
NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 1 / 72

NRF52840 Eval Kit

User Manual

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 2 / 72

CONTENT

Chapter 1. Overview ..5

what’s on Board ..5

Chapter 2. Setup Developing Environment ..7

Install Keil and related Pack ...7

Install SEGGER Embedded Studio for ARM 4.10a ..7

Serial driver install ...7

Install Jlink driver ...8

Install nRFx-Command-Line-Tools ..9

Install APP ...9

Peripherals demo .. 10

Hardware connection .. 10

Download samples without Softdevice .. 11

Download Samples with Softdevoce ... 13

Chapter 3. Creating new project .. 15

Project template .. 15

Create a new project .. 16

Chapter 4. Controling LED ... 20

Codes .. 20

Hardware Connection ... 21

Chapter 5. UART .. 23

Codes .. 23

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 3 / 72

Hardware ... 27

Chapter 6. SPI ... 29

Loopback testing .. 29

Drive OLED .. 30

Hardware ... 31

Chapter 7. I2C ... 33

Scanning Slave devices ... 33

Read data from BME280 .. 33

Read data from MPU6050 ... 37

Hardware ... 38

Chapter 8. NFC ... 41

Codes .. 41

Hardware ... 43

Chapter 9. Bluetooth .. 44

Preparation.. 44

Install softdevice ... 44

Bluetooth serial transparent ... 44

Bluetooth against losing .. 47

Bluetooth Beacon (Support WeChat Shake) ... 49

Wireless Mouse ... 52

Wireless Keyboard .. 53

CSCS .. 55

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 4 / 72

Bluetooth Master- Cardiotachometer ... 56

Master-Slaver-BLE Relay .. 58

Chapter 10. MESH ... 62

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 5 / 72

CHAPTER 1. OVERVIEW

NRF52840 Eval Kit is a development/evaluation kit based on nRF52840, features

Arduino / Raspberry Pi connectivity, and several common peripherals.

It supports the new generation Bluetooth 5.0, compared to Bluetooth 4.0, the data

rate is twice, up to 2Mbps, the transfer distance is quadruple. Based on the ARM

Cortex-M4F architecture, the CPU frequency achieves up to 64MHz. Bluetooth MESH1

and 2.4GHz radio are also available, that means higher performance, and more

suitable applications.

Thanks to the onboard Arduino / Raspberry Pi compatible headers, both Arduino

shields and Raspberry Pi HATs can be attached at the same time, make it easy to use

more expansion resources.

WHAT’ S ON BOARD

1 At least three NRF52849 modules are required for Bluetooth MESH networking

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 6 / 72

1. Arduino headers: for connecting

Arduino shields

2. Raspberry Pi GPIO header: for

connecting Raspberry Pi HATs

3. USB TO UART interface

4. USB port: the USB port of nRF52840

5. 4PIN SWD debugging interface:

for connecting ARM Debugger to

program / debug

6. 3.3V/5V power input/output:

provides power output OR powered

from external power supply

7. Core52840: nRF52840 core module

8. CP2102: USB TO UART converter

9. Buzzer

10. RT9193-33: 3.3V voltage regulator

11. Optical sensor

12. Keys: RESET and USER KEY

13. LEDs

PWR: power indicator

RXD/TXD: nRF52840 UART RX/TX

indicator

LED1~LED4: USER LEDs

14. Power switch

USB: powered from USB connection

Battery: powered from CR2032

battery

15. NFC antenna connector

16. TF card slot

17. CR2032 battery holder

18. Jumpers

Short the jumpers: connect the

onboard peripherals to I/Os in

example code

Open the jumpers: connect to

custom I/Os via jumper wires

19. Current testing pads: 0Ω resistor is

soldered by default, remove the

resistor to test current of the board

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 7 / 72

CHAPTER 2. SETUP DEVELOPING ENVIRONMENT

 Generally, we use nRFgo Studio software to programming NRF52840, however,

because of the compatibility of JLink driver, which is the driver of programmer of nRF

series. Herein we use CLI to setup developing environment for nRF52840 instead of

nRFgo Studio.

INSTALL KEIL AND RELATED PACK

Download Keil from its website and install. Note that Keil requires license,

otherwise it can only be used to compile codes which is smaller than 256kB.

After installing, you should also install related Packs. The NRF52840 pack was

already included in resources2, run NordicSemiconductor.nRF_DeviceFamilyPack.8.17.0

to install it.

INSTALL SEGGER EMBEDDED STUDIO FOR ARM 4.10A

 This tool is only required for Bluetooth MESH examples. You can skip this part if

you do not use MESH.

 You can download the package from resources and install it without license.

SERIAL DRIVER INSTALL

 The Evaluation board has integrated CP2102 module, which is used for TTL to USB

converting. To properly use serial port, you need to install CP2102 driver in your PC. If

you have installed it before, skip this part.

 The CP2102 driver is included in resources, choose one according to your OS.

2 You can find them on Waveshare Wiki: https://www.waveshare.com/wiki/NRF52840_Eval_Kit

https://www.waveshare.com/wiki/NRF52840_Eval_Kit

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 8 / 72

⚫ Double-click installer “CPCP210xVCPInstaller_xxx” to run it

⚫ Clock next to finish installing

After installing, you can find that a new serial device is recognized under

Computer->Manager->Devices Manager-> COM and LPT after you connect the

evaluation board to PC.

INSTALL JLINK DRIVER

 JLink programmer is used to programming NRF52840. It can also be used to erase

NRF52840Flash and upload Bluetooth Softdevices3 with nRF5x-Command-Line-Tools.

We recommend you use V6.22 version or above, otherwise, the driver may cannot be

recognized. The JLink driver is included in resources, you can search and download it.

 If you have installed Keil before JLink driver, don’t forget to check the option to

cover it as below:

3 Softdevices are protocol stacks for nRF series

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 9 / 72

INSTALL NRFX-COMMAND-LINE-TOOLS

 The tool can be downloaded from resources. Download and install it. After

installing, open console, and input nrfjprog -v to check the tools. It should be as below

if you install the tool successfully.

INSTALL APP

App should be installed in mobile phones for debugging.

nRF Connect: Common debugging tool of mobile phone. With this APP, use can

get the original data. nRF Connect can display RSSI curve, supports multiply slave

devices, has high compatibility and is commonly used.

 nRF Toolbox: BLE tool. Toolbox is generally used for part of experiments, it has

GUI like thermometer, cardiotachometer. However, it can only be used for some of

experiments and it is not much stable.

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 10 / 72

PERIPHERALS DEMO

Finish the developing environment setup, you now can try with some demo. Herein

using the newest SDK(SDK 15.2), which support Bluetooth 5.0

 There are examples in SDK, which can be divided to two kinds, one of them can

run without Softdevice and another are based on Softdevice. The demo which does

not need Softdevice generally located in

nRF5_SDK_15.2.0_9412b96\examples\peripheral\

HARDWARE CONNECTION

⚫ Connect J-Link programmer to NRF52840 Eval kit and PC

⚫ Connect NRF52840 Eval Kit to PC or other external power adapter

⚫ Pull the jumper of LED3, and wire L3 to P1.054

4 LED3 isn’t compatible with official SDK, so we should re-connect it when test Blinky sample

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 11 / 72

DOWNLOAD SAMPLES WITHOUT SOFTDEVICE

We take Blinky as example, learn how to use peripherals examples of SDK. Click

blinky->pca10056->blank->arm5_no_packs->blink_pca10056.uvoptx to open the

project. Compiling it:

Generally, it can be compiled successfully without error or warning. After

compiling, you should configure it:

Click Debug, choose J-Links/J-Trace Cortex as debugger. Debug->Settings set

Port to SW

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 12 / 72

Then click Flash Download, check the options as below and confirm by clicking

OK.

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 13 / 72

DOWNLOAD SAMPLES WITH SOFTDEVOCE

Different with samples like the blinky, you should first download softdevices,

which Bluetooth demo codes are based on. Herein we take app_uart as example to

show you how to program such demos.

⚫ First, we need to erase NRF52840 flash: Open CMD, connect NRF52840 to PC and

using ARM Debugger(JLink) for programming. Type command to erase NRF52840

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 14 / 72

as below:

⚫ Download Softdevice. Click

nRF5_SDK_15.2.0_9412b96->examples->ble_peripheral->ble_app_uart->pca10056

->s140->arm5_no_packs-> ble_app_uart_pca10056_s140.uvprojx to open the

project. Choose flash_s140_nrf52_6.1.0_softdevice：

⚫ Download the application code like blinky sample.

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 15 / 72

CHAPTER 3. CREATING NEW PROJECT

SDK should be used for NRF52840 developing, we take common SDK5 as example

to show you how to create a project.

The SDK used herein is SDK V15.2, there is also template for reference:

nRF5_SDK_15.2.0_9412b96\examples\ble_peripheral\ble_app_template\pca10056\s140

\arm5_no_packs\ble_app_template_pca10056_s140.uvprojx

PROJECT TEMPLATE

Generally, the project should include:

⚫ DRIVER: Drivers of hardware peripherals are saved in this directory, like driver of

MPU6050 created by users

⚫ SDK: SDK files copied from official SDK, like:

5 There are specific SDK used for Zigbee, Thread and Mesh sevices

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 16 / 72

There are so many files included in SDK, and we only use some of them for certain

project. Most of libraries are included in components, external contains third party

libraries like freertos library and so on. Old drivers are saved to folder integration

and modules contains the new drivers.

⚫ TEMP: Intermediate files generated while compiling. The files in this folder can be

deleted.

⚫ USER: User files

Generally, files in folders SDK, DRIVER and TEMP are same for different project, what

we need to do is create user files and save them to USER.

CREATE A NEW PROJECT

Create a directory to save project files and copy libraries files to it.

 You can google about how to create a new Keil project. Herein we take about

some notices when creating new project.

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 17 / 72

⚫ The drivers of user peripherals should be saved in DRIVER folder

⚫ The projects created should be saved under USER, and please notice the project

name

⚫ The application files are usually saved under the path: USER/[Project

file]/APPLICATION/

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 18 / 72

⚫ The Keil project file is saved in IDE folder

⚫ Save OBJ files to TEMP folder

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 19 / 72

⚫ You had better set the project tree same as official projects.

⚫ Notice the PACK version you use, make sure it is same as official examples

For more details, please refer to official examples.

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 20 / 72

CHAPTER 4. CONTROLING LED

In this chapter, we will instruct how to configure GPIO and control LED. The

examples used herein is 001_LED.

CODES

Open led.h files, you can find that the GPIO and related control functions are defined

in this header file:

#ifndef __LED_H__

#define __LED_H__

#include "nrf.h"

#include "nrf_gpio.h"

#define LED0 NRF_GPIO_PIN_MAP(0,13)

#define LED1 NRF_GPIO_PIN_MAP(0,14)

#define LED2 NRF_GPIO_PIN_MAP(0,19)

#define LED3 NRF_GPIO_PIN_MAP(0,16)

void LED_On(uint32_t led_number);

void LED_Off(uint32_t led_number);

#endif

Functions defined in header file will be realized in led.c file:

#include "led.h"

void LED_On(uint32_t led_number)

{

 nrf_gpio_cfg_output(led_number);

 nrf_gpio_pin_clear(led_number);

}

void LED_Off(uint32_t led_number)

{

 nrf_gpio_cfg_output(led_number);

 nrf_gpio_pin_set(led_number);

}

LED_On(led_number): Turn the LED on

LED_Off(led_number): Turn the LED off

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 21 / 72

And finally, the functions are called in main file to keep turning four LEDs on for

500ms then turning them off for 500ms.

int main(void)

{

 while (true)

 {

 LED_On(LED0);

 LED_On(LED1);

 LED_On(LED2);

 LED_On(LED3);

 nrf_delay_ms(500);

 LED_Off(LED0);

 LED_Off(LED1);

 LED_Off(LED2);

 LED_Off(LED3);

 nrf_delay_ms(500);

 }

}

HARDWARE CONNECTION

According to the codes above we know that, the four LEDs controlled should be

connected to P0.13, P0, 14, P0.19, P0.16 separately as table:

UART GPIO

LED1 P0.13

LED2 P0.14

LED3 P1.09

LED4 P0.16

In official SDK, LED3 is connected to P0.15 which is not compatible with official

examples. If you want to use the official SDK and LED3, you need to change it to P1.09.

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 22 / 72

The schematic of Eval board is as below:

Header 4x2 are jumpers on board：

If you use official SDK, don’t forget to pull L3 jumper and wire it to P0.15 (Do not

require if you use 001_LED).

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 23 / 72

CHAPTER 5. UART

In this chapter, we describe about how to use UART interface of NRF52840. The

example used herein is 003_UART. With the example, data can be sent from NRF52840

to UART interface, and LED on eval board will turn on/off when receive corresponding

data from UART interface.

CODES

uart.h

#ifndef _UART_H_

#define _UART_H_

#include "nrf.h"

#include "nrf_gpio.h"

#include "app_uart.h"

#include "nrf_uart.h"

#define RX_PIN_NUMBER NRF_GPIO_PIN_MAP(0,8)

#define TX_PIN_NUMBER NRF_GPIO_PIN_MAP(0,6)

#define CTS_PIN_NUMBER NRF_GPIO_PIN_MAP(0,7)

#define RTS_PIN_NUMBER NRF_GPIO_PIN_MAP(0,5)

#define UART_HWFC APP_UART_FLOW_CONTROL_DISABLED

#define MAX_TEST_DATA_BYTES (15U)

#define UART_TX_BUF_SIZE 256

#define UART_RX_BUF_SIZE 256

extern app_uart_comm_params_t comm_params;

void uart_error_handle(app_uart_evt_t * p_event);

#endif

uart.c:

#include "uart.h"

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 24 / 72

app_uart_comm_params_t comm_params =

{

 RX_PIN_NUMBER,

 TX_PIN_NUMBER,

 RTS_PIN_NUMBER,

 CTS_PIN_NUMBER,

 UART_HWFC,

 false,

 NRF_UART_BAUDRATE_115200

};

void uart_error_handle(app_uart_evt_t * p_event)

{

 if (p_event->evt_type == APP_UART_COMMUNICATION_ERROR)

 {

 APP_ERROR_HANDLER(p_event->data.error_communication);

 }

 else if (p_event->evt_type == APP_UART_FIFO_ERROR)

 {

 APP_ERROR_HANDLER(p_event->data.error_code);

 }

}

main.c:

#include "nrf.h"

#include <stdio.h>

#include <stdint.h>

#include <stdbool.h>

#include "app_uart.h"

#include "app_error.h"

#include "nrf_delay.h"

#include "nrf_uart.h"

#include "nrf_uarte.h"

#include "led.h"

#include "uart.h"

/**

 * @brief Function for main application entry.

 */

int main(void)

{

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 25 / 72

 uint32_t err_code;

APP_UART_FIFO_INIT(&comm_params,UART_RX_BUF_SIZE,UART_TX_BUF_SI

ZE,uart_error_handle,APP_IRQ_PRIORITY_LOWEST,err_code);

 APP_ERROR_CHECK(err_code);

 printf("\r\nUART example started.\r\n");

 while (true)

 {

 uint8_t cr;

 //Get Data from the port!

 while (app_uart_get(&cr) != NRF_SUCCESS);

 //Then put data to the port

 while (app_uart_put(cr) != NRF_SUCCESS);

 switch (cr)

 {

 case '1':

 {

 printf("\r\n LED0 ON \r\n");

 LED_On(LED0);

 break;

 }

 case '2':

 {

 printf("\r\n LED0 OFF \r\n");

 LED_Off(LED0);

 break;

 }

 case '3':

 {

 printf("\r\n LED1 ON \r\n");

 LED_On(LED1);

 break;

 }

 case '4':

 {

 printf("\r\n LED1 OFF \r\n");

 LED_Off(LED1);

 break;

 }

 case '5':

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 26 / 72

 {

 printf("\r\n LED2 ON \r\n");

 LED_On(LED2);

 break;

 }

 case '6':

 {

 printf("\r\n LED2 OFF \r\n");

 LED_Off(LED2);

 break;

 }

 case '7':

 {

 printf("\r\n LED3 ON \r\n");

 LED_On(LED3);

 break;

 }

 case '8':

 {

 printf("\r\n LED3 OFF \r\n");

 LED_Off(LED3);

 break;

 }

 case 'q':

 {

 printf("\r\n Exit! \r\n");

 while (true);

 }

 case 'Q':

 {

 printf("\r\n Exit! \r\n");

 while (true);

 }

 default:

 {

 printf("\r\nPlease input correct command\r\n");

 break;

 }

 }

 }

}

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 27 / 72

The serial is redirected in the codes, for using printf function to print data to uart

interface. In the main.c, serial port will keep receiving data, and if corresponding data

are received, LEDs will behavior according to it.

 When 1 is received, LED1 is on, and turned off if receiving 2. Turn LED2 on if 3 and

turn off if 4 similarly.

HARDWARE

The schematic of serial part is as below:

H1 and H2 are jumpers of UART pins. CP2102 is accessed to NRF52840 only when

jumpers H1 and H2 are inserted.

UART GPIO

CPTX P0.06

CPRX P0.08

CPRTS P0.25

CPCTS P0.07

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 28 / 72

【Note】In official SDK, CPRTS is defined as P0.05, however, CPRTS is connected to

P0.25 on NRF52840 Eval kit. You need to modify the definition to P0.25 when using.

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 29 / 72

CHAPTER 6. SPI

Examples used in this chapter: 004_SPI(Example), 005_SPI(OLED)

 In this chapter, we will describe about how to use SPI interface of NRF52840, do

loopback testing and try to drive a 0.96inch OLED module.

LOOPBACK TESTING

main.c

#include "nrf_drv_spi.h"

#include "nrf_gpio.h"

#include "app_util_platform.h"

#include "nrf_delay.h"

#include "app_error.h"

#include <string.h>

#include "nrf_log.h"

#include "nrf_log_ctrl.h"

#include "nrf_log_default_backends.h"

#include "spi.h"

int main(void)

{

 APP_ERROR_CHECK(NRF_LOG_INIT(NULL));

 NRF_LOG_DEFAULT_BACKENDS_INIT();

 nrf_drv_spi_config_t spi_config = NRF_DRV_SPI_DEFAULT_CONFIG;

 spi_config.ss_pin = CS_PIN;

 spi_config.miso_pin = MISO_PIN;

 spi_config.mosi_pin = MOSI_PIN;

 spi_config.sck_pin = SCK_PIN;

 /*

 Doesn't print what to send or what received in SPI

 */

 //APP_ERROR_CHECK(nrf_drv_spi_init(&spi, &spi_config, NULL,

NULL));

 /*

 Print what to send or what received in SPI

 */

 APP_ERROR_CHECK(nrf_drv_spi_init(&spi, &spi_config,

spi_event_handler, NULL));

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 30 / 72

 NRF_LOG_INFO("SPI example started.");

 NRF_LOG_FLUSH();

 while (1)

 {

 memset(m_rx_buf, 0, m_length);

 spi_xfer_done = false;

 APP_ERROR_CHECK(nrf_drv_spi_transfer(&spi, m_tx_buf,

m_length, m_rx_buf, m_length));

 while (!spi_xfer_done)

 {

 __WFE();

 }

 NRF_LOG_FLUSH();

 nrf_delay_ms(500);

 }

}

DRIVE OLED

When you drive OLED via SPI interface, you should notice that:

1. Do not use interrupt callback function when initializing SPI

/*

Doesn't print what to send or what received in SPI

*/

//APP_ERROR_CHECK(nrf_drv_spi_init(&spi, &spi_config, NULL,

NULL));

/*

Print what to send or what received in SPI

*/

APP_ERROR_CHECK(nrf_drv_spi_init(&spi, &spi_config,

spi_event_handler, NULL));

2. If you must to add interrupt codes, add delay to it.

void Single_Command(unsigned char cmd)

{

 nrf_gpio_pin_clear(DC);

 //if SPI is busy Frequently,delay here

 nrf_delay_us(30);

 spi_write(&cmd, sizeof(cmd));

}

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 31 / 72

3. The most basic function of OLED driver is written and read functions as below:

write

void Single_Command(unsigned char cmd)

{

 nrf_gpio_pin_clear(DC);

 //if SPI is busy Frequently,delay here

 //nrf_delay_us(30);

 spi_write(&cmd, sizeof(cmd));

}

read

void Single_Data(unsigned char dt)

{

 nrf_gpio_pin_set(DC);

 //if SPI is busy Frequently,delay here

 //nrf_delay_us(30);

 spi_write(&dt, sizeof(dt));

}

HARDWARE

In hardware, the SPI interface of NRF52840 are pinout to Arduino compatible

interface.

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 32 / 72

【Note】The pins used in example herein are different with official SDK, if you use

official SDK with NRF52840 Eval Kit, don’t forget to modify the pins

SPI GPIO

SPI_CS P1.12

SPI_MOSI P1.13

SPI_MISO P1.14

SPI_SCK P1.15

Loopback testing

Data will be sent from MOSI and back from the MISO.

Drive OLED

The OLED will display image as below:

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 33 / 72

CHAPTER 7. I2C

In this chapter, we will learn about how to use the I2C interface of NRF52840. There

are three examples, which are used here: 006_I2C(Scan Device), 007_I2C(BME280),

008_I2C(MPU6050 3D COUBE)

SCANNING SLAVE DEVICES

It keeps scanning the slave device address of those devices which are connected to

I2C bus.

for(address=1; address<=TWI_ADDRESSES; address++)

{

 err_code = nrf_drv_twi_rx(&m_twi, address, &sample_data,

sizeof(sample_data));

 if (err_code == NRF_SUCCESS)

 {

 detected_device = true;

 device_address = address;

 NRF_LOG_INFO("TWI device detected at address 0x%x.",

address);

 NRF_LOG_FLUSH();

 }

}

The code will scan slave devices address connected and print them.

READ DATA FROM BME280

BME280 is a module from Bosch that supports sense environmental temperature,

humidity and barometric pressure.

Write/read function from Bosch: https://github.com/BoschSensortec/BME280_driver

int8_t user_i2c_read(uint8_t dev_id, uint8_t reg_addr, uint8_t

*reg_data, uint16_t len)

https://github.com/BoschSensortec/BME280_driver

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 34 / 72

{

 int8_t rslt = 0; /* Return 0 for Success, non-zero for failure

*/

 /*

 * The parameter dev_id can be used as a variable to store the

I2C address of the device

 */

 /*

 * Data on the bus should be like

 * |------------+---------------------|

 * | I2C action | Data |

 * |------------+---------------------|

 * | Start | - |

 * | Write | (reg_addr) |

 * | Stop | - |

 * | Start | - |

 * | Read | (reg_data[0]) |

 * | Read | (....) |

 * | Read | (reg_data[len - 1]) |

 * | Stop | - |

 * |------------+---------------------|

 */

 return rslt;

}

int8_t user_i2c_write(uint8_t dev_id, uint8_t reg_addr, uint8_t

*reg_data, uint16_t len)

{

 int8_t rslt = 0; /* Return 0 for Success, non-zero for failure

*/

 /*

 * The parameter dev_id can be used as a variable to store the

I2C address of the device

 */

 /*

 * Data on the bus should be like

 * |------------+---------------------|

 * | I2C action | Data |

 * |------------+---------------------|

 * | Start | - |

 * | Write | (reg_addr) |

 * | Write | (reg_data[0]) |

 * | Write | (....) |

 * | Write | (reg_data[len - 1]) |

 * | Stop | - |

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 35 / 72

 * |------------+---------------------|

 */

 return rslt;

}

 Working with NRF52840, you can use its library to realize the write/read function：

int8_t user_i2c_read(u8 dev_id, u8 reg_addr, u8 *reg_data, u16 len)

{

 ret_code_t err_code =

nrf_drv_twi_tx(&m_twi,dev_id,®_addr,1,false);

 APP_ERROR_CHECK(err_code);

 err_code = nrf_drv_twi_rx(&m_twi,dev_id,reg_data,len);

 APP_ERROR_CHECK(err_code);

 return err_code;

}

#define MAX_WRITE_LENGTH 200

int8_t user_i2c_write(u8 dev_id, u8 reg_addr, u8 *reg_data, u16

len)

{

 ret_code_t err_code;

 uint8_t write_data[MAX_WRITE_LENGTH];

 if(len>MAX_WRITE_LENGTH-1)

 {

 err_code = 1;

 return err_code;

 }

 write_data[0] = reg_addr;

 memcpy(&write_data[1],reg_data,len);

 err_code =

nrf_drv_twi_tx(&m_twi,dev_id,write_data,len+1,false);

 APP_ERROR_CHECK(err_code);

 return err_code;

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 36 / 72

}

BME280 Initialization in main.c

struct bme280_dev dev;

int8_t rslt = BME280_OK;

dev.dev_id = BME280_I2C_ADDR_SEC;

dev.intf = BME280_I2C_INTF;

dev.read = user_i2c_read;

dev.write = user_i2c_write;

dev.delay_ms = user_delay_ms;

//before you init bme280, you can choose to do a selftest

rslt = bme280_crc_selftest(&dev);

if(rslt == 0)

{

 NRF_LOG_INFO("BME280 self test pass\r\n");

 NRF_LOG_FLUSH();

}

rslt = bme280_init(&dev);

if(rslt == 0)

{

 NRF_LOG_INFO("Init Success\r\n");

 NRF_LOG_FLUSH();

}

else

{

 NRF_LOG_INFO("Init Fail,Please Check your address or the wire

you connected!!!\r\n");

 NRF_LOG_FLUSH();

 while(1);

}

/*

 Using normal mode to read the data

*/

stream_sensor_data_normal_mode(&dev);

bme280_crc_selftest(): Self testing function

stream_sensor_data_normal_mode(&dev): Read data of bme280 and calculate. Use

bme280_get_sensor_data() and print_sensor_data() to read and print_sensor_data().

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 37 / 72

READ DATA FROM MPU6050

This example is run to read MPU6050 data via I2C bus.

u8 IIC_Write_1Byte(u8 SlaveAddress,u8 REG_Address,u8 REG_data)

{

 ret_code_t err_code = user_i2c_write(SlaveAddress, REG_Address,

®_data, 1);

 return err_code;

}

u8 IIC_Read_1Byte(u8 SlaveAddress,u8 REG_Address,u8 *REG_data)

{

 ret_code_t err_code = user_i2c_read(SlaveAddress, REG_Address,

REG_data, 1);

 return err_code;

}

u8 IIC_Write_nByte(u8 SlaveAddress, u8 REG_Address, u8 len, u8

*buf)

{

 ret_code_t err_code = user_i2c_write(SlaveAddress, REG_Address,

buf, len);

 return err_code;

}

u8 IIC_Read_nByte(u8 SlaveAddress, u8 REG_Address, u8 len, u8 *buf)

{

 ret_code_t err_code = user_i2c_read(SlaveAddress, REG_Address,

buf, len);

 return err_code;

}

The basic functions are user_i2c_read() and user_i2c_write().

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 38 / 72

HARDWARE

In hardware, the I2C interface are pinout to the Arduino compatible header.

I2C GPIO

SCL_PIN P0.27

SDA_PIN P0.26

The I2C pins can be re-configured to others by modifying the codes:

#define SDA_PIN NRF_GPIO_PIN_MAP(0,26)

#define SCL_PIN NRF_GPIO_PIN_MAP(0,27)

【Note】Don’t forget to change hardware connection if you re-configure the pins.

After running codes, the data will be printed to serial port and display the I2C address

in OLED as below:

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 39 / 72

⚫ Downloading 007_I2C(BME280) codes, data will be printed to OLED as below:

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 40 / 72

⚫ Downloading 008_I2C(MPU6050 3D COUBE), Data will be printed as below(The 3D

figure display is not stable):

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 41 / 72

CHAPTER 8. NFC

CODES

This example is used to starting mobile APP.

The name of Android Phone APP:

static const uint8_t m_android_package_name[] =

{'n', 'o', '.', 'n', 'o', 'r', 'd', 'i', 'c', 's',

'e', 'm', 'i', '.', 'a', 'n', 'd', 'r', 'o', 'i',

'd', '.', 'n', 'r', 'f', 't', 'o', 'o', 'l', 'b',

'o', 'x'};

The name of Windows Phone APP:

static const uint8_t m_windows_application_id[] =

{'{', 'e', '1', '2', 'd', '2', 'd', 'a', '7', '-',

'4', '8', '8', '5', '-', '4', '0', '0', 'f', '-',

'b', 'c', 'd', '4', '-', '6', 'c', 'b', 'd', '5',

'b', '8', 'c', 'f', '6', '2', 'c', '}'};

Initializing callback function, which will be execute when NFC objects are detected to

turn on LED0.

static void nfc_callback(void * p_context, nfc_t2t_event_t event,

const uint8_t * p_data, size_t data_length)

{

 (void)p_context;

 switch (event)

 {

 case NFC_T2T_EVENT_FIELD_ON:

 bsp_board_led_on(BSP_BOARD_LED_0);

 break;

 case NFC_T2T_EVENT_FIELD_OFF:

 bsp_board_led_off(BSP_BOARD_LED_0);

 break;

 default:

 break;

 }

}

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 42 / 72

In main.c file, the process to start NFC are that:

1. Set interrupt callback function and initialize NFC:

2. Encode NFC information

3. Load NFC information to NFC end

4. Start NRF

int main(void)

{

 uint32_t len;

 uint32_t err_code;

 //Init log

 log_init();

 //Init led

 bsp_board_init(BSP_INIT_LEDS);

 //set NFC with a callback

 err_code = nfc_t2t_setup(nfc_callback, NULL);

 APP_ERROR_CHECK(err_code);

 //provide available buffer size for encoding function

 len = sizeof(m_ndef_msg_buf);

 //Encode launchapp message into buffer

 err_code = nfc_launchapp_msg_encode(m_android_package_name,

 sizeof(m_android_package_name),

 m_windows_application_id,

 sizeof(m_windows_application_id),

 m_ndef_msg_buf,

 &len);

 APP_ERROR_CHECK(err_code);

 //Set created message as the NFC payload

 err_code = nfc_t2t_payload_set(m_ndef_msg_buf, len);

 APP_ERROR_CHECK(err_code);

 //Start sensing NFC field

 err_code = nfc_t2t_emulation_start();

 APP_ERROR_CHECK(err_code);

 while (1)

 {

 NRF_LOG_FLUSH();

 __WFE();

 }

}

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 43 / 72

HARDWARE

The pins for NFC are compatible with official6 SDK

NFC GPIO

NFC_1_PIN P0.09

NFC_2_PIN P0.10

Testing:

Install nRF Toolbox APP in your phone. Connect NFC coils and download the codes to

eval board. LED1 will be on if you close NFC side of phone to the NFC coils, and turn

off when taking away

6 Nordic: https://www.nordicsemi.com/

https://www.nordicsemi.com/

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 44 / 72

CHAPTER 9. BLUETOOTH

The examples used in this chapter are: Part-2-Bluetooth-Slave-Device，Part-3-

Bluetooth-Master-Device，Part-4-Bluetooth-Master&Slave-Device.

PREPARATION

The software required:

⚫ MDK5.25

⚫ Jlink driver

⚫ nRFx-Command-Line-Tools

⚫ nRF Toolbox (mobile APPP)

⚫ Mobile phone which supports BLE

INSTALL SOFTDEVICE

To run the examples, you need to first install Softdevice.

⚫ Erase Flash

⚫ Install Softdevice

BLUETOOTH SERIAL TRANSPARENT

The example located in Bluetooth-Slave-Device\USER

⚫ Open SlaveDevice-Bluetooth-To-UART(APP) example, compile and download to

NRF52840 eval kit.

Expected Result:

⚫ LED1 is blinking when broadcast after downloading the code.

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 45 / 72

Open nRFToolbox software in your phone and enter UART, Connect Nodic_UART

device

⚫ After connecting, LED1 is on

⚫ You can edit the figures and try to send:

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 46 / 72

⚫ You can also send data directly on Show log:

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 47 / 72

BLUETOOTH AGAINST LOSING

Download:

⚫ Open the project SlaveDevice-Bluetooth-Proximity (APP), which located in Part-2-

Bluetooth-Slave-Device\USER

⚫ Compile and download to eval board

Expected result:

⚫ LED1 is lighted in when broadcasting after downloading

⚫ Turn on Bluetooth service of your phone

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 48 / 72

⚫ Open nRF Toolbox and clock UART. Connect Nordic_UART device

⚫ After connecting, LED1 will light on. The Toolbox will display as below:

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 49 / 72

⚫ You can click the indicator button on APP to control P0.15 pin of Eval Kit board.

When testing, you can connect P0.15 to one LED to check the status. Click Delete

button to delete device.

⚫ Press button S1 of Eval Kit board, music will be played in your phone, and

stopped if S1 is pressed again.

⚫ The software also prompt if you take the phone away from the Eval Kit board.

BLUETOOTH BEACON (SUPPORT WECHAT SHAKE)

Beacon is that build a small information base station by using BLE, it can be used in

Indoor navigation, mobile payment, store shopping, Object tracking and so on.

Beacon is not a standard built by Bluetooth SIG

Download:

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 50 / 72

⚫ Open the project SlaveDevice-Bluetooth-BEACON(WeChat) which located in Part-

2-Bluetooth-Slave-Device\USER

⚫ Compile and Download to Eval Kit Board

【Note】The example is different with official examples(line 74-77)

APP_COMPANY_IDENTIFER change to:0X004c

APP_MAJOR_VALUE change to:0x00,0x0A

APP_MINOR_VALUE change to:0x00,0x07

APP_BEACON_UUID change to:0xFD,0xA5,0x06,0x93,\

0xA4,0xE2,0x4F,0xB1,\

0xAF,0xCF,0xC6,0xEB,\

Expected result:

⚫ Open WeChat, and open Shake, there are not Nearby devices detect

⚫ Download example and run it, LED1 will light on

⚫ Open Shake again, Nearby device is detected

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 51 / 72

⚫ Click Nearby and try to shake

【Note】The Web page detected is configurable, for more details about it you

can refer to official guide of WeChat: https://zb.weixin.qq.com/intro.xhtml

The testing ID used in the example is the open ID of WeChat

Attributes Value

UUID FDA50693-A4E2-4FB1-AFCF-C6EB07647825

Major 10

Minor 7

https://zb.weixin.qq.com/intro.xhtml

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 52 / 72

WIRELESS MOUSE

HOGP profile (HID over GATT Profile) can be used to release wireless mouse function.

HOGP use basic protocol GATT of BLE to release interaction between HID host and

Device.

Download:

⚫ Open the project SlaveDevice_bluetooth-HIDS_MOUSE(APP),

⚫ Compile and download to Eval Kit board.

Expected result:

⚫ Eval Kit board broadcast and LED1 lights on

⚫ Connect P0.11，P0.12，P0.24，P0.25 to buttons

⚫ Cursor will move when press buttons.

Pin KEY 功能

P0.11 KEY1(left) Mouse move left for 5 pixels

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 53 / 72

P0.12 KEY2(up) Mouse move up for 5 pixels

P0.24 KEY3(right) Mouse move right for 5 pixels

P0.25 KEY4(down) Mouse move down for 5 pixels

⚫ If your PC support BLE, you can also used to control cursor on PC

⚫ If you want to use the joystick of Arduino Accessory Shield, you need to modify

the definition of keys in pca10056.h

WIRELESS KEYBOARD

HOGP profile (HID over GATT Profile) can be used to release wireless keyboard

function. HOGP use basic protocol GATT of BLE to release interaction between HID

host and Device.

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 54 / 72

Download:

⚫ Open the project SlaveDevice_bluetooth-HIDS_KEYBOARD(APP),

⚫ Compile and download to Eval Kit board.

Expected result:

⚫ Eval Kit board broadcast and LED1 is blinking.

⚫ Open Bluetooth of your Phone, search and connect Nordic_keyboard device. After

connecting, LED1 is on

⚫ Then you can try to input text

Press KEY1 on board to input string “hello”. Connect P0.15 to LED, and you can

find that LED is turned off if Caps Lock is enabled, and the LED is turned on when

Caps Lock is disabled.

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 55 / 72

CSCS

NRF52840 will send seed, rate, riding distance, total distance and gear ratio data to

phone via BLE.

The data is generated by software (simulated), which is based on Cycling Speed and

Cadence profile.

Download:

⚫ Open the project Bluetooth-CSCS(APP),

⚫ Compile and download to Eval Kit board.

Expected result:

⚫ Eval Kit board is broadcasting and LED1 blinking

⚫ Open nRF Toolbox APP, click CSC(Cycling Speed and Cadence)

⚫ Click Connect to scan and connect to Nordic_CSC device

⚫ After connecting, corresponding data are printed to APP

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 56 / 72

BLUETOOTH MASTER- CARDIOTACHOMETER

You need two NRF52840 Eval Kit for this example, one is used as master, and another

is slaver.

Download:

⚫ Open project Master-Link-To-Slave-By-HRS(Master), compile and download it to

one Eval Kit board.

⚫ Open project Master-Link-To-Slave-By-HRS(Slaver), compile and download it to

another Eval Kit board.

Both projects can be found in Part-3-Bluetooth-Master-Device\USER

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 57 / 72

Expected result:

⚫ The communication between two Eval Kit boards is as below:

⚫ After downloading, the master will auto-link to slaver, LED1 are on if they connect

successfully.

⚫ Slaver will send data to Master, which are transferred to serial port and printed in

PC.

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 58 / 72

MASTER-SLAVER-BLE RELAY

With this example, Eval Kit board can work as master and slaver at the same time.

⚫ Eval Kit board auto connect to another slaver (RSCS) when work as master

⚫ Eval Kit board will connect to phone when work as slaver

⚫ With BLE Relay example, Eval Kit can receiver data from RSCS slaver and send it to

mobile phone as below:

To complete this example, you require two Eval Kit boards, one is work as Sensor(RSCS

slaver) and another is Relay (Master-Slaver)

Download:

⚫ Open project Master&Slaver-Relay(Master), compile and download to Relay

board.

⚫ Open project Master&Slaver-Relay(Slaver), compile and download to Sensor

board

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 59 / 72

【Note】 The slaver project is RSC project, it also can be HRM project

Expected result:

⚫ Power on Relay board, it begins to scan devices(master) and broadcasts(slaver).

LED1 and LED3 are on

⚫ Power on Sensor board, it begin to broadcast and LED1 is blinking, LED1 stay on if

Sensor board connected to Master successfully

Indicators of Relay Board

Indicators Description

LED1 On: Master is scanning (it keeps scanning even Slaver is connected)

LED2 On: Master has connected to slaver (slaver: sensor board)常

LED3 On: Slaver is broadcasting

LED4 On: Slaver is connected master (master: mobile phone)

【Note】The pin of LED3 is not compatible with SDK， you need to wire it to P1.05

manually.

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 60 / 72

Indicator of Sensor board:

Indicator Description

LED1 Blinking: Broadcasting

On: Connected

⚫ Open nRF Toolbox on phone, click RSC and Connect to nRF Relay device.

⚫ After connecting, LED2 of Relay board is turned off and LED4 turns on. Data are

sent to phone.

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 61 / 72

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 62 / 72

CHAPTER 10. MESH7

This chapter we describe some of the basic concepts of the Bluetooth Mesh

network using Nordic’s nRF5 SDK for Mesh.

The project we used herein is light-switch example from Nordic’s MESH SDK, for

more details about it, you can refer to official Documents.

The light-switch example demonstrates the major parts of the mesh network

ecosystem. it consists of three minor examples:

⚫ Light switch server: a minimalistic server that implements a generic OnOff server

model, which is used to receive the state data and control the state of LED1 on

the board

⚫ Light Switch Client: A minimalistic client that implements four instances of a

Generic OnOff client model. When a user presses any of the buttons, an OnOff Set

message is sent out to the configured destination address.

⚫ Mesh Provisioner: A simple static provisioner implementation. This provisioner

provisions all the nodes in one mesh network. Additionally, the provisioner also

configures key bindings and publication and subscription settings of mesh model

instances on these nodes to enable them to talk to each other.

These three examples will be referred to as the server, the client and the

provisioner respectively.

The four buttons are used to initiate certain actions and four LEDs are used to

reflect the status of actions as below:

7 You can directly refer to Nordic website:

https://www.nordicsemi.com/DocLib/Content/SDK_Doc/Mesh_SDK/v3-1-0/md_doc_getting_started_getting_started

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 63 / 72

⚫ Server:

◼ During provisioning process:

◆ LED3 and 4 blinking: Device identification active

◆ LED1 to 4: Blink four times to indicate provisioning process is

completed

◼ After provisioning and configuration is over:

◆ LED1: Reflects the value of OnOff state on the server

⚫ LED ON: Value of the OnOff state is 1 (true)

⚫ LED OFF: Value of the OnOff state is 0 (false).

⚫ Client:

◼ During provisioning process:

◆ LED3 and 4 blinking: Device identification active

◆ LED1 to 4: Blink four times to indicate provisioning process is

completed

◼ After provisioning and configuration is over, buttons on the client are

used to send OnOff Set message to the servers:

◆ Button1: Send a message to the odd group(address: 0xC003) to turn

on LED1

◆ Button2: Send a message to the odd group (address: 0xC003) to turn

off LED1

◆ Button3: Send a message to the even group (address: 0xC002) to

turn on LED1

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 64 / 72

◆ Button 4: Send a message to the even group (address: 0xC002) to

turn off LED1.

⚫ Provisioner:

◼ Button1: Start provisioning

◼ LED1: Reflects the state of the provisioning.

◆ LED ON: provisioning of the node is in progress

◆ LED OFF: No ongoing provisioning process

◼ LED2： Reflects the state of the configuration

◆ LED ON: Configuration of the node is in process

◆ LED OFF: No ongoing configuration process

The following figure gives the overall view of the mesh network that will be set up

in this example. Numbers in parentheses indicate the addresses that are assigned to

these nodes by the provisioner.

The Mesh is as below:

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 65 / 72

Hardware requirement:

it required at least three NRF52840 Eval Kit:

⚫ One Eval Kit board for server

⚫ One Eval Kit board for client

⚫ One Eval Kit board for provisioner

Software requirement:

1. nRF Mesh SDK: nrf5_SDK_for_Mesh_v2.2.0_src, download and extract the SDK

2. BLE SDK: nRF5_SDK_15.0.0_a53641a, download and extract the SDK

3. nrfjprog: This tool is used to erase Flash, can be installed by nRFx Command Line

Tools for Windows

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 66 / 72

4. SEGGER Embedded Studio for ARM 4.10a (The MESH project is built by this tool)

【Note】All the resources should be extracted to the same path, for linked by

compiler. Otherwise, the project is failed to compile.

Download:

⚫ Connect NRF52840 Eval Kit board to PC. Decide which board you want to use as

client and which one as provisioner

⚫ Open projects with SEGGER Embedded Studio for ARM 4.10a

◼ Provisioner:

MESH\nrf5_SDK_for_Mesh_v2.2.0_src\examples\light_switch\provisioner\

light_switch_provisioner_nrf52840_xxAA_s140_6_0_0.emProject

◼ Server:

MESH\nrf5_SDK_for_Mesh_v2.2.0_src\examples\light_switch\proxy_server\ligh

t_switch_proxy_server_nrf52840_xxAA_s140_6_0_0.emProject

◼ Client:

MESH\nrf5_SDK_for_Mesh_v2.2.0_src\examples\light_switch\proxy_client\light

_switch_proxy_client_nrf52840_xxAA_s140_6_0_0.emProject

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 67 / 72

⚫ Compile projects

⚫ Download projects

⚫ You can also try to debug

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 68 / 72

Running example:

When the flashing is complete, the script executes a reset operation to start the

example applications.

 After the reset, the provisioner waits for user input. Follow these steps to see the

mesh network in actions:

1. Press Button1 on the provisioner board to start the provisioning process

a) The provisioner first provisions and configures the client and assigns the

address 0x100 to the client node

b) The two instances of the OnOff client models are instantiated on

separate secondary elements. For this reason, they get consecutive

addresses starting with 0x101

c) Finally, the provisioner picks up the available devices at random, assigns

them consecutive addresses, and adds them to odd and even groups

d) Observe the LED status on the provisioner, client and server boards.

e) Wait until LED1 on the provisioner board remains ON steadily for a few

seconds, which indicates that all available boards have been provisioned

and configured

f) Press buttons on the client board to change the state of LED1 on the

server boards:

i. Press Button1 on the client board to turn ON LED1 on all servers

with ODD address

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 69 / 72

ii. Press Button2 on the client board to turn OFF LED1 on all servers

with ODD addresses

iii. Press Button3 on the client board to turn ON LED1 on all servers

with EVEN address

iv. Press Button4 on the client board to turn OFF LED1 on all servers

with EVEN address

g) Press Button1 on the servers to locally change the state of LED1 and

observe that the client receivers the status message from the

corresponding server containing the new state value.

h) You can monitor the RTT logs with J-Link RTT viewer by connecting

provisioner and client.

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 70 / 72

User Phone as provisioner

Besides the NRF52840 board, you can also use your phone as provisioner.

1. Download client and server project to Eval Kit board respectively.

2. Install nRF Mesh APP to your phone to work as a provisioner.

3. Connect to client and server

4. Configure client and server

5. Press Button1 on client board turns ON LED1 of server

6. Press Button2 on client board turns OFF LED1 of server

Provisioner:

The provisioner configures a network in a fixed, predefined way. it is implemented

as a multi-layered state machine due to the asynchronous nature of the provisioning

and configuration process.

The provisioner first provisions and configures a client device with a known URI

hash. Then configures the servers and networking.

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 71 / 72

Client:

The light switch client implements a Generic OnOff client. Together with light

switch server and mesh provisioner, it is part of the light switch example network

demonstration, in which it has a provisioner role.

Server:

The light switch server is a Generic OnOff server that has a provisionee role in the

light switch example network demonstration, which is also composed of light switch

NRF52840 Eval Kit User Manual

Vision: V1.0.1 Date: 2019.01.19 72 / 72

client and mesh provisioner. There can be one or more servers in this network, for

example light bulbs.

The provisioner configures this server model instance to communicate with the

client model.

