Adafruit ESP32-S3 Reverse TFT Feather

Created by Liz Clark

https://learn.adafruit.com/esp32-s3-reverse-tft-feather

Last updated on 2023-03-16 03:59:18 PM EDT

©Adafruit Industries Page 1 of 235

Table of Contents

Overview

Pinouts

« Power

« TFT Display

« ESP32-S3 WiFi Module

« MAX17048 Battery Monitor
«» Logic Pins

« NeoPixel and Red LED

« STEMMA QT

- D1and D2 Buttons

« DO Button

« Reset Button(s) and RST Pin
« Debug Pin

Power Management
- Battery + USB Power

« Power Supplies

« Measuring Battery

- ENable pin

« Alternative Power Options

Install CircuitPython
« CircuitPython Quickstart

Installing the Mu Editor
« Download and Install Mu

« Starting Up Mu

« Using Mu

The CIRCUITPY Drive
« Boards Without CIRCUITPY

Creating and Editing Code

- Creating Code

- Editing Code

« Back to Editing Code...

« Naming Your Program File

Exploring Your First CircuitPython Program

« Imports & Libraries

« Setting Up The LED

« Loop-de-loops

« What Happens When My Code Finishes Running?
« What if | Don't Have the Loop?

Connecting to the Serial Console

« Are you using Mu?

« Serial Console Issues or Delays on Linux
« Setting Permissions on Linux

« Using Something Else?

©Adafruit Industries

13

23

30

32

35

36

41

44

Page 2 of 235

Interacting with the Serial Console

The REPL

« Entering the REPL
« Interacting with the REPL
» Returning to the Serial Console

CircuitPython Libraries

« The Adafruit Learn Guide Project Bundle
« The Adafruit CircuitPython Library Bundle

« Downloading the Adafruit CircuitPython Library Bundle

« The CircuitPython Community Library Bundle

« Downloading the CircuitPython Community Library Bundle

« Understanding the Bundle

« Example Files

« Copying Libraries to Your Board

« Understanding Which Libraries to Install

« Example: ImportError Due to Missing Library

« Library Install on Non-Express Boards

« Updating CircuitPython Libraries and Examples
« CircUp CLI Tool

CircuitPython Documentation

« CircuitPython Core Documentation
« CircuitPython Library Documentation

Recommended Editors

« Recommended editors

« Recommended only with particular settings or add-ons

« Editors that are NOT recommended

Advanced Serial Console on Windows

« Windows 7 and 8.1
» What's the COM?
« Install Putty

Advanced Serial Console on Mac

« What's the Port?
« Connect with screen

Advanced Serial Console on Linux

« What's the Port?
« Connect with screen
« Permissions on Linux

Frequently Asked Questions

« Using Older Versions

» Python Arithmetic

« Wireless Connectivity

« Asyncio and Interrupts
« Status RGB LED

« Memory Issues

« Unsupported Hardware

©Adafruit Industries

47

50

55

66

73

74

78

80

84

Page 3 of 235

Troubleshooting

« Always Run the Latest Version of CircuitPython and Libraries

« | have to continue using CircuitPython 5.x or earlier. Where can | find compatible libraries?
« Bootloader (boardnameBOOT) Drive Not Present

« Windows Explorer Locks Up When Accessing boardnameBOOT Drive
« Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied

« CIRCUITPY Drive Does Not Appear or Disappears Quickly

« Device Errors or Problems on Windows

« Serial Console in Mu Not Displaying Anything

. code.py Restarts Constantly

« CircuitPython RGB Status Light

« CircuitPython 7.0.0 and Later

« CircuitPython 6.3.0 and earlier

« Serial console showing ValueError: Incompatible .mpy file

« CIRCUITPY Drive Issues

- Safe Mode

« To erase CIRCUITPY: storage.erase_filesystem()

» Erase CIRCUITPY Without Access to the REPL

« For the specific boards listed below:

« For SAMD21 non-Express boards that have a UF2 bootloader:

« For SAMD21 non-Express boards that do not have a UF2 bootloader:
« Running Out of File Space on SAMD21 Non-Express Boards

« Delete something!

« Use tabs

+ On MacOS?

« Prevent & Remove MacOS Hidden Files

« Copy Files on MacOS Without Creating Hidden Files

« Other MacOS Space-Saving Tips

» Device Locked Up or Boot Looping

Welcome to the Community!

« Adafruit Discord
« CircuitPython.org
« Adafruit GitHub

« Adafruit Forums
« Read the Docs

CircuitPython Essentials

Blink

« LED Location
« Blinking an LED

Digital Input
« LED and Button
« Controlling the LED with a Button

Analog In

« Analog to Digital Converter (ADC)
- Potentiometers

- Hardware

« Wire Up the Potentiometer

» Reading Analog Pin Values

- Reading Analog Voltage Values

©Adafruit Industries

90

108

17

18

120

123

Page 4 of 235

NeoPixel

« NeoPixel Location

« NeoPixel Color and Brightness
« RGB LED Colors

« NeoPixel Rainbow

Capacitive Touch

« One Capacitive Touch Pin

« Pin Location

« Reading Touch on the Pin

« Multiple Capacitive Touch Pins

« Pin Location

« Reading Touch on the Pins

« The Available Touch-Capable Pins

12C

« 12C and CircuitPython
« Necessary Hardware
» Wiring the MCP9808
« Find Your Sensor

+ 12C Sensor Data

« Where's my 12C?

[2C: Onboard MAX17048

+« MAX17048 Location
« MAX17048 Simple Data Example

Storage

« Wiring for MCP9808

« The boot.py File

« The code.py File

» Logging the Temperature

« Recovering a Read-Only Filesystem

CircuitPython Internet Test

« Secrets File

Adafruit 10: Send and Receive Data

« NeoPixel Location

« Adafruit IO Feeds and Dashboard
« Adafruit IO Example Secrets

« Adafruit IO Example Code

« NeoPixel Color Change

« Code Walkthrough

Arduino IDE Setup

Using with Arduino IDE

« Blink

» Select ESP32-S2/S3 Board in Arduino IDE
« Launch ESP32-S2/S3 ROM Bootloader

» Load Blink Sketch

Arduino Blink

« Pre-Flight Check: Get Arduino IDE & Hardware Set Up

©Adafruit Industries

129

135

139

146

148

154

159

168

170

174

Page 5 of 235

« Start up Arduino IDE and Select Board/Port
« New Blink Sketch

« Verify (Compile) Sketch

« Upload Sketch

- Native USB and manual bootloading

« Enter Manual Bootload Mode

- Finally, a Blink!

12C Scan Test

« Common 12C Connectivity Issues
« Perform an 12C scan!
« Wiring the MCP9808

12C: On-Board MAX17048 Battery Monitor

« Arduino Library Installation
+ MAX17048 Simple Data Example

Built-In TFT

« Arduino Library Installation
« Graphics Test Example Code

WiFi Test

« WiFi Connection Test
« Secure Connection Example
+ JSON Parsing Demo

Usage with Adafruit IO

« Install Libraries
« Adafruit IO Setup
« Code Usage

Factory Shipped Demo

« Arduino Library Installation
« Factory Demo Example Code

Install UF2 Bootloader

Factory Reset

« Factory Reset Firmware UF2
« Factory Reset and Bootloader Repair
« Download .bin and Enter Bootloader

« Step 1. Download the factory-reset-and-bootloader.bin file

« Step 2. Enter ROM bootloader mode
« The WebSerial ESPTool Method

« Connect

- Erase the Contents

« Program the ESP32-S2/S3

« The esptool Method (for advanced users)
« Install ESPTool.py

« Test the Installation

« Connect

- Installing the Bootloader

« Reset the board

« Older Versions of Chrome

« The Flash an Arduino Sketch Method

©Adafruit Industries

183

188

191

197

208

216

222

222

Page 6 of 235

« Arduino IDE Setup
« Load the Blink Sketch

Downloads 234

- Files
« Schematic and Fab Print

©Adafruit Industries Page 7 of 235

©Adafruit Industries Page 8 of 235

Overview

Like Missy Elliot, we like to "put our [Feather] down, flip it and reverse it" () and that's
exactly what we've done with this new development board. It's basically our ESP32-S3
TFT Feather () but with the 240x135 color TFT display on the back-side, not the front-
side. That makes it great for panel-mounted projects, particularly since we've also got
some space for 3 buttons to go along. It's like an all-in-one display interface dev
board, powered by the fantastic ESP32-S3 WilFi module.

il

ESP32-S3 Rev
TFT Feather

3
m.
=

00000000000

©Adafruit Industries Page 9 of 235

https://www.youtube.com/watch?v=cjIvu7e6Wq8
https://www.adafruit.com/product/5483
https://www.adafruit.com/product/5483

This Feather comes with native USB and 4 MB Flash + 2 MB of PSRAM, so it is perfect
for use with CircuitPython or Arduino with low-cost WiFi. Native USB means it can act
like a keyboard or a disk drive. WiFi means it's awesome for loT projects. And Feather
means it works with the large community of FeatherWings for expandability.

The ESP32-S3 is a highly-integrated, low-power, 2.4 GHz WiFi/BLE System-on-Chip
(SoC) solution that has built-in native USB as well as some other interesting new
technologies like Time of Flight distance measurements and Al acceleration. With its
state-of-the-art power and RF performance, this SoC is an ideal choice for a wide
variety of application scenarios relating to the Internet of Things (IoT) (), wearable

electronics (), and smart homes.

©Adafruit Industries Page 10 of 235

https://www.adafruit.com/category/342
https://www.adafruit.com/category/65
https://www.adafruit.com/category/65

The Feather ESP32-S3 has a dual-core 240 MHz chip, so it is comparable to ESP32's
dual-core. However, there is no Bluetooth Classic support, only Bluetooth LE. This
chip is a great step up from the earlier ESP32-S2! This ESP32-S3 mini-module we are
using on the Feather comes with 4 MB flash and 2 MB PSRAM, as well as 512KB of
SRAM, so it's perfect for use with CircuitPython support or any time massive buffers
are needed: for fast memory access, use SRAM, for slower-but-roomier access, use
PSRAM. It's also great for usewhen programming in ESP-IDF or with Arduino support.

000000000000

20

{

>
(]

cl
polt =
w3
s‘,u.
%E
I.u’_

Reset D

) 0000000000000 00O0

o

The color TFT is connected to the SPI pins and uses additional pins for control that
are not exposed to the breakout pads. It's the same display as you see here, with
240x135 pixels and is IPS () so you get bright color at any angle. The backlight is also
connected to a separate pin so you can PWM the backlight up and down as desired.

For low power usages, the Feather has a second low-dropout 3.3V regulator. The
regulator is controlled with a GPIO pin on the enable line and can shut off power to
the Stemma QT port and TFT. There is also a separate power pin for the NeoPixel that
can be used to disable it for even lower quiescent power. With everything off and in
deep sleep mode, the TFT feather uses about 100uA of current.

©Adafruit Industries Page 11 of 235

https://www.adafruit.com/product/4383
https://www.adafruit.com/product/4383

Features:

« ESP32-S3 Dual Core 240MHz Tensilica processor - the next generation of
ESP32-Sx, with native USB so it can act like a keyboard/mouse, MIDI device,
disk drive, etc!

« Mini module has FCC/CE certification and comes with 4 MByte of Flash and 2
MByte of PSRAM - you can have huge data buffers.

« Color 114" IPS TFT with 240x135 pixels () - bright and colorful display with
ST7789 chipset that can be viewed at any angle angle.

« Three User Tactile buttons- DO, D1, and D2. DO/BOOTO is also used for entering
ROM bootloader mode if necessary.

« Power options - USB type C or Lipoly battery

« Built-in battery charging when powered over USB-C.

« LiPoly battery monitor - MAX17048 chip actively monitors your battery for
voltage and state of charge / percentage reporting over 12C.

« Reset and DFU (BOOTO) buttons to get into the ROM bootloader (which is a USB
serial port so you don't need a separate cable!)

« Serial debug output pin (optional, for checking the hardware serial debug
console).

« STEMMA QT connector for I12C devices, with switchable power, so you can go

into low power mode.

« On/Charge/User LEDs + status NeoPixel with pin-controlled power for low power
usage.

« Low Power friendly! In deep sleep mode, we can get down to 40”50uA of
current draw from the Lipoly connection. Quiescent current is from the power

©Adafruit Industries Page 12 of 235

https://www.adafruit.com/product/4383

regulator, ESP32-S2 chip, and Lipoly monitor. Turn off the NeoPixel and external

I2C/TFT power for the lowest quiescent current draw.
« Works with Arduino or CircuitPython

Pinouts

2
E
£

3
[+
@
b
&
o
o
(7}
i}

Adafruit ESP32-S3 Reverse TFT Feather
https://www.adafruit.com/product/5691

B rover
D w
Control =

.cx:cutrymu Name l ——— TN GPIO3 NNRICH CEENGER 37
ae1o scL GPIo: ENRICHN EESNETE a0

GPI07 IERTCHN FESNGEE i)

TFT_CS GP1042 MNEBUNN MTMS . NEOPIXEL GP1033 SEIGEN FSPIHD
TET_DC GPIO40 ENERIE MT00] GPIO21 MNRICEN

TET_RESET GPIO4l MECEUNN MTDI

TFT_BACKLIGHT GPIO45 NNGEUN

Ko=gu=0

Adafruit ESP32-S3 Reverse TFT Feather Display-Side
https://www.adafruit.com/product/5691

@ Power
@ o
@ control =
CircuitPython Name R
GPIO GrIo3 [NRTCHN EESNETR T3
I Power Domain ScL GPIO4 NNRTCI EESNEE A
@ anc
HS/QSPT
Touch
8 pebug.
Other
(MTCK! ENCPUEN ce1o3e
ESPIWE NCRUE Gp1038
ESPIQ SPIEr cr1o37
ESPID [SEIZOPW Gr1o3s
FSPICLK SBICRY cr1o36
18 CEEEE R G108
8 Fseive CISENEEE) SNRTCEN GP1014
XTAL_32K_P UORTS SRS (RTCHN GP1olS
KTAL_32K_N UDEES CHEENEE SIRISN cP1ol6
DAC 1 NNRD TSNS MR Geio17
pAC 2 WERED EEENET) RIS criole
WEREIN GPIOO BUTTON D2 Gr1o2 INNTCNN CESNEE w2
D1 Gprol NENTCEN CESNEE ks o
o GPI07 IERICTN CESNETS o
[§ 7rr_cs ceiod MRS foed NEOPIXEL GP1033 [SHIVGRE ESPIHD
[l TFT_DC GPIO40 ENEEINS (wr02 NEOPIXEL POWERRSSCIIR it |
O 7FT_ResET Geiod: NNEEEN MTDI R ——
Ml TFT_BACKLIGHT GPo4S NEENNN

©Adafruit Industries

Page 13 of 235

Power

There are two ways you can power the Feather ESP32-S3, as well as other related
pins.

« USB-C port - This is used for both powering and programming the board. You
can power it with any USB C cable. When USB is plugged in it will charge the
Lipoly battery.

« LiPoly connector/charger - You can plug in any 250mAh or larger 3.7/4.2V Lipoly
battery into this JST 2-PH port to both power your Feather and charge the
battery. The battery will charge from the USB power when USB is plugged in. If
the battery is plugged in and USB is plugged in, the Feather will power itself
from USB and it will charge the battery up.

« CHG LED - When the battery is charging, the yellow CHG LED will be lit. When
charging is complete, the LED will turn off. If there's no battery plugged in, the
CHD LED may blink rapidly - this is expected!

+ GND - This is the common ground for all power and logic.

« BAT - This is the positive voltage to/from the 2-pin JST jack for the optional
Lipoly battery.

+ USB - This is the positive voltage to/from the USB C jack, if USB is connected.

« EN - This is the 3.3V regulator enable pin. It's pulled up, so connect to ground to
disable the 3.3V regulator.

« 3.3V - These pins are the output from the 3.3V regulator, they can supply
500mA peak.

©Adafruit Industries Page 14 of 235

TFT Display

On the front of the board is a color 114" IPS TFT with 240x135 pixels (). It's a bright
and colorful display with ST7789 chipset that can be viewed at any angle.

There is a power pin that must be pulled high for the display to work. This is done
automatically by CircuitPython and Arduino. The pin is available in CircuitPython and
in Arduino as TFT _I2C POWER.

ESP32-S3 WiFi Module

©Adafruit Industries Page 15 of 235

https://www.adafruit.com/product/4383

The ESP32-S3 is a highly-integrated, low-power, 2.4 GHz WiFi + BLE System-on-Chip
(SoC) solution that has built-in native USB as well as some other interesting new
technologies like Time of Flight distance measurements and Al acceleration.

The Feather ESP32-S3 has a dual-core 240 MHz chip, so it is comparable to ESP32's
dual-core. However, there is no Bluetooth Classic support, only Bluetooth LE. This
ESP32-S3 mini-module we are using on the Feather comes with 4 MB flash and 2 MB
PSRAM, as well as 512KB of SRAM, so it's perfect for use with CircuitPython support
or any time massive buffers are needed: for fast memory access use SRAM, for
slower-but-roomier access use PSRAM.

MAX17048 Battery Monitor

The MAX17048 LiPoly Battery Monitor reports the voltage and charge percent over
I2C. Connect it to your Lipoly or Lilon battery () and it will let you know the voltage of
the cell, and it does the annoying math of decoding the non-linear voltage to get you
a valid percentage as well!

The battery monitor is available over I2C on address 0x36.

Our Arduino () or CircuitPython/Python () library code allows you to to set the pack
size (mAh of the battery, this helps tune the calculation) and read the voltage and
percentage whenever you like. There is no pin on the Feather ESP32-S3 that returns
battery voltage, but this 12C monitor makes it super simple to get that data!

©Adafruit Industries Page 16 of 235

https://www.adafruit.com/category/916
https://github.com/adafruit/Adafruit_MAX1704x
https://github.com/adafruit/Adafruit_CircuitPython_MAX1704x

Logic Pins

These are the logic pins that can be used to connect FeatherWings, sensors, servos,
LEDs and more!

No pins are shared, and no pins are 'special' bootstrapping pins, so you can use any
of them for input, or output, with pullups or pulldowns, without worry.

ESP32 chips allow for 'multiplexing' of almost all signals so it isn't like some pins can
do PWM and others can. You can connect any of the available PWM channels, 12S
channels, UART, I12C or SPI ports to any pin. There are some exceptions....

There are six analog pins.

« AO and A1 are the only DAC output pins. These can be used as 8-bit true analog
outputs. No other pins can do so. AO and A1 are on ADC2.

« A2 thru A5 can also be analog inputs. A2 thru A4 are on ADC2, and A5 is on
ADC1.

The SPI pins are on the ESP32-S3 high-speed peripheral. You can set any pins to be
the low-speed peripheral but you won't get the speedy interface!

« SCK - This is the SPI clock pin.
« MOSI - This is the SPI Microcontroller Out / Sensor In pin.
« MISO - This is the SPI Microcontroller In / Sensor Out pin.

©Adafruit Industries Page 17 of 235

The UART interface.

« RX - This is the UART receive pin. Connect to TX (transmit) pin on your sensor or
breakout.

« TX - This is the UART transmit pin. Connect to RX (receive) pin on your sensor or
breakout.

The 12C interface. This is shared by the STEMMA QT connector.

« SCL - This is the 12C clock pin. There is a 10k pullup on this pin.
« SDA - This is the I12C data pin. There is a 10k pullup on this pin.

° In CircuitPython, you can use the STEMMA connector with board.SCL
and board.SDA, or board.STEMMA I2C() .

° There is an 12C power pin that needs to be pulled high for the TFT and the
STEMMA QT connector to work properly. It is available in CircuitPython
and Arduino as TFT I2C POWER. This pin is automatically pulled high in
CircuitPython and Arduino.

The digital pins.

« D5-D6, D9-D13 - These are digital pins. D5, D6, D9 and D10 are on ADC1. D11-
D13 are on ADC2.

Check the ESP32-S3 datasheet or the PrettyPins diagram above for the ADC channel
names for each pin if you need them!

©Adafruit Industries Page 18 of 235

NeoPixel and Red LED

» NeoPixel LED - This addressable RGB NeoPixel LED, labeled Neo on the board,
works both as a status LED (in CircuitPython and the bootloader), and can be
controlled with code. It is available in CircuitPython as board.NEOPIXEL , and in
Arduino as PIN NEOPIXEL .

« There is a NeoPixel power pin that needs to be pulled high for the NeoPixel to
work. This is done automatically in CircuitPython and Arduino. It is available in
CircuitPython and Arduino as NEOPIXEL POWER.

« Red LED - This little red LED, labeled #13 on the board, is on or blinks during
certain operations (such as pulsing when in the bootloader), and is controllable
in code. It is available in CircuitPython as board.LED, and in Arduino as

LED BUILTIN or 13.

STEMMA QT

JJ&J'
-“-.‘uij:
Neo @

_,
N
O

B

O o®
ord B3
OB
o)<

©Adafruit Industries Page 19 of 235

This JST SH 4-pin STEMMA QT () connector breaks out 12C (SCL, SDA, 3.3V, GND). It
allows you to connect to various breakouts and sensors with STEMMA QT connectors
() or to other things using assorted associated accessories (). It works great with any
STEMMA QT or Qwiic sensor/device. You can also use it with Grove 12C devices
thanks to this handy cable ().

There is a power pin that must be pulled high for the STEMMA QT connector to work.
This is done automatically in CircuitPython and Arduino. The pin is available in
CircuitPython and in Arduino as TFT I2C POWER.

D1 and D2 Buttons

00000000

The D1 and D2 buttons are available for use as inputs in your code.

In CircuitPython, they are available as board.D1 and board.D2.

In Arduino, they are available as 1 and 2.

These two pins are pulled LOW by default, e.g. when not pressed, the signal is low.
When pressed, the signal goes HIGH. This is required to wake the ESP32-S3 from

deep sleep. This means you need to look for the signal to go high to track a button
press. For example, in CircuitPython, you would use if button.value: .

©Adafruit Industries Page 20 of 235

https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/category/1018
https://www.adafruit.com/category/1018
https://www.adafruit.com/?q=JST%20SH%204
https://www.adafruit.com/product/4528

DO Button

The DO button is doing double-duty on this Feather. It is both the BOOT button to
enter the ROM bootloader, and available as an input in your code.

In CircuitPython, this button is available as board.D0, board.B00TO, and board.BU
TTON . (All three are the same pin!)

In Arduino, this button is available as 0.

This button is pulled HIGH by default, e.g. when not pressed, the signal is high. When
pressed, the signal goes LOW. This means you need to look for the signal to go LOW
to track a button press. For example, in CircuitPython, you would use if not

button.value: .

To enter the ROM bootloader, hold down DO, and while holding, press the Reset
button.

©Adafruit Industries Page 21 of 235

Reset Button(s) and RST Pin

B amm

o

« Reset button - There is a reset button located on both sides of the board. The
reset button restarts the board and helps enter the bootloader. You can click it
once to reset the board without unplugging the USB cable or battery.
Alternatively, tap once, and then tap again while the NeoPixel status LED is
purple to enter the UF2 bootloader (needed to load CircuitPython).

« The RST pin is can be used to reset the board. Tie to ground manually to reset

the board.

©Adafruit Industries Page 22 of 235

Debug Pin

This is the Debug TX (DB) pin. This is the hardware UART debug pin. You can connect
this to a USB console cable in order to read the debug output from the ESP32 IDF ().
This is useful if you are writing software and need to see the low level debug output.

This is not where default Serial.print() or CircuitPython print() outputs go -
those will go through the USB port instead!

Power Management

©Adafruit Industries Page 23 of 235

https://www.adafruit.com/product/954
https://www.adafruit.com/product/954

Battery + USB Power

We wanted to make our Feather boards easy to power both when connected to a
computer as well as via battery.

There's two ways to power a Feather:

1. You can connect with a USB cable (just plug into the jack) and the Feather will
regulate the 5V USB down to 3.3V.

2. You can also connect a 4.2/3.7V Lithium Polymer (LiPo/LiPoly) or Lithium lon
(Lilon) battery to the JST jack. This will let the Feather run on a rechargeable
battery.

When the USB power is powered, it will automatically switch over to USB for power,
as well as start charging the battery (if attached). This happens 'hot-swap' style so you

can always keep the LiPoly connected as a 'backup' power that will only get used
when USB power is lost.

The above shows the USB-C jack (left), LiPoly JST jack (top left), as well as the
changeover diode (just to the right of the JST jack) and the LiPoly charging circuitry
(to the right of the JST jack).

There's also a CHG LED next to the USB jack, which will light up while the battery is
charging. This LED might also flicker if the battery is not connected, it's normal.

The charge LED is automatically driven by the LiPoly charger circuit. It will try to

detect a battery and is expecting one to be attached. If there isn't one it may

©Adafruit Industries Page 24 of 235

flicker once in a while when you use power because it's trying to charge a (non-

existent) battery. It's not harmful, and its totally normal!

Power Supplies

You have a lot of power supply options here! We bring out the BAT pin, which is tied
to the LiPoly JST connector, as well as USB which is the +5V from USB if connected.
We also have the 3V pin which has the output from the 3.3V regulator. We use a
500mA peak regulator. While you can get 500mA from it, you can't do it continuously
from 5V as it will overheat the regulator.

It's fine for, say, powering an ESP8266 WiFi chip or XBee radio though, since the
current draw is 'spikey' & sporadic.

Measuring Battery

If you're running off of a battery, chances are you wanna know what the voltage is at!
That way you can tell when the battery needs recharging. LiPoly batteries are 'maxed
out' at 4.2V and stick around 3.7V for much of the battery life, then slowly sink down
to 3.2V or so before the protection circuitry cuts it off. By measuring the voltage you
can quickly tell when you're heading below 3.7V.

This board includes an MAX17048 Battery Monitor OR an LC709203F Battery Monitor
that reports the voltage and charge percent over I2C. (You will not have both.)

The MAX17048 battery monitor is available over 12C on address 0x36.

The LC709203 battery monitor is available over 12C on address OxOB.

©Adafruit Industries Page 25 of 235

Our Arduino MAX1704x () or CircuitPython/Python MAX1704x () library code allows you
to read the voltage and percentage whenever you like.

Our Arduino LC709203F () or CircuitPython/Python LC709203F () library code allows
you to set the pack size (mAh of the battery which helps tune the calculation), and
read the voltage and percentage whenever you like.

There is no pin on this board that returns battery voltage, but this 12C monitor makes
it super simple to get that data!

The following examples work regardless of which battery monitoring chip you

have on your board! They check to see which chip is available, and use it to
provide measurements.

In Arduino, you can measure the battery voltage using the following script.

// SPDX-FileCopyrightText: 2023 Liz Clark for Adafruit Industries
//

// SPDX-License-Identifier: MIT

//

// Adafruit Battery Monitor Demo

// Checks for MAX17048 or LC709203F

#include <Wire.h>
#include "Adafruit MAX1704X.h"
#include "Adafruit LC709203F.h"

Adafruit MAX17048 maxlipo;
Adafruit LC709203F 1c;

// MAX17048 i2c address
bool addr0x36 = true;

void setup() {
Serial.begin(115200);
while (!Serial) delay(10); // wait until serial monitor opens
Serial.println(F("\nAdafruit Battery Monitor simple demo"));
// if no max17048..
if (!maxlipo.begin()) {

©Adafruit Industries Page 26 of 235

https://github.com/adafruit/Adafruit_MAX1704x
https://github.com/adafruit/Adafruit_CircuitPython_MAX1704x
https://github.com/adafruit/Adafruit_LC709203F
https://github.com/adafruit/Adafruit_CircuitPython_LC709203F

Serial.println(F("Couldnt find Adafruit MAX17048, looking for LC709203F.."));
// if no 1c709203f..
if (!'lc.begin()) {
Serial.println(F("Couldnt find Adafruit MAX17048 or LC709203F."));
while (1) delay(10);
}
// found 1c709203f!
else {
addrOx36 = false;
Serial.println(F("Found LC709203F"));
Serial.print("Version: 0x"); Serial.println(lc.getICversion(), HEX);
lc.setThermistorB(3950);
Serial.print("Thermistor B = "); Serial.println(lc.getThermistorB());
lc.setPackSize (LC709203F APA 500MAH);
lc.setAlarmVoltage(3.8);
}
// found max17048!
}
else {
addrOx36 = true;
Serial.print(F("Found MAX17048"));
Serial.print(F(" with Chip ID: 0x"));
Serial.println(maxlipo.getChipID(), HEX);
}
}

void loop() {
// if you have the max17048..
if (addrOx36 == true) {
max17048();

}
// if you have the 1c709203f..
else {
1c709203f();
}
delay(2000); // dont query too often!

}

void 1c709203f() {
Serial.print("Batt Voltage:");
Serial.print(lc.cellVoltage(), 3);
Serial.print("\t");
Serial.print("Batt Percent:");
Serial.print(lc.cellPercent(), 1);
Serial.print("\t");
Serial.print("Batt Temp:");
Serial.println(lc.getCellTemperature(), 1);

}

void max17048()

Serial.print(
Serial.println(" V");

Serial.print(F("Batt Percent: ")); Serial.print(maxlipo.cellPercent(), 1);
Serial.println(" %");

Serial.println();

}

F("Batt Voltage: ")); Serial.print(maxlipo.cellVoltage(), 3);

For CircuitPython, you can measure it like this.

SPDX-FileCopyrightText: Copyright (c) 2023 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: Unlicense

import time

©Adafruit Industries Page 27 of 235

import board
from adafruit max1704x import MAX17048
from adafruit 1c709203f import LC709203F, PackSize

#

i2c = board.I2C()

while not i2c.try lock():
pass

i2c_address list = i2c.scan()

i2c.unlock()

device = None

if OxOb in i2c address list:
1¢c709203 = LC709203F (board.I2C())
Update to match the mAh of your battery for more accurate readings.
Can be MAH100, MAH200, MAH400, MAH500, MAH1000, MAH2000, MAH3000.
Choose the closest match. Include "PackSize." before it, as shown.
1c709203.pack size = PackSize.MAH400

device = 1c¢709203

elif Ox36 in i2c address list:
max17048 = MAX17048 (board.I2C())

device = max17048

else:
raise Exception("Battery monitor not found.")

while device:
print(f"Battery voltage: {device.cell voltage:.2f} Volts")
print(f"Battery percentage: {device.cell percent:.1f} %")
print("")
time.sleep(1l)

ENable pin

If you'd like to turn off the 3.3V regulator, you can do that with the EN(able) pin. Simply
tie this pin to Ground and it will disable the 3V regulator. The BAT and USB pins will
still be powered.

©Adafruit Industries Page 28 of 235

STEMMA QT and NeoPixel Power

This Feather is equipped with a STEMMA QT port and NeoPixel which are both
connected to their own regulators. Unlike the one controlled by the ENable pin, these
two are controlled by GPIO. They are enabled by default in CircuitPython and
Arduino. You can disable it manually for low power usage. The STEMMA pin is
available in CircuitPython and Arduino as I2C POWER . The NeoPixel pin is available
in CircuitPython and Arduino as NEOPIXEL POWER .

Alternative Power Options

The two primary ways for powering a feather are a 3.7/4.2V LiPo battery plugged into
the JST port or a USB power cable.

If you need other ways to power the Feather, here's what we recommend:

« For permanent installations, a 5V 1A USB wall adapter () will let you plug in a

USB cable for reliable power

« For mobile use, where you don't want a LiPoly, use a USB battery pack! ()

. If you have a higher voltage power supply, use a 5V buck converter () and wire it
to a USB cable's 5V and GND input ()

©Adafruit Industries Page 29 of 235

https://www.adafruit.com/product/501
https://www.adafruit.com/product/1959
https://www.adafruit.com/?q=5V%20buck
https://www.adafruit.com/product/3972

Here's what you cannot do:

« Do not use alkaline or NiMH batteries and connect to the battery port - this will
destroy the LiPoly charger and there's no way to disable the charger
« Do not use 7.4V RC batteries on the battery port - this will destroy the board

The Feather is not designed for external power supplies - this is a design decision to
make the board compact and low cost. It is not recommended, but technically

possible:

« Connect an external 3.3V power supply to the 3V and GND pins. Not
recommended, this may cause unexpected behavior and the EN pin will no
longer work. Also this doesn't provide power on BAT or USB and some
Feathers/Wings use those pins for high current usages. You may end up
damaging your Feather.

« Connect an external 5V power supply to the USB and GND pins. Not
recommended, this may cause unexpected behavior when plugging in the USB
port because you will be back-powering the USB port, which could confuse or

damage your computer.

Install CircuitPython

CircuitPython () is a derivative of MicroPython () designed to simplify experimentation
and education on low-cost microcontrollers. It makes it easier than ever to get
prototyping by requiring no upfront desktop software downloads. Simply copy and
edit files on the CIRCUITPY drive to iterate.

CircuitPython Quickstart

Follow this step-by-step to quickly get CircuitPython running on your board.

Download the latest version of

CircuitPython for this board via
circuitpython.org

©Adafruit Industries Page 30 of 235

https://github.com/adafruit/circuitpython
https://micropython.org
https://circuitpython.org/board/adafruit_feather_esp32s3_reverse_tft/

;:'_1 Macintosh...

. ELEIINSEIIMGLLEN Click the link above to download the latest
CircuitPython UF2 file.

€ Network

{2} kattni . . .
. s Save it wherever is convenient for you.
- Applications
(-] Desktop

:" Documents
) Downloads

Pictures

Plug your board into your computer, using a known-good data-sync cable, directly, or
via an adapter if needed.

Double-click the reset button (highlighted in red above), and you will see the RGB
status LED(s) turn green (highlighted in green above). If you see red, try another port,

or if you're using an adapter or hub, try without the hub, or different adapter or hub.

For this board, tap reset and wait for the LED to turn purple, and as soon as it turns
purple, tap reset again. The second tap needs to happen while the LED is still purple.

If double-clicking doesn't work the first time, try again. Sometimes it can take a few
tries to get the rhythm right!

A lot of people end up using charge-only USB cables and it is very frustrating! Make
sure you have a USB cable you know is good for data sync.

©Adafruit Industries Page 31 of 235

https://learn.adafruit.com//assets/102129
https://learn.adafruit.com//assets/102129

FTHRS3BOOT (G:)

adafruit-circuitpy
v g" Network e

e ¥ - You will see a new disk drive appear called
= ‘

FTHRS3BOOT.

Drag the adafruit_circuitpython_etc.uf2 file
to FTHRS3BOOT.

Today (2)

FTHRS3BOOT (G:)
FTHRS3BOOT (G:)

P i + Copy to FTHRS3BOOT (G:) B

@
<

Locations
g Macintosh HD

B circumTpy
€D Network

. LRV LE S, The BOOT drive will disappear and a new

disk drive called CIRCUITPY will appear.

Favorites
6} kattni
A Applications
=] Desktop
' Documents
O Downloads
1 Pictures

That's it!

Installing the Mu Editor

Mu is a simple code editor that works with the Adafruit CircuitPython boards. It's
written in Python and works on Windows, MacOS, Linux and Raspberry Pi. The serial

console is built right in so you get immediate feedback from your board's serial
output!

©Adafruit Industries Page 32 of 235

https://learn.adafruit.com//assets/118996
https://learn.adafruit.com//assets/118996
https://learn.adafruit.com//assets/118997
https://learn.adafruit.com//assets/118997
https://learn.adafruit.com//assets/102130
https://learn.adafruit.com//assets/102130

Mu is our recommended editor - please use it (unless you are an experienced

coder with a favorite editor already!).

Download and Install Mu

-, Y O ——

Oode with i & skngls Pythen edliorfor baghser Download Mu from https://codewith.mu ().

+)(2)(2)»)(E) (@) (@) (a)(c) (s [} Click the Download link for downloads and
- ' S L) Oty - - Dmw Demon Ve O -

installation instructions.

?
~
x

print(wello from Wei®)

r
[
)

Click Start Here to find a wealth of other
information, including extensive tutorials
and and how-to's.

© 2R Ao 1+ Ty P s Comere v %0 4 P | e

©Adafruit Industries Page 33 of 235

https://learn.adafruit.com//assets/105677
https://learn.adafruit.com//assets/105677
https://codewith.mu/
https://github.com/mu-editor/mu/issues
https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors
https://learn.adafruit.com/welcome-to-circuitpython/pycharm-and-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython/pycharm-and-circuitpython

Starting Up Mu

Please select the desired mode then click "OK", Otherwise, click "Cancel”.

- BBC micro:bit
¥ Write MicroPython for the BBC microcbit

CircuitPython
Write code for boards running CircuitPython.

ESP MicroPython
Write MicroPython on ESP8266/ESP32 boards.

Lego MicroPython
Write MicroPython directly on Lego Spike devices.

Pyboard MicroPython
Use MicroPython on the Pyboard line of boards

Change mode at any time by dlicking the *Mode" button containing Mu's logo.

Cancel

Could not find an attached CircuitPython
device.

Python files for CircuitPython devices are stored on the
device. Therefore, to edit these files you need to have
the device plugged in. Until you plug in a device, Mu
will use the directory found here:
[Users/kattni/mu_code

...t0 store your code.

Using Mu

The first time you start Mu, you will be
prompted to select your 'mode' - you can
always change your mind later. For now
please select CircuitPython!

The current mode is displayed in the lower
right corner of the window, next to the
"gear" icon. If the mode says "Microbit" or
something else, click the Mode button in
the upper left, and then choose
"CircuitPython" in the dialog box that
appears.

Mu attempts to auto-detect your board on
startup, so if you do not have a
CircuitPython board plugged in with a
CIRCUITPY drive available, Mu will inform
you where it will store any code you save
until you plug in a board.

To avoid this warning, plug in a board and
ensure that the CIRCUITPY drive is
mounted before starting Mu.

You can now explore Mu! The three main sections of the window are labeled below;

the button bar, the text editor, and the serial console / REPL.

©Adafruit Industries

Page 34 of 235

https://learn.adafruit.com//assets/105681
https://learn.adafruit.com//assets/105681
https://learn.adafruit.com//assets/105679
https://learn.adafruit.com//assets/105679

00 M 1.0.3 - code.py
Mode New Load Save Serial Plotter Zoom-in Zoom-out Theme Check Heip Quit
ode.py

1

Auto-reload 1is on. Simply save files over USB to run them or enter REPL to
disable.

Press any key to enter the REPL. Use CTRL-D to reload.

Now you're ready to code! Let's keep going...

The CIRCUITPY Drive

When CircuitPython finishes installing, or you plug a CircuitPython board into your
computer with CircuitPython already installed, the board shows up on your computer
as a USB drive called CIRCUITPY.

The CIRCUITPY drive is where your code and the necessary libraries and files will live.
You can edit your code directly on this drive and when you save, it will run
automatically. When you create and edit code, you'll save your code in a code.py file
located on the CIRCUITPY drive. If you're following along with a Learn guide, you can
paste the contents of the tutorial example into code.py on the CIRCUITPY drive and
save it to run the example.

With a fresh CircuitPython install, on your CIRCUITPY drive, you'll find a code.py file
containing print("Hello World!") and an empty lib folder. If your CIRCUITPY
drive does not contain a code.py file, you can easily create one and save it to the
drive. CircuitPython looks for code.py and executes the code within the file
automatically when the board starts up or resets. Following a change to the contents
of CIRCUITPY, such as making a change to the code.py file, the board will reset, and
the code will be run. You do not need to manually run the code. This is what makes it
so easy to get started with your project and update your code!

Note that all changes to the contents of CIRCUITPY, such as saving a new file,
renaming a current file, or deleting an existing file will trigger a reset of the board.

©Adafruit Industries Page 35 of 235

o000 i CIRCUITPY
< H = LIERERIEE Q
Devices Name Date Modified ~ Size Kind

Q Macintosh HD >

[2) Time Machine & H
- |
a
£ cireurrey = boot_out.txt January 1, 2000 at 12:00 AM 102 bytes Plain Text

Favorites code.py Today at 1:26 PM 641 bytes Python script

@} Kattni > [lib Today at 3:55 PM 35KB Folder

#; Applications
[Desktop

© Downloads
@ Documents

i1 Pictures . CIRCUITPY

Boards Without CIRCUITPY

CircuitPython is available for some microcontrollers that do not support native USB.
Those boards cannot present a CIRCUITPY drive. This includes boards using ESP32
or ESP32-C3 microcontrollers.

On these boards, there are alternative ways to transfer and edit files. You can use the
Thonny editor (), which uses hidden commands sent to the REPL to read and write

files. Or you can use the CircuitPython web workflow, introduced in Circuitpython 8.
The web workflow provides browser-based WiFi access to the CircuitPython
filesystem. These guides will help you with the web workflow:

« CircuitPython on ESP32 Quick Start ()
« CircuitPython Web Workflow Code Editor Quick Start ()

Creating and Editing Code

One of the best things about CircuitPython is how simple it is to get code up and
running. This section covers how to create and edit your first CircuitPython program.

To create and edit code, all you'll need is an editor. There are many options. Adafruit
strongly recommends using Mu! It's designed for CircuitPython, and it's really simple
and easy to use, with a built in serial console!

If you don't or can't use Mu, there are a number of other editors that work quite well.
The Recommended Editors page () has more details. Otherwise, make sure you do
"Eject" or "Safe Remove" on Windows or "sync" on Linux after writing a file if you

aren't using Mu. (This is not a problem on MacOS.)

©Adafruit Industries Page 36 of 235

https://thonny.org
https://learn.adafruit.com/circuitpython-with-esp32-quick-start
https://learn.adafruit.com/getting-started-with-web-workflow-using-the-code-editor
https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors

Creating Code

Installing CircuitPython generates a

code.py file on your CIRCUITPY drive. To
Lml eda :a: R begin your own program, open your editor,
and load the code.py file from the
CIRCUITPY drive.

If you are using Mu, click the Load button
in the button bar, navigate to the
CIRCUITPY drive, and choose code.py.

Copy and paste the following code into your editor:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:

led.value = True
time.sleep(0.5)
led.value = alse
time.sleep(0.5)

The KB2040, QT Py and the Trinkeys do not have a built-in little red LED! There is
an addressable RGB NeoPixel LED. The above example will NOT work on the
KB2040, QT Py or the Trinkeys!

If you're using a KB2040, QT Py or a Trinkey, please download the NeoPixel blink

example ().

The NeoPixel blink example uses the onboard NeoPixel, but the time code is the

same. You can use the linked NeoPixel Blink example to follow along with this

guide page.

©Adafruit Industries Page 37 of 235

https://learn.adafruit.com//assets/105703
https://learn.adafruit.com//assets/105703
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Welcome_to_CircuitPython/code.py
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Welcome_to_CircuitPython/code.py

G000000000000

9099 00

Mode Load Save Serial Plotter Zoom-~in

Save the nt Python script

board
digitalio
time

5 led digitalio.Digita
6 led.direction digita

It will look like this. Note that under the
while True: line, the next four lines
begin with four spaces to indent them, and
they're indented exactly the same amount.
All the lines before that have no spaces
before the text.

Save the code.py file on your CIRCUITPY
drive.

The little LED should now be blinking. Once per half-second.

Congratulations, you've just run your first CircuitPython program!

On most boards you'll find a tiny red LED.

On the ItsyBitsy nRF52840, you'll find a tiny blue LED.

On QT Py MO, QT Py RP2040, and the Trinkey series, you will find only an RGB
NeoPixel LED.

©Adafruit Industries

Page 38 of 235

https://learn.adafruit.com//assets/105704
https://learn.adafruit.com//assets/105704
https://learn.adafruit.com//assets/105705
https://learn.adafruit.com//assets/105705

Editing Code

=t e it Poemel || Sy To edit code, open the code.py file on your
Load & Python script CIRCUITPY drive into your editor.

Make the desired changes to your code.
Save the file. That's it!

Your code changes are run as soon as the file is done saving.

There's one warning before you continue...

Don't click reset or unplug your board!

The CircuitPython code on your board detects when the files are changed or written
and will automatically re-start your code. This makes coding very fast because you
save, and it re-runs. If you unplug or reset the board before your computer finishes
writing the file to your board, you can corrupt the drive. If this happens, you may lose
the code you've written, so it's important to backup your code to your computer
regularly.

There are a couple of ways to avoid filesystem corruption.

1. Use an editor that writes out the file completely when you save it.

Check out the Recommended Editors page () for details on different editing options.

If you are dragging a file from your host computer onto the CIRCUITPY drive, you

still need to do step 2. Eject or Sync (below) to make sure the file is completely
written.

©Adafruit Industries Page 39 of 235

https://learn.adafruit.com//assets/105706
https://learn.adafruit.com//assets/105706
https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors

2. Eject or Sync the Drive After Writing

If you are using one of our not-recommended-editors, not all is lost! You can still make
it work.

On Windows, you can Eject or Safe Remove the CIRCUITPY drive. It won't actually
eject, but it will force the operating system to save your file to disk. On Linux, use the
sync command in a terminal to force the write to disk.

You also need to do this if you use Windows Explorer or a Linux graphical file
manager to drag a file onto CIRCUITPY.

Oh No | Did Something Wrong and Now The CIRCUITPY
Drive Doesn't Show Up!!!
Don't worry! Corrupting the drive isn't the end of the world (or your board!). If this

happens, follow the steps found on the Troubleshooting () page of every board
guide to get your board up and running again.

Back to Editing Code...

Now! Let's try editing the program you added to your board. Open your code.py file
into your editor. You'll make a simple change. Change the first 0.5 to 0.1. The code
should look like this:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
led.value = True
time.sleep(0.1)
led.value = False
time.sleep(0.5)

Leave the rest of the code as-is. Save your file. See what happens to the LED on your
board? Something changed! Do you know why?

You don't have to stop there! Let's keep going. Change the second 0.5 to 0.1 soit
looks like this:

©Adafruit Industries Page 40 of 235

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting

while True:
led.value =
time.sleep(0.1)
led.value = False
time.sleep(0.1)

True

Now it blinks really fast! You decreased the both time that the code leaves the LED on
and off!

Now try increasing both of the 0.1 to 1. Your LED will blink much more slowly
because you've increased the amount of time that the LED is turned on and off.

Well done! You're doing great! You're ready to start into new examples and edit them
to see what happens! These were simple changes, but major changes are done using
the same process. Make your desired change, save it, and get the results. That's
really all there is to it!

Naming Your Program File

CircuitPython looks for a code file on the board to run. There are four options: code.tx
t, code.py, main.txt and main.py. CircuitPython looks for those files, in that order, and
then runs the first one it finds. While code.py is the recommended name for your code
file, it is important to know that the other options exist. If your program doesn't seem
to be updating as you work, make sure you haven't created another code file that's
being read instead of the one you're working on.

Exploring Your First CircuitPython Program
First, you'll take a look at the code you're editing.

Here is the original code again:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:

led.value = True
time.sleep(0.5)
led.value = False
time.sleep(0.5)

©Adafruit Industries Page 41 of 235

Imports & Libraries

Each CircuitPython program you run needs to have a lot of information to work. The
reason CircuitPython is so simple to use is that most of that information is stored in
other files and works in the background. The files built into CircuitPython are called m
odules, and the files you load separately are called libraries. Modules are built into
CircuitPython. Libraries are stored on your CIRCUITPY drive in a folder called lib.

import board
import digitalio
import time

The import statements tells the board that you're going to use a particular library or
module in your code. In this example, you imported three modules: board,
digitalio, and time. All three of these modules are built into CircuitPython, so no
separate library files are needed. That's one of the things that makes this an excellent
first example. You don't need anything extra to make it work!

These three modules each have a purpose. The first one, board, gives you access to
the hardware on your board. The second, digitalio, lets you access that hardware
as inputs/outputs. The third, time, let's you control the flow of your code in multiple
ways, including passing time by 'sleeping".

Setting Up The LED

The next two lines setup the code to use the LED.

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

Your board knows the red LED as LED . So, you initialise that pin, and you set it to
output. You set led to equal the rest of that information so you don't have to type it
all out again later in our code.

Loop-de-loops

The third section starts with a while statement. while True: essentially means,
"forever do the following:". while True: creates aloop. Code will loop "while" the
condition is "true" (vs. false), and as True is never False, the code will loop forever.
All code that is indented under while True: is "inside" the loop.

©Adafruit Industries Page 42 of 235

Inside our loop, you have four items:

while True:
led.value = True
time.sleep(0.5)
led.value = False
time.sleep(0.5)

First, you have led.value = True. This line tells the LED to turn on. On the next
line, you have time.sleep(0.5) . This line is telling CircuitPython to pause running
code for 0.5 seconds. Since this is between turning the led on and off, the led will be
on for 0.5 seconds.

The next two lines are similar. led.value = False tells the LED to turn off, and tim
e.sleep(0.5) tells CircuitPython to pause for another 0.5 seconds. This occurs
between turning the led off and back on so the LED will be off for 0.5 seconds too.

Then the loop will begin again, and continue to do so as long as the code is running!

So, when you changed the first 0.5 to 0.1, you decreased the amount of time that
the code leaves the LED on. So it blinks on really quickly before turning off!

Great job! You've edited code in a CircuitPython program!

What Happens When My Code Finishes Running?

When your code finishes running, CircuitPython resets your microcontroller board to
prepare it for the next run of code. That means any set up you did earlier no longer
applies, and the pin states are reset.

For example, try reducing the code snippet above by eliminating the loop entirely,
and replacing it with led.value = True. The LED will flash almost too quickly to
see, and turn off. This is because the code finishes running and resets the pin state,
and the LED is no longer receiving a signal.

To that end, most CircuitPython programs involve some kind of loop, infinite or
otherwise.

©Adafruit Industries Page 43 of 235

What if | Don't Have the Loop?

If you don't have the loop, the code will run to the end and exit. This can lead to some
unexpected behavior in simple programs like this since the "exit" also resets the state
of the hardware. This is a different behavior than running commands via REPL. So if
you are writing a simple program that doesn't seem to work, you may need to add a
loop to the end so the program doesn't exit.

The simplest loop would be:

while True:
pass

And remember - you can press CTRL+C to exit the loop.

See also the Behavior section in the docs ().

Connecting to the Serial Console

One of the staples of CircuitPython (and programming in general!) is something called
a "print statement". This is a line you include in your code that causes your code to
output text. A print statement in CircuitPython (and Python) looks like this:

print("Hello, world!")
This line in your code.py would result in:
Hello, world!

However, these print statements need somewhere to display. That's where the serial
console comes in!

The serial console receives output from your CircuitPython board sent over USB and
displays it so you can see it. This is necessary when you've included a print statement
in your code and you'd like to see what you printed. It is also helpful for
troubleshooting errors, because your board will send errors and the serial console will
display those too.

The serial console requires an editor that has a built in terminal, or a separate

©Adafruit Industries Page 44 of 235

https://circuitpython.readthedocs.io/en/latest/README.html#behavior

terminal program. A terminal is a program that gives you a text-based interface to
perform various tasks.

Are you using Mu?

If so, good news! The serial console is built into Mu and will autodetect your board
making using the serial console really really easy.

First, make sure your CircuitPython board
is plugged in.

3:3::0' e If you open Mu without a board plugged

Python files for CircuitPython devices are stored on the in you may encounter the error seen here

device. Therefore, to edit these files you need to have
the device plugged in. Until you plug in a device, Mu

will use the directory found hers: letting you know no CircuitPython board
[Users/kattni/mu_code was found and indicating where your code
R e will be stored until you plug in a board.

If you are using Windows 7, make sure you

installed the drivers ().

Once you've opened Mu with your board plugged in, look for the Serial button in the
button bar and click it.

0000000

Load Save Serial Plotter Zoom-in Zoom-out

Open a serial connection to your device.

The Mu window will split in two, horizontally, and display the serial console at the
bottom.

Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.
code.py output:
Hello, world!

Code done running.

Press any key to enter the REPL. Use CTRL-D to reload.

If nothing appears in the serial console, it may mean your code is done running

or has no print statements in it. Click into the serial console part of Mu, and press
CTRL+D to reload.

©Adafruit Industries Page 45 of 235

https://learn.adafruit.com//assets/105925
https://learn.adafruit.com//assets/105925
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers

Serial Console Issues or Delays on Linux

If you're on Linux, and are seeing multi-second delays connecting to the serial
console, or are seeing "AT" and other gibberish when you connect, then the
modemmanager service might be interfering. Just remove it; it doesn't have much use
unless you're still using dial-up modems.

To remove modemmanager , type the following command at a shell:

sudo apt purge modemmanager

Setting Permissions on Linux

On Linux, if you see an error box something like the one below when you press the S
erial button, you need to add yourself to a user group to have permission to connect
to the serial console.

Mu
Cannot connect to device on port /dev/ttyACMO

“ Click on the device's reset button, wait a few
seconds and then try again.

& ok

On Ubuntu and Debian, add yourself to the dialout group by doing:

sudo adduser $USER dialout

After running the command above, reboot your machine to gain access to the group.
On other Linux distributions, the group you need may be different. See the Advanced
Serial Console on Linux () for details on how to add yourself to the right group.

Using Something Else?

If you're not using Mu to edit, are using or if for some reason you are not a fan of its
built in serial console, you can run the serial console from a separate program.

©Adafruit Industries Page 46 of 235

https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux

Windows requires you to download a terminal program. Check out the Advanced

Serial Console on Windows page for more details. ()

MacOS has Terminal built in, though there are other options available for download. E
heck the Advanced Serial Console on Mac page for more details. ()

Linux has a terminal program built in, though other options are available for
download. Check the Advanced Serial Console on Linux page for more details. ()

Once connected, you'll see something like the following.

Auto-reload is on. Simply save files over USB to run them or enter REPL to disab
le.

code.py output:

Hello, world!

Code done running.

Press any key to enter the REPL. Use CTRL-D to reload.

Interacting with the Serial Console

Once you've successfully connected to the serial console, it's time to start using it.

The code you wrote earlier has no output to the serial console. So, you're going to
edit it to create some output.

Open your code.py file into your editor, and include a print statement. You can print
anything you like! Just include your phrase between the quotation marks inside the
parentheses. For example:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
print("Hello, CircuitPython!")
led.value = True
time.sleep(1)
led.value = False
time.sleep(1)

Save your file.

Now, let's go take a look at the window with our connection to the serial console.

©Adafruit Industries Page 47 of 235

file:///home/welcome-to-circuitpython/advanced-serial-console-on-windows
file:///home/welcome-to-circuitpython/advanced-serial-console-on-windows
file:///home/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux
file:///home/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux

4., screen

cuitPython!
i1tPython!
Python!
1tPython!
rcuitPython!

o O O

o o

Excellent! Our print statement is showing up in our console! Try changing the printed
text to something else.

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
print("Hello back to you!")

led.value = True
time.sleep(1)
led.value = False
time.sleep(1)

Keep your serial console window where you can see it. Save your file. You'll see what
the serial console displays when the board reboots. Then you'll see your new change!

4, screen

1tPython!
i1tPython!
k (most recent call last):
ile "code.py", Lline 11, in <module>
KeyboardInterrupt:
soft reboot

on. Simply save files over USB to run them or enter REPL to disab

le.

code.py output:

Hello back to you!
Llo back to you!

The Traceback (most recent call last): istelling you the last thing your board
was doing before you saved your file. This is normal behavior and will happen every
time the board resets. This is really handy for troubleshooting. Let's introduce an error
SO you can see how it is used.

Delete the e atthe end of True from the line led.value = True so thatit says le
d.value = Tru

import board
import digitalio
import time

©Adafruit Industries Page 48 of 235

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
print("Hello back to you!")

led.value = Tru
time.sleep(1)
led.value = False
time.sleep(1l)

Save your file. You will notice that your red LED will stop blinking, and you may have a
colored status LED blinking at you. This is because the code is no longer correct and
can no longer run properly. You need to fix it!

Usually when you run into errors, it's not because you introduced them on purpose.
You may have 200 lines of code, and have no idea where your error could be hiding.
This is where the serial console can help. Let's take a look!

ecent call last):
ile "code.py", Lline 13, in <module>
KeyboardInterrupt:
soft reboot

Auto-reload is on. Simply save files over USB to run them or enter REPL to disab
le

ode.py output:

Hello back to you!

Traceback (most recent call last):
File "code.py", line 10, in <module>

NameError: name 'Tru' is not defined

The Traceback (most recent call last): istelling you that the last thing it was
able torun was line 10 in your code. The next line is your error. NameError: name
'‘Tru' is not defined . This error might not mean a lot to you, but combined with
knowing the issue is on line 10, it gives you a great place to start!

Go back to your code, and take a look at line 10. Obviously, you know what the
problem is already. But if you didn't, you'd want to look at line 10 and see if you could
figure it out. If you're still unsure, try googling the error to get some help. In this case,
you know what to look for. You spelled True wrong. Fix the typo and save your file.

©Adafruit Industries Page 49 of 235

le.

code.py output:

Hello back to you!

Traceback (most recent call last):
File "code.py", line 10, in <module>

NameError: name 'Tru' is not defined

Press any key to enter the REPL. Use CTRL-D to reload.
soft reboot

Auto-reload is on. Simply save files over USB to run them or enter REPL to disab
Le.

code.py output:

Hello back to you!

Hello back to you!

Nice job fixing the error! Your serial console is streaming and your red LED Is blinking
again.

The serial console will display any output generated by your code. Some sensors,
such as a humidity sensor or a thermistor, receive data and you can use print
statements to display that information. You can also use print statements for
troubleshooting, which is called "print debugging". Essentially, if your code isn't
working, and you want to know where it's failing, you can put print statements in
various places to see where it stops printing.

The serial console has many uses, and is an amazing tool overall for learning and
programming!

The REPL

The other feature of the serial connection is the Read-Evaluate-Print-Loop, or REPL.
The REPL allows you to enter individual lines of code and have them run immediately.
It's really handy if you're running into trouble with a particular program and can't
figure out why. It's interactive so it's great for testing new ideas.

Entering the REPL

To use the REPL, you first need to be connected to the serial console. Once that
connection has been established, you'll want to press CTRL+C.

If there is code running, in this case code measuring distance, it will stop and you'll

see Press any key to enter the REPL. Use CTRL-D to reload. Follow those
instructions, and press any key on your keyboard.

©Adafruit Industries Page 50 of 235

The Traceback (most recent call last): istelling you the last thing your board
was doing before you pressed Ctrl + C and interrupted it. The KeyboardInterrupt

is you pressing CTRL+C. This information can be handy when troubleshooting, but for
now, don't worry about it. Just note that it is expected behavior.

cee Default (tio)
Distance:

Distance:

Distance:

Distance: 3.

Distance: 6.5 cm

Traceback (most recent call last):

File "code.py", line 43, in <module>
KeyboardInterrupt:

Code done running.

Press any key to enter the REPL. Use CTRL-D to reload.

If your code.py file is empty or does not contain a loop, it will show an empty output
and Code done running. . There is no information about what your board was
doing before you interrupted it because there is no code running.

ceoe Default (tio)

Auto-reload is on. Simply save files over USB to run them or enter REPL to disab
le.

code.py output:

Code done running.

Press any key to enter the REPL. Use CTRL-D to reload.

If you have no code.py on your CIRCUITPY drive, you will enter the REPL immediately
after pressing CTRL+C. Again, there is no information about what your board was
doing before you interrupted it because there is no code running.

cee Default (tio)
Auto-reload is on. Simply save files over USB to run them or enter REPL to disab
le.

Code done running.

Press any key to enter the REPL. Use CTRL-D to reload.

Regardless, once you press a key you'll see a >>> prompt welcoming you to the
REPL!

ceoe Default (tio)

Adafruit CircuitPython 7.0.0 on 2821-10-26; Adafruit Feather RP2040 with rp2040

2 |

If you have trouble getting to the >>> prompt, try pressing Ctrl + C a few more times.

©Adafruit Industries Page 51 of 235

The first thing you get from the REPL is information about your board.

Adafruit CircuitPython 7.0.0 on 2021-16-26; Adafruit Feather RP2040 with rp2040

This line tells you the version of CircuitPython you're using and when it was released.
Next, it gives you the type of board you're using and the type of microcontroller the
board uses. Each part of this may be different for your board depending on the
versions you're working with.

This is followed by the CircuitPython prompt.

Interacting with the REPL

From this prompt you can run all sorts of commands and code. The first thing you'll do
isrun help() . This will tell you where to start exploring the REPL. To run code in the
REPL, type it in next to the REPL prompt.

Type help() nextto the promptin the REPL.

[X J Default (tio)

Adafruit CircuitPython 7.0.0 on 2021-10-26; Adafruit Feather RP2040 with rp2040
>>> help()

Then press enter. You should then see a message.
oee® Default (tio)

Adafruit CircuitPython 7.0.0 on 2021-10-26; Adafruit Feather RP2040 with rp2040
>>> help()

Welcome to Adafruit CircuitPython 7.0.0!

Visit circuitpython.org for more information.

To Llist built-in modules type “help("modules")".
>>>

First part of the message is another reference to the version of CircuitPython you're
using. Second, a URL for the CircuitPython related project guides. Then... wait. What's
this? To list built-in modules type "help("modules") . Remember the
modules you learned about while going through creating code? That's exactly what
this is talking about! This is a perfect place to start. Let's take a look!

Type help("modules") into the REPL next to the prompt, and press enter.

©Adafruit Industries Page 52 of 235

>>> help("modules")

—-main__ board

-bleio builtins
adafruit_bus_device
adafruit_pixelbuf collections
aesio countio

alarm digitalio
analogio displayio
array errno

atexit fontio
audiobusio framebufferio
audiocore gc

audiomixer [EMER
audiomp3 imagecapture
audiopwmio 10

binascii json
bitbangio keypad
bitmaptools math

bitops microcontroller
Plus any modules on the filesystem
>>>

micropython
msgpack

busio

onewireio

0s
paralleldisplay
pulseio

pwmio

qrio

rainbowio
random

re

rgbmatrix
rotaryio

rp2pio

rtc
sdcardio
sharpdisplay

storage

struct
neopixel_write
synthio

sys

terminalio
time

touchio

usb_cdc
usb_hid
usb_midi
vectorio
watchdog

supervisor

This is a list of all the core modules built into CircuitPython, including board .

Remember, board contains all of the pins on the board that you can use in your
code. From the REPL, you are able to see that list!

Type import board into the REPL and press enter. It'll go to a new prompt. It might
look like nothing happened, but that's not the case! If you recall, the import
statement simply tells the code to expect to do something with that module. In this

case, it's telling the REPL that you plan to do something with that module.

>>> import board
22>

Next, type dir(board) into the REPL and press enter.

>>> dir(board)

['__class__', '__name__', 'AG', 'A1', 'A2', 'A3'

'D4', 'D5', 'D '‘Dg', 'I2C', 'LED',

, 'SPI', 'TX', 'UART', 'board_id']

'Dg', 'D1', 'D16',
'MISO', 'MOSI',

'D11', 'D12'
'"NEOPIXEL', 'R

This is a list of all of the pins on your board that are available for you to use in your

code. Each board's list will differ slightly depending on the number of pins available.
Do you see LED ? That's the pin you used to blink the red LED!

The REPL can also be used to run code. Be aware that any code you enter into the

REPL isn't saved anywhere. If you're testing something new that you'd like to keep,

make sure you have it saved somewhere on your computer as well!

Every programmer in every programming language starts with a piece of code that
says, "Hello, World." You're going to say hello to something else. Type into the REPL:

print("Hello, CircuitPython!")

©Adafruit Industries

Page 53 of 235

Then press enter.

>>> print("Hello, CircuitPython")

That's all there is to running code in the REPL! Nice job!

You can write single lines of code that run stand-alone. You can also write entire
programs into the REPL to test them. Remember that nothing typed into the REPL is
saved.

There's a lot the REPL can do for you. It's great for testing new ideas if you want to
see if a few new lines of code will work. It's fantastic for troubleshooting code by
entering it one line at a time and finding out where it fails. It lets you see what
modules are available and explore those modules.

Try typing more into the REPL to see what happens!

Everything typed into the REPL is ephemeral. Once you reload the REPL or return
to the serial console, nothing you typed will be retained in any memory space. So
be sure to save any desired code you wrote somewhere else, or you'll lose it
when you leave the current REPL instance!

Returning to the Serial Console

When you're ready to leave the REPL and return to the serial console, simply press CT
RL+D. This will reload your board and reenter the serial console. You will restart the
program you had running before entering the REPL. In the console window, you'll see
any output from the program you had running. And if your program was affecting
anything visual on the board, you'll see that start up again as well.

You can return to the REPL at any time!

N N J Default (tio)
Auto-reload is on. Simply save files over USB to run them or enter REPL to disab
le.

Code done running.

Press any key to enter the REPL. Use CTRL-D to reload.

©Adafruit Industries Page 54 of 235

CircuitPython Libraries

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to
download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.
Please update CircuitPython and then visit https://circuitpython.org/libraries to
download the latest Library Bundle.

Each CircuitPython program you run needs to have a lot of information to work. The
reason CircuitPython is so simple to use is that most of that information is stored in
other files and works in the background. These files are called libraries. Some of them
are built into CircuitPython. Others are stored on your CIRCUITPY drive in a folder
called lib. Part of what makes CircuitPython so great is its ability to store code
separately from the firmware itself. Storing code separately from the firmware makes
it easier to update both the code you write and the libraries you depend.

Your board may ship with a lib folder already, it's in the base directory of the drive. If
not, simply create the folder yourself. When you first install CircuitPython, an empty lib
directory will be created for you.

[] 8 cIrcuITPY
<

Locations
Macintosh HD

A circurTpY
@ Network

Favorites

kattni R boot_out.txt
A Applications B code.py

2] Desktop » Il lib

i’ Documents

O Downloads)

CircuitPython libraries work in the same way as regular Python modules so the Python

docs () are an excellent reference for how it all should work. In Python terms, you can
place our library files in the lib directory because it's part of the Python path by
default.

One downside of this approach of separate libraries is that they are not built in. To

use them, one needs to copy them to the CIRCUITPY drive before they can be used.
Fortunately, there is a library bundle.

©Adafruit Industries Page 55 of 235

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://docs.python.org/3/tutorial/modules.html
https://docs.python.org/3/tutorial/modules.html

The bundle and the library releases on GitHub also feature optimized versions of the
libraries with the .mpy file extension. These files take less space on the drive and
have a smaller memory footprint as they are loaded.

Due to the regular updates and space constraints, Adafruit does not ship boards with
the entire bundle. Therefore, you will need to load the libraries you need when you
begin working with your board. You can find example code in the guides for your
board that depends on external libraries.

Either way, as you start to explore CircuitPython, you'll want to know how to get
libraries on board.

The Adafruit Learn Guide Project Bundle

The quickest and easiest way to get going with a project from the Adafruit Learn
System is by utilising the Project Bundle. Most guides now have a Download Project
Bundle button available at the top of the full code example embed. This button
downloads all the necessary files, including images, etc., to get the guide project up
and running. Simply click, open the resulting zip, copy over the right files, and you're
good to go!

The first step is to find the Download Project Bundle button in the guide you're
working on.

The Download Project Bundle button is only available on full demo code

embedded from GitHub in a Learn guide. Code snippets will NOT have the
button available.

> Circuit Playground Express: Piano in the Key of Lime > Piano in the Key of Lime

Piano in the Key of [v EN][[Save][£} Subscribe]
Lime

Now we'll take everything we learned and put it together!

Be sure to save your current code.py if you've changed anything you'd like to
keep. Download the following file. Rename it to cod save it to your
Circuit Playground Express.

Circuit Playground 1 Copy Cote
ExpreSS: Pia.no in # SPDX-FileCopyrightText: 2017 Kattni Rembor for Adafruit Industries
the Key of Lime :

SPDX-License-Identifier: MIT

By Kattni Rembor
from adafruit_circuitplayground import cp

Create a full scale tone piano using
S 1ot while True:
CircuitPython, capacitive touch and if cp.switch:

some cute little fruits. print("Slide switch off!™)
co.pixels.fill((a. 8. 8))

©Adafruit Industries Page 56 of 235

When you copy the contents of the Project Bundle to your CIRCUITPY drive, it
will replace all the existing content! If you don't want to lose anything, ensure you
copy your current code to your computer before you copy over the new Project
Bundle content!

The Download Project Bundle button downloads a zip file. This zip contains a series
of directories, nested within which is the code.py, any applicable assets like images or
audio, and the lib/ folder containing all the necessary libraries. The following zip was
downloaded from the Piano in the Key of Lime guide.

Downloads

Name

CIRCUITPY
Macintosh HD n PianoInTheKeyOfLime.zip

circuitpytho... v B Piano_In_The_Key_Of_Lime

Network B PianolnTheKeyOfLime

n README.txt

kattni

B CircuitPython 7.x
Desktop

Applications > I lib

Documents ! code.py

The Piano in the Key of Lime guide was chosen as an example. That guide is
specific to Circuit Playground Express, and cannot be used on all boards. Do not
expect to download that exact bundle and have it work on your non-CPX
microcontroller.

When you open the zip, you'll find some nested directories. Navigate through them
until you find what you need. You'll eventually find a directory for your CircuitPython
version (in this case, 7.x). In the version directory, you'll find the file and directory you
need: code.py and lib/. Once you find the content you need, you can copy it all over
to your CIRCUITPY drive, replacing any files already on the drive with the files from
the freshly downloaded zip.

In some cases, there will be other files such as audio or images in the same

directory as code.py and lib/. Make sure you include all the files when you copy

things over!

©Adafruit Industries Page 57 of 235

Once you copy over all the relevant files, the project should begin running! If you find
that the project is not running as expected, make sure you've copied ALL of the
project files onto your microcontroller board.

That's all there is to using the Project Bundle!

The Adafruit CircuitPython Library Bundle

Adafruit provides CircuitPython libraries for much of the hardware they provide,
including sensors, breakouts and more. To eliminate the need for searching for each
library individually, the libraries are available together in the Adafruit CircuitPython
Library Bundle. The bundle contains all the files needed to use each library.

Downloading the Adafruit CircuitPython Library Bundle

You can download the latest Adafruit CircuitPython Library Bundle release by clicking
the button below. The libraries are being constantly updated and improved, so you'll
always want to download the latest bundle.

Match up the bundle version with the version of CircuitPython you are running. For
example, you would download the 6.x library bundle if you're running any version of
CircuitPython 6, or the 7.x library bundle if you're running any version of CircuitPython
7, etc. If you mix libraries with major CircuitPython versions, you will get incompatible
mpy errors due to changes in library interfaces possible during major version
changes.

Click to visit circuitpython.org for the

latest Adafruit CircuitPython Library
Bundle

Download the bundle version that matches your CircuitPython firmware version. If you
don't know the version, check the version info in boot_out.txt file on the CIRCUITPY
drive, or the initial prompt in the CircuitPython REPL. For example, if you're running
v7.0.0, download the 7.x library bundle.

There's also a py bundle which contains the uncompressed python files, you probably
don't want that unless you are doing advanced work on libraries.

©Adafruit Industries Page 58 of 235

https://circuitpython.org/libraries

The CircuitPython Community Library
Bundle

The CircuitPython Community Library Bundle is made up of libraries written and
provided by members of the CircuitPython community. These libraries are often
written when community members encountered hardware not supported in the
Adafruit Bundle, or to support a personal project. The authors all chose to submit
these libraries to the Community Bundle make them available to the community.

These libraries are maintained by their authors and are not supported by Adafruit. As
you would with any library, if you run into problems, feel free to file an issue on the
GitHub repo for the library. Bear in mind, though, that most of these libraries are
supported by a single person and you should be patient about receiving a response.
Remember, these folks are not paid by Adafruit, and are volunteering their personal
time when possible to provide support.

Downloading the CircuitPython Community Library Bundle

You can download the latest CircuitPython Community Library Bundle release by
clicking the button below. The libraries are being constantly updated and improved,
so you'll always want to download the latest bundle.

Click for the latest CircuitPython

Community Library Bundle release

The link takes you to the latest release of the CircuitPython Community Library
Bundle on GitHub. There are multiple versions of the bundle available. Download the
bundle version that matches your CircuitPython firmware version. If you don't know
the version, check the version info in boot_out.txt file on the CIRCUITPY drive, or the
initial prompt in the CircuitPython REPL. For example, if you're running v7.0.0,
download the 7.x library bundle.

Understanding the Bundle

After downloading the zip, extract its contents. This is usually done by double clicking
on the zip. On Mac OSX, it places the file in the same directory as the zip.

©Adafruit Industries Page 59 of 235

https://github.com/adafruit/CircuitPython_Community_Bundle/releases

Il Downloads

oo o NI

Date Added
» [adafruit-circuitpython-bundle-7.x-mpy-20211024 Today, 12:15

E. adafruit-circuitpython-bundle-7.x-mpy-20211024.zip Today, 12:15

Open the bundle folder. Inside you'll find two information files, and two folders. One
folder is the lib bundle, and the other folder is the examples bundle.

o M adafruit-circuitpython-bundle-7.x-mpy-20211024
< h e e}

Locations Date Added
lacintosh HD
B cireuitpY

@ Network - requirements

examples Today, 12:15

1)

. Applications VERSIONS.txt

[==) Desktop
README..txt

' Documents

Now open the lib folder. When you open the folder, you'll see a large number of .mpy
files, and folders.

Date Added
[£4] Macintosh HD
B creuitPy a
@ Network » B adafruit_ads1x15

. adafruit_74hc595.mpy Today, 13

. adafruit_adt7410.mpy

A, Applications . adafruit_adx|34x.mpy

Example Files

All example files from each library are now included in the bundles in an examples
directory (as seen above), as well as an examples-only bundle. These are included for
two main reasons:

« Allow for quick testing of devices.
« Provide an example base of code, that is easily built upon for individualized
purposes.

©Adafruit Industries Page 60 of 235

M examples
) T

Date Added

Macintosh HD

e h 74hc595_8_led.py Today, 13

@ Network 74hc595_simpletest.py
ez | adafruit_io_http

@ kattni

A Applications adafruit_io_mqtt

[=) Desktop

Documents adafruit_io_simpletest.py

Copying Libraries to Your Board

First open the lib folder on your CIRCUITPY drive. Then, open the lib folder you
extracted from the downloaded zip. Inside you'll find a number of folders and .mpy
files. Find the library you'd like to use, and copy it to the lib folder on CIRCUITPY.

If the library is a directory with multiple .mpy files in it, be sure to copy the entire
folder to CIRCUITPY/lib.

This also applies to example files. Open the examples folder you extracted from the
downloaded zip, and copy the applicable file to your CIRCUITPY drive. Then, rename
it to code.py to run it.

If a library has multiple .mpy files contained in a folder, be sure to copy the entire

folder to CIRCUITPY/lib.

Understanding Which Libraries to Install

You now know how to load libraries on to your CircuitPython-compatible
microcontroller board. You may now be wondering, how do you know which libraries
you need to install? Unfortunately, it's not always straightforward. Fortunately, there is
an obvious place to start, and a relatively simple way to figure out the rest. First up:
the best place to start.

When you look at most CircuitPython examples, you'll see they begin with one or
more import statements. These typically look like the following:

« import library or module

©Adafruit Industries Page 61 of 235

However, import statements can also sometimes look like the following:

« from library or module import name
« from library or module.subpackage import name
« from library or module import name as local name

They can also have more complicated formats, such as includinga try / except
block, etc.

The important thing to know is that an import statement will always include the
name of the module or library that you're importing.

Therefore, the best place to start is by reading through the import statements.

Here is an example import list for you to work with in this section. There is no setup or
other code shown here, as the purpose of this section involves only the import list.

import time

import board

import neopixel

import adafruit lis3dh

import usb hid

from adafruit hid.consumer control import ConsumerControl

from adafruit hid.consumer _control code import ConsumerControlCode

Keep in mind, not all imported items are libraries. Some of them are almost always
built-in CircuitPython modules. How do you know the difference? Time to visit the
REPL.

In the Interacting with the REPL section () on The REPL page () in this guide, the
help("modules") command is discussed. This command provides a list of all of the
built-in modules available in CircuitPython for your board. So, if you connect to the

serial console on your board, and enter the REPL, you can run help("modules") to
see what modules are available for your board. Then, as you read through the impor
t statements, you can, for the purposes of figuring out which libraries to load, ignore
the statement that import modules.

The following is the list of modules built into CircuitPython for the Feather RP2040.

Your list may look similar or be anything down to a significant subset of this list for
smaller boards.

©Adafruit Industries Page 62 of 235

https://learn.adafruit.com/welcome-to-circuitpython/the-repl#interacting-with-the-repl-2977486-14
https://learn.adafruit.com/welcome-to-circuitpython/the-repl

>>> help("modules")

—-main__ board micropython
-bleio builtins msgpack
adafruit_bus_dev busio
adafruit_pixelbuf c onewireio
aesio (o0 0s

alarm C alio paralleldisplay
analogio displayio pulseio

array errno pwmio

atexit fontio

audiobusio framebufferio

audiocore

audiomixer ge SS re

audiomp3 imagecapture rgbmatrix

audiopwmi i0 rotaryio vectorio
json rp2pio watchdog
keypad rtc
math sdcardio
microcontroller sharpdisplay

Now that you know what you're looking for, it's time to read through the import
statements. The first two, time and board, are on the modules list above, so they're
built-in.

The next one, neopixel, is not on the module list. That means it's your first library!
So, you would head over to the bundle zip you downloaded, and search for neopixel.
There is a neopixel.mpy file in the bundle zip. Copy it over to the lib folder on your ClI
RCUITPY drive. The following one, adafruit lis3dh, is also not on the module list.
Follow the same process for adafruit_lis3dh, where you'll find adafruit_lis3dh.mpy,
and copy that over.

The fifth one is usb hid, and it is in the modules list, so it is built in. Often all of the
built-in modules come first in the import list, but sometimes they don't! Don't assume
that everything after the first library is also a library, and verify each import with the
modules list to be sure. Otherwise, you'll search the bundle and come up empty!

The final two imports are not as clear. Remember, when import statements are
formatted like this, the first thing after the from is the library name. In this case, the
library name is adafruit hid . A search of the bundle will find an adafruit_hid folder.
When a library is a folder, you must copy the entire folder and its contents as it is in
the bundle to the lib folder on your CIRCUITPY drive. In this case, you would copy the
entire adafruit_hid folder to your CIRCUITPY/lib folder.

Notice that there are two imports that begin with adafruit hid . Sometimes you will
need to import more than one thing from the same library. Regardless of how many
times you import the same library, you only need to load the library by copying over
the adafruit_hid folder once.

That is how you can use your example code to figure out what libraries to load on
your CircuitPython-compatible board!

©Adafruit Industries Page 63 of 235

There are cases, however, where libraries require other libraries internally. The
internally required library is called a dependency. In the event of library
dependencies, the easiest way to figure out what other libraries are required is to
connect to the serial console and follow along with the ImportError printed there.
The following is a very simple example of an ImportError, but the conceptis the
same for any missing library.

Example: ImportError Due to Missing
Library

If you choose to load libraries as you need them, or you're starting fresh with an
existing example, you may end up with code that tries to use a library you haven't yet
loaded. This section will demonstrate what happens when you try to utilise a library
that you don't have loaded on your board, and cover the steps required to resolve the
issue.

This demonstration will only return an error if you do not have the required library
loaded into the lib folder on your CIRCUITPY drive.

Let's use a modified version of the Blink example.

import board
import time
import simpleio

led = simpleio.DigitalQOut(board.LED)

while True:
led.value = True
time.sleep(0.5)
led.value = False
time.sleep(0.5)

Save this file. Nothing happens to your board. Let's check the serial console to see
what's going on.

L

Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.
output:
k (most recent call last):
'code.py", line 3, in <module>

: no module named 'simpleio’
Code done running.

Press any key to enter the REPL. Use CTRL-D to reload.

©Adafruit Industries Page 64 of 235

You have an ImportError. It says thereis no module named 'simpleio' . That's
the one you just included in your code!

Click the link above to download the correct bundle. Extract the lib folder from the
downloaded bundle file. Scroll down to find simpleio.mpy. This is the library file you're
looking for! Follow the steps above to load an individual library file.

The LED starts blinking again! Let's check the serial console.

y key to enter the REPL. Use CTRL-D to reload.

on. Simply save files over USB to run them or enter REPL to disable.

No errors! Excellent. You've successfully resolved an ImportError!

If you run into this error in the future, follow along with the steps above and choose
the library that matches the one you're missing.

Library Install on Non-Express Boards

If you have an MO non-Express board such as Trinket MO, Gemma MO, QT Py MO, or
one of the MO Trinkeys, you'll want to follow the same steps in the example above to
install libraries as you need them. Remember, you don't need to wait for an ImportEr
ror if you know what library you added to your code. Open the library bundle you
downloaded, find the library you need, and drag it to the lib folder on your CIRCUITPY
drive.

You can still end up running out of space on your MO non-Express board even if you
only load libraries as you need them. There are a number of steps you can use to try
to resolve this issue. You'll find suggestions on the Troubleshooting page ().

Updating CircuitPython Libraries and
Examples

Libraries and examples are updated from time to time, and it's important to update the
files you have on your CIRCUITPY drive.

©Adafruit Industries Page 65 of 235

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting

To update a single library or example, follow the same steps above. When you drag
the library file to your lib folder, it will ask if you want to replace it. Say yes. That's it!

A new library bundle is released every time there's an update to a library. Updates

include things like bug fixes and new features. It's important to check in every so
often to see if the libraries you're using have been updated.

CircUp CLI Tool

There is a command line interface (CLI) utility called CircUp () that can be used to
easily install and update libraries on your device. Follow the directions on the install

page within the CircUp learn guide (). Once you've got it installed you run the
command circup update in aterminal to interactively update all libraries on the
connected CircuitPython device. See the usage page in the CircUp guide () for a full
list of functionality

CircuitPython Documentation

You've learned about the CircuitPython built-in modules and external libraries. You
know that you can find the modules in CircuitPython, and the libraries in the Library
Bundles. There are guides available that explain the basics of many of the modules
and libraries. However, there's sometimes more capabilities than are necessarily
showcased in the guides, and often more to learn about a module or library. So,
where can you find more detailed information? That's when you want to look at the
AP| documentation.

The entire CircuitPython project comes with extensive documentation available on
Read the Docs. This includes both the CircuitPython core () and the Adafruit
CircuitPython libraries ().

CircuitPython Core Documentation

The CircuitPython core documentation () covers many of the details you might want to

know about the CircuitPython core and related topics. It includes APl and usage info,
a design guide and information about porting CircuitPython to new boards,
MicroPython info with relation to CircuitPython, and general information about the
project.

©Adafruit Industries Page 66 of 235

https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/install-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/install-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/usage
https://circuitpython.readthedocs.io/
https://circuitpython.readthedocs.io/projects/bundle/en/latest/
https://circuitpython.readthedocs.io/projects/bundle/en/latest/
https://circuitpython.readthedocs.io/

Adafruit CircuitPython

Docs » Adafruit CircuitPython API Reference © Edit on GitHub

Adafruit CircuitPython API Reference

Welcome to the API reference documentation for Adafruit CircuitPython. This contains low-level
API reference docs which may link out to separate “getting started” guides. Adafruit has many
excellent tutorials available through the Adafruit Learning System.

Python Libraries and

CircuitPython

L ﬁmu?ﬂ

Architecture
Porting

Adding +10 support to other ports

MicroPython libraries

Glossary

The main page covers the basics including where to download CircuitPython, how to
contribute, differences from MicroPython, information about the project structure, and
a full table of contents for the rest of the documentation.

The list along the left side leads to more information about specific topics.

The first section is APl and Usage. This is where you can find information about how
to use individual built-in core modules, such as time and digitalio, details about
the supported ports, suggestions for troubleshooting, and basic info and links to the li
brary bundles. The Core Modules section also includes the Support Matrix, which is a
table of which core modules are available on which boards.

The second section is Design and Porting Reference. It includes a design guide, archit
ecture information, details on porting, and adding module support to other ports.

The third section is MicroPython Specific. It includes information on MicroPython and
related libraries, and a glossary of terms.

The fourth and final section is About the Project. It includes further information
including details on building, testing, and debugging CircuitPython, along with various
other useful links including the Adafruit Community Code of Conduct.

Whether you're a seasoned pro or new to electronics and programming, you'll find a

wealth of information to help you along your CircuitPython journey in the
documentation!

©Adafruit Industries Page 67 of 235

CircuitPython Library Documentation

The Adafruit CircuitPython libraries are documented in a very similar fashion. Each
library has its own page on Read the Docs. There is a comprehensive list available her
e (). Otherwise, to view the documentation for a specific library, you can visit the o
éitHub repository for the library, and find the link in the README.

For the purposes of this page, the LED Animation library () documentation will be

featured. There are two links to the documentation in each library GitHub repo. The
first one is the docs badge near the top of the README.

README.rst

Introduction

docs |passing| < online] () Build C1 [passing

Perform a variety of LED animation tasks

The second place is the Documentation section of the README. Scroll down to find it,
and click on Read the Docs to get to the documentation.

Documentation

AP| documentation for this library can be found on

Now that you know how to find it, it's time to take a look at what to expect.

Not all library documentation will look exactly the same, but this will give you

some idea of what to expect from library docs.

The Introduction page is generated from the README, so it includes all the same info,
such as PyPl installation instructions, a quick demo, and some build details. It also
includes a full table of contents for the rest of the documentation (which is not part of
the GitHub README). The page should look something like the following.

LED_Animation Library
Docs » Introduction © Edit on GitHu

Introduction
Introduction

423 rine
Simple test Perform a variety of LED animation tasks

The left side contains links to the rest of the documentation, divided into three
separate sections: Examples, APl Reference, and Other Links.

©Adafruit Industries Page 68 of 235

https://circuitpython.readthedocs.io/projects/bundle/en/latest/
https://circuitpython.readthedocs.io/projects/bundle/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_LED_Animation

Examples

The Examples section () is a list of library examples. This list contains anywhere from a
small selection to the full list of the examples available for the library.

This section will always contain at least one example - the simple test example.

LED_Animation Library

Docs » Simple test © Edit on GitHub

Simple test

Ensure your device works with this simple test.

Simple test

The simple test example is usually a basic example designed to show your setup is
working. It may require other libraries to run. Keep in mind, it's simple - it won't
showcase a comprehensive use of all the library features.

The LED Animation simple test demonstrates the Blink animation.

Simple test

Ensure your device works with this simple test.

ples/led_animation_simpl py

1 # SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
2 # SPDX-License-Identifier: MIT

3

4 "

5 This simpletest example displays the Blink animation.

6

7 For NeoPixel FeatherWing. Update pixel_pin and pixel_num to match your wiring if using
8 a different form of NeoPixels.

g nuw

10 import board

11 import neopixel

12 from adafruit_led_animation.animation.blink import Blink

13 from adafruit_led_animation.color import RED

14

15 # Update to match the pin connected to your NeoPixels

16 pixel_pin = board.D6

17 # Update to match the number of NeoPixels you have connected

18 pixel_num = 32

19

20 pixels = neopixel.NeoPixel(pixel_pin, pixel_num, brightness=0.5, auto_write=False)
21

22 blink = Blink(pixels, speed=0.5, color=RED)

23

24 while True:
25 blink.animate()

In some cases, you'll find a longer list, that may include examples that explore other
features in the library. The LED Animation documentation includes a series of
examples, all of which are available in the library. These examples include
demonstrations of both basic and more complex features. Simply click on the example
that interests you to view the associated code.

©Adafruit Industries Page 69 of 235

https://circuitpython.readthedocs.io/projects/led-animation/en/latest/examples.html

Basic Animations

D the basic animati

wples/led_animation_basic_animations.py

1# SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
2 # SPDX-License-Identifier: MIT
3

.
S This example displays the basic animations in sequence, at a five second interval.

When there are multiple links in the Examples section, all of the example content
is, in actuality, on the same page. Each link after the first is an anchor link to the

specified section of the page. Therefore, you can also view all the available
examples by scrolling down the page.

You can view the rest of the examples by clicking through the list or scrolling down
the page. These examples are fully working code. Which is to say, while they may rely
on other libraries as well as the library for which you are viewing the documentation,
they should not require modification to otherwise work.

API| Reference

The API Reference section () includes a list of the library functions and classes. The
API (Application Programming Interface) of a library is the set of functions and classes
the library provides. Essentially, the API defines how your program interfaces with the

functions and classes that you call in your code to use the library.

There is always at least one list item included. Libraries for which the code is included
in a single Python (.py) file, will only have one item. Libraries for which the code is
multiple Python files in a directory (called subpackages) will have multiple items in this
list. The LED Animation library has a series of subpackages, and therefore, multiple
items in this list.

Click on the first item in the list to begin viewing the API Reference section.

© adafruit_led_anination.snination

Implementation Notes Docs » adafruit_led_animation.animation © Edit on GitHub

adafruit_led_animation.animation

Animation base class for CircuitPython helper library for LED animations.

As with the Examples section, all of the API Reference content is on a single

page, and the links under APl Reference are anchor links to the specified section
of the page.

©Adafruit Industries Page 70 of 235

https://circuitpython.readthedocs.io/projects/led-animation/en/latest/api.html

When you click on an item in the API Reference section, you'll find details about the
classes and functions in the library. In the case of only one item in this section, all the
available functionality of the library will be contained within that first and only
subsection. However, in the case of a library that has subpackages, each item will
contain the features of the particular subpackage indicated by the link. The
documentation will cover all of the available functions of the library, including more
complex ones that may not interest you.

The first list item is the animation subpackage. If you scroll down, you'll begin to see
the available features of animation. They are listed alphabetically. Each of these
things can be called in your code. It includes the name and a description of the
specific function you would call, and if any parameters are necessary, lists those with
a description as well.

class adafruit_led_animation.animation.Animation(pixel_object, speed, color, peers=None, paused=False,
name=None)

Base class for animations.
add_cycle_complete_receiver{callback)
Adds an additional callback when the cycle completes.
Parameters

callback - Additional callback to trigger when a cycle completes. The callback is passed
the animation object instance.

after_draw()

Animation subclasses may implement after_draw() to do operations after the main draw() is
called.

You can view the other subpackages by clicking the link on the left or scrolling down
the page. You may be interested in something a little more practical. Here is an
example. To use the LED Animation library Comet animation, you would run the
following example.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT

This example animates a jade comet that bounces from end to end of the strip.

For QT Py Haxpress and a NeoPixel strip. Update pixel pin and pixel num to match
your wiring if
using a different board or form of NeoPixels.

This example will run on SAMD21 (M@) Express boards (such as Circuit Playground
Express or QT Py
Haxpress), but not on SAMD21 non-Express boards (such as QT Py or Trinket).

import board
import neopixel

from adafruit led animation.animation.comet import Comet
from adafruit led animation.color import JADE

©Adafruit Industries Page 71 of 235

Update to match the pin connected to your NeoPixels

pixel pin = board.A3

Update to match the number of NeoPixels you have connected
pixel num = 30

pixels = neopixel.NeoPixel(pixel pin, pixel num, brightness=0.5, auto write=False)
comet = Comet(pixels, speed=0.02, color=JADE, tail length=10, bounce=True)

while True:
comet.animate()

Note the line where you create the comet object. There are a number of items inside
the parentheses. In this case, you're provided with a fully working example. But what
if you want to change how the comet works? The code alone does not explain what
the options mean.

So, in the APl Reference documentation list, click the
adafruit led animation.animation.comet link and scroll down a bit until you
see the following.

class adafruit_led_animation.animation.comet.Comet{pixel_object, speed, color, tail_length=0, reverse=False,
bounce=False, name=None, ring=False)

A comet animation.
Parameters
pixel_object - The initialised LED object.
speed (float) - Animation speed in seconds, e.g. 0.1 .
color - Animation colorin (r, g, b) tuple, or exeeesee hex format.

tail_length (int) - The length of the comet. Defaults to 25% of the length of the
pixel_object . Automatically compensates for a minimum of 2 and a maximum of the length
of the pixel_object .

reverse (bool) - Animates the comet in the reverse order. Defaults to False .
bounce (bool) - Comet will bounce back and forth. Defaults to True .

ring (bool) - Ring mode. Defaults to Fatse .

Look familiar? It is! This is the documentation for setting up the comet object. It
explains what each argument provided in the comet setup in the code meant, as well
as the other available features. For example, the code includes speed=0.02. The
documentation clarifies that this is the "Animation speed in seconds". The code
doesn'tinclude ring. The documentation indicates this is an available setting that
enables "Ring mode".

This type of information is available for any function you would set up in your code. If
you need clarification on something, wonder whether there's more options available,
or are simply interested in the details involved in the code you're writing, check out
the documentation for the CircuitPython libraries!

©Adafruit Industries Page 72 of 235

Other Links

This section is the same for every library. It includes a list of links to external sites,
which you can visit for more information about the CircuitPython Project and Adafruit.

That covers the CircuitPython library documentation! When you are ready to go
beyond the basic library features covered in a guide, or you're interested in
understanding those features better, the library documentation on Read the Docs has
you covered!

Recommended Editors

The CircuitPython code on your board detects when the files are changed or written
and will automatically re-start your code. This makes coding very fast because you
save, and it re-runs.

However, you must wait until the file is done being saved before unplugging or
resetting your board! On Windows using some editors this can sometimes take up to
90 seconds, on Linux it can take 30 seconds to complete because the text editor
does not save the file completely. Mac OS does not seem to have this delay, which is
nice!

This is really important to be aware of. If you unplug or reset the board before your
computer finishes writing the file to your board, you can corrupt the drive. If this
happens, you may lose the code you've written, so it's important to backup your code
to your computer regularly.

To avoid the likelihood of filesystem corruption, use an editor that writes out the file
completely when you save it. Check out the list of recommended editors below.

Recommended editors

- mu () is an editor that safely writes all changes (it's also our recommended
editor!)
- emacs () is also an editor that will fully write files on save ()

« Sublime Text () safely writes all changes

« Visual Studio Code () appears to safely write all changes

« gedit on Linux appears to safely write all changes

« IDLE (), in Python 3.8.1 or later, was fixed () to write all changes immediately

« Thonny () fully writes files on save

©Adafruit Industries Page 73 of 235

https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor
https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/manual/html_node/emacs/Customize-Save.html
https://www.sublimetext.com/
https://code.visualstudio.com/
https://docs.python.org/3/library/idle.html
https://bugs.python.org/issue36807
https://thonny.org/

Recommended only with particular settings or add-ons

- vim () / vi safely writes all changes. But set up vim to not write swapfiles () (.swp
files: temporary records of your edits) to CIRCUITPY. Run vim with vim -n, set
the no swapfile option, or setthe directory option to write swapfiles
elsewhere. Otherwise the swapfile writes trigger restarts of your program.

« The PyCharm IDE () is safe if "Safe Write" is turned on in Settings->System
Settings->Synchronization (true by default).

- If you are using Atom (), install the fsync-on-save package () or the language-
circuitpython package () so that it will always write out all changes to files on CIR
CUITPY.

« SlickEdit () works only if you add a macro to flush the disk ().

The editors listed below are specifically NOT recommended!

Editors that are NOT recommended

« notepad (the default Windows editor) and Notepad++ can be slow to write, so
the editors above are recommended! If you are using notepad, be sure to eject
the drive.

« IDLE in Python 3.8.0 or earlier does not force out changes immediately.

« nano (on Linux) does not force out changes.

« geany (on Linux) does not force out changes.

« Anything else - Other editors have not been tested so please use a
recommended one!

Advanced Serial Console on Windows

Windows 7 and 8.1

If you're using Windows 7 (or 8 or 8.1), you'll need to install drivers. See the Windows 7
and 8.1 Drivers page () for details. You will not need to install drivers on Mac, Linux or
Windows 10.

You are strongly encouraged to upgrade to Windows 10 if you are still using Windows
7 or Windows 8 or 8.1. Windows 7 has reached end-of-life and no longer receives
security updates. A free upgrade to Windows 10 is still available ().

©Adafruit Industries Page 74 of 235

http://www.vim.org/
http://www.vim.org/
https://vi.stackexchange.com/a/179
https://www.jetbrains.com/pycharm/
https://atom.io/
https://atom.io/
https://atom.io/packages/fsync-on-save
https://atom.io/packages/language-circuitpython
https://atom.io/packages/language-circuitpython
https://www.slickedit.com/
https://www.slickedit.com/
https://forums.adafruit.com/viewtopic.php?f=57&t=144412#p713290
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://www.zdnet.com/article/heres-how-you-can-still-get-a-free-windows-10-upgrade/

What's the COM?

First, you'll want to find out which serial port your board is using. When you plug your
board in to USB on your computer, it connects to a serial port. The port is like a door
through which your board can communicate with your computer using USB.

You'll use Windows Device Manager to determine which port the board is using. The
easiest way to determine which port the board is using is to first check without the
board plugged in. Open Device Manager. Click on Ports (COM & LPT). You should find
something already in that list with (COM#) after it where # is a number.

& Device Manager -] X
Eile Action View Help
¢ mE HdmlRe

v & blackbox
> i Audio inputs and outputs
> [Computer
> wm Disk drives
[Display adapters
> s Human Interface Devices
> @ IDE ATA/ATAPI controllers
i IEEE 1394 host controllers
» s Imaging devices
=2 Keyboards
> (‘ Mice and other pointing devices
> [Monitors
3 Network adapters
i@ Ports (COM & LPT)
i Communications Port (COM1)
» [Print queues

<

> = Printers
» [Processors
» Smart card readers
> [l Smart cards
> B Software devices
i| Sound, video and game controllers
» S Storage controllers
= System devices
> § Universal Serial Bus controllers
> 0 WSD Print Provider

Now plug in your board. The Device Manager list will refresh and a new item will
appear under Ports (COM & LPT). You'll find a different (COM#) after this item in the
list.

©Adafruit Industries Page 75 of 235

& Device Manager -] X
File Action View Help
e m D Hdml =

v & blackbox
» i} Audio inputs and outputs
» @ Computer
wa Disk drives
> [Display adapters
{5 Human Interface Devices
@ IDE ATA/ATAPI controllers
> @ IEEE 1394 host controllers
> o Imaging devices

> =2 Keyboards
> m Mice and other pointing devices
[Monitors
(3 Network adapters
> Portable Devices
i@ Ports (COM &LPT)
i Communications Port (COM1)
i USB Serial Device (COM3)
1 Print queues
> F3 Printers
3 Processors
Ly Smart card readers
> [Smart cards
> B Software devices
> M Sound, video and game controllers
> Su Storage controllers
@ System devices
§ Universal Serial Bus controllers
> = WSD Print Provider

<

Sometimes the item will refer to the name of the board. Other times it may be called
something like USB Serial Device, as seen in the image above. Either way, there is a
new (COM#) following the name. This is the port your board is using.

Install Putty

If you're using Windows, you'll need to download a terminal program. You're going to
use PuUTTY.

The first thing to do is download the latest version of PuTTY (). You'll want to
download the Windows installer file. It is most likely that you'll need the 64-bit version.

Download the file and install the program on your machine. If you run into issues, you
can try downloading the 32-bit version instead. However, the 64-bit version will work
on most PCs.

Now you need to open PuTTY.

« Under Connection type: choose the button next to Serial.

« In the box under Serial line, enter the serial port you found that your board is
using.

- In the box under Speed, enter 115200. This called the baud rate, which is the
speed in bits per second that data is sent over the serial connection. For boards
with built in USB it doesn't matter so much but for ESP8266 and other board

©Adafruit Industries Page 76 of 235

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

with a separate chip, the speed required by the board is 115200 bits per second.
So you might as well just use 115200!

If you want to save those settings for later, use the options under Load, save or delete
a stored session. Enter a name in the box under Saved Sessions, and click the Save
button on the right.

#R PuTTY Configuration ? X
Category:
=- Session Basic options for your PuTTY session
T L'oglglng Specify the destination you want to connect to
=) Termina
Serial line Speed
Keyboard
- Bel [com3) | [115200
; - Features Connection type: ~ ~ ~
=) Window (ORaw (OTelnet (ORlogin ()SSH (@ Serial
- Appearance
o) Load, save or delete a stored session
Behaviour
- Translation Saved Sessions
- Selection
Colours | Defautt Settings ' Load
=] Connection =
Data Save
Proxy
- Telnet Delete
Rlogin
+- SSH
Sevidl C_Iose window on exit: B
() Aways (O Never (® Onlyon clean exit
About Help Open Cancel

Once your settings are entered, you're ready to connect to the serial console. Click
"Open" at the bottom of the window. A new window will open.

EP COM3 - PuTTY - m] X

©Adafruit Industries Page 77 of 235

If no code is running, the window will either be blank or will look like the window
above. Now you're ready to see the results of your code.

Great job! You've connected to the serial console!

Advanced Serial Console on Mac

Connecting to the serial console on Mac does not require installing any drivers or
extra software. You'll use a terminal program to find your board, and screen to
connect to it. Terminal and screen both come installed by default.

What's the Port?

First you'll want to find out which serial port your board is using. When you plug your
board in to USB on your computer, it connects to a serial port. The port is like a door
through which your board can communicate with your computer using USB.

The easiest way to determine which port the board is using is to first check without
the board plugged in. Open Terminal and type the following:

ls /dev/tty.*

Each serial connection shows up in the /dev/ directory. It has a name that starts with
tty. . The command ls shows you a list of items in a directory. You can use * as a
wildcard, to search for files that start with the same letters but end in something
different. In this case, you're asking to see all of the listings in /dev/ that start with t
ty. and end in anything. This will show us the current serial connections.

000 4. bash
bash E bash

Last login: Fri Dec 8 17:55:09 on ttys003

1936 kattnifirobocrepe:~ $ Ls /dev/tty.*

/dev/tty.Bluetooth-Incoming-Por

1937 kattnifrobocrepe:~ $ ||

©Adafruit Industries Page 78 of 235

Now, plug your board. In Terminal, type:

ls /dev/tty.*

This will show you the current serial connections, which will now include your board.

00 4. bash
bash 81 bash
Last login: Fri Dec 8 17:55:09 on ttys0e3

1936 kattniflrobocrepe:~ $ Ls /dev/tty.*

/dev/tty.Bluetooth-Incoming-Por

1937 kattnifirobocrepe:~ $ Ls /dev/tty.*

/dev/tty.Bluetooth-Incoming-Portll/dev/tty .usbmoden141441

1937 Kattnifrobocrepe:~ $ I

A new listing has appeared called /dev/tty.usbmodem141441 . The tty.usbmodeml
41441 part of this listing is the name the example board is using. Yours will be called

something similar.

Using Linux, a new listing has appeared called /dev/ttyACMO . The ttyACMO part of
this listing is the name the example board is using. Yours will be called something

similar.

Connect with screen

Now that you know the name your board is using, you're ready connect to the serial
console. You're going to use a command called screen.The screen command is
included with MacOS. To connect to the serial console, use Terminal. Type the

following command, replacing board name with the name you found your board is

using:

screen /dev/tty.board name 115200

The first part of this establishes using the screen command. The second part tells

screen the name of the board you're trying to use. The third part tells screen what
baud rate to use for the serial connection. The baud rate is the speed in bits per
second that data is sent over the serial connection. In this case, the speed required

by the board is 115200 bits per second.

©Adafruit Industries

Page 79 of 235

[N ee’ 4. bash
bash 81 bash €2

Last login: Fri Dec 8 17:55:09 on ttys003

1936 kattniflrobocrepe:~ $ Ls /dev/tty.=*

/dev/tty.Bluetooth-Incoming-Por

1937 kattniflrobocrepe:~ $ Ls /dev/tty.x*

/dev/tty.Bluetooth-Incoming-Portll/dev/tty . usbmoden141441

1937 kattnifirobocrepe:~ $ screen /dev/tty.usbmodem141441 11523.’]'

Press enter to run the command. It will open in the same window. If no code is
running, the window will be blank. Otherwise, you'll see the output of your code.

Great job! You've connected to the serial console!

Advanced Serial Console on Linux

Connecting to the serial console on Linux does not require installing any drivers, but
you may need to install screen using your package manager. You'll use a terminal
program to find your board, and screen to connect to it. There are a variety of
terminal programs such as gnome-terminal (called Terminal) or Konsole on KDE.

The tio program works as well to connect to your board, and has the benefit of
automatically reconnecting. You would need to install it using your package manager.

What's the Port?

First you'll want to find out which serial port your board is using. When you plug your
board in to USB on your computer, it connects to a serial port. The port is like a door
through which your board can communicate with your computer using USB.

The easiest way to determine which port the board is using is to first check without
the board plugged in. Open your terminal program and type the following:

ls /dev/ttyACM*
Each serial connection shows up in the /dev/ directory. It has a name that starts with tt

yACM. The command ls shows you a list of items in a directory. You can use * as a
wildcard, to search for files that start with the same letters but end in something

©Adafruit Industries Page 80 of 235

different. In this case, You're asking to see all of the listings in /dev/ that start with ttyA
CM and end in anything. This will show us the current serial connections.

In the example below, the error is indicating that are no current serial connections
starting with ttyACM.

sommersoft@thespacebetween: ~

File Edit View Search Terminal Help
sommersoft@thespacebetween:~$ 1s /dev/ttyACM*

1s: cannot access '/dev/ttyACM*': No such file or directory
sommersoft@thespacebetween:~$

Now plug in your board. In your terminal program, type:

ls /dev/ttyACM*

This will show you the current serial connections, which will now include your board.

sommersoft@thespacebetween: ~

File Edit View Search Terminal Help

sommersoft@thespacebetween:~$ 1s /dev/ttyACM*

1s: cannot access '/dev/ttyACM*': No such file or directory
sommersoft@thespacebetween:~$ 1s /dev/ttyACM*

J/dev/ttyACMO

sommersoft@thespacebetween:~$ D

A new listing has appeared called /dev/ttyACMO. The ttyACMO part of this listing is
the name the example board is using. Yours will be called something similar.

Connect with screen

Now that you know the name your board is using, you're ready connect to the serial
console. You'll use a command called screen. You may need to install it using the
package manager.

©Adafruit Industries Page 81 of 235

To connect to the serial console, use your terminal program. Type the following
command, replacing board name with the name you found your board is using:

screen /dev/tty.board name 115200

The first part of this establishes using the screen command. The second part tells
screen the name of the board you're trying to use. The third part tells screen what
baud rate to use for the serial connection. The baud rate is the speed in bits per
second that data is sent over the serial connection. In this case, the speed required
by the board is 115200 bits per second.

File Edit View Search Terminal Help

sommersoft@thespacebetween:~$ 1ls /dev/ttyACM*

1s: cannot access '/dev/ttyACM*': No such file or directory
sommersoft@thespacebetween:~$ 1ls /dev/ttyACM*

J/dev/ttyACMO

sommersoft@thespacebetween:~$ screen /dev/ttyACMO 11520dD

Press enter to run the command. It will open in the same window. If no code is
running, the window will be blank. Otherwise, you'll see the output of your code.

Great job! You've connected to the serial console!

Permissions on Linux

If you try to run screen and it doesn't work, then you may be running into an issue
with permissions. Linux keeps track of users and groups and what they are allowed to
do and not do, like access the hardware associated with the serial connection for
running screen . So if you see something like this:

P Y Y

ackbar@desk: ~

ackbar@desk:~$ screen /dev/ttyACMO
[screen is terminating]
ackbar@desk:~$ l

©Adafruit Industries Page 82 of 235

then you may need to grant yourself access. There are generally two ways you can do
this. The first is to just run screen using the sudo command, which temporarily
gives you elevated privileges.

O S ® ackbar@desk: ~

ackbar@desk:~$ screen /dev/ttyACMO
[screen is terminating]

ackbar@desk:~$ sudo screen /dev/ttyACMO
[sudo] password for ackbar: l

Once you enter your password, you should be in:

' Y-Xo

ackbar@desk: ~

Auto-reload is on. Simply save files over USB to run them or enter REPL to disab
le.

Press any key to enter the REPL. Use CTRL-D to reload.

Adafruit CircuitPython 2.1.0 on 2017-10-17; Adafruit Trinket MO with samd2lel8

>>>

The second way is to add yourself to the group associated with the hardware. To
figure out what that group is, use the command 1ls -1 as shown below. The group
name is circled in red.

Then use the command adduser to add yourself to that group. You need elevated

privileges to do this, so you'll need to use sudo . In the example below, the group is a
dm and the user is ackbar.

-

ackbar@desk: ~

ackbar@desk:~$ 1s -1 _/dev/ttyACMO

crw-rw---- 1 rootiadm 166, © Dec 21 08:29 /dev/ttyACMO
ackbar@desk:~$ sudo adduser ackbar (adm

Adding user “ackbar' to group ‘adm' ...

Adding user ackbar to group adm
Done.
ackbar@desk:~$ l

After you add yourself to the group, you'll need to logout and log back in, or in some
cases, reboot your machine. After you log in again, verify that you have been added

to the group using the command groups . If you are still not in the group, reboot and
check again.

©Adafruit Industries Page 83 of 235

O S ® ackbar@desk: ~

ackbar@desk:~$ groups
ackbar adm sudo
ackbar@desk:~$]

And now you should be able to run screen without using sudo.

O S @ ackbar@desk: ~

ackbar@desk:~$ groups

ackbar adm sudo

ackbar@desk:~$ screen /dev/ttyACMO 115200[]

And you're in:
O S ® ackbar@desk: ~

Auto-reload is on. Simply save files over USB to run them or enter REPL to disab
le.

Press any key to enter the REPL. Use CTRL-D to reload.

Adafruit CircuitPython 2.1.0 on 2017-10-17; Adafruit Trinket M@ with samd2lel8
>>> I

The examples above use screen, but you can also use other programs, such as put
ty or picocom, if you prefer.

Frequently Asked Questions

These are some of the common questions regarding CircuitPython and CircuitPython
microcontrollers.

What are some common acronyms to know?

CP or CPy = CircuitPython ()

CPC = Circuit Playground Classic () (does not run CircuitPython)
CPX = Circuit Playground Express ()

CPB = Circuit Playground Bluefruit ()

©Adafruit Industries Page 84 of 235

https://circuitpython.org
https://www.adafruit.com/product/3000
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/4333

Using Older Versions

As CircuitPython development continues and there are new releases, Adafruit
will stop supporting older releases. Visit https://circuitpython.org/downloads to
download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.
Please update CircuitPython and then visit https://circuitpython.org/libraries to
download the latest Library Bundle.

| have to continue using CircuitPython 6.x or earlier.
Where can | find compatible libraries?

We are no longer building or supporting the CircuitPython 6.x or earlier library
bundles. We highly encourage you to update CircuitPython to the latest version ()
and use the current version of the libraries (). However, if for some reason you
cannot update, here are the last available library bundles for older versions:

« 2.x bundle ()
« 3.x bundle ()
« 4.x bundle ()
« 5.x bundle ()
« 6.X bundle ()

Python Arithmetic

Does CircuitPython support floating-point numbers?

All CircuitPython boards support floating point arithmetic, even if the
microcontroller chip does not support floating point in hardware. Floating point
numbers are stored in 30 bits, with an 8-bit exponent and a 22-bit mantissa. Note
that this is two bits less than standard 32-bit single-precision floats. You will get
about 5-1/2 digits of decimal precision.

(The broadcom port may provide 64-bit floats in some cases.)

©Adafruit Industries Page 85 of 235

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-2.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-3.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20200707/adafruit-circuitpython-bundle-4.x-mpy-20200707.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20210129/adafruit-circuitpython-bundle-5.x-mpy-20210129.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20211213/adafruit-circuitpython-bundle-6.x-mpy-20211213.zip

Does CircuitPython support long integers, like regular
Python?

Python long integers (integers of arbitrary size) are available on most builds, except
those on boards with the smallest available firmware size. On these boards,
integers are stored in 31 bits.

Boards without long integer support are mostly SAMD21 ("MOQ") boards without an
external flash chip, such as the Adafruit Gemma MO, Trinket MO, QT Py MO, and the
Trinkey series. There are also a number of third-party boards in this category.
There are also a few small STM third-party boards without long integer support.

time.localtime(), time.mktime(), time.time() , and
time.monotonic ns() are available only on builds with long integers.

Wireless Connectivity

How do | connect to the Internet with CircuitPython?

If you'd like to include WiFi in your project, your best bet is to use a board that is
running natively on ESP32 chipsets - those have WiFi built in!

If your development board has an SPI port and at least 4 additional pins, you can
check out this guide () on using AirLift with CircuitPython - extra wiring is required
and some boards like the MacroPad or NeoTrellis do not have enough available
pins to add the hardware support.

For further project examples, and guides about using AirLift with specific hardware,
check out the Adafruit Learn System ().

How do | do BLE (Bluetooth Low Energy) with
CircuitPython?

The nRF52840 and nRF52833 boards have the most complete BLE
implementation. Your program can act as both a BLE central and peripheral. As a
central, you can scan for advertisements, and connect to an advertising board. As a
peripheral, you can advertise, and you can create services available to a central.
Pairing and bonding are supported.

ESP32-C3 and ESP32-S3 boards currently provide an incomplete () BLE
implementation. Your program can act as a central, and connect to a peripheral.

©Adafruit Industries Page 86 of 235

https://learn.adafruit.com/adafruit-io-basics-airlift
https://learn.adafruit.com/search?q=airlift
https://github.com/adafruit/circuitpython/issues/5926

You can advertise, but you cannot create services. You cannot advertise
anonymously. Pairing and bonding are not supported.

The ESP32 could provide a similar implementation, but it is not yet available. Note
that the ESP32-5S2 does not have Bluetooth capability.

On most other boards with adequate firmware space, BLE is available for use with
AirLift () or other NINA-FW-based co-processors. Some boards have this
coprocessor on board, such as the PyPortal (). Currently, this implementation only
supports acting as a BLE peripheral. Scanning and connecting as a central are not
yet implemented. Bonding and pairing are not supported.

Are there other ways to communicate by radio with
CircuitPython?

Check out Adafruit's RFM boards ()for simple radio communication supported by
CircuitPython, which can be used over distances of 100m to over a km, depending
on the version. The RFM SAMD21 MO boards can be used, but they were not
designed for CircuitPython, and have limited RAM and flash space; using the RFM
breakouts or FeatherWings with more capable boards will be easier.

Asyncio and Interrupts

Is there asyncio support in CircuitPython?

There is support for asyncio starting with CircuitPython 7.1.0, on all boards except
the smallest SAMD21 builds. Read about using it in the Cooperative Multitasking in
CircuitPython () Guide.

Does CircuitPython support interrupts?

No. CircuitPython does not currently support interrupts - please use asyncio for
multitasking / 'threaded' control of your code

Status RGB LED

©Adafruit Industries Page 87 of 235

https://learn.adafruit.com/adafruit-airlift-breakout/circuitpython-ble
https://learn.adafruit.com/adafruit-airlift-breakout/circuitpython-ble
https://learn.adafruit.com/adafruit-pyportal/circuitpython-ble
https://www.adafruit.com/?q=rfm&sort=BestMatch
https://learn.adafruit.com/cooperative-multitasking-in-circuitpython
https://learn.adafruit.com/cooperative-multitasking-in-circuitpython

My RGB NeoPixel/DotStar LED is blinking funny colors -
what does it mean?

The status LED can tell you what's going on with your CircuitPython board. Read
more here for what the colors mean! ()

Memory Issues

What is a MemoryError?

Memory allocation errors happen when you're trying to store too much on the
board. The CircuitPython microcontroller boards have a limited amount of memory
available. You can have about 250 lines of code on the MO Express boards. If you
try to import too many libraries, a combination of large libraries, or run a program
with too many lines of code, your code will fail to run and you will receive a
MemoryError in the serial console.

What do | do when | encounter a MemoryError?

Try resetting your board. Each time you reset the board, it reallocates the memory.
While this is unlikely to resolve your issue, it's a simple step and is worth trying.

Make sure you are using .mpy versions of libraries. All of the CircuitPython libraries
are available in the bundle in a .mpy format which takes up less memory than .py
format. Be sure that you're using the latest library bundle () for your version of
CircuitPython.

If that does not resolve your issue, try shortening your code. Shorten comments,
remove extraneous or unneeded code, or any other clean up you can do to
shorten your code. If you're using a lot of functions, you could try moving those
into a separate library, creating a .mpy of that library, and importing it into your
code.

You can turn your entire file into a .mpy and import that into code.py. This means
you will be unable to edit your code live on the board, but it can save you space.

Can the order of my import statements affect memory?

It can because the memory gets fragmented differently depending on allocation
order and the size of objects. Loading .mpy files uses less memory so its
recommended to do that for files you aren't editing.

©Adafruit Industries Page 88 of 235

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#circuitpython-rgb-status-light-2978455-24
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#circuitpython-rgb-status-light-2978455-24
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases

How can | create my own .mpy files?

You can make your own .mpy versions of files with mpy-cross .

You can download mpy-cross for your operating system from here (). Builds are
available for Windows, macOS, x64 Linux, and Raspberry Pi Linux. Choose the
latest mpy-cross whose version matches the version of CircuitPython you are
using.

To make a .mpy file, run ./mpy-cross path/to/yourfile.py to create a
yourfile.mpy in the same directory as the original file.

How do | check how much memory | have free?

Run the following to see the number of bytes available for use:

import gc
gc.mem free()

Unsupported Hardware

Is ESP8266 or ESP32 supported in CircuitPython? Why
not?

We dropped ESP8266 support as of 4.x - For more information please read about it
here ()!

As of CircuitPython 8.x we have started to support ESP32 and ESP32-C3 and have
added a WiFi workflow for wireless coding! ()

We also support ESP32-S2 & ESP32-S3, which have native USB.

Does Feather MO support WINC15007?
No, WINC1500 will not fit into the MO flash space.

Can AVRs such as ATmega328 or ATmega2560 run
CircuitPython?

No.

©Adafruit Industries Page 89 of 235

https://adafruit-circuit-python.s3.amazonaws.com/index.html?prefix=bin/mpy-cross/
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-for-esp8266
https://learn.adafruit.com/circuitpython-with-esp32-quick-start
https://learn.adafruit.com/circuitpython-with-esp32-quick-start

Troubleshooting

From time to time, you will run into issues when working with CircuitPython. Here are
a few things you may encounter and how to resolve them.

As CircuitPython development continues and there are new releases, Adafruit
will stop supporting older releases. Visit https://circuitpython.org/downloads to
download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.
Please update CircuitPython and then visit https://circuitpython.org/libraries to
download the latest Library Bundle.

Always Run the Latest Version of
CircuitPython and Libraries

As CircuitPython development continues and there are new releases, Adafruit will
stop supporting older releases. You need to update to the latest CircuitPython. ().

You need to download the CircuitPython Library Bundle that matches your version of
CircuitPython. Please update CircuitPython and then download the latest bundle ().

As new versions of CircuitPython are released, Adafruit will stop providing the
previous bundles as automatically created downloads on the Adafruit CircuitPython
Library Bundle repo. If you must continue to use an earlier version, you can still
download the appropriate version of mpy-cross from the particular release of
CircuitPython on the CircuitPython repo and create your own compatible .mpy library
files. However, it is best to update to the latest for both CircuitPython and the library
bundle.

| have to continue using CircuitPython 5.x or earlier.
Where can | find compatible libraries?

Adafruit is no longer building or supporting the CircuitPython 5.x or earlier library
bundles. You are highly encourged to update CircuitPython to the latest version () and

use the current version of the libraries (). However, if for some reason you cannot

update, links to the previous bundles are available in the FAQ ().

©Adafruit Industries Page 90 of 235

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://learn.adafruit.com/welcome-to-circuitpython/frequently-asked-questions#faq-3105289

Bootloader (boardnameBOOT) Drive Not
Present

You may have a different board.

Only Adafruit Express boards and the SAMD21 non-Express boards ship with the UF2
bootloader ()installed. The Feather MO Basic, Feather MO Adalogger, and similar
boards use a regular Arduino-compatible bootloader, which does not show a boardna
meBOOT drive.

MakeCode

If you are running a MakeCode () program on Circuit Playground Express, press the
reset button just once to get the CPLAYBOOT drive to show up. Pressing it twice will
not work.

MacOS

DriveDx and its accompanything SAT SMART Driver can interfere with seeing the
BOOT drive. See this forum post () for how to fix the problem.

Windows 10

Did you install the Adafruit Windows Drivers package by mistake, or did you upgrade
to Windows 10 with the driver package installed? You don't need to install this
package on Windows 10 for most Adafruit boards. The old version (v1.5) can interfere
with recognizing your device. Go to Settings -> Apps and uninstall all the "Adafruit"
driver programs.

Windows 7 or 8.1

To use a CircuitPython-compatible board with Windows 7 or 8.1, you must install a
driver. Installation instructions are available here ().

It is recommended () that you upgrade to Windows 10 if possible; an upgrade is

probably still free for you. Check here ().

©Adafruit Industries Page 91 of 235

file:///home/deploy/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader
file:///home/deploy/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader
file:///home/deploy/makecode/sharing-and-saving?view=all#step-1-bootloader-mode
https://forums.adafruit.com/viewtopic.php?f=58&t=161917&p=799309#p799215
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9

The Windows Drivers installer was last updated in November 2020 (v2.5.0.0) .
Windows 7 drivers for CircuitPython boards released since then, including

RP2040 boards, are not yet available. The boards work fine on Windows 10. A
new release of the drivers is in process.

You should now be done! Test by unplugging and replugging the board. You should
see the CIRCUITPY drive, and when you double-click the reset button (single click on
Circuit Playground Express running MakeCode), you should see the appropriate boar
dnameBOOT drive.

Let us know in the Adafruit support forums () or on the Adafruit Discord () if this does
not work for you!

Windows Explorer Locks Up When
Accessing boardnameBOOT Drive

On Windows, several third-party programs that can cause issues. The symptom is that
you try to access the boardnameBOOT drive, and Windows or Windows Explorer
seems to lock up. These programs are known to cause trouble:

« AIDA64: to fix, stop the program. This problem has been reported to AIDA6G4.
They acquired hardware to test, and released a beta version that fixes the
problem. This may have been incorporated into the latest release. Please let us
know in the forums if you test this.

- Hard Disk Sentinel

« Kaspersky anti-virus: To fix, you may need to disable Kaspersky completely.
Disabling some aspects of Kaspersky does not always solve the problem. This
problem has been reported to Kaspersky.

« ESET NOD32 anti-virus: There have been problems with at least version
9.0.386.0, solved by uninstallation.

Copying UF2 to boardnameBOOT Drive
Hangs at 0% Copied

On Windows, a Western Dlgital (WD) utility that comes with their external USB drives
can interfere with copying UF2 files to the boardnameBOOT drive. Uninstall that utility
to fix the problem.

©Adafruit Industries Page 92 of 235

https://forums.adafruit.com
https://adafru.it/discord

CIRCUITPY Drive Does Not Appear or
Disappears Quickly

Kaspersky anti-virus can block the appearance of the CIRCUITPY drive. There has not
yet been settings change discovered that prevents this. Complete uninstallation of
Kaspersky fixes the problem.

Norton anti-virus can interfere with CIRCUITPY. A user has reported this problem on
Windows 7. The user turned off both Smart Firewall and Auto Protect, and CIRCUITPY
then appeared.

Sophos Endpoint security software can cause CIRCUITPY to disappear () and the
BOOT drive to reappear. It is not clear what causes this behavior.

Device Errors or Problems on Windows

Windows can become confused about USB device installations. This is particularly
true of Windows 7 and 8.1. It is recommended () that you upgrade to Windows 10 if

possible; an upgrade is probably still free for you: see this @ ().

If not, try cleaning up your USB devices. Use Uwe Sieber's Device Cleanup Tool () (on

that page, scroll down to "Device Cleanup Tool"). Download and unzip the tool.
Unplug all the boards and other USB devices you want to clean up. Run the tool as
Administrator. You will see a listing like this, probably with many more devices. It is
listing all the USB devices that are not currently attached.

oy
CIN
File Devices Options Help
Non-present devices:
Device Name : Last used Class Senvice Enumerator COM Pot
wes Adafrut Rotary Trinkey M USB Device 19 Minutes DiskDrive disk USBSTOR
CIRCUITPY 19 Minetes WPD WUDFWpdFs SWD
CircuitPython Audio 19 Minutes MEDIA usbaudio usB
§ CircuitPython usb_midi ports[0] 19 Minutes SoftwareDevice SwWD
§ CircuitPython usb_midi ports[0] 19 Minutes SoftwareDevice SwWD
+ HID-compliant system multi-axis controller 19 Minutes HIDClass HID
¥ USB Composte Device 19 Minutes usB usbcegp usB
+ USB Input Device 19 Minutes HIDClass HidUsb usB
¥ USB Mass Storage Device 19 Minutes usB USBSTOR usB
i USB Serial Device (COM3) 19 Minutes Ports usbser use Ccom3
wer Volume 19 Minutes Volume volume STORAGE
Non-present Devices: 11 Selected Devices: 0

©Adafruit Industries Page 93 of 235

https://forums.adafruit.com/viewtopic.php?f=60&t=187629
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://www.cnet.com/tech/services-and-software/windows-10-download/
https://www.uwe-sieber.de/misc_tools_e.html

Select all the devices you want to remove, and then press Delete. It is usually safe
just to select everything. Any device that is removed will get a fresh install when you
plug it in. Using the Device Cleanup Tool also discards all the COM port assignments
for the unplugged boards. If you have used many Arduino and CircuitPython boards,
you have probably seen higher and higher COM port numbers used, seemingly
without end. This will fix that problem.

Serial Console in Mu Not Displaying
Anything

There are times when the serial console will accurately not display anything, such as,
when no code is currently running, or when code with no serial output is already
running before you open the console. However, if you find yourself in a situation
where you feel it should be displaying something like an error, consider the following.

Depending on the size of your screen or Mu window, when you open the serial
console, the serial console panel may be very small. This can be a problem. A basic
CircuitPython error takes 10 lines to display!

Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.
code.py output:
Traceback (most recent call last):
File "code.py", line 7
SyntaxError: invalid syntax

Press any key to enter the REPL. Use CTRL-D to reload.

More complex errors take even more lines!

Therefore, if your serial console panel is five lines tall or less, you may only see blank
lines or blank lines followed by Press any key to enter the REPL. Use CTRL-D
to reload. . If this is the case, you need to either mouse over the top of the panel to
utilise the option to resize the serial panel, or use the scrollbar on the right side to
scroll up and find your message.

Adafruit CircuitPython REPL |
A

SCROLL BACK TO FIND OUTPUT AAA '

Press any key to enter the REPL. Use CTRL-D to reload.

Where is my error?

v
Adafruit O

This applies to any kind of serial output whether it be error messages or print
statements. So before you start trying to debug your problem on the hardware side,

©Adafruit Industries Page 94 of 235

be sure to check that you haven't simply missed the serial messages due to serial
output panel height.

code.py Restarts Constantly

CircuitPython will restart code.py if you or your computer writes to something on the
CIRCUITPY drive. This feature is called auto-reload, and lets you test a change to your
program immediately.

Some utility programs, such as backup, anti-virus, or disk-checking apps, will write to
the CIRCUITPY as part of their operation. Sometimes they do this very frequently,
causing constant restarts.

Acronis True Image and related Acronis programs on Windows are known to cause
this problem. It is possible to prevent this by disabling the " (JAcronis Managed

Machine Service Mini" ().

If you cannot stop whatever is causing the writes, you can disable auto-reload by
putting this code in boot.py or code.py:

import supervisor

supervisor.disable autoreload()

CircuitPython RGB Status Light

Nearly all CircuitPython-capable boards have a single NeoPixel or DotStar RGB LED
on the board that indicates the status of CircuitPython. A few boards designed before
CircuitPython existed, such as the Feather MO Basic, do not.

Circuit Playground Express and Circuit Playground Bluefruit have multiple RGB LEDs,
but do NOT have a status LED. The LEDs are all green when in the bootloader. In
versions before 7.0.0, they do NOT indicate any status while running CircuitPython.

CircuitPython 7.0.0 and Later

The status LED blinks were changed in CircuitPython 7.0.0 in order to save battery
power and simplify the blinks. These blink patterns will occur on single color LEDs
when the board does not have any RGB LEDs. Speed and blink count also vary for
this reason.

©Adafruit Industries Page 95 of 235

https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder
https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder
https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder

On start up, the LED will blink YELLOW multiple times for 1 second. Pressing the
RESET button (or on Espressif, the BOOT button) during this time will restart the board
and then enter safe mode. On Bluetooth capable boards, after the yellow blinks, there
will be a set of faster blue blinks. Pressing reset during the BLUE blinks will clear
Bluetooth information and start the device in discoverable mode, so it can be used

with a BLE code editor.

Once started, CircuitPython will blink a pattern every 5 seconds when no user code is
running to indicate why the code stopped:

- 1 GREEN blink: Code finished without error.
- 2 RED blinks: Code ended due to an exception. Check the serial console for

details.
« 3 YELLOW blinks: CircuitPython is in safe mode. No user code was run. Check

the serial console for safe mode reason.

When in the REPL, CircuitPython will set the status LED to WHITE. You can change the
LED color from the REPL. The status indicator will not persist on non-NeoPixel or
DotStar LEDs.

The CircuitPython Boot Sequence

Version 7.0 and later

Bootloader Mode
Reset LED solid red

USB Y, .
RESET ol LED Pulses slowly,
7 = C°"",)eded RGB LED Green

The bootloader

Board is tums on the M8
powered Red LED ¢
on and c
bootloader :
code starts "Wanl 530 : RESET ¢ No
m ‘stzc::e; : not pushed:
RESET pushe g0 (’; gse’
[oge LED Pulses quickly, RGB LED red

Safe Mode: board is a
USB drive, code.py and
boot.py are not run

JV
User Code Mode Rest

ARDUINO ~ Code P’ijﬂ"’"
‘ T

RGB LED
blinks Yellow

Red LED blinks

RESET
pushed . Yes|
within 1000ms

Run user code:
boot.py runs then code.py

| No

RESET
pushed
"within 1000ms
3 i3 &% * BLE 9
the device will be discoverable and
LED blinks fast blue for Bluetooth boards the blue LED will be solid (not blink)

CircuitPython waits an
ly additional 1000ms for a
RESET to Safe Mode

Version 7.00 @Adafruit L

CircuitPython 6.3.0 and earlier

Here's what the colors and blinking mean:

« steady GREEN: code.py (or code.txt, main.py, or main.txt) is running

©Adafruit Industries Page 96 of 235

« pulsing GREEN: code.py (etc.) has finished or does not exist

steady YELLOW at start up: (4.0.0-alpha.5 and newer) CircuitPython is waiting for

a reset to indicate that it should start in safe mode

pulsing YELLOW: Circuit Python is in safe mode: it crashed and restarted
steady WHITE: REPL is running
steady BLUE: boot.py is running

Colors with multiple flashes following indicate a Python exception and then indicate
the line number of the error. The color of the first flash indicates the type of error:

« GREEN: IndentationError
« CYAN: SyntaxError

« WHITE: NameError

« ORANGE: OSError

« PURPLE: ValueError

« YELLOW: other error

These are followed by flashes indicating the line number, including place value. WHIT
E flashes are thousands' place, BLUE are hundreds' place, YELLOW are tens' place,
and CYAN are one's place. So for example, an error on line 32 would flash YELLOW
three times and then CYAN two times. Zeroes are indicated by an extra-long dark gap.

©Adafruit Industries

The CircuitPython Boot Sequence

Bootloader Mode

Boardis
powered
on and
bootloader
code starts

1

The bootloader

RESET pushed

Reset
LED solid red

RESET
pushed

RESET
not pushed
go to User
Code

usB
> Connected
?

tums on the
Red LED

Yes ulses slo

'Y,
RGB LED Green

Wait 500
milliseconds
to see if

No

LED Pulses quickly.
RGB LED red

User Code Mode Red LED blinks Safe Mode: board is a USB drive,
Reset 3 times code.py and boot.py are not run
ARDUINO Code il Bootloader
S0 Piihon, _ Sestse RESET ™ ves . - 48
Y,E additional . T pake

Code starts immediately

pushed
2

700ms for a
RESET to
Safe Mode

No

RGB LED
is Yellow

Run user code
Boot py runs then code.py

L Version 1.00 @Adafruit

Page 97 of 235

Serial console showing ValueError:
Incompatible .mpy file

This error occurs when importing a module that is stored as a .mpy binary file that
was generated by a different version of CircuitPython than the one its being loaded
into. In particular, the mpy binary format changed between CircuitPython versions 6.x
and 7.x, 2.x and 3.x, and 1.x and 2.x.

So, for instance, if you upgraded to CircuitPython 7.x from 6.x you’ll need to download
a newer version of the library that triggered the error on import . All libraries are
available in the Adafruit bundle ().

CIRCUITPY Drive Issues

You may find that you can no longer save files to your CIRCUITPY drive. You may find
that your CIRCUITPY stops showing up in your file explorer, or shows up as NO_NAM
E. These are indicators that your filesystem has issues. When the CIRCUITPY disk is
not safely ejected before being reset by the button or being disconnected from USB,
it may corrupt the flash drive. It can happen on Windows, Mac or Linux, though it is
more common on Windows.

Be aware, if you have used Arduino to program your board, CircuitPython is no longer
able to provide the USB services. You will need to reload CircuitPython to resolve this
situation.

The easiest first step is to reload CircuitPython. Double-tap reset on the board so you
get a boardnameBOOT drive rather than a CIRCUITPY drive, and copy the latest
version of CircuitPython (.uf2) back to the board. This may restore CIRCUITPY
functionality.

If reloading CircuitPython does not resolve your issue, the next step is to try putting
the board into safe mode.

Safe Mode

Whether you've run into a situation where you can no longer edit your code.py on
your CIRCUITPY drive, your board has gotten into a state where CIRCUITPY is read-
only, or you have turned off the CIRCUITPY drive altogether, safe mode can help.

©Adafruit Industries Page 98 of 235

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest

Safe mode in CircuitPython does not run any user code on startup, and disables auto-
reload. This means a few things. First, safe mode bypasses any code in boot.py
(where you can set CIRCUITPY read-only or turn it off completely). Second, it does not
run the code in code.py. And finally, it does not automatically soft-reload when data is
written to the CIRCUITPY drive.

Therefore, whatever you may have done to put your board in a non-interactive state,
safe mode gives you the opportunity to correct it without losing all of the data on the
CIRCUITPY drive.

Entering Safe Mode in CircuitPython 7.x and Later

To enter safe mode when using CircuitPython 7.x, plug in your board or hit reset
(highlighted in red above). Immediately after the board starts up or resets, it waits
1000ms. On some boards, the onboard status LED will blink yellow during that time. If
you press reset during that 1000ms, the board will start up in safe mode. It can be
difficult to react to the yellow LED, so you may want to think of it simply as a "slow"
double click of the reset button. (Remember, a fast double click of reset enters the
bootloader.)

Entering Safe Mode in CircuitPython 6.x

To enter safe mode when using CircuitPython 6.x, plug in your board or hit reset
(highlighted in red above). Immediately after the board starts up or resets, it waits
700ms. On some boards, the onboard status LED (highlighted in green above) will
turn solid yellow during this time. If you press reset during that 700ms, the board will
start up in safe mode. It can be difficult to react to the yellow LED, so you may want to
think of it simply as a slow double click of the reset button. (Remember, a fast double
click of reset enters the bootloader.)

In Safe Mode

Once you've entered safe mode successfully in CircuitPython 6.x, the LED will pulse
yellow.

If you successfully enter safe mode on CircuitPython 7.x, the LED will intermittently
blink yellow three times.

If you connect to the serial console, you'll find the following message.

©Adafruit Industries Page 99 of 235

Auto-reload is off.
Running in safe mode! Not running saved code.

CircuitPython is in safe mode because you pressed the reset button during boot.
Press again to exit safe mode.

Press any key to enter the REPL. Use CTRL-D to reload.

You can now edit the contents of the CIRCUITPY drive. Remember, your code will not
run until you press the reset button, or unplug and plug in your board, to get out of
safe mode.

At this point, you'll want to remove any user code in code.py and, if present, the boot.
py file from CIRCUITPY. Once removed, tap the reset button, or unplug and plug in
your board, to restart CircuitPython. This will restart the board and may resolve your
drive issues. If resolved, you can begin coding again as usual.

If safe mode does not resolve your issue, the board must be completely erased and
CircuitPython must be reloaded onto the board.

You WILL lose everything on the board when you complete the following steps. If

possible, make a copy of your code before continuing.

To erase CIRCUITPY: storage.erase filesystem()

CircuitPython includes a built-in function to erase and reformat the filesystem. If you
have a version of CircuitPython older than 2.3.0 on your board, you can update to the
newest version () to do this.

1. Connect to the CircuitPython REPL () using Mu or a terminal program.
2. Type the following into the REPL:

>>> import storage
>>> storage.erase filesystem()

CIRCUITPY will be erased and reformatted, and your board will restart. That's it!

Erase CIRCUITPY Without Access to the REPL

If you can't access the REPL, or you're running a version of CircuitPython previous to
2.3.0 and you don't want to upgrade, there are options available for some specific
boards.

©Adafruit Industries Page 100 of 235

file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

The options listed below are considered to be the "old way" of erasing your board.
The method shown above using the REPL is highly recommended as the best method
for erasing your board.

For the specific boards listed below:

If the board you are trying to erase is listed below, follow the steps to use the file to
erase your board.

1. Download the correct erase file:

Circuit Playground Express

Feather MO Express

Feather M4 Express

Metro MO Express

Metro M4 Express QSPI Eraser

Trellis M4 Express (QSPI)

Grand Central M4 Express (QSPI)

PyPortal M4 Express (QSPI)

Circuit Playground Bluefruit (QSPI)

Monster M4SK (QSPI)

PyBadge/PyGamer QSPI Eraser.UF2

©Adafruit Industries Page 101 of 235

https://cdn-learn.adafruit.com/assets/assets/000/048/745/original/flash_erase_express.ino.circuitplay.uf2?1512152080
https://cdn-learn.adafruit.com/assets/assets/000/048/746/original/flash_erase_express.ino.feather_m0_express.uf2?1512152098
https://cdn-learn.adafruit.com/assets/assets/000/076/217/original/flash_erase.ino.feather_m4.uf2
https://cdn-learn.adafruit.com/assets/assets/000/048/747/original/flash_erase_express.ino.metro_m0.uf2?1512152103
https://cdn-learn.adafruit.com/assets/assets/000/073/820/original/Metro_M4_QSPI_Eraser.UF2?1553805937
https://cdn-learn.adafruit.com/assets/assets/000/067/535/original/Trellis_M4_QSPI_Eraser.UF2?1544719380
https://cdn-learn.adafruit.com/assets/assets/000/069/314/original/GC_M4_QSPI_Erase.UF2?1547404471
https://cdn-learn.adafruit.com/assets/assets/000/072/252/original/PYPORTAL_QSPI_Eraser.UF2?1551738305
https://cdn-learn.adafruit.com/assets/assets/000/082/950/original/CP_Bluefruit_QSPI_Erase.UF2?1572026649
https://cdn-learn.adafruit.com/assets/assets/000/083/330/original/M4SK_QSPI_Eraser.UF2?1572551433
https://cdn-learn.adafruit.com/assets/assets/000/083/331/original/PyBadge_QSPI_Eraser.UF2?1572551613

CLUE_Flash_Erase.UF2

Matrix_Portal_M4_(QSPI).UF2

2. Double-click the reset button on the board to bring up the boardnameBOOT

3. Drag the erase .uf2 file to the boardnameBOOT drive.

4. The status LED will turn yellow or blue, indicating the erase has started.

5. After approximately 15 seconds, the status LED will light up green. On the
NeoTrellis M4 this is the first NeoPixel on the grid

6. Double-click the reset button on the board to bring up the boardnameBOOT d
rive.

7. Drag the appropriate latest release of CircuitPython () .uf2 file to the boardnam
eBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer
again.

If the LED flashes red during step 5, it means the erase has failed. Repeat the steps
starting with 2.

If you haven't already downloaded the latest release of CircuitPython for your board,

check out the installation page (). You'll also need to load your code and reinstall your

libraries!

For SAMD21 non-Express boards that have a UF2
bootloader:

Any SAMD21-based microcontroller that does not have external flash available is
considered a SAMD21 non-Express board. Non-Express boards that have a UF2
bootloader include Trinket MO, GEMMA MO, QT Py MO, and the SAMD21-based
Trinkey boards.

If you are trying to erase a SAMD21 non-Express board, follow these steps to erase
your board.

1. Download the erase file:

SAMD21 non-Express Boards

©Adafruit Industries Page 102 of 235

https://cdn-learn.adafruit.com/assets/assets/000/088/454/original/CLUE_Flash_Erase.UF2?1581873830
https://cdn-learn.adafruit.com/assets/assets/000/098/741/original/Matrix_Portal_M4_%28QSPI%29.UF2?1611076081
https://circuitpython.org/downloads
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
https://cdn-learn.adafruit.com/assets/assets/000/048/748/original/erase_m0.uf2

2. Double-click the reset button on the board to bring up the boardnameBOOT
drive.

3. Drag the erase .uf2 file to the boardnameBOOT drive.

4. The boot LED will start flashing again, and the boardnameBOOT drive will
reappeatr.

5. Drag the appropriate latest release CircuitPython () .uf2 file to the
boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer
again.

If you haven't already downloaded the latest release of CircuitPython for your board,

check out the installation page () YYou'll also need to load your code and reinstall

your libraries!

For SAMD21 non-Express boards that do not have a UF2
bootloader:

Any SAMD21-based microcontroller that does not have external flash available is
considered a SAMD21 non-Express board. Non-Express boards that do not have a
UF2 bootloader include the Feather MO Basic Proto, Feather Adalogger, or the
Arduino Zero.

If you are trying to erase a non-Express board that does not have a UF2 bootloader, f
ollow these directions to reload CircuitPython using bossac (), which will erase and
re-create CIRCUITPY.

Running Out of File Space on SAMD21 Non-
Express Boards

Any SAMD21-based microcontroller that does not have external flash available is
considered a SAMD21 non-Express board. This includes boards like the Trinket MO,
GEMMA MO, QT Py MO, and the SAMD21-based Trinkey boards.

The file system on the board is very tiny. (Smaller than an ancient floppy disk.) So, its

likely you'll run out of space but don't panic! There are a number of ways to free up
space.

©Adafruit Industries Page 103 of 235

https://circuitpython.org/downloads
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/non-uf2-installation
file:///home/welcome-to-circuitpython/non-uf2-installation
file:///home/welcome-to-circuitpython/non-uf2-installation

Not enough disk space to copy
“adafruit_si7021.mpy"

- Additional 3 KB of disk space is required to copy this
file. You can manage disk space by removing items
from the Storage section of About This Mac.

Cancel Manage Disk Space

Delete something!

The simplest way of freeing up space is to delete files from the drive. Perhaps there
are libraries in the lib folder that you aren't using anymore or test code that isn't in
use. Don't delete the lib folder completely, though, just remove what you don't need.

The board ships with the Windows 7 serial driver too! Feel free to delete that if you
don't need it or have already installed it. It's “12KiB or so.

Use tabs

One unique feature of Python is that the indentation of code matters. Usually the
recommendation is to indent code with four spaces for every indent. In general, that
is recommended too. However, one trick to storing more human-readable code is to
use a single tab character for indentation. This approach uses 1/4 of the space for
indentation and can be significant when you're counting bytes.

On MacOS?

MacOS loves to generate hidden files. Luckily you can disable some of the extra
hidden files that macOS adds by running a few commands to disable search indexing
and create zero byte placeholders. Follow the steps below to maximize the amount of
space available on macOS.

Prevent & Remove MacOS Hidden Files

First find the volume name for your board. With the board plugged in run this
command in a terminal to list all the volumes:

1s -1 /Volumes

©Adafruit Industries Page 104 of 235

Look for a volume with a name like CIRCUITPY (the default for CircuitPython). The full
path to the volume is the /Volumes/CIRCUITPY path.

Now follow the steps from this question () to run these terminal commands that stop

hidden files from being created on the board:

mdutil -i off /Volumes/CIRCUITPY

cd /Volumes/CIRCUITPY

rm -rf .{, .}{fseventsd,Spotlight-V*,Trashes}

mkdir .fseventsd

touch .fseventsd/no log .metadata never index .Trashes
cd -

Replace /Volumes/CIRCUITPY in the commands above with the full path to your
board's volume if it's different. At this point all the hidden files should be cleared from
the board and some hidden files will be prevented from being created.

Alternatively, with CircuitPython 4.x and above, the special files and folders
mentioned above will be created automatically if you erase and reformat the
filesystem. WARNING: Save your files first! Do this in the REPL:

>>> import storage
>>> storage.erase filesystem()

However there are still some cases where hidden files will be created by MacOS. In
particular if you copy a file that was downloaded from the internet it will have special
metadata that MacOS stores as a hidden file. Luckily you can run a copy command
from the terminal to copy files without this hidden metadata file. See the steps below.

Copy Files on MacOS Without Creating Hidden Files

Once you've disabled and removed hidden files with the above commands on macOS
you need to be careful to copy files to the board with a special command that
prevents future hidden files from being created. Unfortunately you cannot use drag
and drop copy in Finder because it will still create these hidden extended attribute
files in some cases (for files downloaded from the internet, like Adafruit's modules).

To copy a file or folder use the -X option for the cp command in a terminal. For
example to copy a file_name.mpy file to the board use a command like:

cp -X file name.mpy /Volumes/CIRCUITPY

©Adafruit Industries Page 105 of 235

http://apple.stackexchange.com/questions/6707/how-to-stop-os-x-from-writing-spotlight-and-trash-files-to-memory-cards-and-usb/7135#7135

(Replace file_name.mpy with the name of the file you want to copy.)

Or to copy a folder and all of the files and folders contained within, use a command
like:

cp -rX folder to copy /Volumes/CIRCUITPY

If you are copying to the lib folder, or another folder, make sure it exists before
copying.

if 1ib does not exist, you'll create a file named lib !

cp -X file name.mpy /Volumes/CIRCUITPY/lib

This is safer, and will complain if a lib folder does not exist.
cp -X file name.mpy /Volumes/CIRCUITPY/lib/

Other MacOS Space-Saving Tips

If you'd like to see the amount of space used on the drive and manually delete hidden
files here's how to do so. First, move into the Volumes/ directory with c¢d /Volumes/,
and then list the amount of space used on the CIRCUITPY drive with the df
command.

000 Default (-bash)

Last login: Thu Oct 28 17:19:15 on ttys608

7039 kattnifrobocrepe:~ $ cd /Volumes/

7040 kattnifrobocrepe: $ df -h CIRCUITPY/
Filesystem Size Used Avail Capacity iused ifree %iused Mounted on
/dev/disk2s1 47Ki 46Ki 1.0Ki 98’ 512 0 100% /Volumes/CIRCUITPY

7041 kattnifirobocrepe: o |

That's not very much space left! The next step is to show a list of the files currently on
the CIRCUITPY drive, including the hidden files, using the ls command. You cannot
use Finder to do this, you must do it via command line!

7041 kattnifrobocrepe: $ Ls -a CIRCUITPY/

.idea

7042 kattnifrobocrepe: o |

There are a few of the hidden files that MacOS loves to generate, all of which begin
with a ._ before the file name. Remove the ._ files using the rm command. You can

©Adafruit Industries Page 106 of 235

remove them all once by running rm CIRCUITPY/. *.The * acts as a wildcard to
apply the command to everything that begins with ._ at the same time.

7042 Ra:tvx@robccrcpc: $ rm CIRCUITPY/._*

7043 kattnifrobocrepe: $ I

Finally, you can run df again to see the current space used.

7043 kattnifirobocrepe: $ df -h CIRCUITPY/
Filesystem Size Used Avail Capacity iused ifree %iused Mounted on
/dev/disk2s1 47Ki 34Ki 13Ki 73/ 512 @ 100% /Volumes/CIRCUITPY

7044 kattnifrobocrepe: $ I

Nice! You have 12Ki more than before! This space can now be used for libraries and
code!

Device Locked Up or Boot Looping

In rare cases, it may happen that something in your code.py or boot.py files causes
the device to get locked up, or even go into a boot loop. A boot loop occurs when the
board reboots repeatedly and never fully loads. These are not caused by your
everyday Python exceptions, typically it's the result of a deeper problem within
CircuitPython. In this situation, it can be difficult to recover your device if CIRCUITPY
is not allowing you to modify the code.py or boot.py files. Safe mode is one recovery
option. When the device boots up in safe mode it will not run the code.py or boot.py
scripts, but will still connect the CIRCUITPY drive so that you can remove or modify
those files as needed.

The method used to manually enter safe mode can be different for different devices.
It is also very similar to the method used for getting into bootloader mode, which is a
different thing. So it can take a few tries to get the timing right. If you end up in
bootloader mode, no problem, you can try again without needing to do anything else.

For most devices:

Press the reset button, and then when the RGB status LED blinks yellow, press the
reset button again. Since your reaction time may not be that fast, try a "slow" double
click, to catch the yellow LED on the second click.

For ESP32-S2 based devices:

Press and release the reset button, then press and release the boot button about 3/4
of a second later.

©Adafruit Industries Page 107 of 235

Refer to the diagrams above for boot sequence details.

Welcome to the Community!

CircuitPython is a programming language that's super simple to get started with and
great for learning. It runs on microcontrollers and works out of the box. You can plug it
in and get started with any text editor. The best part? CircuitPython comes with an
amazing, supportive community.

Everyone is welcome! CircuitPython is Open Source. This means it's available for
anyone to use, edit, copy and improve upon. This also means CircuitPython becomes
better because of you being a part of it. Whether this is your first microcontroller
board or you're a seasoned software engineer, you have something important to offer
the Adafruit CircuitPython community. This page highlights some of the many ways
you can be a part of it!

©Adafruit Industries Page 108 of 235

Adafruit Discord

The Adafruit Discord server is the best place to start. Discord is where the community
comes together to volunteer and provide live support of all kinds. From general
discussion to detailed problem solving, and everything in between, Discord is a digital
maker space with makers from around the world.

There are many different channels so you can choose the one best suited to your
needs. Each channel is shown on Discord as "#channelname". There's the #help-with-
projects channel for assistance with your current project or help coming up with ideas
for your next one. There's the #show-and-tell channel for showing off your newest
creation. Don't be afraid to ask a question in any channel! If you're unsure, #general is
a great place to start. If another channel is more likely to provide you with a better
answer, someone will guide you.

The help with CircuitPython channel is where to go with your CircuitPython questions.
#help-with-circuitpython is there for new users and developers alike so feel free to
ask a question or post a comment! Everyone of any experience level is welcome to
join in on the conversation. Your contributions are important! The #circuitpython-dev
channel is available for development discussions as well.

The easiest way to contribute to the community is to assist others on Discord.
Supporting others doesn't always mean answering questions. Join in celebrating
successes! Celebrate your mistakes! Sometimes just hearing that someone else has
gone through a similar struggle can be enough to keep a maker moving forward.

The Adafruit Discord is the 24x7x365 hackerspace that you can bring your
granddaughter to.

©Adafruit Industries Page 109 of 235

Visit https://adafru.it/discord ()to sign up for Discord. Everyone is looking forward to
meeting you!

CircuitPython.org

The easiest way to program
microcontrollers

CircuitPython is a programming language
designed to simplify experimenting and
learning to code on low-cost microcontroller

-
000000000000

boards.

Beyond the Adafruit Learn System, which you are viewing right now, the best place to
find information about CircuitPython is circuitpython.org (). Everything you need to get
started with your new microcontroller and beyond is available. You can do things like
download CircuitPython for your microcontroller () or download the latest

CircuitPython Library bundle (), or check out which single board computers support

Blinka (). You can also get to various other CircuitPython related things like Awesome
Cir—cuiththon or the Python for Microcontrollers newsletter. This is all incredibly
useful, but it isn't necessarily community related. So why is it included here? The Cont
ributing page ().

Contributing

If you'd like to contribute to the CircuitPython project, the CircuitPython libraries are a great way to begin. This page is
updated with daily status information from the CircuitPython libraries, including open pull requests, open issues and library
infrastructure issues.

Do you write a language other than English? Another great way to contribute to the project is to contribute new localizations
(translations) of CircuitPython, or update current localizations, using Weblate.

If this is your first time contributing, or you'd like to see our recommended contribution workflow, we have a guide on
Contributing to CircuitPython with Git and Github. You can also find us in the #circuitpython channel on the Adafruit Discord.

Have an idea for a new driver or library? File an issue on the CircuitPython repo!

CircuitPython itself is written in C. However, all of the Adafruit CircuitPython libraries
are written in Python. If you're interested in contributing to CircuitPython on the
Python side of things, check out circuitpython.org/contributing (). You'll find
information pertaining to every Adafruit CircuitPython library GitHub repository, giving

you the opportunity to join the community by finding a contributing option that works
for you.

Note the date on the page next to Current Status for:

©Adafruit Industries Page 110 of 235

https://adafru.it/discord
https://circuitpython.org
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/libraries
https://circuitpython.org/blinka
https://circuitpython.org/blinka
https://circuitpython.org/contributing
https://circuitpython.org/contributing
https://circuitpython.org/contributing

Current Status for Tue, Nov 02, 2021

If you submit any contributions to the libraries, and do not see them reflected on the
Contributing page, it could be that the job that checks for new updates hasn't yet run
for today. Simply check back tomorrow!

Now, a look at the different options.
Pull Requests

The first tab you'll find is a list of open pull requests.

Pull Requests Open Issues Library Infrastructure Issues CircuitPython Localization
I

This is the current status of open pull requests and issues across all of the library repos.
Open Pull Requests

« Adafruit_CircuitPython_AdafruitiO
o Call wifi.connect() after wifi.reset() (Open 113 days)

* Adafruit_CircuitPython_ADS1x15
o Supress f-string recommendation in .pylintrc (Open 1 days)

* Adafruit_CircuitPython_ADT7410
o Adding critical temp features (Open 168 days)

GitHub pull requests, or PRs, are opened when folks have added something to an
Adafruit CircuitPython library GitHub repo, and are asking for Adafruit to add, or
merge, their changes into the main library code. For PRs to be merged, they must first
be reviewed. Reviewing is a great way to contribute! Take a look at the list of open
pull requests, and pick one that interests you. If you have the hardware, you can test
code changes. If you don't, you can still check the code updates for syntax. In the
case of documentation updates, you can verify the information, or check it for spelling
and grammar. Once you've checked out the update, you can leave a comment letting
us know that you took a look. Once you've done that for a while, and you're more
comfortable with it, you can consider joining the CircuitPythonLibrarians review team.
The more reviewers we have, the more authors we can support. Reviewing is a crucial
part of an open source ecosystem, CircuitPython included.

Open Issues

The second tab you'll find is a list of open issues.

©Adafruit Industries Page 111 of 235

Pull Requests Open Issues Library Infrastructure Issues CircuitPython Localization

Sort by issue labels | All v

Open Issues

* Adafruit_CircuitPython_74HC595
o Missing Type Annotations (Open 34 days)

* Adafruit_CircuitPython_AdafruitlO
o Missing Type Annotations (Open 34 days)
o use of . and dot and groups (using circuitpython) (Open 125 days)

GitHub issues are filed for a number of reasons, including when there is a bug in the

library or example code, or when someone wants to make a feature request. Issues

are a great way to find an opportunity to contribute directly to the libraries by
updating code or documentation. If you're interested in contributing code or
documentation, take a look at the open issues and find one that interests you.

If you're not sure where to start, you can search the issues by label. Labels are
applied to issues to make the goal easier to identify at a first glance, or to indicate the
difficulty level of the issue. Click on the dropdown next to "Sort by issue labels" to see

the list of available labels, and click on one to choose it.

Sort by issue labels [S4.\
Good first issue

Open Issues Documentation
Hacktoberfest
e Adafruit_Circy il

Bug
Enhancement
o Adafruit_Circy S plls e S5
o Missing Question or
Support
Help wanted

o Adafruit_CircuUi il
o ad1115 tdALEESLGIEN r

o Missing

o use of. i

If you're new to everything, new to contributing to open source, or new to

contributing to the CircuitPython project, you can choose "Good first issue". Issues
with that label are well defined, with a finite scope, and are intended to be easy for

someone new to figure out.

If you're looking for something a little more complicated, consider "Bug" or
"Enhancement”. The Bug label is applied to issues that pertain to problems or failures

found in the library. The Enhancement label is applied to feature requests.

©Adafruit Industries

Page 112 of 235

Don't let the process intimidate you. If you're new to Git and GitHub, there is a guide ()
to walk you through the entire process. As well, there are always folks available on Di
scord () to answer questions.

Library Infrastructure Issues

The third tab you'll find is a list of library infrastructure issues.

Pull Requests Open Issues Library Infrastructure Issues CircuitPython Localization

Library Infrastructure Issues

The following are issues with the library infrastructure. Having a standard library structure greatly improves overall
maintainability. Accordingly, we have a series of checks to ensure the standard is met. Most of these are changes that can be
made via a pull request, however there are a few checks reported here that require changes to GitHub settings. If you are
interested in addressing any of these issues, please feel free to contact us with any questions.

This section is generated by a script that runs checks on the libraries, and then
reports back where there may be issues. It is made up of a list of subsections each
containing links to the repositories that are experiencing that particular issue. This
page is available mostly for internal use, but you may find some opportunities to
contribute on this page. If there's an issue listed that sounds like something you could
help with, mention it on Discord, or file an issue on GitHub indicating you're working
to resolve that issue. Others can reply either way to let you know what the scope of it
might be, and help you resolve it if necessary.

CircuitPython Localization

The fourth tab you'll find is the CircuitPython Localization tab.

Pull Requests Open Issues Library Infrastructure Issues CircuitPython Localization

CircuitPython Translation with Weblate

1,100 18 I 60%
STRINGS LANGUAGES ' TRANSLATED

If you speak another language, you can help translate CircuitPython! The translations
apply to informational and error messages that are within the CircuitPython core. It
means that folks who do not speak English have the opportunity to have these
messages shown to them in their own language when using CircuitPython. This is

©Adafruit Industries Page 113 of 235

https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github
https:adafru.it/discord
https:adafru.it/discord

incredibly important to provide the best experience possible for all users.
CircuitPython uses Weblate to translate, which makes it much simpler to contribute
translations. You will still need to know some CircuitPython-specific practices and a
few basics about coding strings, but as with any CircuitPython contributions, folks are
there to help.

Regardless of your skill level, or how you want to contribute to the CircuitPython
project, there is an opportunity available. The Contributing page () is an excellent
place to start!

Adafruit GitHub

Pull requests Issues Marketplace Explore

adafruit / circuitpython @uUnwatch~ 69 YrUnstar 256 YFork 1,357
forked from ython/micropython

<> Code Issues 73 Pull requests 4 Insights

CircuitPython - a Python implementation for teaching coding with microcontrollers

circuitpython

{® 9,856 commits ¥ 32 branches 73 releases 42 206 contributors

Whether you're just beginning or are life-long programmer who would like to
contribute, there are ways for everyone to be a part of the CircuitPython project. The
CircuitPython core is written in C. The libraries are written in Python. GitHub is the
best source of ways to contribute to the CircuitPython core (), and the CircuitPython
libraries (). If you need an account, visit https://github.com/ () and sign up.

If you're new to GitHub or programming in general, there are great opportunities for
you. For the CircuitPython core, head over to the CircuitPython repository on GitHub,
click on "Issues ()", and you'll find a list that includes issues labeled "good first issue ()"
. For the IibrTies, head over to the Contributing page Issues list (), and use the drop

down menu to search for "good first issue ()". These issues are things that have been

identified as something that someone with any level of experience can help with.
These issues include options like updating documentation, providing feedback, and
fixing simple bugs. If you need help getting started with GitHub, there is an excellent
guide on Contributing to CircuitPython with Git and GitHub ().

@ OneWire BusDevice FITH Q2
#338 opened 29 days ago by tannewt Long term
® Feather MO Adalogger does not have D8 or D7 D7

#323 opened on Oct 13 by ladyada " 3.0

@ Audit and fix native API for methods that accept and ignore extra args.
#321 opened on Oct 12 by tannewt Long term

Already experienced and looking for a challenge? Checkout the rest of either issues
list and you'll find plenty of ways to contribute. You'll find all sorts of things, from new

©Adafruit Industries Page 114 of 235

https://circuitpython.org/contributing
https://github.com/adafruit/circuitpython
https://circuitpython.org/contributing/open-issues
https://circuitpython.org/contributing/open-issues
https://github.com/
https://github.com/adafruit/circuitpython/issues
https://github.com/adafruit/circuitpython/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22
https://circuitpython.org/contributing/open-issues
https://circuitpython.org/contributing/open-issues?label=good-first-issue
https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github

driver requests, to library bugs, to core module updates. There's plenty of
opportunities for everyone at any level!

When working with or using CircuitPython or the CircuitPython libraries, you may find
problems. If you find a bug, that's great! The team loves bugs! Posting a detailed issue
to GitHub is an invaluable way to contribute to improving CircuitPython. For
CircuitPython itself, file an issue here (). For the libraries, file an issue on the specific
library repository on GitHub. Be sure to include the steps to replicate the issue as well
as any other information you think is relevant. The more detail, the better!

Testing new software is easy and incredibly helpful. Simply load the newest version of
CircuitPython or a library onto your CircuitPython hardware, and use it. Let us know
about any problems you find by posting a new issue to GitHub. Software testing on
both stable and unstable releases is a very important part of contributing
CircuitPython. The developers can't possibly find all the problems themselves! They
need your help to make CircuitPython even better.

On GitHub, you can submit feature requests, provide feedback, report problems and
much more. If you have questions, remember that Discord and the Forums are both
there for help!

Adafruit Forums

Forum Index oa

ADAFRUIT CUSTOMER SUPPORT FORUMS

Thanks for stopping by! These forums are for Adafruit customers who need assistance with their m
purchases from Adafruit Industries. Our staff can only assist Adafruit customers, thank you!

GENERAL FORUMS Topics Posts Last post

B=| ANNOUNCEMENTS 275 1466 by delly
Forum announcement ts Thu Sep 21, 2017 7:32 am

The Adafruit Forums () are the perfect place for support. Adafruit has wonderful paid
support folks to answer any questions you may have. Whether your hardware is giving
you issues or your code doesn't seem to be working, the forums are always there for
you to ask. You need an Adafruit account to post to the forums. You can use the same
account you use to order from Adafruit.

While Discord may provide you with quicker responses than the forums, the forums
are a more reliable source of information. If you want to be certain you're getting an
Adafruit-supported answer, the forums are the best place to be.

©Adafruit Industries Page 115 of 235

https://github.com/adafruit/circuitpython/issues
https://forums.adafruit.com

There are forum categories that cover all kinds of topics, including everything
Adafruit. The Adafruit CircuitPython () category under "Supported Products & Projects"
is the best place to post your CircuitPython questions.

Forum Index > Supported Products & Projects > Adafruit CircuitPython & User Settings « View your posts « View unread replies 8

Adafruit CircuitPython

Moderators: adafruit_support_bill, adafruit

@ Mark topics read « 4154 topics - Page 10f 84 . 12345 ... 84

Please be positive and constructive with your questions and comments.

ANNOUNCEMENTS
i | CIRCUITPYTHON 7.2.0 ALPHA 1 RELEASED! 0 20 by danhalbert .

by danhalbert » Tue Dec 28, 2021 11:55 pm Tue Dec 28, 2021 11:55 pm
*j | CIRCUITPYTHON 71.0 RELEASED! 1 32 by rpiloverbd

by danhalbert » Tue Dec 28, 2021 12:01 pm Wed Dec 29, 20215:53 am
i | SAMDS1(M4) BOARD USERS: UPDATE YOUR BOOTLOADERS TO >=V3.9.0 10 2428 by Guest .

by danhalbert » Fri May 08, 2020 12:55 pm Sat Aug 15, 2020 11:28 pm

Be sure to include the steps you took to get to where you are. If it involves wiring,
post a picture! If your code is giving you trouble, include your code in your post!
These are great ways to make sure that there's enough information to help you with
your issue.

You might think you're just getting started, but you definitely know something that
someone else doesn't. The great thing about the forums is that you can help others
too! Everyone is welcome and encouraged to provide constructive feedback to any of
the posted questions. This is an excellent way to contribute to the community and
share your knowledge!

Read the Docs

Adafruit CircuitPython

Docs » Core Modules » augioio — Support for audio input and output © Edit on GitHub
audioio — Support for audio input and output
© Core Modules The audioio module contains classes to provide access to audio 10.
Support Matrix
Libraries
& Modules

anatogio — Analog hardware * Aud t = Output an analog audio signal

support

auttsbusio — Support for sudio All classes change hardware state and should be deinitialized when they are no longer needed if the

input and output over digital bus - - o
. program continues after use. To do so, either call geinit() or use a context manager. See Lifetime

audioto — Support for audio input
and output

and ContextManagers for more info.

vitbangio — Digital protocols

implemented by the CPU © Previous Next©

Read the Docs () is a an excellent resource for a more detailed look at the
CircuitPython core and the CircuitPython libraries. This is where you'll find things like
APl documentation and example code. For an in depth look at viewing and
understanding Read the Docs, check out the CircuitPython Documentation () page!

©Adafruit Industries Page 116 of 235

https://forums.adafruit.com/viewforum.php?f=60
https://circuitpython.readthedocs.io/
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-documentation

Here is blinky:

import time
import digitalio
import board

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT
while True:

led.value = True

time.sleep(0.1)

led.value = False

time.sleep(0.1)

CircuitPython Essentials

CIrcli

L

You've been introduced to CircuitPython, and worked through getting everything set
up. What's next? CircuitPython Essentials!

There are a number of core modules built into CircuitPython, which can be used along
side the many CircuitPython libraries available. The following pages demonstrate
some of these modules. Each page presents a different concept including a code
example with an explanation. All of the examples are designed to work with your
microcontroller board.

Time to get started learning the CircuitPython essentials!
Some examples require external components, such as switches or sensors. You'll find
wiring diagrams where applicable to show you how to wire up the necessary

components to work with each example.

The following components are needed to complete all of the examples:

©Adafruit Industries Page 117 of 235

STEMMA Wired Potentiometer Breakout
Board - 10K ohm Linear

For the easiest way possible to measure
twists, turn to this STEMMA potentiometer
breakout (ha!). This plug-n-play pot comes
with a JST-PH 2mm connector and a
matching
https://www.adafruit.com/product/4493

Adafruit MCP9808 High Accuracy 12C
Temperature Sensor Breakout

The MCP9808 digital temperature sensor
is one of the more accurate/precise we've
ever seen, with a typical accuracy of
+0.25°C over the sensor's -40°C to...

] ©
~MCP9808 ~ =Y https://www.adafruit.com/product/5027
emp: 24.19C

STEMMA QT / Qwiic JST SH 4-Pin Cable -
50mm Long

This 4-wire cable is 50mm /1.9" long and
fitted with JST SH female 4-pin
connectors on both ends. Compared with
the chunkier JST PH these are 1Tmm pitch
instead of 2mm, but...
https://www.adafruit.com/product/4399

Blink

In learning any programming language, you often begin with some sort of Hello,
World! program. In CircuitPython, Hello, World! is blinking an LED. Blink is one of the
simplest programs in CircuitPython. It involves three built-in modules, two lines of set
up, and a short loop. Despite its simplicity, it shows you many of the basic concepts
needed for most CircuitPython programs, and provides a solid basis for more complex
projects. Time to get blinky!

©Adafruit Industries Page 118 of 235

https://www.adafruit.com/product/4493
https://www.adafruit.com/product/4493
https://www.adafruit.com/product/4493
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399

LED Location

S m o B oy wrin [k
RST 3V_3VGND AQ A1 A2 A3 A4 ASSCK
OO0OO0OO0O00O0000O

The red LED (highlighted above in red) is located above the USB jack on the left side
of the board.

Blinking an LED

In the example below, click the Download Project Bundle button below to download
the necessary libraries and the code.py file in a zip file. Extract the contents of the zip
file, open the directory CircuitPython_Templates/blink/ and then click on the directory
that matches the version of CircuitPython you're using and copy the contents of that
directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

v @ CIRCUITPY
>

[

i boot_out.txt
R code.py
v b

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT

"""CircuitPython Blink Example - the CircuitPython 'Hello, World!'"""
import time

import board

import digitalio

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
led.value = True

©Adafruit Industries Page 119 of 235

time.sleep(0.5)
led.value = False
time.sleep(0.5)

The built-in LED begins blinking!

Note that the code is a little less "Pythonic" than it could be. It could also be written as
led.value = not led.value with asingle time.sleep(0.5) . That way is more
difficult to understand if you're new to programming, so the example is a bit longer
than it needed to be to make it easier to read.

It's important to understand what is going on in this program.

First you import three modules: time, board and digitalio . This makes these
modules available for use in your code. All three are built-in to CircuitPython, so you
don't need to download anything to get started.

Next, you set up the LED. To interact with hardware in CircuitPython, your code must
let the board know where to look for the hardware and what to do with it. So, you
create a digitalio.DigitalInOut() object, provide it the LED pin using the boar
d module, and save it to the variable led. Then, you tell the pin to act as an

OUTPUT .

Finally, you create a while True: loop. This means all the code inside the loop will
repeat indefinitely. Inside the loop, you set led.value = True which powers on the
LED. Then, you use time.sleep(0.5) to tell the code to wait half a second before
moving on to the next line. The next line sets led.value = False which turns the
LED off. Then you use another time.sleep(0.5) to wait half a second before
starting the loop over again.

With only a small update, you can control the blink speed. The blink speed is
controlled by the amount of time you tell the code to wait before moving on using
time.sleep() . The example uses 0.5, which is one half of one second. Try
increasing or decreasing these values to see how the blinking changes.

That's all there is to blinking an LED using CircuitPython!

Digital Input

The CircuitPython digitalio module has many applications. The basic Blink
program sets up the LED as a digital output. You can just as easily set up a digital
input such as a button to control the LED. This example builds on the basic Blink

©Adafruit Industries Page 120 of 235

example, but now includes setup for a button switch. Instead of using the time
module to blink the LED, it uses the status of the button switch to control whether the
LED is turned on or off.

LED and Button

The red LED (highlighted in red) is located
above the USB jack on the front of the

3 ?_‘ L}f,gupm Rx ix 08 board.

00000

The Boot button (highlighted in green),
labeled DO, is located on the back of the
board to the top left corner of the display.

Controlling the LED with a Button

SPDX-FileCopyrightText: 2022 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT

CircuitPython Digital Input Example - Blinking an LED using the built-in button.

import board
import digitalio

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

button = digitalio.DigitalInOQut(board.BUTTON)
button.switch to input(pull=digitalio.Pull.UP)

while True:
if not button.value:
led.value = True
else:
led.value = False

Now, press the button. The LED lights up! Let go of the button and the LED turns off.

©Adafruit Industries Page 121 of 235

https://learn.adafruit.com//assets/119051
https://learn.adafruit.com//assets/119051

Note that the code is a little less "Pythonic" than it could be. It could also be written as
led.value = not button.value. That way is more difficult to understand if you're
new to programming, so the example is a bit longer than it needed to be to make it
easier to read.

First you import two modules: board and digitalio . This makes these modules
available for use in your code. Both are built-in to CircuitPython, so you don't need to
download anything to get started.

Next, you set up the LED. To interact with hardware in CircuitPython, your code must
let the board know where to look for the hardware and what to do with it. So, you
create a digitalio.DigitalInOut() object, provide it the LED pin using the boar
d module, and save it to the variable led. Then, you tell the pin to act as an

OUTPUT .

You include setup for the button as well. It is similar to the LED setup, except the
button is an INPUT, and requires a pull up.

Inside the loop, you check to see if the button is pressed, and if so, turn on the LED.
Otherwise the LED is off.

That's all there is to controlling an LED with a button switch!

©Adafruit Industries Page 122 of 235

Analog In

Your microcontroller board has both digital and analog signal capabilities. Some pins
are analog, some are digital, and some are capable of both. Check the Pinouts page
in this guide for details about your board.

Analog signals are different from digital signals in that they can be any voltage and
can vary continuously and smoothly between voltages. An analog signal is like a
dimmer switch on a light, whereas a digital signal is like a simple on/off switch.

Digital signals only can ever have two states, they are either are on (high logic level
voltage like 3.3V) or off (low logic level voltage like OV / ground).

By contrast, analog signals can be any voltage in-between on and off, such as 1.8V or
0.001V or 2.98V and so on.

VALUE

TIME

Analog signals are continuous values which means they can be an infinite number of
different voltages. Think of analog signals like a floating point or fractional number,
they can smoothly transiting to any in-between value like 1.8V, 1.81V, 1.801V, 1.8001V,
1.80001V and so forth to infinity.

Many devices use analog signals, in particular sensors typically output an analog
signal or voltage that varies based on something being sensed like light, heat,
humidity, etc.

Analog to Digital Converter (ADC)

An analog-to-digital-converter, or ADC, is the key to reading analog signals and
voltages with a microcontroller. An ADC is a device that reads the voltage of an
analog signal and converts it into a digital, or numeric, value. The microcontroller

©Adafruit Industries Page 123 of 235

can’t read analog signals directly, so the analog signal is first converted into a
numeric value by the ADC.

The black line below shows a digital signal over time, and the red line shows the
converted analog signal over the same amount of time.

VALUE
—

V4

TIME

Once that analog signal has been converted by the ADC, the microcontroller can use
those digital values any way you like!

Potentiometers

A potentiometer is a small variable resistor that you can twist a knob or shaft to
change its resistance. It has three pins. By twisting the knob on the potentiometer you
can change the resistance of the middle pin (called the wiper) to be anywhere within
the range of resistance of the potentiometer.

By wiring the potentiometer to your board in a special way (called a voltage divider)

you can turn the change in resistance into a change in voltage that your board’s
analog to digital converter can read.

©Adafruit Industries Page 124 of 235

33

3.0

27

24

21

18

15

12

0.9

OUTPUT VOLTAGE

0.6

w

Vin = 3.3V
KNOB POSITION

0.0

To wire up a potentiometer as a voltage divider:

Connect one outside pin to ground
Connect the other outside pin to voltage in
(e.g. 3.3V)

Connect the middle pin to an analog pin
(e.g. AO)

Hardware

In addition to your microcontroller board, you will need the following hardware to
follow along with this example.

Potentiometer

©Adafruit Industries Page 125 of 235

https://learn.adafruit.com//assets/102481
https://learn.adafruit.com//assets/102481

STEMMA Wired Potentiometer Breakout
Board - 10K ohm Linear

For the easiest way possible to measure
twists, turn to this STEMMA potentiometer
breakout (ha!). This plug-n-play pot comes
with a JST-PH 2mm connector and a
matching
https://www.adafruit.com/product/4493

Wire Up the Potentiometer
Connect the potentiometer to your board as follows.

Potentiometer pin 1 (black wire) to Feather
GND

Potentiometer wiper (white

wire) to Feather AO

Potentiometer pin 2 (red wire) to Feather
3.3V

fritzing

Reading Analog Pin Values

CircuitPython makes it easy to read analog pin values. Simply import two modules, set
up the pin, and then print the value inside a loop.

You'll need to connect to the serial console () to see the values printed out.

In the example below, click the Download Project Bundle button below to download
the necessary libraries and the code.py file in a zip file. Extract the contents of the zip
file, open the directory CircuitPython_Templates/analog_pin_values/ and then click
on the directory that matches the version of CircuitPython you're using and copy the
contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

©Adafruit Industries Page 126 of 235

https://www.adafruit.com/product/4493
https://www.adafruit.com/product/4493
https://www.adafruit.com/product/4493
https://learn.adafruit.com//assets/119077
https://learn.adafruit.com//assets/119077
https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

v @ CIRCUITPY
> 8

R boot_out.txt
R code.py
vl lib

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT

"""CircuitPython analog pin value example"""

import time

import board

import analogio

analog pin = analogio.AnalogIn(board.AQ)
while True:

print(analog pin.value)
time.sleep(0.1)

Now, rotate the potentiometer to see the values change.

What do these values mean? In CircuitPython ADC values are put into the range of 16-
bit unsigned values. This means the possible values you’ll read from the ADC fall
within the range of 0 to 65535 (or 26 - 1). When you twist the potentiometer knob to
be near ground, or as far to the left as possible, you see a value close to zero.

When you twist it to the right, the value gets bigger up to some value that is
dependent on the microcontroller. Many microcontrollers get a value very close to
65535. Some, such as the ESP32-S3, have a smaller limit of about 61000 or 3.1 volts.

The code is simple. You begin by importing three modules: time, board and analo
gio . All three modules are built into CircuitPython, so you don't need to download
anything to get started.

©Adafruit Industries Page 127 of 235

Then, you set up the analog pin by creating an analogio.AnalogIn() object,
providing it the desired pin using the board module, and saving it to the variable
analog pin.

Finally, in the loop, you print out the analog value with analog pin.value, including
a time.sleep() to slow down the values to a human-readable rate.

Reading Analog Voltage Values

These values don't necessarily equate to anything obvious. You can get an idea of the
rotation of the potentiometer based on where in the range the value falls, but not
without doing some math. Remember, you wired up the potentiometer as a voltage
divider. By adding a simple function to your code, you can get a more human-
readable value from the potentiometer.

You'll need to connect to the serial console () to see the values printed out.

SPDX-FileCopyrightText: 2022 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT

CircuitPython analog voltage value example

import time

import board

import analogio

analog pin = analogio.AnalogIn(board.AQ)

def get voltage(pin):
return (pin.value * 3.1) / 61000

while True:
print(get voltage(analog pin))
time.sleep(0.1)

Now, rotate the potentiometer to see the values change.

©Adafruit Industries Page 128 of 235

https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

oe & Wi-Fi: off | REPL | 8.0.0-beta.0
2.39991
.5856

. 72891
.8864
.04786
.11646
.11646
.11646
.11646
.11646
.69461
.54225
.36662
.96093
.54106
.22719
.930508
.649933
.434965
.258316
.0

2
2
2
3
3
3
3
3
3
2
2
2
1
1
1
0
0
0
0
0

Now the values range from around O to 3.1! Note that due to variations in each chip,
you may not get all the way to O or 3.1, and in some cases, you may exceed 3.1. Both
of these possibilities are normal.

The example code begins with the same imports and pin setup.

This time, you include the get voltage helper. This function requires that you
provide an analog pin. It then maps the raw analog values, 0 to 3.1, to the voltage
values, 0 to 3.1.It does the math so you don't have to!

Finally, inside the loop, you provide the function with your analog pin, and print the
resulting values.

That's all there is to reading analog voltage values using CircuitPython!

NeoPixel

Your board has a built-in RGB NeoPixel status LED. You can use CircuitPython code to
control the color and brightness of this LED. It is also used to indicate the bootloader
status and errors in your CircuitPython code.

A NeoPixel is what Adafruit calls the WS281x family of addressable RGB LEDs. It
contains three LEDs - a red one, a green one and a blue one - along side a driver chip
in a tiny package controlled by a single pin. They can be used individually (as in the
built-in LED on your board), or chained together in strips or other creative form
factors. NeoPixels do not light up on their own; they require a microcontroller. So, it's
super convenient that the NeoPixel is built in to your microcontroller board!

©Adafruit Industries Page 129 of 235

This page will cover using CircuitPython to control the status RGB NeoPixel built into
your microcontroller. You'll learn how to change the color and brightness, and how to
make a rainbow. Time to get started!

NeoPixel Location

ESBm o By
3VGNDAO A1 A2 A3 A4 AS SCK
Q0000000

The NeoPixel LED (highlighted in red), labeled Neo on the silk, is located in the center
of the board, to the left of the ESP32-S3 processor.

NeoPixel Color and Brightness

To use with CircuitPython, you need to first install a few libraries, into the lib folder on
your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download
Project Bundle button below to download the necessary libraries and the code.py file
in a zip file. Extract the contents of the zip file, open the directory CircuitPython_Temp
lates/status_led_one_neopixel_rgb/ and then click on the directory that matches the
version of CircuitPython you're using and copy the contents of that directory to your C
IRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

©Adafruit Industries Page 130 of 235

v @ CIRCUITPY
> 8

R boot_out.txt
R code.py
v @ |ib
R adafruit_pixelbuf.mpy
R neopixel.mpy

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT

"""CircuitPython status NeoPixel red, green, blue example."""

import time

import board

import neopixel

pixel = neopixel.NeoPixel(board.NEOPIXEL, 1)
pixel.brightness = 0.3

while True:
pixel.fill((255, 0, 0))
time.sleep(0.5)
pixel.fill((@, 255, 0))
time.sleep(0.5)
pixel.fill((0, 0, 255))
time.sleep(0.5)

The built-in NeoPixel begins blinking red, then green, then blue, and repeats!

A:BE. 35

. 'EEEEREEEEERERY & =

First you import two modules, time and board, and one library, neopixel . This
makes these modules and libraries available for use in your code. The first two are
modules built-in to CircuitPython, so you don't need to download anything to use

©Adafruit Industries Page 131 of 235

those. The neopixel library is separate, which is why you needed to install it before
getting started.

Next, you set up the NeoPixel LED. To interact with hardware in CircuitPython, your
code must let the board know where to look for the hardware and what to do with it.
So, you create a neopixel.NeoPixel() object, provide it the NeoPixel LED pin
using the board module, and tell it the number of LEDs. You save this object to the
variable pixel.

Then, you set the NeoPixel brightness using the brightness attribute. brightness
expects float between 0 and 1.0 . A float is essentially a number with a decimal in it.
The brightness value represents a percentage of maximum brightness; 0 is 0% and
1.0 is 100%. Therefore, setting pixel.brightness = 0.3 sets the brightness to
30%. The default brightness, which is to say the brightness if you don't explicitly set it,
is 1.0. The default is really bright! That is why there is an option available to easily
change the brightness.

Inside the loop, you turn the NeoPixel red for 0.5 seconds, green for 0.5 seconds, and
blue for 0.5 seconds.

To turn the NeoPixel red, you "fill" it with an RGB value. Check out the section below
for details on RGB colors. The RGB value forred is (255, 0, 0) . Note that the RGB
value includes the parentheses. The fill() attribute expects the full RGB value
including those parentheses. That is why there are two pairs of parentheses in the
code.

You can change the RGB values to change the colors that the NeoPixel cycles
through. Check out the list below for some examples. You can make any color of the
rainbow with the right RGB value combination!

That's all there is to changing the color and setting the brightness of the built-in
NeoPixel LED!

RGB LED Colors

RGB LED colors are set using a combination of red, green, and blue, in the form of an
(R, G, B) tuple. Each member of the tuple is set to a number between 0 and 255 that
determines the amount of each color present. Red, green and blue in different
combinations can create all the colors in the rainbow! So, for example, to set an LED
to red, the tuple would be (255, 0, 0), which has the maximum level of red, and
no green or blue. Green would be (0, 255, 0), etc. For the colors between, you

©Adafruit Industries Page 132 of 235

set a combination, such as cyan whichis (0, 255, 255) , with equal amounts of
green and blue. If you increase all values to the same level, you get white! If you
decrease all the values to O, you turn the LED off.

Common colors include:

. red: (255, 0, 0)

« green: (0, 255, 0)

« blue: (0, 0, 255)
«cyan: (0, 255, 255)

. purple: (255, 0, 255)
« yellow: (255, 255, 0)
- white: (255, 255, 255)
« black (off): (0, 0, 0)

NeoPixel Rainbow

You should have already installed the library necessary to use the built-in NeoPixel
LED. If not, follow the steps at the beginning of the NeoPixel Color and Brightness
section to install it.

In the example below, click the Download Project Bundle button below to download
the necessary libraries and the code.py file in a zip file. Extract the contents of the zip
file, open the directory CircuitPython_Templates/status_led_one_neopixel_rainbow/
and then click on the directory that matches the version of CircuitPython you're using
and copy the contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

v & CIRCUITPY
>

R boot_out.txt

R adafruit_pixelbuf.mpy
R neopixel.mpy

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT

"""CircuitPython status NeoPixel rainbow example."""

import time

import board

from rainbowio import colorwheel

©Adafruit Industries Page 133 of 235

import neopixel

pixel = neopixel.NeoPixel(board.NEOPIXEL, 1)
pixel.brightness = 0.3

def rainbow(delay):
for color value in range(255):
pixel[0] = colorwheel(color_value)
time.sleep(delay)

while True:
rainbow(0.02)

The NeoPixel displays a rainbow cycle!

This example builds on the previous example.

First, you import the same three modules and libraries. In addition to those, you
import colorwheel .

The NeoPixel hardware setup and brightness setting are the same.

Next, you have the rainbow() helper function. This helper displays the rainbow
cycle. It expects a delay in seconds. The higher the number of seconds provided for
delay, the slower the rainbow will cycle. The helper cycles through the values of the
color wheel to create a rainbow of colors.

Inside the loop, you call the rainbow helper with a 0.2 second delay, by including rai

nbow(0.2) .

©Adafruit Industries Page 134 of 235

That's all there is to making rainbows using the built-in NeoPixel LED!

Capacitive Touch

Your microcontroller board has capacitive touch capabilities on multiple pins. The
CircuitPython touchio module makes it simple to detect when you touch a pin,
enabling you to use it as an input.

This section first covers using the touchio module to read touches on one pin. You'll
learn how to setup the pin in your program, and read the touch status. Then, you'll
learn how to read touches on multiple pins in a single example. Time to get started!

One Capacitive Touch Pin

The first example covered here will show you how to read touches on one pin.

Pin Location

000000000
BATENUSB 13 12-11 10" 9

Pin A4 is located towards the middle of the board along the bottom row of pins.

Reading Touch on the Pin

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: MIT

CircuitPython Capacitive Touch Pin Example - Print to the serial console when one
pin is touched.

import time

import board

©Adafruit Industries Page 135 of 235

import touchio

touch = touchio.TouchIn(board.A4)

while True:
if touch.value:
print("Pin touched!")
time.sleep(0.1)

Now touch the pin indicated in the diagram above. You'll see Pin touched! printed
to the serial console!

11 touch two = +ouchio.TouchIn
CircuitPython REPL
Pin one touched!
Pin one touched!
Pin one touched!
Pin one touched!
Pin one touched!

First you import three modules: time, board and touchio. This makes these
modules available for use in your code. All three are built-in to CircuitPython, so you
don't find any library files in the Project Bundle.

Next, you create the touchio.TouchIn() object, and provide it the pin name using
the board module. You save that to the touch variable.

Inside the loop, you check to see if the pin is touched. If so, you print to the serial

console. Finally, you include a time.sleep() to slow it down a bit so the output is
readable.

That's all there is to reading touch on a single pin using touchio in CircuitPython!

©Adafruit Industries Page 136 of 235

Multiple Capacitive Touch Pins

The next example shows you how to read touches on multiple pins in a single
program.

Pin Location

éfmmﬂl J)
0-A1 A2 A3 A4 AS iCKMO MI RX TX Ol
O00000O0O0000 O@

o
—

Pins A4 and A5 are located towards the middle of the board along the bottom row of
pins.

Reading Touch on the Pins

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: MIT

CircuitPython Capacitive Two Touch Pin Example - Print to the serial console when a
pin is touched.

import time

import board

import touchio

touch_one
touch two

touchio.TouchIn(board.A4)
touchio.TouchIn(board.A5)

while True:
if touch one.value:
print("Pin one touched!")
if touch two.value:
print("Pin two touched!")
time.sleep(0.1)

Touch the pins to see the messages printed to the serial console!

This example builds on the first. The imports remain the same.

©Adafruit Industries Page 137 of 235

The touchio.TouchIn() objectis created, butis instead saved to touch one. A
second touchio.TouchIn() objectis also created, the second pin is provided to it
using the board module, and is saved to touch two.

Inside the loop, we check to see if pin one and pin two are touched, and if so, print to
the serial console Pin one touched! and Pin two touched!, respectively. The

same time.sleep() isincluded.

If more touch-capable pins are available on your board, you can easily add them by
expanding on this example!

The Available Touch-Capable Pins

« A4 - CircuitPython: board.A4 . Arduino: T14 .

+ A5 - CircuitPython: board.A5 . Arduino: T8.

« D13 - CircuitPython: board.D13 . Arduino: T13.
« D12 - CircuitPython: board.D12 . Arduino: T12.
« D11 - CircuitPython: board.D11. Arduino: T11.
« D10 - CircuitPython: board.D10 . Arduino: T10.
« D9 - CircuitPython: board.D9 . Arduino: T9.

« D6 - CircuitPython: board.D8 . Arduino: T6 .

« D5 - CircuitPython: board.D7 . Arduino: T5.

« SCL - CircuitPython: board.SCL . Arduino: T4.
« SDA - CircuitPython: board.SDA . Arduino: T3.

©Adafruit Industries Page 138 of 235

12C

(MCP9808 &
Temp Sensor
e

The 12C, or inter-integrated circuit (), is @ 2-wire protocol for communicating with

simple sensors and devices, which means it uses two connections, or wires, for
transmitting and receiving data. One connection is a clock, called SCL. The other is
the data line, called SDA. Each pair of clock and data pins are referred to as a bus.

Typically, there is a device that acts as a controller and sends requests to the target
devices on each bus. In this case, your microcontroller board acts as the controller,
and the sensor breakout acts as the target. Historically, the controller is referred to as
the master, and the target is referred to as the slave, so you may run into that
terminology elsewhere. The official terminology is controller and target ().

Multiple I12C devices can be connected to the same clock and data lines. Each 12C
device has an address, and as long as the addresses are different, you can connect
them at the same time. This means you can have many different sensors and devices
all connected to the same two pins.

Both 12C connections require pull-up resistors, and most Adafruit I2C sensors and

breakouts have pull-up resistors built in. If you're using one that does not, you'll need
to add your own 2.2-10kQ pull-up resistors from SCL and SDA to 3.3V.

|12C and CircuitPython

CircuitPython supports many 12C devices, and makes it super simple to interact with
them. There are libraries available for many 12C devices in the CircuitPython Library

Bundle (). (If you don't see the sensor you're looking for, keep checking back, more
are being written all the time!)

In this section, you'll learn how to scan the 12C bus for all connected devices. Then
you'll learn how to interact with an 12C device.

©Adafruit Industries Page 139 of 235

https://en.wikipedia.org/wiki/I%C2%B2C
https://adafruit.com/controller-peripheral
https://circuitpython.readthedocs.io/projects/bundle/en/latest/#table-of-contents
https://circuitpython.readthedocs.io/projects/bundle/en/latest/#table-of-contents

Necessary Hardware

You'll need the following additional hardware to complete the examples on this page.

Adafruit MCP9808 High Accuracy 12C
Temperature Sensor Breakout

The MCP9808 digital temperature sensor
is one of the more accurate/precise we've
ever seen, with a typical accuracy of

+0.25°C over the sensor's -40°C to...

~MCP9808~ %3 https://www.adafruit.com/product/5027
emp: 24.19C

—
X LR R X ¥] o6 e

STEMMA QT / Qwiic JST SH 4-Pin Cable -
50mm Long

This 4-wire cable is 50mm /1.9" long and
fitted with JST SH female 4-pin
connectors on both ends. Compared with
the chunkier JST PH these are 1mm pitch
instead of 2mm, but...
https://www.adafruit.com/product/4399

While the examples here will be using the Adafruit MCP9808 (), a high accuracy
temperature sensor, the overall process is the same for just about any I12C sensor or
device.

The first thing you'll want to do is get the sensor connected so your board has 12C to
talk to.

Wiring the MCP9808

The MCP9808 comes with a STEMMA QT connector, which makes wiring it up quite
simple and solder-free.

Connect the STEMMA QT cable from the STEMMA QT port on your board to the
STEMMA QT port on the MCP9808.

©Adafruit Industries Page 140 of 235

https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/5027

Find Your Sensor

The first thing you'll want to do after getting the sensor wired up, is make sure it's
wired correctly. You're going to do an I12C scan to see if the board is detected, and if it
is, print out its 12C address.

Save the following to your CIRCUITPY drive as code.py.
Click the Download Project Bundle button below to download the necessary libraries

and the code.py file in a zip file. Extract the contents of the zip file, find your
CircuitPython version, and copy the matching code.py file to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

v @ CIRCUITPY
> o

-
B boot_out.txt
R code.py

v lib

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT
"""CircuitPython I2C Device Address Scan
import time

import board

i2c = board.I2C() # uses board.SCL and board.SDA
i2c = board.STEMMA I2C() # For using the built-in STEMMA QT connector on a

©Adafruit Industries Page 141 of 235

microcontroller

To create I2C bus on specific pins
import busio
i2c = busio.I2C(board.GP1, board.GPO) # Pi Pico RP2040

while not i2c.try lock():
pass

try:
while True:
print(
"I2C addresses found:",
[hex(device address) for device address in i2c.scan()],

)

time.sleep(2)

finally: # unlock the i2c bus when ctrl-c'ing out of the loop
i2c.unlock()

Thereisa TFT I2C POWER pin on the ESP32-S3 TFT Feather. It is enabled by default
in CircuitPython, so there's no action to be done on your part. However, if you
manually disabled it, you'll need to enable it for the scan to work.

The ESP32-S3 Reverse TFT Feather comes with one 12C sensor built in: the
MAX17048. The 12C scan code will show the addresses from the built in sensor
and the MCP9808.

Auto-reload is on. Simply save files over USB to run them or enter REPL to disab
le

code.py output:
I2C addresses found: ['0x18']

If you run this and it seems to hang, try manually unlocking your |12C bus by running
the following two commands from the REPL.

import board
board.I2C().unlock()

First you create the 12c object, using board.I2C() . This convenience routine
creates and saves a busio.I2C object using the default pins board.SCL and
board.SDA . If the object has already been created, then the existing object is
returned. No matter how many times you call board.I2C() , it will return the same
object. This is called a singleton.

To be able to scan it, you need to lock the 12C down so the only thing accessing it is

the code. So next you include a loop that waits until 12C is locked and then continues
on to the scan function.

©Adafruit Industries Page 142 of 235

Last, you have the loop that runs the actual scan, 12c scan() . Because 12C typically
refers to addresses in hex form, the example includes this bit of code that formats the
results into hex format: [hex(device address) for device address in
i2c.scan()].

Open the serial console to see the results! The code prints out an array of addresses.
You've connected the MCP9808 which has a 7-bit I2C address of Ox18. The result for
this sensoris I2C addresses found: ['0x18'] .If no addresses are returned, refer
back to the wiring diagrams to make sure you've wired up your sensor correctly.

|2C Sensor Data

Now you know for certain that your sensor is connected and ready to go. Time to find
out how to get the data from the sensor!

Save the following to your CIRCUITPY drive as code.py.

Click the Download Project Bundle button below to download the necessary libraries
and the code.py file in a zip file. Extract the contents of the zip file, find your
CircuitPython version, and copy the matching entire lib folder and code.py file to your
CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

v @ CIRCUITPY
<
M
|l
R boot_out.txt

R code.py
v ib

» @ adafruit_bus_device
» @8 adafruit_register
R adafruit_mcp9808.mpy

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT

"""CircuitPython I2C MCP9808 Temperature Sensor Example"""

import time

import board

import adafruit mcp9808

i2c = board.I2C() # uses board.SCL and board.SDA

i2c = board.STEMMA I2C() # For using the built-in STEMMA QT connector on a
microcontroller

import busio

i12c = busio.I2C(board.SCL1, board.SDAl) # For QT Py RP2040, QT Py ESP32-S2
mcp9808 = adafruit mcp9808.MCP9808(i2c)

©Adafruit Industries Page 143 of 235

while True:
temperature celsius = mcp9808.temperature
temperature fahrenheit = temperature celsius * 9 / 5 + 32
print("Temperature: {:.2f} C {:.2f} F ".format(temperature celsius,
temperature fahrenheit))
time.sleep(2)

For the ESP32-S3 Reverse TFT Feather, you'll need to change the I12C setup to
the commented out setup included in the code above.

The ESP32-S3 Reverse TFT Feather STEMMA QT connector is available on board.ST
EMMA I2C() .Comment outthe current i2c setup line, and uncomment the the i2c
= board.STEMMA I2C() line to use with your board's STEMMA QT connector.

This code begins the same way as the scan code, except this time, you create your
sensor object using the sensor library. You call it mcp9808 and provide it the i2c
object.

Then you have a simple loop that prints out the temperature reading using the sensor
object you created. Finally, there's a time.sleep(2) , so it only prints once every two
seconds. Connect to the serial console to see the results. Try touching the MCP9808
with your finger to see the values change!

Where's my 12C?

On many microcontrollers, you have the flexibility of using a wide range of pins for
I2C. On some types of microcontrollers, any pin can be used for I2C! Other chips
require using bitbangio, but can also use any pins for I12C. There are further
microcontrollers that may have fixed 12C pins.

Given the many different types of microcontroller boards available, it's impossible to
guarantee anything other than the labeled 'SDA' and 'SCL' pins. So, if you want some
other setup, or multiple 12C interfaces, how will you find those pins? Easy! Below is a

handy script.

Save the following to your CIRCUITPY drive as code.py.

©Adafruit Industries Page 144 of 235

Click the Download Project Bundle button below to download the necessary libraries
and the code.py file in a zip file. Extract the contents of the zip file, find your
CircuitPython version, and copy the matching code.py file to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

v @ CIRCUITPY

>

R boot_out.txt

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: MIT

"""CircuitPython I2C possible pin-pair identifying script"""

import board
import busio
from microcontroller import Pin

def is hardware i2c(scl, sda):
try:
p = busio.I2C(scl, sda)
p.deinit()
return True
except ValueError:
return False
except RuntimeError:
return True

def get unique pins():
exclude = [
getattr(board, p)
for p in [

This is not an exhaustive list of unexposed pins. Your results
may include other pins that you cannot easily connect to.

"NEOPIXEL",
"DOTSTAR CLOCK",
"DOTSTAR_DATA",
"APA102_SCK",
"APA102 MOSI",

n LEDII ,

"SWITCH",
"BUTTON",

"ACCELEROMETER INTERRUPT",

"VOLTAGE _MONITOR",
"MICROPHONE_CLOCK",
"MICROPHONE DATA",
]
if p in dir(board)
]
pins = [
pin

for pin in [getattr(board, p) for p in dir(board)]
if isinstance(pin, Pin) and pin not in exclude

]
unique = []
for p in pins:
if p not in unique:

©Adafruit Industries

Page 145 of 235

unique.append(p)
return unique

for scl pin in get unique pins():
for sda pin in get unique pins():
if scl pin is sda pin:
continue
if is hardware i2c(scl pin, sda pin):
print("SCL pin:", scl _pin, "\t SDA pin:", sda pin)

Now, connect to the serial console and check out the output! The results print out a
nice handy list of SCL and SDA pin pairs that support 12C.

The output for the ESP32-S3 Reverse TFT Feather is extremely long! The
screenshot shows only the beginning. Run the script yourself to see the full
output

CircuitPython REPL

SCL pin: board.AGC : board.

SCL pin: board.? : board.

SCL pin: board.AGC ¢ board.

SCL pin: board.? ¢ board.

SCL pin: board.AGC : board.

SCL pin: board.A : board.

SCL pin: board.A : board.

SCL pin: board.A : board.

SCL pin: board.# ¢ board.

SCL pin: board.A : board.

SCL pin: board.# ¢ board.

SCL pin: board.A : board.RX

SCL pin: board.# ¢ board.TX

SCL pin: board.A : board.SCL

SCL pin: board.# : board.D5

SCL pin: board.AGC : board.Dé&

SCL pin: board.? : board.DS

SCL pin: board.AGC : board.NEOPIXEL_POWER
SCL pin: board.# : board.TFT_I2C_POWER

This example only runs once, so if you do not see any output when you connect

to the serial console, try CTRL+D to reload.

|2C: Onboard MAX1/7048

Your microcontroller board comes with an MAX17048 lithium ion polymer (lipoly)
battery monitor built right onto the board. The MAX17048 is available over I12C.

©Adafruit Industries Page 146 of 235

The MAX17048 comes with its own Adafruit CircuitPython library that makes it simple
to write code to read data from it. This example will be using, among other things, the
Adafruit CircuitPython MAX1704x () library.

The example simply reads data from the battery monitor and prints it to the serial
console. It is designed to show you how to get data from the battery monitor.

MAX17048 Location

The MAX17048 battery monitor (highlighted in red) is immediately above the STEMMA
QT port in the middle of the board. Its I2C address is 0x36.

MAX17048 Simple Data Example

To run this example, you need to first install the MAX1704x library into the lib folder on
your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download
Project Bundle button below to download the necessary libraries and the code.py file
in a zip file. Extract the contents of the zip file, and copy the entire lib folder and the ¢
ode.py file to your CIRCUITPY drive.

Your CIRCUITPY/lib folder should contain at least the following folder and file:

« adafruit_bus_device/
- adafruit_register/
« adafruit_max1704x.mpy

©Adafruit Industries Page 147 of 235

https://github.com/adafruit/Adafruit_CircuitPython_MAX1704x

v @ CIRCUITPY
> 8

L
N
R boot_out.txt

R code.py
v @ |ib
» @ adafruit_bus_device
> @ adafruit_register
R adafruit_max1704x.mpy

SPDX-FileCopyrightText: Copyright (c) 2023 Kattni Rembor for Adafruit Industries
#

SPDX-License-Identifier: Unlicense

import time
import board
import adafruit max1704x

monitor = adafruit max1704x.MAX17048(board.I2C())

while True:
print(f"Battery voltage: {monitor.cell voltage:.2f} Volts")
print(f"Battery percentage: {monitor.cell percent:.1f} %")
print("")
time.sleep(1)

This code will run without a battery plugged in, and voltage and charge level will
be printed to the serial console, but this data does not correlate to anything. Plug
in a battery to get useful data!

Now, connect to the serial console () to see the battery data printed out!

That's all there is to reading the MAX17048 data using CircuitPython!

For more details, check out the guide for the MAX17048 ().

Storage

CircuitPython-compatible microcontrollers show up as a CIRCUITPY drive when
plugged into your computer, allowing you to edit code directly on the board. Perhaps

©Adafruit Industries Page 148 of 235

https://learn.adafruit.com/adafruit-esp32-s2-feather/kattni-connecting-to-the-serial-console
https://learn.adafruit.com/adafruit-max17048-lipoly-liion-fuel-gauge-and-battery-monitor/python-circuitpython

you've wondered whether or not you can write data from CircuitPython directly to the
board to act as a data logger. The answer is yes!

The storage module in CircuitPython enables you to write code that allows
CircuitPython to write data to the CIRCUITPY drive. This process requires you to
include a boot.py file on your CIRCUITPY drive, along side your code.py file.

The boot.py file is special - the code within it is executed when CircuitPython starts
up, either from a hard reset or powering up the board. It is not run on soft reset, for
example, if you reload the board from the serial console or the REPL. This is in
contrast to the code within code.py, which is executed after CircuitPython is already
running.

The CIRCUITPY drive is typically writable by your computer; this is what allows you to
edit your code directly on the board. The reason you need a boot.py file is that you
have to set the filesystem to be read-only by your computer to allow it to be writable
by CircuitPython. This is because CircuitPython cannot write to the filesystem at the
same time as your computer. Doing so can lead to filesystem corruption and loss of all
content on the drive, so CircuitPython is designed to only allow one at at time.

You can only have EITHER your computer edit files on the CIRCUITPY drive, OR

have CircuitPython edit files. You cannot have both writing to the CIRCUITPY
drive at the same time. CircuitPython doesn't allow it!

Wiring for MCP9808

You're going to be logging the temperature. For this task, you will need to wire up a
temperature sensor, like the MCP9808. Connect it to your microcontroller as shown
below.

Connect the STEMMA QT cable from the STEMMA QT port on your board to the
STEMMA QT port on the MCP9808.

©Adafruit Industries Page 149 of 235

Feather

S

SP32-S3 Rev

TFT

,_
Reset

.C

R

fritzing

The boot.py File

The filesystem will NOT automatically be set to read-only on creation of this file!

You'll still be able to edit files on CIRCUITPY after saving this boot.py.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT

CircuitPython Essentials Storage CP Filesystem boot.py file

import time
import board
import digitalio
import storage
import neopixel

pixel = neopixel.NeoPixel(board.NEOPIXEL, 1)

button = digitalio.DigitalInOQut(board.BUTTON)
button.switch to input(pull=digitalio.Pull.UP)

Turn the NeoPixel white for one second to indicate when to press the boot button.
pixel.fill((255, 255, 255))
time.sleep(1)

If the button is connected to ground, the filesystem is writable by CircuitPython
storage.remount("/", readonly=button.value)

The storage.remount() command has a readonly keyword argument. This
argument refers to the read/write state of CircuitPython. It does NOT refer to the read/
write state of your computer.

©Adafruit Industries Page 150 of 235

When the button is pressed, it returns False. The readonly argumentin boot.py is
set to the value of the button. When the value=True , the CIRCUITPY drive is read-
only to CircuitPython (and writable by your computer). When the value=False, the C
IRCUITPY drive is writable by CircuitPython (and read-only by your computer).

The code.py File

Save the following as code.py on your CIRCUITPY drive.

SPDX-FileCopyrightText: 2022 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT

CircuitPython Essentials Storage CP Filesystem code.py file
For use with boards with a built-in red LED.

Logs temperature using MCP9808 temperature sensor.
import time

import board

import digitalio

import adafruit mcp9808

led = digitalio.DigitalInOut(board.LED)
led.switch _to output()

For connecting MCP9808 via STEMMA QT
mcp9808 = adafruit mcp9808.MCP9808 (board.STEMMA I2C())

For connecting MCP9808 via pins and breadboard
mcp9808 = adafruit mcp9808.MCP9808(board.I2C())

try:
with open("/temperature.txt", "a") as temp log:
while True:
The temperature in Celsius. Include the
math to do the C to F conversion here, if desired.
temperature = mcp9808.temperature

Write the temperature to the temperature.txt file every 10 seconds.
temp log.write('{0:.2f}\n'.format(temperature))
temp_log. flush()

Blink the LED on every write...

led.value = True

time.sleep(l) # ...for one second.
led.value = False # Then turn it off...
time.sleep(9) # ...for the other 9 seconds.

except OSError as e: # When the filesystem is NOT writable by CircuitPython...
delay = 0.5 # ...blink the LED every half second.
if e.args[0] == 28: # If the file system is full...
delay = 0.15 # ...blink the LED every 0.15 seconds!
while True:
led.value = not led.value
time.sleep(delay)

First you import the necessary modules to make them available to your code, and you
set up the LED.

©Adafruit Industries Page 151 of 235

Next you have a try/except block, which is used to handle the three potential
states of the board: read/write, read-only, or filesystem full. The code in the try
block will run if the filesystem is writable by CircuitPython. The code in the except
block will run if the filesystem is read-only to CircuitPython OR if the filesystem is full.

Under the try, you open a temperature.txt log file. If it is the first time, it will create
the file. For all subsequent times, it opens the file and appends data. Inside the loop,
you get the microcontroller temperature value and assign itto a temperature
variable. Then, you write the temperature value to the log file, followed by clearing
the buffer for the next time through the loop. The temperature data is limited to two
decimal points to save space for more data. Finally, you turn the LED on for one
second, and then turn it off for the next nine seconds. Essentially, you blink the LED
for one second every time the temperature is logged to the file which happens every
ten seconds.

Next you except an OSError.An OSError number 30 is raised when trying to
create, open or write to a file on a filesystem that is read-only to CircuitPython. If any
0SError other than 28 is raised (e.g. 30), the delay is setto 0.5 seconds. If the
filesystem fills up, CircuitPython raises O0SError number 28.If 0SError number 28
is raised, the delay is set to 0.15 seconds. Inside the loop, the LED is turned on for
the duration of the delay, and turned off for the duration of the delay, effectively
blinking the LED at the speed of the delay.

Logging the Temperature

At the moment, the LED on your board should be blinking once every half second.
This indicates that the board is currently read-only to CircuitPython, and writable to
your computer, allowing you to update the files on your CIRCUITPY drive as needed.

The way the code in boot.py works is, it checks to see if the button is pressed when

the board is powered on and boot.py is run. To begin logging the temperature, you
must press the button.

©Adafruit Industries Page 152 of 235

i:l
3
& il
O0000000000O

>
cB
B3
ey
=
Q. uw
B

While holding down the button, you need to either hard reset the board by pressing
the reset button, or by unplugging the USB cable and plugging it back in. This will run
the code within boot.py and set your board to writable by CircuitPython, and
therefore, read-only by the computer.

For the ESP32-S3 Reverse TFT Feather, the button-press timing is a little

different. Press it when the NeoPixel LED turns white!

For the ESP32-S3 Reverse TFT Feather, it's difficult to get the timing right for when to
press the boot button. So, the boot.py file includes turning the NeoPixel on bright
white for one second. Press the boot button when the NeoPixel is white!

The red blinking will slow down to one second long, every 10 seconds. This indicates
that the board is currently logging the temperature, once every 10 seconds.

As long as the button is pressed, you can plug the board in anywhere you have USB
power, and log the temperature in that location!

If the LED starts blinking really quickly, it means the filesystem is full! You'll need to
get your temperature data and delete the temperature log file to begin again.

That's all there is to logging the temperature using CircuitPython!

Recovering a Read-Only Filesystem

In the event that you make your CIRCUITPY drive read-only to your computer, and for
some reason, it doesn't easily switch back to writable, there are a couple of things
you can do to recover the filesystem.

©Adafruit Industries Page 153 of 235

Even when the CIRCUITPY drive is read-only to your computer, you can still access
the serial console and REPL. If you connect to the serial console and enter the REPL,
you can run either of the following two sets of commands at the >>> prompt. You do
not need to run both.

First, you can rename your boot.py file to something other than boot.py.

import os
os.rename("boot.py", "something else.py")

Alternatively, you can remove the boot.py file altogether.

import os
os.remove("boot.py")

Then, restart the board by either hitting the reset button or unplugging USB and
plugging it back in. CIRCUITPY should show up on your computer as usual, but now it
should be writable by your computer.

CircuitPython Internet Test

One of the great things about the ESP32 is the built-in WiFi capabilities. This page
covers the basics of getting connected using CircuitPython.

The first thing you need to do is update your code.py to the following. Click the Downl
oad Project Bundle button below to download the necessary libraries and the code.py
file in a zip file. Extract the contents of the zip file, and copy the entire lib folder and
the code.py file to your CIRCUITPY drive.

SPDX-FileCopyrightText: 2020 Brent Rubell for Adafruit Industries
#
SPDX-License-Identifier: MIT

import ipaddress

import ssl

import wifi

import socketpool

import adafruit requests

URLs to fetch from

TEXT URL = "http://wifitest.adafruit.com/testwifi/index.html"

JSON _QUOTES URL = "https://www.adafruit.com/api/quotes.php"
JSON_STARS URL = "https://api.github.com/repos/adafruit/circuitpython”

Get wifi details and more from a secrets.py file
try:
from secrets import secrets
except ImportError:
print("WiFi secrets are kept in secrets.py, please add them there!")

©Adafruit Industries Page 154 of 235

raise
print("ESP32-S2 WebClient Test")
print("My MAC addr:", [hex(i) for i in wifi.radio.mac_address])

print("Available WiFi networks:")
for network in wifi.radio.start scanning networks():
print("\t%s\t\tRSSI: %d\tChannel: %d" % (str(network.ssid, "utf-8"),
network.rssi, network.channel))
wifi.radio.stop scanning networks()

print("Connecting to %s"%secrets["ssid"])
wifi.radio.connect(secrets["ssid"], secrets["password"])
print("Connected to %s!"%secrets["ssid"])

print("My IP address is", wifi.radio.ipv4 address)

ipv4 = ipaddress.ip address("8.8.4.4")
print("Ping google.com: %f ms" % (wifi.radio.ping(ipv4)*1000))

pool = socketpool.SocketPool(wifi.radio)
requests = adafruit requests.Session(pool, ssl.create default context())

print("Fetching text from", TEXT_URL)
response = requests.get(TEXT URL)
print("-" * 40)

print(response.text)

print("-" * 40)

print("Fetching json from", JSON QUOTES URL)
response = requests.get(JSON QUOTES URL)
print("-" * 40)

print(response.json())

print("-" * 40)

print()

print("Fetching and parsing json from", JSON_STARS URL)

response = requests.get(JSON_STARS URL)

print("-" * 40)

print("CircuitPython GitHub Stars", response.json()["stargazers count"])
print("-" * 40)

print("done")

Your CIRCUITPY drive should resemble the following.

v @ CIRCUITPY
>0

B boot_out.txt
R code.py
secrets.py
v @ |ib
R adafruit_requests.mpy

To get connected, the next thing you need to do is update the secrets.py file.

©Adafruit Industries Page 155 of 235

Secrets File

We expect people to share tons of projects as they build CircuitPython WiFi widgets.
What we want to avoid is people accidentally sharing their passwords or secret
tokens and API keys. So, we designed all our examples to use a secrets.py file, that is
on your CIRCUITPY drive, to hold secret/private/custom data. That way you can share
your main project without worrying about accidentally sharing private stuff.

The initial secrets.py file on your CIRCUITPY drive should look like this:

SPDX-FileCopyrightText: 2020 Adafruit Industries
#
SPDX-License-Identifier: Unlicense

This file is where you keep secret settings, passwords, and tokens!
If you put them in the code you risk committing that info or sharing it

secrets = {

'ssid' : 'home wifi network',

'password' : 'wifi password',

'aio username' : 'my adafruit io username',

'aio key' : 'my adafruit io key',

"timezone' : "America/New York", # http://worldtimeapi.org/timezones
}

Inside is a Python dictionary named secrets with a line for each entry. Each entry has
an entry name (say 'ssid') and then a colon to separate it from the entry key
("home wifi network') and finally a comma (,).

At a minimum you'll need to adjust the ssid and password for your local WiFi setup
so do that now!

As you make projects you may need more tokens and keys, just add them one line at
a time. See for example other tokens such as one for accessing GitHub or the
Hackaday API. Other non-secret data like your timezone can also go here, just cause
its called secrets doesn't mean you can't have general customization data in there!

For the correct time zone string, look at http://worldtimeapi.org/timezones () and

remember that if your city is not listed, look for a city in the same time zone, for
example Boston, New York, Philadelphia, Washington DC, and Miami are all on the
same time as New York.

Of course, don't share your secrets.py - keep that out of GitHub, Discord or other
project-sharing sites.

©Adafruit Industries Page 156 of 235

http://worldtimeapi.org/timezones

Don't share your secrets.py file, it has your passwords and API keys in it!

If you connect to the serial console, you should see something like the following:

o000 1. screen /Users/brentrubell (screen)
Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.
code.py output:
ESP32-S2 WebClient Test
My MAC addr: ['@x7c', 'oxdf', '@Oxal', 'Ox0', '0x52', '0xa0']
Avaliable WiFi networks:
Brunelleschi RSSI: -84 Channel:
Transit RSSI: -54 Channel: 1
Fios-5dLNb RSSI: -66 Channel:
disconnecteder RSSI: -86 Channel:
SKJFios-ZV@07 RSSI: -83 Channel:
Fios-QIVUQ : -83 Channel:
Fios-ZV007 : -85 Channel:
: =58 Channel:
: =76 Channel:
NETGEARS52 : =81 Channel:
Connecting to Transit
Connected to Transit!
None
My IP address is 192.168.1.182
Ping google.com: 0.065000 ms
Fetching text from http://wifitest.adafruit.com/testwifi/index.html

This is a test of Adafruit WiFi!
If you can read this, its working :

[{'text': 'Science, my lad, is made up of mistakes, but they are mistakes which it is u
seful to make, because they lead little by little to the truth', 'author': 'Jules Verne

In order, the example code...

Checks the ESP32's MAC address.

print("My MAC addr:", [hex(i) for i in wifi.radio.mac_address])

Performs a scan of all access points and prints out the access point's name (SSID),
signal strength (RSSI), and channel.

print("Avaliable WiFi networks:")
for network in wifi.radio.start scanning networks():
print ("\t%s\t\tRSSI: %d\tChannel: %d" % (str(network.ssid, "utf-8"),
network.rssi, network.channel))
wifi.radio.stop _scanning networks()

Connects to the access point you defined in the secrets.py file, prints out its local IP
address, and attempts to ping google.com to check its network connectivity.

print("Connecting to %s"%secrets["ssid"])
wifi.radio.connect(secrets["ssid"], secrets["password"])

©Adafruit Industries Page 157 of 235

print(print("Connected to %s!"%secrets["ssid"]))
print("My IP address is", wifi.radio.ipv4 address)

ipv4 = ipaddress.ip address("8.8.4.4")
print("Ping google.com: %f ms" % wifi.radio.ping(ipv4))

The code creates a socketpool using the wifi radio's available sockets. This is
performed so we don't need to re-use sockets. Then, it initializes a a new instance of
the requests () interface - which makes getting data from the internet really really
easy.

pool = socketpool.SocketPool(wifi.radio)
requests = adafruit requests.Session(pool, ssl.create default context())

To read in plain-text from a web URL, call requests.get -you may pass in either a
http, or a https url for SSL connectivity.

print("Fetching text from", TEXT_URL)
response = requests.get(TEXT URL)
print("-" * 40)

print(response.text)

print("-" * 40)

Requests can also display a JSON-formatted response from a web URL using a call to
requests.get.

print("Fetching json from", JSON QUOTES URL)
response = requests.get(JSON QUOTES URL)
print("-" * 40)

print(response.json())

print("-" * 40)

Finally, you can fetch and parse a JSON URL using requests.get . This code snippet
obtains the stargazers count field from a call to the GitHub API.

print("Fetching and parsing json from", JSON STARS URL)

response = requests.get(JSON_STARS URL)

print("-" * 40)

print("CircuitPython GitHub Stars", response.json()["stargazers count"])
print("-" * 40)

OK you now have your ESP32 board set up with a proper secrets.py file and can
connect over the Internet. If not, check that your secrets.py file has the right ssid and
password and retrace your steps until you get the Internet connectivity working!

©Adafruit Industries Page 158 of 235

http://docs.python-requests.org/en/master/

Adafruit 10: Send and Receive Data

Adafruit 10 gives you the option to disconnect your microcontroller from your
computer and run it off of USB power or a battery, and still be able to see the data. It
also allows you to send data to your microcontroller, such as NeoPixel colors. This
example shows how to both send data to and receive data from Adafruit |O. It pulls
from a "random" number generator and sends the "random" number to Adafruit IO,
while simultaneously listening for NeoPixel color data from Adafruit 10.

NeoPixel Location

The NeoPixel LED (highlighted in red), labeled Neo on the silk, is located in the center
of the board, to the left of the ESP32-S3 processor.

Adafruit |10 Feeds and Dashboard

The first thing you'll need to do, is head over to Adafruit IO () and make sure your
account is set up.

Then, you need to create two feeds () called neopixel and random. These are case
sensitive!

Next, you'll create a dashboard () for the NeoPixel Color Picker. You can name the
dashboard whatever you like.

Once the dashboard is created, you'll want to add a color picker block (). The color
picker block is highlighted by a red arrow in the image below.

©Adafruit Industries Page 159 of 235

https://io.adafruit.com/
https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed
https://learn.adafruit.com/adafruit-io-basics-dashboards/creating-a-dashboard
https://learn.adafruit.com/adafruit-io-basics-dashboards/adding-blocks

Create a new block X

Click on the block you would like to add to your dashboard. You can always come back and
switch the block type later if you change your mind.

HELLO WORLD!

#OOACEC

Hello world! This is a
different type of text block
that works for larger
quantities of data.

Once you choose the color picker block, you'll need to connect a feed to it. Check the
box next to neopixel.

Connect a Feed

X
The color picker is used to send or view color values in hex format.
Choose a single feed you would like to connect to this color picker. You can also create a
new feed within a group.
Search for a feed Q

Default

Feed Name Last value Recorded

O cpu-temperature 37.52 about 24 hours a

& neopixel #021fff

4 days

Enter new feed name

1 of 1 feeds selected

a

©Adafruit Industries

Page 160 of 235

Finally, a Block Settings page will come up. You can add an optional block title here.
Then you press Create Block.

Block settings

In this final step, you can give your block a title and see a preview of how it will look.
Customize the look and feel of your block with the remaining settings. When you are ready,
click the "Create Block" button to send it to your dashboard.

Block Title (optional)

Block Preview

#00ACEC

Color Picker The color picker is used to

send or view color values in hex format.
Test Value
#00ACEC

Published Value

0@ bytes

‘ Previous step | Create block

The dashboard should look something like the following.

kattni - Dashboards = NeoPixel

ColorPicker

#c302ff

Now that things are set up on the Adafruit IO end, you can continue on to the code on
your microcontroller!

©Adafruit Industries Page 161 of 235

Adafruit IO Example Secrets

This example requires you to provide your Wi-Fi credentials, and your Adafruit IO
username and key. To do this, you'll want to create a secrets.py file on your CIRCUITP
Y drive.

To obtain your Adafruit 10 key, follow the initial steps on this page ().

For information on how to structure your secrets.py file, and what information to add
to it, check out the Secrets File section on the CircuitPython Internet Test page ().

Adafruit IO Example Code

To run this example, you need to first install the NeoPixel, Adafruit IO, and Adafruit
MiniMQTT libraries into the lib folder on your CIRCUITPY drive. Then you need to
update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download
Project Bundle button below to download the necessary libraries and the code.py file
in a zip file. Extract the contents of the zip file, and copy the entire lib folder and the ¢
ode.py file to your CIRCUITPY drive.

SPDX-FileCopyrightText: 2021 Ladyada for Adafruit Industries
SPDX-FileCopyrightText: 2022 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT

import time

import ssl

from random import randint

import microcontroller

import socketpool

import wifi

import board

import neopixel

import adafruit minimqgtt.adafruit minimqtt as MQTT

from adafruit io.adafruit io import IO MQTT

try:

from secrets import secrets
except ImportError:

print("WiFi and Adafruit IO credentials are kept in secrets.py - please add
them there!")

raise

Add your Adafruit IO Username and Key to secrets.py

(visit io.adafruit.com if you need to create an account,
or if you need to obtain your Adafruit IO key.)
aio_username = secrets["aio username"]

aio key = secrets["aio key"]

WiFi

try:
print("Connecting to %s" % secrets["ssid"])

©Adafruit Industries Page 162 of 235

https://learn.adafruit.com/adafruit-io-home-security/adafruit-io-setup
https://learn.adafruit.com/adafruit-metro-esp32-s2/circuitpython-internet-test#secrets-file-3077419-5

wifi.radio.connect(secrets["ssid"], secrets["password"])

print("Connected to %s!" % secrets["ssid"])
Wi-Fi connectivity fails with error messages, not specific errors, so this except
is broad.
except Exception as e: # pylint: disable=broad-except

print("Failed to connect to WiFi. Error:", e, "\nBoard will hard reset in 30
seconds.")

time.sleep(30)

microcontroller.reset()

Initialise NeoPixel
pixel = neopixel.NeoPixel(board.NEOPIXEL, 1, brightness=0.3)

Define callback functions which will be called when certain events happen.
def connected(client):
print("Connected to Adafruit IO! Listening for NeoPixel changes...")
Subscribe to Adafruit IO feed called "neopixel"
client.subscribe("neopixel")

def message(client, feed id, payload): # pylint: disable=unused-argument
print("Feed {0} received new value: {1}".format(feed id, payload))
if feed id == "neopixel":
pixel.fill(int(payload[1l:]1, 16))

Create a socket pool
pool = socketpool.SocketPool(wifi.radio)

Initialize a new MQTT Client object

mgtt client = MQTT.MQTT(
broker="io.adafruit.com",
username=secrets["aio username"],
password=secrets["aio key"],
socket pool=pool,
ssl context=ssl.create default context(),

)

Initialize Adafruit IO MQTT "helper"
io = IO MQTT(mgtt client)

Set up the callback methods above
io.on_connect = connected
io.on_message = message

timestamp = 0
while True:
try:
If Adafruit IO is not connected...
if not io.is connected:
Connect the client to the MQTT broker.
print("Connecting to Adafruit IO...")
io.connect()

Explicitly pump the message loop.
io.loop()
Obtain the "random" value, print it and publish it to Adafruit IO every
10 seconds.
if (time.monotonic() - timestamp) >= 10:
random_number = "{}".format(randint (0, 255))
print("Current 'random' number: {}".format(random number))
io.publish("random", random number)
timestamp = time.monotonic()

Adafruit IO fails with internal error types and WiFi fails with specific
messages.

This except is broad to handle any possible failure.

except Exception as e: # pylint: disable=broad-except

©Adafruit Industries Page 163 of 235

print("Failed to get or send data, or connect. Error:", e,
"\nBoard will hard reset in 30 seconds.")

time.sleep(30)
microcontroller.reset()

Your CIRCUITPY/lib folder should contain at least the following folders and files:

« adafruit_io/
« adafrruit_minimqtt/
« heopixel.mpy

v @ CIRCUITPY
> o

[N
R boot_out.txt

» @ adafruit_io

» @ adafruit_minimqtt
R adafruit_pixelbuf.mpy
R neopixel.mpy

If you like, you can connect to the serial console () to see the connection info and

current readings printed out.

el changes...

NeoPixel Color Change

To change the color of the NeoPixel, go to the NeoPixel Adafruit IO dashboard you
created at the beginning, and click on the colored circle in the ColorPicker block. It

will bring up the following.

©Adafruit Industries Page 164 of 235

https://learn.adafruit.com/adafruit-esp32-s2-feather/kattni-connecting-to-the-serial-console

| ColorPicker

#0dff02

You can move the dot in the box around, and the slider line across the gradient to
choose the perfect color. Choose a new color and click SAVE.

The NeoPixel color will update, and you will see the new value printed to the serial
console, as shown below.

Current 'random' number: 4

Current 'random' number: 68
Feed neopixel received new value: #ccO2ff

Code Walkthrough

This example contains three try/except blocks. These are included where the

code is likely to fail due to WiFi or Adafruit IO connection failures. WiFi can be finicky,

and without these code blocks, if the connection was lost, the code would crash.

Instead, it is designed to reset the board and start the code over again to reestablish

the connection, regardless of the cause. This ensures your code will continue
running. The details of these blocks are explained below.

First you import all of the necessary modules and libraries. This includes importing the

data from your secrets.py file.

import time

import ssl

from random import randint

import socketpool

import wifi

import board

import neopixel

import adafruit minimgtt.adafruit minimgtt as MQTT
from adafruit io.adafruit io import IO MQTT

try:

©Adafruit Industries Page 165 of 235

from secrets import secrets
except ImportError:

print("WiFi and Adafruit IO credentials are kept in secrets.py - please add
them there!")

raise

Note that if a secrets.py file is not present on your CIRCUITPY drive, the code will

fail to run, and you will receive an error in the serial console. Add a secrets.py file
to your CIRCUITPY drive to resolve this error.

The code pulls your Adafruit IO username and key from secrets.py.

aio username = secrets["aio username"]
aio _key = secrets["aio key"]

The WiFi attempts to connect, and prints the status to the serial console. If it connects
successfully, the code continues onto the NeoPixel set up.

try:
print("Connecting to %s" % secrets["ssid"])
wifi.radio.connect(secrets["ssid"], secrets["password"])
print("Connected to %s!" % secrets["ssid"])

If the WiFi connection is not successful, the error will be printed to the serial console,
and the board will hard reset after 30 seconds.

except Exception as e: # pylint: disable=broad-except

print("Failed to connect to WiFi. Error:", e, "\nBoard will hard reset in 30
seconds.")

time.sleep(30)

microcontroller.reset()

Once the WiFi successfully connects, the NeoPixel object is initiated.

pixel = neopixel.NeoPixel(board.NEOPIXEL, 1, brightness=0.3)

Following that are two callback methods. For more details, check out this guide (). The
connected method subscribes to the neopixel feed on Adafruit IO. The message
callback checks for updates to the neopixel feed, and turns the pixel the color from
the feed.

def connected(client):
print("Connected to Adafruit IO! Listening for NeoPixel changes...")
Subscribe to Adafruit IO feed called "neopixel"
client.subscribe("neopixel")

pylint: disable=unused-argument

©Adafruit Industries Page 166 of 235

https://learn.adafruit.com/mqtt-in-circuitpython/code-walkthrough#minimqtt-callback-methods-3034067-9

def message(client, feed id, payload):
print("Feed {0} received new value: {1}".format(feed id, payload))
if feed id == "neopixel":
pixel.fill(int(payload[1l:], 16))

You create a socket pool, use that to initialise the new MQTT Client object, and use
that to initialise the Adafruit IO MQTT "helper".

pool = socketpool.SocketPool(wifi.radio)

mgtt client = MQTT.MQTT(
broker="io.adafruit.com",
username=secrets["aio username"],
password=secrets["aio key"],
socket pool=pool,
ssl context=ssl.create default context(),

)

io = I0 MQTT(mqgtt client)

You set up the callback methods mentioned above.

connected
message

io.on connect
io.on_message

Next, you attempt to connect the client to the MQTT broker. If connection is
successful, the code continues on to the timestamp.

try:
io.connect()

If the MQTT broker connection is not successful, the error is printed to the serial
console, and the board will hard reset after 30 seconds.

except Exception as e:

print("Failed to connect to Adafruit IO. Error:", e, "\nBoard will hard reset
in 30 seconds.")

time.sleep(30)

microcontroller.reset()

Once the broker is connected, you set the timestamp to 0 immediately before the
loop.

timestamp = 0

Inside the loop, you attempt to do two things. You first explicitly poll the message
loop. Check out this guide () for more details on that.

©Adafruit Industries Page 167 of 235

https://learn.adafruit.com/mqtt-in-circuitpython/advanced-minimqtt-usage#minimqtt-loop-3034264-1

while True:
try:
io.loop()

Second, you have a block of code that runs every 10 seconds. Inside, you obtain a
"random" value between 0-255 inclusive, print it to the serial console, and publish it
to an Adafruit IO feed. Finally, you reset timestamp so the block of code knows when
another 10 seconds has passed, and runs again.

if (time.monotonic() - timestamp) >= 10:
random number = "{}".format(randint(0, 255))
print("Current 'random' number: {}".format(random number))
io.publish("random", random number)
timestamp = time.monotonic()

If at any time WiFi or Adafruit 10 disconnects, the code will print the error to the serial
console, and the board will hard reset after 30 seconds.

[...]
except Exception as e:
print("Failed to get or send data, or connect. Error:", e,
"\nBoard will hard reset in 30 seconds.")
time.sleep(30)
microcontroller.reset()

That's all there is to using CircuitPython and Adafruit 10 to send data to Adafruit 10,
and receive data from it!

Arduino IDE Setup

We primarily recommend using the ESP32 chipsets with Arduino. Don't forget you will
also need to install the SiLabs CP2104 Driver if you are using an ESP32 board with
USB-to-Serial converter! (There's no harm in doing it, so we recommend even if you
aren't.)

Install Arduino IDE

The first thing you will need to do is to download the latest release of the Arduino
IDE. You will need to be using version 1.8 or higher for this guide.

Arduino IDE Download

©Adafruit Industries Page 168 of 235

http://www.arduino.cc/en/Main/Software

Install CP2104 / CP2102N USB Driver

Many ESP32 boards have a USB-to-Serial converter that talks to the chip itself, and
will need a driver on your computer's operating system. The driver is available for
Mac, Windows and Linux.

Click here to download the CP2104

USB Driver

Install CH9102 / CH34X USB Driver

Newer ESP32 boards have a different USB-to-serial converter that talks to the chip
itself, and will need a driver on your computer's operating system. The driver is
available for Mac and Windows. It is already built into Linux.

If you would like more detail, check out the guide on installing these drivers ().

Click here to download the Windows
driver

Click here to download the Mac
driver

Install ESP32 Board Support Package from GitHub

For this board, we recommend you don't use 'release' version of Espressif's board
support package because the current release doesn't include board support.

Instead we will install the "very latest" by following these instructions () (scroll down

for mac and Linux as well

Basically, install by git cloneing the Espressif ESP32 board support to get the very
latest version of the code.

In the Tools = Board submenu you should see ESP32 Arduino (in sketchbook) and in

that dropdown it should contain the ESP32 boards along with all the latest ESP32
boards.

©Adafruit Industries Page 169 of 235

http://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://learn.adafruit.com/how-to-install-drivers-for-wch-usb-to-serial-chips
http://www.wch-ic.com/downloads/CH341SER_ZIP.html
http://www.wch-ic.com/downloads/CH34XSER_MAC_ZIP.html
https://docs.espressif.com/projects/arduino-esp32/en/latest/installing.html#windows-manual-installation

Arduino 686 Board:
 12C_Scan | Arduino 1.8.13 reuIno 1556 Boards

Arduino Mbed OS RP2040 Boards

File Edit Sketch Tools Help .
Arduino megaAVR Boards
Zutclomnat CuEl Arduino SAMD (32-bits ARM Cortex-M0+) Boards
- Archive Sketch DFRobot SAMD Boards
2C_Scan H i
_ . Fix Encodl-ng & Reload - ESP32 Arduino
/{ assig Ma-nage Llf:ranes... CtrI+ShTft+I ESP32 Arduino (in sketchbook)
. W:llfil .se Serial Monitor Ctrl+Shift+M £SP8266 Boards (3.0.2)
endi Serial Plotter Ctrl+Shift+L Intel Curie (32-bit) Boards
. . WiFi101 / WiFiNINA Firmware Updater megaTinyCore
#if define
Raspberry Pi RP2040 Boards (in sketchbook]
// turn ESP Exception Decoder .
P Raspberry Pi RP2040 Boards(1.12.0)
pinMode (
delay (1) Board: "Adafruit Feather ESP32 V2" # Teensyduino
e en Upload Speed: "921600" |

Look for the board called Adafruit Feather ESP32-S3 Reverse TFT.

Tools Help
Auto Format cueT
Archive Sketch
Fix Encoding & Reload
Manage Libraries.. CurlShifts! -
Serial Monitor CuteShiftsM
Serial Plotter CirloShifteL

WiFi101/ WIFiNINA Firmware Updater
Boards Manager...
Adafruit Boards
Adafruit nRF52 Boards
Adafruit SAMD (32-bits ARM Cortex-M0+ and Cortex-M4) Boards

Board: "Adafruit Feather ESP32-53 Reverse TFT™
Upload Speed: "921600"

USB Mode: “USB-OTG (TinyUSB)"

USB COC On Boot: “Enabled™

USB Firmware MSC On Boot: “Disabled” Arduino AVR Boards

USB DFU On Boot: “Disabled” Arduino Mbed OS Boards

Upload Mode: “USB-OTG CDC (TinyUSB)" Arduino Mbed OS Nano Boards

CPU Frequency: "240MHz (WiF)™ Arduino Mbed OS RP2040 Boards
Flash Mode: "QIO 80MHZz"™ Arduino nRF52 (32-bits ARM) Boards
Flash Size: "4MB (32Mb)” ESP32 Arduino

Partition Scheme: “TinyUF2 4MB (1.3MB APP/960KB FFAT)" Raspberry Pi RP2040 Boards(2.5.2)

Core Debug Levet: “None"
PSRAM: "QSPI PSRAM™
Arduino Runs On: “Core 1°
Events Run On: "Core 1°

A
Adafruit Feather ESP32-52

Adafruit Feather ESP32-52 TFT

Adafruit Feather ESP32-S2 Reverse TFT
Adafruit QT Py ESP32-S2

Adafruit QT Py ESP32-C3

Adafruit QT Py ESP32

Adafruit Feather ESP32 V2

Adafruit Feather ESP32-53 2MB PSRAM
Adafruit Feather ESP32-53 No PSRAM
Adafruit Feather ESP32-53 TFT
Adafruit Feather ESP32-S3 Reverse TFT
Adafruit QT Py ESP32-53 No PSRAM
Adafruit ItsyBitsy ESP32
NodeMCU-325

The upload speed can be changed: faster speed makes uploads take less time but
sometimes can cause upload issues. 921600 should work fine, but if you're having

issues, you can drop down lowetr.

Using with Arduino IDE
Blink

Now you can upload your first blink sketch!

Plug in the ESP32-S2/S3 board and wait for it to be recognized by the OS (just takes a

few seconds).

©Adafruit Industries

Page 170 of 235

Select ESP32-52/S3 Board in Arduino IDE

Tools Help

Auto Format

Archive Sketch

Fix Encoding & Reload
Manage Libraries...
Serial Monitor

Serial Plotter

WIiFi101 / WiFiNINA Firmware Updater

ESP Exception Decoder

Board: "Adafruit Metro ESP32-S2"

On the Arduino IDE, click:

Tools -> Board -> ESP32 Arduino -> Your
Adafruit ESP32-S2/S3 board

The screenshot shows Metro S2 but you
may have a different board. Make sure the
name matches the exact product you
purchased. If you don't see your board,
make sure you have the latest version of
the ESP32 board support package

Launch ESP32-S2/S3 ROM Bootloader

©Adafruit Industries

Page 171 of 235

https://learn.adafruit.com//assets/96985
https://learn.adafruit.com//assets/96985
https://learn.adafruit.com//assets/96986
https://learn.adafruit.com//assets/96986

Tools Help

Auto Format

Archive Sketch

Fix Encoding & Reload
Manage Libraries...
Serial Monitor

Serial Plotter

WIiFi101 / WiFiNINA Firmware Updater
ESP Exception Decoder

Board: "Adafruit Metro ESP32-S2"
Upload Speed: "921600"

Serial Connected To: "USB CDC"
CPU Frequency: "240MHz (WiFi)"
Flash Frequency: "80MHz"

Flash Mode: "QIO"

Flash Size: "4MB (32Mb)"

Partition Scheme: "Default 4MB with spiffs (1.2MB APP/1.5MB SPIFFS)"

Core Debug Level: “None"
PSRAM: "Enabled"

Port

Get Board Info

Programmer
B n Bontlnade

Before we upload a sketch, place your
ESP32-S2/S3 board into ROM bootloader
mode ().

Look for the Reset button and a second
DFU / BOOTO button

HOLD down the DFU/BootO button while
you click Reset. Then release DFU/Boot0
button

The GIF shows a Metro S2 but your board
may look different. It will still have BOOT
and Reset buttons somewhere

It should appear under Tools -> Port as ESP32-S2/S3 Dev Module.

YAV V' VVYYVYVYYY

/dev/cu.Bluetooth-Incoming-Port
/dev/cu.BoseQC35II-SPPDev
/dev/cu.usbmodemO1 (ESP32S2 Dev Module)

W

Do not select any other port than the one that is called "ESP32S2 Dev Module"
or "ESP32S3 Dev Module"

Load Blink Sketch

Now open up this Blink example in a new sketch window

// the setup function runs once when you press reset or power the board

void setup() {

// initialize built in LED pin as an output.

pinMode (LED BUILTIN, OUTPUT);

// initialize USB serial converter so we have a port created

Serial.begin();

}

// the loop function runs over and over again forever

©Adafruit Industries

Page 172 of 235

https://learn.adafruit.com//assets/96987
https://learn.adafruit.com//assets/96987
https://learn.adafruit.com/adafruit-metro-esp32-s2/rom-bootloader#enter-rom-bootloader-mode-3076820-1
https://learn.adafruit.com/adafruit-metro-esp32-s2/rom-bootloader#enter-rom-bootloader-mode-3076820-1
https://learn.adafruit.com/adafruit-metro-esp32-s2/rom-bootloader#enter-rom-bootloader-mode-3076820-1

void loop() {
digitalWrite(LED BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)

delay(1000); // wait for a second
digitalWrite(LED BUILTIN, LOW); // turn the LED off by making the voltage LOW
delay(1000); // wait for a second

}

Note that we use LED_BUILTIN not pin 13 for the LED pin. That's because we

don't always use pin 13 for the LED on boards. For example, on the Metro ESP32-
S2 the LED is on pin 42!

And click upload! After uploading, you may see something like this:

To suppress this eror, set ~-afer cption 1 'so_reser.

And click upload! After uploading, you may
see something like this, warning you that
we could not get out of reset.

This is normal! Press the RESET button on
your board to launch the sketch

That's it, you will be able to see the red LED blink. You will also see a new serial port
created.

You may call Serial.begin(); in your sketch to create the serial port so don't
forget it, it is not required for other Arduinos or previous ESP boards!

CPU Frequency: "240MHz (WiFi)"

Flash Frequency: "80MHz"

Flash Mode: "QIO"

Flash Size: "4MB (32Mb)"

Partition Scheme: “Default 4MB with spiffs (1.2MB APP/1.5MB SPIFFS)"
Core Debug Level: "None”

PSRAM: "Disabled”

Port erial g
Get Board Info CcoM34
COM37 (Adafruit Metro ESP32-52)

ial ports

P

You can now select the new serial port name which will be different than the
bootloader serial port. Arduino IDE will try to use auto-reset to automatically put the
board into bootloader mode when you ask it to upload new code

©Adafruit Industries Page 173 of 235

https://learn.adafruit.com//assets/96990
https://learn.adafruit.com//assets/96990

If you ever DON'T see a serial port, or something is not working out with upload you
can always manually enter bootloader mode:

« Reset board into ROM bootloader with DFU/BOOTO + Reset buttons
« Select the ESP32S2/S3 Dev Board ROM bootloader serial port in Tools->Port
menu

- Upload sketch
« Click reset button to launch code

Arduino Blink

The first and most basic program you can upload to your Arduino is the classic Blink
sketch. This takes something on the board and makes it, well, blink! On and off. It's a

great way to make sure everything is working and you're uploading your sketch to the
right board and right configuration.

When all else fails, you can always come back to Blink!

©Adafruit Industries Page 174 of 235

Pre-Flight Check: Get Arduino IDE &
Hardware Set Up

This lesson assumes you have Arduino IDE set up. This is a generalized checkilist,
some elements may not apply to your hardware. If you haven't yet, check the previous
steps in the guide to make sure you:

« Install the very latest Arduino IDE for Desktop (not all boards are supported by
the Web IDE so we don't recommend it).

« Install any board support packages (BSP) required for your hardware. Some
boards are built in defaults on the IDE, but lots are not! You may need to install
plug-in support which is called the BSP.

» Get a Data/Sync USB cable for connecting your hardware. A significant amount
of problems folks have stem from not having a USB cable with data pins. Yes,
these cursed cables roam the land, making your life hard. If you find a USB
cable that doesn't work for data/sync, throw it away immediately! There is no
need to keep it around, cables are very inexpensive these days.

« Install any drivers required - If you have a board with a FTDI or CP210x chip, you
may need to get separate drivers. If your board has native USB, it probably
doesn't need anything. After installing, reboot to make sure the driver sinks in.

« Connect the board to your computer. If your board has a power LED, make sure
its lit. Is there a power switch? Make sure its turned On!

Start up Arduino IDE and Select Board/Port

OK now you are prepared! Open the Arduino IDE on your computer. Now you have to
tell the IDE what board you are using, and how you want to connect to it.

In the IDE find the Tools menu. You will use this to select the board. If you switch

boards, you must switch the selection! So always double-check before you upload
code in a new session.

©Adafruit Industries Page 175 of 235

Tools Help

Auto Format Ctrl+T
Archive Sketch

Fix Encoding & Reload

Manage Libraries... Ctrl+Shift+]
Serial Monitor Ctrl+Shift+M
Serial Plotter Ctrl+Shift+L
WIiFi101 / WIFININA Firmware Updater

Board: "Adafruit Feather ESP32-S3 Reverse TFT" >

USB CDC On Boot: "Enabled"”

USB Firmware MSC On Boot: "Disabled”
USB DFU On Boot: "Disabled”

Upload Mode: "USB-OTG CDC (TinyUSB)"
CPU Frequency: "240MHz (WiFi)"

Flash Mode: "QIO 80MHz"

Flash Size: "4MB (32Mb)"

Partition Scheme: "TinyUF2 4MB (1.3MB APP/960KB FFAT)"
Core Debug Level: "None”™

PSRAM: "QSPI PSRAM"

Arduino Runs On: "Core 1"

N NN N N N N N NN N N WY

Events Run On: "Core 1"

Programmer >

Burn Bootloader

New Blink Sketch

OK lets make a new blink sketch! From the File menu, select New

% Blink | Arduino 1.8.13

File Edit Sketch Tools Help
New Ctrl+N
Open... Ctrl+0
Open Recent
Sketchbook
Examples >
Close Ctrl+W
Save Ctrl+S)i

- - PP v

Then in the new window, copy and paste this text:

int led = LED BUILTIN;

void setup() {

©Adafruit Industries Page 176 of 235

// Some boards work best if we also make a serial connection
Serial.begin(115200);

// set LED to be an output pin
pinMode(led, OUTPUT);
}

void loop() {
// Say hi!
Serial.println("Hello!");

digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)

delay(500); // wait for a half second
digitalWrite(led, LOW); // turn the LED off by making the voltage LOW
delay(500); // wait for a half second

Note that in this example, we are not only blinking the LED but also printing to

the Serial monitor, think of it as a little bonus to test the serial connection.

One note you'll see is that we reference the LED with the constant LED BUILTIN
rather than a number. That's because, historically, the built in LED was on pin 13 for
Arduinos. But in the decades since, boards don't always have a pin 13, or maybe it
could not be used for an LED. So the LED could have moved to another pin. It's best
to use LED BUILTIN so you don't getthe pin number confused!

Verify (Compile) Sketch

OK now you can click the Verify button to convert the sketch into binary data to be
uploaded to the board.

Note that Verifying a sketch is the same as Compiling a sketch - so we will use the
words interchangeably

©Adafruit Industries Page 177 of 235

@ Blink | Arduino 1.8.13

File Edit Sketch Tools Help

void setup() {
(led, OUTPUT);
Serial.begin(115200);

During verification/compilation, the computer will do a bunch of work to collect all the
libraries and code and the results will appear in the bottom window of the IDE.

Adafruit Camera on COM34

If something went wrong with compilation, you will get red warning/error text in the
bottom window letting you know what the error was. It will also highlight the line with
an error.

For example, here | had the wrong board selected - and the selected board does not
have a built in LED!

File Edit Sketch Tools Help

ork best if we also make a serial connection

‘LED_BUILTIN' was not declared in this scope

Adafrit QT Py ESP32-S2 on COM34

Here's another common error, in my haste | forgotto add a ; at the end of a line. The
compiler warns me that it's looking for one - note that the error is actually a few lines

up!

©Adafruit Industries Page 178 of 235

sketch_dec25a §

int led = LED F“::_rr.\:<\ ~

|w:‘ij setup() {
// Some k

Serial.begin

// set LED to be an output pin v

expected ', or ;' before Void'

Adafruit Feather ESP32-S2 on COM34

Turning on detailed compilation warnings and output can be very helpful
sometimes - Its in Preferences under "Show Verbose Output During:" and check
the Compilation button. If you ever need to get help from others, be sure to do
this and then provide all the text that is output. It can assist in nailing down what
happened!

On success you will see something like this white text output and the message Done
compiling. in the message area.

Adafruit Feather ESP32-52 on COM34

Upload Sketch

Once the code is verified/compiling cleanly you can upload it to your board. Click the
Upload button.

o sketch_dec25a | Arduino 1.8.13
File Edit Sketch Tools Help

o Upload

int led \ LED BUILTIN; A
void setup () {l
// Some boards work best if we also make a serial connection

Serial.begin(115200);

/] oo+ TEN +A ha an AndErnd nan

The IDE will try to compile the sketch again for good measure, then it will try to
connect to the board and upload a the file.

©Adafruit Industries Page 179 of 235

This is actually one of the hardest parts for beginners because it's where a lot of
things can go wrong.

However, lets start with what it looks like on success! Here's what your board upload
process looks like when it goes right:

Often times you will get a warning like this, which is kind of vague:

No device found on COM66 (or whatever portis selected)
An error occurred while uploading the sketch

An error occurred while uploading the sketch
Sketch uses ytes (1%) of pr storage space. M m is 1032192 bytes.

This could be a few things.

First up, check again that you have the correct board selected! Many electronics
boards have very similar names or look, and often times folks grab a board different
from what they thought.

If you're positive the right board is selected, we recommend the next step is to put
the board into manual bootloading mode.

Native USB and manual bootloading

Historically, microcontroller boards contained two chips: the main micro chip (say,
ATmega328 or ESP8266 or ESP32) and a separate chip for USB interface that would
be used for bootloading (a CH430, FT232, CP210x, etc). With these older designs, the
microcontroller is put into a bootloading state for uploading code by the separate

©Adafruit Industries Page 180 of 235

chip. It allows for easier uploading but is more expensive as two chips are needed,
and also the microcontroller can't act like a keyboard or disk drive.

Modern chips often have 'native' USB - that means that there is no separate chip for
USB interface. It's all in one! Great for cost savings, simplicity of design, reduced size

and more control. However, it means the chip must be self-aware enough to be able
to put itself into bootload/upload mode on its own. That's fine 99% of the time but is
very likely you will at some point get the board into an odd state that makes it too
confused to bootload.

Before continuing we really, really suggest turning on Verbose Upload messages, it
will help in this process because you will be able to see what the IDE is trying to do.
It's a checkbox in the Preferences menu.

Preferences

Settings Network

Sketchbook location:
lC:\UsersVadyadaDropbox\ArduinoSkehd'nes

Editor language: |System Default v | (requires restart of Arduino)
Editor font size:

Interface scale: [Automatic (requires restart of Arduina)

Theme: (requires restart of Arduino)

<l

Show verbose output during: [] compilation /] iipload

Compiler warnings:

Enter Manual Bootload Mode

OK now you know it's probably time to try manual bootloading. No problem! Here is
how you do that for this board:

Hold down the BOOT/DO button, and while continuing to hold it, press the Reset butto
n. Keep holding BOOT/DO for a few seconds! The ROM bootloader does not show a
drive, so nothing will happen when it is successful!

Once you are in manual bootload mode, go to the Tools menu, and make sure you

have selected the bootloader serial port. It is almost certain that the serial port has
changed now that the bootloader is enabled

©Adafruit Industries Page 181 of 235

Tools Help

Auto Format Ctrl+T

Archive Sketch

Fix Encoding & Reload

Manage Libraries... Ctrl+Shift+|
1 Serial Monitor Ctrl+Shift+M

Serial Plotter Ctrl+Shift+L
i WIiFi101 / WIiFININA Firmware Updater

Board: "Adafruit Feather ESP32-S3 Reverse TFT" >

USB CDC On Boot: "Enabled”

USB Firmware MSC On Boot: "Disabled"”
USB DFU On Boot: "Disabled"”

Upload Mode: "USB-OTG CDC (TinyUSB)"
CPU Frequency: "240MHz (WiFi)"

X Flash Mode: "QIO 80MHZz"

Flash Size: "4MB (32Mb)"

Partition Scheme: "TinyUF2 4MB (1.3MB APP/960KB FFAT)"
Core Debug Level: "None"

PSRAM: "QSPI PSRAM™

Arduino Runs On: "Core 1"

v VvV vV vV WV

v Vv

v OV vV vV WV

=
ke

Events Run On: "Core 1" >

—l
T

-

B -

Programmer >

Burn Bootloader

Now you can try uploading again!

0 sketch_dec25a | Arduino 1.8.13

File Edit Sketch Tools Help

° Upload

sketch_dec25a §

int led = LED_BUILTIN;

void setup() {

// Some boards work best if we also make a serial connection

Did you remember to select the new Port in the Tools menu since the bootloader

port has changed?

This time, you should have success!

After uploading this way, be sure to click the reset button - it sort of makes sure that
the board got a good reset and will come back to life nicely.

©Adafruit Industries Page 182 of 235

It's also a good idea to try to re-upload the sketch again now that you've performed a
manual bootload to get the chip into a good state. It should perform an auto-reset the
second time, so you don't have to manually bootload again.

Finally, a Blink!

OK it was a journey but now we're here and you can enjoy your blinking LED. Next up,
try to change the delay between blinks and re-upload. It's a good way to make sure
your upload process is smooth and practiced.

|I2C Scan Test

A lot of sensors, displays, and devices can connect over 12C. 12C is a 2-wire 'bus' that
allows multiple devices to all connect on one set of pins so it's very convenient for
wiring!

When using your board, you'll probably want to connect up 12C devices, and it can be

a little tricky the first time. The best way to debug 12C is go through a checklist and
then perform an I12C scan

©Adafruit Industries Page 183 of 235

Common [2C Connectivity Issues

« Have you connected four wires (at a minimum) for each 12C device? Power the
device with whatever is the logic level of your microcontroller board (probably
3.3V), then a ground wire, and a SCL clock wire, and and a SDA data wire.

« If you're using a STEMMA QT board - check if the power LED is lit. It's usually a
green LED to the left side of the board.

- Does the STEMMA QT/I2C port have switchable power or pullups? To reduce
power, some boards have the ability to cut power to I12C devices or the pullup
resistors. Check the documentation if you have to do something special to turn
on the power or pullups.

- If you are using a DIY 12C device, do you have pullup resistors? Many boards do
not have pullup resistors built in and they are required! We suggest any common
2.2K to 10K resistors. You'll need two: one each connects from SDA to positive
power, and SCL to positive power. Again, positive power (a.k.a VCC, VDD or V+)
is often 3.3V

- Do you have an address collision? You can only have one board per address. So
you cannot, say, connect two AHT20's to one 12C port because they have the
same address and will interfere. Check the sensor or documentation for the
address. Sometimes there are ways to adjust the address.

« Does your board have multiple 12C ports? Historically, boards only came with
one. But nowadays you can have two or even three! This can help solve the
"hey, but what if | want two devices with the same address" problem: just put
one on each bus.

« Are you hot-plugging devices? |12C does not support dynamic re-connection, you
cannot connect and disconnect sensors as you please. They should all be
connected on boot and not change. (Only exception is if you're using a hot-plug
assistant but that'll cost you ().

« Are you keeping the total bus length reasonable? I2C was designed for maybe
6" max length. We like to push that with plug-n-play cables, but really please

keep them as short as possible! (Only exception is if you're using an active bus

extender ()).

The Reverse TFT Feather has 10k pullups on I12C pins SCL and SDA. I12C is shared by
the broken out pins and the STEMMA QT connector.

There is a lipo battery monitor, MAX17048, on the I12C bus with address 0x36.

©Adafruit Industries Page 184 of 235

https://www.adafruit.com/product/5159
https://www.adafruit.com/product/5159
https://www.adafruit.com/product/4756
https://www.adafruit.com/product/4756

Perform an |2C scan!

Install TestBed Library

To scan 12C, the Adafruit TestBed library is used. This library and example just makes
the scan a little easier to run because it takes care of some of the basics. You will
need to add support by installing the library. Good news: it is very easy to do it. Go to
the Arduino Library Manager.

o NeoPixelBlink | Arduino 1.8.13

File Edit Sketch Tools Help

Verify/Compile Ctrl+R
Upload Ctrl+U ray
NeoPi Upload Using Programmer Ctrl+Shift+U Manage Libraries... Ctrl+Shift+|
#incl Export compiled Binary Ctrl+Alt+S =
Add ZIP Library...
Show Sketch Folder Ctrl+K o
// Ho ——— Arduino libraries re ¥han ¢
nc ibra
fdefi - . Arduino Low Power
Add File...
ArduinoBLE

Search for TestBed and install the Adafruit TestBed library

o |ibrary Manager

v | testbed

Type Al + | Topic vAI
dafruit TestBed S ~
by Adafruit Version 1.0.0 INSTALLED

Adafruit's internal test bed code library Adafruit's internal test bed code library

More info

Now open up the I2C Scan example

Adafruit SSD1327 >
Adafruit SSD1331 OLED Driver Library for Ar

o |2C_Scan | Arduino 1.8.13

File Edit Sketch Tools Help i i
Adafruit SSD1351 library >
plew Criich Adafruit ST7735 and ST7789 Library >
Open... CuteO Adafruit STMPEG10 >
Open Recent Adafruit TCS34725 >
Sketchbook Adafruit TensorFlow Lite >
Examples Adafruit TestBed 5 12CScan
Close Crl+W Adafruit TFTDMA Library MCP4725
Save Ctrl+S Adafruit TFTLCD Library >
Save As... Ctrl+Shift+S Adafruit TinyUSB Library >

#include <Adafruit TestBed.h>
extern Adafruit TestBed TB;

#define DEFAULT I2C PORT &Wire

// Some boards have TWO I2C ports, how nifty. We should scan both
#if defined (ARDUINO ARCH RP2040) \

|| defined (ARDUINO ADAFRUIT QTPY_ ESP32S2) \

| | defined(ARDUINO ADAFRUIT QTPY ESP32S3 NOPSRAM) \

| | defined(ARDUINO ADAFRUIT QTPY ESP32S3) \

|| defined (ARDUINO ADAFRUIT QTPY_ESP32 PICO) \

©Adafruit Industries Page 185 of 235

|| defined (ARDUINO SAM DUE)
#define SECONDARY I2C PORT &Wirel
#endif

void setup() {
Serial.begin(115200);

// Wait for Serial port to open
while (!Serial) {
delay(10);

}
delay(500);
Serial.println("Adafruit I2C Scanner");

#if defined (ARDUINO ADAFRUIT QTPY ESP32S2) || \
defined (ARDUINO ADAFRUIT QTPY ESP32S3 NOPSRAM) || \
defined (ARDUINO ADAFRUIT QTPY ESP32S3) || \
defined (ARDUINO ADAFRUIT QTPY ESP32 PICO)
// ESP32 is kinda odd in that secondary ports must be manually
// assigned their pins with setPins()!
Wirel.setPins(SDA1l, SCL1);
#endif

#if defined (ARDUINO ADAFRUIT_ FEATHER ESP32S52)
// turn on the I2C power by setting pin to opposite of 'rest state'
pinMode (PIN I2C POWER, INPUT);
delay(1l);
bool polarity = digitalRead(PIN I2C POWER);
pinMode(PIN I2C POWER, OUTPUT);
digitalWrite(PIN_I2C POWER, !polarity);
#endif

#if defined (ARDUINO ADAFRUIT FEATHER ESP32S2 TFT)
pinMode(TFT I2C POWER, OUTPUT);
digitalWrite(TFT _I2C POWER, HIGH);

#endif

#if defined (ARDUINO ADAFRUIT FEATHER ESP32S2 REVTFT)
pinMode(TFT_I2C POWER, OUTPUT);
digitalWrite(TFT I2C POWER, HIGH);

#endif

#if defined (ADAFRUIT FEATHER ESP32 V2)
// Turn on the I2C power by pulling pin HIGH.
pinMode (NEOPIXEL I2C POWER, OUTPUT);
digitalWrite(NEOPIXEL I2C POWER, HIGH);

#endif

}

void loop() {
Serial.println("");
Serial.println("");
Serial.print("Default port (Wire) ");
TB.theWire = DEFAULT I2C PORT;
TB.printI2CBusScan();

#if defined (SECONDARY I2C PORT)
Serial.print("Secondary port (Wirel) ");
TB.theWire = SECONDARY I2C PORT;
TB.printI2CBusScan();

#endif

delay(3000); // wait 3 seconds
}

©Adafruit Industries Page 186 of 235

Wire up 12C device

While the examples here will be using the Adafruit MCP9808 (), a high accuracy
temperature sensor, the overall process is the same for just about any I12C sensor or
device.

The first thing you'll want to do is get the sensor connected so your board has 12C to
talk to.

Adafruit MCP9808 High Accuracy 12C
Temperature Sensor Breakout

The MCP9808 digital temperature sensor
is one of the more accurate/precise we've
ever seen, with a typical accuracy of
+0.25°C over the sensor's -40°C to...
https://www.adafruit.com/product/5027
emp: 24.19 C

K.

S e ceoasssensoes .

STEMMA QT / Qwiic JST SH 4-Pin Cable -
50mm Long

This 4-wire cable is 50mm /1.9" long and
fitted with JST SH female 4-pin
connectors on both ends. Compared with
the chunkier JST PH these are 1mm pitch
instead of 2mm, but...
https://www.adafruit.com/product/4399

Wiring the MCP9808

The MCP9808 comes with a STEMMA QT connector, which makes wiring it up quite
simple and solder-free.

©Adafruit Industries Page 187 of 235

https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399

SP32-S3 Rev
TFT Feather

fritzing

Now upload the scanning sketch to your microcontroller and open the serial port to
see the output. You should see something like this:

[© com41 = o X

| Send

Adafruit I2C Scanner

Default port (Wire) I2C scan: 0x18, 0x36,

Default port (Wire) I2C scan: 0x1l8, 0x36,

Default port (Wire) I2C scan: 0x18, 0x36,

Default port (Wire) I2C scan: 0x18, 0x36,

|) Autoscroll [] Show timestamp Newline v| 115200 baud | | Clear output

12C: On-Board MAX17048 Battery Monitor

Your microcontroller board comes with a MAX17048 lithium ion polymer (lipoly)
battery monitor built right onto the board. The MAX17048 is available over [2C.

The sensor comes with its own Adafruit CircuitPython library that makes it simple to
write code to read data from it. This example will be using, among other things, the A
dafruit_MAX1704X () library.

©Adafruit Industries Page 188 of 235

https://github.com/adafruit/Adafruit_MAX1704X
https://github.com/adafruit/Adafruit_MAX1704X

The example simply reads data from the sensor and prints it to the serial console. It is
designed to show you how to get data from the sensor.

Q0000
BATEM1IRR 13 12

The MAX17048 battery

monitor (highlighted in red) is located on
the front of the board, directly above the
STEMMA QT port. Its 12C address is 0x36.

Arduino Library Installation

You can install the necessary libraries from the Library Manager. To open, click Sketch
> Include Library > Manage Libraries...

@ Arduino File Edit Sketch Tools Help

_ Verify/Compile sketch_jun25a | Arduino 1.8.13

Upload
Upload Using Programmer
sketch_jun25a Export compiled Binary

oid setup() { Show Sketch Folder

/7 put your setup code he Include Library Manage Libraries...
Add File... i 2
Add .ZIP Library...

Search for MAX17048, and install the Adafruit MAX1704X library.

@ Library Manager X

Type All v Topic |All v max17048|
[Adafruit MAX1704X = =
by Adafruit

Arduino library for the MAX17048 battery monitors in the Adafruit shop Arduino library for the MAX17048 battery monitors in the Adafruit
shop
Camm ik

> |

MAX17048

by hideakitai

Arduino library for MAX17048/MAX17049 1-Cell/2-Cell Fuel Gauge with ModelGauge Arduino library for MAX17048/MAX17049 1-Cell/2-Cell
Fuel Gauge with ModelGauge

More info

SparkFun MAX1704x Fuel Gauge Arduino Library

by SparkFun Electronics
Arduino library for the MAX17043/44/48/49 fuel gauges An Arduino library to let you access all of the features of the MAX17043,
MAX17044, MAX17048 and MAX17049 battery fuel gauges

Version 1.0.4 v Install

When asked about installing dependencies, click Install all.

©Adafruit Industries Page 189 of 235

https://learn.adafruit.com//assets/119070
https://learn.adafruit.com//assets/119070

Dependencies for library Adafruit MAX1704X:1.0.0 X

The library Adafruit MAX1704X:1.0.0 needs some other library
dependencies currently not installed:

- Adafruit BusIO

Would you like to install also all the missing dependencies? F

Install all Install 'Adafruit MAX1704X" only Cancel |

MAX17048 Simple Data Example

Click File > Examples > Adafruit MAX1704X > MAX17048_basic to open the example.

#include "Adafruit MAX1704X.h"
Adafruit MAX17048 maxlipo;

void setup() {
Serial.begin(115200);
while (!Serial) delay(10); // wait until serial monitor opens

Serial.println(F("\nAdafruit MAX17048 simple demo"));

if (!maxlipo.begin()) {
Serial.println(F("Couldnt find Adafruit MAX17048?\nMake sure a battery is
plugged in!"));
while (1) delay(10);
}
Serial.print(F("Found MAX17048"));
Serial.print(F(" with Chip ID: 0x"));
Serial.println(maxlipo.getChipID(), HEX);
}

void loop() {
Serial.print(
Serial.println(" V");
Serial.print(F("Batt Percent: ")); Serial.print(maxlipo.cellPercent(), 1);
Serial.println(" %");
Serial.println()

F("Batt Voltage: ")); Serial.print(maxlipo.cellVoltage(), 3);

’

delay(2000); // dont query too often!
}

After opening the MAX17048_basic file, upload it to your microcontroller. Open the Se
rial Monitor at 115200 baud. Plug in a lipo battery to the JST-PH battery port. You
should see the battery voltage and percentage data print to the Serial Monitor as the
sketch runs.

©Adafruit Industries Page 190 of 235

(e : —

Send

Adafruit MAX17048 simple demo
Found MAX17048 with Chip ID: 0xC
Batt Voltage: 0.000 V

Batt Percent: 0.0 %

Batt Voltage: 4.085 V
Batt Percent: 87.8 %

Batt Voltage: 4.085 V
Batt Percent: 87.8 %

Batt Voltage: 4.085 V
Batt Percent: 87.8 %

Batt Voltage: 4.085 V
Batt Percent: 87.8 %

Batt Voltage: 4.085 V
Batt Percent: 87.8 %

v

[Autoscroll [_] Show timestamp Newline v| 115200 baud v | Clear output

Built-In TFT

Your microcontroller board comes with a lovely TFT display built right in. The Arduino
ST7735 and ST7789 Library enables you to use the TFT on your board with Arduino.
This page shows you how to install the necessary libraries, and provides a graphics
test example.

Arduino Library Installation

You'll need to install the ST7735 and ST7789 library to compile and run the following
example. Open the Arduino IDE and then open the Library manager.

@ Arduino File Edit Sketch Tools Help

_ Verify/Compile sketch_jun25a | Arduino 1.8.13

Upload
Upload Using Programmer
sketch_jun25a Export compiled Binary

oid setup() { Show Sketch Folder

// put t de h - —
put your setup code heruupesee Library Manage Libraries...

} AddFFile...

Add .ZIP Library...

Click the Manage Libraries ... menu item, search for ST7789, and select the Adafruit
ST7735 and ST7789 Library:

[NON] Library Manager

Type All Topic All B s17789

- Adafruit ST7735 and ST7789 Library

by Adafruit
This is a library for the Adafruit ST7735 and ST7789 SPI displays. This Is a library for the Adafrult ST7735 and ST7789 SPI displays.
More info

©Adafruit Industries Page 191 of 235

When asked to install any dependencies, click Install all.

[] Dependencies for library Adafruit ST7735 and ST7789 Library:1.9.1

The library Adafruit ST7735 and ST7789 Library:1.9.1 needs some other library
dependencies currently not installed:

- Adafruit GFX Library
- Adafruit BusIO
- Adafruit seesaw Library

Would you like to install also all the missing dependencies?

Install all Install 'Adafruit ST7735 and ST7789 Library' only Cancel

Graphics Test Example Code

The next thing you'll want to do is load the example code onto your board.

You can find the example through the Arduino IDE by clicking File > Adafruit ST7735
and ST7789 Library > graphicstest_feather_esp32s3_tft.

/KRR sk sk ko sk ok ook ok ook sk foksk ok sk ok skokok g okok ook sk foksk ok sk kok skokok o okok ook sk ok sk ok sk kok sk okok o oksk ok sk ok ok ok
This is a library for several Adafruit displays based on ST77* drivers.

Works with the Adafruit ESP32-S2 TFT Feather
----> http://www.adafruit.com/products/5300

Check out the links above for our tutorials and wiring diagrams.

Adafruit invests time and resources providing this open source code,
please support Adafruit and open-source hardware by purchasing
products from Adafruit!

Written by Limor Fried/Ladyada for Adafruit Industries.

MIT license, all text above must be included in any redistribution
AR R R K oK K KKK KRR R R R SR SR KK KKK R R K SR K KKK KKK R K K oK 3K Sk K KRR KKK SK KKK HORROR Rk ok ok oK/

#include <Adafruit GFX.h> // Core graphics library
#include <Adafruit ST7789.h> // Hardware-specific library for ST7789
#include <SPI.h>

// Use dedicated hardware SPI pins
Adafruit ST7789 tft = Adafruit ST7789(TFT CS, TFT DC, TFT RST);

float p = 3.1415926;

void setup(void) {
Serial.begin(9600);
Serial.print(F("Hello! Feather TFT Test"));

// turn on backlite
pinMode (TFT_BACKLITE, OUTPUT);
digitalWrite(TFT BACKLITE, HIGH);

// turn on the TFT / I2C power supply
pinMode (TFT I2C POWER, OUTPUT);
digitalWrite(TFT I2C POWER, HIGH);
delay(10);

// initialize TFT

©Adafruit Industries Page 192 of 235

tft.init (135, 240); // Init ST7789 240x135
tft.setRotation(3);
tft.fillScreen(ST77XX_BLACK) ;

Serial.println(F("Initialized"));

uintle t time = millis();
tft.fillScreen(ST77XX_BLACK) ;
time = millis() - time;

Serial.println(time, DEC);
delay(500);

// large block of text

tft.fillScreen(ST77XX_BLACK) ;

testdrawtext (
"Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur "
"adipiscing ante sed nibh tincidunt feugiat. Maecenas enim massa, "
"fringilla sed malesuada et, malesuada sit amet turpis. Sed porttitor "
"neque ut ante pretium vitae malesuada nunc bibendum. Nullam aliquet "
"ultrices massa eu hendrerit. Ut sed nisi lorem. In vestibulum purus a "
"tortor imperdiet posuere. ",
ST77XX_WHITE) ;

delay(1000);

// tft print function!
tftPrintTest();
delay(4000);

// a single pixel
tft.drawPixel(tft.width() / 2, tft.height() / 2, ST77XX_GREEN);
delay(500);

// line draw test
testlines (ST77XX_YELLOW) ;
delay(500);

// optimized lines
testfastlines (ST77XX_RED, ST77XX_BLUE);
delay(500);

testdrawrects (ST77XX_GREEN) ;
delay(500);

testfillrects(ST77XX _YELLOW, ST77XX _MAGENTA);
delay(500);

tft.fillScreen(ST77XX_BLACK);
testfillcircles (10, ST77XX _BLUE);
testdrawcircles (10, ST77XX WHITE);
delay(500);

testroundrects();
delay(500);

testtriangles();
delay(500);

mediabuttons();
delay(500);

Serial.println("done");
delay(1000);
}

void loop() {
tft.invertDisplay(true);
delay(500);
tft.invertDisplay(false);

©Adafruit Industries Page 193 of 235

delay(500);
}

void testlines(uintl6_t color) {
tft.fillScreen(ST77XX_BLACK) ;
for (intle t x = 0; x < tft.width(); x += 6) {
tft.drawLine(0, 0, x, tft.height() - 1, color);
delay(0);

}

for (intl6 t y = 0; y < tft.height(); y += 6) {
tft.drawLine(0, 0, tft.width() - 1, y, color);
delay(0);

tft.fillScreen(ST77XX_BLACK) ;

for (intle t x = 0; x < tft.width(); x += 6) {
tft.drawLine(tft.width() - 1, 0, x, tft.height() - 1, color);
delay(0);

}

for (intle t y = 0; y < tft.height(); y += 6) {
tft.drawLine(tft.width() - 1, 0, 0, y, color);
delay(0);

tft.fillScreen(ST77XX BLACK);

for (intle t x = 0; x < tft.width(); x += 6) {
tft.drawLine(0, tft.height() - 1, x, 0, color);
delay(0);

}

for (intl6 t y = 0; y < tft.height(); y += 6) {
tft.drawLine (0, tft.height() - 1, tft.width() - 1, y, color);
delay(0);

}

tft.fillScreen(ST77XX_BLACK) ;

for (intle_t x = 0; x < tft.width(); x += 6) {
tft.drawLine(tft.width() - 1, tft.height() -
delay(0);

}

for (intle t y = 0; y < tft.height(); y += 6) {
tft.drawLine(tft.width() - 1, tft.height() - 1, 0, y, color);
delay(0);

1, x, 0, color);

}

void testdrawtext(char *text, uintlé t color) {
tft.setCursor(0, 0);
tft.setTextColor(color);
tft.setTextWrap(true);
tft.print(text);

ks

void testfastlines(uintl6 t colorl, uintl6_t color2) {
tft.fillScreen(ST77XX_BLACK) ;
for (intle t y = 0; y < tft.height()
tft.drawFastHLine(0, y, tft.width(
}
for (intle t x = 0; x < tft.width(); x +=5) {
tft.drawFastVLine(x, 0, tft.height(), color2);
}
}

void testdrawrects(uintl6 t color) {
tft.fillScreen(ST77XX_BLACK) ;
for (intle_ t x = 0; x < tft.width(); x += 6) {
tft.drawRect(tft.width() / 2 - x / 2, tft.height() / 2 - x / 2, X, X,
color);

iy +=5) {
), colorl);

©Adafruit Industries Page 194 of 235

void testfillrects(uintl6 t colorl, uintl6 t color2) {
tft.fillScreen(ST77XX_BLACK) ;
for (intl6 t x = tft.width() - 1; x > 6; x -= 6) {
tft.fillRect (tft.width() /7 2 - x / 2, tft.height() / 2 - x / 2, X, X,
colorl);
tft.drawRect (tft.width() / 2 - x / 2, tft.height() / 2 - x / 2, X, X,
color?);
}

}

void testfillcircles(uint8 t radius, uintl6_t color) {
for (intl6_t x = radius; x < tft.width(); x += radius * 2) {
for (intl6 t y = radius; y < tft.height(); y += radius * 2) {
tft.fillCircle(x, y, radius, color);
}

}
}

void testdrawcircles(uint8 t radius, uintl6 t color) {
for (intle_t x = 0; x < tft.width() + radius; x += radius * 2) {
for (intle t y = 0; y < tft.height() + radius; y += radius * 2) {
tft.drawCircle(x, y, radius, color);
}

}
}

void testtriangles() {
tft.fillScreen(ST77XX_BLACK) ;
uintl6_t color = 0OxF800;

int t;

int w = tft.width() / 2;
int x = tft.height() - 1;
inty = 0;

int z = tft.width();

for (t = 0; t <= 15; t++) {
tft.drawTriangle(w, vy, y, x, z, x, color);
X -= 4;
y += 4;
z -=4;
color += 100;

}

}

void testroundrects() {
tft.fillScreen(ST77XX_BLACK);
uintl6e t color = 100;

int i;

int t;

for (t=0; t<=4; t +=1) {
int x = 0;
int y = 0;
int w = tft.width() - 2;
int h = tft.height() - 2;

for (i =0; 1 <=16; i +=1) {
tft.drawRoundRect(x, y, w, h, 5, color);

X += 2;
y += 3;
w -= 4;
-= 6;
color += 1100;
}
color += 100;

}
}

void tftPrintTest() {

tft.setTextWrap(false);
tft.fillScreen(ST77XX_BLACK);

©Adafruit Industries Page 195 of 235

tft.setCursor(0, 30);
tft.setTextColor(ST77XX RED);
tft.setTextSize(1l);
tft.println("Hello World!");
tft.setTextColor(ST77XX YELLOW);
tft.setTextSize(2);
tft.println("Hello World!");
tft.setTextColor(ST77XX GREEN);
tft.setTextSize(3);
tft.println("Hello World!");
tft.setTextColor(ST77XX BLUE);
tft.setTextSize(4);
tft.print(1234.567);
delay(1500);
tft.setCursor(0, 0);
tft.fillScreen(ST77XX_BLACK) ;
tft.setTextColor(ST77XX WHITE);
tft.setTextSize(0);
tft.println("Hello World!");
tft.setTextSize(1);
tft.setTextColor(ST77XX_GREEN);
tft.print(p, 6);
tft.println(" Want pi?");
tft.println(" ");
tft.print (8675309, HEX); // print 8,675,309 out in HEX!
tft.println(" Print HEX!");
tft.println(" ");
tft.setTextColor(ST77XX WHITE);
tft.println("Sketch has been");
tft.println("running for: ");
tft.setTextColor (ST77XX_MAGENTA) ;
tft.print(millis() / 1000);
tft.setTextColor(ST77XX WHITE);
tft.print(" seconds.");

}

void mediabuttons() {
// play
tft.fillScreen(ST77XX_BLACK);
tft.fillRoundRect (25, 5, 78, 60, 8, ST77XX WHITE);
tft.fillTriangle(42, 12, 42, 60, 90, 40, ST77XX RED);
delay(500);
// pause
tft.fillRoundRect (25, 70, 78, 60, 8, ST77XX WHITE);
tft.fillRoundRect (39, 78, 20, 45, 5, ST77XX _GREEN);
tft.fillRoundRect (69, 78, 20, 45, 5, ST77XX GREEN);
delay(500);
// play color
tft.fillTriangle(42, 12, 42, 60, 90, 40, ST77XX BLUE);
delay(50);
// pause color
tft.fillRoundRect (39, 78, 20, 45, 5, ST77XX RED);
tft.fillRoundRect (69, 78, 20, 45, 5, ST77XX_RED);
// play color
tft.fillTriangle(42, 12, 42, 60, 90, 40, ST77XX _GREEN);

The initial setup in this example is specific to your board.

First, create an instance of the TFT, passing in the appropriate pins.

Adafruit ST7789 tft = Adafruit ST7789(TFT CS, TFT DC, TFT RST);

©Adafruit Industries

Page 196 of 235

Next, you'll turn on the backlight.

pinMode (TFT BACKLITE, OUTPUT);
digitalWrite(TFT BACKLITE, HIGH);

Then, you'll turn on the power to the TFT.

pinMode (TFT I2C POWER, OUTPUT);
digitalWrite(TFT _I2C_POWER, HIGH);
delay(10);

Finally, you'll initialise the display with the width and height in pixels. Then, you'll set
the rotation.

tft.init (135, 240);
tft.setRotation(3);

Now, you're ready to display all sorts of text and graphics on your TFT. That's all there
is to using the built in TFT on your board with Arduino!

For more details about this example, check out this guide ().

WiFi Test

Thanksfully if you have ESP32 sketches, they'll 'just work' with variations of ESP32.
You can find a wide range of examples in the File->Examples->Examples for Adafruit
Metro ESP32-S2 subheading (the name of the board may vary so it could be "Example
s for Adafruit Feather ESP32 V2" etc)

@ Blink | Arduino 1.8.13

File Edit Sketch Tools Help

New Ctrl+N
Open... Ctrl+0
Open Recent
Sketchbook >ins once when you press reset or power the b
Examples 3 A
Close Ctrl+W Examples for Adafruit Metro ESP32-52
Save Ctrl+S ArduinoOTA > ted
Save As... Ctrl+Shift+S BluetoothSerial > crEeEE
Page Setup Ctrl+Shift+P LA ?
Print Ctrl+P B3l ’
ESP32 >
Preferences Ctrl+ Comma ESP32 Async UDP >
Quit Ctrl+Q ESP32 BLE Arduino >} (HIGH is th

I T TN T ren Aaie

©Adafruit Industries Page 197 of 235

https://learn.adafruit.com/adafruit-gfx-graphics-library/

Let's start by scanning the local networks.

Load up the WiFiScan example under Examples->Examples for YOUR BOARDNAME-
>WiFi->WiFiScan

WiFi ETH_LAN8720
WiFiClientSecure ETH_TLK110
SimpleWiFiServer
WiFiAccessPoint
WiFiBlueToothSwitc
WiFiClient
WiFiClientBasic
WiFiClientEnterpris¢
WiFiClientEvents
WiFiClientStaticlP
WiFilPv6

WiFiMulti

WiFiProv

WiFiScan

Adafruit ADT7410 Library
Adafruit ADXL343
Adafruit AM2320 sensor library

Adafruit APDS9960 Library
Adafruit Arcada Library
Adafruit BLEFirmata
Adafruit BluefruitLE nRF51
Adafruit BME280 Library
Adafruit BME680 Library
Adafruit BMP280 Library

VVYyVVVYVYVYVYYY

And upload this example to your board. The ESP32 should scan and find WiFi
networks around you.

For ESP32, open the serial monitor, to see the scan begin.

For ESP32-S2, -S3 and -C3, don't forget you have to click Reset after uploading
through the ROM bootloader. Then select the new USB Serial port created by the
ESP32. It will take a few seconds for the board to complete the scan.

e COM37 = O X

Send

18:16:20.283 -> scan start

18:16:25.389 -> scan done

18:16:25.389 -> 12 networks found
18:16:25.389 -> adafruit (-54)*
18:16:25.436 -> MySpectrumWiFi73-2G (-56)*
18:16:25.436 > Sally (-57)*%

18:16:25.436 > MySpectrumWiFi7C-2G (-58)*
18:16:25.436 —> FiOS-K57GI (-68)*
18:16:25.43¢6 -> linksys SES_2868 (-7¢€)*
18:16:25.482 -> patricks Network (-76)*
18:16:25.482 -> eufy RoboVac 30C-FRee (-79)
18:16:25.482 -> 9: linksys_SES 2868 (-81)*
18:16:25.482 -> 10: VVCBR (-83)*

18:16:25.528 -> 11: FiOS-KS7GI (-83)*
18:16:25.528 -> 12: Patrick (-83)*
18:16:25.528 ->

18:16:30.520 -> scan start

W0 o - o s W N

Show timestamp BothNL&CR | 115200baud Clear output

©Adafruit Industries Page 198 of 235

If you can not scan any networks, check your power supply. You need a solid power
supply in order for the ESP32 to not brown out. A skinny USB cable or drained battery
can cause issues.

WiFi Connection Test

Now that you can scan networks around you, its time to connect to the Internet!

Copy the example below and paste it into the Arduino IDE:

// SPDX-FileCopyrightText: 2020 Brent Rubell for Adafruit Industries
//
// SPDX-License-Identifier: MIT

/*
Web client

This sketch connects to a website (wifitest.adafruit.com/testwifi/index.html)
using the WiFi module.

This example is written for a network using WPA encryption. For
WEP or WPA, change the Wifi.begin() call accordingly.

This example is written for a network using WPA encryption. For
WEP or WPA, change the Wifi.begin() call accordingly.

created 13 July 2010
by dlf (Metodo2 srl)
modified 31 May 2012
by Tom Igoe

*/

#include <WiFi.h>

// Enter your WiFi SSID and password

char ssid[] = "YOUR SSID"; // your network SSID (name)

char pass[] = "YOUR SSID PASSWORD"; // your network password (use for WPA, or
use as key for WEP)

int keyIndex = 0; // your network key Index number (needed
only for WEP)

int status = WL IDLE STATUS;

// if you don't want to use DNS (and reduce your sketch size)

// use the numeric IP instead of the name for the server:

//IPAddress server(74,125,232,128); // numeric IP for Google (no DNS)

char server|[]
char path[]

"wifitest.adafruit.com"; // name address for adafruit test
"/testwifi/index.html";

// Initialize the Ethernet client library

// with the IP address and port of the server

// that you want to connect to (port 80 is default for HTTP):
WiFiClient client;

void setup() {
//Initialize serial and wait for port to open:
Serial.begin(115200);
while (!Serial) {
; // wait for serial port to connect. Needed for native USB port only

}

©Adafruit Industries Page 199 of 235

// attempt to connect to Wifi network:
Serial.print("Attempting to connect to SSID: ");
Serial.println(ssid);

WiFi.begin(ssid, pass);
while (WiFi.status() '= WL _CONNECTED) {
delay(500);
Serial.print(".");

}

Serial.println("");
Serial.println("Connected to WiFi");
printWifiStatus();

Serial.println("\nStarting connection to server...");

// if you get a connection, report back via serial:

if (client.connect(server, 80)) {
Serial.println("connected to server");
// Make a HTTP request:
client.print("GET "); client.print(path); client.println(" HTTP/1.1");
client.print("Host: "); client.println(server);
client.println("Connection: close");
client.println();

}

}

void loop() {
// if there are incoming bytes available
// from the server, read them and print them:
while (client.available()) {
char ¢ = client.read();
Serial.write(c);

}

// if the server's disconnected, stop the client:
if (!client.connected()) {
Serial.println();
Serial.println("disconnecting from server.");
client.stop();

// do nothing forevermore:
while (true) {

delay(100);
}

}
}

void printWifiStatus() {
// print the SSID of the network you're attached to:
Serial.print("SSID: ");
Serial.println(WiFi.SSID());

// print your board's IP address:
IPAddress ip = WiFi.locallIP();
Serial.print("IP Address: ");
Serial.println(ip);

// print the received signal strength:
long rssi = WiFi.RSSI();
Serial.print("signal strength (RSSI):");
Serial.print(rssi);

Serial.println(" dBm");

©Adafruit Industries Page 200 of 235

NOTE: You must change the SECRET_SSID and SECRET_PASS in the example code
to your WiFi SSID and password before uploading this to your board.

// Enter your WiFi SSID and password

char ssid[] = "YOUR_SSID"; // your network SSID (name)

char pass[] = "YOUR_SSID_PASSWORD"; // your network password (use for WPA, or use as key for WEP)
int keyIndex = @; // your network key Index number (needed only for WEP)

After you've set it correctly, upload and check the serial monitor. You should see the
following. If not, go back, check wiring, power and your SSID/password

Attempting to connect to SSID: Transit
Connected to WiFi

SSID: Transit

IP Address: 192.168.1.182

signal strength (RSSI):-57 dBm

Starting connection to server...
connected to server

HTTP/1.1 200 OK

Server: nginx/1.10.3 (Ubuntu)

Date: Wed, 11 Nov 2020 20:51:30 GMT
Content-Type: text/html
Content-Length: 70

Last-Modified: Thu, 16 May 2019 18:21:16 GMT
Connection: close

ETag: "S5cddaalc-46"

Accept-Ranges: bytes

This is a test of Adafruit WiFi!
If you can read this, its working :)

disconnecting from server.

Secure Connection Example

Many servers today do not allow non-SSL connectivity. Lucky for you the ESP32 has a
great TLS/SSL stack so you can have that all taken care of for you. Here's an example
of a using a secure WiFi connection to connect to the Twitter API.

Copy and paste it into the Arduino IDE:

// SPDX-FileCopyrightText: 2015 Arturo Guadalupi

// SPDX-FileCopyrightText: 2020 Brent Rubell for Adafruit Industries
//

// SPDX-License-Identifier: MIT

©Adafruit Industries Page 201 of 235

/*
This example creates a client object that connects and transfers
data using always SSL.

It is compatible with the methods normally related to plain
connections, like client.connect(host, port).

Written by Arturo Guadalupi
last revision November 2015

*/
#include <WiFiClientSecure.h>

// Enter your WiFi SSID and password

char ssid[] = "YOUR SSID"; // your network SSID (name)

char pass[] = "YOUR SSID PASSWORD"; // your network password (use for WPA, or
use as key for WEP)

int keyIndex = 0; // your network key Index number (needed
only for WEP)

int status = WL IDLE STATUS;

// if you don't want to use DNS (and reduce your sketch size)

// use the numeric IP instead of the name for the server:

//IPAddress server(74,125,232,128); // numeric IP for Google (no DNS)

#define SERVER "cdn.syndication.twimg.com"
#define PATH "/widgets/followbutton/info.json?screen names=adafruit"

// Initialize the SSL client library

// with the IP address and port of the server

// that you want to connect to (port 443 is default for HTTPS):
WiFiClientSecure client;

void setup() {
//Initialize serial and wait for port to open:
Serial.begin(115200);
while (!Serial) {
; // wait for serial port to connect. Needed for native USB port only
}

// attempt to connect to Wifi network:
Serial.print("Attempting to connect to SSID: ");
Serial.println(ssid);

WiFi.begin(ssid, pass)

while (WiFi.status() !
delay(500);
Serial.print(".");

Z WL CONNECTED) {

}

Serial.println("");
Serial.println("Connected to WiFi");
printWifiStatus();

client.setInsecure(); // don't use a root cert

Serial.println("\nStarting connection to server...");
// if you get a connection, report back via serial:
if (client.connect(SERVER, 443)) {
Serial.println("connected to server");
// Make a HTTP request:
client.println("GET " PATH " HTTP/1.1");
client.println("Host: " SERVER);
client.println("Connection: close");
client.println();

©Adafruit Industries Page 202 of 235

uint32 t bytes = 0;

void loop() {
// if there are incoming bytes available
// from the server, read them and print them:
while (client.available()) {
char ¢ = client.read();
Serial.write(c);
bytes++;

}

// if the server's disconnected, stop the client:
if (!client.connected()) {
Serial.println();
Serial.println("disconnecting from server.");
client.stop();
Serial.print("Read "); Serial.print(bytes); Serial.println(" bytes");

// do nothing forevermore:
while (true);

void printWifiStatus() {
// print the SSID of the network you're attached to:
Serial.print ("SSID: ");
Serial.println(WiFi.SSID());

// print your board's IP address:
IPAddress ip = WiFi.localIP();
Serial.print("IP Address: ");
Serial.println(ip);

// print the received signal strength:
long rssi = WiFi.RSSI();
Serial.print("signal strength (RSSI):");
Serial.print(rssi);

Serial.println(" dBm");

As before, update the ssid and password first, then upload the example to your board.
Note we use WiFiClientSecure client instead of WiFiClient client; to

require a SSL connection! This example will connect to a twitter server to download a
JSON snippet that says how many followers adafruit has

©Adafruit Industries Page 203 of 235

Attempting to connect to SSID: Transit
Connected to WiFi

SSID: Transit

IP Address: 192.168.1.182

signal strength (RSSI):-52 dBm

Starting connection to server...

connected to server

HTTP/1.1 200 OK

Accept-Ranges: bytes

Access-Contol-Allow-Origin: platform.twitter.com
Access-Control-Allow-Methods: GET

Age: 12

cache-control: must-revalidate, max-age=600
content-disposition: attachment; filename=json.json
Content-Type: application/json;charset=utf-8
Date: Wed, 11 Nov 2020 20:58:39 GMT

expires: Wed, 11 Nov 2020 21:08:39 GMT
Last-Modified: Wed, 11 Nov 2020 20:58:27 GMT
Server: ECS (agb/52BA)
strict-transport-security: max-age=631138519
timing-allow-origin: *

X-Cache: HIT

x-connection-hash: a50988a9020759ec70520caef6c38bcf
x-content-type-options: nosniff

x-frame-options: SAMEORIGIN

Xx-response-time: 12

x-transaction: 003d88570028acec

x-tw-cdn: VZ

x-tw-cdn: VZ

X-Xss-protection: @

Content-Length: 197

Connection: close

[{"following":false,"id":"20731304","screen_name":"adafruit","name":"adafruit industries","

disconnecting from server.
Read 966 bytes

JSON Parsing Demo

This example is a little more advanced - many sites will have API's that give you JSON
data. We will build on the previous SSL example to connect to twitter and get that
JSON data chunk

Then we'll use ArduinoJSON () to convert that to a format we can use and then
display that data on the serial port (which can then be re-directed to a display of some
sort)

First up, use the Library manager to install ArduinoJSON ().

Then load the example JSONdemo by copying the code below and pasting it into
your Arduino IDE.

// SPDX-FileCopyrightText: 2014 Benoit Blanchon

// SPDX-FileCopyrightText: 2014 Arturo Guadalupi

// SPDX-FileCopyrightText: 2020 Brent Rubell for Adafruit Industries
//

// SPDX-License-Identifier: MIT

/*
This example creates a client object that connects and transfers
data using always SSL, then shows how to parse a JSON document in an HTTP response.

It is compatible with the methods normally related to plain
connections, like client.connect(host, port).

©Adafruit Industries Page 204 of 235

https://arduinojson.org/
https://arduinojson.org/v6/doc/installation/

Written by Arturo Guadalupi + Copyright Benoit Blanchon 2014-2019
last revision November 2015

*/

#include <WiFiClientSecure.h>
#include <ArduinoJson.h>
#include <Wire.h>

// uncomment the next line if you have a 128x32 OLED on the I2C pins
//#define USE OLED

// uncomment the next line to deep sleep between requests

//#define USE DEEPSLEEP

#if defined (USE_OLED)
// Some boards have TWO I2C ports, how nifty. We should use the second one sometimes
#if defined (ARDUINO ADAFRUIT QTPY ESP32S2) || \
defined (ARDUINO ADAFRUIT QTPY ESP32S3 NOPSRAM) || \
defined (ARDUINO ADAFRUIT QTPY ESP32 PICO)
#define OLED I2C PORT &Wirel
#else
#define OLED I2C PORT &Wire
#endif

#include <Adafruit SSD1306.h>
Adafruit SSD1306 display = Adafruit SSD1306(128, 32, OLED I2C PORT);
#endif

// Enter your WiFi SSID and password

char ssid[] = "YOUR SSID"; // your network SSID (name)

char pass[] = "YOUR SSID PASSWORD"; // your network password (use for WPA, or
use as key for WEP)

int keyIndex = 0; // your network key Index number (needed

only for WEP)

int status = WL _IDLE STATUS;

// 1if you don't want to use DNS (and reduce your sketch size)

// use the numeric IP instead of the name for the server:

//IPAddress server(74,125,232,128); // numeric IP for Google (no DNS)

#define SERVER "cdn.syndication.twimg.com"
#define PATH "/widgets/followbutton/info.json?screen names=adafruit"

void setup() {
//Initialize serial and wait for port to open:
Serial.begin(115200);

// Connect to WPA/WPA2 network
WiFi.begin(ssid, pass);

#if defined (USE_OLED)
setupI2C();
delay(200); // wait for OLED to reset

if(!display.begin(SSD1306 SWITCHCAPVCC, 0x3C)) { // Address 0x3C for 128x32
Serial.println(F("SSD1306 allocation failed"));
for(;;); // Don't proceed, loop forever

}

display.display();

display.setTextSize(1l);

display.setTextColor(WHITE);

display.clearDisplay();

display.setCursor(0,0);

#else
// Don't wait for serial if we have an OLED
while (!Serial) {

©Adafruit Industries Page 205 of 235

// wait for serial port to connect. Needed for native USB port only
delay(10);

}

#endif

// attempt to connect to Wifi network:

Serial.print("Attempting to connect to SSID: ");

Serial.println(ssid);

#if defined (USE_OLED)
display.clearDisplay(); display.setCursor(0,0);
display.print("Connecting to SSID\n"); display.println(ssid);
display.display();

#endif

while (WiFi.status() '= WL CONNECTED) {
delay(500);
Serial.print(".");

}

Serial.println("");
Serial.println("Connected to WiFi");

#if defined (USE OLED)
display.print("...OK!");
display.display();

#endif

printWifiStatus();
}

uint32 t bytes = 0;

void loop() {
WiFiClientSecure client;
client.setInsecure(); // don't use a root cert

Serial.println("\nStarting connection to server...");

#if defined (USE_OLED)
display.clearDisplay(); display.setCursor(0,0);
display.print("Connecting to "); display.print(SERVER);
display.display();

#endif

// if you get a connection, report back via serial:
if (client.connect(SERVER, 443)) {
Serial.println("connected to server");
// Make a HTTP request:
client.println("GET " PATH " HTTP/1.1");
client.println("Host: " SERVER);
client.println("Connection: close");
client.println();

}

// Check HTTP status
char status[32] = {0};
client.readBytesUntil('\r', status, sizeof(status));
if (strcmp(status, "HTTP/1.1 200 OK") != 0) {
Serial.print(F("Unexpected response: "));
Serial.println(status);
#if defined (USE_OLED)
display.print("Connection failed, code: "); display.println(status);
display.display();
#endif

return;

}

// wait until we get a double blank line
client.find ("\r\n\r\n", 4);

©Adafruit Industries Page 206 of 235

// Allocate the JSON document

// Use arduinojson.org/v6/assistant to compute the capacity.

const size t capacity = JSON_ARRAY SIZE(1l) + JSON_OBJECT SIZE(8) + 200;
DynamicJsonDocument doc(capacity);

// Parse JSON object
DeserializationError error = deserializeJson(doc, client);
if (error) {
Serial.print(F("deserializeJson() failed: "));
Serial.println(error.c str());
return;
}

// Extract values

JsonObject root 0 = doc[0];
Serial.println(F("Response:"));

const char* root 0 screen name = root O["screen name"];
long root O followers count = root O["followers count"];

Serial.print("Twitter username: "); Serial.println(root 0 screen name);
Serial.print("Twitter followers: "); Serial.println(root 0 followers count);
#if defined (USE OLED)

display.clearDisplay(); display.setCursor(0,0);

display.setTextSize(2);

display.println(root 0 screen name);

display.println(root 0 followers count);

display.display();

display.setTextSize(1l);
#endif

// Disconnect
client.stop();
delay(1000);

#if defined (USE_DEEPSLEEP)

#if defined (USE _OLED)
display.clearDisplay();
display.display();

#endif // OLED

#if defined (NEOPIXEL POWER)
digitalWrite(NEOPIXEL POWER, LOW); // off

#elif defined (NEOPIXEL I2C POWER)
digitalWrite(NEOPIXEL I2C POWER, LOW); // off

#endif
// wake up 1 second later and then go into deep sleep
esp_sleep _enable timer wakeup (10 * 1000UL * 10060UL); // 10 sec
esp deep sleep start();

#else
delay (10 * 1000);

#endif

}

void setupI2C() {

#if defined (ARDUINO ADAFRUIT QTPY_ESP32S2) || \
defined (ARDUINO ADAFRUIT QTPY ESP3253 NOPSRAM) || \
defined (ARDUINO ADAFRUIT QTPY ESP32 PICO)
// ESP32 is kinda odd in that secondary ports must be manually
// assigned their pins with setPins()!
Wirel.setPins(SDA1l, SCL1);

#endif

#if defined (NEOPIXEL I2C POWER)

pinMode (NEOPIXEL I2C POWER, OUTPUT);
digitalWrite(NEOPIXEL I2C POWER, HIGH); // on
#endif

#if defined (ARDUINO ADAFRUIT FEATHER ESP32S2)
// turn on the I2C power by setting pin to opposite of 'rest state'

©Adafruit Industries Page 207 of 235

pinMode (PIN I2C POWER, INPUT);
delay(1l);
bool polarity = digitalRead(PIN I2C POWER);
pinMode(PIN I2C POWER, OUTPUT);
digitalWrite(PIN I2C POWER, !polarity);
#endif

}

void printWifiStatus() {
// print the SSID of the network you're attached to:
Serial.print ("SSID: ");
Serial.println(WiFi.SSID());

// print your board's IP address:
IPAddress ip = WiFi.localIP();
Serial.print("IP Address: ");
Serial.println(ip);

// print the received signal strength:
long rssi = WiFi.RSSI();
Serial.print("signal strength (RSSI):");
Serial.print(rssi);

Serial.println(" dBm");

By default it will connect to to the Twitter banner image API, parse the username and
followers, and display them.

Attempting to connect to SSID: Transit
Connected to WiFi

SSID: Transit

IP Address: 192.168.1.182

signal strength (RSSI):-54 dBm

Starting connection to server...
connected to server

Response:

Twitter username: adafruit
Twitter followers: 176400

Usage with Adafruit 10

The ESP32-S2/S3 is an affordable, all-in-one, option for connecting your projects to
the internet using our loT platform, Adafruit 1O ().

- For more information and guides about Adafruit IO, check out the Adafruit 10
Basics Series. ()

©Adafruit Industries Page 208 of 235

https://io.adafruit.com/welcome
https://learn.adafruit.com/series/adafruit-io-basics
https://learn.adafruit.com/series/adafruit-io-basics

Install Libraries

In the Arduino IDE, navigate to Sketch -> Include Library->Manage Libraries...

m Tools Help

Verify/Compile #BR |
Upload $u
Upload Using Programmer {:3U
Export compiled Binary \3#8S

Manage Libraries...

Show Sketch Folder #BK Bridge

EEPROM
Add File... Esplora
' Firmata
, to run repeatedly: HID
Keyboard
Mouse
Robot Control

Robot IR Remote
Robot Motor

SPI
SoftwareSerial
SpacebrewYun
Temboo

Enter Adafruit 10 Arduino into the search box, and click Install on the Adafruit IO

Arduino library option to install version 4.0.0 or higher.

[JoN) Library Manager

Type All Topic Al B
Adafruit 10 Arduino
by Adafruit

Arduino library to access Adafruit I0. Arduino library to access Adafruit 10 using the Adafruit AirLift, ESPB266, ESP32, MO WINC1500,
WICED, MKR1000, Ethernet, or FONA hardware.
More info

Version 4.0.0 B Install

When asked to install dependencies, click Install all.

Library Manager

Type All T Topic All < adafruitio

' [] Dependencies for library Adafruit 10 Arduino:4.0.0

The library Adafruit IO Arduino:4.0.0 needs some other library | .. ccoeoce copsa Mo wincisoo,
dependencies currently not installed: 1 ’ ' ’

- WiFi101 Update

Would you like to4ns so all the missing dependencies? E
Install all nstall 'Adafruit 10 Arduino' only Cancel

©Adafruit Industries

Page 209 of 235

Adafruit IO Setup

If you do not already have an Adafruit IO account, create one now (). Next, navigate to

the Adafruit IO Dashboards page.

We'll create a dashboard to visualize and interact with the data being sent between

your ESP32-52/S3 board and Adafruit 10.

*adaf ruit Profile Feeds

brubell > Dashboards

+ New Dashboard

Create a new Dashboard X

Name
My ESP32-52

Description

Show Header Image
Header Image

Choose File No file chosen
Sam ane with be

e header image with breakpoints marked

O LoRa Feather Network lora-feather-network
O My Air Quality Sensor my-air-quality-sensor
O My Esm-sz(my-esp32-s2

0O My Garage my-garage

©Adafruit Industries

Click the New Dashboard button.

Name your dashboard My ESP32-S2 or My
ESP32-S3 depending on your board.

Your new dashboard should appear in the
list.

Click the link to be brought to your new
dashboard.

Page 210 of 235

http://io.adafruit.com/
https://learn.adafruit.com//assets/97031
https://learn.adafruit.com//assets/97031
https://learn.adafruit.com//assets/97032
https://learn.adafruit.com//assets/97032
https://learn.adafruit.com//assets/97033
https://learn.adafruit.com//assets/97033

We'll want to turn the board's LED on or off from Adafruit |O. To do this, we'll need to
add a toggle button to our dashboard.

*addr\! Profile Feeds Dashbosrds Devices Triggers [Y

brubell > Dashboards > My ESP32.52
Dashboard Settings
\ Edit Layout
View F

Dark Made O

Block Borders O

U8 e

Dashbosrd Privacy ©

Create a new block

Click on the block you would like to add to your dashboard. You can a C“Ck the COg at the tOp rlght hand corner
switch the block type later if you change your mind
" ’ ’ ’ of your dashboard.

In the dashboard settings dropdown, click
Create New Block.
Select the toggle block.
Under My Feeds, enter led as a feed
led

name. Click Create.
Choose the led feed to connect it to the
toggle block. Click Next step.

O HIGH 9 minutes
O Iwil rip over 1year
O moisture 2 1day

O neopixel 2 days

O outdoor-lights #000000 about 2 yet
O relay morning about 3 hot
O temperature 72 1day

O test 66 2 days

O timecube 45 almost 2 ye
0O zapemail Gary Thompson...1 day

€0

©Adafruit Industries Page 211 of 235

https://learn.adafruit.com//assets/97038
https://learn.adafruit.com//assets/97038
https://learn.adafruit.com//assets/97039
https://learn.adafruit.com//assets/97039
https://learn.adafruit.com//assets/97040
https://learn.adafruit.com//assets/97040

My Feeds

Feed Name Last value Recorded

O battery 55 1 day

O digital 1 about 17 hours
O humidity 10 2 days

O image /9j/4QAWRXhp... 5 months

O r-lights #000000 about 2 years
& led less than a min...
O will rip over 1year

O moisture 2 1 day

O neopixel 2 days

O outdoor-lights #000000 about 2 years

Under Block Settings,

v Change Button On Text to 1
' Change Button Off Text to O
Click Create block

Publahed Value

*adafruit Profile Feeds Dashboards Devices Triggers Services My Key

brubell > Dashboards > My ESP32-§2

LED

Next up, we'll want to display button press data from your board on Adafruit 10. To do
this, we'll add a gauge block to the Adafruit IO dashboard. A gauge is a read only
block type that shows a fixed range of values.

©Adafruit Industries Page 212 of 235

https://learn.adafruit.com//assets/97041
https://learn.adafruit.com//assets/97041
https://learn.adafruit.com//assets/97044
https://learn.adafruit.com//assets/97044

Create a new block x

Chick on the block you would like to add to your dashboard. You can always come back and

switch the block type later if you change your mind

=l N
HOm

- . -— -

Click the cog at the top right hand corner

O image /9j/40AWRXhp... 5 months -

O indoor-lights #000000 about 2 years - Of your dashboa rd,

o et ® Inthe dashboard settings dropdown, click
O twill rip over 1 year =

O moisture 2 1dey 6 Create New Block.

O Sneptud 2daye “ Select the gauge block.

O outdoor-lights #000000 about 2 years =

- Under My Feeds, enter button as a feed
O relay morning about 3 hours .

O temperature 72 1day - name.

O test 66 2 days = Clle Create

O timecube 45 almost 2 years -

O zapemai Gery Thompson... day a Choose the button feed to connect it to
E— - | the toggle block.

Click Next step.
Create a Gauge Block

A gauge is a read only block type that shows a fixed range o

Choose a single feed you would like to connect to this gauge¢
feed within a group.

My Feeds

Feed Name Last value
O battery 55

& button

©Adafruit Industries Page 213 of 235

https://learn.adafruit.com//assets/97046
https://learn.adafruit.com//assets/97046
https://learn.adafruit.com//assets/97047
https://learn.adafruit.com//assets/97047
https://learn.adafruit.com//assets/97048
https://learn.adafruit.com//assets/97048

Block settings x

In this final step, you can give your block a title and see a preview of how it will look.

Customize the look and feel of your block with the remaining settings. When you are ready, U n d er b | OCk Setti n g S,
click the *Create Block™ button to send it to your dashboard
Block Tive 1o Block Preview
[Button vaue] Change Block Title to Button Value
" | Change Gauge Min Value to 0O, the
]
o button's state when it's off

Change Gauge Max Value to 1, the button's

state when it's on
Click Create block

Your dashboard should look like the following:

*adafrui[Profile Feeds Dashboards Devices Triggers Services My Key
brubell > Dashboards > My ESP32-S2
LED Button Value

(D

Code Usage

For this example, you will need to open the adafruitio_26_led_btn example included
with the Adafruit 10 Arduino library. In the Arduino IDE, navigate to File -> Examples ->
Adafruit 10 Arduino -> adafruitio_26_led_btn.

Before uploading this code to the ESP32-S2/S3, you'll need to add your network and
Adafruit 10 credentials. Click on the config.h tab in the sketch.

Obtain your Adafruit IO Credentials from navigating to io.adafruit.com and clicking My
@ (). Copy and paste these credentials nextto I0 USERNAME and I0 KEY .

©Adafruit Industries Page 214 of 235

https://learn.adafruit.com//assets/97049
https://learn.adafruit.com//assets/97049
https://io.adafruit.com/
https://io.adafruit.com/

adafruitio_26_led_btn - config.h | Arduino 1.8.13

config.h

¥ 3 3 3 3 3 3 e 3 ok 3 ok 3k ok 3k ok 3k ok %k ok K

¥ % ¥ ke kR kK

Adafruit I0 Config
// visit io.adafruit.com if you need to create an account,
// or if you need your Adafruit IO key.

#define IO_USERNAME "your_username"

#define I0O_KEY "your_key"

NoOUV A WN e

Enter your network credentials nextto WIFI SSID and WIFI PASS.

20

21 #define WIFI_SSID "your_ssid"

22 #define WIFI_PASS "your_pass”

23

24 // uncomment the following line if you are using airlift
25 //#define USE_AIRLIFT

26

27 // uncomment the following line if you are using winc1500

28 // #define USE_WINC1500
29

Click the Upload button to upload your sketch to the ESP32-S2/S3. After uploading, pr
ess the RESET button on your board to launch the sketch.

Open the Arduino Serial monitor and navigate to the Adafruit 10 dashboard you
created. You should see the gauge response to button press and the board's LED

light up in response to the Toggle Switch block.

*adafrui[Profile Feeds Dashboards Devices Triggers Services

brubell > Dashboards > My ESP32-52

LED Button Value

(K
¥

You should also see the ESP32-S2/S3's LED turning on and off when the LED is
toggled:

©Adafruit Industries Page 215 of 235

Dashboards > My ESP32-52

(D

Rovombon 15th 2020, 1168.27AM

-

Factory Shipped Demo

Your Adafruit ESP32-S3 Reverse TFT Feather ships from the factory with a I2C and
graphics test demo. You can download a UF2 of the demo from the Factory Reset
page (). The UF2 does not give you access to the source code to allow you to see
Watis going on in the code and potentially edit it. This page provides the factory
demo source code, including walking you through what libraries to install to get it

going.

Arduino Library Installation

You can install the necessary libraries from the Library Manager. To open, click Sketch
> Include Library > Manage Libraries...

@ Arduino File Edit Sketch Tools Help

Verify/Compile sketch_jun25a | Arduino 1.8.13
Upload
Upload Using Programmer {3U

sketch_jun25a Export compiled Binary X#S

oid setup() { Show Sketch Folder ®K
// put your setup code he include Library Manage Libraries.

} Add File...
Add .ZIP Library...

Next, you'll search for the following libraries, and install them and any necessary
dependencies.

Search for MAX17048 and install the Adafruit MAX1704X Library.

©Adafruit Industries Page 216 of 235

https://learn.adafruit.com/esp32-s2-reverse-tft-feather/factory-reset
https://learn.adafruit.com/esp32-s2-reverse-tft-feather/factory-reset

© Library Manager X
Type All ~ Topic Al v max17048|
[Adafruit MAX1704X A

:;r:‘:::::;;:uvy for the MAX17048 battery monitors in the Adafruit shop Arduino library for the MAX17048 battery monitors in the Adafruit

shop e

MAX17048

’An;:.:;:::‘:‘[::;ry for MAX17048/MAX17049 1-Cell/2-Cell Fuel Gauge with ModelGauge Arduino library for MAX17048/MAX17049 1-Cell/2-Cell

Fuel Gauge with ModelGauge

More info

by SparkFun Electronics

Arduino library for the MAX17043/44/48/49 fuel gauges An Arduino library to let you access all of the features of the MAX17043,

MAX17044, MAX17048 and MAX17049 battery fuel gauges

More info

Version 1.0.4 v Install
Closeﬁ
When asked to install dependencies, click Install all.

Dependencies for library Adafruit MAX1704X:1.0.0 X
The library Adafruit MAX1704X:1.0.0 needs some other library
dependencies currently not installed:

- Adafruit BusIO
Would you like to install also all the missing dependencies? F
Install all 11 Install ‘Adafruit MAX1704X" only | | Cancel |

Search for NeoPixel and install the Adafruit NeoPixel library.

[BN] Library Manager
| Type Al B Topic Al NeoPixel
Adafruit NeoPixel
by Adafruit
Arduino library for controlling single-wire-based LED pixels and strip. Ardulno library for controlling single-wire-based LED pixels and
strip.

Moon infn

Version 1.10.4 Install

Search for TestBed and install the Adafruit TestBed library.

[NoN] Library Manager
| Type Al B Topic Al B TestBed|
 Adafruit TestBed
by Adafruit
Adafruit's internal test bed code library Adafruit's Internal test bed code library
More Info

Version 1.2.1 @& Install

When asked to install dependencies, click Install all.

©Adafruit Industries Page 217 of 235

@ Dependencies for library Adafruit TestBed:1.2.1

The library Adafruit TestBed:1.2.1 needs some other library
dependencies currently not installed:

- Adafruit MCP4725
Would you like to install also all the missing dependencies?

Install all Install 'Adafruit TestBed' only Cancel

Search for BME280 and install the Adafruit BME28O0 Library.

[NON] Library Manager

Type All Topic Al BME280

Adafruit BME280 Library
by Adafruit

Arduino library for BME280 sensors. Ardulno library for BME280 humidity and pressure sensors.
More Info

Version2.2.2 @ Install

When asked to install dependencies, click Install all.

(] Dependencnes for Ilbrary Adafrun BMEZSO lerary D2D2D

’ The library Adafruit BME280 Library:2.2.2 needs some other library ‘
| dependencies currently not installed:

- Adafruit Unified Sensor
Would you like to install also all the missing dependencies?

i Install all Install 'Adafruit BME280 Library' only Cancel

Search for ST7789 and install the Adafruit ST7735 and ST7789 Library.

[NON] Library Manager
Type All B Topic Al B s17789
Adafruit ST7735 and ST7789 Library
by Adafruit

This Is a library for the Adafruit ST7735 and ST7789 SPI displays. This Is a library for the Adafrult ST7735 and ST7789 SPI displays.
More Info

Version 1.9.2 Install

When asked to install dependencies, click Install all.

©Adafruit Industries Page 218 of 235

[] Dependencies for library Adafruit ST7735 and ST7789 Library:1.9.2

The library Adafruit ST7735 and ST7789 Library:1.9.2 needs some other library
dependencies currently not installed:

- Adafruit GFX Library
- Adafruit seesaw Library

Would you like to install also all the missing dependencies?

Install all Install 'Adafruit ST7735 and ST7789 Library' only Cancel

Factory Demo Example Code

Now, you'll want to upload the following sketch onto your ESP32-S3 Reverse TFT
Feather.

// SPDX-FileCopyrightText: 2022 Limor Fried for Adafruit Industries
//
// SPDX-License-Identifier: MIT

#include <Arduino.h>

#include "Adafruit MAX1704X.h"
#include <Adafruit NeoPixel.h>
#include "Adafruit TestBed.h"
#include <Adafruit BME280.h>
#include <Adafruit ST7789.h>
#include <Fonts/FreeSans12pt7b.h>

Adafruit BME280 bme; // I2C
bool bmefound = false;
extern Adafruit TestBed TB;

Adafruit MAX17048 1lipo;
Adafruit ST7789 display = Adafruit ST7789(TFT_CS, TFT DC, TFT RST);

GFXcanvasl6 canvas (240, 135);

void setup() {
Serial.begin(115200);
//while (! Serial) delay(10);

delay(100);

TB.neopixelPin
TB.neopixelNum
TB.begin();

TB.setColor (WHITE);

PIN NEOPIXEL;
1;

display.init (135, 240); // Init ST7789 240x135
display.setRotation(3);

canvas.setFont (&FreeSansl12pt7b);
canvas.setTextColor(ST77XX WHITE);

if (!lipo.begin()) {
Serial.println(F("Couldnt find Adafruit MAX170487?\nMake sure a battery is
plugged in!"));
while (1) delay(10);
}

Serial.print(F("Found MAX17048"));

Serial.print(F(" with Chip ID: 0x"));
Serial.println(lipo.getChipID(), HEX);

©Adafruit Industries Page 219 of 235

if (TB.scanI2CBus(0x77)) {
Serial.println("BME280 address");

unsigned status = bme.begin();
if (!status) {
Serial.println("Could not find a
sensor ID!");

Serial.print("SensorID was: 0x");

valid BME280 sensor, check wiring, address,

Serial.println(bme.sensorID(),16);
probably means a bad address, a BMP 180 or

represents a BMP 280,\n");
represents a BME 280.\n");
represents a BME 680.\n");

Serial.print(" ID of OXFF
BMP 085\n");

Serial.print (" ID of Ox56-0x58

Serial.print(" ID of 0Ox60

Serial.print (" ID of 0Ox61

return;

}
Serial.println("BME280 found OK");
bmefound = true;

}
pinMode (0, INPUT PULLUP);
pinMode(1, INPUT PULLDOWN);

pinMode(2, INPUT PULLDOWN);
}

uint8 t j = 0;

void loop() {

Serial.println ("ssksksrskorskskookskofskomskokokokok)

TB.printI2CBusScan();

if (3 %2==0){
canvas.fillScreen(ST77XX_BLACK) ;
canvas.setCursor(0, 17);
canvas.setTextColor(ST77XX _RED) ;
canvas.println("Adafruit Feather");
canvas.setTextColor(ST77XX_YELLOW) ;
canvas.println("ESP32-S3 TFT Demo");
canvas.setTextColor(ST77XX_GREEN) ;
canvas.print("Battery: ");
canvas.setTextColor(ST77XX _WHITE);
canvas.print(lipo.cellVoltage(), 1);
canvas.print(" Vv / ");
canvas.print(lipo.cellPercent(), 0);
canvas.println("%s");
canvas.setTextColor(ST77XX_BLUE);
canvas.print("I2C: ");
canvas.setTextColor(ST77XX WHITE);
for (uint8 t a=0x01; a<=0x7F; a++) {
if (TB.scanI2CBus(a, 0)) {
canvas.print("0x");
canvas.print(a, HEX);
canvas.print(", ");
}
}
canvas.println("");
canvas.print("Buttons: ");
Serial.println(digitalRead(0));
Serial.println(digitalRead(1));
Serial.println(digitalRead(2));
if (!digitalRead(0)) {
canvas.print("DO, ");

}
if (digitalRead(1l)) {
canvas.print("D1, ");

}
if (digitalRead(2)) {
canvas.print("D2, ");

©Adafruit Industries

Page 220 of 235

}

display.drawRGBBitmap (0, 0, canvas.getBuffer(), 240, 135);

pinMode(TFT_BACKLITE, OUTPUT);
digitalWrite(TFT BACKLITE, HIGH);
}

TB.setColor(TB.Wheel(j++));
delay(10);
return;

Open the Serial Monitor to see the connected I2C addresses and the logic levels of

the three buttons printed out.

© com41

I2C scan: 0x36, 0x77,
1§
0
0

EEE R RS E RS SRR SRR R S

I2C scan: 0x36, 0x77,
EE RS S S SRS RS EE R E S
I2C scan: 0x36, 0x77,
i
0
0

hkkkkkkkkkhhkhdhhhk b

I2C scan: 0x36, 0x77,
dhkkhkhkhkhkhkrr bbbt rdhhhd
I2C scan: 0x36, 0x77,
S &
0
1

Ahkkhkhhkhkhhhhh b rh kit

I2C scan: 0x36, 0x77,

EEE RS S RS SRR R R R R R RS

I2C scan: 0x36, 0x77,
I

[[] Autoscroll [_] Show timestamp

Nevdine

V| 115200 baud v

v

Clear output

©Adafruit Industries

Page 221 of 235

Now your Feather TFT is back to the state in which it shipped! And, loading it from
code allows you to learn more, or change it to do something different.

Install UF2 Bootloader

The ESP32-S3 Reverse TFT Feather ships with a UF2 bootloader which allows the
board to show up as FTHRS3BOOT when you double-tap the reset button, and
enables you to drag and drop UF2 files to update the firmware.

On ESP32-52/S3, there is no bootloader protection for the UF2 bootloader. That
means it is possible to erase or damage the UF2 bootloader, especially if you upload
an Arduino sketch to an ESP32-S2/S3 board that doesn't "know" there's a bootloader
it should not overwrite!

It turns out, however, the ESP32-S2/S3 comes with a second bootloader: the ROM
bootloader. Thanks to the ROM bootloader, you don't have to worry about damaging
the UF2 bootloader. The ROM bootloader can never be disabled or erased, so its
always there if you need it! You can simply re-load the UF2 bootloader from the ROM
bootloader.

If your UF2 bootloader ends up damaged or overwritten, you can follow the steps
found in the Factory Reset and Bootloader Repair () section of the Factory Reset page
in this guide.

Once completed, you'll return to where the board was when you opened the
package. Then you'll be back in business, and able to continue with your existing
plans!

Factory Reset

The ESP32-S3 Reverse TFT Feather microcontroller ships running a demo that
displays basic information from the MAX17048 battery monitor, attached 12C devices
and which button is being pressed. It's lovely, but you probably had other plans for
the board. As you start working with your board, you may want to return to the
original code to begin again, or you may find your board gets into a bad state. Either
way, this page has you covered.

©Adafruit Industries Page 222 of 235

https://learn.adafruit.com/esp32-s3-reverse-tft-feather/factory-reset#factory-reset-and-bootloader-repair-3107941

You're probably used to seeing the FTHRS3BOOT drive when loading CircuitPython
or Arduino. The FTHRS3BOOT drive is part of the UF2 bootloader, and allows you to
drag and drop files, such as CircuitPython. However, on the ESP32-S3 the UF2
bootloader can become damaged.

Factory Reset Firmware UF2

If you have a bootloader still installed - which means you can double-click to get the F
THRS3BOOT drive to appear, then you can simply drag this UF2 file over to the BOOT
drive.

To enter bootloader mode, plug in the board into a USB cable with data/sync

capability. Press the reset button once, wait till the RGB LED turns purple, then press
the reset button again. Then drag this file over:

Feather _ESP32S3_ReverseTFT_Facto

Your board is now back to its factory-shipped state! You can now begin again with
your plans for your board.

Factory Reset and Bootloader Repair

What if you tried double-tapping the reset button, and you still can't get into the UF2

bootloader? Whether your board shipped without the UF2 bootloader, or something
damaged it, this section has you covered.

It turns out, however, the ESP32-S2/S3 comes with a second bootloader: the ROM
bootloader. Thanks to the ROM bootloader, you don't have to worry about damaging
the UF2 bootloader. The ROM bootloader can never be disabled or erased, so its
always there if you need it! You can simply re-load the UF2 bootloader from the ROM
bootloader.

©Adafruit Industries Page 223 of 235

https://cdn-learn.adafruit.com/assets/assets/000/119/129/original/Feather_ESP32S3_ReverseTFT_FactoryTest.uf2?1677781253

Completing a factory reset will erase your board's firmware which is also used for

storing CircuitPython/Arduino/Files! Be sure to back up your data first.

There are two ways to do a factory reset and bootloader repair. The first is using
WebSerial through a Chromium-based browser, and the second is using esptool via
command line. We highly recommend using WebSerial through Chrome/Chromium.

The next section walks you through the prerequisite steps needed for both methods.

Download .bin and Enter Bootloader

Step 1. Download the factory-reset-and-bootloader.bin file

Save the following file wherever is convenient for you. You will need to access it from
the WebSerial ESPTool.

Note that this file is approximately 3MB. This is not because the bootloader is
3MB, it is because the bootloader is near the end of the available flash. Most of
the file is empty but its easier to program if you use a combined file.

Click to download feather-esp32-s3-
factory-reset-and-bootloader.bin

Step 2. Enter ROM bootloader mode

Entering the ROM bootloader is easy. Complete the following steps.

Before you start, make sure your ESP32-S2/S3 is plugged into USB port to your
computer using a data/sync cable. Charge-only cables will not work!

To enter the bootloader:

1. Press and hold the BOOT/DFU button down. Don't let go of it yet!

2. Press and release the Reset button. You should still have the BOOT/DFU button
pressed while you do this.

3. Now you can release the BOOT/DFU button.

No USB drive will appear when you've entered the ROM bootloader. This is normal!

©Adafruit Industries Page 224 of 235

https://github.com/adafruit/Adafruit-ESP32-S3-Reverse-TFT-Feather-PCB/raw/main/factory-reset/Adafruit_ESP32-S3_Reverse_TFT_Feather_Factory_Reset.bin

Now that you've downloaded the .bin file and entered the bootloader, you're ready to
continue with the factory reset and bootloader repair process. The next two sections
walk you through using WebSerial and esptool .

The WebSerial ESPTool Method

We highly recommend using WebSerial ESPTool method to perform a factory

reset and bootloader repair. However, if you'd rather use esptool via command
line, you can skip this section.

This method uses the WebSerial ESPTool through Chrome or a Chromium-based
browser. The WebSerial ESPTool was designed to be a web-capable option for
programming ESP32-S2/S3 boards. It allows you to erase the contents of the
microcontroller and program up to four files at different offsets.

You will have to use a Chromium browser (like Chrome, Opera, Edge...) for this to
work, Safari and Firefox, etc. are not supported because we need Web Serial and only
Chromium is supporting it to the level needed.

Follow the steps to complete the factory reset.

If you're using Chrome 88 or older, see the Older Versions of Chrome section at
the end of this page for instructions on enabling Web Serial.

Connect

You should have plugged in only the ESP32-S2/S3 that you intend to flash. That way
there's no confusion in picking the proper port when it's time!

*ﬂdﬂ’l’wl

Adafruit ESPTool Dark Mode (D)
In the Chrome browser visit https://

adafruit.github.io/
Adafruit_WebSerial_ESPTool/ (). You
should see something like the image
shown.

©Adafruit Industries Page 225 of 235

https://learn.adafruit.com//assets/116445
https://learn.adafruit.com//assets/116445
https://adafruit.github.io/Adafruit_WebSerial_ESPTool/
https://adafruit.github.io/Adafruit_WebSerial_ESPTool/
https://adafruit.github.io/Adafruit_WebSerial_ESPTool/

-CIpL v © WaIn VI

JSB Serial Device (COMBS) - Paired

ESP Web Flasher loaded.

Connecting...

Connected successfully.

Try hard reset.
Chip type ESP32-S2
Connected to ESP32-S

MAC Address: 7C:DF:A1:06:8D:D@

Uploading stub...
Running stub...

Stub is now running...

Detecting Flash Size
FlashId: 0x164020
Flash Manufacturer:
Flash Device: 4016

Auto-detected Flash size:

Adafruit ESPTool

Offset: Ox [0

OffsetOx[0 | C
ometoxfo | (
ometoxfe | (

CEnu)

Erase the Contents

p

20

o[t [t eo

Press the Connect button in the top right
of the web browser. You will get a pop up
asking you to select the COM or Serial
port.

Remember, you should remove all other
USB devices so only the ESP32-52/S3
board is attached, that way there's no
confusion over multiple ports!

On some systems, such as MacOS, there
may be additional system ports that
appear in the list.

The JavaScript code will now try to
connect to the ROM bootloader. It may
timeout for a bit until it succeeds. On
success, you will see that it is Connected
and will print out a unique MAC address
identifying the board along with other
information that was detected.

Once you have successfully connected,
the command toolbar will appear.

This will erase everything on your board! If you have access, and wish to keep
any code, now is the time to ensure you've backed up everything.

©Adafruit Industries

Page 226 of 235

https://learn.adafruit.com//assets/116446
https://learn.adafruit.com//assets/116446
https://learn.adafruit.com//assets/110503
https://learn.adafruit.com//assets/110503
https://learn.adafruit.com//assets/116447
https://learn.adafruit.com//assets/116447

: ' 3 0
This will erase the entire flash, Click OK to continue.

Cance!
t ESr o0 Dark A
Oftset: 0x[0_]
——
——
Offser:0xf_]

Program

Erasing flash memory. Please wait...

Finished. Took 15899ms to erase.

To erase the contents, click the Erase
button. You will be prompted whether you
want to continue. Click OK to continue or if
you changed your mind, just click cancel.

You'll see "Erasing flash memory. Please
wait..." This will eventually be followed by
"Finished." and the amount of time it took
to erase.

Do not disconnect! Immediately continue
on to programming the ESP32-S2/S3.

Do not disconnect after erasing! Immediately continue on to the next step!

Program the ESP32-52/S3

Programming the microcontroller can be done with up to four files at different
locations, but with the board-specific factory-reset.bin file, which you should have

downloaded under Step 1 on this page, you only need to use one file.

©Adafruit Industries

Click on the first Choose a file.... (The tool
will only attempt to program buttons with a
file and a unique location.) Then, select the
*-factory-reset.bin file you downloaded in
Step 1 that matches your board.

Verify that the Offset box next to the file
location you used is (Ox) O.

Page 227 of 235

https://learn.adafruit.com//assets/116448
https://learn.adafruit.com//assets/116448
https://learn.adafruit.com//assets/106947
https://learn.adafruit.com//assets/106947
https://learn.adafruit.com//assets/101574
https://learn.adafruit.com//assets/101574

uit ESPTool Dark Mode

Offset 0x[0_]
S -
Offset: 0x[F] Once you choose a file, the button text will
omecoxle change to match your filename. You can

(_Erase) (_Program)

then select the Program button to begin
flashing.

ifruit ESPTool Dark Mode (]
Offset: Ox 0

A progress bar will appear and after a
minute or two, you will have written the
firmware.

Once completed, you can skip down to the section titled Reset the Board.

The esptool Method (for advanced users)

If you used WebSerial ESPTool, you do not need to complete the steps in this

section!

Once you have entered ROM bootloader mode, you can then use Espressif's esptool
program () to communicate with the chip! esptool is the 'official' programming tool

and is the most common/complete way to program an ESP chip.

Install ESPTool.py

You will need to use the command line / Terminal to install and run esptool.

You will also need to have pip and Python installed (any version!).

©Adafruit Industries Page 228 of 235

https://learn.adafruit.com//assets/116449
https://learn.adafruit.com//assets/116449
https://learn.adafruit.com//assets/116450
https://learn.adafruit.com//assets/116450
https://github.com/espressif/esptool
https://github.com/espressif/esptool

Install the latest version using pip (you may be able to run pip without the 3 depen
ding on your setup):

pip3 install --upgrade esptool

Then, you can run:

esptool.py

Make sure you are running esptool v3.0 or higher, which adds ESP32-52/S3

support.

Test the Installation

Run esptool.py in anew terminal/command line and verify you get something like
the below:

Connect

Run the following command, replacing the identifier after --port with the COMxx, /
dev/cu.usbmodemxx or /dev/ttySxx you found above.

esptool.py --port COM88 chip id

You should get a notice that it connected over that port and found an ESP32-S2/S3.

©Adafruit Industries Page 229 of 235

Installing the Bootloader

Run this command and replace the serial port name with your matching port and the
file you just downloaded

esptool.py --port COM88 write flash Ox0 tinyuf2 combo.bin
Don't forget to change the --port name to match.

There might be a bit of a 'wait' when programming, where it doesn't seem like it's
working. Give it a minute, it has to erase the old flash code which can cause it to
seem like it's not running.

You'll finally get an output like this:

£
Uploading stub...
Running stub...
Stub running...
Configuring flash size...
Auto-detected Flash : 4MB
0 98937...
Wirote 3081264 bytes (98937 compressed) at 0x00000000 in 22.8 seconds (effective 1080.0 kbit/s)...
Hash of data verified.

chip was placed into download mode using GPIO®.
an not exit the download mode over USB. To run the app, reset the chip manually.
To suppress this error, set --after option to 'no_reset’.

Once completed, you can continue to the next section.

Reset the board

Now that you've reprogrammed the board, you need to reset it to continue. Click the
reset button to launch the new firmware.

The NeoPixel will be white for a few seconds and then show a rainbow swirl
animation while the TFT displays information from the MAX17048, the addresses of

attached 12C devices and which button is being pressed (D0O-D2).

You've successfully returned your board to a factory reset state!

©Adafruit Industries Page 230 of 235

Older Versions of Chrome

As of chrome 89, Web Serial is already enabled, so this step is only necessary on

older browsers.

We suggest updating to Chrome 89 or newer, as Web Serial is enabled by default.

If you must continue using an older version of Chrome, follow these steps to enable
Web Serial.

WARNING EXPERIMENTAL FEATURES AMEAD! By enabling these features, you could lose browser data or
compromise your security of privacy. Enabled features apply %o all users of this browser

Inerested in cool mew Chrome features? Try 0w beta channel

Available Unavailable

If you receive an error like the one shown
when you visit the WebSerial ESPTool site,
you're likely running an older version of
Chrome.

You must be using Chrome 78 or later to
use Web Serial.

To enable Web Serial in Chrome versions
78 through 88:

Visit chrome://flags from within Chrome.
Find and enable the Experimental Web
Platform features

Restart Chrome

The Flash an Arduino Sketch Method

This section outlines flashing an Arduino sketch onto your ESP32-S2/S3 board, which
automatically installs the UF2 bootloader as well.

©Adafruit Industries

Page 231 of 235

https://learn.adafruit.com//assets/106929
https://learn.adafruit.com//assets/106929
https://learn.adafruit.com//assets/101562
https://learn.adafruit.com//assets/101562

Arduino IDE Setup

If you don't already have the Arduino IDE installed, the first thing you will need to do
is to download the latest release of the Arduino IDE. ESP32-S2/S3 requires version
1.8 or higher. Click the link to download the latest.

Arduino IDE Download

After you have downloaded and installed the latest version of Arduino IDE, you will
need to start the IDE and navigate to the Preferences menu. You can access it from
the File > Preferences menu in Windows or Linux, or the Arduino > Preferences menu
on OS X.

The Preferences window will open.

In the Additional Boards Manager URLs field, you'll want to add a new URL. The list of
URLs is comma separated, and you will only have to add each URL once. The URLs
point to index files that the Board Manager uses to build the list of available &
installed boards.

Copy the following URL.

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/
package esp32 dev_index.json

Add the URL to the the Additional Boards Manager URLs field (highlighted in red
below).

©Adafruit Industries Page 232 of 235

https://www.arduino.cc/en/software

[J Preferences

W Network
Sketchbook location:

/Users/kattni/AdafruitDev/Arduino Sketches Browse
Editor language: System Default E (requires restart of Arduino)
Editor font size: 12
Interface scale: Automatic 100 C% (requires restart of Arduino)

Theme: Default theme a (requires restart of Arduino)
Show verbose output during: compilation upload
Compiler warnings: None E
Display line numbers Enable Code Folding
Verify code after upload Use external editor

Check for updates on startup Save when verifying or uploading

Additional Boards Manager URLs: 2nt.com/espressif/arduino-esp32/gh-pages/package_esp32_dev_index.json

(edit only when Arduino is not running)

OK Cancel

Click OK to save and close Preferences.

In the Tools > Boards menu you should see the ESP32 Arduino menu. In the expanded
menu, it should contain the ESP32 boards along with all the latest ESP32-S2 boards.

Now that your IDE is setup, you can continue on to loading the sketch.

Load the Blink Sketch

In the Tools > Boards menu you should see the ESP32 menu. In the expanded menu,
look for the menu option for the Adafruit Feather ESP32-S3 Reverse TFT, and click on
it to choose it.

Open the Blink sketch by clicking through File > Examples > 01.Basics > Blink.

File Edit Sketch Tools Help

New #N
Open... ¥0
Open Recent >
Sketchbook >
Examples >

Close #$W 01.Basics AnalogReadSerial
Save ®S 02.Digital BareMinimum

Save As... {+38S 03.Analog Blink
04.Communication DigitalReadSerial
05.Control Fade

06.Sensors ReadAnalogVoltage

Page Setup 3P
Print 8P

Once open, click Upload from the sketch window.

©Adafruit Industries Page 233 of 235

L] (] Blink | Arduino 1.8.16

// the setup function runs once when you press reset or power the board
void setup() {
// initialize digital pin LED_BUILTIN as an output.
pinMode(LED_BUILTIN, OUTPUT);

// the loop function runs over and over again forever

Once successfully uploaded, the little red LED will begin blinking once every second.
At that point, you can now enter the bootloader.

Downloads

Files

« ESP32-S3 product page with resources ()

« ESP32-S3 datasheet ()

« ESP32-S3 Technical Reference ()

« EagleCAD PCB files on GitHub ()

« Fritzing object in the Adafruit Fritzing Library ()
« PrettyPins Display-side Up PDF on GitHub ()

« PrettyPins PDF on GitHub ()

« PrettyPins Display-side Up SVG ()

» PrettyPins SVG ()

©Adafruit Industries Page 234 of 235

https://www.espressif.com/en/products/socs/esp32-s3
https://cdn-learn.adafruit.com/assets/assets/000/119/042/original/esp32-s3_datasheet_en.pdf?1677679796
https://cdn-learn.adafruit.com/assets/assets/000/119/043/original/esp32-s3_technical_reference_manual_en.pdf?1677679919
https://github.com/adafruit/Adafruit-ESP32-S3-Reverse-TFT-Feather-PCB
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20ESP32-S3%20Reverse%20TFT%20Feather.fzpz
https://github.com/adafruit/Adafruit-ESP32-S3-Reverse-TFT-Feather-PCB/blob/main/PrettyPins%20Adafruit%20ESP32-S3%20Reverse%20TFT%20Feather%20Display-Side%20Pinout.pdf
https://github.com/adafruit/Adafruit-ESP32-S3-Reverse-TFT-Feather-PCB/blob/main/PrettyPins%20Adafruit%20ESP32-S3%20Reverse%20TFT%20Feather%20Front%20Pinout.pdf
https://cdn-learn.adafruit.com/assets/assets/000/119/045/original/Adafruit_ESP32-S3_Reverse_TFT_Feather_Display-Side_Pinout.svg?1677680307
https://cdn-learn.adafruit.com/assets/assets/000/119/044/original/Adafruit_ESP32-S3_Reverse_TFT_Feather_Pinout.svg?1677680296

Schematic and Fab Print

*adafru_i_g

©Adafruit Industries Page 235 of 235

	Adafruit ESP32-S3 Reverse TFT Feather
	Table of Contents
	Overview
	Pinouts
	Power Management
	Install CircuitPython
	Installing the Mu Editor
	The CIRCUITPY Drive
	Creating and Editing Code
	Exploring Your First CircuitPython Program
	Connecting to the Serial Console
	Interacting with the Serial Console
	The REPL
	CircuitPython Libraries
	CircuitPython Documentation
	Recommended Editors
	Advanced Serial Console on Windows
	Advanced Serial Console on Mac
	Advanced Serial Console on Linux
	Frequently Asked Questions
	Troubleshooting
	Welcome to the Community!
	CircuitPython Essentials
	Blink
	Digital Input
	Analog In
	NeoPixel
	Capacitive Touch
	I2C
	I2C: Onboard MAX17048
	Storage
	CircuitPython Internet Test
	Adafruit IO: Send and Receive Data
	Arduino IDE Setup
	Using with Arduino IDE
	Arduino Blink
	I2C Scan Test
	I2C: On-Board MAX17048 Battery Monitor
	Built-In TFT
	WiFi Test
	Usage with Adafruit IO
	Factory Shipped Demo
	Install UF2 Bootloader
	Factory Reset
	Downloads

	Overview
	Pinouts
	Power
	TFT Display
	ESP32-S3 WiFi Module
	MAX17048 Battery Monitor
	Logic Pins
	NeoPixel and Red LED
	STEMMA QT
	D1 and D2 Buttons
	D0 Button
	Reset Button(s) and RST Pin
	Debug Pin

	Power Management
	Battery + USB Power
	Power Supplies
	Measuring Battery
	ENable pin
	STEMMA QT and NeoPixel Power
	Alternative Power Options
	Install CircuitPython
	CircuitPython Quickstart

	Installing the Mu Editor
	Download and Install Mu
	Starting Up Mu
	Using Mu

	The CIRCUITPY Drive
	Boards Without CIRCUITPY

	Creating and Editing Code
	Creating Code
	Editing Code
	Your code changes are run as soon as the file is done saving.
	1. Use an editor that writes out the file completely when you save it.
	2. Eject or Sync the Drive After Writing

	Oh No I Did Something Wrong and Now The CIRCUITPY Drive Doesn't Show Up!!!
	Back to Editing Code...

	Naming Your Program File
	Exploring Your First CircuitPython Program
	Imports & Libraries
	Setting Up The LED
	Loop-de-loops
	What Happens When My Code Finishes Running?
	What if I Don't Have the Loop?

	Connecting to the Serial Console
	Are you using Mu?
	Serial Console Issues or Delays on Linux
	Setting Permissions on Linux

	Using Something Else?
	Interacting with the Serial Console
	The REPL
	Entering the REPL
	Interacting with the REPL

	Returning to the Serial Console
	CircuitPython Libraries
	The Adafruit Learn Guide Project Bundle
	The Adafruit CircuitPython Library Bundle
	Downloading the Adafruit CircuitPython Library Bundle

	The CircuitPython Community Library Bundle
	Downloading the CircuitPython Community Library Bundle

	Understanding the Bundle
	Example Files
	Copying Libraries to Your Board

	Understanding Which Libraries to Install
	Example: ImportError Due to Missing Library
	Library Install on Non-Express Boards
	Updating CircuitPython Libraries and Examples
	CircUp CLI Tool

	CircuitPython Documentation
	CircuitPython Core Documentation
	CircuitPython Library Documentation
	Examples
	API Reference
	Other Links

	Recommended Editors
	Recommended editors
	Recommended only with particular settings or add-ons
	Editors that are NOT recommended

	Advanced Serial Console on Windows
	Windows 7 and 8.1
	What's the COM?
	Install Putty
	Advanced Serial Console on Mac
	What's the Port?
	Connect with screen

	Advanced Serial Console on Linux
	What's the Port?
	Connect with screen
	Permissions on Linux

	Frequently Asked Questions
	What are some common acronyms to know?
	Using Older Versions
	I have to continue using CircuitPython 6.x or earlier. Where can I find compatible libraries?
	Python Arithmetic
	Does CircuitPython support floating-point numbers?
	Does CircuitPython support long integers, like regular Python?
	Wireless Connectivity
	How do I connect to the Internet with CircuitPython?
	How do I do BLE (Bluetooth Low Energy) with CircuitPython?
	Are there other ways to communicate by radio with CircuitPython?
	Asyncio and Interrupts
	Is there asyncio support in CircuitPython?
	Does CircuitPython support interrupts?
	Status RGB LED
	My RGB NeoPixel/DotStar LED is blinking funny colors - what does it mean?
	Memory Issues
	What is a MemoryError?
	What do I do when I encounter a MemoryError?
	Can the order of my import statements affect memory?
	How can I create my own .mpy files?
	How do I check how much memory I have free?
	Unsupported Hardware
	Is ESP8266 or ESP32 supported in CircuitPython? Why not?
	Does Feather M0 support WINC1500?
	Can AVRs such as ATmega328 or ATmega2560 run CircuitPython?

	Troubleshooting
	Always Run the Latest Version of CircuitPython and Libraries
	I have to continue using CircuitPython 5.x or earlier. Where can I find compatible libraries?

	Bootloader (boardnameBOOT) Drive Not Present
	You may have a different board.
	MakeCode
	MacOS
	Windows 10
	Windows 7 or 8.1

	Windows Explorer Locks Up When Accessing boardnameBOOT Drive
	Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied
	CIRCUITPY Drive Does Not Appear or Disappears Quickly
	Device Errors or Problems on Windows
	Serial Console in Mu Not Displaying Anything
	code.py Restarts Constantly
	CircuitPython RGB Status Light
	CircuitPython 7.0.0 and Later
	CircuitPython 6.3.0 and earlier

	Serial console showing ValueError: Incompatible .mpy file
	CIRCUITPY Drive Issues
	Safe Mode
	Entering Safe Mode in CircuitPython 7.x and Later
	Entering Safe Mode in CircuitPython 6.x
	In Safe Mode

	To erase CIRCUITPY: storage.erase_filesystem()
	Erase CIRCUITPY Without Access to the REPL
	For the specific boards listed below:
	For SAMD21 non-Express boards that have a UF2 bootloader:
	For SAMD21 non-Express boards that do not have a UF2 bootloader:

	Running Out of File Space on SAMD21 Non-Express Boards
	Delete something!
	Use tabs
	On MacOS?
	Prevent & Remove MacOS Hidden Files
	Copy Files on MacOS Without Creating Hidden Files
	Other MacOS Space-Saving Tips

	Device Locked Up or Boot Looping
	Welcome to the Community!
	Adafruit Discord
	CircuitPython.org
	Pull Requests
	Open Issues
	Library Infrastructure Issues
	CircuitPython Localization

	Adafruit GitHub
	Adafruit Forums
	Read the Docs

	CircuitPython Essentials
	Blink
	LED Location
	Blinking an LED

	Digital Input
	LED and Button
	Controlling the LED with a Button

	Analog In
	Analog to Digital Converter (ADC)
	Potentiometers
	Hardware
	Wire Up the Potentiometer
	Reading Analog Pin Values
	Reading Analog Voltage Values

	NeoPixel
	NeoPixel Location
	NeoPixel Color and Brightness
	RGB LED Colors
	NeoPixel Rainbow

	Capacitive Touch
	One Capacitive Touch Pin
	Pin Location
	Reading Touch on the Pin

	Multiple Capacitive Touch Pins
	Pin Location
	Reading Touch on the Pins
	The Available Touch-Capable Pins

	I2C
	I2C and CircuitPython
	Necessary Hardware
	Wiring the MCP9808
	Find Your Sensor
	I2C Sensor Data
	Where's my I2C?

	I2C: Onboard MAX17048
	MAX17048 Location

	MAX17048 Simple Data Example
	Storage
	Wiring for MCP9808
	The boot.py File
	The code.py File
	Logging the Temperature
	Recovering a Read-Only Filesystem

	CircuitPython Internet Test
	Secrets File

	Adafruit IO: Send and Receive Data
	NeoPixel Location
	Adafruit IO Feeds and Dashboard
	Adafruit IO Example Secrets
	Adafruit IO Example Code
	NeoPixel Color Change
	Code Walkthrough

	Arduino IDE Setup
	Install Arduino IDE
	Install CP2104 / CP2102N USB Driver
	Install CH9102 / CH34X USB Driver
	Install ESP32 Board Support Package from GitHub

	Using with Arduino IDE
	Blink
	Select ESP32-S2/S3 Board in Arduino IDE
	Launch ESP32-S2/S3 ROM Bootloader
	Load Blink Sketch

	Arduino Blink
	Pre-Flight Check: Get Arduino IDE & Hardware Set Up
	Start up Arduino IDE and Select Board/Port
	New Blink Sketch
	Verify (Compile) Sketch
	Upload Sketch
	Native USB and manual bootloading
	Enter Manual Bootload Mode

	Finally, a Blink!
	I2C Scan Test
	Common I2C Connectivity Issues
	Perform an I2C scan!
	Install TestBed Library
	Wire up I2C device
	Wiring the MCP9808

	I2C: On-Board MAX17048 Battery Monitor
	Arduino Library Installation
	MAX17048 Simple Data Example

	Built-In TFT
	Arduino Library Installation
	Graphics Test Example Code

	WiFi Test
	WiFi Connection Test
	Secure Connection Example
	JSON Parsing Demo

	Usage with Adafruit IO
	Install Libraries
	Adafruit IO Setup
	Code Usage

	Factory Shipped Demo
	Arduino Library Installation
	Factory Demo Example Code

	Install UF2 Bootloader
	Factory Reset
	Factory Reset Firmware UF2
	Factory Reset and Bootloader Repair
	Download .bin and Enter Bootloader
	Step 1. Download the factory-reset-and-bootloader.bin file
	Step 2. Enter ROM bootloader mode

	The WebSerial ESPTool Method
	Connect
	Erase the Contents
	Program the ESP32-S2/S3

	The esptool Method (for advanced users)
	Install ESPTool.py
	Test the Installation
	Connect
	Installing the Bootloader

	Reset the board
	Older Versions of Chrome
	The Flash an Arduino Sketch Method
	Arduino IDE Setup
	Load the Blink Sketch

	Downloads
	Files
	Schematic and Fab Print

