

OpenX05R-C User Manual

1.	OVEF	RVIEW	2
	1.1. V	WHAT'S ON BOARD	2
2.	DEM	O	4
	2.1. /	ADC+DMA	
	2.2. (CAN1 TO CAN2-NORMAL	5
	2.3. (CAN-NORMAL	5
:	2.4. E	DAC	6
:	2.5. E	DS18B20	6
:	2.6. 0	GPIO_LED_KEY	7
2	2.7. I	I2C	7
2	2.8. l	I2S_UDA1380	7
:	2.9. L	LCD22-PICTURE	8
2	2.10.	MCO_OUT	8
2	2.11.	NRF24L01	9
2	2.12.	SD_FATFS	9
2	2.13.	SDIO	10
2	2.14.	SPI	10
2	2.15.	TouchPanel	11
2	2.16.	UCGUI3.9-LCD22	12
2	2.17.	UCOSII2.91+UCGUI3.90A	12
2	2.18.	USARTX_PRITF	13
2	2.19.	USB FS	13
	2.19.	1 USB FS Examples (USB_Device_Examples-HID)	13
	2.19.2	2 USB FS Examples (USB_Device_Examples-MSC)	14
	2.19.3	3 USB FS Examples (USB_Device_Examples-VCP)	14
	2.19.4	4 USB FS Examples (USB_Host_Device_Examples - DRD)	15
	2.19.	5 USB FS Examples (USB_Host_Examples-HID)	
	2.19.0	6 USB FS Examples (USB_Host_Examples-MSC)	
4	2.20.	USB HS Examples (USB Device Examples HID)	18
	2.20.	 USB HS Examples (USB_Device_Examples HID)	
	2.20.2	2 USB HS Examples (USB_Device_Examples-WSC)	19 20
	2.20.	4 USB HS Examples (USB Device Examples-VOF)	20
	2.20.	5 USB HS Examples (USB Host Examples-HID)	20
	2 20	6 USB HS Examples (USB Host Examples-MSC)	21
	2.20	7 USB HS Examples (USB Host Examples- DualCore)	
	2.20.8	8 USB HS Examples (USB_Host_Device_Examples- DRD)	24
3.	REVI	ISION HISTORY	25

1. Overview

1.1. What's on board

[MCU]

- 1. **MCU core board connector** for easily connecting the CoreX05R
- 2. UART3 interface
- easily connects to RS232, USB TO 232, etc.3. SDIO interface
 - for connecting Micro SD module, features much faster access speed rather than SPI

4. **I2S2/I2S3/I2C1**

for connecting I2S peripherals, such as Audio module

[Other interfaces]

14. 5V DC jack

15. 5V/3.3 V power input/output

usually used as power output, also common-grounding with other user board

 MCU pins connector
 VCC, GND, and all the I/O ports are accessible on expansion connectors for further expansion

[Jumper]

5. I2C1/I2C2 interface

easily connects to I2C peripherals such as I/O expander (PCF8574), FRAM (FM24CLxx), etc.

6. SPI1/SPI2 + AD/DA interface

easily connects to SPI peripherals such as DataFlash (AT45DBxx), SD card, MP3 module, etc.

SPI1 features AD/DA alternative function, supports connecting AD/DA module as well

7. USART2 interface

easily connects to RS232, RS485, USB TO 232, etc.

8. LCD interface

for connecting touch screen LCD

9. ULPI interface

for connecting high-speed USB peripheral (the STM32F405R integrates USB HS controller without any PHY device)

10. UART1 interface

easily connects to RS232, USB TO 232, etc.

11. CAN2 interface

communicates with accessory boards which feature the CAN device conveniently

12. CAN1 interface

communicates with accessory boards which feature the CAN device conveniently

13. ONE-WIRE interface

easily connects to ONE-WIRE devices (TO-92 package), such as temperature sensor (DS18B20), electronic registration number (DS2401), etc.

17. LEDs jumper

short the jumper to connect to default I/Os used in example code

open the jumper to connect to custom I/Os via jumper wires

18. Joystick jumper

jumper wires

short the jumper to connect to default I/Os used in example code open the jumper to connect to custom I/Os via

19. User key/Wake-Up button jumper

short the jumper to connect to default I/Os used in example code open the jumper to connect to custom I/Os via jumper wires

20. **5V power selection jumper** powered from Core 5V or 5V DC

[Component]

21. LEDs

convenient for indicating I/O status and/or program running state

22. User key

convenient for I/O input and/or interact with running code

23. Wake-Up button

wake up the STM32 MCU from sleep mode, also used as regular user key

24. Joystick

convenient for I/O input (five positions)

2. Demo

- KEIL MDK Version: 4.7
- Programmer/Debugger: ULINK2
- Programming/Debugging interface: SWD
- Serial port settings:

Select a proper COM port		
Baud rate	115200	
Data bits	8	
Stop bits	1	
Parity bits	None	
Flow control	None	

2.1. ADC+DMA

- Overview
 ADC+DMA demo
- Hardware connection

• Operation and result

- Connect the Analog Test Board to the board via SPI1 (ADC+DAC) interface
- Rotate the potentiometer on the Analog Test Board, the below information will be printed on the serial debugging assistant:

The current AD value = 1.0264V The current AD value = 1.2319V The current AD value = 2.6837V The current AD value = 2.4750V

2.2. CAN1 TO CAN2-Normal

- Overview
 CAN demo
- Hardware connection

Two "SN65HVD230 CAN Board" are required, connect them to the board respectively

• Operation and result

> The below information will be printed on the serial debugging assistant:

2.3. CAN-Normal

Overview

CAN demo in Normal mode Hardware connection

Two "SN65HVD230 CAN Board" are required, connect them to the board respectively

Operation and result

> The below information will be printed on the serial debugging assistant:

CAN-Bus Test
CAN-Bus Speed 100kHz
Please press the JOYSTICK middle button to continue!
CAN2 Receive Data
CAN2 ID 123
CAN2_DATAO ee
CAN2_DATA1 de
CAN2_DATA2 b8
CAN2_DATA3 5f
CAN2_DATA4 f3
CAN2_DATA5 65
CAN2_DATA6 3c
CAN2_DATA7 c
CAN1 Receive Data
CAN1 ID 321
CAN1_DATAO 84
CAN1_DATA1 b8
CAN1_DATA2 d5

2.4. DAC

Overview

DAC demo

Hardware connection

- Connect the Analog Test Board to the board via SPI1 (ADC+DAC) interface
- Connect the 5V pinheaders on both the main board and the Analog Test Board via jumper wire

- Operation and result
 - > You should hear sound from the Analog Test Board.

*

=

2.5. DS18B20

- Overview
 DS18B20 temperature measurement
- Hardware connection
 Insert the DS18B20 to the ONEWIRE socket
- Operation and result

The below information will be printed on the serial debugging assistant:

2.6. GPIO_LED_KEY

- Overview
 LED, push button, joystick demo
- Hardware connection
 Short the LED jumper, joystick jumper on the board
- Operation and result
 Push the button or joystick; the LED status should keep changing accordingly.

2.7. I2C

- Overview
 I2C EEPROM demo
- Hardware connection

 Connect the AT24/FM24 Board to the board via I2CX interface(connect to I2C1 or I2C2 depends on the program)

Software configuration

Connect the module	to I2C1	Connect the module to I2C2 interface	
interface			
#define Open_I2C1		//#define Open_I2C1	
//#define Open_I2C2		#define Open_I2C2	

Operation and result

> The below information will be printed on the serial debugging assistant:

```
EEFROM 24CO2 Write Test
EEFROM 24CO2 Write Test OK
EEFROM 24CO2 Read Test
```

EEPROM 24CO2 Read Test OK

2.8. I2S_UDA1380

- Overview
- I2S demo using UDA1380 Board
- Hardware connection

Operation and result
 Push the RESET key, you should hear music from the board.

2.9. LCD22-picture

- Overview
 LCD demo
- Hardware connection

- Connect the 2.2inch 320x240 Touch LCD (A) to the board.
- Operation and result
 Display image on the LCD:

2.10. MCO_OUT

- Overview
 Clock signal output demo
- Hardware connection
 Connect the oscilloscope probe to the onboard PA8 pinheader
- Operation and result The below external crystal signal will display on the Oscilloscope:

- Connect the UDA1380 Board to the onboard I2S interface
- Connect the headphone to the HEADPHONE jack

2.11. NRF24L01

- Overview
 NRF24L01 demo
- Hardware connection

- Connect a serial port converter to the onboard USART1 interface
- Two " NRF24L01 Board" are required, connect them to two Open103R board respectively

• Software configuration

Two NRF24L01 are needed for this demo, the software configuring as below: When configuring as mode of transmitting, enabled: #define T_O_R 1, comment out: //#define T_O_R 0; When configuring as mode of receiving, enable: #define T_O_R 0, comment out: //#define T_O_R 0

Operation and result
 The below information will be printed on the serial debugging assistant:

2.12. SD_FatFS

- Overview
 SD_FatFS demo
- Hardware connection

	SDIO	1
0 01 12 10 00		🗐 Ol 💡
9 DS 10 1		10 BZ PI
D D3 C 1		-0 D3 P
		CLK P
CHD 📷		CnD à
		2 DO P
		OND I
Dire Case		3.30

- Connect the Micro SD Storage Board (with SD card) to the board via SPI1 interface
- Operation and result
 Message will be printed on the serial debugging assistant.

2.13. SDIO

- Overview
 SDIO demo
- Hardware connection

 Connect the Micro SD Storage Board (with SD card) to the board via SPI1 interface

Operation and result
 Message will be printed on the serial debugging assistant.

2.14. SPI

- Overview
 SPI FLASH demo
- Hardware connection

 Connect the AT45DBXX DataFlash Board to the board via SPIX interface(connect to SPI1 or SPI2 depends on the program)

Configuration

Connect the module to the board	Connect the module to the board via
via SPI1 interface	SPI2 interface
#define Open_SPI1	//#define Open_SPI1
//#define Open_SPI2	#define Open_SPI2

Operation and result

The below information will be printed on the serial debugging assistant:

```
SYSCLK:180M

MCLK:180M

PCLK1:45M

PCLK1:45M

PCLK2:90M

Welcome to WaveShare STM32F4 series MCU Board Open429Z-D

SFI is ready!

AT45DBXX had been Init!

AT45DBXX ID is 0x1f 0x24 0x0 0x0

FALSH AT45DBXX Write Test:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
```

2.15. TouchPanel

Overview

LCD demo

- Hardware connection
 Connect the 2.2inch 320x240 Touch LCD (A) to the board
- Operation and result
 Message will be displayed on the LCD

Touch-screen calibration interface

Application
 Handheld device display

2.16. uCGUI3.9-LCD22

- OverviewGUI demo
- Hardware connection

Connect 2.2inch 320x240 Touch LCD (A) to the board

- Operation and result
 - Display image on the LCD

2.17. uCOSII2.91+UCGUI3.90A

- Overview uCOSII2.91+UCGUI3.90A demo
- Hardware connection

Connect the 2.2inch 320x240 Touch LCD (A) to the board

- Operation and result
 - > Information will be displayed on the LCD; the LED will keep blinking.

2.18. USARTx_pritf

Overview

USART serial port demo

- Hardware connection
- Operation and result

The below information will be printed on the serial debugging assistant:

```
Waveshare!
Waveshare!
Waveshare!
```

2.19. USB FS

2.19.1 USB FS Examples (USB_Device_Examples-HID)

- Overview
 USB Device HID example
- Hardware connection

		_
Esta .	-6111111	
		avesh
Corex	MaveShi Base 1 1 1 181	

- Open the LED jumper; Short the OTG jumper.
- Connect the onboard
 FS USB interface and
 PC USB port through
 a USB cable
- Connect the
 2.2inch320x240Touch
 LCD (A) to the board

- Operation and result
- HID

The USB device will be appeared on the computer device manager, control the computer cursor by joystick.

2.19.2 USB FS Examples (USB_Device_Examples-MSC)

Overview

USB Device Mass Storage example (FATFS)

Hardware connection

- Open the LED jumper; Short the OTG jumper.
- Connect the Micro SD Storage Board (with SD card) to the onboard SDIO interface
- Connect the onboard FS
 USB interface and PC
 USB port through a USB
 cable
- Connect the 2.2inch320x240TouchLC
 D (A) to the board

- Operation and result
 - > MSC

"USB Mass storage device" will appeared on the computer Device Manager, the SD card appears as a removable hard drive on the PC:

2.19.3 USB FS Examples (USB_Device_Examples-VCP)

Overview

- USB Device VCP (Virtual Com Port) example
- Hardware connection

- Open the LED jumper; Short the OTG jumper.
- Connect the onboard FS
 USB interface and PC USB
 port through a USB cable
- Connect the
 2.2inch320x240TouchLCD
 (A) to the board

Operation and result
 VCP
 STMicroelectronics Virtual COM Port (COM3)

Appear on the computer device manager.

2.19.4 USB FS Examples (USB_Host_Device_Examples - DRD)

- Overview
 USB Manual Dual role device example
- Hardware connection

Operation and result
 Below information displayed on the LCD:

- Open the LED jumper; Short the OTG jumper.
- Connect the onboard
 FS USB interface and
 PC USB port through
 a USB cable
- Connect the
 2.2inch320x240Touch
 LCD (A) to the board

Choose Host or Slave via joystick:

➢ Part 1:

Part 2:

- Connect the Micro SD Storage Board (with SD card) to the onboard SDIO interface
- Connect the onboard USB interface and PC USB port through a USB cable
- Connect the
 2.2inch320x240TouchL
 CD (A) to the board

- Connect the Micro SD Storage Board (with SD card) to the onboard SDIO interface
- Connect the onboard USB interface and PC USB port through a USB cable

"USB Mass storage device" will appeared on the computer Device Manager, the SD card appears as a removable hard drive on the PC

2.19.5 USB FS Examples (USB_Host_Examples-HID)

- Overview
 USB Host HID example
- Hardware connection

• Operation and result

- Open the LED jumper; Short the OTG jumper.
- Connect a USB mouse to the on board USB interface through an USB OTG cable
- Connect the 2.2inch320x240Touch LCD (A) to the board

≻ HID

The green dot on the LCD will move following the mouse.

2.19.6 USB FS Examples (USB_Host_Examples-MSC)

- Overview
 USB Host MSC example
- Hardware connection

- Open the LED jumper; Short the OTG jumper.
- Connect a USB Flash Drive(Place picture.bmp into the USB Flash Drive) to the on board USB interface through an USB OTG cable;
 - Connectthe2.2inch320x240TouchLCD (A) to the board.

- Operation and result
 - > MSC

Display message/info on the LCD, the example code will place a TXT file into the USB Flash Drive, list the files in the USB Flash Drive, and display the picture.bmp

2.20. USB HS

2.20.1 USB HS Examples (USB_Device_Examples-HID)

- Overview
 USB Device HID (Joystick) example
- Hardware connection

- Open the LED、OTG jumper;
- Connect the USB3300 board to the onboard ULPI interface.
- Connect the USB3300 USB HS Board OTG interface and PC USB port through a USB cable
 - Connect the
 2.2inch320x240Touch
 LCD (A) to the board

- Operation and result
 - > HID

Control the computer cursor by joystick

2.20.2 USB HS Examples (USB_Device_Examples-MSC)

- Overview
 USB Device Mass Storage example
- Hardware connection

- Open the LED、OTG jumper;
- Connect the USB3300 board to the onboard ULPI interface.
- Connect the Micro SD Storage Board (with SD card) to the board via SDIO interface
- Connect the USB3300 USB HS
 Board OTG interface
 and PC USB port
 through a USB cable
- Connect the
 2.2inch320x240Touch
 LCD (A) to the board

• Operation and result

MSC

"USB Mass storage device" will appeared on the computer Device Manager, the SD card appears as a removable hard drive on the PC.

2.20.3 USB HS Examples (USB_Device_Examples-VCP)

- Overview
 - USB Device VCP (Virtual Com Port) example
- Hardware connection

- Open the LED、OTG jumper;
- Connect the onboard FS USB interface and PC USB port through a USB cable
- Connect the
 2.2inch320x240Touch
 LCD (A) to the board

- Operation and result
 - > VCP

A USB VCP (Virtual Com Port) exists on the PC, short the RX TX pins of USART3 for self sending-receiving.

2.20.4 USB HS Examples (USB_Device_Examples- DualCore)

- Overview
 USB Device Dual Core example
- Hardware connection

- Open the LED、OTG jumper;
- Connect the USB3300 board to the onboard ULPI interface.
- Connect the Micro SD Storage Board (with SD card) to the board via SDIO interface
- Connect the USB3300 Mini USB interface and PC USB port through a USB cable
- Connect the
 2.2inch320x240Touch
 LCD (A) to the board

Operation and result

DualCore

Part 1: Connect the onboard FS USB interface and PC USB port through a USB cable; Control the computer cursor by joystick;

Part 2: Connect the USB3300 USB HS Board USB interface and PC USB port through a USB cable; you should find the SD card as a removable storage device on the computer.

2.20.5 USB HS Examples (USB_Host_Examples-HID)

- Overview
 USB Host HID example
- Hardware connection

- Open the LED、OTG jumper;
- Connect the USB3300 board to the onboard ULPI interface.
- Connect a USB mouse to the USB3300 board USB interface.
- Connect the 2.2inch320x240Touch LCD (A) to the board

- Operation and result
 - > HID

The green dot on the LCD will move following the mouse.

2.20.6 USB HS Examples (USB_Host_Examples-MSC)

Overview

USB Host MSC example

Hardware connection

- Open the LED、OTG jumper;
- Connect the USB3300 board to the onboard ULPI interface.
- Connect a USB flash drive to the USB3300 board via Mini USB interface
- Connect the
 2.2inch320x240Touch
 LCD (A) to the board

- Operation and result
 - > MSC

Display message/info on the LCD, the example code will place a TXT file into the USB Flash Drive, list the files in the USB Flash Drive.

2.20.7 USB HS Examples (USB_Host_Examples- DualCore)

- Overview
 USB Host Dual Core example
- Part 1: HS Host
- Hardware connection

- Open the LED、OTG jumper;
- Connect the USB3300 board to the onboard ULPI interface.
- Connect a USB flash drive to the USB3300 board via Mini USB interface
- Connect the
 2.2inch320x240Touch
 LCD (A) to the board

- Operation and result
 - > MSC

Display message/info on the LCD, the example code will place a TXT file into the USB Flash Drive, list the files in the USB Flash Drive.

- Part 2: FS Host:
 - Hardware connection

- Open the LED jumper ; Short the OTG jumper.
- Connect a USB mouse to the on board USB interface through an USB OTG cable
- Connect the 2.2inch320x240Touch LCD (A) to the board

- Operation and result
 - > HID

The green dot on the LCD will move following the mouse.

2.20.8 USB HS Examples (USB_Host_Device_Examples- DRD)

- Overview
 USB_Host_Device_Examples
- Part 1: HS Host
- Hardware connection

- Open the LED、OTG jumper;
- Connect the USB3300 board to the onboard ULPI interface.
- Connect a USB flash drive to the USB3300 board via Mini USB interface
- Connect the 2.2inch320x240Touch
 LCD (A) to the board

Operation and result

The LCD will display the file list in the USB flash drive

- Part 2: HS Device
- Hardware connection

- Open the LED、OTG jumper;
- Connect the USB3300 board to the onboard ULPI interface.
- Connect the Micro SD Storage Board (with SD card) to the board via SDIO interface
- Connect the USB3300 Mini USB interface and PC USB port through a USB cable
- Connect the
 2.2inch320x240Touch
 LCD (A) to the board

Operation and result

> MSC

You should find the SD card as a removable storage device on the computer.

3. Revision history

Version	Description	Date	Author
V1.0	Initial revision	2014/05/17	Waveshare team