

QMI8658C DATASHEET

SEPTEMBER 10, 2021

QST SOLUTIONS LIMITED 120 BAYTECH DR, SAN JOSE, CA 95134

QMI8658C Low Noise, Wide Bandwidth 6D Inertial Measurement Unit with Motion Co-Processor and Sensor Fusion

Features

- Low 15 mdps/√Hz gyroscope noise, low-latency, and wide bandwidth for performance applications such robotic vacuums, industrial tilt modules, pedestrian navigation and GNSS augmentation, 5G antenna stabilization, inertial navigation, and large industrial UAVs
- Low Noise 200µg/√Hz accelerometer
- Host (slave) interface supports MIPI™ I3C, I²C, and 3-wire or 4-wire SPI
- Accelerometer and gyroscope sensors feature signal processing paths with digitally programmable data rates and filtering
- Complete inertial measurement unit (IMU) with sensor fusion library with specified orientation accuracy of ±3° pitch and roll, ±5° yaw/heading
- High-performance XKF3[™] 6/9-axis sensor fusion with in-run calibration for correction of gyroscope bias drift over-temperature and lifetime
- 3-axis gyroscope and 3-axis accelerometer in a small 2.5 x 3.0 x 0.86 mm 14-pin LGA package
- Integrated Gen 2 AttitudeEngineTM motion coprocessor with vector DSP performs sensor fusion at 1 kHz sampling rate, while outputting data to host processor at a lower rate – improving accuracy while reducing processor MIPS, power, and interrupt requirements
- Large 1536-byte FIFO can be used to buffer sensor data to lower system power dissipation
- Motion on demand technology for polling-based synchronization
- Large sensor dynamic ranges from ±16°/s to ±2048°/s for gyroscope and ±2 g to ±16 g for accelerometer
- Low power modes for effective power management
- Digitally programmable sampling rate and filters
- Embedded temperature sensor
 - Wide extended operating temperature range (-40°C to 85°C)

Description

The QMI8658C is a complete 6D MEMS inertial measurement unit (IMU) with 9-axis sensor fusion and specified system level orientation accuracy. When using the QMI8658C in combination with the supplied XKF3 9D-sensor fusion, the system features an accurate $\pm 3^{\circ}$ pitch and roll orientation, and a $\pm 5^{\circ}$ yaw/heading typical specification.

With tight board-level gyroscope sensitivity of $\pm 3\%$, gyroscope noise density of 15 mdps/ \sqrt{Hz} , and low latency, the QMI8658C is ideal for high performance consumer and for industrial applications.

The QMI8658C incorporates a 3-axis gyroscope and a 3-axis accelerometer. It provides a UI interface (supporting I3C, I^2C and 3-wire or 4-wire SPI).

The QMI8658C incorporates an advanced vector digital signal processor (DSP) motion co-processor called the AttitudeEngine. The AttitudeEngine efficiently encodes high frequency motion at high internal sampling rates, preserving full accuracy across lower-frequency output data rates.

This enables the application to utilize low output data rates (ODRs) or on-demand (host polling) while still acquiring accurate 3D motion data. The AttitudeEngine reduces the data processing and interrupt load on a host processor with no compromises in 3D motion tracking accuracy. The result is very low total system power in combination with high accuracy, which are essential to many portable and battery powered applications.

Applications

- Toys
- Drones
- E-bikes and scooters
- Motion-based remote controls and air mice

Table of Contents

	Gen	eral Information	4
	1.1	Ordering Information	4
	1.2	Marking Information	4
	1.3	Internal Block Diagram	5
	1.4	Interface Operating Modes	6
	1.5	Application Diagrams	7
	1.6	Package & Pin Information	9
	1.7	Recommended External Components	11
2	OM	8658C Architecture	. 12
	2.1	AttitudeEngine Mode Overview	12
	2.2	Advantages of the Attitude Engine Approach	12
	2.3	9D Sensor Fusion and Auto-Calibration using XKF3	13
	2.4	Frames of Reference and Conventions for Using QMI8658C	14
3	Svst	em. Electrical and Electro-Mechanical Characteristics	15
•	3 1	Absolute Maximum Ratings	15
	3.1	Recommended Operating Conditions	15
	3.2	System Level Specifications	16
	3.3	Flectro-Mechanical Specifications	17
	3.4	Accelerometer Programmable Characteristics	19
	3.6	Gyroscope Programmable Characteristics	21
	3.7	Electrical Characteristics	
	371	Current Consumption	22
	3.8	Temperature Sensor	24
	Deel		25
4	Regi	ster Map Overview	. 25
	4.1	Of Register Map Overview	25
5	UI S	ensor Configuration Settings and Output Data	20
	5.1		20
		Typical Sensor Mode Configuration and Output Data	28
	5.2	Typical Sensor Mode Configuration and Output Data AttitudeEngine (AE) Mode Configuration and Output Data	. 28 28 29
	5.2 5.3	Typical Sensor Mode Configuration and Output Data AttitudeEngine (AE) Mode Configuration and Output Data General Purpose Register	28 28 29 29
	5.2 5.3 5.4	Typical Sensor Mode Configuration and Output Data AttitudeEngine (AE) Mode Configuration and Output Data General Purpose Register Configuration Registers	28 29 29 29 30
	5.2 5.3 5.4 5.5	Typical Sensor Mode Configuration and Output Data AttitudeEngine (AE) Mode Configuration and Output Data General Purpose Register Configuration Registers FIFO Registers	28 29 29 30 34
	5.2 5.3 5.4 5.5 5.6	Typical Sensor Mode Configuration and Output Data AttitudeEngine (AE) Mode Configuration and Output Data General Purpose Register Configuration Registers FIFO Registers Status and Time Stamp Registers	28 29 29 30 34 35
	5.2 5.3 5.4 5.5 5.6 5.7	Typical Sensor Mode Configuration and Output Data AttitudeEngine (AE) Mode Configuration and Output Data General Purpose Register Configuration Registers FIFO Registers Status and Time Stamp Registers Sensor Data Output Registers	28 29 29 30 34 35 37
	5.2 5.3 5.4 5.5 5.6 5.7 5.8	Typical Sensor Mode Configuration and Output Data AttitudeEngine (AE) Mode Configuration and Output Data General Purpose Register Configuration Registers FIFO Registers Status and Time Stamp Registers Sensor Data Output Registers Reset register.	28 29 29 30 34 35 37 40
	5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	Typical Sensor Mode Configuration and Output Data AttitudeEngine (AE) Mode Configuration and Output Data General Purpose Register Configuration Registers FIFO Registers Status and Time Stamp Registers Sensor Data Output Registers Reset register CTRL 9 Functionality (Executing Pre-defined Commands)	28 29 29 30 34 35 37 40 40
	5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.9.1	Typical Sensor Mode Configuration and Output Data AttitudeEngine (AE) Mode Configuration and Output Data General Purpose Register Configuration Registers FIFO Registers Status and Time Stamp Registers Status and Time Stamp Registers Sensor Data Output Registers Reset register CTRL 9 Functionality (Executing Pre-defined Commands) CTRL 9 Description	28 29 29 30 34 35 37 40 40
	5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.9.1 5.9.2	Typical Sensor Mode Configuration and Output Data AttitudeEngine (AE) Mode Configuration and Output Data General Purpose Register Configuration Registers FIFO Registers Status and Time Stamp Registers Status and Time Stamp Registers Reset register CTRL 9 Functionality (Executing Pre-defined Commands) CTRL 9 Description WCtrl9 (Write – CTRL9 Protocol).	28 29 29 30 34 35 37 40 40 40
	5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.9.1 5.9.2 5.9.3	Typical Sensor Mode Configuration and Output Data AttitudeEngine (AE) Mode Configuration and Output Data	28 29 29 30 34 35 37 40 40 40 40
	5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.9.1 5.9.2 5.9.3 5.9.4	Typical Sensor Mode Configuration and Output Data AttitudeEngine (AE) Mode Configuration and Output Data General Purpose Register Configuration Registers FIFO Registers Status and Time Stamp Registers Status and Time Stamp Registers Sensor Data Output Registers Reset register CTRL 9 Functionality (Executing Pre-defined Commands) CTRL 9 Description WCtrl9 (Write – CTRL9 Protocol) Ctrl9R (CTRL9 Protocol - Read) Ctrl9 (CTRL9 Protocol Acknowledge)	28 29 30 34 35 37 40 40 40 41 41
	5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.9.1 5.9.2 5.9.3 5.9.4 5.9.5	Typical Sensor Mode Configuration and Output Data AttitudeEngine (AE) Mode Configuration and Output Data General Purpose Register Configuration Registers FIFO Registers Status and Time Stamp Registers Status and Time Stamp Registers Sensor Data Output Registers Reset register. CTRL 9 Functionality (Executing Pre-defined Commands) CTRL 9 Description WCtrl9 (Write – CTRL9 Protocol). Ctrl9R (CTRL9 Protocol - Read). Ctrl9R (CTRL9 Protocol - Read). Ctrl9 (CTRL9 Protocol Acknowledge) CTRL9 Commands in Detail	28 29 30 31 35 37 40 40 40 41 41 41
6	5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.9.1 5.9.2 5.9.3 5.9.4 5.9.5 5.9.5 5.9.5	Typical Sensor Mode Configuration and Output Data AttitudeEngine (AE) Mode Configuration and Output Data General Purpose Register Configuration Registers FIFO Registers Status and Time Stamp Registers Sensor Data Output Registers Reset register CTRL 9 Functionality (Executing Pre-defined Commands) CTRL 9 Description CTRL 9 Description WCtrl9 (Write – CTRL9 Protocol) Ctrl9R (CTRL9 Protocol - Read) Ctrl9R (CTRL9 Protocol - Read) CTRL9 Commands in Detail	28 29 30 35 37 40 40 41 41 41 42 44
6	5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.9.1 5.9.2 5.9.3 5.9.4 5.9.5 5.5 5	Typical Sensor Mode Configuration and Output Data AttitudeEngine (AE) Mode Configuration and Output Data General Purpose Register Configuration Registers FIFO Registers Status and Time Stamp Registers Sensor Data Output Registers Reset register CTRL 9 Functionality (Executing Pre-defined Commands) CTRL 9 Description WCtrl9 (Write – CTRL9 Protocol) Ctrl9 (Write – CTRL9 Protocol) Ctrl9 (CTRL9 Protocol - Read) Ctrl9 (CTRL9 Protocol - Read) Ctrl9 (CTRL9 Protocol Acknowledge) CTRL9 Commands in Detail	28 29 30 35 37 40 40 41 41 41 42 44
6	5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.9.1 5.9.2 5.9.3 5.9.2 5.9.5 5.9.5 Inte 6.1	Typical Sensor Mode Configuration and Output Data AttitudeEngine (AE) Mode Configuration and Output Data General Purpose Register Configuration Registers FIFO Registers	28 29 30 34 35 37 40 40 41 41 41 42 44 44
6	5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.9.2 5.9.3 5.9.4 5.9.5 5.9.4 5.9.5 Inte 6.1 6.1.1 6.1.2	Typical Sensor Mode Configuration and Output Data AttitudeEngine (AE) Mode Configuration and Output Data General Purpose Register Configuration Registers FIFO Registers Status and Time Stamp Registers Sensor Data Output Registers Reset register. CTRL 9 Functionality (Executing Pre-defined Commands) CTRL 9 Description CTRL 9 Description WCtrl9 (Write – CTRL9 Protocol) Ctrl9R (CTRL9 Protocol - Read) Ctrl9R (CTRL9 Protocol - Read) CTRL9 COMMANDE IN Detail	28 29 30 35 37 40 40 40 41 41 41 41 42 44 44
6	5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.9.2 5.9.2 5.9.2 5.9.2 5.9.2 5.9.5 Inte 6.1 6.1.1 6.1.2 Ope	Typical Sensor Mode Configuration and Output Data AttitudeEngine (AE) Mode Configuration and Output Data General Purpose Register	28 29 30 34 35 37 40 40 41 41 41 42 44 44 44 44

7.1 7 2	General Mode Transitioning	48 48
8 FIF(O Description	
8.1 8.2	Using the FIFO FIFO Register Description	49 50
9 Per	rforming Device Self Test	
9.1	Accelerometer Self Test	51
9.2	Gyroscope Self Test	51
10 Hos	st Serial Interface	52
10.1	Serial Peripheral Interface (SPI)	52
10.1	1.1 SPI Timing Characteristics	57
10.2	I ² C Interface	59
10.3	MIPI I3C Interface	60
11 Pac	ckage and Handling	61
11.1	Package Drawing	61
11.2	Reflow Specification	62
11.3	Storage Specifications	62
12 Doc	cument Information	63
12.1	Revision History	63

1 General Information

1.1 Ordering Information

Table 1. Ordering Information

Part Number	Package	Packing Method
QMI8658C	LGA14	Tape & Reel

1.2 Marking Information

ROW	EXAMPLE	CODE/EXPLANATION
1	8658 C	DDDD D – Device code
2	0113	YWLL-Y (Year code), W (1-digit, biweekly code), LL (Lot indication)
3	• DA	CR – C (Assembly location), R (Product revision)

Figure 1. Top Mark

1.3 Internal Block Diagram

1.4 Interface Operating Modes

The QMI8658C can operate in below mode, as shown in the Figure below.

Mode 1: Default mode of operation. In this mode, the QMI8658C is a slave device to a host processor that communicates to it using one of the following interfaces: I²C, I3C, and SPI (3-wire or 4-wire modes). This slave relationship to the host is the same for all operating modes. In Mode 1, the secondary interface is not enabled.

Host	
Processor	
I3C/I²C/SPI (3/4 Wire)	
"Host," "Slave," or "UI"	
Interface	
QMI8658	
Figure 3. Operating modes	
	_

1.5 Application Diagrams

The typical application diagrams are shown in this section.

Figure 6. I3C/I²C-UI mode

Note: As there is internal 2Mohm pull-up resistor, pull SDO/SA0 low will cost more current then pull it high.

1.6 Package & Pin Information

The pinout of the QMI8658C is shown in the figure below. The pin names and functionality are detailed in the table that follows. The pin functionality is dictated by the part's operating mode, as described in the section above.

Pin Number	Туре	Pin Name	Mode 1 Function (Default Mode)	Mode 2 Function (External Sensor Mode)			
1	0	SDO/SA0 ⁽¹⁾⁽²⁾	SPI-UI Data Out (SDO) in SPI-UI 4-Wire Mode.				
			I ² C Slave LSB bit of the device Address (SA0)				
2	ю	SDx	Connect to VDDIO or GND	I ² C Master Serial Data (MSDA)			
3	ю	SCx	Connect to VDDIO or GND	I ² C Master Serial Clock (MSCL)			
4	0	INT1	Programmable Interrupt 1 for I	² C and SPI			
5	I	VDDIO	Power Supply for IO Pins				
6	I	GND	Ground (0 V supply); is interna	ally No Connect.			
7	I	GND	Ground (0 V supply)				
8	I	VDD	Power supply	Power supply			
9	0	INT2	Programmable Interrupt 2 (INT2)/ Data Enable (DEN)	Programmable Interrupt 2 (INT2) / Data Enable (DEN).			
				I ² C Master external Synchronization Signal (MDRDY)			
10	ю	RESV-NC	Reserved. No Connect				
11	I	RESV-NC	Reserved. No Connect				
12	1	CS	I ² C/ I3C /SPI-UI selection Pin.				
			(If 1: I ² C-UI Mode: I ² C/I3C con	nmunication enabled, SPI idle mode)			
			(If 0: SPI-UI mode: I ² C/I3C dis	abled)			
13	ю	SCL	SPI-UI Serial Clock (SPC) (1) (2)			
14	10	SDA	I ² C/I3C-UI Data (SDA)				
			SPI-UI Data In (SDI) (1) (2) in 4	SPI-UI Data In (SDI) ⁽¹⁾⁽²⁾ in 4 wire Mode			
			SPI-UI Data IO (SDIO) ⁽¹⁾⁽²⁾ in 3 Wire Mode				

Table 2. Pin Definitions

Notes:

- 1. This pin has an internal $2M\Omega$ pull up resistor.
- 2. Refer to Section 10 for detailed configuration information.

1.7 Recommended External Components

Table 3. R	ecommended	External	Com	ponents
------------	------------	----------	-----	---------

Component	Description	Parameter	Typical
C _{p1}	Capacitor	Capacitance	100 nF
C _{p2}	Capacitor	Capacitance	100 nF
R _{pu} ⁽³⁾	Resistor	Resistance	2KΩ ~ 10 kΩ

Note:

3. R_{pu} resistors are only needed when the Host Serial Interface is configured for I²C (see I²C Interface section). They are not needed when the Host Serial Interface is configured for SPI or I3C. If pull-up resistors are used on SCL and SDA, then SPI, I3C and I²C Modes are all possible. If a pull-down resistor is used on SA0, an alternate slave address is used for I²C. SPI and I3C modes will be unaltered with the use of pull-up resistors for I²C. Additionally, a suitable pull up resistance (R_{pu}) value should be selected, accounting for the tradeoff between current consumption and rise time.

VDD

VDDIO

2 QMI8658C Architecture

QMI8658C is a smart sensor that combines a highperformance IMU with a powerful Single Instruction Multiple Data (SIMD) based Vector DSP motion coprocessor referred to as the AttitudeEngine™ (AE).

Included sensor fusion software (XKF3) allows the device to achieve orientation accuracies of $\pm 3^{\circ}$ for pitch and roll and $\pm 5^{\circ}$ for yaw/heading.

The QMI8658C includes a microcontroller for data scheduling, combined with Direct Memory Access (DMA) in order to allow efficient data shuttling on the chip. Multichannel data is easily processed at rates up to 1 kHz.

An internal block diagram is shown in Figure 2. The MEMS elements are amplified and converted by $\Sigma\Delta$ A/D converters, which are synchronized to a common clock so that all the motion measurements of acceleration, angular rate and magnetic heading are sampled at the same time minimizing any skew between channels. The data is then sent to a signal processing chain that accomplishes decimation, filtering, and calibration.

Once the data has been processed, it can be sent to the host processor depending on additional configuration settings, such as enabling the FIFO or using the AttitudeEngine.

2.1 AttitudeEngine Mode Overview

Brief descriptions of the major functions of the AttitudeEngine are discussed below. Note that the AttitudeEngine may be enabled or disabled and configured using the CTRL6 register.

- Calibration: The QMI8658C applies continuous onchip calibration of all the sensors (accelerometer, gyroscope, and magnetometer) including scale, offset, and temperature calibration. When used in conjunction with a sensor fusion filter (such as the XKF3) running on the host processor, estimated sensor errors can be updated in-use, allowing sensor calibration to be performed in the background without any host intervention. This offloads computationally expensive per-sample recalibration from the host processor to the QMI8658C
- Sample Synchronization: The QMI8658C automatically provides highly synchronous output between the various IMU accelerometer and gyroscope channels by using fully parallel ΣΔconverters. The QMI8658C also provides time synchronization of data between the IMU and the external magnetometer.

- Motion Encoder: The on-chip motion encoder performs 32-bit high-speed dead reckoning calculations at 1 kHz data rates allowing accurate capture of high frequency and coning effects. Orientation and velocity increments are calculated with full coning and sculling compensation and the magnetic field vector from the external magnetometer is rotated to the sensor frame of reference. This allows the lossless encoding (compression) of 6D motion to a low output data rate, while maintaining the accuracy provided by the 1 kHz input and data processing rate. Motion data encoded by the AttitudeEngine is available at a user programmable data rate (1 Hz to 64 Hz). The orientation and velocity increments from the AttitudeEngine are suitable for any 3D motion tracking application (orientation, velocity, and position) and may be further fused by the user with information from other sources such as a GNSS receiver or barometer in an optimal estimator.
- Motion on Demand (MoD): The QMI8658C allows the host to access encoded motion data asynchronously (polling) and on demand. The motion data in the AttitudeEngine (AE) mode remains accurate even at very low output data rates. This allows easy integration and synchronization with other sensors for state-of-theart applications such as rolling shutter camera stabilization, optical sensors software de-blurring, GNSS integration and augmented or virtual reality.

2.2 Advantages of the Attitude Engine Approach

The advantages of the AttitudeEngine (AE) approach over the traditional sensor approach are briefly discussed below.

- Low-Power Architecture: Dead reckoning calculations are performed with the AE vector DSP that is designed to perform essential calculations while achieving high accuracy and low power simultaneously. The AE approach enables a typical interrupt rate reduction to the host processor of 10x and can be up to 100x for some applications. This significantly enhances the operational life of battery powered devices without any compromises in 3D motion tracking accuracy.
- High Performance: The motion encoder and sample synchronizer enable highly accurate strap down integration that can be fully compensated for coning and sculling artifacts.

2.3 9D Sensor Fusion and Auto-Calibration using XKF3

XKF3 is a sensor fusion algorithm, based on Extended Kalman Filter theory that fuses 3D inertial sensor data (orientation and velocity increments) and 3D magnetometer, also known as '9D', data to optimally estimate 3D orientation with respect to an Earth fixed frame.

A license to use XKF3 in a CMSIS compliant library form for Cortex M0+, M3, M4, M4F, for commercial purposes is provided with certain QST evaluation kits incorporating the QMI8658C.

A restricted-use license for use of XKF3 for commercial purposes is also granted for certain applications when XKF3 is used with the QMI8xxx series of IMUs, such as the QMI8658C/B/C family and the QMI8610.

- XKF3 Features:
- Continuous Sensor Auto Calibration, No User Interaction Required
- High Accuracy, Real-Time, Low-Latency Optimal estimate of 3D Orientation, up to 1 kHz output data rate
- Ultra-low system power for 3D Orientation enabled by AttitudeEngine between 1 to 64 Hz output data rate without any degradation in accuracy
- Best-in-Class Immunity to Magnetic Distortions
- Best-in-Class Immunity to Transient Accelerations
- Flexible use Scenarios, North Referenced, Unreferenced
- Extensive Status Reporting for Smooth Integration in Applications
- Optimized Library for Popular Microcontrollers

Figure 10. Chip Orientation Coordinate System

2.4 Frames of Reference and Conventions for Using QMI8658C

The QMI8658C uses a right-handed coordinate system as the basis for the sensor frame of reference. Acceleration (a_x, a_y, a_z) are given with respect to the X-Y-Z co-ordinate system shown above. Increasing

accelerations along the positive X-Y-Z axes are considered positive. Angular Rate $(\omega_x, \omega_y, \omega_z)$ in the counterclockwise direction around the respective axis are considered positive.

Figure 10 shows the various frames of reference and conventions for using the QMI8658C.

3 System, Electrical and Electro-Mechanical Characteristics

3.1 Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions. Stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
Tstg	Storage Temperature		-40	+125	°C
T _{Pmax}	Lead Soldering Temperature, 10 Seconds			+260	°C
VDD	Supply Voltage		-0.3	3.6	V
VDDIO	I/O Pins Supply Voltage		-0.3	3.6	V
Sg ⁽⁴⁾	Acceleration g for 0.2 ms (Un-powered)			10,000	g
	Electrostatic Discharge	Human Body Model per JES001-2014	±2	2000	V
E9D(0)	Protection Level Charged Device Model per JESD22-C101		±	±500	

Notes:

- 4. Δ This is a mechanical shock (g) sensitive device. Proper handling is required to prevent damage to the part.
- 5. MThis is an ESD-sensitive device. Proper handling is required to prevent damage to the part.

3.2 Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for device operation. Recommended operating conditions are specified to ensure optimal performance. QST does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min	Тур	Мах	Unit
VDD	Supply Voltage	1.71	1.8	3.6	V
VDDIO	I/O Pins Supply Voltage	1.71	1.8	3.6	V
Tr ⁽⁶⁾	VDDIO rising time (from 0.1V to 1.7V)			100	us
VIL	Digital Low Level Input Voltage			0.3 *VDDIO	V
Vін	Digital High Level Input Voltage	0.7 *VDDIO		VDDIO + 0.3	V
Vol	Digital Low Level Output Voltage			0.1 *VDDIO	V
Vон	Digital High Level Output Voltage	0.9 *VDDIO			V

Notes:

6. There is no rising time limitation for VDD.

3.3 System Level Specifications

System level specifications are provided to give guidance on the system performance in a recommended and typical configuration. The recommended system configuration is the QMI8658C and optionally a supported 3D magnetometer used with a supported host processor, running the XKF3 9D-sensor fusion and having executed and stored the result of the "Board Level Calibration" routine. The system performance specifications assume that good engineering practices for the placement conditions of the QMI8658C and 3D magnetometer are considered. For example, do not place the QMI8658C where strong vibrations may occur or could be amplified; do not place the 3D magnetometer where magnetic fields other than the Earth magnetic field may be measured. Typical numbers are provided below unless otherwise noted.

Subsystem	Parameter	Typical	Unit	Comments
	Roll	±3	deg	Requires use of XKF3 software library on host processor.
	+XKF3 n Yaw (Heading) Referenced to North Yaw (Heading) Unreferenced	±3	deg	Requires use of XKF3 software library on host processor.
QMI8658C+XKF3 Quaternion	Yaw (Heading) Referenced to North	±5	deg	Requires use of XKF3 software library on host processor, using magnetometer, in a homogenous Earth magnetic field.
	Yaw (Heading) Unreferenced	5-25	deg/h	From Allan Variance bias instability. Does not require a magnetometer. (See specification above for use with magnetometer.) Fully immune to magnetic distortions.
QMI8658C+XKF3 Quaternion	Output Data Rate	1-1000	Hz	To benefit from the power saving using the AttitudeEngine, use a max ODR of 64 Hz.

Table 6. System Level 3D Orientation Accuracy Specifications

3.4 Electro-Mechanical Specifications

VDD = VDDIO = 1.8 V, T = 25°C unless otherwise noted.

Table 7	Accelerence	Electre Mechanical	Cussifientions
rapie 7.	Accelerometer	Electro-wechanical	specifications

	Subsystem	Parameter	Турі	cal	Unit	Comments
ĺ		Noise Density (@ 32Hz)	200)	μg/√Hz	High-Resolution Mode
			Scale Setting	Sensitivity		
			±2 g	16,384		
		Sensitivity Scale Factor	±4 g	8,192	LSB/g	16-Bit Output
			±8 g	4,096		
			±16 g	2,048		
		Cross-Axis Sensitivity	±1		%	
	Accelerometer	Temperature Coefficient of Offset (TCO)	±0.5	5	mg/°C	Over-Temperature Range of -40°C to 85°C, at Board Level
		Temperature Coefficient of Sensitivity (TCS)	±0.0	94	%/°C	0
		Initial Offset Tolerance	±10	0	mg	Board Level
		Initial Sensitivity Tolerance	±6		%	Board Level
		Non-Linearity	±0.7	'5	%	Best Fit Line
		System Turn On Time ⁽⁷⁾	1.7	5	s	From Software Reset, No Power, or Power Down to Power-on Default state = t0 in Figure 11
		Accel Turn On Time	3 ms + 3)/ODR	ms	Accel Turn on from Power- On Default state or from Low Power state = t2 + t5 in Figure 11.

Note:

7. System Turn On Time starts once VDDIO and VDD are within 1% of Final Value.

	Table 8. Gyroscop	e Electro-M	echanical S	Specificatior	าร
Subsystem	Parameter	Тур	ical	Unit	Comments
		Scale Setting	Sensitivity		
		±16 dps	2048		
		±32 dps	1024		
		±64 dps	512		
	Sensitivity	±128 dps	256	LSB/dps	16-Bit Output
		±256 dps	128		
		±512 dps	64		
		±1024 dps	32		
		±2048 dps	16		
	Natural Frequency	23	.5	kHz	
	Noise Density (@ 32Hz)	1	5	mdps/√Hz	High-Resolution Mode
Gvroscope	Non-Linearity	±0	.2	%	
-,	Cross-Axis Sensitivity	±	2	%	
	g-Sensitivity	±0	.1	dps/g	
	System Turn On Time ⁽⁸⁾	1.7	75	S	From Software Reset, No Power, or Power Down to Power-on Default state = t0 in Figure 11
	Gyro Turn On Time	60 ms +	3/ODR	ms	from Power-On Default = t1 11
	Temperature Coefficient of Offset (TCO)	±0.	05	dps/°C	Over-Temperature Range of -40°C to 85°C
	Temperature Coefficient of Sensitivity (TCS)	±0.	05	%/°C	Over-Temperature Range of -40°C to 85°C
Gyroscope	Initial Offset Tolerance	±1	0	dps	Board Level
	Initial Sensitivity Tolerance	±	3	%	Board Level

Note:

8. System Turn On Time starts once VDDIO and VDD are within 1% of Final Value

Table 9. Magnetometer and AttitudeEngine Range and Scale

Subayatam	Desemptor	Тур	ical	110:4	Commente
Subsystem	Parameter	Scale Setting	Sensitivity	Unit	Comments
Typical Sensor Mode	Magnetometer Sensitivity Scale Factor	Depends on magnetometer	Depends on magnetometer	LSB/gauss	
	Magnetometer Sensitivity Scale Factor	Depends on magnetometer	Depends on magnetometer	LSB/gauss	16 Pit Output
AE Mode	Orientation Increment (quaternion) Sensitivity Scale Factor	±1	16,384	LSB/unit	
	Velocity Increment Sensitivity Scale Factor	±32	1,024	LSB/ms	

3.5 Accelerometer Programmable Characteristics

VDD = VDDIO = 1.8 V, T = 25°C unless otherwise noted. Typical numbers are provided below unless otherwise noted. All frequencies are $\pm 5\%$ and are synchronized to the gyroscope oscillator ("drive") frequency.

There are two sources of ODR frequency of accelerometer. If only enables accelerometer, the ODR frequency is derived from the internal oscillator. If enables both accelerometer and gyroscope (6DOF mode), the ODR frequency is derived from the natural frequency of gyroscope, which will nominally be 0.94 multiply the ODR values of enabling accelerometer only. Table 10 shows the two sets of ODR frequency, which can be referenced for later descriptions in the datasheet. Refer to section 5.4 for detailed ODR configuration.

	Table '	10.	Ac	celer	ome	ter N	oise D	ensity	/					
Mode		High-Resolution										Low-Power		
ODR (Accel only)				1000	500	250	125	62.5	31.25	128	21	11	3	Hz
ODR (Accel + Gyro)	7520	3760	1880	940	470	235	117.5	58.75	29.375		~	Ś		Hz
Typical Noise Density	200	200	200	200	200	200	200	200	200	125	180	285	700	μg/√Hz

Table 11. Accelerometer Filter Characteristics (Accelerometer only)⁽⁹⁾

ODR 8000 4000 2000 1000 500 250 125 62.5 31.25 128 21 11 3 Bandwidth (Default, 27.5% of ODR) NA NA NA 275 137.5 68.8 34.4 17.2 8.6 35.2 5.8 3.0 0.8 Bandwidth with Low- Pass Filter Enabled Mode 00 NA NA NA 26.6 13.3 6.7 3.3 1.7 0.8 3.4 0.6 0.3 0.1 Bandwidth with Low- Pass Filter Enabled Mode 00 NA NA NA 26.6 13.3 6.7 3.3 1.7 0.8 3.4 0.6 0.3 0.1 Bandwidth with Low- Pass Filter Enabled Mode 01 NA NA NA 36.3 18.2 9.1 4.5 2.3 1.1 4.6 0.8 0.4 0.1	Mode			I	High-Re	solutio	Low-Power					Unit			
Bandwidth (Default, 27.5% of ODR) NA NA NA 275 137.5 68.8 34.4 17.2 8.6 35.2 5.8 3.0 0.8 Bandwidth with Low- Pass Filter Enabled Mode 00 (2.66% of ODR) NA NA NA 26.6 13.3 6.7 3.3 1.7 0.8 3.4 0.6 0.3 0.1 Bandwidth with Low- Pass Filter Enabled Mode 01 NA NA NA 26.6 13.3 6.7 3.3 1.7 0.8 3.4 0.6 0.3 0.1 Bandwidth with Low- Pass Filter Enabled Mode 01 NA NA NA 36.3 18.2 9.1 4.5 2.3 1.1 4.6 0.8 0.4 0.1	ODR	8000	4000	2000	1000	500	250	125	62.5	31.25	128	21	11	3	
Bandwidth with Low- Pass Filter Enabled Mode 00 (2.66% of ODR) NA NA NA 26.6 13.3 6.7 3.3 1.7 0.8 3.4 0.6 0.3 0.1 Bandwidth with Low- Pass Filter Enabled Mode 01 NA NA NA 26.6 13.3 6.7 3.3 1.7 0.8 3.4 0.6 0.3 0.1 Bandwidth with Low- Pass Filter Enabled Mode 01 NA NA NA 36.3 18.2 9.1 4.5 2.3 1.1 4.6 0.8 0.4 0.1	Bandwidth (Default, 27.5% of ODR)	NA	NA	NA	275	137.5	68.8	34.4	17.2	8.6	35.2	5.8	3.0	0.8	
Bandwidth with Low- Pass Filter Enabled Mode 01NANANASaII <th>Bandwidth with Low- Pass Filter Enabled Mode 00 (2.66% of ODR)</th> <th>NA</th> <th>NA</th> <th>NA</th> <th>26.6</th> <th>13.3</th> <th>6.7</th> <th>3.3</th> <th>1.7</th> <th>0.8</th> <th>3.4</th> <th>0.6</th> <th>0.3</th> <th>0.1</th> <th></th>	Bandwidth with Low- Pass Filter Enabled Mode 00 (2.66% of ODR)	NA	NA	NA	26.6	13.3	6.7	3.3	1.7	0.8	3.4	0.6	0.3	0.1	
(3.63% of ODR)	Bandwidth with Low- Pass Filter Enabled Mode 01 (3.63% of ODR)	NA	NA	NA	36.3	18.2	9.1	4.5	2.3	1.1	4.6	0.8	0.4	0.1	Hz
Bandwidth with Low- Pass Filter Enabled Mode 10 (5.39% of ODR)NANANA53.92713.56.73.41.76.91.10.60.2	Bandwidth with Low- Pass Filter Enabled Mode 10 (5.39% of ODR)	NA	NA	NA	53.9	27	13.5	6.7	3.4	1.7	6.9	1.1	0.6	0.2	
Bandwidth with Low- Pass Filter Enabled Mode 11 (13.37% of ODR) NA NA NA 133.7 66.9 33.4 16.7 8.4 4.2 17.1 2.8 1.5 0.4	Bandwidth with Low- Pass Filter Enabled Mode 11 (13.37% of ODR)	NA	NA	NA	133.7	66.9	33.4	16.7	8.4	4.2	17.1	2.8	1.5	0.4	

When only accelerometer is enabled, the ODR is derived from the internal oscillator. 9.

				-							,			
Mode				High-	Resolu	ition					Low-l	Power	,	Unit
ODR	7520	3760	1880	940	470	235	117.5	58.7 5	29.3 75	128	21	11	3	
Bandwidth (Default, 27.5% of ODR)	2068	1034	517	258. 5	129. 3	64. 6	32.3	16.2	8.1	NA	NA	NA	NA	
Bandwidth with Low- Pass Filter Enabled Mode 00 (2.66% of ODR)	200	100	50	25	12.5	6.3	3.1	1.6	0.8	NA	NA	NA	NA	0
Bandwidth with Low- Pass Filter Enabled Mode 01 (3.63% of ODR)	273	136.5	68.2	34.1	17.1	8.5	4.3	2.1	1.1	NA	NA	NA	NA	Hz
Bandwidth with Low- Pass Filter Enabled Mode 10 (5.39% of ODR)	405. 3	202.7	101. 3	50.7	25.3	12. 7	6.3	3.2	1.6	NA	NA	NA	NA	
Bandwidth with Low- Pass Filter Enabled Mode 11 (13.37% of ODR)	1005 .4	502.7	251. 4	125. 7	62.8	31. 4	15.7	7.9	3.9	NA	NA	NA	NA	

Table 12. Accelerometer Filter Characteristics (6DOF)⁽¹⁰⁾

Note:

10. When both accelerometer and gyroscope are enabled, all frequencies are ±5% and are synchronized to the nature frequency of gyroscope.

3.6 Gyroscope Programmable Characteristics

VDD = VDDIO = 1.8 V, T = 25°C, and represent typical numbers unless otherwise noted. All frequencies are $\pm 5\%$ and are synchronized to the gyroscope nature frequency.

Mode				High-R	esoluti	on				Unit
ODR	7520	3760	1880	940	470	235	117.5	58.75	29.375	
Bandwidth (Default, 27.5% of ODR)	2068	1034	517	258.5	129.3	64.6	32.3	16.2	8.1	
Bandwidth with Low-Pass Filter Enabled Mode 00 (2.66% of ODR)	200	100	50	25	12.5	6.3	3.1	1.6	0.8	
Bandwidth with Low-Pass Filter Enabled Mode 01 (3.63% of ODR)	273	136.5	68.2	34.1	17.1	8.5	4.3	2.1	1.1	Hz
Bandwidth with Low-Pass Filter Enabled Mode 10 (5.39% of ODR)	405.3	202.7	101.3	50.7	25.3	12.7	6.3	3.2	1.6	
Bandwidth with Low-Pass Filter Enabled Mode 11 (13.37% of ODR)	1005.4	502.7	251.4	125.7	62.8	31.4	15.7	7.9	3.9	

Table 13. Gyroscope Filter Characteristics

3.7 Electrical Characteristics

 $VDD = VDDIO = 1.8 V, T = 25^{\circ}C$ unless otherwise noted.

Table 14 describes the names for the pins in different functions. The later descriptions will directly use the function name in different scenarios instead of the pin name.

Pin Number	Туре	Pin Name	Function Name in 4-wire SPI	Function Name in 3-wire SPI	Function Name in Host I2C	Function Name in I2C Master
1	0	SDO/SA0	SDO		SA0	
2	Ю	SDx				SDA
3	Ю	SCx				SCL
12	I	CS	CS	CS		
13	Ю	SCL	SPC	SPC	SCL	
14	Ю	SDA	SDI	SDIO	SDA	

Table 14.Pin Name Mapped to Function Name

Table 15. Electrical Subsystem Characteristics

Symbol	Parameter		Min.	Тур.	Max.	Unit
f _{SPC}	Host SPI Interface Speed				15	MHz
fscL	Host I ² C Interface Speed (standard Mode are supported)	d mode and Fast			400	kHz
fscl3	Host I3C Interface Speed	Standard Data Rate (SDR)			12.5	MHz

3.7.1 Current Consumption

VDD = VDDIO = 1.8 V, T = 25°C unless otherwise noted. IDD Current refers to the current flowing into the VDD pin. Typical numbers are provided below.

Table 16.Current Consumption for Accelerometer Only TypicalSensor Mode (Gyroscope Disabled)

Mode			High-Resolution							Low-Power			
	1000	500	250	125	62.5	31.25	128	21	11	3	Hz		
Typical Overall IDD Current	Filters Disabled (aLPF=0)	182	155	142	134	133	132	55	42	35	30		
	Filters Enabled (aLPF=1)	182	155	142	134	133	132	55	42	35	30	μΑ	

Table 17.Current Consumption for Gyroscope Only Typical SensorMode (Accelerometer Disabled)

	High-Resolution										
	7520	3760	1880	940	470	235	117 .5	58.7 5	29.37 5	Hz	
Typical Overall	Filters Disabled (gLPF=0)	908	861	748	689	659	656	654	653	651	μA
Current	Filters Enabled (gLPF=1)	916	863	748	689	659	656	654	653	651	

Table 18.Current Consumption for 6DOF Typical Sensor Mode(Accelerometer and Gyroscope Enabled). VDD = VDDIO = 1.8V

N	High-Resolution										
	7520	3760	1880	940	470	235	117 .5	58.7 5	29.37 5	Hz	
Typical	Filters Disabled (aLPF=0; gLPF=0)	1004	956	843	786	757	754	752	751	750	
Current	Filters Enabled (aLPF=1; gLPF=1)	1031	970	850	789	758	756	753	751	750	μА

Table 19.Current Consumption for 6DOF Attitude Engine Mode(without Magnetometer). VDD = VDDIO = 1.8V

I	Mode									
ODF	1	2	4	8	16	32	64	Hz		
Typical Overall	Filters Disabled (aLPF=0; gLPF=0)	783	783	783	783	783	783	783		
IDD Current	Filters Enabled (aLPF=1; gLPF=1)	787	787	787	787	787	787	787	μΑ	

Table 20.Current Consumption for 9DOF Attitude Engine Mode (with
Magnetometer). VDD = VDDIO = 1.8V

M	lode								Unit
C	DDR	1	2	4	8	16	32	64	Hz
Typical Overall IDD Current	With Magnetometer at 31.25 Hz	tbd	μΑ						

3.8 Temperature Sensor

The QMI8658C is equipped with an internal 16-bit embedded temperature sensor that is automatically turned on by default whenever the accelerometer or gyroscope is enabled. The temperature sensor is used internally to correct the temperature dependency of calibration parameters of the accelerometer and gyroscope. The temperature compensation is optimal in the range of -40°C to 85°C with a resolution of 0.0625°C (1/16 °C) or inversely, 16 LSB/°C. The QMI8658C outputs the internal chip temperature that the HOST can read. The output is 16 bits, with a (1/256)°C per LSB resolution. To read the temperature, the HOST needs to access the TEMP register (see *TEMP_L* and *TEMP_H* in *Data Output Registers in 0*. The HOST should synchronize to the interrupt, INT2, signal to get valid temperature readings.

Subsystem	Parameter	Typical	Unit
	Range	-40 to +85	°C
	Internal Resolution	16	Bits
Digital Tomporatura Sancar	Internal Sensitivity	256	LSB/°C
Digital Temperature Sensor	Output Register Width	16	Bits
	Output Sensitivity	256	LSB/°C
	Refresh Rate	8	Hz

Table 21. Temperature Sensor Specifications

4 Register Map Overview

The QMI8658C UI registers enable programming and control of the inertial measurement unit and associated on-chip signal processing. These registers are accessed through the UI interface – either SPI (4 wires or 3 wires) I3C, or I²C.

4.1 UI Register Map Overview

UI register map may be classified into the following register categories:

- General Purpose Registers
- Setup and Control Registers: control various aspects of the IMU.
- Host Controlled Calibration Registers: control and configure various aspects of the IMU via the host command interface called CTRL9
- Count Register for time stamping the sensor samples
- FIFO Registers: to set up the FIFO and detect data availability and over-run.
- Table 22 for UI Interface: contain all data for 9D sensors to be accessed from the UI interface – either I²C or SPI.

Namo	Type	Reg	gister	Address	Default	Comment
Name	Type	Dec	Hex	Binary	Binary	
General Purpos	se Reg	isters		•	•	
WHO_AM_I	r	0	00	00000000	00000101	Device Identifier
REVISION_ID	r	1	01	00000001	01101000	Device Revision ID
Setup and Con	trol Re	gister	s			
CTRL1	rw	2	02	00000010	00100000	SPI Interface and Sensor Enable
CTRL2	rw	3	03	00000011	00000000	Accelerometer: Output Data Rate, Full Scale, Self Test
CTRL3	rw	4	04	00000100	00000000	Gyroscope: Output Data Rate, Full Scale, Self Test
CTRL4	rw	5	05	00000101	00000000	Reserved
CTRL5	rw	6	06	00000110	00000000	Low pass filter setting.
CTRL6	rw	7	07	00000111	00000000	AttitudeEngine™ Settings: Output Data Rate, Motion on Demand
CTRL7	rw	8	08	00001000	00000000	Enable Sensors
CTRL8	rw	9	09	00001001	00000000	Reserved: Not Used
CTRL9	rw	10	0A	00001010	00000000	Host Commands
Host Controlle	d Calib	ration	Regis	ters (See C	TRL9, Usag	e is Optional)
CAL1_L	rw	11	0B	00001011	00000000	Calibration Register
CAL1_H	rw	12	0C	00001100	00000000	CAL1_L – lower 8 bits. CAL1_H – upper 8 bits.
CAL2_L	rw	13	0D	00001101	00000000	Calibration Register
CAL2_H	rw	14	0E	00001110	00000000	CAL2_L – lower 8 bits. CAL2_H – upper 8 bits.
CAL3_L	rw	15	0F	00001111	00000000	Calibration Register
CAL3_H	rw	16	10	00010000	00000000	CAL3_L – lower 8 bits. CAL3_H – upper 8 bits.
CAL4_L	rw	17	11	00010001	00000000	Calibration Register
CAL4_H	rw	18	12	00010010	00000000	CAL4_L – lower 8 bits. CAL4_H – upper 8 bits.
FIFO Registers	;			-		
FIFO_WTM_T H	rw	19	13	00010011	00000000	FIFO watermark level, in ODRs
FIFO_CTRL	rw	20	14	00010100	00000000	FIFO Setup

Table 22. UI Register Overview

FIFO_SMPL_C NT	r	21	15	00010101	00000000	FIFO sample count LSBs				
FIFO_STATUS	r	22	16	00010110	00000000	FIFO Status				
FIFO_DATA	r	23	17	00010111	00000000	FIFO Data				
Status Register	s									
STATUSINT	r	45	2D	00101101	00000000	Sensor Data Availability with the Locking mechanism.				
STATUS0	r	46	2E	00101110	00000000	Output Data Over Run and Data Availability.				
STATUS1	r	47	2F	00101111	00000000	Miscellaneous Status: Wake on Motion, CmdDone (CTRL9 protocol bit).				
Timestamp Reg	gister			•	•					
TIMESTAMP_ LOW	r	48	30	00110000	00000000	Sample Time Stamp				
TIMESTAMP_ MID	r	49	31	00110001	00000000	TIMESTAMP_LOW – lower 8 bits. TIMESTAMP_MID – middle 8 bits.				
TIMESTAMP_ HIGH	r	50	32	00110010	00000000	TIMESTAMP_HIGH – upper 8 bits				
Data Output Registers (16 bits 2's Complement Except Self-Test Sensor Data, AE-CLIP and AE_OVFLOW)										
TEMP_L	r	51	33	00110011	00000000	Temperature Output Data				
TEMP_H	r	52	34	00110100	00000000	TEMP_L – lower 8 bits. TEMP_H – upper 8 bits				
AX_L	r	53	35	00110101	00000000	X-axis Acceleration				
AX_H	r	54	36	00110110	00000000	AX_L – lower 8 bits. AX_H – upper 8 bits				
AY_L	r	55	37	00110111	00000000	Y-axis Acceleration				
AY_H	r	56	38	00111000	00000000	AY_L – lower 8 bits. AY_H – upper 8 bits				
AZ_L	r	57	39	00111001	00000000	Z-axis Acceleration				
AZ_H	r	58	ЗA	00111010	00000000	AZ_L – lower 8 bits. AZ_H – upper 8 bits				
GX_L	r	59	3B	00111011	00000000	X-axis Angular Rate				
GX_H	r	60	3C	00111100	00000000	GX_L – lower 8 bits. GX_H – upper 8 bits				
GY_L	r	61	3D	00111101	00000000	Y-axis Angular Rate				
GY_H	r	62	3E	00111110	00000000	GY_L – lower 8 bits. GY_H – upper 8 bits				
GZ_L	r	63	3F	00111111	00000000	Z-axis Angular Rate				
GZ_H	r	64	40	01000000	00000000	GZ_L – lower 8 bits. GZ_H – upper 8 bits				
dQW_L	r	73	49	01001001	00000000	Quaternion Increment dQW				
dQW_H	r	74	4A	01001010	0000000	dQW_L – lower 8 bits. dQW_H – upper 8 bits				
dQX_L	r	75	4B	01001011	0000000	Quaternion Increment dQX				
dQX_H	r	76	4C	01001100	0000000	dQX_L – lower 8 bits. dQX_H – upper 8 bits				
dQY_L	r	77	4D	01001101	0000000	Quaternion Increment dQY				
dQY_H	r	78	4E	01001110	0000000	dQY_L – lower 8 bits. dQY_H – upper 8 bits				
dQZ_L	r	79	4F	01001111	0000000	Quaternion Increment dQZ				
dQZ_H	r	80	50	01010000	0000000	dQZ_L – lower 8 bits. dQZ_H – upper 8 bits				
dVX_L	r	81	51	01010001	00000000	Velocity Increment along X-axis				
dVX_H	r	82	52	01010010	0000000	dVX_L – lower 8 bits. dVX_H – upper 8 bits				
dVY_L	r	83	53	01010011	00000000	Velocity Increment along Y-axis				
dVY_H	r	84	54	01010100	00000000	dVY_L – lower 8 bits. dVY_H – upper 8 bits				
dVZ_L	r	85	55	01010101	0000000	Velocity Increment along Z-axis				
dVZ_H	r	86	56	01010110	0000000	dVZ_L – lower 8 bits. dVZ_H – upper 8 bits				
AE_REG1	r	87	57	01010111	00000000	AttitudeEngine Register 1				

QMI8658C — 6D Inertial Measurement Unit with Motion Co-Processor

AE_REG2		00				
10 . .	Γ	00	58	01011000	0000000	AttitudeEngine Register 2
Reset Register				04400000	00000000	
KESEI	W	96	60	01100000	00000000	Soit Keset Kegister
						XVV
				0		
				9,		
			C	9		
			Ċ	9		
			, C	9		
			C,	9		
			C,	9		
3			C C	9		
Ś			, C	2		
S			, C	9		
S			, C			
S			, C			
5						
S			, C			

QMI8658C — 6D Inertial Measurement Unit with Motion Co-Processor

5 UI Sensor Configuration Settings and Output Data

5.1 Typical Sensor Mode Configuration and Output Data

In Typical Sensor Mode, QMI8658C outputs raw sensor values. The sensors are configured and read using the registers described below. The accelerometer and gyroscope can be independently configured. Table 23 summarizes these pertinent registers.

Table 23.	Typical Sensor Mode Configuration and Output Data

Typical Sensor Configuration and Output Data									
Description	Registers	Unit	Comments						
Sensor Enable, SPI 3 or 4 Wire	CTRL1		Control power states, configure SPI communications						
Enable Sensor	CTRL7		Individually Enable/Disable the AttitudeEngine, Accelerometer, and Gyroscope Using sEN, aEN, and gEN bits, respectively.						
Configure Accelerometer, Enable Self Test	CTRL2		Configure Full Scale and Output Data Rate; Enable Self Test						
Configure Gyroscope, Enable Self Test	CTRL3		Configure Full Scale and Output Data Rate; Enable Self Test						
Sensor Filters	CTRL5		Configure and Enable/Disable Low Pass Filters						
Status	STATUSINT STATUS0, STATUS1		Data Availability, FIFO Ready to be Read, CTRL9 Protocol Bit						
Time Stamp	TIMESTAMP[H,M,L]		Sample Time Stamp (Circular Register 0 – 0xFFFFFF)						
Acceleration	A[X,Y,Z]_[H,L]	g	In Sensor Frame of Reference, Right-handed Coordinate System						
Angular Rate	G[X,Y,Z]_[H,L]	dps	In Sensor Frame of Reference, Right-handed Coordinate System						
Temperature	TEMP_[H,L]	°C	Temperature of the Sensor						
FIFO Based Output	FIFO_DATA		1 Byte FIFO Data Outputs						

5.2 AttitudeEngine (AE) Mode Configuration and Output Data

. . . .

In AE Mode, the QMI8658C outputs orientation (quaternion) and velocity increments.

Orientation increments are expressed in unit quaternion format. dQ = [QW, QX, QY, QZ] where QW is the scalar component of the quaternion increment and QX, QY and QZ are the (imaginary) vector components of the unit quaternion. Velocity increments are expressed in vector format dV = [VX, VY, VZ].

-- -

Table 24 summarizes the operation of the AttitudeEngine mode.

- -

_ . .

Ia	ble 24. At	AttitudeEngine Mode Configuration and Output Registers						
AttitudeEngine Mode								
Configuration	Registers	Unit	Comments					
Sensor Enable, SPI 3 or 4 Wire	CTRL1		Control power states, SPI communications					
Enable AttitudeEngine	CTRL7		Enable the AttitudeEngine (CTRL7, sEN =1, aEN=1, gEN=1, optionally mEN=1 if external magnetometer is available)					
Configure	CTRL6		AttitudeEngine Output Data Rate and Motion on Demand					
Configure Accelerometer, Enable Self Test	CTRL2		Configure Full Scale; Enable Self Test					
Configure Gyroscope, Enable Self Test	CTRL3		Configure Full Scale; Enable Self Test					
Configure Magnetometer	CTRL4		Configure Output Data Rate and choose device					
Sensor Filters	CTRL5		Configure and Enable/Disable Low Pass Filters					
Quaternion Increment	dQ[W,X,Y,Z]_[H,L]		Unit Quaternion format in sensor frame					
Velocity Increment	dV[X,Y,Z]_[H,L]	ms⁻¹	Rotation compensated velocity increment (based on specific force), rotated to sensor frame of reference					
Magnetic Field	M[X,Y,Z]_[H,L]	gaus s	Rotation compensated magnetic field (rotated to sensor frame of reference)					
Status	STATUSINT STATUS0, STATUS1		Data Availability, Wake on Motion detected					
Bias Update, Clipping, Overflow	AE_CLIP, AE_OVFLOW		Magnetometer and Gyroscope bias update acknowledgement, Sensor clipping acknowledgement, Velocity increment overflow					
Temperature	TEMP_[H,L]	°C	Temperature of the sensor					

5.3 General Purpose Register

Table 25.

General Purpose Register Description

Register Name							
WHO	_AM_I	Register Address: 0 (0x00)					
Bits	Name	Default	Description				
7:0	WHO_AM_I	0x05	Device identifier 0x05 - to identify the device is a QST sensor				
7:0	REVISION_ID	0x79	Device Revision ID				

5.4 Configuration Registers

This section describes the various operating modes and register configurations of the QMI8658C.

	т	able 26. Co	nfigurati	on Registers	Description		
F	Register Name						
CTR	L1	Serial Interface a	and Sens	or Enable. R	egister Addre	ess: 2 (0x02	2)
Bits	Name	Default			Description	n	
7	SIM	1'b0	0: Enabl 1: Enabl	es 4-wire SPI ir es 3-wire SPI ir	nterface nterface		
6	ADDR_AI	1'b0	0: Serial 1: Serial	0: Serial interface (SPI or I ² C) address do not auto increment. 1: Serial interface (SPI or I ² C) address auto increment			
5	BE	1'b1	0: Serial 1: Serial	0: Serial interface (SPI or I ² C) read data little endian 1: Serial interface (SPI or I ² C) read data big endian			
4:1	Reserved	4'b0	Reserve	d			
0	SensorDisable	1'b0	0: Enables internal 2 MHz oscillator 1: Disables internal 2 MHz oscillator				
CTR	L2	Accelerometer S	Settings:	Address: 3 (0	Dx03)		
Bits	Name	Default	Description				
7	aST	1'b0	Enable A	Accelerometer S	Self Test.		
6:4	aFS<2:0>	3'b0	000 - Ac 001 - Ac 010 - Ac 011 - Ac 1xx - N/	celerometer Fu celerometer Fu celerometer Fu ccelerometer Fu A	II-scale = ± 2 g II-scale = ± 4 g II-scale = ± 8 g II-scale = ± 16 g	I	
			Set Acce	elerometer Outp	out Data Rate (C	DDR):	
			Setting	ODR Rate (Hz) (Accel only)	ODR Rate (Hz) (6DOF) ⁽¹²⁾	Mode	Duty Cycle
			0000	N/A	7520	Normal	100%
			0001	N/A	3760	Normal	100%
			0010	N/A	1880	Normal	100%
			0011	1000	940	Normal	100%
			0100	500	470	Normal	100%
			0101	250	235	Normal	100%
3:0	aODR<3:0>(11)(12)	4'b0	0110	125	117.5	Normal	100%
			0111	62.5	58.75	Normal	100%
			1000	31.25	29.375	Normal	100%
			1001	N/A	N/A		
			1010	N/A	N/A		
			1011	N/A	N/A	Law Daw	10001
			1100	128	N/A	Low Power	100%
			1101	21		Low Power	210/
			1110	2	N/A		31% 8.5%
	l	1	1111	3	IN/A	LOW POwer	0.0%

Note:

11. The accelerometer low power mode is only available when the gyroscope is disabled

12. In 6DOF mode (accelerometer and gyroscope are both enabled), the ODR is derived from the nature frequency of gyroscope, refer to section 3.5 for more information.

Regis	ster Name					
CTRL	.3	Gyroscope Sett	ings: Addı			
Bits	Name	Default			Descriptio	on
7	gST	1'b0	Enable G	yro Self-Test.		
			Set Gyros	scope Full-scale:		
			$000 - \pm 10$	aps dos		
			$001 - \pm 64$	dps		
6.4	aES<2.0>	3'b0	010 - ±04	28 dns		
0.1	gr 0 (2.0)	0.00	100 - ±25	i6 dps		
			101 - ±51	2 dps		
			110 - ±10	024dps		
			111 - ±20	48 dps		
			Set Gyros	scope Output Da	ta Rate (ODF	R):
			Setting	ODR Rate (Hz)	Mode	Duty Cycle
			0000	7520	Normal	100%
			0001	3760	Normal	100%
			0010	1880	Normal	100%
			0011	940	Normal	100%
			0100	470	Normal	100%
	gODR<3:0> Error! Reference source not found.		0101	235	Normal	100%
3:0		4'b0	0110	117.5	Normal	100%
0.0			0111	58.75	Normal	100%
			1000	29.375	Normal	100%
			1001	N/A		
			1010	N/A		
			1011	N/A		
			1100	N/A		
			1101	N/A		
			1110	N/A		
<u></u>			1111		/	
CIRL	.4	Reserved – Spe	ecial Settin	gs. Register A	aaress: 5 (UXU5)
Bits	Name	Default			Descriptio	on
7:0	Reserved	0x00	Not Used			

Re	egister Name			
CTRL	5	Sensor Data Pro	cessing Settings. Register	Address: 6 (0x06)
Bits	Name	Default	De	scription
7	Reserved	1'b0		
6:5	gLPF_MODE	2'b0	gLPF_MODE BW 00 2.66% 01 3.63% 10 5.39% 11 13.37%	/ [Hz] of ODR of ODR of ODR
4	gLPF_EN	1'b0	0: Disable Gyroscope Low-P 1: Enable Gyroscope Low-P gLPF_MODE.	ass Filter. ass Filter with the mode given by
3	Reserved	1'b0		
2:1	aLPF_MODE	2'b0	aLPF_MODE BW 00 2.66% 01 3.63% 10 5.39% 11 13.37%	/ [Hz] of ODR of ODR of ODR of ODR
0	aLPF_EN	1'b0	0: Disable Accelerometer Lo 1: Enable Accelerometer Lov aLPF_MODE.	w-Pass Filter. w-Pass Filter with the mode given I
CTRL	6	Attitude Engine (ODR and Motion on Deman	d: Address: 7 (0x07)
Bits	Name	Default	De	scription
7	sMoD	1'b0	0: Disables Motion on Dema 1: Enables Motion on Demar	nd. nd (Requires sEN=1).
6:3	Reserved	4'b0		
2:0	sODR<2:0>	3'b0	Attitude Engine Output Data Setting 000 001 010 011 100 101	ODR Rate (Hz) 0DR Rate (Hz) 1 2 4 8 16 32
		1		

R	egister Name		
CTRL	7	Enable Sensors ar	nd Configure Data Reads. Register Address: 8 (0x08)
Bits	Name	Default	Description
7	syncSmpl	1'b0	0: Disable syncSmple mode 1: Enable syncSmple mode
6	sys_hs	1'b0	1: High Speed Internal Clock 0: Clock based on ODR
5	Reserved	1'b0	• • • • • • • • • • • • • • • • • • • •
4	gSN	1'b0	0: Gyroscope in Full Mode (Drive and Sense are enabled).1: Gyroscope in Snooze Mode (only Drive enabled).This bit is effective only when gEN is set to 1.
3	sEN	1'b0	 0: Disable AttitudeEngine orientation and velocity increment computation 1: Enable AttitudeEngine orientation and velocity increment computation
2	Reserved	1'b0	
1	gEN	1'b0	0: Gyroscope placed in Standby or Power-down Mode. 1: Enable Gyroscope.
0	aEN	1'b0	0: Accelerometer placed in Standby or Power-down Mode. 1: Enable Accelerometer.
CTRL	8	Reserved – Specia	al Settings. Register Address: 9 (0x09)
Bits	Name	Default	Description
7:0	Reserved	0x00	Not Used
R	egister Name		
CTRL	9	Host Commands. Reg 5.9 CTRL 9 Function	gister Address: 10 (0x0A), Referred to: ality (Executing Pre-defined Commands)

 Cable 26 Configuration Register Description (Continued)

F	Register Name						
FIFO_	_WTM_TH	FIFO Waterm	ark Register Addre	ess: 19 (0x13)			
Bits	Name	Default		Description			
7:0	FIFO_WTM	8'h0	Number of ODRs	needed to trigger watermark			
FIFO_	CTRL	FIFO Control	FO Control Register Address: 20 (0x14)				
Bits	Name	Default		Description			
7	FIFO_RD_MODE	1'b0	This bit is automatic the FIFO to read da be cleared again aft data to the FIFO ca	This bit is automatically set by using a CTRL9 command to request the FIFO to read data out of FIFO via FIFO_DATA register. It must be cleared again after the data read is complete so that writing data to the FIFO can resume.			
6:4	Reserved	3'b0					
			FIFO_SIZE[1:0]	FIFO Sample Size			
			00	16 samples			
3:2	FIFO_SIZE	2'b0	01	32 samples			
			10	64 samples			
			11	128 samples			
		2'b0	FIFO_MODE[1:0]	FIFO Sample Size			
			00	Bypass (FIFO disable)			
	FIFO MODE		01	FIFO			
1:0			10	Stream			
			11	Stream to FIFO. In stream to FIFO mode, once motion/gesture interrupt event happens, content of FIFO will be emptied, pointers reset			
FIFO_	_SMPL_CNT	FIFO Sample	Count Register Ad	ldress: 21 (0x15)			
Bits	Name	Default	Description				
7:0	FIFO_SMPL_CNT_L SB	8'b0	8 LS bits of FIFO Sa	ample Count (in bytes).			
FIFO_	STATUS	FIFO Status.	Register Address 2	22 (0x16)			
Bits	Name	Default		Description			
7	FIFO_FULL	1'b0	0 – FIFO is not Full 1 FIFO is Full				
6	FIFO_WTM	1'b0	0 FIFO Water Ma 1 – FIFO Water Ma	ırk Level not hit. rk Level Hit			
5	FIFO_OVFLOW	1'b0	0 – FIFO Overflow I 1 FIFO Overflow data to FIFO when	has not happened condition has happened (attempt to save OD it is full)			
4	FIFO_NOT_EMPTY	1'b0	0 – FIFO is Empty 1 FIFO is not Emp	pty			
3:2	Reserved	2'b0					
	FIFO SMPL CNT	a # a					

FIFO_DATA F		FIFO DATA Output Register Address: 23 (0x17)	
Bits	Name	Default	Description
7:0	FIFO_DATA	8'b0	8 bit FIFO data output.

5.6 Status and Time Stamp Registers

Table 28	Status and Time	Stamn	Registers
1 abit 20.	Status and Time	Stamp	Negisiels

R	egister Name		X			
STAT	USINT	Sensor Data Av	ailable and Lock Register Address: 45 (0x2D)			
Bits	Name	Default	Description			
7:2	Reserved	6'b0				
1	Locked	1'b0	If syncSmpl = 1 (Bit 7 in CTRL7) then: 0: Sensor Data not locked. 1: Sensor Data Locked. If syncSmpl = 0 then bit 1 will have the same value of the Interrupt in INT1.			
0	Avail	1'b0	If syncSmpl = 1 (Bit 7 in CTRL7) then: 0: Sensor Data not available 1: Sensor Data available for reading If syncSmpl = 0 then bit 0 will have the same value of the Interrupt in INT2.			
STATUS0 Outpu		Output Data Sta	utput Data Status Register Address: 46 (0x2E)			
Bits	Name	Default	Description			
7:4	Reserved	4'b0				
3	sDA	1'b0	AE new data available 0: No updates since last read. 1: New data available.			
2	Reserved	1'b0				
1	gDA	1'b0	Gyroscope new data available 0: No updates since last read. 1: New data available.			
0	aDA	1'b0	Accelerometer new data available 0: No updates since last read. 1: New data available.			
	STATUS1	Miscellaneous S	Status. Register Address 47 (0x2F)			
Bits	Name	Default	Description			
7:1	Reserved	7'b0	Reserved			
0	CmdDone	1'b0	Bit read by Host Processor as part of CTRL9 register protocol. Used to indicate ctrl9 Command was done.			
TIME	STAMP	3 Bytes Sample (0x30 - 0x32)	Time Stamp – Output Count. Register Address: 48 - 50			
Bits	Name	Default	Description			
<u> </u>	1	1	•			

7:0	TIMESTAMP_L<7: 0>	0x00	
7:0	TIMESTAMP_M<1 5:8>	0x00	Sample time stamp. Count incremented by one for each sample (x, y, z data set) from sensor with highest ODR (circular register 0x0-0xFEFEFE)
7:0	TIMESTAMP_H<2 3:16>	0x00	

.7 5	Sensor Data	Output Register	S
		Table 29. Se	nsor Data Output Registers Description
R	egister Name		
TEMF	P_[H,L]	Temp Sensor O	utput. Register Address: 51 – 52, (0x33 – 0x34)
Bits	Name	Default	Description
7:0	TEMP_L	0x00	Temperature output (°C) in two's complement
7:0	TEMP_H	0x00	remperature output (C) in two s complement.
R	egister Name		• •
A[X,Y,Z]_[H,L]		Acceleration Ou	tput. Register Address: 53 – 58, (0x35 – 0x3A)
Bits	Name	Default	Description
7:0	AX_L<7:0>	0x00	X-axis acceleration in two's complement.
7:0	AX_H<15:8>	0x00	AX_L – lower 8 bits. AX_H – upper 8 bits.
7:0	AY_L<7:0>	0x00	Y-axis acceleration in two's complement.
7:0	AY_H<15:8>	0x00	AY_L – lower 8 bits. AY_H – upper 8 bits.
7:0	AZ_L<7:0>	0x00	Z-axis acceleration in two's complement.
7:0	AZ_H<15:8>	0x00	AZ_L – lower 8 bits. AZ_H – upper 8 bits.
R	egister Name		
G[X,۱	(.Z]_[H,L]	Angular Rate Ou	utput. Register Address: 59 – 64 (0x3B – 0x40)
Bits	Name	Default	Description
7:0	GX_L<7:0>	0x00	X-axis angular rate in two's complement.
7:0	GX_H<15:8>	0x00	GX_L – lower 8 bits. GX_H – upper 8 bits.
7:0	GY_L<7:0>	0x00	Y-axis angular rate in two's complement.
7:0	GY_H<15:8>	0x00	GY_L – lower 8 bits. GY_H – upper 8 bits.
7:0	GZ_L<7:0>	0x00	Z-axis angular rate in two's complement.
7:0	GZ_H<15:8>	0x00	GZ_L – lower 8 bits. GZ_H – upper 8 bits.

Continued on the following page

QMI8658C — 6D Inertial Measurement Unit with Motion Co-Processor

R	egister Name			
dQ[1	,2,3,4]_[H,L]	Quaternion Output	. Register Addresses: 73 – 80 (0x49 – 0x50)	
Bits	Name	Default	Description	
7:0	dQW_L<7:0>	0x00	Quaternion Increment dQW in two's complement.	
7:0	dQW_H<15:8>	0x00	dQW_L – lower 8 bits. dQW_H – upper 8 bits.	
7:0	dQX_L<7:0>	0x00	Quaternion Increment dQX in two's complement.	
7:0	dQX_H<15:8>	0x00	dQX_L – lower 8 bits. dQX_H – upper 8 bits.	
7:0	dQY_L<7:0>	0x00	Quaternion Increment dQY in two's complement.	
7:0	dQY_H<15:8>	0x00	dQY_L – lower 8 bits. dQY_H – upper 8 bits.	
7:0	dQZ_L<7:0>	0x00	Quaternion Increment dQZ in two's complement.	
7:0	dQZ_H<15:8>	0x00	dQZ_L – lower 8 bits. dQZ_H – upper 8 bits.	
dV[X,	Y,Z]_[H,L]	Delta Velocity Outp	out. Register Address: 81 – 86 (0x51– 0x56)	
Bits	Name	Bits	Name	
7:0	dVX_L<7:0>	0x00	X-axis Velocity Increment in two's complement.	
7:0	dVX_H<15:8>	0x00	dVX_L – lower 8 bits. dVX_H – upper 8 bits.	
7:0	dVY_L<7:0>	0x00	Y-axis Velocity Increment in two's complement.	
7:0	dVY_H<15:8>	0x00	dVY_L – lower 8 bits. dVY_H – upper 8 bits.	
7:0	dVZ_L<7:0>	0x00	Z-axis Velocity Increment in two's complement.	
7:0	dVZ_H<15:8>	0x00	dVZ_L – lower 8 bits. dVZ_H – upper 8 bits.	
AE_R	REG1	AttitudeEngine Reg	gister 1, Address: 87 (0x57)	
Bits	Name	Default	Description	
7	Reserved	1'b0		
6	GyroBiasAck	1'b0	Acknowledgement that Gyro Bias was updated during this time period.	
5	wz_clip	1'b0	Gyroscope Z-axis data was clipped during the dQ calculation.	
4	wy_clip	1'b0	Gyroscope Y-axis data was clipped during the dQ calculation.	
3	wx_clip	1'b0	Gyroscope X-axis data was clipped during the dQ calculation.	
2	az_clip	1'b0	Accelerometer Z-axis data was clipped during the dQ calculation	
1	ay_clip	1'b0	Accelerometer Y-axis data was clipped during the dQ calculation.	
0	ax_clip	1'b0	Accelerometer X-axis data was clipped during the dQ calculation.	

Table 29 Sensor Data Output Registers Description (Continued)

Table						
Register Name						
AE_REG2		AttitudeEngin	e Register 2, Address: 88 (0x58)			
Bits	Name	Default	Description			
7:3	Reserved	5'b0				
2	dvz_of	1'b0	Velocity Increment overflow along dvz.			
1	dvy_of	1'b0	Velocity Increment overflow along dvy.			
0	dvx_of	1'b0	Velocity Increment overflow along dvx.			

Table 29 Sensor Data Output Registers Description (Continued)

Table 30.	
-----------	--

AttitudeEngine Modes and Output Table

Mode/Outputs		dQ	dV	м	TIMESTAMP	Comments on TIMESTAMP		
AttitudeEngine	in ODR Mode	(Acceleromet	er and Gyr	oscope Ei	nabled)			
CTRL6 Register	sMoD=0							
	gSN=0					24-bit data. Count starts at 1.		
	sEN=1	Quaternion	Velocity	No Data	AttitudeEngine	16,777,216		
CTRL7 Register	aEN=1	Increment	Increment	The Data	Sample Count	count wraps to 0,		
	gEN=1					Mod(16,777,216)		
	mEN=0							
AttitudeEngine	in Motion on D	Demand (MoD) mode (Ac	celerome	ter and Gyrosco	pe enabled)		
CTRL6 Register	sMoD=1	Quaternion Increment	Velocity Increment	No Data	Gyroscope Samples in Integration Window			
	gSN=0					24-bit data. Count starts at 1,		
	sEN=1					16,777,216 count wraps to 0, i.e. Mod(16,777,216)		
CTRL7 Register	aEN=1							
	gEN=1							
	mEN=0							
AttitudeEngine Magnetometer	with Raw Mag Enabled)	netometer in	ODR Mode	(Accelero	ometer, Gyroscop	be and		
CTRL6 Register	sMoD=0					24-bit data		
	gSN=0			Initial	AttitudeEngine Sample Count	Count starts at 1,		
	sEN=1	Quaternion	Velocity	Raw Mag		16,777,216		
CTRL7 Register	aEN=1	Increment	molement	Data		i.e.		
	gEN=1					Mod(16,777,216)		
	mEN=1							

5.8 Reset register

 Table 31. Reset Register Description

R	egister Name					
RESE	T	Register Address: 96 (0x60)				
Bits	Name	Default	Description			
7:0	RESET	0x00	Soft Reset Register - Write 0xB0 to this register from any modes, will trigger the sensor reset process immediately.			

5.9 CTRL 9 Functionality (Executing Pre-defined Commands)

5.9.1 CTRL 9 Description

The protocol for executing predefined commands from an external host processor on the QMI8658C is facilitated by using the Control 9 (CTRL9) register. The register is available to the host via the UI SPI/I2C/I3C bus. It operates by the host writing a pre-defined value (Command) to the CTRL9 register. The firmware of the QMI8658C evaluates this command and if a match is found it executes the corresponding pre-defined function. Once the function has been executed, the QMI8658C signals the completion of this by raising INT1 interrupt. The host must acknowledge this by reading STATUS1 register bit 0. This is the CmdDone bit. After this read, the QMI8658C pulls down the INT1 interrupt. This command presentation from the host to the QMI8658C and the subsequent execution and handshake between the host and the QMI8658C will be referred to as the "CTRL9 Protocol".

There are three types of interactions between the host and QMI8658C that follow the CTRL9 Protocol.

WCtrl9: The host needs to supply data to QMI8658C prior to the Ctrl9 protocol. (Write – Ctrl9 Protocol)

Ctrl9R: The host gets data from QMI8658C following the Ctrl9 protocol. (**Ctrl9 protocol – Read**)

Ctrl9: No data transaction is required prior to or following the Ctrl9 protocol. (**Ctrl9**).

5.9.2 WCtrl9 (Write – CTRL9 Protocol)

- The host needs to provide the required data for this command to the QMI8658C. The host typically does this by placing the data in a set of registers called the CAL buffer. Eight CAL registers are used; the following table provides the name and addresses of these registers.
- 2. Write Ctrl9 register 0x0a with the appropriate Command value.
- 3. The Device will raise INT1 and set Bit 0 in STATUS1 reg, to 1 once it has executed the appropriate function based on the command value.
- 4. The host must acknowledge this by reading STATUS1 register bit 0 (CmdDone) which is reset to 0 on reading the register. In addition, INT1 is pulled low, completing the CTRL9 transaction.
- 5. If any data is expected from the device, it will be available at this time. The location of the data is specified separately for each of the Commands.

Table 32.CALRegister Addresses

Register Name	Register Address			
Register Name	Dec	Hex		
CAL1_L	11	0x0B		
CAL1_H	12	0x0C		
CAL2_L	13	0x0D		
CAL2_H	14	0x0E		
CAL3_L	15	0x0F		
CAL3_H	16	0x10		
CAL4_L	17	0x11		
CAL4_H	18	0x12		

5.9.3 Ctrl9R (CTRL9 Protocol - Read)

- 1. Write Ctrl9 register 0x0A with the appropriate Command value.
- 2. The Device will raise INT1 and set Bit 0 in STATUS1 register to 1 once it has executed the appropriate function based on the command value.
- 3. The host must acknowledge this by reading STATUS1 register bit 0 (CmdDone) which is then reset to 0 upon reading the register. In addition, INT1 is pulled low upon the register read, completing the CTRL9 transaction.

Data is available from the device at this time. The location of the data is specified separately for each of the Commands.

5.9.4 Ctrl9 (CTRL9 Protocol Acknowledge)

- 1. Write CTRL9 register 0x0a with the appropriate Command value.
- 2. The Device will raise INT1 and set Bit 0 in STATUS1 register to 1 once it has executed the appropriate function based on the command value.
- 3. The host must acknowledge this by reading STATUS1 register bit 0 (CmdDone) which is then reset to 0 upon reading the register. In addition, INT1 is pulled low upon the register read, completing the CTRL9 transaction.

CMND Name	CTRL9 Command Value	Protocol Type	Description
CTRL_CMD_NOP	0x00	Ctrl9	No operation
CTRL_CMD_GYRO_BIAS	0x01	WCtrl9	Copies bias_gx,y,z from CAL registers to FIFO and set GYROBIAS_PEND bit
CTRL_CMD_REQ_SDI	0x03	Ctrl9R	SDI MOD (Motion on Demand), request to read SDI data
CTRL_CMD_RST_FIFO	0x04	Ctrl9	Reset FIFO from Host
CTRL_CMD_REQ_FIFO	0x05	Ctrl9R	Get FIFO data from Device
CTRL_CMD_ACCEL_HOST_DELTA_ OFFSET	0x09	WCtrl9	Change accelerometer offset
CTRL_CMD_GYRO_HOST_DELTA_ OFFSET	0x0A	WCtrl9	Change gyroscope offset
CTRL_CMD_COPY_USID	0x10	Ctrl9R	Read USID_Bytes and FW_Version bytes
CTRL_CMD_SET_RPU	0x11	WCtrl9	Configures IO pull-ups
CTRL_CMD_ON_DEMAND_CALIBRA	0xA2	WCtrl9	On-Demand Calibration on gyroscope

Table 33. CTRL9 Register CMND Values

5.9.5 CTRL9 Commands in Detail

CTRL_CMD_NOP

No Operation

CTRL_CMD_GYRO_BIAS

This CTRL9 Command is issued to copy bias_gx, bias_gy, bias_gz from CAL registers to FIFO and set GYROBIAS_PEND bit. CAL3_[H,L] is bias_gz, CAL2_[H,L] is bias_gy, CAL1_[H,L] is bias_gx.

CTRL_CMD_REQ_SDI

This CTRL9 command is used to retrieve motion data from the QMI8658C when Motion on Demand mode (MoD) is enabled. To enable MoD the device should have the AttitudeEngine orientation enabled. This can be done by enabling the AttitudeEngine by setting CTRL7 Bit 3 (sEN) to 1. Then the MoD mode can be enabled by CTRL6 Bit 7 (sMoD) to 1. settina The CTRL CMD REQ MoD command is then issued by writing 0x0C to CTRL9 register 0x0A. This indicates to the QMI8658C that it is required to supply the motion data to the host. The device immediately makes available the orientation and velocity increments it has computed so far to the host by making them available at output registers 0x25 to 0x3D and raises the INT1 to indicate to the host that valid data is available.

CTRL_CMD_RST_FIFO

This CTRL9 command of writing 0x04 to the Ctrl9 register 0x0a allows the host to instruct the device to reset the FIFO.

CTRL_CMD_REQ_FIFO

This CTRL9 Command is issued when the host wants to get data from the FIFO. When the FIFO is enabled it will be indicated to the host by asserting INT2 and thus signaling that a flag condition (like FIFO full) has been reached and that data is available to be read by the host. This Command is issued by writing 0x05 to the CTRL9 register 0x0A. The device will raise INT1 to indicate that it is ready for a FIFO transaction. The host must read the STATUS1 register bit 0 (CmdDone). The device will direct the FIFO data to the FIFO_DATA register 0x17 until the FIFO is empty. Then the host must set FIFO_rd_mode to 0, which will cause the INT2 to be deasserted.

CTRL_CMD_ACCEL_HOST_DELTA_OFFSET

This CTRL9 Command is issued when the host wants to manually change the accelerometer offset. Each delta offset value should contain 16 bits and the format is signed 4.12 (12 fraction bits). The user must write the offset to the following registers:

Accel_Delta_X : {CAL1_H, CAL1_L} Accel_Delta_Y : {CAL2_H, CAL2_L} Accel_Delta_Z : {CAL3_H, CAL3_L} Next, the Command is issued by writing 0x09 to CTRL9 register 0x0A. Note, this offset change is lost when the sensor is power cycled or the system is reset.

CTRL_CMD_GYRO_HOST_DELTA_OFFSET

This CTRL9 Command is issued when the host wants to manually change the gyroscope offset. Each delta offset value should contain 16 bits and the format is signed 11.5 (5 fraction bits). The user must write the offset to the following registers:

Gyro_Delta_X : {CAL1_H, CAL1_L} Gyro_Delta_Y : {CAL2_H, CAL2_L} Gyro_Delta_Z : {CAL3_H, CAL3_L}

Next, the Command is issued by writing 0x0A to CTRL9 register 0x0A. Note, this offset change is lost when the sensor is power cycled or the system is reset.

CTRL_CMD_COPY_USID

This CTRL9 Command copies the following data into UI registers. It is initiated by the host writing 0x10 to CTRL9. After issuing the command, the data will be available for the host to read from the registers shown below:

FW_Version byte 0 → dQW_L FW_Version byte 1 → dQW_H FW_Version byte 2 → dQX_L USID_Byte_0 → dVX_L USID_Byte_1 → dVX_H USID_Byte_2 → dVY_L USID_Byte_3 → dVY_H USID_Byte_5 → dVZ_H

CTRL_CMD_SET_RPU

This CTRL9 Command is issued when the host wants to manually configure the IO pull-up resistors. Each bit controls a unique resistor as shown:

aux_rpu_dis:	CAL1_L bit[0]
icm_rpu_dis:	CAL1_L bit[1]
cs_rpu_dis:	CAL1_L bit[2]
ics_rpu_dis:	CAL1_L bit[3]

The host writes the appropriate CAL1_L bit by issuing a WCtrl9 command with 0x11.

CTRL_CMD_ON_DEMAND_CALIBRATION

This CTRL9 Command enables host to recalibrate the gyro sensitivity from time to time. The host must disable all the sensors by write 0x00 to CTRL7 first and then start the CTRL9 command process. During which, it is not necessary to place the device in quiet. The recalibrated parameters will be applied to the sensor data afterwards and will be lost if a power on reset or soft reset is implemented.

6 Interrupts

6.1 Overview

The QMI8658C has two Interrupt lines, INT1 and INT2. INT1 is used as a general-purpose interrupt. The details are described in the specific sections where INT1 and INT2 are used. The following provides a summary of the INT1 and INT2 usage. If syncSmpl = 0, then bit 1 of STATUSINT register will have the same value as INT1 and bit 0 of STATUSINT register will have the same value as INT2.

6.1.1 Interrupt 1 (INT1)

The following summarizes the use of INT1:

Set high for ~4 ms after reset to indicate that the chip is ready for normal operation.

If any operation has set INT1 it will always be cleared by reading STATUS1 register.

Used as part of the CTRL9 handshake protocol (see section Error! Reference source not found.).

6.1.2 Interrupt 2 (INT2)

INT2 generally indicates data availability.

The following indicates when INT2 will be asserted.

Register-Read Mode (FIFO Bypass Mode)

In Register-Read mode the accelerometer and gyroscope data are available in the Sensor Data Output registers (A[X,Y,Z]_[H,L]). The updating of these output registers and the functionality of the INT2 interrupt is controlled by the syncSmpl bit as described below.

<u>With syncSmpl = 0</u> (refer to Table 26, CTRL7 register bit 7), INT2 is placed into edge trigger mode: the Sensor Data Output Registers are updated at the Output Data Rate (ODR), and INT2 is pulsed at the ODR. A rising edge on INT2 indicates that data is available and INT2 is cleared automatically after a short duration. It is the responsibility of the host to detect the rising edge and to latch the data before the next sample occurs. Note that the INT2 pulse width is dependent on the ODR and the sensor. It is not recommended to depend on the level to determine if INT2 has occurred. <u>With syncSmpl = 1</u> (refer to Table 26, CTRL7 register bit 7), INT2 is placed into level mode: The INT2 is asserted when data is available and remains asserted until the host reads STATUS0 register.

The device continues to refresh the output data until the STATUS0 register is read by host.

Once the STATUS0 is read by host the QMI8658C will deassert INT2 and stop refreshing the output data. Once the host detects INT2 has been deasserted it can start reading the output data.

Once the last byte of data has been read by the host (the QMI8658C keeps track) the QMI8658C will start updating the output register and set up the next INT2 when data is available in the output registers.

FIFO Enabled Mode (see Section 8)

When the FIFO is enabled in the **FIFO mode** (the mode bits in FIFO_CTRL register set to 01), INT2 is asserted when the FIFO is full or when the watermark is reached.

When the FIFO is enabled in the **Streaming Mode** (the mode bits in FIFO_CTRL register set to 10), INT2 is asserted when the watermark is reached but not when the FIFO is full because in the stream mode the FIFO will continue to fill by overwriting the oldest data in the FIFO.

INT2 is cleared in both the FIFO Mode and the Streaming Mode by clearing the FIFO_rd_mode bit in the FIFO_CTRL register. This is done as part of the CTRL9 command CTRL_CMD_REQ_FIFO.

<u>Accelerometer and Gyroscope Self Test Modes (see</u> Section 9)

INT2 is asserted to indicate availability of self-test data and is cleared by resetting the aST and gST bits in CTRL2 and CTRL3 registers, respectively.

AE Mode

In AE Mode, INT2 is asserted when data is available.

7 Operating Modes

The QMI8658C offers a large number of operating modes that may be used to operate the device in a power efficient manner. These modes are described in Table 34

and are shown in Figure 11; they may be configured using the control (CTRL) registers.

Table 34. Operating Modes						
Mode	Description	Suggested Configuration				
Sensor Modes	•					
Power-On Default	All sensors off, clock is turned on. The current in this mode is typically 50 μ A. Note this mode is the default state upon initial power up or after a reset.	CTRL1 sensorDisable = 0 CTRL7 aEN = 0, gEN = 0, mEN = 0, sEN=0. CTRL2 aODR = 000				
Low Power	Same as Power-On Default mode, except in this mode the 250 kHz clock is turned on instead of the 2 MHz clock. The current in this mode is typically 25 μ A. To enter this mode requires host interaction to set CTRL2 aODR=11xx.	CTRL1 sensorDisable =0 CTRL7 aEN = 0, gEN = 0, mEN = 0, sEN=0. CTRL2 aODR =11xx				
Power-Down	All QMI8658C functional blocks are switched off to minimize power consumption. Digital interfaces remain on allowing communication with the device. All configuration register values are preserved, and output data register values are maintained. The current in this mode is typically 20 µA. The host must initiate this mode by setting sensorDisable=1.	CTRL1 sensorDisable =1 CTRL7 aEN = 0, gEN = 0, mEN = 0, sEN=0.				
Normal Accel Only	Device configured as an accelerometer only.	CTRL7 aEN =1, gEN =0, mEN =0 CTRL2 aODR !=11xx				
Low Power Accel Only	Device configured in low power accelerometer mode.	CTRL7 aEN =1, gEN =0, mEN =0 CTRL2 aODR =11xx				
Snooze Gyro	Device configured as gyroscope Drive only, since the Sense is not enabled, there is no data from the gyroscope in this mode.	CTRL7 gSN=1, aEN =0, gEN =1, mEN =0				
Gyro Only	Device configured as a gyroscope only.	CTRL7 gSN=0, aEN =0, gEN =1, mEN =0				
Mag Only	Device configured as a magnetometer only.	CTRL7 aEN =0, gEN =0, mEN =1				
Accel + Mag	Device configured as an accelerometer and magnetometer combination only. Device can be used as a (stabilized) compass.	CTRL7aEN =1, gEN =0, mEN =1 CTRL2 aODR != 11xx				
Accel + Gyro (IMU)	Device configured as an Inertial Measurement Unit, i.e. an accelerometer and gyroscope combination sensor.	CTRL7 gSN=0, aEN =1, gEN =1, mEN =0 CTRL2 aODR != 11xx				
Accel + Gyro + Mag (9DOF)	Accelerometer and gyroscope are enabled and combined with an external magnetometer and the device can be used as a 9D orientation sensor (Attitude and Heading Reference).	CTRL7 gSN=0, aEN =1, gEN =1, mEN =1 CTRL2 aODR != 11xx				
Accel + Snooze Gyro	Accelerometer and gyroscope snooze are enabled. Only accelerometer data is available.	CTRL7 gSN=1, aEN =1, gEN =1, mEN =0 CTRL2 aODR != 11xx				
Accel + Mag + Snooze Gyro	Accelerometer and gyroscope snooze are enabled. Only accelerometer and magnetometer data are available.	CTRL7 gSN=1, aEN =1, gEN =1, mEN =1 CTRL2 aODR != 11xx				

Table 34 Operating Modes (Continued)

Mode Description		Suggested Configuration
Sensor Modes		
Reset	Software reset asserted	
No Power	VDDIO and VDD low	
AttitudeEngine Modes		
6DOF AttitudeEngine Mode	Attitude Engine Mode with Accelerometer and Gyroscope. Note that velocity increments and orientation (quaternion) increments will be output rather than sensor values.	CTRL7 aEN = 1, gEN = 1, sEN = 1 CTRL2 aODR=0xx
9DOF AttitudeEngine Mode	AttitudeEngine Mode with Accelerometer, Gyroscope, and Magnetometer. Note that velocity increments, orientation (quaternion) increments and magnetic field values will be output rather than sensor values.	CTRL7 aEN = 1, gEN = 1, sEN = 1, mEN = 1 CTRL4 (configure magnetometer as needed)
Motion On Demand Mode	This mode allows Host to sample AttitudeEngine data asynchronously by polling.	CTRL7 aEN = 1, gEN = 1, sEN = 1 CTRL6 sMOD = 1

7.1 General Mode Transitioning

Upon exiting the No Power state (i.e. on first applying power to the part) or exiting a Software Reset state, the part will enter the Power-On Default state. From there, the sensor can be configured in the various modes described in Table 34 and as shown in Figure 11. The figure illustrates the timing associated with various mode transitions, and values for these times are given in the section below and in Table 7 and Table 8.

7.2 Transition Times

The time it takes for data to be present after a mode switch will vary and depends on which mode has been selected. For example, the time it takes for retrieving data from the accelerometer after a mode switch is less than any mode that involves the gyroscope. The times t1, t2, t3 and t4, are defined as the time it takes from INT2 going high to data being present. The time, t5 is the time it takes to have a correct representation of the inertial state. t5 is variable and is associated with the user selected Output Data Rate (ODR). We have defined t5 = (3/ODR) to generally represent that time.

t6 is the time it takes to go from a sensor powered state to a state where the sensors are off. This time depends on the Output Data Rate (ODR) and ranges from 1/ODR to 2/ODR.

t7 is the transition time between various states where the sensors are off.

t0 is the System Turn On Time, and is the time to enter the Power-On Default state from Software Reset, No Power, or Power down.

- Time t0 is the System Turn on Time and is 1.75 seconds. This time only needs to be done once, upon transitioning from either a No Power or Power Down state, or whenever a reset is issued, which should not be done unless the intent is to have the device to go through its entire boot sequence (see the specification System Turn On Time in both Table 7 and Table 8).
- The Gyro Turn on Time (see Table 8) is comprised of t1 (the gyroscope wakeup time) and t5 (the part's filter settling time). t1 is typically 60 ms and t5 is defined as 3/ODR, where ODR is the output data rate in Hertz.
- The Accel Turn on Time (see Table 7) is comprised of t2 (the accelerometer wakeup time) and t5 (the part's filter settling time). t2 is typically 3 ms, and t5 is defined as 3/ODR, where ODR is the output data rate in Hertz.
- Time t3 is the magnetometer wakeup time, which is typically 12 ms. Transitioning from the Power-On Default state to a Mag Only state or a Mag + Accel state takes the time t3 + t5, where t5 is defined as 3/ODR, where ODR is the output data rate in Hertz.
- The t7 transition is dependent on data transfer rates and is for I2C at 400 kHz is <100 µs for SPI at 11 Mbps is around 40 µs.

8 **FIFO Description**

8.1 Using the FIFO

The QMI8658C contains a programmable 1536-byte data buffer, which can be used as a FIFO buffer. The FIFO's operating mode and configuration are set via the FIFO_CTRL register. FIFO data may consist of gyroscope and accelerometer data and is accessible via the serial interfaces. The FIFO also supports burst reads. The host must complete its burst read prior to the next sensor data period. This time period is defined by the ODR selected. Depending on how many sensors are enabled, the host will need to read increments of 6, 12 or 18 bytes, corresponding to one, two and three sensors active at the same time. This feature helps reduce overall system power consumption by enabling the host processor to read and process the sensor data in bursts and then enter a low-power mode. The interrupt function may be used to alert when new data is available.

The FIFO size is configured using the FIFO_CTRL register. When the FIFO is enabled for two or more sensors, as is true for all modes that have multiple sensors active, the sensors must be set at the same Output Data Rate (ODR).

The FIFO is read through the I3C/I²C/SPI interface by reading the FIFO_DATA register. Any time the Output Registers are read, data is erased from the FIFO memory.

The FIFO has multiple operating modes: Bypass, FIFO, and Streaming. The operating modes are set using the mode<1:0> bits in the FIFO_CTRL register.

Enabling FIFO

The FIFO is configured by writing to the FIFO_CTRL register and is enabled after the accelerometer and/or gyroscope are enabled. If the watermark function is enabled in the FIFO_CTRL register, pin INT2 is asserted when the FIFO watermark level is reached.

Reading Sensor Data from FIFO

Sensor data is read from the FIFO through the following command sequence. (For additional information, see CTRL9 description).

- Request access to FIFO data buffer by sending CTRL9 command 0x0D. This automatically sets FIFO_rd_mode bit to 1 in FIFO_CTRL.
- Read FIFO_DATA register to empty the FIFO.
- After FIFO is emptied, set FIFO_rd_mode bit to 0.

Note that when only the accelerometer or gyroscope is enabled, the sensor data format at the host interface is:

AX_L	[0] →AX_	[H[0]] →A	Y_L[0]	→AY_H[0]	→AZ_L
0] -	→AZ_H[0]	→AX_L[1] →		

When 2 sensors are enabled, the sensor data format is:

AX_L[0]	→AX_H[0]	→AY_L[0]	→AY_H[0]	\rightarrow
AZ_L[0]	→AZ_H[0]	→GX_L[0]	→GX_H[0]	\rightarrow
GY_L[0]	→GY_H[0]	→GZ_L[0]	→GZ_H[0]	\rightarrow
AX_L[1]	→AX_H[1]	→		

When 3 sensors are enabled, the sequence will be extended to include the 6 corresponding magnetometer samples.

Bypass Mode

In Bypass mode (set in FIFO_CTRL), the FIFO is not operational and, therefore, remains empty. Sampled data from the gyroscope and/or Accelerometer are stored directly in the Sensor Data Output Registers. When new data is available, the old data is over-written.

FIFO Mode

In FIFO mode, data from the sensors are stored in the FIFO. The watermark interrupt, if enabled in FIFO_CTRL, is triggered when the FIFO is filled to the level specified by the value of wtm<1:0> in the FIFO_CTRL register. The FIFO continues filling until it is full. When full, the FIFO stops collecting data from the input channels. Data collection restarts when FIFO is emptied.

Streaming Mode

In Streaming mode (set in FIFO_CTRL), data from the gyroscope and accelerometer are stored in the FIFO. A watermark interrupt can be enabled and set as in FIFO mode. The FIFO continues filling until full. In this mode, the FIFO acts as a circular buffer, when full, the FIFO discards the older data as the new data arrives. Programmable watermark level events can be enabled to generate dedicated interrupts on the DRDY/INT2 pin (configured through the FIFO_CTRL register).

8.2 FIFO Register Description

	Table	35.	FIFO Registers Description	
R	Register Name			
FIFO_W	/тм_тн	FIFO Wa	atermark Threshold. Register Address: 19 (0x13)	
Bits	Name	Default Description		
7:0	FIFO_wtm_th	1'b0	Set watermark level, in ODRs.	
FIFO_C	TRL	Configu	re FIFO. Register Address: 20 (0x14)	
Bits	Name	Default	Description	
7	FIFO_rd_mode	1'b0	0: Disable FIFO read via FIFO_DATA register.1: FIFO read via FIFO_DATA register is enabled. This bit is automatically set by the CTRL9 command to request the FIFO.	
6:4	Reserved	3'b0	Reserved	
3:2	size<1:0>	2'b0	Set FIFO size. (See 8.1 for more details.) 00 – Set FIFO size at 16 samples for each enabled sensor 01 – Set FIFO size at 32 samples for each enabled sensor 10 – Set FIFO size at 64 samples for each enabled sensor 11 – Set FIFO size at 128 samples for each enabled sensor (up to 2 sensors enabled only)	
1:0	mode<1:0>	1'b0	Set FIFO Mode. 00 – Bypass (FIFO disable). 01 – FIFO. 10 – Streaming. 11 – Not Used	
FIFO_S	MPL_CNT	FIFO Sa	mple Count. Register Address: 21 (0x15)	
Bits	Name	Default	Description	
7:0	fifo_smpl_cnt_lsb	8'h00	The LS 8 bits of FIFO sample count, in bytes.	
FIFO_S	TATUS	FIFO Sta	atus. Register Address: 22 (0x16)	
Bits	Name	Default	Description	
7	fifo_full	1'b0	FIFO size has been reached and is full.	
6	wtm	1'b0	Watermark level hit.	
5	overflow	1'b0	FIFO over-flow condition has occurred. An attempt was made to save new data to the FIFO while it was full.	
4	not_empty	1'b0	FIFO not empty.	
3:2	reserved	2'b0		
1:0	fifo_smpl_cnt_msb	2'b0	The MS 2 bits of FIFO sample count, in bytes.	
FIFO_D	ΑΤΑ	FIFO Da	ta Register. Register Address: 23 (0x17)	
Bits	Name	Default	Description	
7:0	data<7:0>	8'b0	Read this register to read sensor data out of FIFO.	

9 Performing Device Self Test

9.1 Accelerometer Self Test

The accelerometer Self Test is used to determine if the accelerometer is functional and working within acceptable parameters. It is implemented by applying an electrostatic force to actuate each of the three X, Y, and Z axis of the accelerometer. If the accelerometer mechanical structure responds to this input stimulus by sensing at least 200 mg, then the accelerometer can be considered functional within acceptable parameters. The accelerometer Self Test data is available to be read at registers dVX_L, dVX_H, dVY_L, dVY_H, dVZ_L and dVZ_H. The Host can initiate the Self Test at anytime by using the following procedure.

Procedure for accelerometer Self Test:

1- Make sure that the sensor is disabled. (CTRL7 = 0x00).

2- Set the bit aST to 1. (CTRL2.bit7 = 1'b1)

The 16g Full Scale is always used for Accel Self Test, regardless to the aFS settings in CTRL2.

The ODR setting in CTRL2 will be used for the Accel Self Test functionality.

3- Wait for QMI8658C to drive INT2 to "1".

4- Disable the Accel Self Test by clearing aST bit in CTRL2. (CTRL2.bit7 = 1'b0)

5- Wait for QMI8658C drive INT2 back to "0".

6- Read the Accel Self Test result:

X channel: dVX_L and dVX_H (registers 81 and 82).

Y channel: dVY_L and dVY_H (registers 83 and 84).

Z channel: dVZ_L and dVZ_H (registers 85 and 86).

Read the 16 bits result in format (signed 5.11) from the according registers of X, Y & Z channels.

If the absolute results of all three axes are higher than 200mg, the accelerometer can be consider functional. Otherwise, the accelerometer cannot be consider functional.

Here is an example of running accelerometer Self Test.

- 1- Write 0x00 to CTRL7.
- 2- Wait 1 msec.

3- Write 0x83 to CTRL2 (enable the Accel Self Test, and set 1KHz ODR).

- 4- Wait for INT2 is set to "1".
- 5- Write 0x03 to CTRL2 (disable the Accel Self Test).

6- Wait for INT2 to be cleared to "0".

7- Read final result from registers 81 up to 86 and compare.

9.2 Gyroscope Self Test

The gyroscope Self Test is used to determine if the gyroscope is functional and working within acceptable parameters. It is implemented by applying an electrostatic force to actuate each of the three X, Y, and Z axis of the gyroscope and measures the mechanical response on the corresponding X, Y, and Z axis. If the equivalent magnitude of the gyroscope output is greater than 300dps for each axis, the gyroscope can be considered as functional within acceptable parameters. The gyroscope Self Test data is available to be read at output registers dVX_L, dVX_H, dVY_L, dVY_H, dVZ_L & dVZ_H. The Host can initiate the Self Test anytime by using the following procedure.

Procedure for gyroscope Self Test:

1- Make sure that the sensor is disabled. (CTRL7 = 0x00).

2- Set the bit gST to 1. (CTRL3.bit7 = 1'b1).

The 2048dps Full Scale and 1 KHz ODR is always used for gyroscope Self Test. The Full Scale and ODR portion in CTRL3 are ignored.

3- Wait for QMI8658C to drive INT2 to "1".

4- Disable the Gyro self test by clearing gST bit in CTRL3. (CTRL2.bit7 = 1'b0)

- 5- Wait for QMI8658C drive INT2 back to "0".
- 6- Read the Gyro Self Test result:
- X channel: dVX_L and dVX_H (registers 81 and 82).
- Y channel: dVY_L and dVY_H (registers 83 and 84).
- Z channel: dVZ_L and dVZ_H (registers 85 and 86).

Read the 16 bits result in format (signed 12.4) from the according registers of X, Y & Z channels.

If the absolute results of all three axes are higher than 300dps, the gyroscope can be considered functional. Otherwise, the gyroscope cannot be considered functional.

Here is an example of running gyroscope Self Test.

- 1- Write 0x00 to CTRL7.
- 2- Wait 1 msec.
- 3- Write 0x83 to CTRL3 (enable the gyroscope Self Test).
- 4- Wait for INT2 is set to "1".
- 5- Write 0x03 to CTRL3(disable the gyroscope Self Test).
- 6- Wait for INT2 to be cleared to "0".

7- Read final result from registers 81 up to 86 and compare.

10 Host Serial Interface

QMI8658C Host Serial Interface supports MIPI I3C, I²C and SPI slave interfaces. For SPI, it supports both 3-wire and 4-wire modes. The basic timing characteristics for the interface are described below. Through the QMI8658C Host Serial Interface, the host can access, setup and control the QMI8658C Configuration Registers (see Table 26).

10.1 Serial Peripheral Interface (SPI)

QMI8658C supports both 3-wire and 4-wire modes in the SPI slave interface. The SPI 4-wire mode uses two control lines (CS, SPC) and two data lines (SDI, SDO). The SPI 3-wire mode uses the same control lines and one bi-directional data line (SDIO). The SDI /SDIO pin is used for both 3- and 4-wire modes and is configured based on the mode selected. The SPI interface has been validated at 15 MHz and the timing parameters are measured at that interface frequency.

SPI transactions can be done in either Mode 0 (CPOL=0, CPHA=0) or Mode 3 (CPOL=1, CPHA=1). The interface automatically detects which mode is in use and configures clocking accordingly.

SPI 3- or 4-wire modes are configured by writing to bit-7 of CTRL1 register. 3-wire mode is selected when bit-7 is 1. The default configuration is 4-wire mode, i.e. bit-7 of CTRL1 is 0.

Figure 13 shows the SPI address and data formats.

SPI Features

Data is latched on the rising edge of the clock

Figure 14. Typical SPI 4-Wire Multi-Slave

In a typical SPI Master/Slave configuration the SPI master shares the SPI clock (SPC), the serial data input (SDI), and the Serial Data Output (SDO) with all the connected SPI slave devices. Unique Chip Select (CS) lines connect each SPI slave to the master.

Figure 14 and Figure 15 show typical multi-slave 4- and 3-wire configurations. The primary difference between the two configurations is that the SDI and SDO lines are

- Data should change on falling edge of clock
- Maximum frequency is 15 MHz
- Data is delivered MSB first
- Support single read/writes and multi cycle (Burst) read/writes. NOTE: burst writes to Configuration registers are NOT supported. These registers should be written in single cycle mode only.
- Supports 6-bit Address format and 8-bit data format

Address Format

MSB							LSB
Read	A6	A5	A4	A3	A2	A1	A0

Read – indicates read (1) or write (0) transaction relative to the SPI master

Data Format

MSB							LSB
D7	D6	D5	D4	D3	D2	D1	D0

Figure 15. Typical SPI 3-Wire Multi-Slave

replaced by the bi-directional SDIO line. The SDIO line is driven by the master with both address and data when it is configured for write mode. During read mode, the SDIO line is driven by the master with the address, and subsequently driven by the "addressed" slave with data.

Figure 16 and Figure 17 illustrate the waveforms for both 4-wire and 3-wire SPI read and write transactions. Note that CS is active during the entire transaction.

QMI8658C — 6D Inertial Measurement Unit with Motion Co-Processor

10.1.1 SPI Timing Characteristics

The typical operating conditions for the SPI interface are provided in Table 36. Please refer to Table 5 for the V_{IL} , V_{IH} , V_{OL} , V_{OH} definition to define the rising and falling edge condition of the timing symbols.

VDDIO = $1.8 \text{ V}, \text{ T} = 25^{\circ}\text{C}$ unless otherwise noted.

Symbol	Parameter	Min.	Max.	Unit	
tspc	SPI Clock Cycle	66.6		ns	
fspc	SPI Clock Frequency		15	MHz	
tscs	CS Setup Time	6		ns	
thcs	CS Hold Time	8		ns	
ts _{SDI}	SDI Input Setup Time	5		ns	
th _{SDI}	SDI Input Hold Time	15		ns	
tvsdo	SDO Time for Valid Output		50	ns	
thspo	SDO Hold Time for Output	9		ns	
tdspo	SDO Disable Time for Output		50	ns	
ts _{SDIO}	SDIO Address Setup Time	5		ns	
thspio	SDIO Address Hold Time	15		ns	
tv _{SDIO}	SDIO Time for Valid Data		50	ns	
tczsdio	SDIO Time from SPC to High Z		50	ns	
tzsdio	SDIO Time from CS to High Z		50	ns	

10.2 I²C Interface

Table 37 provides the I²C interface timing characteristics while Figure 21 and Figure 22 illustrate the I²C timing for both fast and standard modes, respectively. Please refer to Table 5 for the V_{IL}, V_{IH}, V_{OL}, V_{OH} definition to define the rising and falling edge condition of the timing symbols.

During the slave device selection phase, the I²C master supplies the 7-bit I²C slave device address to enable the QMI8658C. When SA0 is pulled down externally, the 7-bit device address becomes 0x6B (0b1101011). In case of a slave device ID conflict, SA0 may be used to change bit-0 of the device address. The 7-bit device address for the QMI8658C is 0x6A (0b1101010) if SA0 is pulled up or left unconnected (internally there is a weak pull-up of 2M Ω).

During the slave register address phase bit-7 of the address is used to enable auto-increment of the target address. When bit-7 is set to 1 the target address is automatically incremented by one.

For additional technical details about the I²C standard, such as pull-up resistor sizing the user is referred to "UM10204 I²C-bus specification and user manual," published by NXP B.V.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
fscL	SCL Clock Frequency		0		400	KHz	
tвuғ	Bus-Free Time between STOP and START Conditions	<u> </u>	1300			ns	
t _{HD;STA}	START or Repeated START Hold Time		600			ns	
tLOW	SCL LOW Period		1300			ns	
t _{HIGH}	SCL HIGH Period		600			ns	
tsu;sta	Repeated START Setup Time		600			ns	
tsu;dat	Data Setup Time		100			ns	
thd;dat	Data Hold Time	Standard Mode	0		3450	ns	
		Fast Mode	0		900		
t _{RCL,} t _R	SCL Rise Time	Standard Mode			1000	20	
		Fast Mode	20 + 0.1 * C _B ⁽¹⁴⁾		300	115	
t _{FCL}	SCL Fall Time	Standard Mode			300	20	
		Fast Mode	20 + 0.1 * C _B ⁽¹⁴⁾		300	115	
:	SDA Rise Time. Rise Time of SCL after a Repeated START Condition and after ACK Bit	Standard Mode			1000		
trda, trcl1		Fast Mode	20 + 0.1 * C _B ⁽¹⁴⁾		300	ns	
tfda		Standard Mode			300	20	
	SDA Fall TIME	Fast Mode	20 + 0.1 * C _B ⁽¹⁴⁾		300	ns	
tsu;sто	Stop Condition Setup Time		600			ns	

Table 37. I²C Timing Characteristics

Note:

14. C_B is the bus capacitance.

QMI8658C — 6D Inertial Measurement Unit with Motion Co-Processor

Note:

15. Figure from JEDEC J-STD-020

Profile Feature	Pb-Free Assembly Profile		
Temperature Min. (T _{smin})	150°C		
Temperature Max. (T _{smax})	200°C		
Time (ts) from (T _{smin} to T _{smax})	60-120 seconds		
Ramp-up Rate (T∟ to T _P)	3°C/second max.		
Liquidous Temperature (T _L)	217°C		
Time (t∟) Maintained above (T∟)	60-150 seconds		
Peak Body Package Temperature (TP)	260°C +0°C / -5°C		
Time (t _P) within 5°C of 260°C	30 seconds		
Ramp-down Rate (TP to TL)	6°C/second max.		
Time 25°C to Peak Temperature	8 minutes max.		

Figure 24. Reflow Profile

11.3 Storage Specifications

QMI8658C storage specification conforms to IPC/JEDEC J-STD-020D.01 Moisture Sensitivity Level (MSL) 3. Floor life after opening the moisture-sealed bag is 168 hours with storage conditions: Temperature: ambient to \leq 30°C and Relative Humidity: 60%RH.

12 Document Information

12.1 Revision History

Revision	Revision Date	Description
0.4	April 22, 2020	Initial release of Advance Information datasheet
0.5	July 7, 2020	Updated CAL Register Addresses, CTRL9 Commands and Descriptions, Current Consumption, Accelerometer and Gyroscope Filter Characteristics, Low Power Mode ODR, Wake on Motion, Magnetometer Sensors supported
0.6	Jan 13, 2021	Updated SPI description and diagrams, SPI modes, product performance specifications, and register map and descriptions
0.7	17 May 2021	Updated the pin name and function name map, typical SPI connections, soft reset, Self Test, On-Demand Calibration, I2C timing parameter table, ADDR_AI, BE, VDDIO rising limitation, recommended I2C pull-up resistance
0.8	10 Sep 2021	Added the maximum limitation of VIH, updated FIFO read command and sequence, updated ODR & filter bandwidth configurations, updated CTRL2, CTRL3, CTRL4, CTRL5 descriptions, deleted descriptions of magnetometer, updated Electro-Mechanical Specifications, updated the internal block diagram & interface operating modes, deleted the specifications, registers, and application diagrams that relative to I2CM interface, updated the Features, Descriptions & Applications, updated the marking information

Attitude Engine[™], Gen 2 AttitudeEngine[™], and XKF3[™] are trademarks of Fairchild Semiconductor licensed by ON Semiconductor to QST Corporation.