
 

Adafruit PiCowbell Adalogger for Pico

Created by Liz Clark

 

https://learn.adafruit.com/adafruit-picowbell-adalogger-for-pico

Last updated on 2023-05-03 04:12:55 PM EDT

©Adafruit Industries Page 1 of 44



5

9

11

12

14

17

20

23

27

27

32

36

36

Table of Contents

Overview

Pinouts

• Power

• I2C Logic

• Duplicate GPIO Hole Pads

• microSD Card SPI

• SD Detect Jumper

• Coin Cell Battery Holder

• Reset Button

Assembly

Pico

• Assembly Steps

Stacking Headers

• Assembly Steps

Socket Headers

• Assembly Steps

Shorty Socket Headers

• Assembly Steps

RTC with CircuitPython

• CircuitPython Usage

• Code

• Setting the time

RTC Python Docs

CircuitPython Datalogging

• CircuitPython Microcontroller Wiring

• CircuitPython Usage

• Example Code

RTC with Arduino

• Talking to the RTC

• First RTC test

• Setting the time

• Reading the time

Arduino RTC Docs

Arduino Datalogging

• Wiring

• Library Installation

• Example Code

©Adafruit Industries Page 2 of 44



43Downloads

• Files

• Schematic and Fab Print

©Adafruit Industries Page 3 of 44



©Adafruit Industries Page 4 of 44



Overview 

Ding dong! Hear that? It's the PiCowbell ringing, letting you know that the new Adafrui

t PiCowbell Adalogger is in stock and ready to assist your Raspberry Pi Pico () and Pic

o W () project with handy hardware and datalogging.

The PiCowbell Adalogger is the same size and shape as a Pico and is intended to

socket underneath to make your next data logging or data reading project super easy.

Micro SD card socket? Yes! STEMMA QT / Qwiic connector for fast I2C? Indeed. Real

Time Clock with battery backup for accurate timekeeping? Of course!

 

 

©Adafruit Industries Page 5 of 44

https://www.adafruit.com/product/4864
https://www.adafruit.com/product/5526
https://www.adafruit.com/product/5526


Please Note! There are a lot of possible configurations, and we stock various headers

depending on how you want to solder and attach. Especially if you want the Pico on

top so that the BOOTSEL button and LED are accessible.

Use the Pico Stacking Headers () if you want to be able to plug into a

breadboard or other accessory with sockets.

Use the Pico Socket Headers () if you want to plug directly in and have a nice

solid connection that doesn't have any poking-out-bits.

Use the Short Socket Headers () for a very slim but pluggable design; note that

you'll want to trim down the Pico's headers or use the short plug headers on the

Pico () to have a skinny sandwich.

Solder the PCB directly to the Pico headers - of course, this is very compact and

inexpensive, but you won't be able to remove the PiCowbell.

 

1. 

2. 

3. 

4. 

©Adafruit Industries Page 6 of 44

https://www.adafruit.com/product/5582
https://www.adafruit.com/product/5583
https://www.adafruit.com/product/5585
https://www.adafruit.com/product/5584
https://www.adafruit.com/product/5584


The PiCowbell Adalogger provides you with:

Right angle JST SH connector for I2C / Stemma QT / Qwiic connection. Provides

3V, GND, IO4 (SDA), and IO5 (SCL).

MicroSD card holder for adding as much storage as you could possibly want for

reading or writing. Connected to SPI pins 16, 18, 19 and card select on 17.

Optional card detect line can be connected to pin 15.

PCF8523 Real Time Clock with CR1220 Coin cell backup for many years of

timekeeping. Set the time once using our example sketches and then you can

data-log with accurate timestamps. Uses I2C.

Reset button- Press to restart your program.

Many pads on the Adalogger have a duplicate hole pad next to it for solder-

jumpering.

The ground pads have white silkscreen rectangles to easily identify.

Gold-plated pads for easy soldering.

 

• 

• 

• 

• 

• 

• 

• 

©Adafruit Industries Page 7 of 44



If using the Philhower Arduino core, the Wire peripheral is already set up to use IO4

and IO5. If using CircuitPython or MicroPython, you'll need to let the code know to

look at 4+5 for SDA+SCL pins.

Does not come with a micro SD card () or a coin cell battery (http://adafru.it/380). A

CR1220 coin cell is required to use the RTC battery-backup capabilities! We don't

include one by default to make shipping easier for those abroad, but we do stock

them, so pick one up or use any CR1220 you have handy (http://adafru.it/380).

 

©Adafruit Industries Page 8 of 44

https://www.adafruit.com/product/1294
http://www.adafruit.com/products/380
https://www.adafruit.com/products/380
https://www.adafruit.com/products/380


Pinouts 

The default I2C address for the PCF8523 RTC module is 0x68.

Power

VB (VBUS) - This is the micro-USB input voltage, connected to the micro-USB

port on the Raspberry Pi Pico. It is nominally 5V.

VS (VSYS) - This is the main system input voltage. It can range from 1.8V to 5.5V

and is used to generate the 3.3V needed for the RP2040 and the GPIO pins.

EN (3V3_EN) - This connects to the enable pin on the Raspberry Pi Pico, and is

pulled high (to VSYS) via a 100kΩ resistor.

3V - This is the 3.3V output from the Raspberry Pi Pico. 

VR (ADC_VREF) - This is the ADC power supply and reference voltage. It is

generated on the Raspberry Pi Pico by filtering the 3.3V supply. It can be used

with an external reference when ADC performance is required.

G - This is the common ground for power and logic. All GND pins are highlighted

in white on the silk, with the exception of the ground pins on either side of the

SD card slot. They are labeled G. 

 

• 

• 

• 

• 

• 

• 

©Adafruit Industries Page 9 of 44



I2C Logic

SCL - I2C clock pin on the PiCowbell. It is connected to your microcontroller I2C

clock line, which is GPIO5 on the Pico. This connection is shared with the

STEMMA QT port on the end of the board.

SDA - I2C data pin on the PiCowbell. It is connected to your microcontroller I2C

data line, which is GPIO4 on the Pico. This connection is shared with the

STEMMA QT port on the end of the board.

STEMMA QT () - These connectors allow you to connect to dev boards with

STEMMA QT connectors or to other things with various associated

accessories (). There's one port at the end that connects to your microcontroller.

The other four connectors in two rows of two are discussed below.

Duplicate GPIO Hole Pads

The following pads on the PiCowbell Adalogger have a duplicate hole pad next to it

for solder-jumpering:

GP0-GP11, GP20-GP22, Reset, A0-A2, VR, 3V, EN, VS and VB. Ground pins that

have a duplicate hole pad are highlighted in white on the silk.

microSD Card SPI

The microSD card slot is connected to the following pins for SPI:

MI (MISO/GP16) - This is the SPI MISO (Microcontroller In / Serial Out) pin. It's

used for the SD card to send data to the microcontroller. 

SCK (GP18) - This is the SPI clock input pin. 

MO (MOSI/GP19) - This is the SPI MOSI (Microcontroller Out / Serial In) pin. It is

used to send data from the microcontroller to the SD card. 

CS (Chip Select/GP17) - This is the chip select pin for the SD card.

SD Detect Jumper

On the back of the board, directly above GP15 and to the left of the cowbell logo on

the silk, is the SD Detect jumper. The jumper is labeled SD Det on the silk.

You can solder this jumper closed to connect the optional SD card detect line to GP15.

• 

• 

• 

• 

• 

• 

• 

• 

©Adafruit Industries Page 10 of 44

https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/category/619
https://www.adafruit.com/category/619


Coin Cell Battery Holder

In the center of the PiCowbell is a holder for a CR1220 coin cell battery. Slot in a

CR1220 battery into the holder to use the PCF8523 RTC battery-backup capabilities.

CR1220 12mm Diameter - 3V Lithium Coin

Cell Battery 

These are the highest quality & capacity

batteries, the same as shipped with the

iCufflinks, iNecklace, Datalogging and

GPS Shields, GPS HAT, etc. One battery

per order...

https://www.adafruit.com/product/380 

Reset Button

In the center of the board, to the left of the coin cell battery holder, is the reset button.

It is labeled RST on the board silk. You can press it to restart your program.

Assembly 

A CR1220 coin cell is required to use the RTC battery-backup capabilities! 

 

©Adafruit Industries Page 11 of 44

https://www.adafruit.com/product/380
https://www.adafruit.com/product/380
https://www.adafruit.com/product/380


There are four ways to get your PiCowbell board working with your Pico. To keep

things flexible, PiCowbells do not come with headers: there's a lot of possible

configurations and we stock various headers depending on how you want to solder

and attach. Especially since you want the Pico on top, so that the BOOTSEL button

and LED are accessible.

The options are as follows.

Use the Pico Stacking Headers () if you want to be able to plug into a

breadboard or other accessory with sockets.

Use the Pico Socket Headers () if you want to plug directly into the Pico and

have a nice solid connection that doesn't have any poking-out-bits.

Use the Short Socket Headers () for a very slim but pluggable design, note that

you'll want to trim down the Pico's headers or use the short plug headers on the

Pico () to have a skinny sandwich.

For some PiCowbells: Solder the PiCowbell directly to the standard headers

already soldered to your Pico. Of course this is very compact and inexpensive

but you won't be able to remove the PiCowbell. However, this method is not

possible for some PiCowbell variants depending on the clearance of the

components on the PiCowbell (i.e. the PiCowbell Adalogger and its coin cell

battery holder).

The next page shows how to solder standard headers onto a Pico board. The

following four pages walk you through each type of PiCowbell assembly so you can

choose the one that will work best for you!

If you're unsure about soldering up the Pico and PiCowbell, check out our FAQ on

soldering ().

Pico 

Three out of four of the assembly methods included in this guide assume you have a

Raspberry Pi Pico soldered up with standard male headers in preparation for using it

Although these pages show the PiCowbell Proto, the soldering instructions are 

applicable for all PiCowbell boards. 

1. 

2. 

3. 

4. 

You MUST solder all of the pins for the PiCowbell to work! Soldering only a few 

pins, or not soldering at all are not sufficient! 

©Adafruit Industries Page 12 of 44

https://www.adafruit.com/product/5582
https://www.adafruit.com/product/5583
https://www.adafruit.com/product/5585
https://www.adafruit.com/product/5584
https://www.adafruit.com/product/5584
https://learn.adafruit.com/adafruit-guide-excellent-soldering/soldering-faq
https://learn.adafruit.com/adafruit-guide-excellent-soldering/soldering-faq


with the PiCowbell Proto. This page will show you how to solder a set of standard

headers to a Pico.

(The shorty header assembly method uses short male headers on the Pico. The

soldering concept is exactly the same, but use the shorty male headers on the Pico

instead of standard ones. You can follow these instructions with the shorty headers

and you'll be set for that.)

Follow the steps below to solder the standard male headers to a Pico. The process is

the same for all flavors of Pico, such as Pico W.

Assembly Steps

 

 

Use the Pico to line up the headers on a

breadboard. This is the easiest way to

ensure the headers are soldered on

straight. 

©Adafruit Industries Page 13 of 44

https://learn.adafruit.com//assets/116458
https://learn.adafruit.com//assets/116458
https://learn.adafruit.com//assets/116459
https://learn.adafruit.com//assets/116459


 

Solder the pins on each end of the two

header strips, so the four corners of the

Pico are soldered. This ensures the Pico

and headers are attached properly while

you continue to solder the rest of the pins.

 

Solder the rest of the pins.

 

Remove it from the breadboard. You're

done! 

For a bit more detail on the process of soldering standard male headers to a board,

check out the How to Solder Headers' Male Headers page ().

Stacking Headers 

The first PiCowbell assembly method uses stacking headers, which allows you to use

a breadboard with your PiCowbell-Pico sandwich. This is super helpful when you're

©Adafruit Industries Page 14 of 44

https://learn.adafruit.com//assets/116460
https://learn.adafruit.com//assets/116460
https://learn.adafruit.com//assets/116461
https://learn.adafruit.com//assets/116461
https://learn.adafruit.com//assets/116462
https://learn.adafruit.com//assets/116462
https://learn.adafruit.com/how-to-solder-headers/male-headers


still prototyping other parts of your project, or simply want jumper-wire access to the

Pico pins in addition to the PiCowbell.

This page assumes you have already soldered standard male headers to your Pico. If

you have not, please return to the Pico assembly page () and follow the steps there.

Follow the steps below to solder stacking headers to your PiCowbell.

Assembly Steps

 

Place a standard-header-soldered Pico

upside down on the table, so the long side

of the header pins are facing up. Press the

female sockets of each stacking header

onto one of the rows of standard headers

attached to the Pico, until they are fully

attached. 

 

Ensure the PiCowbell is oriented correctly

before beginning assembly. The PiCowbell

should be top-down, so that you are

looking at the bottom of the PiCowbell. 

The STEMMA QT connector should be on

the same end as the Pico USB connector,

and the reset button should be on the

opposite end with the Pico debug pins.

The PiCowbell pins must match the pinout

on the Pico.

Remember, the pins are labeled on the bottom of the Pico. In this case, that works

well because they are labeled on both sides of the PiCowbell, allowing for direct

comparison before attaching the PiCowbell to the stacking header assembly.

Although these pages show the PiCowbell Proto, the soldering instructions are 

applicable for all PiCowbell boards. 

©Adafruit Industries Page 15 of 44

https://learn.adafruit.com/picowbell-proto/pico
https://learn.adafruit.com//assets/116469
https://learn.adafruit.com//assets/116469
https://learn.adafruit.com//assets/116470
https://learn.adafruit.com//assets/116470


 

Press the PiCowbell onto the male pins

sticking up from the stacking headers. You

may need to push the stacking header

pins in or out a bit to get the PiCowbell

attached.

With the stacking header male pins

sticking up, the bottom of the PiCowbell

should be facing up as well.

 

Solder the pins on each end of each

stacking header, so that the opposite four

corners of the PiCowbell are soldered on.

 

Solder the rest of the pins onto the

PiCowbell. 

Ensure the PiCowbell is oriented properly before beginning soldering! If you 

solder it on upside down or backwards, it will not function properly! 

©Adafruit Industries Page 16 of 44

https://learn.adafruit.com//assets/116471
https://learn.adafruit.com//assets/116471
https://learn.adafruit.com//assets/116472
https://learn.adafruit.com//assets/116472
https://learn.adafruit.com//assets/116473
https://learn.adafruit.com//assets/116473


 

 

You're done! Now you can attach the

whole sandwich to a breadboard, have

access to the pins via the breadboard, and

still be able to use the PiCowbell as well.

Socket Headers 

This PiCowbell assembly method uses female socket headers on the PiCowbell to

create a standalone sandwich when attached to a Pico with standard male headers. 

This page assumes you have already soldered standard male headers to your Pico. If

you have not, please return to the Pico assembly page () and follow the steps there.

Follow the steps below to solder socket headers to your PiCowbell.

Although these pages show the PiCowbell Proto, the soldering instructions are 

applicable for all PiCowbell boards. 

©Adafruit Industries Page 17 of 44

https://learn.adafruit.com//assets/116474
https://learn.adafruit.com//assets/116474
https://learn.adafruit.com//assets/116475
https://learn.adafruit.com//assets/116475
https://learn.adafruit.com/picowbell-proto/pico


Assembly Steps

 

 

Place a standard-header-soldered Pico

upside down on the table, so the long side

of the header pins are facing up. Press the

female sockets onto one of the rows of

standard headers attached to the Pico,

until both are fully attached. 

 

Ensure the PiCowbell is oriented correctly

before beginning assembly. The PiCowbell

should be top-down, so that you are

looking at the bottom of the Cowbell. The

STEMMA QT connector should be on the

same end as the Pico USB connector, and

the reset button should be on the opposite

end with the Pico debug pins.

The PiCowbell pins must match the pinout

on the Pico.

Remember, the pins are labeled on the bottom of the Pico. In this case, that works

well because they are labeled on both sides of the PiCowbell, allowing for direct

comparison before attaching the PiCowbell to the stacking header assembly.

©Adafruit Industries Page 18 of 44

https://learn.adafruit.com//assets/116476
https://learn.adafruit.com//assets/116476
https://learn.adafruit.com//assets/116477
https://learn.adafruit.com//assets/116477
https://learn.adafruit.com//assets/116478
https://learn.adafruit.com//assets/116478


 

 

Press the PiCowbell onto the pins sticking

up from the socket headers. You may need

to push the stacking header pins in or out

a bit to get the PiCowbell attached.

 

Solder the pins on each end of each

socket header, so that the opposite four

corners of the PiCowbell are soldered on.

Ensure the PiCowbell is oriented properly before beginning soldering! If you 

solder it on upside down or backwards, it will not function properly! 

©Adafruit Industries Page 19 of 44

https://learn.adafruit.com//assets/116479
https://learn.adafruit.com//assets/116479
https://learn.adafruit.com//assets/116480
https://learn.adafruit.com//assets/116480
https://learn.adafruit.com//assets/116481
https://learn.adafruit.com//assets/116481


 

Solder the rest of the pins onto the

PiCowbell.

 

That's it, you're done! 

Shorty Socket Headers 

This PiCowbell assembly method uses shorty female socket headers on the PiCowbell

to create a standalone sandwich when attached to a Pico with shorty male headers. 

This page assumes you have already soldered shorty male headers to your Pico. If

you have not, please return to the Pico assembly page () and follow the steps there.

The page shows how to solder standard male headers to the Pico, but the concept is

identical with the shorty headers.

Follow the steps below to solder shorty socket headers to your PiCowbell.

Although these pages show the PiCowbell Proto, the soldering instructions are 

applicable for all PiCowbell boards. 

©Adafruit Industries Page 20 of 44

https://learn.adafruit.com//assets/116482
https://learn.adafruit.com//assets/116482
https://learn.adafruit.com//assets/116484
https://learn.adafruit.com//assets/116484
https://learn.adafruit.com/picowbell-proto/pico


Assembly Steps

 

Solder the short male headers () to the

Pico. See the Pico assembly page () for

instructions on soldering headers to the

Pico.

 

Place a shorty-header-soldered Pico

upside down (headers up) on the table.

Press the each of the short female sockets

onto one of the rows of short headers

attached to the Pico, until both are fully

attached.

 

Ensure the PiCowbell is oriented correctly

before beginning assembly. The PiCowbell

should be top-down, so that you are

looking at the bottom of the Cowbell. The

STEMMA QT connector should be on the

same end as the Pico USB connector, and

the reset button should be on the opposite

end with the Pico debug pins.

The PiCowbell pins must match the pinout

on the Pico.

Remember, the pins are labeled on the bottom of the Pico. In this case, that works

well because they are labeled on both sides of the PiCowbell, allowing for direct

comparison before attaching the Cowbell to the stacking header assembly.

©Adafruit Industries Page 21 of 44

https://learn.adafruit.com//assets/116597
https://learn.adafruit.com//assets/116597
https://www.adafruit.com/product/5584
https://learn.adafruit.com/picowbell-proto/pico
https://learn.adafruit.com//assets/116598
https://learn.adafruit.com//assets/116598
https://learn.adafruit.com//assets/116599
https://learn.adafruit.com//assets/116599


 

Press the PiCowbell onto the pins sticking

up from the shorty female headers. You

may need to push the shorty header pins

in or out a bit to get the PiCowbell

attached.

 

Solder the pins on each end of each

female header, so that the opposite four

corners of the PiCowbell are soldered on.

Try not to use too much solder on these

four pins! The solder can wick into the

associated female header socket, onto the

inserted male pin, and permanently attach

the two boards.

 

CAREFULLY remove the partially soldered

PiCowbell from the Pico, before continuing

to solder the rest of the PiCowbell pins.

As stated above, too much solder on the

shorty female header pins can wick into

the associated header socket, onto the

inserted male pin, and permanently attach

the two boards.

Ensure the PiCowbell is oriented properly before beginning soldering! If you 

solder it on upside down or backwards, it will not function properly! 

Do not use too much solder when tacking the four corners! It can wick into the 

female header and permanently attach the two boards! 

©Adafruit Industries Page 22 of 44

https://learn.adafruit.com//assets/116600
https://learn.adafruit.com//assets/116600
https://learn.adafruit.com//assets/116601
https://learn.adafruit.com//assets/116601
https://learn.adafruit.com//assets/116602
https://learn.adafruit.com//assets/116602


 

Solder the rest of the pins onto the

PiCowbell. Be sure to keep the shorty

female headers square while you solder

the rest of the pins.

 

Press the PiCowbell onto the Pico to

attach the two boards. Make sure you've

oriented it correctly!

The STEMMA QT connector should be on

the same end as the Pico USB connector,

and the reset button should be on the

opposite end with the Pico debug pins.

That's it! You're done!

RTC with CircuitPython 

Before using the real time clock (RTC) for the first time on the PiCowbell Adalogger,

you need to calibrate it by setting the time with the code.py file below. After setting

the time, the RTC module will use the coin cell battery to keep time even when you

unplug the PiCowbell from the Raspberry Pi Pico.

Begin by inserting a CR1220 coin cell battery into the PiCowbell Adalogger battery

holder. Then, attach the PiCowbell to a Pico or Pico W as described in the assembly

pages. ()

©Adafruit Industries Page 23 of 44

https://learn.adafruit.com//assets/116603
https://learn.adafruit.com//assets/116603
https://learn.adafruit.com//assets/116604
https://learn.adafruit.com//assets/116604
https://learn.adafruit.com/adafruit-picowbell-adalogger-for-pico/assembly
https://learn.adafruit.com/adafruit-picowbell-adalogger-for-pico/assembly


CR1220 12mm Diameter - 3V Lithium Coin

Cell Battery 

These are the highest quality & capacity

batteries, the same as shipped with the

iCufflinks, iNecklace, Datalogging and

GPS Shields, GPS HAT, etc. One battery

per order...

https://www.adafruit.com/product/380 

CircuitPython Usage

To use with CircuitPython, you need to first install the Adafruit_CircuitPython_PCF852

3 () module, and its dependencies, into the lib folder on your CIRCUITPY drive. Then

you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download

Project Bundle button below to download the necessary libraries and the code.py file

in a zip file. Extract the contents of the zip file.

Connect your Pico + PiCowbell sandwich to your computer via a known good USB

data+power cable. Your board should show up as a thumb drive named CIRCUITPY in

your File Explorer or Finder (depending on your operating system). Copy the entire lib

folder and the code.py file to your CIRCUITPY drive.

Your CIRCUITPY/lib folder should contain the following folders and files:

/adafruit_bus_device

/adafruit_register

adafruit_pcf8523.mpy

A CR1220 coin cell is required to use the RTC battery-backup capabilities! 

• 

• 

• 

©Adafruit Industries Page 24 of 44

https://www.adafruit.com/product/380
https://www.adafruit.com/product/380
https://www.adafruit.com/product/380
https://github.com/adafruit/Adafruit_CircuitPython_PCF8523
https://github.com/adafruit/Adafruit_CircuitPython_PCF8523


Code

Once everything is saved to the CIRCUITPY drive, connect to the serial console () to

see the data printed out!

# SPDX-FileCopyrightText: 2017 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

import time

import board

import busio

import adafruit_pcf8523

I2C = busio.I2C(board.GP5, board.GP4)

rtc = adafruit_pcf8523.PCF8523(I2C)

days = ("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", 

"Saturday")

set_time = False

if set_time:   # change to True if you want to write the time!

    #                     year, mon, date, hour, min, sec, wday, yday, isdst

    t = time.struct_time((2023,  3,   6,   10,  55,  00,    1,   -1,    -1))

    # you must set year, mon, date, hour, min, sec and weekday

    # yearday is not supported, isdst can be set but we don't do anything with it 

at this time

    print("Setting time to:", t)     # uncomment for debugging

    rtc.datetime = t

    print()

while True:

    t = rtc.datetime

    #print(t)     # uncomment for debugging

    print("The date is %s %d/%d/%d" % (days[t.tm_wday], t.tm_mon, t.tm_mday, 

t.tm_year))

    print("The time is %d:%02d:%02d" % (t.tm_hour, t.tm_min, t.tm_sec))

    time.sleep(1) # wait a second

Setting the time

The first time you run the program, you'll need to set the time

 

©Adafruit Industries Page 25 of 44

https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console


find these lines:

set_time = False

if set_time:   # change to True if you want to write the time!

    #                     year, mon, date, hour, min, sec, wday, yday, isdst

    t = time.struct_time((2023,  3,   6,   11,  05,  00,    1,   -1,    -1))

    # you must set year, mon, date, hour, min, sec and weekday

    # yearday is not supported, isdst can be set but we don't do anything with it 

at this time

Change the set_time  in the first line to be True :

set_time = True

and update the time.struct_time  to have the current time starting from year  to 

weekday . The last two entries can stay at -1

Re-run the sketch by saving and you'll see this out of the REPL:

Note the part where the program says it is Setting time to:

Now you can go back and change set_time  to  False :

set_time = False

and save, so you don't reset the RTC again.

The code will now output the time and date.

 

 

©Adafruit Industries Page 26 of 44



RTC Python Docs 

RTC Python Docs () 

CircuitPython Datalogging 

The following example code will show you how use the PiCowbell Adalogger with

CircuitPython to log data from a sensor to a file on an SD card with timestamps from

the RTC module. In addition to a Raspberry Pi Pico and PiCowbell Adalogger, you will

also need:

CR1220 coin cell battery

microSD card

STEMMA QT cable

MCP9808 Temperature Sensor

CR1220 12mm Diameter - 3V Lithium Coin

Cell Battery 

These are the highest quality & capacity

batteries, the same as shipped with the

iCufflinks, iNecklace, Datalogging and

GPS Shields, GPS HAT, etc. One battery

per order...

https://www.adafruit.com/product/380 

SD/MicroSD Memory Card (8 GB SDHC) 

Add mega-storage in a jiffy using this 8

GB class 4 micro-SD card. It comes with a

SD adapter so you can use it with any of

our shields or adapters. Preformatted to

FAT so it works out...

https://www.adafruit.com/product/1294 

• 

• 

• 

• 

©Adafruit Industries Page 27 of 44

https://circuitpython.readthedocs.io/projects/pcf8523/en/latest/
https://www.adafruit.com/product/380
https://www.adafruit.com/product/380
https://www.adafruit.com/product/380
https://www.adafruit.com/product/1294
https://www.adafruit.com/product/1294


STEMMA QT / Qwiic JST SH 4-Pin Cable -

50mm Long 

This 4-wire cable is 50mm / 1.9" long and

fitted with JST SH female 4-pin

connectors on both ends. Compared with

the chunkier JST PH these are 1mm pitch

instead of 2mm, but...

https://www.adafruit.com/product/4399 

Adafruit MCP9808 High Accuracy I2C

Temperature Sensor Breakout 

The MCP9808 digital temperature sensor

is one of the more accurate/precise we've

ever seen, with a typical accuracy of

±0.25°C over the sensor's -40°C to...

https://www.adafruit.com/product/5027 

CircuitPython Microcontroller Wiring

Connect the Raspberry Pi Pico and PiCowbell Adalogger as described in the

assembly pages (). Next, insert a CR1220 battery into the coin cell battery holder on

the PiCowbell Adalogger. Then, insert a microSD card into the PiCowbell Adalogger

microSD card slot.

The following example assumes that you followed along with the RTC with 

CircuitPython page in this guide to set the time on the RTC module. 

©Adafruit Industries Page 28 of 44

https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://learn.adafruit.com/adafruit-picowbell-adalogger-for-pico/assembly
https://learn.adafruit.com/adafruit-picowbell-adalogger-for-pico/assembly


 

Finally, connect the MCP9808 STEMMA

QT board to the PiCowbell Adalogger

STEMMA QT port with a STEMMA QT

cable.

CircuitPython Usage

To use with CircuitPython, you need to first install the necessary libraries into the lib

folder on your CIRCUITPY drive. Then you need to update code.py with the example

script.

Thankfully, we can do this in one go. In the example below, click the Download

Project Bundle button below to download the necessary libraries and the code.py file

in a zip file. Extract the contents of the zip file, and copy the entire lib folder and the c

ode.py file to your CIRCUITPY drive.

Your CIRCUITPY/lib folder should contain the following folders and files:

/adafruit_bus_device

/adafruit_register

adafruit_mcp9808.mpy

adafruit_pcf8523.mpy

• 

• 

• 

• 

 

©Adafruit Industries Page 29 of 44

https://learn.adafruit.com//assets/119219
https://learn.adafruit.com//assets/119219


Example Code

# SPDX-FileCopyrightText: 2023 Liz Clark for Adafruit Industries

#

# SPDX-License-Identifier: MIT

"""CircuitPython PiCowbell Adalogger Example"""

import time

import board

import sdcardio

import busio

import storage

import adafruit_mcp9808

import adafruit_pcf8523

#  setup for Pico I2C

i2c = busio.I2C(board.GP5, board.GP4)

# setup for mcp9808 temp monitor

mcp9808 = adafruit_mcp9808.MCP9808(i2c)

# setup for RTC

rtc = adafruit_pcf8523.PCF8523(i2c)

#  list of days to print to the text file on boot

days = ("Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", 

"Sunday")

# SPI SD_CS pin

SD_CS = board.GP17

#  SPI setup for SD card

spi = busio.SPI(board.GP18, board.GP19, board.GP16)

sdcard = sdcardio.SDCard(spi, SD_CS)

vfs = storage.VfsFat(sdcard)

try:

    storage.mount(vfs, "/sd")

    print("sd card mounted")

except ValueError:

    print("no SD card")

#  to update the RTC, change set_clock to True

#  otherwise RTC will remain set

#  it should only be needed after the initial set

#  if you've removed the coincell battery

set_clock = False

if set_clock:

    #                     year, mon, date, hour, min, sec, wday, yday, isdst

    t = time.struct_time((2023,  3,   6,   00,  00,  00,    0,   -1,    -1))

    print("Setting time to:", t)

    rtc.datetime = t

    print()

#  variable to hold RTC datetime

t = rtc.datetime

time.sleep(1)

def get_temp(sensor):

    temperature_celsius = sensor

    temperature_fahrenheit = temperature_celsius * 9 / 5 + 32

    return temperature_fahrenheit

#  initial write to the SD card on startup

try:

    with open("/sd/temp.txt", "a") as f:

        #  writes the date

©Adafruit Industries Page 30 of 44



        f.write('The date is {} {}/{}/{}\n'.format(days[t.tm_wday], t.tm_mon, 

t.tm_mday, t.tm_year))

        #  writes the start time

        f.write('Start time: {}:{}:{}\n'.format(t.tm_hour, t.tm_min, t.tm_sec))

        #  headers for data, comma-delimited

        f.write('Temp,Time\n')

        #  debug statement for REPL

        print("initial write to SD card complete, starting to log")

except ValueError:

    print("initial write to SD card failed - check card")

while True:

    try:

        #  variable for RTC datetime

        t = rtc.datetime

        #  append SD card text file

        with open("/sd/temp.txt", "a") as f:

            #  read temp data from mcp9808

            temp = get_temp(mcp9808.temperature)

            #  write temp data followed by the time, comma-delimited

            f.write('{},{}:{}:{}\n'.format(temp, t.tm_hour, t.tm_min, t.tm_sec))

            print("data written to sd card")

        #  repeat every 30 seconds

        time.sleep(30)

    except ValueError:

        print("data error - cannot write to SD card")

        time.sleep(10)

Once everything is saved to the CIRCUITPY drive, connect to the serial console () to

see status information from the code.

In the example, the microSD card is mounted and the file temp.txt is created to log

temperature data from the MCP9808. Then in the loop, a temperature reading is

taken and saved to temp.txt, along with the timestamp from the RTC module, every 30

seconds. Every time data is written to the file, data written to the sd card  is

written to the REPL to let you know that the code is running properly.

 

©Adafruit Industries Page 31 of 44

https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console


After logging data to the file, you can open temp.txt from the microSD card to see

your data.

RTC with Arduino 

Talking to the RTC

The RTC is an I2C device, which means it uses 2 wires to to communicate. These two

wires are used to set the time and retrieve it.

For the RTC library, we'll be using a fork of JeeLab's excellent RTC library, which is

available on GitHub (). You can do that by visiting the github repo and manually

downloading or, easier go to the Arduino Library Manager

Type in RTClib - and find the one that is by Adafruit and click Install

 

 

©Adafruit Industries Page 32 of 44

https://github.com/adafruit/RTClib
https://github.com/adafruit/RTClib


First RTC test

The first thing we'll demonstrate is a test sketch that will read the time from the RTC

once a second. We'll also show what happens if you remove the battery and replace it

since that causes the RTC to halt. So to start, remove the battery from the holder

while the PiCowbell is not powered or plugged into USB. Wait 3 seconds and then

replace the battery. This resets the RTC chip. Now load up the matching sketch for

your RTC

Open up Examples->RTClib->pcf8523

Upload it to your Pico connected to the PiCowbell Adalogger, as described in the

assembly pages in this guide ().

 

There are a few different 'forks' of RTClib, make sure you are using the 

ADAFRUIT one! 

 

©Adafruit Industries Page 33 of 44

https://learn.adafruit.com/adafruit-picowbell-adalogger-for-pico/assembly
https://learn.adafruit.com/adafruit-picowbell-adalogger-for-pico/assembly


Now open up the Serial Console and make sure the baud rate is set correctly at

57600 baud you should see the following:

Whenever the RTC chip loses all power (including the backup battery) it will reset to

an earlier date and report the time as 0:0:0 or similar. Whenever you set the time, this

will kickstart the clock ticking.

So, basically, the upshot here is that you should never ever remove the battery once

you've set the time. You shouldn't have to and the battery holder is very snug so

unless the board is crushed, the battery won't 'fall out'

Setting the time

With the same sketch loaded, uncomment the line that starts with RTC.adjust like so:

  if (! rtc.initialized()) {

    Serial.println("RTC is NOT running!");

    // following line sets the RTC to the date &amp; time this sketch was compiled

    rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));

This line is very cute, what it does is take the Date and Time according the computer

you're using (right when you compile the code) and uses that to program the RTC. If

your computer time is not set right you should fix that first. Then you must press the U

pload button to compile and then immediately upload. If you compile and then upload

later, the clock will be off by that amount of time.

Then open up the Serial monitor window to show that the time has been set

 

©Adafruit Industries Page 34 of 44



From now on, you won't have to ever set the time again: the battery will last 5 or more

years

Reading the time

Now that the RTC is merrily ticking away, we'll want to query it for the time. Let's look

at the sketch again to see how this is done

void loop () {

    DateTime now = rtc.now();

    

    Serial.print(now.year(), DEC);

    Serial.print('/');

    Serial.print(now.month(), DEC);

    Serial.print('/');

    Serial.print(now.day(), DEC);

    Serial.print(" (");

    Serial.print(daysOfTheWeek[now.dayOfTheWeek()]);

    Serial.print(") ");

    Serial.print(now.hour(), DEC);

    Serial.print(':');

    Serial.print(now.minute(), DEC);

    Serial.print(':');

    Serial.print(now.second(), DEC);

    Serial.println();

 

©Adafruit Industries Page 35 of 44



There's pretty much only one way to get the time using the RTClib, which is to call no

w(), a function that returns a DateTime object that describes the year, month, day,

hour, minute and second when you called now().

There are some RTC libraries that instead have you call something like RTC.year() and

RTC.hour() to get the current year and hour. However, there's one problem where if

you happen to ask for the minute right at 3:14:59 just before the next minute rolls

over, and then the second right after the minute rolls over (so at 3:15:00) you'll see the

time as 3:14:00 which is a minute off. If you did it the other way around you could get 

3:15:59 - so one minute off in the other direction.

Because this is not an especially unlikely occurance - particularly if you're querying

the time pretty often - we take a 'snapshot' of the time from the RTC all at once and

then we can pull it apart into day() or second() as seen above. It's a tiny bit more effort

but we think its worth it to avoid mistakes!

We can also get a 'timestamp' out of the DateTime object by calling unixtime which

counts the number of seconds (not counting leapseconds) since midnight, January 1st

1970

    Serial.print(" since 2000 = ");

    Serial.print(now.unixtime());

    Serial.print("s = ");

    Serial.print(now.unixtime() / 86400L);

    Serial.println("d");

Since there are 60*60*24 = 86400 seconds in a day, we can easily count days since

then as well. This might be useful when you want to keep track of how much time has

passed since the last query, making some math a lot easier (like checking if it's been

5 minutes later, just see if unixtime() has increased by 300, you don't have to worry

about hour changes)

Arduino RTC Docs 

Arduino RTC Docs () 

Arduino Datalogging 

The following example code will show you how use the PiCowbell Adalogger with

Arduino to log data from a sensor to a file on an SD card with timestamps from the

©Adafruit Industries Page 36 of 44

http://adafruit.github.io/RTClib/html/index.html


RTC module. In addition to a Raspberry Pi Pico and PiCowbell Adalogger, you will also

need:

CR1220 coin cell battery

microSD card

STEMMA QT cable

MCP9808 Temperature Sensor

CR1220 12mm Diameter - 3V Lithium Coin

Cell Battery 

These are the highest quality & capacity

batteries, the same as shipped with the

iCufflinks, iNecklace, Datalogging and

GPS Shields, GPS HAT, etc. One battery

per order...

https://www.adafruit.com/product/380 

SD/MicroSD Memory Card (8 GB SDHC) 

Add mega-storage in a jiffy using this 8

GB class 4 micro-SD card. It comes with a

SD adapter so you can use it with any of

our shields or adapters. Preformatted to

FAT so it works out...

https://www.adafruit.com/product/1294 

STEMMA QT / Qwiic JST SH 4-Pin Cable -

50mm Long 

This 4-wire cable is 50mm / 1.9" long and

fitted with JST SH female 4-pin

connectors on both ends. Compared with

the chunkier JST PH these are 1mm pitch

instead of 2mm, but...

https://www.adafruit.com/product/4399 

• 

• 

• 

• 

©Adafruit Industries Page 37 of 44

https://www.adafruit.com/product/380
https://www.adafruit.com/product/380
https://www.adafruit.com/product/380
https://www.adafruit.com/product/1294
https://www.adafruit.com/product/1294
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399


Adafruit MCP9808 High Accuracy I2C

Temperature Sensor Breakout 

The MCP9808 digital temperature sensor

is one of the more accurate/precise we've

ever seen, with a typical accuracy of

±0.25°C over the sensor's -40°C to...

https://www.adafruit.com/product/5027 

Wiring

Connect the Raspberry Pi Pico and PiCowbell Adalogger as described in the

assembly pages (). Next, insert a CR1220 battery into the coin cell battery holder on

the PiCowbell Adalogger. Then, insert a microSD card into the PiCowbell Adalogger

microSD card slot.

 

Finally, connect the MCP9808 STEMMA

QT board to the PiCowbell Adalogger

STEMMA QT port with a STEMMA QT

cable.

Library Installation

You can install the Adafruit MCP9808 library for Arduino using the Library Manager in

the Arduino IDE.

The following example assumes that you followed along with the RTC with 

Arduino page to set the time with the RTC module and install the RTClib library. 

©Adafruit Industries Page 38 of 44

https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://learn.adafruit.com/adafruit-picowbell-adalogger-for-pico/assembly
https://learn.adafruit.com/adafruit-picowbell-adalogger-for-pico/assembly
https://learn.adafruit.com//assets/119222
https://learn.adafruit.com//assets/119222


Click the Manage Libraries ... menu item, search for Adafruit MCP9808 and select

the Adafruit MCP9808 library:

If asked about dependencies, click "Install all".

If the "Dependencies" window does not come up, then you already have the

dependencies installed. 

 

 

 

If the dependencies are already installed, you must make sure you update them 

through the Arduino Library Manager before loading the example! 

©Adafruit Industries Page 39 of 44



Example Code

// SPDX-FileCopyrightText: 2023 Liz Clark for Adafruit Industries

//

// SPDX-License-Identifier: MIT

const int _MISO = 16;

const int _MOSI = 19;

const int _CS = 17;

const int _SCK = 18;

#include <SPI.h>

#include <SD.h>

#include <Wire.h>

#include "Adafruit_MCP9808.h"

#include "RTClib.h"

RTC_PCF8523 rtc;

char daysOfTheWeek[7][12] = {"Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", 

"Friday", "Saturday"};

// Create the MCP9808 temperature sensor object

Adafruit_MCP9808 tempsensor = Adafruit_MCP9808();

File logfile;

// blink out an error code

void error(uint8_t errno) {

  while(1) {

    uint8_t i;

    for (i=0; i<errno; i++) {

      digitalWrite(LED_BUILTIN, HIGH);

      delay(100);

      digitalWrite(LED_BUILTIN, LOW);

      delay(100);

    }

    for (i=errno; i<10; i++) {

      delay(200);

    }

  }

}

void setup() {

  

  Serial.begin(115200);

  while (!Serial);

  Serial.println("\r\nPiCowbell Adalogger Test");

  // Ensure the SPI pinout the SD card is connected to is configured properly

  SPI.setRX(_MISO);

  SPI.setTX(_MOSI);

  SPI.setSCK(_SCK);

  

  pinMode(LED_BUILTIN, OUTPUT);

  if (!tempsensor.begin(0x18)) {

    Serial.println("Couldn't find MCP9808! Check your connections and verify the 

address is correct.");

    while (1);

  }

  Serial.println("Found MCP9808!");

  tempsensor.setResolution(3);

  if (! rtc.begin()) {

©Adafruit Industries Page 40 of 44



    Serial.println("Couldn't find RTC");

    Serial.flush();

    while (1) delay(10);

  }

  if (! rtc.initialized() || rtc.lostPower()) {

    Serial.println("RTC is NOT initialized, let's set the time!");

    // When time needs to be set on a new device, or after a power loss, the

    // following line sets the RTC to the date & time this sketch was compiled

    rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));

    // This line sets the RTC with an explicit date & time, for example to set

    // January 21, 2014 at 3am you would call:

    // rtc.adjust(DateTime(2014, 1, 21, 3, 0, 0));

    //

    // Note: allow 2 seconds after inserting battery or applying external power

    // without battery before calling adjust(). This gives the PCF8523's

    // crystal oscillator time to stabilize. If you call adjust() very quickly

    // after the RTC is powered, lostPower() may still return true.

  }

  // When time needs to be re-set on a previously configured device, the

  // following line sets the RTC to the date & time this sketch was compiled

  // rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));

  // This line sets the RTC with an explicit date & time, for example to set

  // January 21, 2014 at 3am you would call:

  // rtc.adjust(DateTime(2014, 1, 21, 3, 0, 0));

  // When the RTC was stopped and stays connected to the battery, it has

  // to be restarted by clearing the STOP bit. Let's do this to ensure

  // the RTC is running.

  rtc.start();

  float drift = 43; // seconds plus or minus over oservation period - set to 0 to 

cancel previous calibration.

  float period_sec = (7 * 86400);  // total obsevation period in seconds (86400 = 

seconds in 1 day:  7 days = (7 * 86400) seconds )

  float deviation_ppm = (drift / period_sec * 1000000); //  deviation in parts per 

million (μs)

  float drift_unit = 4.34; // use with offset mode PCF8523_TwoHours

  // float drift_unit = 4.069; //For corrections every min the drift_unit is 4.069 

ppm (use with offset mode PCF8523_OneMinute)

  int offset = round(deviation_ppm / drift_unit);

  // rtc.calibrate(PCF8523_TwoHours, offset); // Un-comment to perform calibration 

once drift (seconds) and observation period (seconds) are correct

  // rtc.calibrate(PCF8523_TwoHours, 0); // Un-comment to cancel previous 

calibration

  Serial.print("Offset is "); Serial.println(offset); // Print to control offset

  // see if the card is present and can be initialized:

  if (!SD.begin(_CS)) {

    Serial.println("initialization failed!");

    return;

  }

  Serial.println("initialization done.");

}

void loop() {

  tempsensor.wake();

  DateTime now = rtc.now();

  float c = tempsensor.readTempC();

  float f = tempsensor.readTempF();

  Serial.println("Writing to SD card");

  digitalWrite(LED_BUILTIN, HIGH);

// make a string for assembling the data to log:

  String dataString = "";

  dataString += "The current temp is: ";

©Adafruit Industries Page 41 of 44



  dataString += String(c);

  dataString += "C, ";

  dataString += String(f);

  dataString += "F, at ";

  dataString += String(now.year(), DEC);

  dataString += String('/');

  dataString += String(now.month(), DEC);

  dataString += String('/');

  dataString += String(now.day(), DEC);

  dataString += String(" (");

  dataString += String(daysOfTheWeek[now.dayOfTheWeek()]);

  dataString += String(") ");

  dataString += String(now.hour(), DEC);

  dataString += String(':');

  dataString += String(now.minute(), DEC);

  dataString += String(':');

  dataString += String(now.second(), DEC);

  // open the file. note that only one file can be open at a time,

  // so you have to close this one before opening another.

  File dataFile = SD.open("datalog.txt", FILE_WRITE);

  // if the file is available, write to it:

  if (dataFile) {

    dataFile.println(dataString);

    dataFile.close();

    // print to the serial port too:

    Serial.println(dataString);

  }

  // if the file isn't open, pop up an error:

  else {

    Serial.println("error opening datalog.txt");

  }

  digitalWrite(LED_BUILTIN, LOW);

  

  delay(5000);

}

Upload the sketch to your board and open up the Serial Monitor (Tools -> Serial

Monitor) at 115200 baud. You'll see the setup run with confirmation messages that the

MCP9808 has been found over I2C and the microSD card has been initialized

properly. As data is written to the microSD card, you'll see the message " Writing to

SD card " appear in the Serial Monitor, along with the temperature reading and

timestamp from the RTC. The onboard LED on the Raspberry Pi Pico will also light-up

when a write is in progress.

 

©Adafruit Industries Page 42 of 44



After logging data to the file on the microSD card, you can open datalog.txt from the

microSD card to see your data.

Downloads 

Files

PCF8523 Datasheet () 

EagleCAD PCB files on GitHub () 

Fritzing object in the Adafruit Fritzing Library () 

 

• 

• 

• 

©Adafruit Industries Page 43 of 44

https://cdn-learn.adafruit.com/assets/assets/000/119/218/original/PCF8523.pdf?1678133979
https://github.com/adafruit/Adafruit-PiCowbell-Adalogger-PCB
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20PiCowbell%20Adalogger.fzpz


Schematic and Fab Print

 

 

©Adafruit Industries Page 44 of 44


	Adafruit PiCowbell Adalogger for Pico
	Table of Contents
	Overview
	Pinouts
	Assembly
	Pico
	Stacking Headers
	Socket Headers
	Shorty Socket Headers
	RTC with CircuitPython
	RTC Python Docs
	CircuitPython Datalogging
	RTC with Arduino
	Arduino RTC Docs
	Arduino Datalogging
	Downloads


	Overview
	Pinouts
	Power
	I2C Logic
	Duplicate GPIO Hole Pads
	microSD Card SPI
	SD Detect Jumper
	Coin Cell Battery Holder
	Reset Button

	Assembly
	Pico
	Assembly Steps

	Stacking Headers
	Assembly Steps

	Socket Headers
	Assembly Steps

	Shorty Socket Headers
	Assembly Steps

	RTC with CircuitPython
	CircuitPython Usage
	Code
	Setting the time

	RTC Python Docs
	CircuitPython Datalogging
	CircuitPython Microcontroller Wiring
	CircuitPython Usage
	Example Code

	RTC with Arduino
	Talking to the RTC
	First RTC test
	Setting the time
	Reading the time

	Arduino RTC Docs
	Arduino Datalogging
	Wiring
	Library Installation
	Example Code

	Downloads
	Files
	Schematic and Fab Print


