2S Audio

• I2S and CircuitPython

• Necessary Hardware

• Wiring the MAX98357A

• I2S Tone Playback

• I2S WAV File Playback

• CircuitPython I2S-Compatible Pin Combinations

CircuitPython BLE

• CircuitPython BLE UART Example

• Update the AirLift Firmware

• Install CircuitPython Libraries

• Install the Adafruit Bluefruit LE Connect App

• BLE Example

• Talk to the AirLift via the Bluefruit LE Connect App

Create Your settings.toml File

• settings.toml File Example

• Accessing Your settings.toml Information in code.py

CircuitPython WiFi

• CircuitPython Microcontroller Pinout

• CircuitPython Setup

• CircuitPython Usage

Installing the Bootloader

• Step 1. Install SPSDK to get the sdphost tool

Upgrading ESP32 AirLift Firmware

• Upload Passthrough Code

• Download NINA Firmware

• Upload NINA Firmware

• Verify the New Firmware Version

• (Advanced) Upload NINA Firmware with ESPTool.py

Downloads

• Files

• Schematic and Fab Print

©Adafruit Industries Page 5 of 162

©Adafruit Industries Page 6 of 162

Overview

Get ready for our fastest Metro ever - the NXP i.MX RT1011 microcontroller powers this

board with a 500 MHz ARM Cortex M7 processor. There's 4 MB of execute-in-place

QSPI for firmware + disk storage and 128KB of SRAM in-chip.

Currently there we have support for using this board with CircuitPython. There is no

Arduino support at this time.

©Adafruit Industries Page 7 of 162

Features:

NXP i.MX RT1011 processor - ARM Cortex M7 processor running at 500 MHz,

with 128KB SRAM and high speed USB!

AirLift WiFi Co-processor, with TLS/SSL support, plenty of RAM for sockets,

communication is over SPI and it has CircuitPython library support ready to go

for fast wireless integration.

4MB of QSPI XIP Flash.

Power options - 6-12VDC barrel jack or USB type C.

UNO-shape so shields can plug in.

Reset button - Click to restart, double-click to enter UF2 bootloader.

Boot-mode switches to get into the ROM bootloader (you can always reload

code over USB if TinyUF2 gets corrupted somehow).

SWD connector for advanced debugging access.

On/Off switch

STEMMA QT connector for I2C devices.

On/User LEDs + status NeoPixel.

Works with CircuitPython!

53.2mm x 72mm / 2" x 2.8"

Height (w/ barrel jack): 14.8mm / 0.6"

Weight: 22.5g

Pinouts

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 8 of 162

Power

There are two ways that you can power the Metro M7 1011:

USB-C port- This is used for both powering and programming the board. You

can power it with any USB C cable. When USB is plugged in it will charge the

Lipoly battery.

DC Jack - The DC Jack is a 5.5mm/2.1mm center-positive DC connector, which is

the most common available. Provide about 6V-12V here to power the Metro M7

1011.

DC Jack On/Off Switch - This switch can turn incoming power from the DC jack

on or off. It only controls the DC jack, it has no affect on the USB port.

•

•

•

©Adafruit Industries Page 9 of 162

The following pins are related to power on the Metro M7 1011:

3.3V - this is the output from the 3.3V regulator, it can supply 500mA peak.

5V - this is the output from the 5V regulator (when DC jack is used), or from

USB. It can supply ~500mA peak from USB and ~800mA peak from DC.

GND - this is the common ground for all power and logic.

VIN - this is the higher of the DC jack or USB voltage. So if the DC jack is

plugged in and 9V, Vin is 9V. If only USB connected, this will be 5V.

i.MX RT1011 Processor

The Metro M7 1011 is powered by the NXP i.MX RT1011 processor. This is an ARM

Cortex M7 processor running at 500 MHz. It has 128KB of SRAM in-chip, along with

high speed USB.

•

•

•

•

©Adafruit Industries Page 10 of 162

ESP32 WiFi Co-Processor

The WiFi capability uses an Espressif ESP32 Wi-Fi coprocessor, aka the AirLift, with

TLS/SSL support built-in. Communication is over SPI and it has CircuitPython library

support ready to go for fast wireless integration with the following pins:

MOSI pin (board.ESP_MOSI)

MISO pin (board.ESP_MISO)

SCK pin (board.ESP_SCK)

CS pin (board.ESP_CS)

Ready/Busy pin (board.ESP_BUSY)

Reset pin (board.ESP_RESET)

ESP RX/TX pins (board.ESP_RX and board.ESP_TX) are shared with the M7 R

X/TX pins. There's a resistor between the M7's RX line and the ESP32 module so

that a device connected on the RX pin will override the communication from the

ESP32 module.

You can also connect to the ESP32 RTS pin (used in some serial contexts) on bo

ard.ESP_RTS

The ESP32 GPIO0 pin for bootloader enable is connected to board.ESP_GPIO0

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 11 of 162

Logic Pins

These are the general purpose I/O pin set for the microcontroller.

Top Row:

D0 / RX - GPIO D0, also receive (input) pin/RX for UART. This pin is shared with

the ESP32 RX pin. There is a resistor between D0/RX and the ESP32 RX pins so

that a device that is connected to D0/RX will override the communication from

the ESP32 RX pin.

D1 / TX - GPIO D1, also transmit (output) pin/TX for UART

D2 through D12 - These are general purpose GPIO

D13 - GPIO D13 and is connected to the red LED marked D13 next to the reset

button.

SDA - the I2C data pin. There's a 10K pull up on this pin to 3V already installed

SCL - the I2C clock pin. There's a 10K pull up on this pin to 3V already installed

Bottom Row:

A0 - This pin is analog output A0. You can set the raw voltage to anything from 0

to 3.3V. Unlike PWM outputs this is a true analog output.

A1 thru A5 - These are analog inputs as well as digital I/O pins.

•

•

•

•

•

•

•

•

©Adafruit Industries Page 12 of 162

Right side:

SCK/MOSI/MISO - These are the hardware SPI pins, are are connected to the

2x3 header on the right hand side. These are also used by the ESP32 so they

should not be used for anything but SPI connectivity - not for GPIO.

NeoPixel

NeoPixel LED - This addressable RGB NeoPixel LED, labeled NEO on the board,

works both as a status LED (in CircuitPython and the bootloader), and can be

controlled with code. It is available in CircuitPython as board.NEOPIXEL .

•

•

©Adafruit Industries Page 13 of 162

STEMMA QT

This JST SH 4-pin STEMMA QT () connector breaks out I2C (SCL, SDA, 3.3V, GND). It

allows you to connect to various breakouts and sensors with STEMMA QT connectors

() or to other things using assorted associated accessories (). It works great with any

STEMMA QT or Qwiic sensor/device. You can also use it with Grove I2C devices

thanks to this handy cable ().

In CircuitPython, this port can be accessed with board.STEMMA_I2C() .

©Adafruit Industries Page 14 of 162

https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/category/1018
https://www.adafruit.com/category/1018
https://www.adafruit.com/category/1018
https://www.adafruit.com/category/1018
https://www.adafruit.com/?q=JST%20SH%204
https://www.adafruit.com/product/4528

Onboard LEDs

Power LED - Above the USB-C port, on the front of the board, is the power LED,

labeled ON. It is the green LED.

Red LED- This little red LED, labeled D13 on the board, is on or blinks during

certain operations (such as pulsing when in the bootloader), and is controllable

in code. It is available in CircuitPython as board.LED .

•

•

©Adafruit Industries Page 15 of 162

Reset Button and Reset Pin

Reset button - The reset button restarts the board and helps enter the

bootloader. You can click it once to reset the board without unplugging the USB

cable or battery. Alternatively, tap once, and then tap again while the NeoPixel

status LED is purple to enter the UF2 bootloader (needed to load CircuitPython).

The RST pin can be used to reset the board. Tie to ground manually to reset the

board.

•

•

©Adafruit Industries Page 16 of 162

Boot Mode Switches

The boot mode switches (labeled BOOT SEL on the board silk) are used to get into

the ROM bootloader. The switch has two individual switches: B0 and B1. The photo

shows both switches in the OFF position, but for normal operation B0 should be OFF

and B1 should be ON.

The individual switches are set to ON (or 1) when they are moved next to the ON text

on the switch housing and OFF (or 0) when they are moved next to their labels on the

board silk. You can find more information on entering the bootloader with these

switches on the Installing the Bootloader page () in this guide.

The photo shows both switches in the OFF position, but for normal operation B0

should be OFF and B1 should be ON.

©Adafruit Industries Page 17 of 162

https://learn.adafruit.com/adafruit-metro-m7-with-airlift/installing-bootloader

Debug Interface

If you'd like to do more advanced development, trace-debugging, or not use the

bootloader, we have the SWD interface exposed. You can use any 2x5 0.05" pitch

SWD interface to connect. We suggest a J-Link.

SEGGER J-Link BASE - JTAG/SWD

Debugger

The SEGGER J-Link BASE is identical to

the cheaper J-Link EDU model except for

the terms of...

https://www.adafruit.com/product/2209

©Adafruit Industries Page 18 of 162

https://www.adafruit.com/product/2209
https://www.adafruit.com/product/2209
https://www.adafruit.com/product/2209

SEGGER J-Link EDU Mini - JTAG/SWD

Debugger

Doing some serious development on any

ARM-based platform, and tired of 'printf'

plus an LED to debug? A proper JTAG/

SWD HW debugger can make debugging

more of a pleasure and...

https://www.adafruit.com/product/3571

You'll need an adapter and cable to convert the 2x10 JTAG cable to SWD.

10-pin 2x5 Socket-Socket 1.27mm IDC

(SWD) Cable - 150mm long

These little cables are handy when

programming or debugging a tiny board

that uses 10-pin 1.27mm (0.05") pitch SWD

programming connectors. We see these

connectors often on ARM...

https://www.adafruit.com/product/1675

JTAG (2x10 2.54mm) to SWD (2x5 1.27mm)

Cable Adapter Board

This adapter board is designed for

adapting a 'classic' 2x10 (0.1"/2.54mm

pitch) JTAG cable to a slimmer 2x5 (0.05"/

1.27mm pitch) SWD Cable. It's helpful...

https://www.adafruit.com/product/2094

Install CircuitPython

CircuitPython () is a derivative of MicroPython () designed to simplify experimentation

and education on low-cost microcontrollers. It makes it easier than ever to get

prototyping by requiring no upfront desktop software downloads. Simply copy and

edit files on the CIRCUITPY drive to iterate.

©Adafruit Industries Page 19 of 162

https://www.adafruit.com/product/3571
https://www.adafruit.com/product/3571
https://www.adafruit.com/product/3571
https://www.adafruit.com/product/1675
https://www.adafruit.com/product/1675
https://www.adafruit.com/product/1675
https://www.adafruit.com/product/2094
https://www.adafruit.com/product/2094
https://www.adafruit.com/product/2094
https://github.com/adafruit/circuitpython
https://micropython.org

CircuitPython Quickstart

Follow this step-by-step to quickly get CircuitPython running on your board.

Download the latest version of

CircuitPython for this board via

circuitpython.org

Click the link above to download the latest

CircuitPython UF2 file.

Save it wherever is convenient for you.

Plug your board into your computer, using a known-good data-sync cable, directly, or

via an adapter if needed.

Click the reset button once (highlighted in red above), and then click it again when

you see the RGB status LED(s) (highlighted in green above) turn red (approximately

©Adafruit Industries Page 20 of 162

https://circuitpython.org/board/metro_m7_1011/
https://learn.adafruit.com//assets/102129
https://learn.adafruit.com//assets/102129

half a second later). Sometimes it helps to think of it as a "slow double-click" of the

reset button.

Once successful, you will see the RGB status LED(s) turn green (highlighted in green

above). If you see red, try another port, or if you're using an adapter or hub, try

without the hub, or different adapter or hub.

If double-clicking doesn't work the first time, try again. Sometimes it can take a few

tries to get the rhythm right!

A lot of people end up using charge-only USB cables and it is very frustrating! Make

sure you have a USB cable you know is good for data sync.

You will see a new disk drive appear called

METROM7BOOT.

Drag the adafruit_circuitpython_etc.uf2 file

to METROM7BOOT.

©Adafruit Industries Page 21 of 162

https://learn.adafruit.com//assets/119388
https://learn.adafruit.com//assets/119388
https://learn.adafruit.com//assets/119389
https://learn.adafruit.com//assets/119389

The BOOT drive will disappear and a new

disk drive called CIRCUITPY will appear.

That's it!

Installing the Mu Editor

Mu is a simple code editor that works with the Adafruit CircuitPython boards. It's

written in Python and works on Windows, MacOS, Linux and Raspberry Pi. The serial

console is built right in so you get immediate feedback from your board's serial

output!

Download and Install Mu

Download Mu from https://codewith.mu ().

Click the Download link for downloads and

installation instructions.

Click Start Here to find a wealth of other

information, including extensive tutorials

and and how-to's.

Mu is our recommended editor - please use it (unless you are an experienced

coder with a favorite editor already!).

Windows users: due to the nature of MSI installers, please remove old versions of

Mu before installing the latest version.

Ubuntu users: Mu currently (checked May 4, 2022) does not install properly on

Ubuntu 22.04. See https://github.com/mu-editor/mu/issues to track this issue.

©Adafruit Industries Page 22 of 162

https://learn.adafruit.com//assets/102130
https://learn.adafruit.com//assets/102130
https://learn.adafruit.com//assets/105677
https://learn.adafruit.com//assets/105677
https://codewith.mu/
https://github.com/mu-editor/mu/issues

Starting Up Mu

The first time you start Mu, you will be

prompted to select your 'mode' - you can

always change your mind later. For now

please select CircuitPython!

The current mode is displayed in the lower

right corner of the window, next to the

"gear" icon. If the mode says "Microbit" or

something else, click the Mode button in

the upper left, and then choose

"CircuitPython" in the dialog box that

appears.

Mu attempts to auto-detect your board on

startup, so if you do not have a

CircuitPython board plugged in with a

CIRCUITPY drive available, Mu will inform

you where it will store any code you save

until you plug in a board.

To avoid this warning, plug in a board and

ensure that the CIRCUITPY drive is

mounted before starting Mu.

Using Mu

You can now explore Mu! The three main sections of the window are labeled below;

the button bar, the text editor, and the serial console / REPL.

See https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors

and https://learn.adafruit.com/welcome-to-circuitpython/pycharm-and-

circuitpython for other editors to use.

©Adafruit Industries Page 23 of 162

https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors
https://learn.adafruit.com/welcome-to-circuitpython/pycharm-and-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython/pycharm-and-circuitpython
https://learn.adafruit.com//assets/105681
https://learn.adafruit.com//assets/105681
https://learn.adafruit.com//assets/105679
https://learn.adafruit.com//assets/105679

Now you're ready to code! Let's keep going...

The CIRCUITPY Drive

When CircuitPython finishes installing, or you plug a CircuitPython board into your

computer with CircuitPython already installed, the board shows up on your computer

as a USB drive called CIRCUITPY.

The CIRCUITPY drive is where your code and the necessary libraries and files will live.

You can edit your code directly on this drive and when you save, it will run

automatically. When you create and edit code, you'll save your code in a code.py file

located on the CIRCUITPY drive. If you're following along with a Learn guide, you can

paste the contents of the tutorial example into code.py on the CIRCUITPY drive and

save it to run the example.

With a fresh CircuitPython install, on your CIRCUITPY drive, you'll find a code.py file

containing print("Hello World!") and an empty lib folder. If your CIRCUITPY

drive does not contain a code.py file, you can easily create one and save it to the

drive. CircuitPython looks for code.py and executes the code within the file

automatically when the board starts up or resets. Following a change to the contents

of CIRCUITPY, such as making a change to the code.py file, the board will reset, and

the code will be run. You do not need to manually run the code. This is what makes it

so easy to get started with your project and update your code!

Note that all changes to the contents of CIRCUITPY, such as saving a new file,

renaming a current file, or deleting an existing file will trigger a reset of the board.

©Adafruit Industries Page 24 of 162

Boards Without CIRCUITPY

CircuitPython is available for some microcontrollers that do not support native USB.

Those boards cannot present a CIRCUITPY drive. This includes boards using ESP32

or ESP32-C3 microcontrollers.

On these boards, there are alternative ways to transfer and edit files. You can use the

Thonny editor (), which uses hidden commands sent to the REPL to read and write

files. Or you can use the CircuitPython web workflow, introduced in Circuitpython 8.

The web workflow provides browser-based WiFi access to the CircuitPython

filesystem. These guides will help you with the web workflow:

CircuitPython on ESP32 Quick Start ()

CircuitPython Web Workflow Code Editor Quick Start ()

Creating and Editing Code

One of the best things about CircuitPython is how simple it is to get code up and

running. This section covers how to create and edit your first CircuitPython program.

To create and edit code, all you'll need is an editor. There are many options. Adafruit

strongly recommends using Mu! It's designed for CircuitPython, and it's really simple

and easy to use, with a built in serial console!

If you don't or can't use Mu, there are a number of other editors that work quite well.

The Recommended Editors page () has more details. Otherwise, make sure you do

"Eject" or "Safe Remove" on Windows or "sync" on Linux after writing a file if you

aren't using Mu. (This is not a problem on MacOS.)

•

•

©Adafruit Industries Page 25 of 162

https://thonny.org
https://learn.adafruit.com/circuitpython-with-esp32-quick-start
https://learn.adafruit.com/getting-started-with-web-workflow-using-the-code-editor
https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors

Creating Code

Installing CircuitPython generates a

code.py file on your CIRCUITPY drive. To

begin your own program, open your editor,

and load the code.py file from the

CIRCUITPY drive.

If you are using Mu, click the Load button

in the button bar, navigate to the

CIRCUITPY drive, and choose code.py.

Copy and paste the following code into your editor:

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 led.value = True

 time.sleep(0.5)

 led.value = False

 time.sleep(0.5)

If you're using a KB2040, QT Py or a Trinkey, please download the NeoPixel blink

example ().

The KB2040, QT Py and the Trinkeys do not have a built-in little red LED! There is

an addressable RGB NeoPixel LED. The above example will NOT work on the

KB2040, QT Py or the Trinkeys!

The NeoPixel blink example uses the onboard NeoPixel, but the time code is the

same. You can use the linked NeoPixel Blink example to follow along with this

guide page.

©Adafruit Industries Page 26 of 162

https://learn.adafruit.com//assets/105703
https://learn.adafruit.com//assets/105703
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Welcome_to_CircuitPython/code.py
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Welcome_to_CircuitPython/code.py

It will look like this. Note that under the

while True: line, the next four lines

begin with four spaces to indent them, and

they're indented exactly the same amount.

All the lines before that have no spaces

before the text.

Save the code.py file on your CIRCUITPY

drive.

The little LED should now be blinking. Once per half-second.

Congratulations, you've just run your first CircuitPython program!

On most boards you'll find a tiny red LED.

On the ItsyBitsy nRF52840, you'll find a tiny blue LED.

On QT Py M0, QT Py RP2040, and the Trinkey series, you will find only an RGB

NeoPixel LED.

©Adafruit Industries Page 27 of 162

https://learn.adafruit.com//assets/105704
https://learn.adafruit.com//assets/105704
https://learn.adafruit.com//assets/105705
https://learn.adafruit.com//assets/105705

Editing Code

To edit code, open the code.py file on your

CIRCUITPY drive into your editor.

Make the desired changes to your code.

Save the file. That's it!

Your code changes are run as soon as the file is done saving.

There's one warning before you continue...

The CircuitPython code on your board detects when the files are changed or written

and will automatically re-start your code. This makes coding very fast because you

save, and it re-runs. If you unplug or reset the board before your computer finishes

writing the file to your board, you can corrupt the drive. If this happens, you may lose

the code you've written, so it's important to backup your code to your computer

regularly.

There are a couple of ways to avoid filesystem corruption.

1. Use an editor that writes out the file completely when you save it.

Check out the Recommended Editors page () for details on different editing options.

Don't click reset or unplug your board!

If you are dragging a file from your host computer onto the CIRCUITPY drive, you

still need to do step 2. Eject or Sync (below) to make sure the file is completely

written.

©Adafruit Industries Page 28 of 162

https://learn.adafruit.com//assets/105706
https://learn.adafruit.com//assets/105706
https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors

2. Eject or Sync the Drive After Writing

If you are using one of our not-recommended-editors, not all is lost! You can still make

it work.

On Windows, you can Eject or Safe Remove the CIRCUITPY drive. It won't actually

eject, but it will force the operating system to save your file to disk. On Linux, use the

sync command in a terminal to force the write to disk.

You also need to do this if you use Windows Explorer or a Linux graphical file

manager to drag a file onto CIRCUITPY.

Oh No I Did Something Wrong and Now The CIRCUITPY

Drive Doesn't Show Up!!!

Don't worry! Corrupting the drive isn't the end of the world (or your board!). If this

happens, follow the steps found on the Troubleshooting () page of every board

guide to get your board up and running again.

Back to Editing Code...

Now! Let's try editing the program you added to your board. Open your code.py file

into your editor. You'll make a simple change. Change the first 0.5 to 0.1 . The code

should look like this:

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 led.value = True

 time.sleep(0.1)

 led.value = False

 time.sleep(0.5)

Leave the rest of the code as-is. Save your file. See what happens to the LED on your

board? Something changed! Do you know why?

You don't have to stop there! Let's keep going. Change the second 0.5 to 0.1 so it

looks like this:

©Adafruit Industries Page 29 of 162

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting

while True:

 led.value = True

 time.sleep(0.1)

 led.value = False

 time.sleep(0.1)

Now it blinks really fast! You decreased the both time that the code leaves the LED on

and off!

Now try increasing both of the 0.1 to 1 . Your LED will blink much more slowly

because you've increased the amount of time that the LED is turned on and off.

Well done! You're doing great! You're ready to start into new examples and edit them

to see what happens! These were simple changes, but major changes are done using

the same process. Make your desired change, save it, and get the results. That's

really all there is to it!

Naming Your Program File

CircuitPython looks for a code file on the board to run. There are four options: code.tx

t, code.py, main.txt and main.py. CircuitPython looks for those files, in that order, and

then runs the first one it finds. While code.py is the recommended name for your code

file, it is important to know that the other options exist. If your program doesn't seem

to be updating as you work, make sure you haven't created another code file that's

being read instead of the one you're working on.

Exploring Your First CircuitPython Program

First, you'll take a look at the code you're editing.

Here is the original code again:

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 led.value = True

 time.sleep(0.5)

 led.value = False

 time.sleep(0.5)

©Adafruit Industries Page 30 of 162

Imports & Libraries

Each CircuitPython program you run needs to have a lot of information to work. The

reason CircuitPython is so simple to use is that most of that information is stored in

other files and works in the background. The files built into CircuitPython are called m

odules, and the files you load separately are called libraries. Modules are built into

CircuitPython. Libraries are stored on your CIRCUITPY drive in a folder called lib.

import board

import digitalio

import time

The import statements tells the board that you're going to use a particular library or

module in your code. In this example, you imported three modules: board ,

digitalio , and time . All three of these modules are built into CircuitPython, so no

separate library files are needed. That's one of the things that makes this an excellent

first example. You don't need anything extra to make it work!

These three modules each have a purpose. The first one, board , gives you access to

the hardware on your board. The second, digitalio , lets you access that hardware

as inputs/outputs. The third, time , let's you control the flow of your code in multiple

ways, including passing time by 'sleeping'.

Setting Up The LED

The next two lines setup the code to use the LED.

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

Your board knows the red LED as LED . So, you initialise that pin, and you set it to

output. You set led to equal the rest of that information so you don't have to type it

all out again later in our code.

Loop-de-loops

The third section starts with a while statement. while True: essentially means,

"forever do the following:". while True: creates a loop. Code will loop "while" the

condition is "true" (vs. false), and as True is never False, the code will loop forever.

All code that is indented under while True: is "inside" the loop.

©Adafruit Industries Page 31 of 162

Inside our loop, you have four items:

while True:

 led.value = True

 time.sleep(0.5)

 led.value = False

 time.sleep(0.5)

First, you have led.value = True . This line tells the LED to turn on. On the next

line, you have time.sleep(0.5) . This line is telling CircuitPython to pause running

code for 0.5 seconds. Since this is between turning the led on and off, the led will be

on for 0.5 seconds.

The next two lines are similar. led.value = False tells the LED to turn off, and tim

e.sleep(0.5) tells CircuitPython to pause for another 0.5 seconds. This occurs

between turning the led off and back on so the LED will be off for 0.5 seconds too.

Then the loop will begin again, and continue to do so as long as the code is running!

So, when you changed the first 0.5 to 0.1 , you decreased the amount of time that

the code leaves the LED on. So it blinks on really quickly before turning off!

Great job! You've edited code in a CircuitPython program!

What Happens When My Code Finishes Running?

When your code finishes running, CircuitPython resets your microcontroller board to

prepare it for the next run of code. That means any set up you did earlier no longer

applies, and the pin states are reset.

For example, try reducing the code snippet above by eliminating the loop entirely,

and replacing it with led.value = True . The LED will flash almost too quickly to

see, and turn off. This is because the code finishes running and resets the pin state,

and the LED is no longer receiving a signal.

To that end, most CircuitPython programs involve some kind of loop, infinite or

otherwise.

©Adafruit Industries Page 32 of 162

What if I Don't Have the Loop?

If you don't have the loop, the code will run to the end and exit. This can lead to some

unexpected behavior in simple programs like this since the "exit" also resets the state

of the hardware. This is a different behavior than running commands via REPL. So if

you are writing a simple program that doesn't seem to work, you may need to add a

loop to the end so the program doesn't exit.

The simplest loop would be:

while True:

 pass

And remember - you can press CTRL+C to exit the loop.

See also the Behavior section in the docs ().

Connecting to the Serial Console

One of the staples of CircuitPython (and programming in general!) is something called

a "print statement". This is a line you include in your code that causes your code to

output text. A print statement in CircuitPython (and Python) looks like this:

print("Hello, world!")

This line in your code.py would result in:

Hello, world!

However, these print statements need somewhere to display. That's where the serial

console comes in!

The serial console receives output from your CircuitPython board sent over USB and

displays it so you can see it. This is necessary when you've included a print statement

in your code and you'd like to see what you printed. It is also helpful for

troubleshooting errors, because your board will send errors and the serial console will

display those too.

The serial console requires an editor that has a built in terminal, or a separate

©Adafruit Industries Page 33 of 162

https://circuitpython.readthedocs.io/en/latest/README.html#behavior

terminal program. A terminal is a program that gives you a text-based interface to

perform various tasks.

Are you using Mu?

If so, good news! The serial console is built into Mu and will autodetect your board

making using the serial console really really easy.

First, make sure your CircuitPython board

is plugged in.

If you open Mu without a board plugged

in, you may encounter the error seen here,

letting you know no CircuitPython board

was found and indicating where your code

will be stored until you plug in a board.

If you are using Windows 7, make sure you

installed the drivers ().

Once you've opened Mu with your board plugged in, look for the Serial button in the

button bar and click it.

The Mu window will split in two, horizontally, and display the serial console at the

bottom.

If nothing appears in the serial console, it may mean your code is done running

or has no print statements in it. Click into the serial console part of Mu, and press

CTRL+D to reload.

©Adafruit Industries Page 34 of 162

https://learn.adafruit.com//assets/105925
https://learn.adafruit.com//assets/105925
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers

Serial Console Issues or Delays on Linux

If you're on Linux, and are seeing multi-second delays connecting to the serial

console, or are seeing "AT" and other gibberish when you connect, then the

modemmanager service might be interfering. Just remove it; it doesn't have much use

unless you're still using dial-up modems.

To remove modemmanager , type the following command at a shell:

sudo apt purge modemmanager

Setting Permissions on Linux

On Linux, if you see an error box something like the one below when you press the S

erial button, you need to add yourself to a user group to have permission to connect

to the serial console.

On Ubuntu and Debian, add yourself to the dialout group by doing:

sudo adduser $USER dialout

After running the command above, reboot your machine to gain access to the group.

On other Linux distributions, the group you need may be different. See the Advanced

Serial Console on Linux () for details on how to add yourself to the right group.

Using Something Else?

If you're not using Mu to edit, are using or if for some reason you are not a fan of its

built in serial console, you can run the serial console from a separate program.

©Adafruit Industries Page 35 of 162

https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux

Windows requires you to download a terminal program. Check out the Advanced

Serial Console on Windows page for more details. ()

MacOS has Terminal built in, though there are other options available for download. C

heck the Advanced Serial Console on Mac page for more details. ()

Linux has a terminal program built in, though other options are available for

download. Check the Advanced Serial Console on Linux page for more details. ()

Once connected, you'll see something like the following.

Interacting with the Serial Console

Once you've successfully connected to the serial console, it's time to start using it.

The code you wrote earlier has no output to the serial console. So, you're going to

edit it to create some output.

Open your code.py file into your editor, and include a print statement. You can print

anything you like! Just include your phrase between the quotation marks inside the

parentheses. For example:

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 print("Hello, CircuitPython!")

 led.value = True

 time.sleep(1)

 led.value = False

 time.sleep(1)

Save your file.

Now, let's go take a look at the window with our connection to the serial console.

©Adafruit Industries Page 36 of 162

file:///home/welcome-to-circuitpython/advanced-serial-console-on-windows
file:///home/welcome-to-circuitpython/advanced-serial-console-on-windows
file:///home/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux
file:///home/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux

Excellent! Our print statement is showing up in our console! Try changing the printed

text to something else.

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 print("Hello back to you!")

 led.value = True

 time.sleep(1)

 led.value = False

 time.sleep(1)

Keep your serial console window where you can see it. Save your file. You'll see what

the serial console displays when the board reboots. Then you'll see your new change!

The Traceback (most recent call last): is telling you the last thing your board

was doing before you saved your file. This is normal behavior and will happen every

time the board resets. This is really handy for troubleshooting. Let's introduce an error

so you can see how it is used.

Delete the e at the end of True from the line led.value = True so that it says le

d.value = Tru

import board

import digitalio

import time

©Adafruit Industries Page 37 of 162

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 print("Hello back to you!")

 led.value = Tru

 time.sleep(1)

 led.value = False

 time.sleep(1)

Save your file. You will notice that your red LED will stop blinking, and you may have a

colored status LED blinking at you. This is because the code is no longer correct and

can no longer run properly. You need to fix it!

Usually when you run into errors, it's not because you introduced them on purpose.

You may have 200 lines of code, and have no idea where your error could be hiding.

This is where the serial console can help. Let's take a look!

The Traceback (most recent call last): is telling you that the last thing it was

able to run was line 10 in your code. The next line is your error: NameError: name

'Tru' is not defined . This error might not mean a lot to you, but combined with

knowing the issue is on line 10, it gives you a great place to start!

Go back to your code, and take a look at line 10. Obviously, you know what the

problem is already. But if you didn't, you'd want to look at line 10 and see if you could

figure it out. If you're still unsure, try googling the error to get some help. In this case,

you know what to look for. You spelled True wrong. Fix the typo and save your file.

©Adafruit Industries Page 38 of 162

Nice job fixing the error! Your serial console is streaming and your red LED Is blinking

again.

The serial console will display any output generated by your code. Some sensors,

such as a humidity sensor or a thermistor, receive data and you can use print

statements to display that information. You can also use print statements for

troubleshooting, which is called "print debugging". Essentially, if your code isn't

working, and you want to know where it's failing, you can put print statements in

various places to see where it stops printing.

The serial console has many uses, and is an amazing tool overall for learning and

programming!

The REPL

The other feature of the serial connection is the Read-Evaluate-Print-Loop, or REPL.

The REPL allows you to enter individual lines of code and have them run immediately.

It's really handy if you're running into trouble with a particular program and can't

figure out why. It's interactive so it's great for testing new ideas.

Entering the REPL

To use the REPL, you first need to be connected to the serial console. Once that

connection has been established, you'll want to press CTRL+C.

If there is code running, in this case code measuring distance, it will stop and you'll

see Press any key to enter the REPL. Use CTRL-D to reload. Follow those

instructions, and press any key on your keyboard.

©Adafruit Industries Page 39 of 162

The Traceback (most recent call last): is telling you the last thing your board

was doing before you pressed Ctrl + C and interrupted it. The KeyboardInterrupt

is you pressing CTRL+C. This information can be handy when troubleshooting, but for

now, don't worry about it. Just note that it is expected behavior.

If your code.py file is empty or does not contain a loop, it will show an empty output

and Code done running. . There is no information about what your board was

doing before you interrupted it because there is no code running.

If you have no code.py on your CIRCUITPY drive, you will enter the REPL immediately

after pressing CTRL+C. Again, there is no information about what your board was

doing before you interrupted it because there is no code running.

Regardless, once you press a key you'll see a >>> prompt welcoming you to the

REPL!

If you have trouble getting to the >>> prompt, try pressing Ctrl + C a few more times.

©Adafruit Industries Page 40 of 162

The first thing you get from the REPL is information about your board.

This line tells you the version of CircuitPython you're using and when it was released.

Next, it gives you the type of board you're using and the type of microcontroller the

board uses. Each part of this may be different for your board depending on the

versions you're working with.

This is followed by the CircuitPython prompt.

Interacting with the REPL

From this prompt you can run all sorts of commands and code. The first thing you'll do

is run help() . This will tell you where to start exploring the REPL. To run code in the

REPL, type it in next to the REPL prompt.

Type help() next to the prompt in the REPL.

Then press enter. You should then see a message.

First part of the message is another reference to the version of CircuitPython you're

using. Second, a URL for the CircuitPython related project guides. Then... wait. What's

this? To list built-in modules type `help("modules")`. Remember the

modules you learned about while going through creating code? That's exactly what

this is talking about! This is a perfect place to start. Let's take a look!

Type help("modules") into the REPL next to the prompt, and press enter.

©Adafruit Industries Page 41 of 162

This is a list of all the core modules built into CircuitPython, including board .

Remember, board contains all of the pins on the board that you can use in your

code. From the REPL, you are able to see that list!

Type import board into the REPL and press enter. It'll go to a new prompt. It might

look like nothing happened, but that's not the case! If you recall, the import

statement simply tells the code to expect to do something with that module. In this

case, it's telling the REPL that you plan to do something with that module.

Next, type dir(board) into the REPL and press enter.

This is a list of all of the pins on your board that are available for you to use in your

code. Each board's list will differ slightly depending on the number of pins available.

Do you see LED ? That's the pin you used to blink the red LED!

The REPL can also be used to run code. Be aware that any code you enter into the

REPL isn't saved anywhere. If you're testing something new that you'd like to keep,

make sure you have it saved somewhere on your computer as well!

Every programmer in every programming language starts with a piece of code that

says, "Hello, World." You're going to say hello to something else. Type into the REPL:

print("Hello, CircuitPython!")

©Adafruit Industries Page 42 of 162

Then press enter.

That's all there is to running code in the REPL! Nice job!

You can write single lines of code that run stand-alone. You can also write entire

programs into the REPL to test them. Remember that nothing typed into the REPL is

saved.

There's a lot the REPL can do for you. It's great for testing new ideas if you want to

see if a few new lines of code will work. It's fantastic for troubleshooting code by

entering it one line at a time and finding out where it fails. It lets you see what

modules are available and explore those modules.

Try typing more into the REPL to see what happens!

Returning to the Serial Console

When you're ready to leave the REPL and return to the serial console, simply press CT

RL+D. This will reload your board and reenter the serial console. You will restart the

program you had running before entering the REPL. In the console window, you'll see

any output from the program you had running. And if your program was affecting

anything visual on the board, you'll see that start up again as well.

You can return to the REPL at any time!

Everything typed into the REPL is ephemeral. Once you reload the REPL or return

to the serial console, nothing you typed will be retained in any memory space. So

be sure to save any desired code you wrote somewhere else, or you'll lose it

when you leave the current REPL instance!

©Adafruit Industries Page 43 of 162

CircuitPython Libraries

Each CircuitPython program you run needs to have a lot of information to work. The

reason CircuitPython is so simple to use is that most of that information is stored in

other files and works in the background. These files are called libraries. Some of them

are built into CircuitPython. Others are stored on your CIRCUITPY drive in a folder

called lib. Part of what makes CircuitPython so great is its ability to store code

separately from the firmware itself. Storing code separately from the firmware makes

it easier to update both the code you write and the libraries you depend.

Your board may ship with a lib folder already, it's in the base directory of the drive. If

not, simply create the folder yourself. When you first install CircuitPython, an empty lib

directory will be created for you.

CircuitPython libraries work in the same way as regular Python modules so the Python

docs () are an excellent reference for how it all should work. In Python terms, you can

place our library files in the lib directory because it's part of the Python path by

default.

One downside of this approach of separate libraries is that they are not built in. To

use them, one needs to copy them to the CIRCUITPY drive before they can be used.

Fortunately, there is a library bundle.

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to

download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

©Adafruit Industries Page 44 of 162

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://docs.python.org/3/tutorial/modules.html
https://docs.python.org/3/tutorial/modules.html

The bundle and the library releases on GitHub also feature optimized versions of the

libraries with the .mpy file extension. These files take less space on the drive and

have a smaller memory footprint as they are loaded.

Due to the regular updates and space constraints, Adafruit does not ship boards with

the entire bundle. Therefore, you will need to load the libraries you need when you

begin working with your board. You can find example code in the guides for your

board that depends on external libraries.

Either way, as you start to explore CircuitPython, you'll want to know how to get

libraries on board.

The Adafruit Learn Guide Project Bundle

The quickest and easiest way to get going with a project from the Adafruit Learn

System is by utilising the Project Bundle. Most guides now have a Download Project

Bundle button available at the top of the full code example embed. This button

downloads all the necessary files, including images, etc., to get the guide project up

and running. Simply click, open the resulting zip, copy over the right files, and you're

good to go!

The first step is to find the Download Project Bundle button in the guide you're

working on.

The Download Project Bundle button is only available on full demo code

embedded from GitHub in a Learn guide. Code snippets will NOT have the

button available.

©Adafruit Industries Page 45 of 162

The Download Project Bundle button downloads a zip file. This zip contains a series

of directories, nested within which is the code.py, any applicable assets like images or

audio, and the lib/ folder containing all the necessary libraries. The following zip was

downloaded from the Piano in the Key of Lime guide.

When you open the zip, you'll find some nested directories. Navigate through them

until you find what you need. You'll eventually find a directory for your CircuitPython

version (in this case, 7.x). In the version directory, you'll find the file and directory you

need: code.py and lib/. Once you find the content you need, you can copy it all over

to your CIRCUITPY drive, replacing any files already on the drive with the files from

the freshly downloaded zip.

When you copy the contents of the Project Bundle to your CIRCUITPY drive, it

will replace all the existing content! If you don't want to lose anything, ensure you

copy your current code to your computer before you copy over the new Project

Bundle content!

The Piano in the Key of Lime guide was chosen as an example. That guide is

specific to Circuit Playground Express, and cannot be used on all boards. Do not

expect to download that exact bundle and have it work on your non-CPX

microcontroller.

In some cases, there will be other files such as audio or images in the same

directory as code.py and lib/. Make sure you include all the files when you copy

things over!

©Adafruit Industries Page 46 of 162

Once you copy over all the relevant files, the project should begin running! If you find

that the project is not running as expected, make sure you've copied ALL of the

project files onto your microcontroller board.

That's all there is to using the Project Bundle!

The Adafruit CircuitPython Library Bundle

Adafruit provides CircuitPython libraries for much of the hardware they provide,

including sensors, breakouts and more. To eliminate the need for searching for each

library individually, the libraries are available together in the Adafruit CircuitPython

Library Bundle. The bundle contains all the files needed to use each library.

Downloading the Adafruit CircuitPython Library Bundle

You can download the latest Adafruit CircuitPython Library Bundle release by clicking

the button below. The libraries are being constantly updated and improved, so you'll

always want to download the latest bundle.

Match up the bundle version with the version of CircuitPython you are running. For

example, you would download the 6.x library bundle if you're running any version of

CircuitPython 6, or the 7.x library bundle if you're running any version of CircuitPython

7, etc. If you mix libraries with major CircuitPython versions, you will get incompatible

mpy errors due to changes in library interfaces possible during major version

changes.

Click to visit circuitpython.org for the

latest Adafruit CircuitPython Library

Bundle

Download the bundle version that matches your CircuitPython firmware version. If you

don't know the version, check the version info in boot_out.txt file on the CIRCUITPY

drive, or the initial prompt in the CircuitPython REPL. For example, if you're running

v7.0.0, download the 7.x library bundle.

There's also a py bundle which contains the uncompressed python files, you probably

don't want that unless you are doing advanced work on libraries.

©Adafruit Industries Page 47 of 162

https://circuitpython.org/libraries

The CircuitPython Community Library

Bundle

The CircuitPython Community Library Bundle is made up of libraries written and

provided by members of the CircuitPython community. These libraries are often

written when community members encountered hardware not supported in the

Adafruit Bundle, or to support a personal project. The authors all chose to submit

these libraries to the Community Bundle make them available to the community.

These libraries are maintained by their authors and are not supported by Adafruit. As

you would with any library, if you run into problems, feel free to file an issue on the

GitHub repo for the library. Bear in mind, though, that most of these libraries are

supported by a single person and you should be patient about receiving a response.

Remember, these folks are not paid by Adafruit, and are volunteering their personal

time when possible to provide support.

Downloading the CircuitPython Community Library Bundle

You can download the latest CircuitPython Community Library Bundle release by

clicking the button below. The libraries are being constantly updated and improved,

so you'll always want to download the latest bundle.

Click for the latest CircuitPython

Community Library Bundle release

The link takes you to the latest release of the CircuitPython Community Library

Bundle on GitHub. There are multiple versions of the bundle available. Download the

bundle version that matches your CircuitPython firmware version. If you don't know

the version, check the version info in boot_out.txt file on the CIRCUITPY drive, or the

initial prompt in the CircuitPython REPL. For example, if you're running v7.0.0,

download the 7.x library bundle.

Understanding the Bundle

After downloading the zip, extract its contents. This is usually done by double clicking

on the zip. On Mac OSX, it places the file in the same directory as the zip.

©Adafruit Industries Page 48 of 162

https://github.com/adafruit/CircuitPython_Community_Bundle/releases

Open the bundle folder. Inside you'll find two information files, and two folders. One

folder is the lib bundle, and the other folder is the examples bundle.

Now open the lib folder. When you open the folder, you'll see a large number of .mpy

files, and folders.

Example Files

All example files from each library are now included in the bundles in an examples

directory (as seen above), as well as an examples-only bundle. These are included for

two main reasons:

Allow for quick testing of devices.

Provide an example base of code, that is easily built upon for individualized

purposes.

•

•

©Adafruit Industries Page 49 of 162

Copying Libraries to Your Board

First open the lib folder on your CIRCUITPY drive. Then, open the lib folder you

extracted from the downloaded zip. Inside you'll find a number of folders and .mpy

files. Find the library you'd like to use, and copy it to the lib folder on CIRCUITPY.

If the library is a directory with multiple .mpy files in it, be sure to copy the entire

folder to CIRCUITPY/lib.

This also applies to example files. Open the examples folder you extracted from the

downloaded zip, and copy the applicable file to your CIRCUITPY drive. Then, rename

it to code.py to run it.

Understanding Which Libraries to Install

You now know how to load libraries on to your CircuitPython-compatible

microcontroller board. You may now be wondering, how do you know which libraries

you need to install? Unfortunately, it's not always straightforward. Fortunately, there is

an obvious place to start, and a relatively simple way to figure out the rest. First up:

the best place to start.

When you look at most CircuitPython examples, you'll see they begin with one or

more import statements. These typically look like the following:

import library_or_module

If a library has multiple .mpy files contained in a folder, be sure to copy the entire

folder to CIRCUITPY/lib.

•

©Adafruit Industries Page 50 of 162

However, import statements can also sometimes look like the following:

from library_or_module import name

from library_or_module.subpackage import name

from library_or_module import name as local_name

They can also have more complicated formats, such as including a try / except

block, etc.

The important thing to know is that an import statement will always include the

name of the module or library that you're importing.

Therefore, the best place to start is by reading through the import statements.

Here is an example import list for you to work with in this section. There is no setup or

other code shown here, as the purpose of this section involves only the import list.

import time

import board

import neopixel

import adafruit_lis3dh

import usb_hid

from adafruit_hid.consumer_control import ConsumerControl

from adafruit_hid.consumer_control_code import ConsumerControlCode

Keep in mind, not all imported items are libraries. Some of them are almost always

built-in CircuitPython modules. How do you know the difference? Time to visit the

REPL.

In the Interacting with the REPL section () on The REPL page () in this guide, the

help("modules") command is discussed. This command provides a list of all of the

built-in modules available in CircuitPython for your board. So, if you connect to the

serial console on your board, and enter the REPL, you can run help("modules") to

see what modules are available for your board. Then, as you read through the impor

t statements, you can, for the purposes of figuring out which libraries to load, ignore

the statement that import modules.

The following is the list of modules built into CircuitPython for the Feather RP2040.

Your list may look similar or be anything down to a significant subset of this list for

smaller boards.

•

•

•

©Adafruit Industries Page 51 of 162

https://learn.adafruit.com/welcome-to-circuitpython/the-repl#interacting-with-the-repl-2977486-14
https://learn.adafruit.com/welcome-to-circuitpython/the-repl

Now that you know what you're looking for, it's time to read through the import

statements. The first two, time and board , are on the modules list above, so they're

built-in.

The next one, neopixel , is not on the module list. That means it's your first library!

So, you would head over to the bundle zip you downloaded, and search for neopixel.

There is a neopixel.mpy file in the bundle zip. Copy it over to the lib folder on your CI

RCUITPY drive. The following one, adafruit_lis3dh , is also not on the module list.

Follow the same process for adafruit_lis3dh, where you'll find adafruit_lis3dh.mpy,

and copy that over.

The fifth one is usb_hid , and it is in the modules list, so it is built in. Often all of the

built-in modules come first in the import list, but sometimes they don't! Don't assume

that everything after the first library is also a library, and verify each import with the

modules list to be sure. Otherwise, you'll search the bundle and come up empty!

The final two imports are not as clear. Remember, when import statements are

formatted like this, the first thing after the from is the library name. In this case, the

library name is adafruit_hid . A search of the bundle will find an adafruit_hid folder.

When a library is a folder, you must copy the entire folder and its contents as it is in

the bundle to the lib folder on your CIRCUITPY drive. In this case, you would copy the

entire adafruit_hid folder to your CIRCUITPY/lib folder.

Notice that there are two imports that begin with adafruit_hid . Sometimes you will

need to import more than one thing from the same library. Regardless of how many

times you import the same library, you only need to load the library by copying over

the adafruit_hid folder once.

That is how you can use your example code to figure out what libraries to load on

your CircuitPython-compatible board!

©Adafruit Industries Page 52 of 162

There are cases, however, where libraries require other libraries internally. The

internally required library is called a dependency. In the event of library

dependencies, the easiest way to figure out what other libraries are required is to

connect to the serial console and follow along with the ImportError printed there.

The following is a very simple example of an ImportError , but the concept is the

same for any missing library.

Example: ImportError Due to Missing

Library

If you choose to load libraries as you need them, or you're starting fresh with an

existing example, you may end up with code that tries to use a library you haven't yet

loaded. This section will demonstrate what happens when you try to utilise a library

that you don't have loaded on your board, and cover the steps required to resolve the

issue.

This demonstration will only return an error if you do not have the required library

loaded into the lib folder on your CIRCUITPY drive.

Let's use a modified version of the Blink example.

import board

import time

import simpleio

led = simpleio.DigitalOut(board.LED)

while True:

 led.value = True

 time.sleep(0.5)

 led.value = False

 time.sleep(0.5)

Save this file. Nothing happens to your board. Let's check the serial console to see

what's going on.

©Adafruit Industries Page 53 of 162

You have an ImportError . It says there is no module named 'simpleio' . That's

the one you just included in your code!

Click the link above to download the correct bundle. Extract the lib folder from the

downloaded bundle file. Scroll down to find simpleio.mpy. This is the library file you're

looking for! Follow the steps above to load an individual library file.

The LED starts blinking again! Let's check the serial console.

No errors! Excellent. You've successfully resolved an ImportError !

If you run into this error in the future, follow along with the steps above and choose

the library that matches the one you're missing.

Library Install on Non-Express Boards

If you have an M0 non-Express board such as Trinket M0, Gemma M0, QT Py M0, or

one of the M0 Trinkeys, you'll want to follow the same steps in the example above to

install libraries as you need them. Remember, you don't need to wait for an ImportEr

ror if you know what library you added to your code. Open the library bundle you

downloaded, find the library you need, and drag it to the lib folder on your CIRCUITPY

drive.

You can still end up running out of space on your M0 non-Express board even if you

only load libraries as you need them. There are a number of steps you can use to try

to resolve this issue. You'll find suggestions on the Troubleshooting page ().

Updating CircuitPython Libraries and

Examples

Libraries and examples are updated from time to time, and it's important to update the

files you have on your CIRCUITPY drive.

©Adafruit Industries Page 54 of 162

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting

To update a single library or example, follow the same steps above. When you drag

the library file to your lib folder, it will ask if you want to replace it. Say yes. That's it!

A new library bundle is released every time there's an update to a library. Updates

include things like bug fixes and new features. It's important to check in every so

often to see if the libraries you're using have been updated.

CircUp CLI Tool

There is a command line interface (CLI) utility called CircUp () that can be used to

easily install and update libraries on your device. Follow the directions on the install

page within the CircUp learn guide (). Once you've got it installed you run the

command circup update in a terminal to interactively update all libraries on the

connected CircuitPython device. See the usage page in the CircUp guide () for a full

list of functionality

CircuitPython Documentation

You've learned about the CircuitPython built-in modules and external libraries. You

know that you can find the modules in CircuitPython, and the libraries in the Library

Bundles. There are guides available that explain the basics of many of the modules

and libraries. However, there's sometimes more capabilities than are necessarily

showcased in the guides, and often more to learn about a module or library. So,

where can you find more detailed information? That's when you want to look at the

API documentation.

The entire CircuitPython project comes with extensive documentation available on

Read the Docs. This includes both the CircuitPython core () and the Adafruit

CircuitPython libraries ().

CircuitPython Core Documentation

The CircuitPython core documentation () covers many of the details you might want to

know about the CircuitPython core and related topics. It includes API and usage info,

a design guide and information about porting CircuitPython to new boards,

MicroPython info with relation to CircuitPython, and general information about the

project.

©Adafruit Industries Page 55 of 162

https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/install-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/install-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/usage
https://circuitpython.readthedocs.io/
https://circuitpython.readthedocs.io/projects/bundle/en/latest/
https://circuitpython.readthedocs.io/projects/bundle/en/latest/
https://circuitpython.readthedocs.io/

The main page covers the basics including where to download CircuitPython, how to

contribute, differences from MicroPython, information about the project structure, and

a full table of contents for the rest of the documentation.

The list along the left side leads to more information about specific topics.

The first section is API and Usage. This is where you can find information about how

to use individual built-in core modules, such as time and digitalio , details about

the supported ports, suggestions for troubleshooting, and basic info and links to the li

brary bundles. The Core Modules section also includes the Support Matrix, which is a

table of which core modules are available on which boards.

The second section is Design and Porting Reference. It includes a design guide, archit

ecture information, details on porting, and adding module support to other ports.

The third section is MicroPython Specific. It includes information on MicroPython and

related libraries, and a glossary of terms.

The fourth and final section is About the Project. It includes further information

including details on building, testing, and debugging CircuitPython, along with various

other useful links including the Adafruit Community Code of Conduct.

Whether you're a seasoned pro or new to electronics and programming, you'll find a

wealth of information to help you along your CircuitPython journey in the

documentation!

©Adafruit Industries Page 56 of 162

CircuitPython Library Documentation

The Adafruit CircuitPython libraries are documented in a very similar fashion. Each

library has its own page on Read the Docs. There is a comprehensive list available her

e (). Otherwise, to view the documentation for a specific library, you can visit the

GitHub repository for the library, and find the link in the README.

For the purposes of this page, the LED Animation library () documentation will be

featured. There are two links to the documentation in each library GitHub repo. The

first one is the docs badge near the top of the README.

The second place is the Documentation section of the README. Scroll down to find it,

and click on Read the Docs to get to the documentation.

Now that you know how to find it, it's time to take a look at what to expect.

The Introduction page is generated from the README, so it includes all the same info,

such as PyPI installation instructions, a quick demo, and some build details. It also

includes a full table of contents for the rest of the documentation (which is not part of

the GitHub README). The page should look something like the following.

The left side contains links to the rest of the documentation, divided into three

separate sections: Examples, API Reference, and Other Links.

Not all library documentation will look exactly the same, but this will give you

some idea of what to expect from library docs.

©Adafruit Industries Page 57 of 162

https://circuitpython.readthedocs.io/projects/bundle/en/latest/
https://circuitpython.readthedocs.io/projects/bundle/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_LED_Animation

Examples

The Examples section () is a list of library examples. This list contains anywhere from a

small selection to the full list of the examples available for the library.

This section will always contain at least one example - the simple test example.

The simple test example is usually a basic example designed to show your setup is

working. It may require other libraries to run. Keep in mind, it's simple - it won't

showcase a comprehensive use of all the library features.

The LED Animation simple test demonstrates the Blink animation.

In some cases, you'll find a longer list, that may include examples that explore other

features in the library. The LED Animation documentation includes a series of

examples, all of which are available in the library. These examples include

demonstrations of both basic and more complex features. Simply click on the example

that interests you to view the associated code.

©Adafruit Industries Page 58 of 162

https://circuitpython.readthedocs.io/projects/led-animation/en/latest/examples.html

You can view the rest of the examples by clicking through the list or scrolling down

the page. These examples are fully working code. Which is to say, while they may rely

on other libraries as well as the library for which you are viewing the documentation,

they should not require modification to otherwise work.

API Reference

The API Reference section () includes a list of the library functions and classes. The

API (Application Programming Interface) of a library is the set of functions and classes

the library provides. Essentially, the API defines how your program interfaces with the

functions and classes that you call in your code to use the library.

There is always at least one list item included. Libraries for which the code is included

in a single Python (.py) file, will only have one item. Libraries for which the code is

multiple Python files in a directory (called subpackages) will have multiple items in this

list. The LED Animation library has a series of subpackages, and therefore, multiple

items in this list.

Click on the first item in the list to begin viewing the API Reference section.

When there are multiple links in the Examples section, all of the example content

is, in actuality, on the same page. Each link after the first is an anchor link to the

specified section of the page. Therefore, you can also view all the available

examples by scrolling down the page.

As with the Examples section, all of the API Reference content is on a single

page, and the links under API Reference are anchor links to the specified section

of the page.

©Adafruit Industries Page 59 of 162

https://circuitpython.readthedocs.io/projects/led-animation/en/latest/api.html

When you click on an item in the API Reference section, you'll find details about the

classes and functions in the library. In the case of only one item in this section, all the

available functionality of the library will be contained within that first and only

subsection. However, in the case of a library that has subpackages, each item will

contain the features of the particular subpackage indicated by the link. The

documentation will cover all of the available functions of the library, including more

complex ones that may not interest you.

The first list item is the animation subpackage. If you scroll down, you'll begin to see

the available features of animation. They are listed alphabetically. Each of these

things can be called in your code. It includes the name and a description of the

specific function you would call, and if any parameters are necessary, lists those with

a description as well.

You can view the other subpackages by clicking the link on the left or scrolling down

the page. You may be interested in something a little more practical. Here is an

example. To use the LED Animation library Comet animation, you would run the

following example.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: MIT

"""

This example animates a jade comet that bounces from end to end of the strip.

For QT Py Haxpress and a NeoPixel strip. Update pixel_pin and pixel_num to match

your wiring if

using a different board or form of NeoPixels.

This example will run on SAMD21 (M0) Express boards (such as Circuit Playground

Express or QT Py

Haxpress), but not on SAMD21 non-Express boards (such as QT Py or Trinket).

"""

import board

import neopixel

from adafruit_led_animation.animation.comet import Comet

from adafruit_led_animation.color import JADE

©Adafruit Industries Page 60 of 162

Update to match the pin connected to your NeoPixels

pixel_pin = board.A3

Update to match the number of NeoPixels you have connected

pixel_num = 30

pixels = neopixel.NeoPixel(pixel_pin, pixel_num, brightness=0.5, auto_write=False)

comet = Comet(pixels, speed=0.02, color=JADE, tail_length=10, bounce=True)

while True:

 comet.animate()

Note the line where you create the comet object. There are a number of items inside

the parentheses. In this case, you're provided with a fully working example. But what

if you want to change how the comet works? The code alone does not explain what

the options mean.

So, in the API Reference documentation list, click the

adafruit_led_animation.animation.comet link and scroll down a bit until you

see the following.

Look familiar? It is! This is the documentation for setting up the comet object. It

explains what each argument provided in the comet setup in the code meant, as well

as the other available features. For example, the code includes speed=0.02 . The

documentation clarifies that this is the "Animation speed in seconds". The code

doesn't include ring . The documentation indicates this is an available setting that

enables "Ring mode".

This type of information is available for any function you would set up in your code. If

you need clarification on something, wonder whether there's more options available,

or are simply interested in the details involved in the code you're writing, check out

the documentation for the CircuitPython libraries!

©Adafruit Industries Page 61 of 162

Other Links

This section is the same for every library. It includes a list of links to external sites,

which you can visit for more information about the CircuitPython Project and Adafruit.

That covers the CircuitPython library documentation! When you are ready to go

beyond the basic library features covered in a guide, or you're interested in

understanding those features better, the library documentation on Read the Docs has

you covered!

Recommended Editors

The CircuitPython code on your board detects when the files are changed or written

and will automatically re-start your code. This makes coding very fast because you

save, and it re-runs.

However, you must wait until the file is done being saved before unplugging or

resetting your board! On Windows using some editors this can sometimes take up to

90 seconds, on Linux it can take 30 seconds to complete because the text editor

does not save the file completely. Mac OS does not seem to have this delay, which is

nice!

This is really important to be aware of. If you unplug or reset the board before your

computer finishes writing the file to your board, you can corrupt the drive. If this

happens, you may lose the code you've written, so it's important to backup your code

to your computer regularly.

To avoid the likelihood of filesystem corruption, use an editor that writes out the file

completely when you save it. Check out the list of recommended editors below.

Recommended editors

mu () is an editor that safely writes all changes (it's also our recommended

editor!)

emacs () is also an editor that will fulIy write files on save ()

Sublime Text () safely writes all changes

Visual Studio Code () appears to safely write all changes

gedit on Linux appears to safely write all changes

IDLE (), in Python 3.8.1 or later, was fixed () to write all changes immediately

Thonny () fully writes files on save

•

•

•

•

•

•

•

©Adafruit Industries Page 62 of 162

https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor
https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/manual/html_node/emacs/Customize-Save.html
https://www.sublimetext.com/
https://code.visualstudio.com/
https://docs.python.org/3/library/idle.html
https://bugs.python.org/issue36807
https://thonny.org/

Recommended only with particular settings or add-ons

vim () / vi safely writes all changes. But set up vim to not write swapfiles () (.swp

files: temporary records of your edits) to CIRCUITPY. Run vim with vim -n , set

the no swapfile option, or set the directory option to write swapfiles

elsewhere. Otherwise the swapfile writes trigger restarts of your program.

The PyCharm IDE () is safe if "Safe Write" is turned on in Settings->System

Settings->Synchronization (true by default).

If you are using Atom (), install the fsync-on-save package () or the language-

circuitpython package () so that it will always write out all changes to files on CIR

CUITPY.

SlickEdit () works only if you add a macro to flush the disk ().

Editors that are NOT recommended

notepad (the default Windows editor) and Notepad++ can be slow to write, so

the editors above are recommended! If you are using notepad, be sure to eject

the drive.

IDLE in Python 3.8.0 or earlier does not force out changes immediately.

nano (on Linux) does not force out changes.

geany (on Linux) does not force out changes.

Anything else - Other editors have not been tested so please use a

recommended one!

Advanced Serial Console on Windows

Windows 7 and 8.1

If you're using Windows 7 (or 8 or 8.1), you'll need to install drivers. See the Windows 7

and 8.1 Drivers page () for details. You will not need to install drivers on Mac, Linux or

Windows 10.

You are strongly encouraged to upgrade to Windows 10 if you are still using Windows

7 or Windows 8 or 8.1. Windows 7 has reached end-of-life and no longer receives

security updates. A free upgrade to Windows 10 is still available ().

•

•

•

•

The editors listed below are specifically NOT recommended!

•

•

•

•

•

©Adafruit Industries Page 63 of 162

http://www.vim.org/
http://www.vim.org/
https://vi.stackexchange.com/a/179
https://www.jetbrains.com/pycharm/
https://atom.io/
https://atom.io/
https://atom.io/packages/fsync-on-save
https://atom.io/packages/language-circuitpython
https://atom.io/packages/language-circuitpython
https://www.slickedit.com/
https://www.slickedit.com/
https://forums.adafruit.com/viewtopic.php?f=57&t=144412#p713290
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://www.zdnet.com/article/heres-how-you-can-still-get-a-free-windows-10-upgrade/

What's the COM?

First, you'll want to find out which serial port your board is using. When you plug your

board in to USB on your computer, it connects to a serial port. The port is like a door

through which your board can communicate with your computer using USB.

You'll use Windows Device Manager to determine which port the board is using. The

easiest way to determine which port the board is using is to first check without the

board plugged in. Open Device Manager. Click on Ports (COM & LPT). You should find

something already in that list with (COM#) after it where # is a number.

Now plug in your board. The Device Manager list will refresh and a new item will

appear under Ports (COM & LPT). You'll find a different (COM#) after this item in the

list.

©Adafruit Industries Page 64 of 162

Sometimes the item will refer to the name of the board. Other times it may be called

something like USB Serial Device, as seen in the image above. Either way, there is a

new (COM#) following the name. This is the port your board is using.

Install Putty

If you're using Windows, you'll need to download a terminal program. You're going to

use PuTTY.

The first thing to do is download the latest version of PuTTY (). You'll want to

download the Windows installer file. It is most likely that you'll need the 64-bit version.

Download the file and install the program on your machine. If you run into issues, you

can try downloading the 32-bit version instead. However, the 64-bit version will work

on most PCs.

Now you need to open PuTTY.

Under Connection type: choose the button next to Serial.

In the box under Serial line, enter the serial port you found that your board is

using.

In the box under Speed, enter 115200. This called the baud rate, which is the

speed in bits per second that data is sent over the serial connection. For boards

with built in USB it doesn't matter so much but for ESP8266 and other board

•

•

•

©Adafruit Industries Page 65 of 162

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

with a separate chip, the speed required by the board is 115200 bits per second.

So you might as well just use 115200!

If you want to save those settings for later, use the options under Load, save or delete

a stored session. Enter a name in the box under Saved Sessions, and click the Save

button on the right.

Once your settings are entered, you're ready to connect to the serial console. Click

"Open" at the bottom of the window. A new window will open.

©Adafruit Industries Page 66 of 162

If no code is running, the window will either be blank or will look like the window

above. Now you're ready to see the results of your code.

Great job! You've connected to the serial console!

Advanced Serial Console on Mac

Connecting to the serial console on Mac does not require installing any drivers or

extra software. You'll use a terminal program to find your board, and screen to

connect to it. Terminal and screen both come installed by default.

What's the Port?

First you'll want to find out which serial port your board is using. When you plug your

board in to USB on your computer, it connects to a serial port. The port is like a door

through which your board can communicate with your computer using USB.

The easiest way to determine which port the board is using is to first check without

the board plugged in. Open Terminal and type the following:

ls /dev/tty.*

Each serial connection shows up in the /dev/ directory. It has a name that starts with

tty. . The command ls shows you a list of items in a directory. You can use * as a

wildcard, to search for files that start with the same letters but end in something

different. In this case, you're asking to see all of the listings in /dev/ that start with t

ty. and end in anything. This will show us the current serial connections.

©Adafruit Industries Page 67 of 162

Now, plug your board. In Terminal, type:

ls /dev/tty.*

This will show you the current serial connections, which will now include your board.

A new listing has appeared called /dev/tty.usbmodem141441 . The tty.usbmodem1

41441 part of this listing is the name the example board is using. Yours will be called

something similar.

Using Linux, a new listing has appeared called /dev/ttyACM0 . The ttyACM0 part of

this listing is the name the example board is using. Yours will be called something

similar.

Connect with screen

Now that you know the name your board is using, you're ready connect to the serial

console. You're going to use a command called screen . The screen command is

included with MacOS. To connect to the serial console, use Terminal. Type the

following command, replacing board_name with the name you found your board is

using:

screen /dev/tty.board_name 115200

The first part of this establishes using the screen command. The second part tells

screen the name of the board you're trying to use. The third part tells screen what

baud rate to use for the serial connection. The baud rate is the speed in bits per

second that data is sent over the serial connection. In this case, the speed required

by the board is 115200 bits per second.

©Adafruit Industries Page 68 of 162

Press enter to run the command. It will open in the same window. If no code is

running, the window will be blank. Otherwise, you'll see the output of your code.

Great job! You've connected to the serial console!

Advanced Serial Console on Linux

Connecting to the serial console on Linux does not require installing any drivers, but

you may need to install screen using your package manager. You'll use a terminal

program to find your board, and screen to connect to it. There are a variety of

terminal programs such as gnome-terminal (called Terminal) or Konsole on KDE.

The tio program works as well to connect to your board, and has the benefit of

automatically reconnecting. You would need to install it using your package manager.

What's the Port?

First you'll want to find out which serial port your board is using. When you plug your

board in to USB on your computer, it connects to a serial port. The port is like a door

through which your board can communicate with your computer using USB.

The easiest way to determine which port the board is using is to first check without

the board plugged in. Open your terminal program and type the following:

ls /dev/ttyACM*

Each serial connection shows up in the /dev/ directory. It has a name that starts with tt

yACM. The command ls shows you a list of items in a directory. You can use * as a

wildcard, to search for files that start with the same letters but end in something

©Adafruit Industries Page 69 of 162

different. In this case, You're asking to see all of the listings in /dev/ that start with ttyA

CM and end in anything. This will show us the current serial connections.

In the example below, the error is indicating that are no current serial connections

starting with ttyACM.

Now plug in your board. In your terminal program, type:

ls /dev/ttyACM*

This will show you the current serial connections, which will now include your board.

A new listing has appeared called /dev/ttyACM0. The ttyACM0 part of this listing is

the name the example board is using. Yours will be called something similar.

Connect with screen

Now that you know the name your board is using, you're ready connect to the serial

console. You'll use a command called screen . You may need to install it using the

package manager.

©Adafruit Industries Page 70 of 162

To connect to the serial console, use your terminal program. Type the following

command, replacing board_name with the name you found your board is using:

screen /dev/tty.board_name 115200

The first part of this establishes using the screen command. The second part tells

screen the name of the board you're trying to use. The third part tells screen what

baud rate to use for the serial connection. The baud rate is the speed in bits per

second that data is sent over the serial connection. In this case, the speed required

by the board is 115200 bits per second.

Press enter to run the command. It will open in the same window. If no code is

running, the window will be blank. Otherwise, you'll see the output of your code.

Great job! You've connected to the serial console!

Permissions on Linux

If you try to run screen and it doesn't work, then you may be running into an issue

with permissions. Linux keeps track of users and groups and what they are allowed to

do and not do, like access the hardware associated with the serial connection for

running screen . So if you see something like this:

©Adafruit Industries Page 71 of 162

then you may need to grant yourself access. There are generally two ways you can do

this. The first is to just run screen using the sudo command, which temporarily

gives you elevated privileges.

Once you enter your password, you should be in:

The second way is to add yourself to the group associated with the hardware. To

figure out what that group is, use the command ls -l as shown below. The group

name is circled in red.

Then use the command adduser to add yourself to that group. You need elevated

privileges to do this, so you'll need to use sudo . In the example below, the group is a

dm and the user is ackbar.

After you add yourself to the group, you'll need to logout and log back in, or in some

cases, reboot your machine. After you log in again, verify that you have been added

to the group using the command groups . If you are still not in the group, reboot and

check again.

©Adafruit Industries Page 72 of 162

And now you should be able to run screen without using sudo .

And you're in:

The examples above use screen , but you can also use other programs, such as put

ty or picocom , if you prefer.

Frequently Asked Questions

These are some of the common questions regarding CircuitPython and CircuitPython

microcontrollers.

What are some common acronyms to know?

CP or CPy = CircuitPython ()

CPC = Circuit Playground Classic () (does not run CircuitPython)

CPX = Circuit Playground Express ()

CPB = Circuit Playground Bluefruit ()

©Adafruit Industries Page 73 of 162

https://circuitpython.org
https://www.adafruit.com/product/3000
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/4333

Using Older Versions

I have to continue using CircuitPython 6.x or earlier.

Where can I find compatible libraries?

We are no longer building or supporting the CircuitPython 6.x or earlier library

bundles. We highly encourage you to update CircuitPython to the latest version ()

and use the current version of the libraries (). However, if for some reason you

cannot update, here are the last available library bundles for older versions:

2.x bundle ()

3.x bundle ()

4.x bundle ()

5.x bundle ()

6.x bundle ()

Python Arithmetic

Does CircuitPython support floating-point numbers?

All CircuitPython boards support floating point arithmetic, even if the

microcontroller chip does not support floating point in hardware. Floating point

numbers are stored in 30 bits, with an 8-bit exponent and a 22-bit mantissa. Note

that this is two bits less than standard 32-bit single-precision floats. You will get

about 5-1/2 digits of decimal precision.

(The broadcom port may provide 64-bit floats in some cases.)

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to

download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

•

•

•

•

•

©Adafruit Industries Page 74 of 162

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-2.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-3.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20200707/adafruit-circuitpython-bundle-4.x-mpy-20200707.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20210129/adafruit-circuitpython-bundle-5.x-mpy-20210129.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20211213/adafruit-circuitpython-bundle-6.x-mpy-20211213.zip

Does CircuitPython support long integers, like regular

Python?

Python long integers (integers of arbitrary size) are available on most builds, except

those on boards with the smallest available firmware size. On these boards,

integers are stored in 31 bits.

Boards without long integer support are mostly SAMD21 ("M0") boards without an

external flash chip, such as the Adafruit Gemma M0, Trinket M0, QT Py M0, and the

Trinkey series. There are also a number of third-party boards in this category.

There are also a few small STM third-party boards without long integer support.

time.localtime() , time.mktime() , time.time() , and

time.monotonic_ns() are available only on builds with long integers.

Wireless Connectivity

How do I connect to the Internet with CircuitPython?

If you'd like to include WiFi in your project, your best bet is to use a board that is

running natively on ESP32 chipsets - those have WiFi built in!

If your development board has an SPI port and at least 4 additional pins, you can

check out this guide () on using AirLift with CircuitPython - extra wiring is required

and some boards like the MacroPad or NeoTrellis do not have enough available

pins to add the hardware support.

For further project examples, and guides about using AirLift with specific hardware,

check out the Adafruit Learn System ().

How do I do BLE (Bluetooth Low Energy) with

CircuitPython?

The nRF52840 and nRF52833 boards have the most complete BLE

implementation. Your program can act as both a BLE central and peripheral. As a

central, you can scan for advertisements, and connect to an advertising board. As a

peripheral, you can advertise, and you can create services available to a central.

Pairing and bonding are supported.

ESP32-C3 and ESP32-S3 boards currently provide an incomplete () BLE

implementation. Your program can act as a central, and connect to a peripheral.

©Adafruit Industries Page 75 of 162

https://learn.adafruit.com/adafruit-io-basics-airlift
https://learn.adafruit.com/search?q=airlift
https://github.com/adafruit/circuitpython/issues/5926

You can advertise, but you cannot create services. You cannot advertise

anonymously. Pairing and bonding are not supported.

The ESP32 could provide a similar implementation, but it is not yet available. Note

that the ESP32-S2 does not have Bluetooth capability.

On most other boards with adequate firmware space, BLE is available for use with

AirLift () or other NINA-FW-based co-processors. Some boards have this

coprocessor on board, such as the PyPortal (). Currently, this implementation only

supports acting as a BLE peripheral. Scanning and connecting as a central are not

yet implemented. Bonding and pairing are not supported.

Are there other ways to communicate by radio with

CircuitPython?

Check out Adafruit's RFM boards ()for simple radio communication supported by

CircuitPython, which can be used over distances of 100m to over a km, depending

on the version. The RFM SAMD21 M0 boards can be used, but they were not

designed for CircuitPython, and have limited RAM and flash space; using the RFM

breakouts or FeatherWings with more capable boards will be easier.

Asyncio and Interrupts

Is there asyncio support in CircuitPython?

There is support for asyncio starting with CircuitPython 7.1.0, on all boards except

the smallest SAMD21 builds. Read about using it in the Cooperative Multitasking in

CircuitPython () Guide.

Does CircuitPython support interrupts?

No. CircuitPython does not currently support interrupts - please use asyncio for

multitasking / 'threaded' control of your code

Status RGB LED

©Adafruit Industries Page 76 of 162

https://learn.adafruit.com/adafruit-airlift-breakout/circuitpython-ble
https://learn.adafruit.com/adafruit-airlift-breakout/circuitpython-ble
https://learn.adafruit.com/adafruit-pyportal/circuitpython-ble
https://www.adafruit.com/?q=rfm&sort=BestMatch
https://learn.adafruit.com/cooperative-multitasking-in-circuitpython
https://learn.adafruit.com/cooperative-multitasking-in-circuitpython

My RGB NeoPixel/DotStar LED is blinking funny colors -

what does it mean?

The status LED can tell you what's going on with your CircuitPython board. Read

more here for what the colors mean! ()

Memory Issues

What is a MemoryError?

Memory allocation errors happen when you're trying to store too much on the

board. The CircuitPython microcontroller boards have a limited amount of memory

available. You can have about 250 lines of code on the M0 Express boards. If you

try to import too many libraries, a combination of large libraries, or run a program

with too many lines of code, your code will fail to run and you will receive a

MemoryError in the serial console.

What do I do when I encounter a MemoryError?

Try resetting your board. Each time you reset the board, it reallocates the memory.

While this is unlikely to resolve your issue, it's a simple step and is worth trying.

Make sure you are using .mpy versions of libraries. All of the CircuitPython libraries

are available in the bundle in a .mpy format which takes up less memory than .py

format. Be sure that you're using the latest library bundle () for your version of

CircuitPython.

If that does not resolve your issue, try shortening your code. Shorten comments,

remove extraneous or unneeded code, or any other clean up you can do to

shorten your code. If you're using a lot of functions, you could try moving those

into a separate library, creating a .mpy of that library, and importing it into your

code.

You can turn your entire file into a .mpy and import that into code.py. This means

you will be unable to edit your code live on the board, but it can save you space.

Can the order of my import statements affect memory?

It can because the memory gets fragmented differently depending on allocation

order and the size of objects. Loading .mpy files uses less memory so its

recommended to do that for files you aren't editing.

©Adafruit Industries Page 77 of 162

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#circuitpython-rgb-status-light-2978455-24
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#circuitpython-rgb-status-light-2978455-24
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases

How can I create my own .mpy files?

You can make your own .mpy versions of files with mpy-cross .

You can download mpy-cross for your operating system from here (). Builds are

available for Windows, macOS, x64 Linux, and Raspberry Pi Linux. Choose the

latest mpy-cross whose version matches the version of CircuitPython you are

using.

To make a .mpy file, run ./mpy-cross path/to/yourfile.py to create a

yourfile.mpy in the same directory as the original file.

How do I check how much memory I have free?

Run the following to see the number of bytes available for use:

import gc

gc.mem_free()

Unsupported Hardware

Is ESP8266 or ESP32 supported in CircuitPython? Why

not?

We dropped ESP8266 support as of 4.x - For more information please read about it

here ()!

As of CircuitPython 8.x we have started to support ESP32 and ESP32-C3 and have

added a WiFi workflow for wireless coding! ()

We also support ESP32-S2 & ESP32-S3, which have native USB.

Does Feather M0 support WINC1500?

No, WINC1500 will not fit into the M0 flash space.

Can AVRs such as ATmega328 or ATmega2560 run

CircuitPython?

No.

©Adafruit Industries Page 78 of 162

https://adafruit-circuit-python.s3.amazonaws.com/index.html?prefix=bin/mpy-cross/
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-for-esp8266
https://learn.adafruit.com/circuitpython-with-esp32-quick-start
https://learn.adafruit.com/circuitpython-with-esp32-quick-start

Troubleshooting

From time to time, you will run into issues when working with CircuitPython. Here are

a few things you may encounter and how to resolve them.

Always Run the Latest Version of

CircuitPython and Libraries

As CircuitPython development continues and there are new releases, Adafruit will

stop supporting older releases. You need to update to the latest CircuitPython. ().

You need to download the CircuitPython Library Bundle that matches your version of

CircuitPython. Please update CircuitPython and then download the latest bundle ().

As new versions of CircuitPython are released, Adafruit will stop providing the

previous bundles as automatically created downloads on the Adafruit CircuitPython

Library Bundle repo. If you must continue to use an earlier version, you can still

download the appropriate version of mpy-cross from the particular release of

CircuitPython on the CircuitPython repo and create your own compatible .mpy library

files. However, it is best to update to the latest for both CircuitPython and the library

bundle.

I have to continue using CircuitPython 5.x or earlier.

Where can I find compatible libraries?

Adafruit is no longer building or supporting the CircuitPython 5.x or earlier library

bundles. You are highly encourged to update CircuitPython to the latest version () and

use the current version of the libraries (). However, if for some reason you cannot

update, links to the previous bundles are available in the FAQ ().

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to

download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

©Adafruit Industries Page 79 of 162

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://learn.adafruit.com/welcome-to-circuitpython/frequently-asked-questions#faq-3105289

Bootloader (boardnameBOOT) Drive Not

Present

You may have a different board.

Only Adafruit Express boards and the SAMD21 non-Express boards ship with the UF2

bootloader ()installed. The Feather M0 Basic, Feather M0 Adalogger, and similar

boards use a regular Arduino-compatible bootloader, which does not show a boardna

meBOOT drive.

MakeCode

If you are running a MakeCode () program on Circuit Playground Express, press the

reset button just once to get the CPLAYBOOT drive to show up. Pressing it twice will

not work.

MacOS

DriveDx and its accompanything SAT SMART Driver can interfere with seeing the

BOOT drive. See this forum post () for how to fix the problem.

Windows 10

Did you install the Adafruit Windows Drivers package by mistake, or did you upgrade

to Windows 10 with the driver package installed? You don't need to install this

package on Windows 10 for most Adafruit boards. The old version (v1.5) can interfere

with recognizing your device. Go to Settings -> Apps and uninstall all the "Adafruit"

driver programs.

Windows 7 or 8.1

To use a CircuitPython-compatible board with Windows 7 or 8.1, you must install a

driver. Installation instructions are available here ().

It is recommended () that you upgrade to Windows 10 if possible; an upgrade is

probably still free for you. Check here ().

©Adafruit Industries Page 80 of 162

file:///home/deploy/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader
file:///home/deploy/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader
file:///home/deploy/makecode/sharing-and-saving?view=all#step-1-bootloader-mode
https://forums.adafruit.com/viewtopic.php?f=58&t=161917&p=799309#p799215
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9

You should now be done! Test by unplugging and replugging the board. You should

see the CIRCUITPY drive, and when you double-click the reset button (single click on

Circuit Playground Express running MakeCode), you should see the appropriate boar

dnameBOOT drive.

Let us know in the Adafruit support forums () or on the Adafruit Discord () if this does

not work for you!

Windows Explorer Locks Up When

Accessing boardnameBOOT Drive

On Windows, several third-party programs that can cause issues. The symptom is that

you try to access the boardnameBOOT drive, and Windows or Windows Explorer

seems to lock up. These programs are known to cause trouble:

AIDA64: to fix, stop the program. This problem has been reported to AIDA64.

They acquired hardware to test, and released a beta version that fixes the

problem. This may have been incorporated into the latest release. Please let us

know in the forums if you test this.

Hard Disk Sentinel

Kaspersky anti-virus: To fix, you may need to disable Kaspersky completely.

Disabling some aspects of Kaspersky does not always solve the problem. This

problem has been reported to Kaspersky.

ESET NOD32 anti-virus: There have been problems with at least version

9.0.386.0, solved by uninstallation.

Copying UF2 to boardnameBOOT Drive

Hangs at 0% Copied

On Windows, a Western DIgital (WD) utility that comes with their external USB drives

can interfere with copying UF2 files to the boardnameBOOT drive. Uninstall that utility

to fix the problem.

The Windows Drivers installer was last updated in November 2020 (v2.5.0.0) .

Windows 7 drivers for CircuitPython boards released since then, including

RP2040 boards, are not yet available. The boards work fine on Windows 10. A

new release of the drivers is in process.

•

•

•

•

©Adafruit Industries Page 81 of 162

https://forums.adafruit.com
https://adafru.it/discord

CIRCUITPY Drive Does Not Appear or

Disappears Quickly

Kaspersky anti-virus can block the appearance of the CIRCUITPY drive. There has not

yet been settings change discovered that prevents this. Complete uninstallation of

Kaspersky fixes the problem.

Norton anti-virus can interfere with CIRCUITPY. A user has reported this problem on

Windows 7. The user turned off both Smart Firewall and Auto Protect, and CIRCUITPY

then appeared.

Sophos Endpoint security software can cause CIRCUITPY to disappear () and the

BOOT drive to reappear. It is not clear what causes this behavior.

Device Errors or Problems on Windows

Windows can become confused about USB device installations. This is particularly

true of Windows 7 and 8.1. It is recommended () that you upgrade to Windows 10 if

possible; an upgrade is probably still free for you: see this link ().

If not, try cleaning up your USB devices. Use Uwe Sieber's Device Cleanup Tool () (on

that page, scroll down to "Device Cleanup Tool"). Download and unzip the tool.

Unplug all the boards and other USB devices you want to clean up. Run the tool as

Administrator. You will see a listing like this, probably with many more devices. It is

listing all the USB devices that are not currently attached.

©Adafruit Industries Page 82 of 162

https://forums.adafruit.com/viewtopic.php?f=60&t=187629
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://www.cnet.com/tech/services-and-software/windows-10-download/
https://www.uwe-sieber.de/misc_tools_e.html

Select all the devices you want to remove, and then press Delete. It is usually safe

just to select everything. Any device that is removed will get a fresh install when you

plug it in. Using the Device Cleanup Tool also discards all the COM port assignments

for the unplugged boards. If you have used many Arduino and CircuitPython boards,

you have probably seen higher and higher COM port numbers used, seemingly

without end. This will fix that problem.

Serial Console in Mu Not Displaying

Anything

There are times when the serial console will accurately not display anything, such as,

when no code is currently running, or when code with no serial output is already

running before you open the console. However, if you find yourself in a situation

where you feel it should be displaying something like an error, consider the following.

Depending on the size of your screen or Mu window, when you open the serial

console, the serial console panel may be very small. This can be a problem. A basic

CircuitPython error takes 10 lines to display!

Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.

code.py output:

Traceback (most recent call last):

 File "code.py", line 7

SyntaxError: invalid syntax

Press any key to enter the REPL. Use CTRL-D to reload.

More complex errors take even more lines!

Therefore, if your serial console panel is five lines tall or less, you may only see blank

lines or blank lines followed by Press any key to enter the REPL. Use CTRL-D

to reload. . If this is the case, you need to either mouse over the top of the panel to

utilise the option to resize the serial panel, or use the scrollbar on the right side to

scroll up and find your message.

This applies to any kind of serial output whether it be error messages or print

statements. So before you start trying to debug your problem on the hardware side,

©Adafruit Industries Page 83 of 162

be sure to check that you haven't simply missed the serial messages due to serial

output panel height.

code.py Restarts Constantly

CircuitPython will restart code.py if you or your computer writes to something on the

CIRCUITPY drive. This feature is called auto-reload, and lets you test a change to your

program immediately.

Some utility programs, such as backup, anti-virus, or disk-checking apps, will write to

the CIRCUITPY as part of their operation. Sometimes they do this very frequently,

causing constant restarts.

Acronis True Image and related Acronis programs on Windows are known to cause

this problem. It is possible to prevent this by disabling the " ()Acronis Managed

Machine Service Mini" ().

If you cannot stop whatever is causing the writes, you can disable auto-reload by

putting this code in boot.py or code.py:

import supervisor

supervisor.disable_autoreload()

CircuitPython RGB Status Light

Nearly all CircuitPython-capable boards have a single NeoPixel or DotStar RGB LED

on the board that indicates the status of CircuitPython. A few boards designed before

CircuitPython existed, such as the Feather M0 Basic, do not.

Circuit Playground Express and Circuit Playground Bluefruit have multiple RGB LEDs,

but do NOT have a status LED. The LEDs are all green when in the bootloader. In

versions before 7.0.0, they do NOT indicate any status while running CircuitPython.

CircuitPython 7.0.0 and Later

The status LED blinks were changed in CircuitPython 7.0.0 in order to save battery

power and simplify the blinks. These blink patterns will occur on single color LEDs

when the board does not have any RGB LEDs. Speed and blink count also vary for

this reason.

©Adafruit Industries Page 84 of 162

https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder
https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder
https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder

On start up, the LED will blink YELLOW multiple times for 1 second. Pressing the

RESET button (or on Espressif, the BOOT button) during this time will restart the board

and then enter safe mode. On Bluetooth capable boards, after the yellow blinks, there

will be a set of faster blue blinks. Pressing reset during the BLUE blinks will clear

Bluetooth information and start the device in discoverable mode, so it can be used

with a BLE code editor.

Once started, CircuitPython will blink a pattern every 5 seconds when no user code is

running to indicate why the code stopped:

1 GREEN blink: Code finished without error.

2 RED blinks: Code ended due to an exception. Check the serial console for

details.

3 YELLOW blinks: CircuitPython is in safe mode. No user code was run. Check

the serial console for safe mode reason.

When in the REPL, CircuitPython will set the status LED to WHITE. You can change the

LED color from the REPL. The status indicator will not persist on non-NeoPixel or

DotStar LEDs.

CircuitPython 6.3.0 and earlier

Here's what the colors and blinking mean:

steady GREEN: code.py (or code.txt, main.py, or main.txt) is running

•

•

•

•

©Adafruit Industries Page 85 of 162

pulsing GREEN: code.py (etc.) has finished or does not exist

steady YELLOW at start up: (4.0.0-alpha.5 and newer) CircuitPython is waiting for

a reset to indicate that it should start in safe mode

pulsing YELLOW: Circuit Python is in safe mode: it crashed and restarted

steady WHITE: REPL is running

steady BLUE: boot.py is running

Colors with multiple flashes following indicate a Python exception and then indicate

the line number of the error. The color of the first flash indicates the type of error:

GREEN: IndentationError

CYAN: SyntaxError

WHITE: NameError

ORANGE: OSError

PURPLE: ValueError

YELLOW: other error

These are followed by flashes indicating the line number, including place value. WHIT

E flashes are thousands' place, BLUE are hundreds' place, YELLOW are tens' place,

and CYAN are one's place. So for example, an error on line 32 would flash YELLOW

three times and then CYAN two times. Zeroes are indicated by an extra-long dark gap.

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 86 of 162

Serial console showing ValueError:

Incompatible .mpy file

This error occurs when importing a module that is stored as a .mpy binary file that

was generated by a different version of CircuitPython than the one its being loaded

into. In particular, the mpy binary format changed between CircuitPython versions 6.x

and 7.x, 2.x and 3.x, and 1.x and 2.x.

So, for instance, if you upgraded to CircuitPython 7.x from 6.x you’ll need to download

a newer version of the library that triggered the error on import . All libraries are

available in the Adafruit bundle ().

CIRCUITPY Drive Issues

You may find that you can no longer save files to your CIRCUITPY drive. You may find

that your CIRCUITPY stops showing up in your file explorer, or shows up as NO_NAM

E. These are indicators that your filesystem has issues. When the CIRCUITPY disk is

not safely ejected before being reset by the button or being disconnected from USB,

it may corrupt the flash drive. It can happen on Windows, Mac or Linux, though it is

more common on Windows.

Be aware, if you have used Arduino to program your board, CircuitPython is no longer

able to provide the USB services. You will need to reload CircuitPython to resolve this

situation.

The easiest first step is to reload CircuitPython. Double-tap reset on the board so you

get a boardnameBOOT drive rather than a CIRCUITPY drive, and copy the latest

version of CircuitPython (.uf2) back to the board. This may restore CIRCUITPY

functionality.

If reloading CircuitPython does not resolve your issue, the next step is to try putting

the board into safe mode.

Safe Mode

Whether you've run into a situation where you can no longer edit your code.py on

your CIRCUITPY drive, your board has gotten into a state where CIRCUITPY is read-

only, or you have turned off the CIRCUITPY drive altogether, safe mode can help.

©Adafruit Industries Page 87 of 162

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest

Safe mode in CircuitPython does not run any user code on startup, and disables auto-

reload. This means a few things. First, safe mode bypasses any code in boot.py

(where you can set CIRCUITPY read-only or turn it off completely). Second, it does not

run the code in code.py. And finally, it does not automatically soft-reload when data is

written to the CIRCUITPY drive.

Therefore, whatever you may have done to put your board in a non-interactive state,

safe mode gives you the opportunity to correct it without losing all of the data on the

CIRCUITPY drive.

Entering Safe Mode in CircuitPython 7.x and Later

To enter safe mode when using CircuitPython 7.x, plug in your board or hit reset

(highlighted in red above). Immediately after the board starts up or resets, it waits

1000ms. On some boards, the onboard status LED will blink yellow during that time. If

you press reset during that 1000ms, the board will start up in safe mode. It can be

difficult to react to the yellow LED, so you may want to think of it simply as a "slow"

double click of the reset button. (Remember, a fast double click of reset enters the

bootloader.)

Entering Safe Mode in CircuitPython 6.x

To enter safe mode when using CircuitPython 6.x, plug in your board or hit reset

(highlighted in red above). Immediately after the board starts up or resets, it waits

700ms. On some boards, the onboard status LED (highlighted in green above) will

turn solid yellow during this time. If you press reset during that 700ms, the board will

start up in safe mode. It can be difficult to react to the yellow LED, so you may want to

think of it simply as a slow double click of the reset button. (Remember, a fast double

click of reset enters the bootloader.)

In Safe Mode

Once you've entered safe mode successfully in CircuitPython 6.x, the LED will pulse

yellow.

If you successfully enter safe mode on CircuitPython 7.x, the LED will intermittently

blink yellow three times.

If you connect to the serial console, you'll find the following message.

©Adafruit Industries Page 88 of 162

Auto-reload is off.

Running in safe mode! Not running saved code.

CircuitPython is in safe mode because you pressed the reset button during boot.

Press again to exit safe mode.

Press any key to enter the REPL. Use CTRL-D to reload.

You can now edit the contents of the CIRCUITPY drive. Remember, your code will not

run until you press the reset button, or unplug and plug in your board, to get out of

safe mode.

At this point, you'll want to remove any user code in code.py and, if present, the boot.

py file from CIRCUITPY. Once removed, tap the reset button, or unplug and plug in

your board, to restart CircuitPython. This will restart the board and may resolve your

drive issues. If resolved, you can begin coding again as usual.

If safe mode does not resolve your issue, the board must be completely erased and

CircuitPython must be reloaded onto the board.

To erase CIRCUITPY: storage.erase_filesystem()

CircuitPython includes a built-in function to erase and reformat the filesystem. If you

have a version of CircuitPython older than 2.3.0 on your board, you can update to the

newest version () to do this.

Connect to the CircuitPython REPL () using Mu or a terminal program.

Type the following into the REPL:

>>> import storage

>>> storage.erase_filesystem()

CIRCUITPY will be erased and reformatted, and your board will restart. That's it!

Erase CIRCUITPY Without Access to the REPL

If you can't access the REPL, or you're running a version of CircuitPython previous to

2.3.0 and you don't want to upgrade, there are options available for some specific

boards.

You WILL lose everything on the board when you complete the following steps. If

possible, make a copy of your code before continuing.

1.

2.

©Adafruit Industries Page 89 of 162

file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

The options listed below are considered to be the "old way" of erasing your board.

The method shown above using the REPL is highly recommended as the best method

for erasing your board.

For the specific boards listed below:

If the board you are trying to erase is listed below, follow the steps to use the file to

erase your board.

 1. Download the correct erase file:

Circuit Playground Express

Feather M0 Express

Feather M4 Express

Metro M0 Express

Metro M4 Express QSPI Eraser

Trellis M4 Express (QSPI)

Grand Central M4 Express (QSPI)

PyPortal M4 Express (QSPI)

Circuit Playground Bluefruit (QSPI)

Monster M4SK (QSPI)

PyBadge/PyGamer QSPI Eraser.UF2

If at all possible, it is recommended to use the REPL to erase your CIRCUITPY

drive. The REPL method is explained above.

©Adafruit Industries Page 90 of 162

https://cdn-learn.adafruit.com/assets/assets/000/048/745/original/flash_erase_express.ino.circuitplay.uf2?1512152080
https://cdn-learn.adafruit.com/assets/assets/000/048/746/original/flash_erase_express.ino.feather_m0_express.uf2?1512152098
https://cdn-learn.adafruit.com/assets/assets/000/076/217/original/flash_erase.ino.feather_m4.uf2
https://cdn-learn.adafruit.com/assets/assets/000/048/747/original/flash_erase_express.ino.metro_m0.uf2?1512152103
https://cdn-learn.adafruit.com/assets/assets/000/073/820/original/Metro_M4_QSPI_Eraser.UF2?1553805937
https://cdn-learn.adafruit.com/assets/assets/000/067/535/original/Trellis_M4_QSPI_Eraser.UF2?1544719380
https://cdn-learn.adafruit.com/assets/assets/000/069/314/original/GC_M4_QSPI_Erase.UF2?1547404471
https://cdn-learn.adafruit.com/assets/assets/000/072/252/original/PYPORTAL_QSPI_Eraser.UF2?1551738305
https://cdn-learn.adafruit.com/assets/assets/000/082/950/original/CP_Bluefruit_QSPI_Erase.UF2?1572026649
https://cdn-learn.adafruit.com/assets/assets/000/083/330/original/M4SK_QSPI_Eraser.UF2?1572551433
https://cdn-learn.adafruit.com/assets/assets/000/083/331/original/PyBadge_QSPI_Eraser.UF2?1572551613

CLUE_Flash_Erase.UF2

Matrix_Portal_M4_(QSPI).UF2

 2. Double-click the reset button on the board to bring up the boardnameBOOT

drive.

 3. Drag the erase .uf2 file to the boardnameBOOT drive.

 4. The status LED will turn yellow or blue, indicating the erase has started.

 5. After approximately 15 seconds, the status LED will light up green. On the

NeoTrellis M4 this is the first NeoPixel on the grid

 6. Double-click the reset button on the board to bring up the boardnameBOOT d

rive.

 7. Drag the appropriate latest release of CircuitPython () .uf2 file to the boardnam

eBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer

again.

If the LED flashes red during step 5, it means the erase has failed. Repeat the steps

starting with 2.

If you haven't already downloaded the latest release of CircuitPython for your board,

check out the installation page (). You'll also need to load your code and reinstall your

libraries!

For SAMD21 non-Express boards that have a UF2

bootloader:

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. Non-Express boards that have a UF2

bootloader include Trinket M0, GEMMA M0, QT Py M0, and the SAMD21-based

Trinkey boards.

If you are trying to erase a SAMD21 non-Express board, follow these steps to erase

your board.

 1. Download the erase file:

SAMD21 non-Express Boards

©Adafruit Industries Page 91 of 162

https://cdn-learn.adafruit.com/assets/assets/000/088/454/original/CLUE_Flash_Erase.UF2?1581873830
https://cdn-learn.adafruit.com/assets/assets/000/098/741/original/Matrix_Portal_M4_%28QSPI%29.UF2?1611076081
https://circuitpython.org/downloads
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
https://cdn-learn.adafruit.com/assets/assets/000/048/748/original/erase_m0.uf2

 2. Double-click the reset button on the board to bring up the boardnameBOOT

drive.

 3. Drag the erase .uf2 file to the boardnameBOOT drive.

 4. The boot LED will start flashing again, and the boardnameBOOT drive will

reappear.

 5. Drag the appropriate latest release CircuitPython () .uf2 file to the

boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer

again.

If you haven't already downloaded the latest release of CircuitPython for your board,

check out the installation page () YYou'll also need to load your code and reinstall

your libraries!

For SAMD21 non-Express boards that do not have a UF2

bootloader:

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. Non-Express boards that do not have a

UF2 bootloader include the Feather M0 Basic Proto, Feather Adalogger, or the

Arduino Zero.

If you are trying to erase a non-Express board that does not have a UF2 bootloader, f

ollow these directions to reload CircuitPython using bossac (), which will erase and

re-create CIRCUITPY.

Running Out of File Space on SAMD21 Non-

Express Boards

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. This includes boards like the Trinket M0,

GEMMA M0, QT Py M0, and the SAMD21-based Trinkey boards.

The file system on the board is very tiny. (Smaller than an ancient floppy disk.) So, its

likely you'll run out of space but don't panic! There are a number of ways to free up

space.

©Adafruit Industries Page 92 of 162

https://circuitpython.org/downloads
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/non-uf2-installation
file:///home/welcome-to-circuitpython/non-uf2-installation
file:///home/welcome-to-circuitpython/non-uf2-installation

Delete something!

The simplest way of freeing up space is to delete files from the drive. Perhaps there

are libraries in the lib folder that you aren't using anymore or test code that isn't in

use. Don't delete the lib folder completely, though, just remove what you don't need.

The board ships with the Windows 7 serial driver too! Feel free to delete that if you

don't need it or have already installed it. It's ~12KiB or so.

Use tabs

One unique feature of Python is that the indentation of code matters. Usually the

recommendation is to indent code with four spaces for every indent. In general, that

is recommended too. However, one trick to storing more human-readable code is to

use a single tab character for indentation. This approach uses 1/4 of the space for

indentation and can be significant when you're counting bytes.

On MacOS?

MacOS loves to generate hidden files. Luckily you can disable some of the extra

hidden files that macOS adds by running a few commands to disable search indexing

and create zero byte placeholders. Follow the steps below to maximize the amount of

space available on macOS.

Prevent & Remove MacOS Hidden Files

First find the volume name for your board. With the board plugged in run this

command in a terminal to list all the volumes:

ls -l /Volumes

©Adafruit Industries Page 93 of 162

Look for a volume with a name like CIRCUITPY (the default for CircuitPython). The full

path to the volume is the /Volumes/CIRCUITPY path.

Now follow the steps from this question () to run these terminal commands that stop

hidden files from being created on the board:

mdutil -i off /Volumes/CIRCUITPY

cd /Volumes/CIRCUITPY

rm -rf .{,_.}{fseventsd,Spotlight-V*,Trashes}

mkdir .fseventsd

touch .fseventsd/no_log .metadata_never_index .Trashes

cd -

Replace /Volumes/CIRCUITPY in the commands above with the full path to your

board's volume if it's different. At this point all the hidden files should be cleared from

the board and some hidden files will be prevented from being created.

Alternatively, with CircuitPython 4.x and above, the special files and folders

mentioned above will be created automatically if you erase and reformat the

filesystem. WARNING: Save your files first! Do this in the REPL:

>>> import storage

>>> storage.erase_filesystem()

However there are still some cases where hidden files will be created by MacOS. In

particular if you copy a file that was downloaded from the internet it will have special

metadata that MacOS stores as a hidden file. Luckily you can run a copy command

from the terminal to copy files without this hidden metadata file. See the steps below.

Copy Files on MacOS Without Creating Hidden Files

Once you've disabled and removed hidden files with the above commands on macOS

you need to be careful to copy files to the board with a special command that

prevents future hidden files from being created. Unfortunately you cannot use drag

and drop copy in Finder because it will still create these hidden extended attribute

files in some cases (for files downloaded from the internet, like Adafruit's modules).

To copy a file or folder use the -X option for the cp command in a terminal. For

example to copy a file_name.mpy file to the board use a command like:

cp -X file_name.mpy /Volumes/CIRCUITPY

©Adafruit Industries Page 94 of 162

http://apple.stackexchange.com/questions/6707/how-to-stop-os-x-from-writing-spotlight-and-trash-files-to-memory-cards-and-usb/7135#7135

(Replace file_name.mpy with the name of the file you want to copy.)

Or to copy a folder and all of the files and folders contained within, use a command

like:

cp -rX folder_to_copy /Volumes/CIRCUITPY

If you are copying to the lib folder, or another folder, make sure it exists before

copying.

if lib does not exist, you'll create a file named lib !

cp -X file_name.mpy /Volumes/CIRCUITPY/lib

This is safer, and will complain if a lib folder does not exist.

cp -X file_name.mpy /Volumes/CIRCUITPY/lib/

Other MacOS Space-Saving Tips

If you'd like to see the amount of space used on the drive and manually delete hidden

files here's how to do so. First, move into the Volumes/ directory with cd /Volumes/ ,

and then list the amount of space used on the CIRCUITPY drive with the df

command.

That's not very much space left! The next step is to show a list of the files currently on

the CIRCUITPY drive, including the hidden files, using the ls command. You cannot

use Finder to do this, you must do it via command line!

There are a few of the hidden files that MacOS loves to generate, all of which begin

with a ._ before the file name. Remove the ._ files using the rm command. You can

©Adafruit Industries Page 95 of 162

remove them all once by running rm CIRCUITPY/._* . The * acts as a wildcard to

apply the command to everything that begins with ._ at the same time.

Finally, you can run df again to see the current space used.

Nice! You have 12Ki more than before! This space can now be used for libraries and

code!

Device Locked Up or Boot Looping

In rare cases, it may happen that something in your code.py or boot.py files causes

the device to get locked up, or even go into a boot loop. A boot loop occurs when the

board reboots repeatedly and never fully loads. These are not caused by your

everyday Python exceptions, typically it's the result of a deeper problem within

CircuitPython. In this situation, it can be difficult to recover your device if CIRCUITPY

is not allowing you to modify the code.py or boot.py files. Safe mode is one recovery

option. When the device boots up in safe mode it will not run the code.py or boot.py

scripts, but will still connect the CIRCUITPY drive so that you can remove or modify

those files as needed.

The method used to manually enter safe mode can be different for different devices.

It is also very similar to the method used for getting into bootloader mode, which is a

different thing. So it can take a few tries to get the timing right. If you end up in

bootloader mode, no problem, you can try again without needing to do anything else.

For most devices:

Press the reset button, and then when the RGB status LED blinks yellow, press the

reset button again. Since your reaction time may not be that fast, try a "slow" double

click, to catch the yellow LED on the second click.

For ESP32-S2 based devices:

Press and release the reset button, then press and release the boot button about 3/4

of a second later.

©Adafruit Industries Page 96 of 162

Refer to the diagrams above for boot sequence details.

Welcome to the Community!

CircuitPython is a programming language that's super simple to get started with and

great for learning. It runs on microcontrollers and works out of the box. You can plug it

in and get started with any text editor. The best part? CircuitPython comes with an

amazing, supportive community.

Everyone is welcome! CircuitPython is Open Source. This means it's available for

anyone to use, edit, copy and improve upon. This also means CircuitPython becomes

better because of you being a part of it. Whether this is your first microcontroller

board or you're a seasoned software engineer, you have something important to offer

the Adafruit CircuitPython community. This page highlights some of the many ways

you can be a part of it!

©Adafruit Industries Page 97 of 162

Adafruit Discord

The Adafruit Discord server is the best place to start. Discord is where the community

comes together to volunteer and provide live support of all kinds. From general

discussion to detailed problem solving, and everything in between, Discord is a digital

maker space with makers from around the world.

There are many different channels so you can choose the one best suited to your

needs. Each channel is shown on Discord as "#channelname". There's the #help-with-

projects channel for assistance with your current project or help coming up with ideas

for your next one. There's the #show-and-tell channel for showing off your newest

creation. Don't be afraid to ask a question in any channel! If you're unsure, #general is

a great place to start. If another channel is more likely to provide you with a better

answer, someone will guide you.

The help with CircuitPython channel is where to go with your CircuitPython questions.

#help-with-circuitpython is there for new users and developers alike so feel free to

ask a question or post a comment! Everyone of any experience level is welcome to

join in on the conversation. Your contributions are important! The #circuitpython-dev

channel is available for development discussions as well.

The easiest way to contribute to the community is to assist others on Discord.

Supporting others doesn't always mean answering questions. Join in celebrating

successes! Celebrate your mistakes! Sometimes just hearing that someone else has

gone through a similar struggle can be enough to keep a maker moving forward.

The Adafruit Discord is the 24x7x365 hackerspace that you can bring your

granddaughter to.

©Adafruit Industries Page 98 of 162

Visit https://adafru.it/discord ()to sign up for Discord. Everyone is looking forward to

meeting you!

CircuitPython.org

Beyond the Adafruit Learn System, which you are viewing right now, the best place to

find information about CircuitPython is circuitpython.org (). Everything you need to get

started with your new microcontroller and beyond is available. You can do things like

download CircuitPython for your microcontroller () or download the latest

CircuitPython Library bundle (), or check out which single board computers support

Blinka (). You can also get to various other CircuitPython related things like Awesome

CircuitPython or the Python for Microcontrollers newsletter. This is all incredibly

useful, but it isn't necessarily community related. So why is it included here? The Cont

ributing page ().

CircuitPython itself is written in C. However, all of the Adafruit CircuitPython libraries

are written in Python. If you're interested in contributing to CircuitPython on the

Python side of things, check out circuitpython.org/contributing (). You'll find

information pertaining to every Adafruit CircuitPython library GitHub repository, giving

you the opportunity to join the community by finding a contributing option that works

for you.

Note the date on the page next to Current Status for:

©Adafruit Industries Page 99 of 162

https://adafru.it/discord
https://circuitpython.org
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/libraries
https://circuitpython.org/blinka
https://circuitpython.org/blinka
https://circuitpython.org/contributing
https://circuitpython.org/contributing
https://circuitpython.org/contributing

If you submit any contributions to the libraries, and do not see them reflected on the

Contributing page, it could be that the job that checks for new updates hasn't yet run

for today. Simply check back tomorrow!

Now, a look at the different options.

Pull Requests

The first tab you'll find is a list of open pull requests.

GitHub pull requests, or PRs, are opened when folks have added something to an

Adafruit CircuitPython library GitHub repo, and are asking for Adafruit to add, or

merge, their changes into the main library code. For PRs to be merged, they must first

be reviewed. Reviewing is a great way to contribute! Take a look at the list of open

pull requests, and pick one that interests you. If you have the hardware, you can test

code changes. If you don't, you can still check the code updates for syntax. In the

case of documentation updates, you can verify the information, or check it for spelling

and grammar. Once you've checked out the update, you can leave a comment letting

us know that you took a look. Once you've done that for a while, and you're more

comfortable with it, you can consider joining the CircuitPythonLibrarians review team.

The more reviewers we have, the more authors we can support. Reviewing is a crucial

part of an open source ecosystem, CircuitPython included.

Open Issues

The second tab you'll find is a list of open issues.

©Adafruit Industries Page 100 of 162

GitHub issues are filed for a number of reasons, including when there is a bug in the

library or example code, or when someone wants to make a feature request. Issues

are a great way to find an opportunity to contribute directly to the libraries by

updating code or documentation. If you're interested in contributing code or

documentation, take a look at the open issues and find one that interests you.

If you're not sure where to start, you can search the issues by label. Labels are

applied to issues to make the goal easier to identify at a first glance, or to indicate the

difficulty level of the issue. Click on the dropdown next to "Sort by issue labels" to see

the list of available labels, and click on one to choose it.

If you're new to everything, new to contributing to open source, or new to

contributing to the CircuitPython project, you can choose "Good first issue". Issues

with that label are well defined, with a finite scope, and are intended to be easy for

someone new to figure out.

If you're looking for something a little more complicated, consider "Bug" or

"Enhancement". The Bug label is applied to issues that pertain to problems or failures

found in the library. The Enhancement label is applied to feature requests.

©Adafruit Industries Page 101 of 162

Don't let the process intimidate you. If you're new to Git and GitHub, there is a guide ()

to walk you through the entire process. As well, there are always folks available on Di

scord () to answer questions.

Library Infrastructure Issues

The third tab you'll find is a list of library infrastructure issues.

This section is generated by a script that runs checks on the libraries, and then

reports back where there may be issues. It is made up of a list of subsections each

containing links to the repositories that are experiencing that particular issue. This

page is available mostly for internal use, but you may find some opportunities to

contribute on this page. If there's an issue listed that sounds like something you could

help with, mention it on Discord, or file an issue on GitHub indicating you're working

to resolve that issue. Others can reply either way to let you know what the scope of it

might be, and help you resolve it if necessary.

CircuitPython Localization

The fourth tab you'll find is the CircuitPython Localization tab.

If you speak another language, you can help translate CircuitPython! The translations

apply to informational and error messages that are within the CircuitPython core. It

means that folks who do not speak English have the opportunity to have these

messages shown to them in their own language when using CircuitPython. This is

©Adafruit Industries Page 102 of 162

https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github
https:adafru.it/discord
https:adafru.it/discord

incredibly important to provide the best experience possible for all users.

CircuitPython uses Weblate to translate, which makes it much simpler to contribute

translations. You will still need to know some CircuitPython-specific practices and a

few basics about coding strings, but as with any CircuitPython contributions, folks are

there to help.

Regardless of your skill level, or how you want to contribute to the CircuitPython

project, there is an opportunity available. The Contributing page () is an excellent

place to start!

Adafruit GitHub

Whether you're just beginning or are life-long programmer who would like to

contribute, there are ways for everyone to be a part of the CircuitPython project. The

CircuitPython core is written in C. The libraries are written in Python. GitHub is the

best source of ways to contribute to the CircuitPython core (), and the CircuitPython

libraries (). If you need an account, visit https://github.com/ () and sign up.

If you're new to GitHub or programming in general, there are great opportunities for

you. For the CircuitPython core, head over to the CircuitPython repository on GitHub,

click on "Issues ()", and you'll find a list that includes issues labeled "good first issue ()"

. For the libraries, head over to the Contributing page Issues list (), and use the drop

down menu to search for "good first issue ()". These issues are things that have been

identified as something that someone with any level of experience can help with.

These issues include options like updating documentation, providing feedback, and

fixing simple bugs. If you need help getting started with GitHub, there is an excellent

guide on Contributing to CircuitPython with Git and GitHub ().

Already experienced and looking for a challenge? Checkout the rest of either issues

list and you'll find plenty of ways to contribute. You'll find all sorts of things, from new

©Adafruit Industries Page 103 of 162

https://circuitpython.org/contributing
https://github.com/adafruit/circuitpython
https://circuitpython.org/contributing/open-issues
https://circuitpython.org/contributing/open-issues
https://github.com/
https://github.com/adafruit/circuitpython/issues
https://github.com/adafruit/circuitpython/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22
https://circuitpython.org/contributing/open-issues
https://circuitpython.org/contributing/open-issues?label=good-first-issue
https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github

driver requests, to library bugs, to core module updates. There's plenty of

opportunities for everyone at any level!

When working with or using CircuitPython or the CircuitPython libraries, you may find

problems. If you find a bug, that's great! The team loves bugs! Posting a detailed issue

to GitHub is an invaluable way to contribute to improving CircuitPython. For

CircuitPython itself, file an issue here (). For the libraries, file an issue on the specific

library repository on GitHub. Be sure to include the steps to replicate the issue as well

as any other information you think is relevant. The more detail, the better!

Testing new software is easy and incredibly helpful. Simply load the newest version of

CircuitPython or a library onto your CircuitPython hardware, and use it. Let us know

about any problems you find by posting a new issue to GitHub. Software testing on

both stable and unstable releases is a very important part of contributing

CircuitPython. The developers can't possibly find all the problems themselves! They

need your help to make CircuitPython even better.

On GitHub, you can submit feature requests, provide feedback, report problems and

much more. If you have questions, remember that Discord and the Forums are both

there for help!

Adafruit Forums

The Adafruit Forums () are the perfect place for support. Adafruit has wonderful paid

support folks to answer any questions you may have. Whether your hardware is giving

you issues or your code doesn't seem to be working, the forums are always there for

you to ask. You need an Adafruit account to post to the forums. You can use the same

account you use to order from Adafruit.

While Discord may provide you with quicker responses than the forums, the forums

are a more reliable source of information. If you want to be certain you're getting an

Adafruit-supported answer, the forums are the best place to be.

©Adafruit Industries Page 104 of 162

https://github.com/adafruit/circuitpython/issues
https://forums.adafruit.com

There are forum categories that cover all kinds of topics, including everything

Adafruit. The Adafruit CircuitPython () category under "Supported Products & Projects"

is the best place to post your CircuitPython questions.

Be sure to include the steps you took to get to where you are. If it involves wiring,

post a picture! If your code is giving you trouble, include your code in your post!

These are great ways to make sure that there's enough information to help you with

your issue.

You might think you're just getting started, but you definitely know something that

someone else doesn't. The great thing about the forums is that you can help others

too! Everyone is welcome and encouraged to provide constructive feedback to any of

the posted questions. This is an excellent way to contribute to the community and

share your knowledge!

Read the Docs

Read the Docs () is a an excellent resource for a more detailed look at the

CircuitPython core and the CircuitPython libraries. This is where you'll find things like

API documentation and example code. For an in depth look at viewing and

understanding Read the Docs, check out the CircuitPython Documentation () page!

©Adafruit Industries Page 105 of 162

https://forums.adafruit.com/viewforum.php?f=60
https://circuitpython.readthedocs.io/
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-documentation

CircuitPython Essentials

You've been introduced to CircuitPython, and worked through getting everything set

up. What's next? CircuitPython Essentials!

There are a number of core modules built into CircuitPython, which can be used along

side the many CircuitPython libraries available. The following pages demonstrate

some of these modules. Each page presents a different concept including a code

example with an explanation. All of the examples are designed to work with your

microcontroller board.

Time to get started learning the CircuitPython essentials!

Some examples require external components, such as switches or sensors. You'll find

wiring diagrams where applicable to show you how to wire up the necessary

components to work with each example.

The following components are needed to complete all of the examples:

©Adafruit Industries Page 106 of 162

STEMMA Wired Tactile Push-Button Pack -

5 Color Pack

Little clicky switches are standard input

"buttons" on electronic projects. These

are just like our Colorful Round...

https://www.adafruit.com/product/4431

STEMMA Wired Potentiometer Breakout

Board - 10K ohm Linear

For the easiest way possible to measure

twists, turn to this STEMMA potentiometer

breakout (ha!). This plug-n-play pot comes

with a JST-PH 2mm connector and a

matching

https://www.adafruit.com/product/4493

STEMMA JST PH 2mm 3-Pin to Male

Header Cable - 200mm

This cable will let you turn a JST PH 3-pin

cable port into 3 individual wires with

high-quality 0.1" male header plugs on the

end. We're carrying these to match up

with our...

https://www.adafruit.com/product/3893

Adafruit MCP9808 High Accuracy I2C

Temperature Sensor Breakout

The MCP9808 digital temperature sensor

is one of the more accurate/precise we've

ever seen, with a typical accuracy of

±0.25°C over the sensor's -40°C to...

https://www.adafruit.com/product/5027

©Adafruit Industries Page 107 of 162

https://www.adafruit.com/product/4431
https://www.adafruit.com/product/4431
https://www.adafruit.com/product/4431
https://www.adafruit.com/product/4493
https://www.adafruit.com/product/4493
https://www.adafruit.com/product/4493
https://www.adafruit.com/product/3893
https://www.adafruit.com/product/3893
https://www.adafruit.com/product/3893
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027

STEMMA QT / Qwiic JST SH 4-Pin Cable -

50mm Long

This 4-wire cable is 50mm / 1.9" long and

fitted with JST SH female 4-pin

connectors on both ends. Compared with

the chunkier JST PH these are 1mm pitch

instead of 2mm, but...

https://www.adafruit.com/product/4399

Blink

In learning any programming language, you often begin with some sort of Hello,

World! program. In CircuitPython, Hello, World! is blinking an LED. Blink is one of the

simplest programs in CircuitPython. It involves three built-in modules, two lines of set

up, and a short loop. Despite its simplicity, it shows you many of the basic concepts

needed for most CircuitPython programs, and provides a solid basis for more complex

projects. Time to get blinky!

LED Location

The built-in LED is located between the USB-C port and the reset button. It's labeled

D13 on the silk.

©Adafruit Industries Page 108 of 162

https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399

Blinking an LED

In the example below, click the Download Project Bundle button below to download

the necessary libraries and the code.py file in a zip file. Extract the contents of the zip

file, open the directory CircuitPython_Templates/blink/ and then click on the directory

that matches the version of CircuitPython you're using and copy the contents of that

directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: MIT

"""CircuitPython Blink Example - the CircuitPython 'Hello, World!'"""

import time

import board

import digitalio

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 led.value = True

 time.sleep(0.5)

 led.value = False

 time.sleep(0.5)

The built-in LED begins blinking!

Note that the code is a little less "Pythonic" than it could be. It could also be written as

led.value = not led.value with a single time.sleep(0.5) . That way is more

difficult to understand if you're new to programming, so the example is a bit longer

than it needed to be to make it easier to read.

It's important to understand what is going on in this program.

First you import three modules: time , board and digitalio . This makes these

modules available for use in your code. All three are built-in to CircuitPython, so you

don't need to download anything to get started.

©Adafruit Industries Page 109 of 162

Next, you set up the LED. To interact with hardware in CircuitPython, your code must

let the board know where to look for the hardware and what to do with it. So, you

create a digitalio.DigitalInOut() object, provide it the LED pin using the boar

d module, and save it to the variable led . Then, you tell the pin to act as an

OUTPUT .

Finally, you create a while True: loop. This means all the code inside the loop will

repeat indefinitely. Inside the loop, you set led.value = True which powers on the

LED. Then, you use time.sleep(0.5) to tell the code to wait half a second before

moving on to the next line. The next line sets led.value = False which turns the

LED off. Then you use another time.sleep(0.5) to wait half a second before

starting the loop over again.

With only a small update, you can control the blink speed. The blink speed is

controlled by the amount of time you tell the code to wait before moving on using

time.sleep() . The example uses 0.5 , which is one half of one second. Try

increasing or decreasing these values to see how the blinking changes.

That's all there is to blinking an LED using CircuitPython!

Digital Input

The CircuitPython digitalio module has many applications. The basic Blink

program sets up the LED as a digital output. You can just as easily set up a digital

input such as a button to control the LED. This example builds on the basic Blink

example, but now includes setup for a button switch. Instead of using the time

module to blink the LED, it uses the status of the button switch to control whether the

LED is turned on or off.

©Adafruit Industries Page 110 of 162

LED and Button

You'll attach a button to the Metro M7 to

control the onboard LED.

Button input to board pin 5 (blue wire)

Button ground to board GND (black wire)

Controlling the LED with a Button

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: MIT

"""

CircuitPython Digital Input Example - Blinking an LED using a button switch.

"""

import board

import digitalio

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

button = digitalio.DigitalInOut(board.D5)

button.switch_to_input(pull=digitalio.Pull.UP)

while True:

 if not button.value:

 led.value = True

 else:

 led.value = False

Now, press the button. The LED lights up! Let go of the button and the LED turns off.

©Adafruit Industries Page 111 of 162

https://learn.adafruit.com//assets/119340
https://learn.adafruit.com//assets/119340

Note that the code is a little less "Pythonic" than it could be. It could also be written as

led.value = not button.value . That way is more difficult to understand if you're

new to programming, so the example is a bit longer than it needed to be to make it

easier to read.

First you import two modules: board and digitalio . This makes these modules

available for use in your code. Both are built-in to CircuitPython, so you don't need to

download anything to get started.

Next, you set up the LED. To interact with hardware in CircuitPython, your code must

let the board know where to look for the hardware and what to do with it. So, you

create a digitalio.DigitalInOut() object, provide it the LED pin using the boar

d module, and save it to the variable led . Then, you tell the pin to act as an

OUTPUT .

You include setup for the button as well. It is similar to the LED setup, except the

button is an INPUT , and requires a pull up.

Inside the loop, you check to see if the button is pressed, and if so, turn on the LED.

Otherwise the LED is off.

That's all there is to controlling an LED with a button switch!

©Adafruit Industries Page 112 of 162

Analog In

Your microcontroller board has both digital and analog signal capabilities. Some pins

are analog, some are digital, and some are capable of both. Check the Pinouts page

in this guide for details about your board.

Analog signals are different from digital signals in that they can be any voltage and

can vary continuously and smoothly between voltages. An analog signal is like a

dimmer switch on a light, whereas a digital signal is like a simple on/off switch.

Digital signals only can ever have two states, they are either are on (high logic level

voltage like 3.3V) or off (low logic level voltage like 0V / ground).

By contrast, analog signals can be any voltage in-between on and off, such as 1.8V or

0.001V or 2.98V and so on.

Analog signals are continuous values which means they can be an infinite number of

different voltages. Think of analog signals like a floating point or fractional number,

they can smoothly transiting to any in-between value like 1.8V, 1.81V, 1.801V, 1.8001V,

1.80001V and so forth to infinity.

Many devices use analog signals, in particular sensors typically output an analog

signal or voltage that varies based on something being sensed like light, heat,

humidity, etc.

Analog to Digital Converter (ADC)

An analog-to-digital-converter, or ADC, is the key to reading analog signals and

voltages with a microcontroller. An ADC is a device that reads the voltage of an

analog signal and converts it into a digital, or numeric, value. The microcontroller

©Adafruit Industries Page 113 of 162

can’t read analog signals directly, so the analog signal is first converted into a

numeric value by the ADC.

The black line below shows a digital signal over time, and the red line shows the

converted analog signal over the same amount of time.

Once that analog signal has been converted by the ADC, the microcontroller can use

those digital values any way you like!

Potentiometers

A potentiometer is a small variable resistor that you can twist a knob or shaft to

change its resistance. It has three pins. By twisting the knob on the potentiometer you

can change the resistance of the middle pin (called the wiper) to be anywhere within

the range of resistance of the potentiometer.

By wiring the potentiometer to your board in a special way (called a voltage divider)

you can turn the change in resistance into a change in voltage that your board’s

analog to digital converter can read.

©Adafruit Industries Page 114 of 162

To wire up a potentiometer as a voltage divider:

Connect one outside pin to ground

Connect the other outside pin to voltage in

(e.g. 3.3V)

Connect the middle pin to an analog pin

(e.g. A0)

Hardware

In addition to your microcontroller board, you will need the following hardware to

follow along with this example.

Potentiometer

©Adafruit Industries Page 115 of 162

https://learn.adafruit.com//assets/102481
https://learn.adafruit.com//assets/102481

STEMMA Wired Potentiometer Breakout

Board - 10K ohm Linear

For the easiest way possible to measure

twists, turn to this STEMMA potentiometer

breakout (ha!). This plug-n-play pot comes

with a JST-PH 2mm connector and a

matching

https://www.adafruit.com/product/4493

Wire Up the Potentiometer

Connect the potentiometer to your board as follows.

Pot ground to board GND (black wire)

Pot wiper to board pin A0 (white wire)

Pot VIN to board 3.3V (red wire)

Reading Analog Pin Values

CircuitPython makes it easy to read analog pin values. Simply import two modules, set

up the pin, and then print the value inside a loop.

You'll need to connect to the serial console () to see the values printed out.

In the example below, click the Download Project Bundle button below to download

the necessary libraries and the code.py file in a zip file. Extract the contents of the zip

file, open the directory CircuitPython_Templates/analog_pin_values/ and then click

on the directory that matches the version of CircuitPython you're using and copy the

contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

©Adafruit Industries Page 116 of 162

https://www.adafruit.com/product/4493
https://www.adafruit.com/product/4493
https://www.adafruit.com/product/4493
https://learn.adafruit.com//assets/119368
https://learn.adafruit.com//assets/119368
https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: MIT

"""CircuitPython analog pin value example"""

import time

import board

import analogio

analog_pin = analogio.AnalogIn(board.A0)

while True:

 print(analog_pin.value)

 time.sleep(0.1)

Now, rotate the potentiometer to see the values change.

What do these values mean? In CircuitPython ADC values are put into the range of 16-

bit unsigned values. This means the possible values you’ll read from the ADC fall

within the range of 0 to 65535 (or 2^16 - 1). When you twist the potentiometer knob to

be near ground, or as far to the left as possible, you see a value close to zero. When

you twist it as far to the right as possible, near 3.3 volts, you see a value close to

65535. You’re seeing almost the full range of 16-bit values!

The code is simple. You begin by importing three modules: time , board and analo

gio . All three modules are built into CircuitPython, so you don't need to download

anything to get started.

©Adafruit Industries Page 117 of 162

Then, you set up the analog pin by creating an analogio.AnalogIn() object,

providing it the desired pin using the board module, and saving it to the variable

analog_pin .

Finally, in the loop, you print out the analog value with analog_pin.value , including

a time.sleep() to slow down the values to a human-readable rate.

Reading Analog Voltage Values

These values don't necessarily equate to anything obvious. You can get an idea of the

rotation of the potentiometer based on where in the range the value falls, but not

without doing some math. Remember, you wired up the potentiometer as a voltage

divider. By adding a simple function to your code, you can get a more human-

readable value from the potentiometer.

You'll need to connect to the serial console () to see the values printed out.

In the example below, click the Download Project Bundle button below to download

the necessary libraries and the code.py file in a zip file. Extract the contents of the zip

file, open the directory CircuitPython_Templates/analog_voltage_values/ and then

click on the directory that matches the version of CircuitPython you're using and copy

the contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: MIT

"""CircuitPython analog voltage value example"""

import time

import board

import analogio

analog_pin = analogio.AnalogIn(board.A0)

def get_voltage(pin):

 return (pin.value * 3.3) / 65535

while True:

©Adafruit Industries Page 118 of 162

https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

 print(get_voltage(analog_pin))

 time.sleep(0.1)

Now, rotate the potentiometer to see the values change.

Now the values range from around 0 to 3.3! Note that you may not get all the way to

0 or 3.3. This is normal.

The example code begins with the same imports and pin setup.

This time, you include the get_voltage helper. This function requires that you

provide an analog pin. It then maps the raw analog values, 0 to 65535 , to the

voltage values, 0 to 3.3 . It does the math so you don't have to!

Finally, inside the loop, you provide the function with your analog_pin , and print the

resulting values.

That's all there is to reading analog voltage values using CircuitPython!

NeoPixel

Your board has a built-in RGB NeoPixel status LED. You can use CircuitPython code to

control the color and brightness of this LED. It is also used to indicate the bootloader

status and errors in your CircuitPython code.

A NeoPixel is what Adafruit calls the WS281x family of addressable RGB LEDs. It

contains three LEDs - a red one, a green one and a blue one - along side a driver chip

in a tiny package controlled by a single pin. They can be used individually (as in the

built-in LED on your board), or chained together in strips or other creative form

factors. NeoPixels do not light up on their own; they require a microcontroller. So, it's

super convenient that the NeoPixel is built in to your microcontroller board!

©Adafruit Industries Page 119 of 162

This page will cover using CircuitPython to control the status RGB NeoPixel built into

your microcontroller. You'll learn how to change the color and brightness, and how to

make a rainbow. Time to get started!

NeoPixel Location

The NeoPixel is located on the top side of the board, between the reset button and

the digital I/O pins. It is labeled NEO on the board silk.

NeoPixel Color and Brightness

To use with CircuitPython, you need to first install a few libraries, into the lib folder on

your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download

Project Bundle button below to download the necessary libraries and the code.py file

in a zip file. Extract the contents of the zip file, open the directory CircuitPython_Temp

lates/status_led_one_neopixel_rgb/ and then click on the directory that matches the

version of CircuitPython you're using and copy the contents of that directory to your C

IRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

©Adafruit Industries Page 120 of 162

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: MIT

"""CircuitPython status NeoPixel red, green, blue example."""

import time

import board

import neopixel

pixel = neopixel.NeoPixel(board.NEOPIXEL, 1)

pixel.brightness = 0.3

while True:

 pixel.fill((255, 0, 0))

 time.sleep(0.5)

 pixel.fill((0, 255, 0))

 time.sleep(0.5)

 pixel.fill((0, 0, 255))

 time.sleep(0.5)

The built-in NeoPixel begins blinking red, then green, then blue, and repeats!

First you import two modules, time and board , and one library, neopixel . This

makes these modules and libraries available for use in your code. The first two are

modules built-in to CircuitPython, so you don't need to download anything to use

©Adafruit Industries Page 121 of 162

those. The neopixel library is separate, which is why you needed to install it before

getting started.

Next, you set up the NeoPixel LED. To interact with hardware in CircuitPython, your

code must let the board know where to look for the hardware and what to do with it.

So, you create a neopixel.NeoPixel() object, provide it the NeoPixel LED pin

using the board module, and tell it the number of LEDs. You save this object to the

variable pixel .

Then, you set the NeoPixel brightness using the brightness attribute. brightness

expects float between 0 and 1.0 . A float is essentially a number with a decimal in it.

The brightness value represents a percentage of maximum brightness; 0 is 0% and

1.0 is 100%. Therefore, setting pixel.brightness = 0.3 sets the brightness to

30%. The default brightness, which is to say the brightness if you don't explicitly set it,

is 1.0 . The default is really bright! That is why there is an option available to easily

change the brightness.

Inside the loop, you turn the NeoPixel red for 0.5 seconds, green for 0.5 seconds, and

blue for 0.5 seconds.

To turn the NeoPixel red, you "fill" it with an RGB value. Check out the section below

for details on RGB colors. The RGB value for red is (255, 0, 0) . Note that the RGB

value includes the parentheses. The fill() attribute expects the full RGB value

including those parentheses. That is why there are two pairs of parentheses in the

code.

You can change the RGB values to change the colors that the NeoPixel cycles

through. Check out the list below for some examples. You can make any color of the

rainbow with the right RGB value combination!

That's all there is to changing the color and setting the brightness of the built-in

NeoPixel LED!

RGB LED Colors

RGB LED colors are set using a combination of red, green, and blue, in the form of an

(R, G, B) tuple. Each member of the tuple is set to a number between 0 and 255 that

determines the amount of each color present. Red, green and blue in different

combinations can create all the colors in the rainbow! So, for example, to set an LED

to red, the tuple would be (255, 0, 0) , which has the maximum level of red, and

no green or blue. Green would be (0, 255, 0) , etc. For the colors between, you

©Adafruit Industries Page 122 of 162

set a combination, such as cyan which is (0, 255, 255) , with equal amounts of

green and blue. If you increase all values to the same level, you get white! If you

decrease all the values to 0, you turn the LED off.

Common colors include:

red: (255, 0, 0)

green: (0, 255, 0)

blue: (0, 0, 255)

cyan: (0, 255, 255)

purple: (255, 0, 255)

yellow: (255, 255, 0)

white: (255, 255, 255)

black (off): (0, 0, 0)

NeoPixel Rainbow

You should have already installed the library necessary to use the built-in NeoPixel

LED. If not, follow the steps at the beginning of the NeoPixel Color and Brightness

section to install it.

In the example below, click the Download Project Bundle button below to download

the necessary libraries and the code.py file in a zip file. Extract the contents of the zip

file, open the directory CircuitPython_Templates/status_led_one_neopixel_rainbow/

and then click on the directory that matches the version of CircuitPython you're using

and copy the contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: MIT

"""CircuitPython status NeoPixel rainbow example."""

import time

import board

from rainbowio import colorwheel

•

•

•

•

•

•

•

•

©Adafruit Industries Page 123 of 162

import neopixel

pixel = neopixel.NeoPixel(board.NEOPIXEL, 1)

pixel.brightness = 0.3

def rainbow(delay):

 for color_value in range(255):

 pixel[0] = colorwheel(color_value)

 time.sleep(delay)

while True:

 rainbow(0.02)

The NeoPixel displays a rainbow cycle!

This example builds on the previous example.

First, you import the same three modules and libraries. In addition to those, you

import colorwheel .

The NeoPixel hardware setup and brightness setting are the same.

Next, you have the rainbow() helper function. This helper displays the rainbow

cycle. It expects a delay in seconds. The higher the number of seconds provided for

delay , the slower the rainbow will cycle. The helper cycles through the values of the

color wheel to create a rainbow of colors.

Inside the loop, you call the rainbow helper with a 0.2 second delay, by including rai

nbow(0.2) .

©Adafruit Industries Page 124 of 162

That's all there is to making rainbows using the built-in NeoPixel LED!

I2C

The I2C, or inter-integrated circuit (), is a 2-wire protocol for communicating with

simple sensors and devices, which means it uses two connections, or wires, for

transmitting and receiving data. One connection is a clock, called SCL. The other is

the data line, called SDA. Each pair of clock and data pins are referred to as a bus.

Typically, there is a device that acts as a controller and sends requests to the target

devices on each bus. In this case, your microcontroller board acts as the controller,

and the sensor breakout acts as the target. Historically, the controller is referred to as

the master, and the target is referred to as the slave, so you may run into that

terminology elsewhere. The official terminology is controller and target ().

Multiple I2C devices can be connected to the same clock and data lines. Each I2C

device has an address, and as long as the addresses are different, you can connect

them at the same time. This means you can have many different sensors and devices

all connected to the same two pins.

Both I2C connections require pull-up resistors, and most Adafruit I2C sensors and

breakouts have pull-up resistors built in. If you're using one that does not, you'll need

to add your own 2.2-10kΩ pull-up resistors from SCL and SDA to 3.3V.

I2C and CircuitPython

CircuitPython supports many I2C devices, and makes it super simple to interact with

them. There are libraries available for many I2C devices in the CircuitPython Library

Bundle (). (If you don't see the sensor you're looking for, keep checking back, more

are being written all the time!)

©Adafruit Industries Page 125 of 162

https://en.wikipedia.org/wiki/I%C2%B2C
https://adafruit.com/controller-peripheral
https://circuitpython.readthedocs.io/projects/bundle/en/latest/#table-of-contents
https://circuitpython.readthedocs.io/projects/bundle/en/latest/#table-of-contents

In this section, you'll learn how to scan the I2C bus for all connected devices. Then

you'll learn how to interact with an I2C device.

Necessary Hardware

You'll need the following additional hardware to complete the examples on this page.

Adafruit MCP9808 High Accuracy I2C

Temperature Sensor Breakout

The MCP9808 digital temperature sensor

is one of the more accurate/precise we've

ever seen, with a typical accuracy of

±0.25°C over the sensor's -40°C to...

https://www.adafruit.com/product/5027

STEMMA QT / Qwiic JST SH 4-Pin Cable -

50mm Long

This 4-wire cable is 50mm / 1.9" long and

fitted with JST SH female 4-pin

connectors on both ends. Compared with

the chunkier JST PH these are 1mm pitch

instead of 2mm, but...

https://www.adafruit.com/product/4399

While the examples here will be using the Adafruit MCP9808 (), a high accuracy

temperature sensor, the overall process is the same for just about any I2C sensor or

device.

The first thing you'll want to do is get the sensor connected so your board has I2C to

talk to.

Wiring the MCP9808

The MCP9808 comes with a STEMMA QT connector, which makes wiring it up quite

simple and solder-free.

©Adafruit Industries Page 126 of 162

https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/5027

Simply connect the STEMMA QT cable

from the STEMMA QT port on your

board to the STEMMA QT port on the

MCP9808.

Find Your Sensor

The first thing you'll want to do after getting the sensor wired up, is make sure it's

wired correctly. You're going to do an I2C scan to see if the board is detected, and if it

is, print out its I2C address.

Save the following to your CIRCUITPY drive as code.py.

Click the Download Project Bundle button below to download the necessary libraries

and the code.py file in a zip file. Extract the contents of the zip file, find your

CircuitPython version, and copy the matching code.py file to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: MIT

"""CircuitPython I2C Device Address Scan"""

import time

import board

i2c = board.I2C() # uses board.SCL and board.SDA

i2c = board.STEMMA_I2C() # For using the built-in STEMMA QT connector on a

microcontroller

To create I2C bus on specific pins

import busio

i2c = busio.I2C(board.GP1, board.GP0) # Pi Pico RP2040

while not i2c.try_lock():

©Adafruit Industries Page 127 of 162

https://learn.adafruit.com//assets/119371
https://learn.adafruit.com//assets/119371

 pass

try:

 while True:

 print(

 "I2C addresses found:",

 [hex(device_address) for device_address in i2c.scan()],

)

 time.sleep(2)

finally: # unlock the i2c bus when ctrl-c'ing out of the loop

 i2c.unlock()

If you run this and it seems to hang, try manually unlocking your I2C bus by running

the following two commands from the REPL.

import board

board.I2C().unlock()

First you create the i2c object, using board.I2C() . This convenience routine

creates and saves a busio.I2C object using the default pins board.SCL and

board.SDA . If the object has already been created, then the existing object is

returned. No matter how many times you call board.I2C() , it will return the same

object. This is called a singleton.

To be able to scan it, you need to lock the I2C down so the only thing accessing it is

the code. So next you include a loop that waits until I2C is locked and then continues

on to the scan function.

Last, you have the loop that runs the actual scan, i2c_scan() . Because I2C typically

refers to addresses in hex form, the example includes this bit of code that formats the

results into hex format: [hex(device_address) for device_address in

i2c.scan()] .

Open the serial console to see the results! The code prints out an array of addresses.

You've connected the MCP9808 which has a 7-bit I2C address of 0x18. The result for

this sensor is I2C addresses found: ['0x18'] . If no addresses are returned, refer

back to the wiring diagrams to make sure you've wired up your sensor correctly.

©Adafruit Industries Page 128 of 162

I2C Sensor Data

Now you know for certain that your sensor is connected and ready to go. Time to find

out how to get the data from the sensor!

Save the following to your CIRCUITPY drive as code.py.

Click the Download Project Bundle button below to download the necessary libraries

and the code.py file in a zip file. Extract the contents of the zip file, find your

CircuitPython version, and copy the matching entire lib folder and code.py file to your

CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: MIT

"""CircuitPython I2C MCP9808 Temperature Sensor Example"""

import time

import board

import adafruit_mcp9808

i2c = board.I2C() # uses board.SCL and board.SDA

i2c = board.STEMMA_I2C() # For using the built-in STEMMA QT connector on a

microcontroller

import busio

i2c = busio.I2C(board.SCL1, board.SDA1) # For QT Py RP2040, QT Py ESP32-S2

mcp9808 = adafruit_mcp9808.MCP9808(i2c)

while True:

 temperature_celsius = mcp9808.temperature

 temperature_fahrenheit = temperature_celsius * 9 / 5 + 32

 print("Temperature: {:.2f} C {:.2f} F ".format(temperature_celsius,

temperature_fahrenheit))

 time.sleep(2)

©Adafruit Industries Page 129 of 162

This code begins the same way as the scan code, except this time, you create your

sensor object using the sensor library. You call it mcp9808 and provide it the i2c

object.

Then you have a simple loop that prints out the temperature reading using the sensor

object you created. Finally, there's a time.sleep(2) , so it only prints once every two

seconds. Connect to the serial console to see the results. Try touching the MCP9808

with your finger to see the values change!

Where's my I2C?

On many microcontrollers, you have the flexibility of using a wide range of pins for

I2C. On some types of microcontrollers, any pin can be used for I2C! Other chips

require using bitbangio, but can also use any pins for I2C. There are further

microcontrollers that may have fixed I2C pins.

Given the many different types of microcontroller boards available, it's impossible to

guarantee anything other than the labeled 'SDA' and 'SCL' pins. So, if you want some

other setup, or multiple I2C interfaces, how will you find those pins? Easy! Below is a

handy script.

Save the following to your CIRCUITPY drive as code.py.

Click the Download Project Bundle button below to download the necessary libraries

and the code.py file in a zip file. Extract the contents of the zip file, find your

CircuitPython version, and copy the matching code.py file to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: MIT

"""CircuitPython I2C possible pin-pair identifying script"""

import board

import busio

from microcontroller import Pin

def is_hardware_i2c(scl, sda):

©Adafruit Industries Page 130 of 162

 try:

 p = busio.I2C(scl, sda)

 p.deinit()

 return True

 except ValueError:

 return False

 except RuntimeError:

 return True

def get_unique_pins():

 exclude = [

 getattr(board, p)

 for p in [

 # This is not an exhaustive list of unexposed pins. Your results

 # may include other pins that you cannot easily connect to.

 "NEOPIXEL",

 "DOTSTAR_CLOCK",

 "DOTSTAR_DATA",

 "APA102_SCK",

 "APA102_MOSI",

 "LED",

 "SWITCH",

 "BUTTON",

 "ACCELEROMETER_INTERRUPT",

 "VOLTAGE_MONITOR",

 "MICROPHONE_CLOCK",

 "MICROPHONE_DATA",

]

 if p in dir(board)

]

 pins = [

 pin

 for pin in [getattr(board, p) for p in dir(board)]

 if isinstance(pin, Pin) and pin not in exclude

]

 unique = []

 for p in pins:

 if p not in unique:

 unique.append(p)

 return unique

for scl_pin in get_unique_pins():

 for sda_pin in get_unique_pins():

 if scl_pin is sda_pin:

 continue

 if is_hardware_i2c(scl_pin, sda_pin):

 print("SCL pin:", scl_pin, "\t SDA pin:", sda_pin)

Now, connect to the serial console and check out the output! The results print out a

nice handy list of SCL and SDA pin pairs that support I2C.

The output for the Metro M7 is extremely long! The screenshot shows only the

beginning. Run the script yourself to see the full output!

©Adafruit Industries Page 131 of 162

PWM Audio

CircuitPython comes with audiopwmio , which provides built-in audio output support

using pulse width modulation (PWM).

PWM converts the audio signal to a series of rectangular waveforms, or frequencies.

By varying the PWM frequency, you can generate tones and play, pause and resume

audio files. The faster your microcontroller is, the better sound quality you'll be able

to achieve with PWM audio.

audiopwmio Documentation

Necessary Hardware

You'll need the following additional hardware to complete the examples on this page.

Adafruit STEMMA Speaker - Plug and Play

Audio Amplifier

Hey, have you heard the good news? With

Adafruit STEMMA boards you can easily

and safely plug sensors and devices

together, like this Adafruit STEMMA

Speaker - Plug and Play...

https://www.adafruit.com/product/3885

This example only runs once, so if you do not see any output when you connect

to the serial console, try CTRL+D to reload.

©Adafruit Industries Page 132 of 162

https://docs.circuitpython.org/en/latest/shared-bindings/audiopwmio/index.html
https://www.adafruit.com/product/3885
https://www.adafruit.com/product/3885
https://www.adafruit.com/product/3885

STEMMA JST PH 2mm 3-Pin to Male

Header Cable - 200mm

This cable will let you turn a JST PH 3-pin

cable port into 3 individual wires with

high-quality 0.1" male header plugs on the

end. We're carrying these to match up

with our...

https://www.adafruit.com/product/3893

Wiring the STEMMA Speaker

Connect the STEMMA Speaker to your microcontroller as follows.

STEMMA Speaker SIG to Metro pin A1

(white wire)

STEMMA Speaker GND to Metro GND

(black wire)

Speaker Speaker VIN to Metro 3.3V (red

wire)

PWM Tone Playback

The first example generates one period of a sine wave and then loops it to generate a

tone. You can change the volume and the frequency (in Hz) of the tone by changing

the associated variables. Inside the loop, you play the tone for one second and stop it

for one second.

Update your code.py to the following.

Click the Download Project Bundle button below to download the necessary libraries

and the code.py file in a zip file. Extract the contents of the zip file, open the folder

that matches your CircuitPython version, and copy the code.py file to your CIRCUITPY

drive.

©Adafruit Industries Page 133 of 162

https://www.adafruit.com/product/3893
https://www.adafruit.com/product/3893
https://www.adafruit.com/product/3893
https://learn.adafruit.com//assets/119947
https://learn.adafruit.com//assets/119947

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""

CircuitPython PWM Audio Out tone example

Plays a tone for one second on, one

second off, in a loop.

"""

import time

import array

import math

import board

from audiocore import RawSample

from audiopwmio import PWMAudioOut as AudioOut

audio = AudioOut(board.A1)

tone_volume = 0.1 # Increase this to increase the volume of the tone.

frequency = 440 # Set this to the Hz of the tone you want to generate.

length = 8000 // frequency

sine_wave = array.array("H", [0] * length)

for i in range(length):

 sine_wave[i] = int((1 + math.sin(math.pi * 2 * i / length)) * tone_volume * (2

** 15 - 1))

sine_wave_sample = RawSample(sine_wave)

while True:

 audio.play(sine_wave_sample, loop=True)

 time.sleep(1)

 audio.stop()

 time.sleep(1)

Now you'll hear one second of a 440Hz tone, and one second of silence.

You can try changing the 440 Hz of the tone to produce a tone of a different pitch.

Try changing the number of seconds in time.sleep() to produce longer or shorter

tones.

PWM WAV File Playback

The second example plays a WAV file. You open the file in a readable format. Then,

you play the file and, once finished, print Done playing! to the serial console. You

can use any supported wave file ().

Update your code.py to the following.

Click the Download Project Bundle button below to download the necessary libraries

and the code.py file in a zip file. Extract the contents of the zip file, open the folder

that matches your CircuitPython version, and copy the StreetChicken.wav file and the

code.py file to your CIRCUITPY drive.

©Adafruit Industries Page 134 of 162

https://learn.adafruit.com/circuitpython-essentials/circuitpython-audio-out#play-a-wave-file

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""

CircuitPython PWM Audio Out WAV example

Play a WAV file once.

"""

import board

from audiocore import WaveFile

from audiopwmio import PWMAudioOut as AudioOut

audio = AudioOut(board.A1)

with open("StreetChicken.wav", "rb") as wave_file:

 wave = WaveFile(wave_file)

 print("Playing wav file!")

 audio.play(wave)

 while audio.playing:

 pass

print("Done!")

Now you'll hear the wave file play, and on completion, print Done Playing! to the

serial console.

You can play a different WAV file by updating "StreetChicken.wav" to be the name

of your CircuitPython-compatible WAV file.

You can do other things while the WAV file plays! There is a pass in this example

where you can include other code, such as code to blink an LED.

I2S Audio

I2S, or Inter-IC Sound, is a standard for transmitting digital audio data. It requires at

least three connections. The first connection is a clock, called bit clock (BCLK, or

sometimes written as serial clock or SCK). The second connection, which determines

the channel (left or right) being sent, is called word select (WS). When stereo data is

sent, WS is toggled so that the left and right channels are sent alternately, one data

word at a time. The third connection, which transmits the data, is called serial data (S

D).

Typically, there is a transmitter device which generates the bit clock, word select

signal, and the data, and sends them to a receiver device. In this case, your

microcontroller acts as the transmitter, and an I2S breakout acts as the receiver. The

MAX98357A () is an example of an I2S class D amplifier that allows you to connect

directly to a speaker such as this one ().

©Adafruit Industries Page 135 of 162

https://www.adafruit.com/product/3006
https://www.adafruit.com/product/4445

I2S and CircuitPython

CircuitPython supports sending I2S audio signals using the audiobusio module,

making it simple to use the I2S interface with your microcontroller.

In this section, you'll learn how to use CircuitPython to play different types of audio

using I2S, including tones and WAV files.

Necessary Hardware

You'll need the following additional hardware to complete the examples on this page.

Adafruit I2S 3W Class D Amplifier

Breakout - MAX98357A

Listen to this good news - we now have

an all in one digital audio amp breakout

board that works incredibly well with the

https://www.adafruit.com/product/3006

Mono Enclosed Speaker with Plain Wires -

3W 4 Ohm

Listen up! This single 2.8" x 1.2"

speaker is the perfect addition to any

audio project where you need 4 ohm

impedance and 3W or less of power. We...

https://www.adafruit.com/product/4445

©Adafruit Industries Page 136 of 162

https://www.adafruit.com/product/3006
https://www.adafruit.com/product/3006
https://www.adafruit.com/product/3006
https://www.adafruit.com/product/4445
https://www.adafruit.com/product/4445
https://www.adafruit.com/product/4445

Premium Male/Male Jumper Wires - 20 x

6" (150mm)

These Male/Male Jumper Wires are handy

for making wire harnesses or jumpering

between headers on PCB's. These

premium jumper wires are 6" (150mm)

long and come in a...

https://www.adafruit.com/product/1957

Wiring the MAX98357A

Connect the MAX98357A breakout to your microcontroller as follows.

MAX98357A LRC to Metro pin D9

MAX98357A BCLK to Metro pin D10

MAX98357A DIN to Metro pin D12

MAX98357A GND to Metro GND

MAX98357A Vin to Metro 3.3V

Speaker GND to MAX98357A speaker -

input

Speaker positive to MAX98357A speaker +

input

I2S Tone Playback

The first example generates one period of a sine wave and then loops it to generate a

tone. You can change the volume and the frequency (in Hz) of the tone by changing

the associated variables. Inside the loop, you play the tone for one second and stop it

for one second.

Update your code.py to the following.

Click the Download Project Bundle button below to download the necessary libraries

and the code.py file in a zip file. Extract the contents of the zip file, open the folder

that matches your CircuitPython version, and copy the code.py file to your CIRCUITPY

drive.

©Adafruit Industries Page 137 of 162

https://www.adafruit.com/product/1957
https://www.adafruit.com/product/1957
https://www.adafruit.com/product/1957
https://learn.adafruit.com//assets/119921
https://learn.adafruit.com//assets/119921

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: MIT

"""

CircuitPython I2S Tone playback example.

Plays a tone for one second on, one

second off, in a loop.

"""

import time

import array

import math

import audiocore

import board

import audiobusio

audio = audiobusio.I2SOut(board.D10, board.D9, board.D12)

tone_volume = 0.1 # Increase this to increase the volume of the tone.

frequency = 440 # Set this to the Hz of the tone you want to generate.

length = 8000 // frequency

sine_wave = array.array("h", [0] * length)

for i in range(length):

 sine_wave[i] = int((math.sin(math.pi * 2 * i / length)) * tone_volume * (2 ** 15

- 1))

sine_wave_sample = audiocore.RawSample(sine_wave)

while True:

 audio.play(sine_wave_sample, loop=True)

 time.sleep(1)

 audio.stop()

 time.sleep(1)

Now you'll hear one second of a 440Hz tone, and one second of silence.

You can try changing the 440 Hz of the tone to produce a tone of a different pitch.

Try changing the number of seconds in time.sleep() to produce longer or shorter

tones.

I2S WAV File Playback

The second example plays a WAV file. You open the file in a readable format. Then,

you play the file and, once finished, print Done playing! to the serial console. You

can use any supported wave file ().

Update your code.py to the following.

Click the Download Project Bundle button below to download the necessary libraries

and the code.py file in a zip file. Extract the contents of the zip file, open the folder

that matches your CircuitPython version, and copy the StreetChicken.wav file and the

code.py file to your CIRCUITPY drive.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: MIT

"""

©Adafruit Industries Page 138 of 162

https://learn.adafruit.com/circuitpython-essentials/circuitpython-audio-out#play-a-wave-file

CircuitPython I2S WAV file playback.

Plays a WAV file once.

"""

import audiocore

import board

import audiobusio

audio = audiobusio.I2SOut(board.D10, board.D9, board.D12)

with open("StreetChicken.wav", "rb") as wave_file:

 wav = audiocore.WaveFile(wave_file)

 print("Playing wav file!")

 audio.play(wav)

 while audio.playing:

 pass

print("Done!")

Now you'll hear the wave file play, and on completion, print Done Playing! to the

serial console.

You can play a different WAV file by updating "StreetChicken.wav" to be the name

of your CircuitPython-compatible WAV file.

You can do other things while the WAV file plays! There is a pass in this example

where you can include other code, such as code to blink an LED.

CircuitPython I2S-Compatible Pin Combinations

I2S audio is supported on specific pins. The good news is, there's a simple way to find

out which pins support audio playback.

In the example below, click the Download Project Bundle button below to download

the necessary libraries and the code.py file in a zip file. Extract the contents of the zip

file, open the directory CircuitPython_Templates/i2s_find_pins/ and then click on the

directory that matches the version of CircuitPython you're using and copy the

contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

©Adafruit Industries Page 139 of 162

Then, connect to the serial console () to see a list of pins printed out. This file runs

only once, so if you do not see anything in the output, press CTRL+D to reload and

run the code again.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: MIT

"""

CircuitPython I2S Pin Combination Identification Script

"""

import board

import audiobusio

from microcontroller import Pin

def is_hardware_i2s(bit_clock, word_select, data):

 try:

 p = audiobusio.I2SOut(bit_clock, word_select, data)

 p.deinit()

 return True

 except ValueError:

 return False

def get_unique_pins():

 exclude = [

 getattr(board, p)

 for p in [

 # This is not an exhaustive list of unexposed pins. Your results

 # may include other pins that you cannot easily connect to.

 "NEOPIXEL",

 "DOTSTAR_CLOCK",

 "DOTSTAR_DATA",

 "APA102_SCK",

 "APA102_MOSI",

 "LED",

 "SWITCH",

 "BUTTON",

]

 if p in dir(board)

]

 pins = [

 pin

 for pin in [getattr(board, p) for p in dir(board)]

 if isinstance(pin, Pin) and pin not in exclude

]

 unique = []

 for p in pins:

 if p not in unique:

 unique.append(p)

 return unique

for bit_clock_pin in get_unique_pins():

 for word_select_pin in get_unique_pins():

 for data_pin in get_unique_pins():

 if bit_clock_pin is word_select_pin or bit_clock_pin is data_pin or

word_select_pin \

 is data_pin:

 continue

 if is_hardware_i2s(bit_clock_pin, word_select_pin, data_pin):

 print("Bit clock pin:", bit_clock_pin, "\t Word select pin:",

word_select_pin,

 "\t Data pin:", data_pin)

 else:

 pass

©Adafruit Industries Page 140 of 162

https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

For details about the I2S API, check out the CircuitPython docs ().

CircuitPython BLE

CircuitPython BLE UART Example

It's easy to use Adafruit AirLift ESP32 co-processor boards for Bluetooth Low Energy

(BLE) with CircuitPython. When you reset the ESP32, you can put it in WiFi mode (the

default), or in BLE mode; you cannot use both modes simultaneously.

Here's a simple example of using BLE to connect CircuitPython with the Bluefruit

Connect app. Use CircuitPython 6.0.0 or later.

Note: Don't confuse the ESP32 with the ESP32-S2, which is a different module with a

similar name. The ESP32-S2 does not support BLE.

Update the AirLift Firmware

You will need to update the AirLift's firmware to at least version 1.7.1. Previous versions

of the AirLift firmware do not support BLE.

Follow the instructions in the guide below, and come back to this page when you've

upgraded the AirLift's firmware:

Upgrading ESP32 AirLift Firmware

Install CircuitPython Libraries

First make sure you are running the latest version of Adafruit CircuitPython () for your

board.

Currently the AirLift support for CircuitPython only provides BLE peripheral

support. BLE central is under development. So you cannot connect to BLE

devices like Heart Rate monitors, etc., but you can act as a BLE peripheral

yourself.

Ensure the AirLift firmware is version 1.7.1 or higher for BLE to work.

©Adafruit Industries Page 141 of 162

https://circuitpython-jake.readthedocs.io/en/latest/shared-bindings/audiobusio/I2SOut.html
https://learn.adafruit.com/adafruit-metro-m7-with-airlift/upgrading-esp32-airlift-firmware
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython

Next you'll need to install the necessary libraries to use the hardware. Thankfully, we

can do this in one go. In the example below, click the Download Project Bundle button

below to download the necessary libraries and the code.py file in a zip file. Extract the

contents of the zip file, and copy the entire lib folder and the code.py file to your CIRC

UITPY drive.

Your CIRCUITPY/lib folder should contain the following folders and files:

/adafruit_airlift

/adafruit_ble

/adafruit_bus_device

/adafruit_esp32spi

adafruit_requests.mpy

Install the Adafruit Bluefruit LE Connect App

The Adafruit Bluefruit LE Connect iOS and Android apps allow you to connect to BLE

peripherals that provide a over-the-air "UART" service. Follow the instructions in the B

luefruit LE Connect Guide () to download and install the app on your phone or tablet.

BLE Example

For the Metro M7, comment out line 19 and uncomment line 28 so that ESP32() is

instantiated with board.TX and board.RX as tx and rx :

If you are using a Metro M4 Airlift Lite, PyPortal,

or MatrixPortal, you can use the default pin settings.

Leave this DEFAULT line uncommented.

If you are using a board with pre-defined ESP32 Pins:

esp32 = ESP32()

If you are using a Metro M7 **OR**

if you are using CircuitPython 6.0.0 or earlier,

•

•

•

•

•

©Adafruit Industries Page 142 of 162

https://learn.adafruit.com/bluefruit-le-connect/
https://learn.adafruit.com/bluefruit-le-connect/

on PyPortal and PyPortal Titano only, use the pin settings

below. Comment out the DEFAULT line above and uncomment

the line below. For CircuitPython 6.1.0, the pin names

have changed for these boards, and the DEFAULT line

above is correct.

esp32 = ESP32(tx=board.TX, rx=board.RX)

SPDX-FileCopyrightText: 2020 Dan Halbert, written for Adafruit Industries

#

SPDX-License-Identifier: Unlicense

pylint: disable=unused-import

import board

import busio

from digitalio import DigitalInOut

from adafruit_ble import BLERadio

from adafruit_ble.advertising.standard import ProvideServicesAdvertisement

from adafruit_ble.services.nordic import UARTService

from adafruit_esp32spi import adafruit_esp32spi

from adafruit_airlift.esp32 import ESP32

If you are using a Metro M4 Airlift Lite, PyPortal,

or MatrixPortal, you can use the default pin settings.

Leave this DEFAULT line uncommented.

If you are using a board with pre-defined ESP32 Pins:

esp32 = ESP32()

If you are using a Metro M7 **OR**

if you are using CircuitPython 6.0.0 or earlier,

on PyPortal and PyPortal Titano only, use the pin settings

below. Comment out the DEFAULT line above and uncomment

the line below. For CircuitPython 6.1.0, the pin names

have changed for these boards, and the DEFAULT line

above is correct.

esp32 = ESP32(tx=board.TX, rx=board.RX)

If you are using an AirLift FeatherWing or AirLift Bitsy Add-On,

use the pin settings below. Comment out the DEFAULT line above

and uncomment the lines below.

If you are using an AirLift Breakout, check that these

choices match the wiring to your microcontroller board,

or change them as appropriate.

esp32 = ESP32(

reset=board.D12,

gpio0=board.D10,

busy=board.D11,

chip_select=board.D13,

tx=board.TX,

rx=board.RX,

)

If you are using an AirLift Shield,

use the pin settings below. Comment out the DEFAULT line above

and uncomment the lines below.

esp32 = ESP32(

reset=board.D5,

gpio0=board.D6,

busy=board.D7,

chip_select=board.D10,

tx=board.TX,

rx=board.RX,

)

TAKE NOTE: Adjust the program as needed to suit the AirLift board you have.

Comment and uncomment lines 19-55 below as necessary.

©Adafruit Industries Page 143 of 162

adapter = esp32.start_bluetooth()

ble = BLERadio(adapter)

uart = UARTService()

advertisement = ProvideServicesAdvertisement(uart)

while True:

 ble.start_advertising(advertisement)

 print("waiting to connect")

 while not ble.connected:

 pass

 print("connected: trying to read input")

 while ble.connected:

 # Returns b'' if nothing was read.

 one_byte = uart.read(1)

 if one_byte:

 print(one_byte)

 uart.write(one_byte)

Talk to the AirLift via the Bluefruit LE Connect App

Start the Bluefruit LE Connect App on your phone or tablet. You should see a

CIRCUITPY device available to connect to. Tap the Connect button (1):

©Adafruit Industries Page 144 of 162

You'll then see a list of Bluefruit Connect functions ("modules"). Choose the UART

module (2):

©Adafruit Industries Page 145 of 162

On the UART module page, you can type a string and press Send (3). You'll see that

string entered, and then see it echoed back (echoing is in gray).

©Adafruit Industries Page 146 of 162

Create Your settings.toml File

If you've worked on WiFi projects with CircuitPython before, you're probably familiar

with the secrets.py file. This file is a Python file that is stored on your CIRCUITPY drive

that contains all of your secret WiFi information, such as your SSID, SSID password

and any API keys for IoT services.

As of CircuitPython 8 (), there is support for a settings.toml file. Similar to secrets.py,

the settings.toml file separates your sensitive information from your main code.py file.

Your settings.toml file should be stored in the main directory of your CIRCUITPY

drive. It should not be in a folder.

©Adafruit Industries Page 147 of 162

https://circuitpython.org/downloads

settings.toml File Example

Here is an example on how to format your settings.toml file.

Comments are supported

CIRCUITPY_WIFI_SSID="guest wifi"

CIRCUITPY_WIFI_PASSWORD="guessable"

CIRCUITPY_WEB_API_PORT=80

CIRCUITPY_WEB_API_PASSWORD="passw0rd"

test_variable="this is a test"

thumbs_up="\U0001f44d"

In a settings.toml file, it's important to keep these factors in mind:

Strings are wrapped in double quotes; ex: "your-string-here"

Integers are not quoted and may be written in decimal with optional sign (+1 , -

1 , 1000) or hexadecimal (0xabcd).

Floats, octal (0o567) and binary (0b11011) are not supported.

Use \u escapes for weird characters, \x and \ooo escapes are not available

in .toml files

Example: \U0001f44d for (thumbs up emoji) and \u20ac for € (EUR

sign)

Unicode emoji, and non-ASCII characters, stand for themselves as long as you're

careful to save in "UTF-8 without BOM" format

When your settings.toml file is ready, you

can save it in your text editor with the

.toml extension.

•

•

◦

•

◦

•

©Adafruit Industries Page 148 of 162

https://learn.adafruit.com//assets/117071
https://learn.adafruit.com//assets/117071

Accessing Your settings.toml Information in code.py

In your code.py file, you'll need to import the os library to access the settings.toml

file. Your settings are accessed with the os.getenv() function. You'll pass your

settings entry to the function to import it into the code.py file.

import os

print(os.getenv("test_variable"))

In the upcoming CircuitPython WiFi examples, you'll see how the settings.toml file is

used for connecting to your SSID and accessing your API keys.

CircuitPython WiFi

It's easy to use the Adafruit AirLift breakout with CircuitPython and the Adafruit

CircuitPython ESP32SPI () module. This module allows you to easily add WiFi to your

project.

CircuitPython Microcontroller Pinout

The ESP32's pins on the Metro M7 are as follows:

esp32_cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

The ESP32SPI library requires a microcontroller with ~128KB of RAM or more.

The SAMD21 will not work.

©Adafruit Industries Page 149 of 162

https://github.com/adafruit/Adafruit_CircuitPython_ESP32SPI
https://github.com/adafruit/Adafruit_CircuitPython_ESP32SPI

CircuitPython Setup

First make sure you are running the latest version of Adafruit CircuitPython () for your

board.

Next you'll need to install the necessary libraries to use the hardware. Thankfully, we

can do this in one go. In the example below, click the Download Project Bundle button

below to download the necessary libraries and the code.py file in a zip file. Extract the

contents of the zip file, and copy the entire lib folder and the code.py file to your CIRC

UITPY drive.

Your CIRCUITPY/lib folder should contain the following folders and files:

/adafruit_bus_device

/adafruit_esp32spi

adafruit_requests.mpy

CircuitPython Usage

Copy the following code to your code.py file on your microcontroller:

SPDX-FileCopyrightText: 2019 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

import os

import board

import busio

from digitalio import DigitalInOut

import adafruit_requests as requests

import adafruit_esp32spi.adafruit_esp32spi_socket as socket

from adafruit_esp32spi import adafruit_esp32spi

print("ESP32 SPI webclient test")

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"

JSON_URL = "http://api.coindesk.com/v1/bpi/currentprice/USD.json"

If you are using a board with pre-defined ESP32 Pins:

•

•

•

©Adafruit Industries Page 150 of 162

https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython

esp32_cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

requests.set_socket(socket, esp)

if esp.status == adafruit_esp32spi.WL_IDLE_STATUS:

 print("ESP32 found and in idle mode")

print("Firmware vers.", esp.firmware_version)

print("MAC addr:", [hex(i) for i in esp.MAC_address])

for ap in esp.scan_networks():

 print("\t%s\t\tRSSI: %d" % (str(ap["ssid"], "utf-8"), ap["rssi"]))

print("Connecting to AP...")

while not esp.is_connected:

 try:

 esp.connect_AP(os.getenv('CIRCUITPY_WIFI_SSID'),

os.getenv('CIRCUITPY_WIFI_PASSWORD'))

 except OSError as e:

 print("could not connect to AP, retrying: ", e)

 continue

print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

print("My IP address is", esp.pretty_ip(esp.ip_address))

print(

 "IP lookup adafruit.com: %s" %

esp.pretty_ip(esp.get_host_by_name("adafruit.com"))

)

print("Ping google.com: %d ms" % esp.ping("google.com"))

esp._debug = True

print("Fetching text from", TEXT_URL)

r = requests.get(TEXT_URL)

print("-" * 40)

print(r.text)

print("-" * 40)

r.close()

print()

print("Fetching json from", JSON_URL)

r = requests.get(JSON_URL)

print("-" * 40)

print(r.json())

print("-" * 40)

r.close()

print("Done!")

Connect to the serial console () to see the output. It should look something like the

following:

©Adafruit Industries Page 151 of 162

https://learn.adafruit.com/welcome-to-circuitpython/interacting-with-the-serial-console

Make sure you see the same output! If you don't, check your wiring. Note that we've

changed the pinout in the code example above to reflect the CircuitPython

Microcontroller Pinout at the top of this page.

Once you've succeeded, continue onto the next page!

Installing the Bootloader

The i.MX RT has built-in bootloader in ROM that implements the NXP Serial Download

Protocol (SDP), which can be used to load & execute TinyUF2 to SRAM

with spdhost tool via USB.

The built-in ROM bootloader is unerasable, which means your board is never 'bricked'

- it can always be restored to factory firmware! We don't use the ROM bootloader for

general purpose code upload because it's not as easy to use as TinyUF2 which allows

drag-and-dropping of firmware UF2 files. However, if you ever have to factory-reset

the board, or if you are developing with NXP software that expects to talk directly to

the ROM bootloader, this page is for you!

If you can read the Firmware and MAC address but fails on scanning SSIDs,

check your power supply, you may be running out of juice to the ESP32 and it's

resetting

©Adafruit Industries Page 152 of 162

Step 1. Install SPSDK to get the sdphost tool

Install the NXP SPSDK with pip install spsdk . More details are described in the S

PSDK Installation Guide (). If you are running Linux, make sure your user has

permission for accessing hidraw .

Power up your board with the Boot Mode

switch set to BOOT_MODE[1:0]=01 to

enter Serial Download mode. That means

the Boot Select B0 switch is 'on' (next to

the ON text) Boot Select B1 switch is 'off'

(not next to the ON text).

Note that the Serial Download mode will automatically run with blank flash, so if you

have a fresh QSPI flash chip, the boot select switch doesn't matter

tinyuf2-metro_m7_1011.bin

Download the tinyuf2-metro_m7_1011.bin binary firmware file and place it into the

directory you are running python3 from, then run:

sdphost -v -u 0x1fc9,0x0145 -- write-file 0x20206400 tinyuf2-

metro_m7_1011.bin

sdphost -u 0x1fc9,0x0145 jump-address 0x20207000

To upload the binary file to RAM memory and then jump to the main() function

(which is not at the exact same address!) which will burn the bootloader to FLASH.

©Adafruit Industries Page 153 of 162

https://spsdk.readthedocs.io/en/latest/usage/installation.html
https://spsdk.readthedocs.io/en/latest/usage/installation.html
https://learn.adafruit.com//assets/119442
https://learn.adafruit.com//assets/119442
https://cdn-learn.adafruit.com/assets/assets/000/118/080/original/tinyuf2-metro_m7_1011.bin?1675442427

Now change both Boot Mode switches

to BOOT_MODE[1:0]=10 to leave the ROM

bootloader mode. That means the Boot

Select B0 switch is 'off' (not next to the ON

text) Boot Select B1 switch is 'on' (next to

the ON text).

Upgrading ESP32 AirLift Firmware

Upload Passthrough Code

First, you'll need to upload the code below to allow your board to act as a

programmer for the ESP32 AirLift module.

Back up any code and files on your CIRCUITPY drive. The code will overwrite the

drive's contents. You should not end up losing any files on the QSPI flash, but it's a

good idea to back them up anyways.

Download the UF2 file for your board and save it to your computer's Desktop.

esp32programmer-

metro_m7_1011-0.12.3.uf2

To enter bootloader mode, start with your board unplugged from USB. Next, find the

reset button on your board. It's a small, black button, and on most of the boards, it will

be the only button available.

©Adafruit Industries Page 154 of 162

https://learn.adafruit.com//assets/119444
https://learn.adafruit.com//assets/119444
https://cdn-learn.adafruit.com/assets/assets/000/119/397/original/esp32programmer-metro_m7_1011-0.12.3.uf2?1678719595

Tap this button twice to enter the bootloader. If it doesn't work on the first try, don't be

discouraged. The rhythm of the taps needs to be correct and sometimes it takes a

few tries. Once successful, the RGB LED on the board will flash red and then stay

green. A new drive will show up on your computer. The drive will be called METROM7

BOOT where METROM7 is a reference to your specific board.

For example, a Feather will have FEATHERBOOT and a Trinket will have TRINKETBOO

T etc. Going forward we'll just call the boot drive BOOT.

You will see a new disk drive appear

called METROM7BOOT. The board is now

in bootloader mode.

Find the .UF2 file you downloaded and drag that file to the new drive on your

computer.

©Adafruit Industries Page 155 of 162

https://learn.adafruit.com//assets/119398
https://learn.adafruit.com//assets/119398

The board's LED should flash and the drive will disappear. Your board should re-

enumerate USB and appear as a COM or Serial port on your computer. Make a note of

the serial port by checking the Device Manager (Windows) or typing ls /dev/cu* or

 /dev/tty* (Mac or Linux) in a terminal.

Download NINA Firmware

Click the link below to download the latest version of the NINA firmware. Unzip it and

save the .bin file to your desktop.

Download the latest nina-fw .bin file

Next, you'll need to flash the firmware to your ESP32 AirLift module.

If you're using the Google Chrome browser or Microsoft Edge (version 89 or later),

you may follow the instructions below for programming using your board.

To support BLE on the ESP32 AirLift, you'll need to download NINA firmware

version 1.7.1, or later.

©Adafruit Industries Page 156 of 162

https://github.com/adafruit/nina-fw/releases/latest

For advanced users who have esptool.py installed, skip to the bottom of the page.

Upload NINA Firmware

Next, you'll need to upload the new version of NINA firmware to your ESP32 AirLift. To

do this, we'll use the web-based implementation of the flasher tool for Espressif chips,

ESPTool. You will need to be running Google Chrome or Microsoft Edge (version 89 or

later) to follow the steps below.

Safari and Firefox, etc. are not supported because we need Web Serial and only

Chrome is supporting it to the level needed. If you're using an unsupported browser,

you'll need to either switch to Google Chrome or upload NINA firmware using the

Python esptool.py program from your computer (Scroll down to Upload NINA

Firmware with esptool.py,)

On your Google Chrome browser, navigate to https://adafruit.github.io/

Adafruit_WebSerial_ESPTool/ ()

In the top-right corner, select 115200 as the baud rate and click the Connect button.

You will get a pop-up asking you to select the board's COM or Serial port.

If there are a lot of boards and ports appearing in this list and you're not sure

what to select - remove all other USB devices so only your board is attached,

that way there's no confusion over multiple ports!

Click Connect.

Please ensure you are running Google Chrome or Microsoft Edge (version 89 or

later) before following the steps below. Esptool-js is based on Web Serial API and

ONLY works for Google Chrome and Microsoft Edge, version 89 or later.

•

©Adafruit Industries Page 157 of 162

https://adafruit.github.io/Adafruit_WebSerial_ESPTool/
https://adafruit.github.io/Adafruit_WebSerial_ESPTool/

Upon success, you will see that it is

connected and will print out a unique MAC

address identifying the board.

Once you have successfully connected, a

command toolbar will appear at the top of

the screen.

Verify that the offset is 0x0 and choose

the NINA_....bin file you downloaded

above.

Click the program button to flash the

firmware to your ESP32 AirLift.

©Adafruit Industries Page 158 of 162

https://learn.adafruit.com//assets/114169
https://learn.adafruit.com//assets/114169
https://learn.adafruit.com//assets/114171
https://learn.adafruit.com//assets/114171

ESPTool will take a few minutes to write

firmware to your device. After it's

complete, the progress bar will disappear

and the console will print "To run the new

firmware,..."

Press the Reset button (or, on the RP2040

Pico, unplug your device from USB power)

to get out of the ROM bootloader.

Verify the New Firmware Version

To verify everything is working correctly, we'll load up some CircuitPython code.

If you were previously using your ESP32 project with CircuitPython, you'll need to first

reinstall CircuitPython firmware for your board. The QSPI flash should have retained

its contents. If you don't see anything on the CIRCUITPY volume, copy files from the

backup you made earlier to CIRCUITPY.

To verify the new ESP32 WiFi firmware version is correct, follow the Connect to WiFi

step in this guide () and come back here when you've successfully run the code. The

REPL output should display the firmware version you flashed.

©Adafruit Industries Page 159 of 162

https://learn.adafruit.com//assets/114172
https://learn.adafruit.com//assets/114172
https://learn.adafruit.com//assets/114173
https://learn.adafruit.com//assets/114173
https://learn.adafruit.com/adafruit-pyportal/internet-connect#connect-to-wifi-17-4
https://learn.adafruit.com/adafruit-pyportal/internet-connect#connect-to-wifi-17-4

(Advanced) Upload NINA Firmware with ESPTool.py

For advanced users who have esptool.py installed, run the following commands on

your command line:

If you're using macOS or Linux - run the following command, replacing

/dev/ttyACM0 with the serial port of your board and NINA_W102-1.6.0 with the

binary file you're flashing to the ESP32.

esptool.py --port /dev/ttyACM0 --before no_reset --baud 115200

write_flash 0 NINA_W102-1.6.0.bin

If you're using Windows - run the following command, replacing COM7 with the serial

port of your board and NINA_W102-1.6.0 with the binary file you're flashing to the

ESP32

esptool.py --port COM7 --before no_reset --baud 115200 write_flash 0

NINA_W102-1.6.0.bin

The command should detect the ESP32 and will take a minute or two to upload the

firmware.

If ESPTool doesn't detect the ESP32, make sure you've uploaded the correct .UF

2 file to the bootloader and are using the correct serial port.

Once the firmware is fully uploaded, press the Reset button (or, on the RP2040 Pico,

unplug your device from USB power) to get out of the ROM bootloader mode.

•

©Adafruit Industries Page 160 of 162

Downloads

Files

NXP i.MX1011 product page with resources ()

NXP i.MX1011 Data Sheet ()

NXP i.MX1011 Technical Reference ()

EagleCAD PCB files on GitHub ()

Fritzing object in the Adafruit Fritzing Library ()

Firmware Erase UF2 ()

Schematic and Fab Print

•

•

•

•

•

•

©Adafruit Industries Page 161 of 162

https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt1010-crossover-mcu-with-arm-cortex-m7-core:i.MX-RT1010
https://cdn-learn.adafruit.com/assets/assets/000/119/382/original/IMXRT1010CEC_Data_Sheet.pdf?1678478258
https://cdn-learn.adafruit.com/assets/assets/000/119/383/original/IMXRT1010RM_Reference_Manual.pdf?1678478276
https://github.com/adafruit/Adafruit-Metro-M7-with-AirLift-PCB
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20Metro%20M7%20iMX%20RT1011%20with%20AirLift.fzpz
https://cdn-learn.adafruit.com/assets/assets/000/119/445/original/erase_firmware-metro_m7_1011-0.13.0.uf2?1678809313

©Adafruit Industries Page 162 of 162

	Adafruit Metro M7 1011 with AirLift
	Table of Contents
	Overview
	Pinouts
	Install CircuitPython
	Installing the Mu Editor
	The CIRCUITPY Drive
	Creating and Editing Code
	Exploring Your First CircuitPython Program
	Connecting to the Serial Console
	Interacting with the Serial Console
	The REPL
	CircuitPython Libraries
	CircuitPython Documentation
	Recommended Editors
	Advanced Serial Console on Windows
	Advanced Serial Console on Mac
	Advanced Serial Console on Linux
	Frequently Asked Questions
	Troubleshooting
	Welcome to the Community!
	CircuitPython Essentials
	Blink
	Digital Input
	Analog In
	NeoPixel
	I2C
	PWM Audio
	I2S Audio
	CircuitPython BLE
	Create Your settings.toml File
	CircuitPython WiFi
	Installing the Bootloader
	Upgrading ESP32 AirLift Firmware
	Downloads

	Overview
	Pinouts
	Power
	i.MX RT1011 Processor
	ESP32 WiFi Co-Processor
	Logic Pins
	NeoPixel
	STEMMA QT
	Onboard LEDs
	Reset Button and Reset Pin
	Boot Mode Switches
	Debug Interface

	Install CircuitPython
	CircuitPython Quickstart

	Installing the Mu Editor
	Download and Install Mu
	Starting Up Mu
	Using Mu

	The CIRCUITPY Drive
	Boards Without CIRCUITPY

	Creating and Editing Code
	Creating Code
	Editing Code
	Your code changes are run as soon as the file is done saving.
	1. Use an editor that writes out the file completely when you save it.
	2. Eject or Sync the Drive After Writing

	Oh No I Did Something Wrong and Now The CIRCUITPY Drive Doesn't Show Up!!!
	Back to Editing Code...

	Naming Your Program File
	Exploring Your First CircuitPython Program
	Imports & Libraries
	Setting Up The LED
	Loop-de-loops
	What Happens When My Code Finishes Running?
	What if I Don't Have the Loop?

	Connecting to the Serial Console
	Are you using Mu?
	Serial Console Issues or Delays on Linux
	Setting Permissions on Linux

	Using Something Else?
	Interacting with the Serial Console
	The REPL
	Entering the REPL
	Interacting with the REPL

	Returning to the Serial Console
	CircuitPython Libraries
	The Adafruit Learn Guide Project Bundle
	The Adafruit CircuitPython Library Bundle
	Downloading the Adafruit CircuitPython Library Bundle

	The CircuitPython Community Library Bundle
	Downloading the CircuitPython Community Library Bundle

	Understanding the Bundle
	Example Files
	Copying Libraries to Your Board

	Understanding Which Libraries to Install
	Example: ImportError Due to Missing Library
	Library Install on Non-Express Boards
	Updating CircuitPython Libraries and Examples
	CircUp CLI Tool

	CircuitPython Documentation
	CircuitPython Core Documentation
	CircuitPython Library Documentation
	Examples
	API Reference
	Other Links

	Recommended Editors
	Recommended editors
	Recommended only with particular settings or add-ons
	Editors that are NOT recommended

	Advanced Serial Console on Windows
	Windows 7 and 8.1
	What's the COM?
	Install Putty
	Advanced Serial Console on Mac
	What's the Port?
	Connect with screen

	Advanced Serial Console on Linux
	What's the Port?
	Connect with screen
	Permissions on Linux

	Frequently Asked Questions
	What are some common acronyms to know?
	Using Older Versions
	I have to continue using CircuitPython 6.x or earlier. Where can I find compatible libraries?
	Python Arithmetic
	Does CircuitPython support floating-point numbers?
	Does CircuitPython support long integers, like regular Python?
	Wireless Connectivity
	How do I connect to the Internet with CircuitPython?
	How do I do BLE (Bluetooth Low Energy) with CircuitPython?
	Are there other ways to communicate by radio with CircuitPython?
	Asyncio and Interrupts
	Is there asyncio support in CircuitPython?
	Does CircuitPython support interrupts?
	Status RGB LED
	My RGB NeoPixel/DotStar LED is blinking funny colors - what does it mean?
	Memory Issues
	What is a MemoryError?
	What do I do when I encounter a MemoryError?
	Can the order of my import statements affect memory?
	How can I create my own .mpy files?
	How do I check how much memory I have free?
	Unsupported Hardware
	Is ESP8266 or ESP32 supported in CircuitPython? Why not?
	Does Feather M0 support WINC1500?
	Can AVRs such as ATmega328 or ATmega2560 run CircuitPython?

	Troubleshooting
	Always Run the Latest Version of CircuitPython and Libraries
	I have to continue using CircuitPython 5.x or earlier. Where can I find compatible libraries?

	Bootloader (boardnameBOOT) Drive Not Present
	You may have a different board.
	MakeCode
	MacOS
	Windows 10
	Windows 7 or 8.1

	Windows Explorer Locks Up When Accessing boardnameBOOT Drive
	Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied
	CIRCUITPY Drive Does Not Appear or Disappears Quickly
	Device Errors or Problems on Windows
	Serial Console in Mu Not Displaying Anything
	code.py Restarts Constantly
	CircuitPython RGB Status Light
	CircuitPython 7.0.0 and Later
	CircuitPython 6.3.0 and earlier

	Serial console showing ValueError: Incompatible .mpy file
	CIRCUITPY Drive Issues
	Safe Mode
	Entering Safe Mode in CircuitPython 7.x and Later
	Entering Safe Mode in CircuitPython 6.x
	In Safe Mode

	To erase CIRCUITPY: storage.erase_filesystem()
	Erase CIRCUITPY Without Access to the REPL
	For the specific boards listed below:
	For SAMD21 non-Express boards that have a UF2 bootloader:
	For SAMD21 non-Express boards that do not have a UF2 bootloader:

	Running Out of File Space on SAMD21 Non-Express Boards
	Delete something!
	Use tabs
	On MacOS?
	Prevent & Remove MacOS Hidden Files
	Copy Files on MacOS Without Creating Hidden Files
	Other MacOS Space-Saving Tips

	Device Locked Up or Boot Looping
	Welcome to the Community!
	Adafruit Discord
	CircuitPython.org
	Pull Requests
	Open Issues
	Library Infrastructure Issues
	CircuitPython Localization

	Adafruit GitHub
	Adafruit Forums
	Read the Docs

	CircuitPython Essentials
	Blink
	LED Location
	Blinking an LED

	Digital Input
	LED and Button
	Controlling the LED with a Button

	Analog In
	Analog to Digital Converter (ADC)
	Potentiometers
	Hardware
	Wire Up the Potentiometer
	Reading Analog Pin Values
	Reading Analog Voltage Values

	NeoPixel
	NeoPixel Location
	NeoPixel Color and Brightness
	RGB LED Colors
	NeoPixel Rainbow

	I2C
	I2C and CircuitPython
	Necessary Hardware
	Wiring the MCP9808
	Find Your Sensor
	I2C Sensor Data
	Where's my I2C?

	PWM Audio
	Necessary Hardware
	Wiring the STEMMA Speaker
	PWM Tone Playback
	PWM WAV File Playback

	I2S Audio
	I2S and CircuitPython
	Necessary Hardware
	Wiring the MAX98357A
	I2S Tone Playback
	I2S WAV File Playback
	CircuitPython I2S-Compatible Pin Combinations

	CircuitPython BLE
	CircuitPython BLE UART Example
	Update the AirLift Firmware
	Install CircuitPython Libraries
	Install the Adafruit Bluefruit LE Connect App
	BLE Example
	Talk to the AirLift via the Bluefruit LE Connect App

	Create Your settings.toml File
	settings.toml File Example
	Accessing Your settings.toml Information in code.py

	CircuitPython WiFi
	CircuitPython Microcontroller Pinout
	CircuitPython Setup
	CircuitPython Usage

	Installing the Bootloader
	Step 1. Install SPSDK to get the sdphost tool

	Upgrading ESP32 AirLift Firmware
	Upload Passthrough Code
	Download NINA Firmware
	Upload NINA Firmware

	Verify the New Firmware Version
	(Advanced) Upload NINA Firmware with ESPTool.py

	Downloads
	Files
	Schematic and Fab Print

