

Adafruit QT Py ESP32-S2
Created by Kattni Rembor

https://learn.adafruit.com/adafruit-qt-py-esp32-s2

Last updated on 2022-01-20 03:38:53 PM EST

©Adafruit Industries Page 1 of 180

7

11

12

13

14

15

16

17

17

18

18

20

21

21

22

22

23

24

24

26

27

28

28

29

29

30

30

31

31

32

33

33

34

34

37

38

39

41

42

43

Table of Contents

Overview

Pinouts

• Power

• ESP32-S2 Module

• Logic Pins

• STEMMA QT Connector

• NeoPixel LED

• Buttons

• uFL Antenna Port

CircuitPython

• CircuitPython Quickstart

Install UF2 Bootloader

Installing the Mu Editor

• Download and Install Mu

• Starting Up Mu

• Using Mu

The CIRCUITPY Drive

Creating and Editing Code

• Creating Code

• Editing Code

• Back to Editing Code...

• Naming Your Program File

Exploring Your First CircuitPython Program

• Imports & Libraries

• Setting Up The LED

• Loop-de-loops

• What Happens When My Code Finishes Running?

• What if I Don't Have the Loop?

Connecting to the Serial Console

• Are you using Mu?

• Serial Console Issues or Delays on Linux

• Setting Permissions on Linux

• Using Something Else?

Interacting with the Serial Console

The REPL

• Entering the REPL

• Interacting with the REPL

• Returning to the Serial Console

CircuitPython Libraries

• The Adafruit CircuitPython Library Bundle

©Adafruit Industries Page 2 of 180

43

44

44

45

46

46

46

49

50

51

51

51

53

58

58

59

59

60

60

60

61

63

63

64

65

66

67

68

70

73

73

74

74

75

76

76

76

77

78

79

79

80

81

81

82

84

84

84

86

• Downloading the Adafruit CircuitPython Library Bundle

• The CircuitPython Community Library Bundle

• Downloading the CircuitPython Community Library Bundle

• Understanding the Bundle

• Example Files

• Copying Libraries to Your Board

• Understanding Which Libraries to Install

• Example: ImportError Due to Missing Library

• Library Install on Non-Express Boards

• Updating CircuitPython Libraries and Examples

CircuitPython Documentation

• CircuitPython Core Documentation

• CircuitPython Library Documentation

Recommended Editors

• Recommended editors

• Recommended only with particular settings or add-ons

• Editors that are NOT recommended

Advanced Serial Console on Windows

• Windows 7 and 8.1

• What's the COM?

• Install Putty

Advanced Serial Console on Mac

• What's the Port?

• Connect with screen

Advanced Serial Console on Linux

• What's the Port?

• Connect with screen

• Permissions on Linux

Frequently Asked Questions

Troubleshooting

• Always Run the Latest Version of CircuitPython and Libraries

• I have to continue using CircuitPython 5.x or earlier. Where can I find compatible libraries?

• Bootloader (boardnameBOOT) Drive Not Present

• Windows Explorer Locks Up When Accessing boardnameBOOT Drive

• Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied

• CIRCUITPY Drive Does Not Appear

• Device Errors or Problems on Windows

• Serial Console in Mu Not Displaying Anything

• code.py Restarts Constantly

• CircuitPython RGB Status Light

• CircuitPython 7.0.0 and Later

• CircuitPython 6.3.0 and earlier

• Serial console showing ValueError: Incompatible .mpy file

• CIRCUITPY Drive Issues

• Safe Mode

• To erase CIRCUITPY: storage.erase_filesystem()

• Erase CIRCUITPY Without Access to the REPL

• For the specific boards listed below:

• For SAMD21 non-Express boards that have a UF2 bootloader:

©Adafruit Industries Page 3 of 180

87

87

88

88

88

88

89

90

91

92

92

94

98

99

100

101

102

103

103

105

106

106

106

108

109

110

111

111

111

113

114

114

114

116

116

117

119

120

121

121

122

122

123

124

125

• For SAMD21 non-Express boards that do not have a UF2 bootloader:

• Running Out of File Space on SAMD21 Non-Express Boards

• Delete something!

• Use tabs

• On MacOS?

• Prevent & Remove MacOS Hidden Files

• Copy Files on MacOS Without Creating Hidden Files

• Other MacOS Space-Saving Tips

• Device Locked Up or Boot Looping

Welcome to the Community!

• Adafruit Discord

• CircuitPython.org

• Adafruit GitHub

• Adafruit Forums

• Read the Docs

CircuitPython Essentials

Blink

• NeoPixel Location

• Blinking a NeoPixel LED

• RGB LED Colors

Digital Input

• NeoPixel and Button

• Controlling the NeoPixel with a Button

Analog In

• Analog to Digital Converter (ADC)

• Potentiometers

• Hardware

• Wire Up the Potentiometer

• Reading Analog Pin Values

• Reading Analog Voltage Values

CPU Temperature

• Microcontroller Location

• Reading the Microcontroller Temperature

Storage

• The boot.py File

• The code.py File

• Logging the Temperature

• Recovering a Read-Only Filesystem

I2C

• I2C and CircuitPython

• Necessary Hardware

• Wiring the MCP9808

• Find Your Sensor

• I2C Sensor Data

• Where's my I2C?

©Adafruit Industries Page 4 of 180

127

127

128

128

129

130

130

131

131

134

134

135

136

137

138

140

141

142

143

144

144

145

147

148

150

153

155

159

159

160

165

167

167

167

168

168

169

169

170

171

172

173

173

173

174

174

175

175

176

Capacitive Touch

• One Capacitive Touch Pin

• Pin Location

• Reading Touch on the Pin

• Multiple Capacitive Touch Pins

• Pin Location

• Reading Touch on the Pins

• The Available Touch-Capable Pins

Arduino IDE Setup

Arduino NeoPixel Blink

• Pre-Flight Check: Get Arduino IDE & Hardware Set Up

• Start up Arduino IDE and Select Board/Port

• Install NeoPixel Library

• New NeoPixel Blink Sketch

• Verify (Compile) Sketch

• Upload Sketch

• Native USB and manual bootloading

• Enter Manual Bootload Mode

• Finally, a Blink!

I2C Scan Test

• Common I2C Connectivity Issues

• Perform an I2C scan!

• Wiring the MCP9808

WiFi Test

• WiFi Connection Test

• Secure Connection Example

• JSON Parsing Demo

Usage with Adafruit IO

• Install Libraries

• Adafruit IO Setup

• Code Usage

Factory Reset

• Factory Reset Firmware UF2

• Factory Reset and Bootloader Repair

• Download .bin and Enter Bootloader

• Step 1. Download the factory-reset-and-bootloader.bin file

• Step 2. Enter ROM bootloader mode

• The WebSerial ESPTool Method

• Connect

• Erase the Contents

• Program the ESP32-S2

• The esptool Method (for advanced users)

• Install ESPTool.py

• Test the Installation

• Connect

• Installing the Bootloader

• Reset the board

• Older Versions of Chrome

• The Flash an Arduino Sketch Method

©Adafruit Industries Page 5 of 180

176

177

178

178

179

• Arduino IDE Setup

• Load the Blink Sketch

Downloads

• Files:

• Schematic and Fab Print

©Adafruit Industries Page 6 of 180

Overview

What has your favorite Espressif WiFi microcontroller, comes with our favorite

connector - the STEMMA QT (https://adafru.it/HMB), a chainable I2C port, and has lots

of Flash and RAM memory for your next IoT project? What will make your next IoT

project flyyyyy? What a cutie pie! Or is it... a QT Py? This diminutive dev board comes

with one of our new favorite lil chips, the ESP32-S2!

The ESP32-S2 is a highly-integrated, low-power, 2.4 GHz Wi-Fi System-on-Chip (SoC)

solution that now has built-in native USB as well as some other interesting new

©Adafruit Industries Page 7 of 180

http://adafruit.com/stemma
http://adafruit.com/stemma

technologies like Time of Flight distance measurements. With its state-of-the-art

power and RF performance, this SoC is an ideal choice for a wide variety of

application scenarios relating to the Internet of Things (IoT) (https://adafru.it/Bwq), we

arable electronics (https://adafru.it/Osb), and smart homes.

Please note the QT Py ESP32-S2 has a single-core 240 MHz chip, so it won't be as

fast as ESP32's with dual-core. Also, there is no Bluetooth support. However, we are

super excited about the ESP32-S2's native USB which unlocks a lot of capabilities for

advanced interfacing! This ESP32-S2 mini-module we are using on the QT Py comes

with 4 MB flash and 2 MB PSRAM so you can buffer massive JSON files for parsing!

©Adafruit Industries Page 8 of 180

https://www.adafruit.com/category/342
https://www.adafruit.com/category/65
https://www.adafruit.com/category/65

OLEDs (https://adafru.it/NB-)! Inertial Measurement Units (https://adafru.it/NC0)! Sens

ors a-plenty (https://adafru.it/NC1). All plug-and-play thanks to the innovative

chainable design: SparkFun Qwiic (https://adafru.it/Fpw)-compatible STEMMA QT (htt

ps://adafru.it/Ft4) connectors for the I2C bus so you don't even need to solder! Just

plug in a compatible cable and attach it to your MCU of choice, and you’re ready to

load up some software and measure some light. Seeed Grove I2C boards (https://

adafru.it/Ndk) will also work with this adapter cable.

Pinout and shape are Seeed Xiao (https://adafru.it/NC3) compatible, with castellated

pads. In addition to the QT connector, we also added an RGB NeoPixel (with

controllable power pin to allow for ultra-low-power usage), a reset button (great for

restarting your program or entering the bootloader) and a button on GPIO 0 for

entering the ROM bootloader or for user input

Runs Arduino like a dream, and CircuitPython projects are fantastically fun.

©Adafruit Industries Page 9 of 180

https://www.adafruit.com/?q=qt+oled&main_page=category&cPath=1005&sort=BestMatch
https://www.adafruit.com/?q=qt+imu&main_page=category&cPath=1005&sort=BestMatch
https://www.adafruit.com/?q=qt+sensor&main_page=category&cPath=1005&sort=BestMatch
https://www.adafruit.com/?q=qt+sensor&main_page=category&cPath=1005&sort=BestMatch
https://www.sparkfun.com/qwiic
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/product/4528
https://wiki.seeedstudio.com/Seeeduino-XIAO/

Same size, form-factor, and pin-out as Seeed Xiao

USB Type C connector - If you have only Micro B cables, this adapter will come

in handy (https://adafru.it/FQR)!

ESP32-S2 240MHz Tensilica processor - the next generation of ESP32, now with

native USB so it can act like a keyboard/mouse, MIDI device, disk drive, etc!

4 MB Flash & 2 MB PSRAM

Native USB supported by every OS - can be used in Arduino or CircuitPython as

USB serial console, MIDI, Keyboard/Mouse HID, even a little disk drive for

storing Python scripts.

Can be used with Arduino IDE or CircuitPython

Built-in RGB NeoPixel LED with power control to reduce quiescent power in

deep sleep

Battery input pads on underside with diode protection for external battery packs

up to 6V input

13 GPIO pins:

11 on breakout pads, 2 more on QT connector

10 x 12-bit analog inputs (SPI high speed pads do not have analog inputs)

8-bit analog output DAC

PWM outputs on any pin

Two I2C ports, one on the breakout pads, and another with STEMMA QT

plug-n-play connector

Hardware UART

Hardware SPI on the high speed SPI peripheral puns

Hardware I2S on any pins

6 x Capacitive Touch with no additional components required

3.3V regulator with 600mA peak output (https://adafru.it/NC4)

•

•

•

•

•

•

•

•

•

◦

◦

◦

◦

◦

◦

◦

◦

◦

•

©Adafruit Industries Page 10 of 180

https://www.adafruit.com/product/4299
https://www.adafruit.com/product/4299
https://www.diodes.com/assets/Datasheets/AP2112.pdf
https://www.diodes.com/assets/Datasheets/AP2112.pdf

Deep sleep at 100uA

Reset switch for starting your project code over, boot 0 button for entering

bootloader mode

Really really small

Pinouts

The QT Py ESP32-S2 is tiny but packed with features. Here's a detailed look.

•

•

•

©Adafruit Industries Page 11 of 180

PrettyPins PDF on GitHub (https://adafru.it/XAq).

Power

USB-C port - This is used for both

powering and programming the

board. You can power it with any

USB C cable.

3.3V - These pins are the output

from the 3.3V regulator, they can

supply 500mA peak.

GND - This is the common ground

for all power and logic.

5V - This is 5v out from the USB

port.

You can also use the 5V pin as a voltage input but you must have some sort of diode

(schottky, signal, power, really anything) between your external power source and this

pin with anode to battery, cathode to 5V pin. Note that you cannot power the USB

port by supplying 5V to this pin: there is a protection diode that prevents the 5V from

reaching the USB connector (unless you bridge the jumper on the back!). This is to

protect host computer USB ports, etc. You can draw 1A peak through the diode, but

we recommend keeping it lower than that, about 500mA.

BAT/GND pads - On the back of the

board are two pads labeled BAT

and GND. These are the battery

input pads with diode protection for

external battery packs up to 6V

input.

•

•

•

•

•

©Adafruit Industries Page 12 of 180

https://github.com/adafruit/Adafruit-QT-Py-ESP32-S2-PCB/blob/main/Adafruit%20QT%20Py%20ESP32-S2%20Pinout.pdf
https://learn.adafruit.com//assets/107480
https://learn.adafruit.com//assets/107480
https://learn.adafruit.com//assets/107481
https://learn.adafruit.com//assets/107481

ESP32-S2 Module

The ESP32-S2 is a highly-integrated, low-

power, 2.4 GHz Wi-Fi System-on-Chip

(SoC) solution that now has built-in native

USB as well as some other interesting

new technologies like Time of Flight

distance measurements. With its state-of-

the-art power and RF performance, this

SoC is an ideal choice for a wide variety

of application scenarios relating to the

Internet of Things (IoT) (https://adafru.it/

Bwq), wearable electronics (https://

adafru.it/Osb), and smart homes.

Please note, this is a single-core 240 MHz chip so it won't be as fast as ESP32's with

dual-core. Also, there is no Bluetooth support. However, we are super excited about

the ESP32-S2's native USB which unlocks a lot of capabilities for advanced

interfacing! This module comes with 4 MB flash and 2 MB PSRAM.

The 4 MB of flash is inside the module and is used for both program firmware and

filesystem storage. For example, in CircuitPython, we have 3 MB set aside for program

firmware (this includes two OTA option spots as well) and a 1MB section for

CircuitPython scripts and files.

©Adafruit Industries Page 13 of 180

https://learn.adafruit.com//assets/107482
https://learn.adafruit.com//assets/107482
https://www.adafruit.com/category/342
https://www.adafruit.com/category/65

Logic Pins

There are eleven GPIO pins broken out

to pads. There is hardware I2C, UART,

and SPI.

Eight pads are 12-bit analog inputs (SPI

high speed pads do not have analog

inputs).

You can do PWM output or hardware I2S

on any pin.

There are five pins (A2, A3, SCL, SDA,

TX) that can do capacitive touch without

any external components needed.

That's the general concept. Now for the

details!

There are four analog pins.

A0 and A1 are the only DAC output pins. These can be used as 8-bit true analog

outputs. No other pins can do so. A0 and A1 are on ADC2.

A2 and A3 can also be analog inputs. A2 and A3 are on ADC2. These two pins

can do capacitive touch.

The I2C pins. These are NOT shared by the STEMMA QT connector!

SCL - This is the I2C clock pin. There is no pull-up on this pin, so for I2C please

add an external pull-up if the breakout doesn't have one already. This pin can do

capacitive touch and also analog input

SDA - This is the I2C data pin.There is no pull-up on this pin, so for I2C please

add an external pull-up if the breakout doesn't have one already. This pin can do

capacitive touch and also analog input

The UART interface.

RX - This is the UART receive pin. Connect to TX (transmit) pin on your sensor or

breakout.

•

•

•

•

•

©Adafruit Industries Page 14 of 180

https://learn.adafruit.com//assets/107483
https://learn.adafruit.com//assets/107483

TX - This is the UART transmit pin. Connect to RX (receive) pin on your sensor or

breakout. This pin can do capacitive touch.

The SPI pins are on the ESP32-S2 high-speed peripheral. You can set any pins to be

the low-speed peripheral but you won't get the speedy interface!

SCK - This is the SPI clock pin.

MI - This is the SPI Microcontroller In / Sensor Out pin.

MO - This is the SPI Microcontroller Out / Sensor In pin.

STEMMA QT Connector

This JST SH 4-pin STEMMA QT (https://

adafru.it/Ft4) connector breaks out a

second I2C interface (SCL1, SDA1, 3.3V,

GND). It allows you to connect to various

breakouts and sensors with STEMMA QT

connectors (https://adafru.it/Qgf) or to

other things using assorted associated

accessories (https://adafru.it/Ft6). It works

great with any STEMMA QT or Qwiic

sensor/device. You can also use it with

Grove I2C devices thanks to this handy

cable (https://adafru.it/Ndk).

The STEMMA QT connector IO pins in CircuitPython are board.SCL1 and board.SD

A1 .

The STEMMA QT connector IO pins in Arduino are 40 (SCL1) and 41 (SDA1) and are

available on Wire1

•

•

•

•

©Adafruit Industries Page 15 of 180

https://learn.adafruit.com//assets/107484
https://learn.adafruit.com//assets/107484
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/category/1018
https://www.adafruit.com/category/1018
https://www.adafruit.com/category/1018
https://www.adafruit.com/category/1018
https://www.adafruit.com/?q=JST%20SH%204
https://www.adafruit.com/?q=JST%20SH%204
https://www.adafruit.com/product/4528
https://www.adafruit.com/product/4528

NeoPixel LED

Above the SCK and MI on the silk, is

the RGB NeoPixel LED. This

addressable LED works both as a

status LED (in CircuitPython and the

bootloader), and can be controlled

with code. It is available in

CircuitPython as board.NEOPIXEL ,

and in Arduino as PIN_NEOPIXEL .

There is a NeoPixel power pin that

needs to be pulled high for the

NeoPixel to work. This is so it can

be fully de-powered for low power

usage. It is available in

CircuitPython and Arduino as

NEOPIXEL_POWER .

•

•

©Adafruit Industries Page 16 of 180

https://learn.adafruit.com//assets/107485
https://learn.adafruit.com//assets/107485

Buttons

There are two buttons.

Reset button - This button restarts

the board and helps enter the

bootloader. You can click it once to

reset the board without unplugging

the USB cable or battery. Tap once,

and then tap again while the

NeoPixel status LED is purple to

enter the UF2 bootloader (needed

to load CircuitPython).

Boot button - This button can be

used to put the board into ROM

bootloader mode. To enter ROM

bootloader mode, hold down DFU

button while clicking reset button

mentioned above. When in the

ROM bootloader, you can upload

code and query the chip using

esptool .

This button can also be read as

GPIO 0 (set it to be an input-with-

pullup)

uFL Antenna Port

The Adafruit QT Py ESP32-S2 WiFi Dev

Board with uFL Antenna Port (https://

adafru.it/XUC) comes with, you guessed

it, a uFL antenna port! This is the only

version that has the port!

It does NOT come with an antenna, you

must purchase one separately. Consider

the 2.4GHz Mini Flexible WiFi

Antenna (http://adafru.it/2308) or a uFL to

RP-SMA adapter (https://adafru.it/ebB).

•

•

©Adafruit Industries Page 17 of 180

https://learn.adafruit.com//assets/107486
https://learn.adafruit.com//assets/107486
https://learn.adafruit.com//assets/107805
https://learn.adafruit.com//assets/107805
https://www.adafruit.com/product/5348
https://www.adafruit.com/product/5348
https://www.adafruit.com/products/2308
https://www.adafruit.com/products/2308
https://www.adafruit.com/product/852
https://www.adafruit.com/product/852

CircuitPython

CircuitPython (https://adafru.it/tB7) is a derivative of MicroPython (https://adafru.it/BeZ)

designed to simplify experimentation and education on low-cost microcontrollers. It

makes it easier than ever to get prototyping by requiring no upfront desktop software

downloads. Simply copy and edit files on the CIRCUITPY drive to iterate.

CircuitPython Quickstart

Follow this step-by-step to quickly get CircuitPython running on your board.

Download the latest version of

CircuitPython for this board via

circuitpython.org

https://adafru.it/XCk

Click the link above to download the

latest CircuitPython UF2 file.

Save it wherever is convenient for you.

©Adafruit Industries Page 18 of 180

https://github.com/adafruit/circuitpython
https://micropython.org
https://circuitpython.org/board/adafruit_qtpy_esp32s2/
https://learn.adafruit.com//assets/102129
https://learn.adafruit.com//assets/102129

Plug your board into your computer, using a known-good data-sync cable, directly, or

via an adapter if needed.

Click the reset button once (highlighted in red above), and then click it again when

you see the RGB status LED(s) (highlighted in green above) turn purple (approximately

half a second later). Sometimes it helps to think of it as a "slow double-click" of the

reset button.

Once successful, you will see the RGB status LED(s) turn green (highlighted in green

above). If you see red, try another port, or if you're using an adapter or hub, try

without the hub, or different adapter or hub.

If double-clicking doesn't work the first time, try again. Sometimes it can take a few

tries to get the rhythm right!

A lot of people end up using charge-only USB cables and it is very frustrating! Make

sure you have a USB cable you know is good for data sync.

If after several tries, and verifying your USB cable is data-ready, you still cannot

get to the bootloader, it is possible that the bootloader is missing or damaged.

Check out the Install UF2 Bootloader page for details on resolving this issue.

©Adafruit Industries Page 19 of 180

You will see a new disk drive appear

called QTPYS2BOOT.

Drag the adafruit_circuitpython_etc.uf2

file to QTPYS2BOOT.

The BOOT drive will disappear and a new

disk drive called CIRCUITPY will appear.

That's it!

Install UF2 Bootloader

The Adafruit QT Py ESP32-S2 ships with a UF2 bootloader which allows the board to

show up as QTPYS2BOOT when you double-tap the reset button, and enables you to

drag and drop UF2 files to update the firmware.

On ESP32-S2, there is no bootloader protection for the UF2 bootloader. That means it

is possible to erase or damage the UF2 bootloader, especially if you upload an

Arduino sketch to an ESP32-S2 board that doesn't "know" there's a bootloader it

should not overwrite!

It turns out, however, the ESP32-S2 comes with a second bootloader: the ROM

bootloader. Thanks to the ROM bootloader, you don't have to worry about damaging

the UF2 bootloader. The ROM bootloader can never be disabled or erased, so its

If your board has a UF2 bootloader, you do not need to follow the steps on this

page. Try to enter the UF2 bootloader before continuing! Double-tap the reset

button to do so.

©Adafruit Industries Page 20 of 180

https://learn.adafruit.com//assets/107577
https://learn.adafruit.com//assets/107577
https://learn.adafruit.com//assets/102130
https://learn.adafruit.com//assets/102130

always there if you need it! You can simply re-load the UF2 bootloader from the ROM

bootloader.

If your UF2 bootloader ends up damaged or overwritten, you can follow the steps

found in the Factory Reset and Bootloader Repair (https://adafru.it/XRe) section of the

Factory Reset page in this guide.

Once completed, you'll return to where the board was when you opened the

package. Then you'll be back in business, and able to continue with your existing

plans!

Installing the Mu Editor

Mu is a simple code editor that works with the Adafruit CircuitPython boards. It's

written in Python and works on Windows, MacOS, Linux and Raspberry Pi. The serial

console is built right in so you get immediate feedback from your board's serial

output!

Download and Install Mu

Download Mu from https://

codewith.mu (https://adafru.it/Be6).

Click the Download link for downloads

and installation instructions.

Click Start Here to find a wealth of other

information, including extensive tutorials

and and how-to's.

Mu is our recommended editor - please use it (unless you are an experienced

coder with a favorite editor already!).

Windows users: due to the nature of MSI installers, please remove old versions of

Mu before installing the latest version.

©Adafruit Industries Page 21 of 180

https://learn.adafruit.com/adafruit-qt-py-esp32-s2/factory-reset#factory-reset-and-bootloader-repair-3107941-7
https://learn.adafruit.com//assets/105677
https://learn.adafruit.com//assets/105677
https://codewith.mu/
https://codewith.mu/

Starting Up Mu

The first time you start Mu, you will be

prompted to select your 'mode' - you can

always change your mind later. For now

please select CircuitPython!

The current mode is displayed in the

lower right corner of the window, next to

the "gear" icon. If the mode says

"Microbit" or something else, click the

Mode button in the upper left, and then

choose "CircuitPython" in the dialog box

that appears.

Mu attempts to auto-detect your board

on startup, so if you do not have a

CircuitPython board plugged in with a

CIRCUITPY drive available, Mu will inform

you where it will store any code you save

until you plug in a board.

To avoid this warning, plug in a board

and ensure that the CIRCUITPY drive is

mounted before starting Mu.

Using Mu

You can now explore Mu! The three main sections of the window are labeled below;

the button bar, the text editor, and the serial console / REPL.

©Adafruit Industries Page 22 of 180

https://learn.adafruit.com//assets/105681
https://learn.adafruit.com//assets/105681
https://learn.adafruit.com//assets/105679
https://learn.adafruit.com//assets/105679

Now you're ready to code! Let's keep going...

The CIRCUITPY Drive

When CircuitPython finishes installing, or you plug a CircuitPython board into your

computer with CircuitPython already installed, the board shows up on your computer

as a USB drive called CIRCUITPY.

The CIRCUITPY drive is where your code and the necessary libraries and files will live.

You can edit your code directly on this drive and when you save, it will run

automatically. When you create and edit code, you'll save your code in a code.py file

located on the CIRCUITPY drive. If you're following along with a Learn guide, you can

paste the contents of the tutorial example into code.py on the CIRCUITPY drive and

save it to run the example.

With a fresh CircuitPython install, on your CIRCUITPY drive, you'll find a code.py file

containing print("Hello World!") and an empty lib folder. If your CIRCUITPY

drive does not contain a code.py file, you can easily create one and save it to the

drive. CircuitPython looks for code.py and executes the code within the file

automatically when the board starts up or resets. Following a change to the contents

of CIRCUITPY, such as making a change to the code.py file, the board will reset, and

the code will be run. You do not need to manually run the code. This is what makes it

so easy to get started with your project and update your code!

Note that all changes to the contents of CIRCUITPY, such as saving a new file,

renaming a current file, or deleting an existing file will trigger a reset of the board.

©Adafruit Industries Page 23 of 180

Creating and Editing Code

One of the best things about CircuitPython is how simple it is to get code up and

running. This section covers how to create and edit your first CircuitPython program.

To create and edit code, all you'll need is an editor. There are many options. Adafruit

strongly recommends using Mu! It's designed for CircuitPython, and it's really simple

and easy to use, with a built in serial console!

If you don't or can't use Mu, there are a number of other editors that work quite well.

The Recommended Editors page (https://adafru.it/Vue) has more details. Otherwise,

make sure you do "Eject" or "Safe Remove" on Windows or "sync" on Linux after

writing a file if you aren't using Mu. (This is not a problem on MacOS.)

Creating Code

Installing CircuitPython generates a

code.py file on your CIRCUITPY drive. To

begin your own program, open your

editor, and load the code.py file from the

CIRCUITPY drive.

If you are using Mu, click the Load button

in the button bar, navigate to the

CIRCUITPY drive, and choose code.py.

Copy and paste the following code into your editor:

import board

import digitalio

import time

©Adafruit Industries Page 24 of 180

https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors
https://learn.adafruit.com//assets/105703
https://learn.adafruit.com//assets/105703

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 led.value = True

 time.sleep(0.5)

 led.value = False

 time.sleep(0.5)

If you're using a KB2040, QT Py or a Trinkey, please download the NeoPixel blink

example (https://adafru.it/UDU).

It will look like this. Note that under the

while True: line, the next four lines

begin with four spaces to indent them,

and they're indented exactly the same

amount. All the lines before that have no

spaces before the text.

Save the code.py file on your CIRCUITPY

drive.

The little LED should now be blinking. Once per half-second.

The KB2040, QT Py and the Trinkeys do not have a built-in little red LED! There is

an addressable RGB NeoPixel LED. The above example will NOT work on the

KB2040, QT Py or the Trinkeys!

The NeoPixel blink example uses the onboard NeoPixel, but the time code is the

same. You can use the linked NeoPixel Blink example to follow along with this

guide page.

©Adafruit Industries Page 25 of 180

https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Welcome_to_CircuitPython/code.py
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Welcome_to_CircuitPython/code.py
https://learn.adafruit.com//assets/105704
https://learn.adafruit.com//assets/105704
https://learn.adafruit.com//assets/105705
https://learn.adafruit.com//assets/105705

Congratulations, you've just run your first CircuitPython program!

Editing Code

To edit code, open the code.py file on

your CIRCUITPY drive into your editor.

Make the desired changes to your code.

Save the file. That's it!

Your code changes are run as soon as the file is done saving.

There's one warning before you continue...

The CircuitPython code on your board detects when the files are changed or written

and will automatically re-start your code. This makes coding very fast because you

save, and it re-runs. If you unplug or reset the board before your computer finishes

writing the file to your board, you can corrupt the drive. If this happens, you may lose

the code you've written, so it's important to backup your code to your computer

regularly.

There are a couple of ways to avoid filesystem corruption.

On most boards you'll find a tiny red LED.

On the ItsyBitsy nRF52840, you'll find a tiny blue LED.

On QT Py M0, QT Py RP2040, and the Trinkey series, you will find only an RGB

NeoPixel LED.

Don't click reset or unplug your board!

©Adafruit Industries Page 26 of 180

https://learn.adafruit.com//assets/105706
https://learn.adafruit.com//assets/105706

1. Use an editor that writes out the file completely when you save it.

Check out the Recommended Editors page (https://adafru.it/Vue) for details on

different editing options.

2. Eject or Sync the Drive After Writing

If you are using one of our not-recommended-editors, not all is lost! You can still make

it work.

On Windows, you can Eject or Safe Remove the CIRCUITPY drive. It won't actually

eject, but it will force the operating system to save your file to disk. On Linux, use the

sync command in a terminal to force the write to disk.

You also need to do this if you use Windows Explorer or a Linux graphical file

manager to drag a file onto CIRCUITPY.

Oh No I Did Something Wrong and Now The CIRCUITPY
Drive Doesn't Show Up!!!

Don't worry! Corrupting the drive isn't the end of the world (or your board!). If this

happens, follow the steps found on the Troubleshooting (https://adafru.it/Den) page

of every board guide to get your board up and running again.

Back to Editing Code...

Now! Let's try editing the program you added to your board. Open your code.py file

into your editor. You'll make a simple change. Change the first 0.5 to 0.1 . The code

should look like this:

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 led.value = True

If you are dragging a file from your host computer onto the CIRCUITPY drive, you

still need to do step 2. Eject or Sync (below) to make sure the file is completely

written.

©Adafruit Industries Page 27 of 180

https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting

 time.sleep(0.1)

 led.value = False

 time.sleep(0.5)

Leave the rest of the code as-is. Save your file. See what happens to the LED on your

board? Something changed! Do you know why?

You don't have to stop there! Let's keep going. Change the second 0.5 to 0.1 so it

looks like this:

while True:

 led.value = True

 time.sleep(0.1)

 led.value = False

 time.sleep(0.1)

Now it blinks really fast! You decreased the both time that the code leaves the LED on

and off!

Now try increasing both of the 0.1 to 1 . Your LED will blink much more slowly

because you've increased the amount of time that the LED is turned on and off.

Well done! You're doing great! You're ready to start into new examples and edit them

to see what happens! These were simple changes, but major changes are done using

the same process. Make your desired change, save it, and get the results. That's

really all there is to it!

Naming Your Program File

CircuitPython looks for a code file on the board to run. There are four options: code.t

xt, code.py, main.txt and main.py. CircuitPython looks for those files, in that order, and

then runs the first one it finds. While code.py is the recommended name for your code

file, it is important to know that the other options exist. If your program doesn't seem

to be updating as you work, make sure you haven't created another code file that's

being read instead of the one you're working on.

Exploring Your First CircuitPython Program

First, you'll take a look at the code you're editing.

Here is the original code again:

©Adafruit Industries Page 28 of 180

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 led.value = True

 time.sleep(0.5)

 led.value = False

 time.sleep(0.5)

Imports & Libraries

Each CircuitPython program you run needs to have a lot of information to work. The

reason CircuitPython is so simple to use is that most of that information is stored in

other files and works in the background. The files built into CircuitPython are called m

odules, and the files you load separately are called libraries. Modules are built into

CircuitPython. Libraries are stored on your CIRCUITPY drive in a folder called lib.

import board

import digitalio

import time

The import statements tells the board that you're going to use a particular library or

module in your code. In this example, you imported three modules: board , digital

io , and time . All three of these modules are built into CircuitPython, so no separate

library files are needed. That's one of the things that makes this an excellent first

example. You don't need anything extra to make it work!

These three modules each have a purpose. The first one, board , gives you access to

the hardware on your board. The second, digitalio , lets you access that hardware

as inputs/outputs. The third, time , let's you control the flow of your code in multiple

ways, including passing time by 'sleeping'.

Setting Up The LED

The next two lines setup the code to use the LED.

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

©Adafruit Industries Page 29 of 180

Your board knows the red LED as LED . So, you initialise that pin, and you set it to

output. You set led to equal the rest of that information so you don't have to type it

all out again later in our code.

Loop-de-loops

The third section starts with a while statement. while True: essentially means,

"forever do the following:". while True: creates a loop. Code will loop "while" the

condition is "true" (vs. false), and as True is never False, the code will loop forever.

All code that is indented under while True: is "inside" the loop.

Inside our loop, you have four items:

while True:

 led.value = True

 time.sleep(0.5)

 led.value = False

 time.sleep(0.5)

First, you have led.value = True . This line tells the LED to turn on. On the next

line, you have time.sleep(0.5) . This line is telling CircuitPython to pause running

code for 0.5 seconds. Since this is between turning the led on and off, the led will be

on for 0.5 seconds.

The next two lines are similar. led.value = False tells the LED to turn off, and ti

me.sleep(0.5) tells CircuitPython to pause for another 0.5 seconds. This occurs

between turning the led off and back on so the LED will be off for 0.5 seconds too.

Then the loop will begin again, and continue to do so as long as the code is running!

So, when you changed the first 0.5 to 0.1 , you decreased the amount of time that

the code leaves the LED on. So it blinks on really quickly before turning off!

Great job! You've edited code in a CircuitPython program!

What Happens When My Code Finishes Running?

When your code finishes running, CircuitPython resets your microcontroller board to

prepare it for the next run of code. That means any set up you did earlier no longer

applies, and the pin states are reset.

©Adafruit Industries Page 30 of 180

For example, try reducing the code snippet above by eliminating the loop entirely,

and replacing it with led.value = True . The LED will flash almost too quickly to

see, and turn off. This is because the code finishes running and resets the pin state,

and the LED is no longer receiving a signal.

To that end, most CircuitPython programs involve some kind of loop, infinite or

otherwise.

What if I Don't Have the Loop?

If you don't have the loop, the code will run to the end and exit. This can lead to some

unexpected behavior in simple programs like this since the "exit" also resets the state

of the hardware. This is a different behavior than running commands via REPL. So if

you are writing a simple program that doesn't seem to work, you may need to add a

loop to the end so the program doesn't exit.

The simplest loop would be:

while True:

 pass

And remember - you can press CTRL+C to exit the loop.

See also the Behavior section in the docs (https://adafru.it/Bvz).

Connecting to the Serial Console

One of the staples of CircuitPython (and programming in general!) is something called

a "print statement". This is a line you include in your code that causes your code to

output text. A print statement in CircuitPython (and Python) looks like this:

print("Hello, world!")

This line in your code.py would result in:

Hello, world!

However, these print statements need somewhere to display. That's where the serial

console comes in!

©Adafruit Industries Page 31 of 180

https://circuitpython.readthedocs.io/en/latest/README.html#behavior

The serial console receives output from your CircuitPython board sent over USB and

displays it so you can see it. This is necessary when you've included a print statement

in your code and you'd like to see what you printed. It is also helpful for

troubleshooting errors, because your board will send errors and the serial console will

display those too.

The serial console requires an editor that has a built in terminal, or a separate

terminal program. A terminal is a program that gives you a text-based interface to

perform various tasks.

Are you using Mu?

If so, good news! The serial console is built into Mu and will autodetect your board

making using the serial console really really easy.

First, make sure your CircuitPython board

is plugged in.

If you open Mu without a board plugged

in, you may encounter the error seen

here, letting you know no CircuitPython

board was found and indicating where

your code will be stored until you plug in

a board.

If you are using Windows 7, make sure

you installed the drivers (https://adafru.it/

VuB).

Once you've opened Mu with your board plugged in, look for the Serial button in the

button bar and click it.

The Mu window will split in two, horizontally, and display the serial console at the

bottom.

©Adafruit Industries Page 32 of 180

https://learn.adafruit.com//assets/105925
https://learn.adafruit.com//assets/105925
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers

Serial Console Issues or Delays on Linux

If you're on Linux, and are seeing multi-second delays connecting to the serial

console, or are seeing "AT" and other gibberish when you connect, then the modemma

nager service might be interfering. Just remove it; it doesn't have much use unless

you're still using dial-up modems.

To remove modemmanager , type the following command at a shell:

sudo apt purge modemmanager

Setting Permissions on Linux

On Linux, if you see an error box something like the one below when you press the S

erial button, you need to add yourself to a user group to have permission to connect

to the serial console.

On Ubuntu and Debian, add yourself to the dialout group by doing:

sudo adduser $USER dialout

After running the command above, reboot your machine to gain access to the group.

On other Linux distributions, the group you need may be different. See the Advanced

If nothing appears in the serial console, it may mean your code is done running

or has no print statements in it. Click into the serial console part of Mu, and press

CTRL+D to reload.

©Adafruit Industries Page 33 of 180

https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux

Serial Console on Linux (https://adafru.it/VAO) for details on how to add yourself to

the right group.

Using Something Else?

If you're not using Mu to edit, are using or if for some reason you are not a fan of its

built in serial console, you can run the serial console from a separate program.

Windows requires you to download a terminal program. Check out the Advanced

Serial Console on Windows page for more details. (https://adafru.it/AAH)

MacOS has Terminal built in, though there are other options available for download. C

heck the Advanced Serial Console on Mac page for more details. (https://adafru.it/

AAI)

Linux has a terminal program built in, though other options are available for

download. Check the Advanced Serial Console on Linux page for more details. (https:

//adafru.it/VAO)

Once connected, you'll see something like the following.

Interacting with the Serial Console

Once you've successfully connected to the serial console, it's time to start using it.

The code you wrote earlier has no output to the serial console. So, you're going to

edit it to create some output.

Open your code.py file into your editor, and include a print statement. You can print

anything you like! Just include your phrase between the quotation marks inside the

parentheses. For example:

import board

import digitalio

import time

©Adafruit Industries Page 34 of 180

https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux
file:///home/welcome-to-circuitpython/advanced-serial-console-on-windows
file:///home/welcome-to-circuitpython/advanced-serial-console-on-windows
file:///home/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux
file:///home/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 print("Hello, CircuitPython!")

 led.value = True

 time.sleep(1)

 led.value = False

 time.sleep(1)

Save your file.

Now, let's go take a look at the window with our connection to the serial console.

Excellent! Our print statement is showing up in our console! Try changing the printed

text to something else.

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 print("Hello back to you!")

 led.value = True

 time.sleep(1)

 led.value = False

 time.sleep(1)

Keep your serial console window where you can see it. Save your file. You'll see what

the serial console displays when the board reboots. Then you'll see your new change!

©Adafruit Industries Page 35 of 180

The Traceback (most recent call last): is telling you the last thing your board

was doing before you saved your file. This is normal behavior and will happen every

time the board resets. This is really handy for troubleshooting. Let's introduce an error

so you can see how it is used.

Delete the e at the end of True from the line led.value = True so that it says le

d.value = Tru

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 print("Hello back to you!")

 led.value = Tru

 time.sleep(1)

 led.value = False

 time.sleep(1)

Save your file. You will notice that your red LED will stop blinking, and you may have a

colored status LED blinking at you. This is because the code is no longer correct and

can no longer run properly. You need to fix it!

Usually when you run into errors, it's not because you introduced them on purpose.

You may have 200 lines of code, and have no idea where your error could be hiding.

This is where the serial console can help. Let's take a look!

The Traceback (most recent call last): is telling you that the last thing it was

able to run was line 10 in your code. The next line is your error: NameError: name

'Tru' is not defined . This error might not mean a lot to you, but combined with

knowing the issue is on line 10, it gives you a great place to start!

©Adafruit Industries Page 36 of 180

Go back to your code, and take a look at line 10. Obviously, you know what the

problem is already. But if you didn't, you'd want to look at line 10 and see if you could

figure it out. If you're still unsure, try googling the error to get some help. In this case,

you know what to look for. You spelled True wrong. Fix the typo and save your file.

Nice job fixing the error! Your serial console is streaming and your red LED Is blinking

again.

The serial console will display any output generated by your code. Some sensors,

such as a humidity sensor or a thermistor, receive data and you can use print

statements to display that information. You can also use print statements for

troubleshooting, which is called "print debugging". Essentially, if your code isn't

working, and you want to know where it's failing, you can put print statements in

various places to see where it stops printing.

The serial console has many uses, and is an amazing tool overall for learning and

programming!

The REPL

The other feature of the serial connection is the Read-Evaluate-Print-Loop, or REPL.

The REPL allows you to enter individual lines of code and have them run immediately.

It's really handy if you're running into trouble with a particular program and can't

figure out why. It's interactive so it's great for testing new ideas.

©Adafruit Industries Page 37 of 180

Entering the REPL

To use the REPL, you first need to be connected to the serial console. Once that

connection has been established, you'll want to press CTRL+C.

If there is code running, in this case code measuring distance, it will stop and you'll

see Press any key to enter the REPL. Use CTRL-D to reload. Follow those

instructions, and press any key on your keyboard.

The Traceback (most recent call last): is telling you the last thing your board

was doing before you pressed Ctrl + C and interrupted it. The KeyboardInterrupt

is you pressing CTRL+C. This information can be handy when troubleshooting, but for

now, don't worry about it. Just note that it is expected behavior.

If your code.py file is empty or does not contain a loop, it will show an empty output

and Code done running. . There is no information about what your board was

doing before you interrupted it because there is no code running.

If you have no code.py on your CIRCUITPY drive, you will enter the REPL immediately

after pressing CTRL+C. Again, there is no information about what your board was

doing before you interrupted it because there is no code running.

©Adafruit Industries Page 38 of 180

Regardless, once you press a key you'll see a >>> prompt welcoming you to the

REPL!

If you have trouble getting to the >>> prompt, try pressing Ctrl + C a few more times.

The first thing you get from the REPL is information about your board.

This line tells you the version of CircuitPython you're using and when it was released.

Next, it gives you the type of board you're using and the type of microcontroller the

board uses. Each part of this may be different for your board depending on the

versions you're working with.

This is followed by the CircuitPython prompt.

Interacting with the REPL

From this prompt you can run all sorts of commands and code. The first thing you'll do

is run help() . This will tell you where to start exploring the REPL. To run code in the

REPL, type it in next to the REPL prompt.

Type help() next to the prompt in the REPL.

Then press enter. You should then see a message.

©Adafruit Industries Page 39 of 180

First part of the message is another reference to the version of CircuitPython you're

using. Second, a URL for the CircuitPython related project guides. Then... wait. What's

this? To list built-in modules type `help("modules")`. Remember the

modules you learned about while going through creating code? That's exactly what

this is talking about! This is a perfect place to start. Let's take a look!

Type help("modules") into the REPL next to the prompt, and press enter.

This is a list of all the core modules built into CircuitPython, including board .

Remember, board contains all of the pins on the board that you can use in your

code. From the REPL, you are able to see that list!

Type import board into the REPL and press enter. It'll go to a new prompt. It might

look like nothing happened, but that's not the case! If you recall, the import

statement simply tells the code to expect to do something with that module. In this

case, it's telling the REPL that you plan to do something with that module.

Next, type dir(board) into the REPL and press enter.

This is a list of all of the pins on your board that are available for you to use in your

code. Each board's list will differ slightly depending on the number of pins available.

Do you see LED ? That's the pin you used to blink the red LED!

©Adafruit Industries Page 40 of 180

The REPL can also be used to run code. Be aware that any code you enter into the

REPL isn't saved anywhere. If you're testing something new that you'd like to keep,

make sure you have it saved somewhere on your computer as well!

Every programmer in every programming language starts with a piece of code that

says, "Hello, World." You're going to say hello to something else. Type into the REPL:

print("Hello, CircuitPython!")

Then press enter.

That's all there is to running code in the REPL! Nice job!

You can write single lines of code that run stand-alone. You can also write entire

programs into the REPL to test them. Remember that nothing typed into the REPL is

saved.

There's a lot the REPL can do for you. It's great for testing new ideas if you want to

see if a few new lines of code will work. It's fantastic for troubleshooting code by

entering it one line at a time and finding out where it fails. It lets you see what

modules are available and explore those modules.

Try typing more into the REPL to see what happens!

Returning to the Serial Console

When you're ready to leave the REPL and return to the serial console, simply press CT

RL+D. This will reload your board and reenter the serial console. You will restart the

program you had running before entering the REPL. In the console window, you'll see

any output from the program you had running. And if your program was affecting

anything visual on the board, you'll see that start up again as well.

Everything typed into the REPL is ephemeral. Once you reload the REPL or return

to the serial console, nothing you typed will be retained in any memory space. So

be sure to save any desired code you wrote somewhere else, or you'll lose it

when you leave the current REPL instance!

©Adafruit Industries Page 41 of 180

You can return to the REPL at any time!

CircuitPython Libraries

Each CircuitPython program you run needs to have a lot of information to work. The

reason CircuitPython is so simple to use is that most of that information is stored in

other files and works in the background. These files are called libraries. Some of them

are built into CircuitPython. Others are stored on your CIRCUITPY drive in a folder

called lib. Part of what makes CircuitPython so great is its ability to store code

separately from the firmware itself. Storing code separately from the firmware makes

it easier to update both the code you write and the libraries you depend.

Your board may ship with a lib folder already, it's in the base directory of the drive. If

not, simply create the folder yourself. When you first install CircuitPython, an empty lib

directory will be created for you.

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to

download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

©Adafruit Industries Page 42 of 180

https://circuitpython.org/downloads
https://circuitpython.org/libraries

CircuitPython libraries work in the same way as regular Python modules so the Python

docs (https://adafru.it/rar) are an excellent reference for how it all should work. In

Python terms, you can place our library files in the lib directory because it's part of the

Python path by default.

One downside of this approach of separate libraries is that they are not built in. To

use them, one needs to copy them to the CIRCUITPY drive before they can be used.

Fortunately, there is a library bundle.

The bundle and the library releases on GitHub also feature optimized versions of the

libraries with the .mpy file extension. These files take less space on the drive and

have a smaller memory footprint as they are loaded.

Due to the regular updates and space constraints, Adafruit does not ship boards with

the entire bundle. Therefore, you will need to load the libraries you need when you

begin working with your board. You can find example code in the guides for your

board that depends on external libraries.

Either way, as you start to explore CircuitPython, you'll want to know how to get

libraries on board.

The Adafruit CircuitPython Library Bundle

Adafruit provides CircuitPython libraries for much of the hardware they provide,

including sensors, breakouts and more. To eliminate the need for searching for each

library individually, the libraries are available together in the Adafruit CircuitPython

Library Bundle. The bundle contains all the files needed to use each library.

Downloading the Adafruit CircuitPython Library Bundle

You can download the latest Adafruit CircuitPython Library Bundle release by clicking

the button below. The libraries are being constantly updated and improved, so you'll

always want to download the latest bundle.

Match up the bundle version with the version of CircuitPython you are running. For

example, you would download the 6.x library bundle if you're running any version of

CircuitPython 6, or the 7.x library bundle if you're running any version of CircuitPython

7, etc. If you mix libraries with major CircuitPython versions, you will get incompatible

mpy errors due to changes in library interfaces possible during major version

changes.

©Adafruit Industries Page 43 of 180

https://docs.python.org/3/tutorial/modules.html
https://docs.python.org/3/tutorial/modules.html

Click to visit circuitpython.org for the

latest Adafruit CircuitPython Library

Bundle

https://adafru.it/ENC

Download the bundle version that matches your CircuitPython firmware version. If you

don't know the version, check the version info in boot_out.txt file on the CIRCUITPY

drive, or the initial prompt in the CircuitPython REPL. For example, if you're running

v7.0.0, download the 7.x library bundle.

There's also a py bundle which contains the uncompressed python files, you probably

don't want that unless you are doing advanced work on libraries.

The CircuitPython Community Library Bundle

The CircuitPython Community Library Bundle is made up of libraries written and

provided by members of the CircuitPython community. These libraries are often

written when community members encountered hardware not supported in the

Adafruit Bundle, or to support a personal project. The authors all chose to submit

these libraries to the Community Bundle make them available to the community.

These libraries are maintained by their authors and are not supported by Adafruit. As

you would with any library, if you run into problems, feel free to file an issue on the

GitHub repo for the library. Bear in mind, though, that most of these libraries are

supported by a single person and you should be patient about receiving a response.

Remember, these folks are not paid by Adafruit, and are volunteering their personal

time when possible to provide support.

Downloading the CircuitPython Community Library Bundle

You can download the latest CircuitPython Community Library Bundle release by

clicking the button below. The libraries are being constantly updated and improved,

so you'll always want to download the latest bundle.

Click for the latest CircuitPython

Community Library Bundle release

https://adafru.it/VCn

The link takes you to the latest release of the CircuitPython Community Library

Bundle on GitHub. There are multiple versions of the bundle available. Download the

©Adafruit Industries Page 44 of 180

https://circuitpython.org/libraries
https://github.com/adafruit/CircuitPython_Community_Bundle/releases

bundle version that matches your CircuitPython firmware version. If you don't know

the version, check the version info in boot_out.txt file on the CIRCUITPY drive, or the

initial prompt in the CircuitPython REPL. For example, if you're running v7.0.0,

download the 7.x library bundle.

Understanding the Bundle

After downloading the zip, extract its contents. This is usually done by double clicking

on the zip. On Mac OSX, it places the file in the same directory as the zip.

Open the bundle folder. Inside you'll find two information files, and two folders. One

folder is the lib bundle, and the other folder is the examples bundle.

Now open the lib folder. When you open the folder, you'll see a large number of .mpy

files, and folders.

©Adafruit Industries Page 45 of 180

Example Files

All example files from each library are now included in the bundles in an examples

directory (as seen above), as well as an examples-only bundle. These are included for

two main reasons:

Allow for quick testing of devices.

Provide an example base of code, that is easily built upon for individualized

purposes.

Copying Libraries to Your Board

First open the lib folder on your CIRCUITPY drive. Then, open the lib folder you

extracted from the downloaded zip. Inside you'll find a number of folders and .mpy

files. Find the library you'd like to use, and copy it to the lib folder on CIRCUITPY.

If the library is a directory with multiple .mpy files in it, be sure to copy the entire

folder to CIRCUITPY/lib.

This also applies to example files. Open the examples folder you extracted from the

downloaded zip, and copy the applicable file to your CIRCUITPY drive. Then, rename

it to code.py to run it.

Understanding Which Libraries to Install

You now know how to load libraries on to your CircuitPython-compatible

microcontroller board. You may now be wondering, how do you know which libraries

you need to install? Unfortunately, it's not always straightforward. Fortunately, there is

•

•

If a library has multiple .mpy files contained in a folder, be sure to copy the entire

folder to CIRCUITPY/lib.

©Adafruit Industries Page 46 of 180

an obvious place to start, and a relatively simple way to figure out the rest. First up:

the best place to start.

When you look at most CircuitPython examples, you'll see they begin with one or

more import statements. These typically look like the following:

import library_or_module

However, import statements can also sometimes look like the following:

from library_or_module import name

from library_or_module.subpackage import name

from library_or_module import name as local_name

They can also have more complicated formats, such as including a try / except

block, etc.

The important thing to know is that an import statement will always include the

name of the module or library that you're importing.

Therefore, the best place to start is by reading through the import statements.

Here is an example import list for you to work with in this section. There is no setup or

other code shown here, as the purpose of this section involves only the import list.

import time

import board

import neopixel

import adafruit_lis3dh

import usb_hid

from adafruit_hid.consumer_control import ConsumerControl

from adafruit_hid.consumer_control_code import ConsumerControlCode

Keep in mind, not all imported items are libraries. Some of them are almost always

built-in CircuitPython modules. How do you know the difference? Time to visit the

REPL.

•

•

•

•

©Adafruit Industries Page 47 of 180

In the Interacting with the REPL section (https://adafru.it/Awz) on The REPL page (http

s://adafru.it/Awz) in this guide, the help("modules") command is discussed. This

command provides a list of all of the built-in modules available in CircuitPython for

your board. So, if you connect to the serial console on your board, and enter the

REPL, you can run help("modules") to see what modules are available for your

board. Then, as you read through the import statements, you can, for the purposes

of figuring out which libraries to load, ignore the statement that import modules.

The following is the list of modules built into CircuitPython for the Feather RP2040.

Your list may look similar or be anything down to a significant subset of this list for

smaller boards.

Now that you know what you're looking for, it's time to read through the import

statements. The first two, time and board , are on the modules list above, so they're

built-in.

The next one, neopixel , is not on the module list. That means it's your first library!

So, you would head over to the bundle zip you downloaded, and search for neopixel.

There is a neopixel.mpy file in the bundle zip. Copy it over to the lib folder on your CI

RCUITPY drive. The following one, adafruit_lis3dh , is also not on the module list.

Follow the same process for adafruit_lis3dh, where you'll find adafruit_lis3dh.mpy,

and copy that over.

The fifth one is usb_hid , and it is in the modules list, so it is built in. Often all of the

built-in modules come first in the import list, but sometimes they don't! Don't assume

that everything after the first library is also a library, and verify each import with the

modules list to be sure. Otherwise, you'll search the bundle and come up empty!

The final two imports are not as clear. Remember, when import statements are

formatted like this, the first thing after the from is the library name. In this case, the

library name is adafruit_hid . A search of the bundle will find an adafruit_hid folder.

©Adafruit Industries Page 48 of 180

https://learn.adafruit.com/welcome-to-circuitpython/the-repl#interacting-with-the-repl-2977486-14
https://learn.adafruit.com/welcome-to-circuitpython/the-repl

When a library is a folder, you must copy the entire folder and its contents as it is in

the bundle to the lib folder on your CIRCUITPY drive. In this case, you would copy the

entire adafruit_hid folder to your CIRCUITPY/lib folder.

Notice that there are two imports that begin with adafruit_hid . Sometimes you will

need to import more than one thing from the same library. Regardless of how many

times you import the same library, you only need to load the library by copying over

the adafruit_hid folder once.

That is how you can use your example code to figure out what libraries to load on

your CircuitPython-compatible board!

There are cases, however, where libraries require other libraries internally. The

internally required library is called a dependency. In the event of library

dependencies, the easiest way to figure out what other libraries are required is to

connect to the serial console and follow along with the ImportError printed there.

The following is a very simple example of an ImportError , but the concept is the

same for any missing library.

Example: ImportError Due to Missing Library

If you choose to load libraries as you need them, or you're starting fresh with an

existing example, you may end up with code that tries to use a library you haven't yet

loaded. This section will demonstrate what happens when you try to utilise a library

that you don't have loaded on your board, and cover the steps required to resolve the

issue.

This demonstration will only return an error if you do not have the required library

loaded into the lib folder on your CIRCUITPY drive.

Let's use a modified version of the Blink example.

import board

import time

import simpleio

led = simpleio.DigitalOut(board.LED)

while True:

 led.value = True

 time.sleep(0.5)

 led.value = False

 time.sleep(0.5)

©Adafruit Industries Page 49 of 180

Save this file. Nothing happens to your board. Let's check the serial console to see

what's going on.

You have an ImportError . It says there is no module named 'simpleio' . That's

the one you just included in your code!

Click the link above to download the correct bundle. Extract the lib folder from the

downloaded bundle file. Scroll down to find simpleio.mpy. This is the library file you're

looking for! Follow the steps above to load an individual library file.

The LED starts blinking again! Let's check the serial console.

No errors! Excellent. You've successfully resolved an ImportError !

If you run into this error in the future, follow along with the steps above and choose

the library that matches the one you're missing.

Library Install on Non-Express Boards

If you have an M0 non-Express board such as Trinket M0, Gemma M0, QT Py M0, or

one of the M0 Trinkeys, you'll want to follow the same steps in the example above to

install libraries as you need them. Remember, you don't need to wait for an ImportE

rror if you know what library you added to your code. Open the library bundle you

downloaded, find the library you need, and drag it to the lib folder on your CIRCUITPY

drive.

You can still end up running out of space on your M0 non-Express board even if you

only load libraries as you need them. There are a number of steps you can use to try

©Adafruit Industries Page 50 of 180

to resolve this issue. You'll find suggestions on the Troubleshooting page (https://

adafru.it/Den).

Updating CircuitPython Libraries and Examples

Libraries and examples are updated from time to time, and it's important to update the

files you have on your CIRCUITPY drive.

To update a single library or example, follow the same steps above. When you drag

the library file to your lib folder, it will ask if you want to replace it. Say yes. That's it!

A new library bundle is released every time there's an update to a library. Updates

include things like bug fixes and new features. It's important to check in every so

often to see if the libraries you're using have been updated.

CircuitPython Documentation

You've learned about the CircuitPython built-in modules and external libraries. You

know that you can find the modules in CircuitPython, and the libraries in the Library

Bundles. There are guides available that explain the basics of many of the modules

and libraries. However, there's sometimes more capabilities than are necessarily

showcased in the guides, and often more to learn about a module or library. So,

where can you find more detailed information? That's when you want to look at the

API documentation.

The entire CircuitPython project comes with extensive documentation available on

Read the Docs. This includes both the CircuitPython core (https://adafru.it/Beg) and

the Adafruit CircuitPython libraries (https://adafru.it/Tra).

CircuitPython Core Documentation

The CircuitPython core documentation (https://adafru.it/Beg) covers many of the

details you might want to know about the CircuitPython core and related topics. It

includes API and usage info, a design guide and information about porting

CircuitPython to new boards, MicroPython info with relation to CircuitPython, and

general information about the project.

©Adafruit Industries Page 51 of 180

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting
https://circuitpython.readthedocs.io/
https://circuitpython.readthedocs.io/projects/bundle/en/latest/
https://circuitpython.readthedocs.io/

The main page covers the basics including where to download CircuitPython, how to

contribute, differences from MicroPython, information about the project structure, and

a full table of contents for the rest of the documentation.

The list along the left side leads to more information about specific topics.

The first section is API and Usage. This is where you can find information about how

to use individual built-in core modules, such as time and digitalio , details about

the supported ports, suggestions for troubleshooting, and basic info and links to the li

brary bundles. The Core Modules section also includes the Support Matrix, which is a

table of which core modules are available on which boards.

The second section is Design and Porting Reference. It includes a design guide, archi

tecture information, details on porting, and adding module support to other ports.

The third section is MicroPython Specific. It includes information on MicroPython and

related libraries, and a glossary of terms.

The fourth and final section is About the Project. It includes further information

including details on building, testing, and debugging CircuitPython, along with various

other useful links including the Adafruit Community Code of Conduct.

Whether you're a seasoned pro or new to electronics and programming, you'll find a

wealth of information to help you along your CircuitPython journey in the

documentation!

©Adafruit Industries Page 52 of 180

CircuitPython Library Documentation

The Adafruit CircuitPython libraries are documented in a very similar fashion. Each

library has its own page on Read the Docs. There is a comprehensive list available he

re (https://adafru.it/Tra). Otherwise, to view the documentation for a specific library,

you can visit the GitHub repository for the library, and find the link in the README.

For the purposes of this page, the LED Animation library (https://adafru.it/O2d)

documentation will be featured. There are two links to the documentation in each

library GitHub repo. The first one is the docs badge near the top of the README.

The second place is the Documentation section of the README. Scroll down to find it,

and click on Read the Docs to get to the documentation.

Now that you know how to find it, it's time to take a look at what to expect.

The Introduction page is generated from the README, so it includes all the same info,

such as PyPI installation instructions, a quick demo, and some build details. It also

includes a full table of contents for the rest of the documentation (which is not part of

the GitHub README). The page should look something like the following.

The left side contains links to the rest of the documentation, divided into three

separate sections: Examples, API Reference, and Other Links.

Not all library documentation will look exactly the same, but this will give you

some idea of what to expect from library docs.

©Adafruit Industries Page 53 of 180

https://circuitpython.readthedocs.io/projects/bundle/en/latest/
https://circuitpython.readthedocs.io/projects/bundle/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_LED_Animation

Examples

The Examples section (https://adafru.it/VFD) is a list of library examples. This list

contains anywhere from a small selection to the full list of the examples available for

the library.

This section will always contain at least one example - the simple test example.

The simple test example is usually a basic example designed to show your setup is

working. It may require other libraries to run. Keep in mind, it's simple - it won't

showcase a comprehensive use of all the library features.

The LED Animation simple test demonstrates the Blink animation.

In some cases, you'll find a longer list, that may include examples that explore other

features in the library. The LED Animation documentation includes a series of

examples, all of which are available in the library. These examples include

demonstrations of both basic and more complex features. Simply click on the example

that interests you to view the associated code.

©Adafruit Industries Page 54 of 180

https://circuitpython.readthedocs.io/projects/led-animation/en/latest/examples.html

You can view the rest of the examples by clicking through the list or scrolling down

the page. These examples are fully working code. Which is to say, while they may rely

on other libraries as well as the library for which you are viewing the documentation,

they should not require modification to otherwise work.

API Reference

The API Reference section (https://adafru.it/Rqa) includes a list of the library functions

and classes. The API (Application Programming Interface) of a library is the set of

functions and classes the library provides. Essentially, the API defines how your

program interfaces with the functions and classes that you call in your code to use the

library.

There is always at least one list item included. Libraries for which the code is included

in a single Python (.py) file, will only have one item. Libraries for which the code is

multiple Python files in a directory (called subpackages) will have multiple items in this

list. The LED Animation library has a series of subpackages, and therefore, multiple

items in this list.

Click on the first item in the list to begin viewing the API Reference section.

When there are multiple links in the Examples section, all of the example content

is, in actuality, on the same page. Each link after the first is an anchor link to the

specified section of the page. Therefore, you can also view all the available

examples by scrolling down the page.

As with the Examples section, all of the API Reference content is on a single

page, and the links under API Reference are anchor links to the specified section

of the page.

©Adafruit Industries Page 55 of 180

https://circuitpython.readthedocs.io/projects/led-animation/en/latest/api.html

When you click on an item in the API Reference section, you'll find details about the

classes and functions in the library. In the case of only one item in this section, all the

available functionality of the library will be contained within that first and only

subsection. However, in the case of a library that has subpackages, each item will

contain the features of the particular subpackage indicated by the link. The

documentation will cover all of the available functions of the library, including more

complex ones that may not interest you.

The first list item is the animation subpackage. If you scroll down, you'll begin to see

the available features of animation. They are listed alphabetically. Each of these

things can be called in your code. It includes the name and a description of the

specific function you would call, and if any parameters are necessary, lists those with

a description as well.

You can view the other subpackages by clicking the link on the left or scrolling down

the page. You may be interested in something a little more practical. Here is an

example. To use the LED Animation library Comet animation, you would run the

following example.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: MIT

"""

This example animates a jade comet that bounces from end to end of the strip.

For QT Py Haxpress and a NeoPixel strip. Update pixel_pin and pixel_num to match

your wiring if

using a different board or form of NeoPixels.

This example will run on SAMD21 (M0) Express boards (such as Circuit Playground

Express or QT Py

Haxpress), but not on SAMD21 non-Express boards (such as QT Py or Trinket).

"""

import board

import neopixel

from adafruit_led_animation.animation.comet import Comet

from adafruit_led_animation.color import JADE

©Adafruit Industries Page 56 of 180

Update to match the pin connected to your NeoPixels

pixel_pin = board.A3

Update to match the number of NeoPixels you have connected

pixel_num = 30

pixels = neopixel.NeoPixel(pixel_pin, pixel_num, brightness=0.5, auto_write=False)

comet = Comet(pixels, speed=0.02, color=JADE, tail_length=10, bounce=True)

while True:

 comet.animate()

Note the line where you create the comet object. There are a number of items inside

the parentheses. In this case, you're provided with a fully working example. But what

if you want to change how the comet works? The code alone does not explain what

the options mean.

So, in the API Reference documentation list, click the adafruit_led_animation.an

imation.comet link and scroll down a bit until you see the following.

Look familiar? It is! This is the documentation for setting up the comet object. It

explains what each argument provided in the comet setup in the code meant, as well

as the other available features. For example, the code includes speed=0.02 . The

documentation clarifies that this is the "Animation speed in seconds". The code

doesn't include ring . The documentation indicates this is an available setting that

enables "Ring mode".

This type of information is available for any function you would set up in your code. If

you need clarification on something, wonder whether there's more options available,

or are simply interested in the details involved in the code you're writing, check out

the documentation for the CircuitPython libraries!

©Adafruit Industries Page 57 of 180

Other Links

This section is the same for every library. It includes a list of links to external sites,

which you can visit for more information about the CircuitPython Project and Adafruit.

That covers the CircuitPython library documentation! When you are ready to go

beyond the basic library features covered in a guide, or you're interested in

understanding those features better, the library documentation on Read the Docs has

you covered!

Recommended Editors

The CircuitPython code on your board detects when the files are changed or written

and will automatically re-start your code. This makes coding very fast because you

save, and it re-runs.

However, you must wait until the file is done being saved before unplugging or

resetting your board! On Windows using some editors this can sometimes take up to

90 seconds, on Linux it can take 30 seconds to complete because the text editor

does not save the file completely. Mac OS does not seem to have this delay, which is

nice!

This is really important to be aware of. If you unplug or reset the board before your

computer finishes writing the file to your board, you can corrupt the drive. If this

happens, you may lose the code you've written, so it's important to backup your code

to your computer regularly.

To avoid the likelihood of filesystem corruption, use an editor that writes out the file

completely when you save it. Check out the list of recommended editors below.

Recommended editors

mu (https://adafru.it/ANO) is an editor that safely writes all changes (it's also our

recommended editor!)

emacs (https://adafru.it/xNA) is also an editor that will fulIy write files on save (ht

tps://adafru.it/Be7)

Sublime Text (https://adafru.it/xNB) safely writes all changes

Visual Studio Code (https://adafru.it/Be9) appears to safely write all changes

gedit on Linux appears to safely write all changes

•

•

•

•

•

©Adafruit Industries Page 58 of 180

https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor
https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/manual/html_node/emacs/Customize-Save.html
https://www.sublimetext.com/
https://code.visualstudio.com/

IDLE (https://adafru.it/IWB), in Python 3.8.1 or later, was fixed (https://adafru.it/

IWD) to write all changes immediately

thonny (https://adafru.it/Qb6) fully writes files on save

Recommended only with particular settings or add-ons

vim (https://adafru.it/ek9) / vi safely writes all changes. But set up vim to not

write swapfiles (https://adafru.it/ELO) (.swp files: temporary records of your edits)

to CIRCUITPY. Run vim with vim -n , set the no swapfile option, or set the d

irectory option to write swapfiles elsewhere. Otherwise the swapfile

writes trigger restarts of your program.

The PyCharm IDE (https://adafru.it/xNC) is safe if "Safe Write" is turned on in

Settings->System Settings->Synchronization (true by default).

If you are using Atom (https://adafru.it/fMG), install the fsync-on-save package (h

ttps://adafru.it/E9m) or the language-circuitpython package (https://adafru.it/Vuf)

so that it will always write out all changes to files on CIRCUITPY.

SlickEdit (https://adafru.it/DdP) works only if you add a macro to flush the disk (h

ttps://adafru.it/ven).

Editors that are NOT recommended

notepad (the default Windows editor) and Notepad++ can be slow to write, so

the editors above are recommended! If you are using notepad, be sure to eject

the drive

IDLE in Python 3.8.0 or earlier does not force out changes immediately

nano (on Linux) does not force out changes

geany (on Linux) does not force out changes

Anything else - Other editors have not been tested so please use a

recommended one!

•

•

•

•

•

•

The editors listed below are specifically NOT recommended!

•

•

•

•

•

©Adafruit Industries Page 59 of 180

https://docs.python.org/3/library/idle.html
https://bugs.python.org/issue36807
https://thonny.org/
http://www.vim.org/
http://www.vim.org/
https://vi.stackexchange.com/a/179
https://www.jetbrains.com/pycharm/
https://atom.io/
https://atom.io/
https://atom.io/packages/fsync-on-save
https://atom.io/packages/language-circuitpython
https://www.slickedit.com/
https://www.slickedit.com/
https://forums.adafruit.com/viewtopic.php?f=57&t=144412#p713290

Advanced Serial Console on Windows

Windows 7 and 8.1

If you're using Windows 7 (or 8 or 8.1), you'll need to install drivers. See the Windows 7

and 8.1 Drivers page (https://adafru.it/VuB) for details. You will not need to install

drivers on Mac, Linux or Windows 10.

You are strongly encouraged to upgrade to Windows 10 if you are still using Windows

7 or Windows 8 or 8.1. Windows 7 has reached end-of-life and no longer receives

security updates. A free upgrade to Windows 10 is still available (https://adafru.it/

RWc).

What's the COM?

First, you'll want to find out which serial port your board is using. When you plug your

board in to USB on your computer, it connects to a serial port. The port is like a door

through which your board can communicate with your computer using USB.

You'll use Windows Device Manager to determine which port the board is using. The

easiest way to determine which port the board is using is to first check without the

board plugged in. Open Device Manager. Click on Ports (COM & LPT). You should find

something already in that list with (COM#) after it where # is a number.

©Adafruit Industries Page 60 of 180

https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://www.zdnet.com/article/heres-how-you-can-still-get-a-free-windows-10-upgrade/

Now plug in your board. The Device Manager list will refresh and a new item will

appear under Ports (COM & LPT). You'll find a different (COM#) after this item in the

list.

Sometimes the item will refer to the name of the board. Other times it may be called

something like USB Serial Device, as seen in the image above. Either way, there is a

new (COM#) following the name. This is the port your board is using.

Install Putty

If you're using Windows, you'll need to download a terminal program. You're going to

use PuTTY.

The first thing to do is download the latest version of PuTTY (https://adafru.it/Bf1).

You'll want to download the Windows installer file. It is most likely that you'll need the

64-bit version. Download the file and install the program on your machine. If you run

into issues, you can try downloading the 32-bit version instead. However, the 64-bit

version will work on most PCs.

Now you need to open PuTTY.

Under Connection type: choose the button next to Serial.

In the box under Serial line, enter the serial port you found that your board is

using.

•

•

©Adafruit Industries Page 61 of 180

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

In the box under Speed, enter 115200. This called the baud rate, which is the

speed in bits per second that data is sent over the serial connection. For boards

with built in USB it doesn't matter so much but for ESP8266 and other board

with a separate chip, the speed required by the board is 115200 bits per second.

So you might as well just use 115200!

If you want to save those settings for later, use the options under Load, save or delete

a stored session. Enter a name in the box under Saved Sessions, and click the Save

button on the right.

Once your settings are entered, you're ready to connect to the serial console. Click

"Open" at the bottom of the window. A new window will open.

•

©Adafruit Industries Page 62 of 180

If no code is running, the window will either be blank or will look like the window

above. Now you're ready to see the results of your code.

Great job! You've connected to the serial console!

Advanced Serial Console on Mac

Connecting to the serial console on Mac does not require installing any drivers or

extra software. You'll use a terminal program to find your board, and screen to

connect to it. Terminal and screen both come installed by default.

What's the Port?

First you'll want to find out which serial port your board is using. When you plug your

board in to USB on your computer, it connects to a serial port. The port is like a door

through which your board can communicate with your computer using USB.

The easiest way to determine which port the board is using is to first check without

the board plugged in. Open Terminal and type the following:

ls /dev/tty.*

Each serial connection shows up in the /dev/ directory. It has a name that starts with

tty. . The command ls shows you a list of items in a directory. You can use * as a

wildcard, to search for files that start with the same letters but end in something

different. In this case, you're asking to see all of the listings in /dev/ that start with t

ty. and end in anything. This will show us the current serial connections.

©Adafruit Industries Page 63 of 180

Now, plug your board. In Terminal, type:

ls /dev/tty.*

This will show you the current serial connections, which will now include your board.

A new listing has appeared called /dev/tty.usbmodem141441 . The tty.usbmodem

141441 part of this listing is the name the example board is using. Yours will be called

something similar.

Using Linux, a new listing has appeared called /dev/ttyACM0 . The ttyACM0 part of

this listing is the name the example board is using. Yours will be called something

similar.

Connect with screen

Now that you know the name your board is using, you're ready connect to the serial

console. You're going to use a command called screen . The screen command is

©Adafruit Industries Page 64 of 180

included with MacOS. To connect to the serial console, use Terminal. Type the

following command, replacing board_name with the name you found your board is

using:

screen /dev/tty.board_name 115200

The first part of this establishes using the screen command. The second part tells

screen the name of the board you're trying to use. The third part tells screen what

baud rate to use for the serial connection. The baud rate is the speed in bits per

second that data is sent over the serial connection. In this case, the speed required

by the board is 115200 bits per second.

Press enter to run the command. It will open in the same window. If no code is

running, the window will be blank. Otherwise, you'll see the output of your code.

Great job! You've connected to the serial console!

Advanced Serial Console on Linux

Connecting to the serial console on Linux does not require installing any drivers, but

you may need to install screen using your package manager. You'll use a terminal

program to find your board, and screen to connect to it. There are a variety of

terminal programs such as gnome-terminal (called Terminal) or Konsole on KDE.

The tio program works as well to connect to your board, and has the benefit of

automatically reconnecting. You would need to install it using your package manager.

©Adafruit Industries Page 65 of 180

What's the Port?

First you'll want to find out which serial port your board is using. When you plug your

board in to USB on your computer, it connects to a serial port. The port is like a door

through which your board can communicate with your computer using USB.

The easiest way to determine which port the board is using is to first check without

the board plugged in. Open your terminal program and type the following:

ls /dev/ttyACM*

Each serial connection shows up in the /dev/ directory. It has a name that starts with tt

yACM. The command ls shows you a list of items in a directory. You can use * as a

wildcard, to search for files that start with the same letters but end in something

different. In this case, You're asking to see all of the listings in /dev/ that start with tty

ACM and end in anything. This will show us the current serial connections.

In the example below, the error is indicating that are no current serial connections

starting with ttyACM.

Now plug in your board. In your terminal program, type:

ls /dev/ttyACM*

This will show you the current serial connections, which will now include your board.

©Adafruit Industries Page 66 of 180

A new listing has appeared called /dev/ttyACM0. The ttyACM0 part of this listing is

the name the example board is using. Yours will be called something similar.

Connect with screen

Now that you know the name your board is using, you're ready connect to the serial

console. You'll use a command called screen . You may need to install it using the

package manager.

To connect to the serial console, use your terminal program. Type the following

command, replacing board_name with the name you found your board is using:

screen /dev/tty.board_name 115200

The first part of this establishes using the screen command. The second part tells

screen the name of the board you're trying to use. The third part tells screen what

baud rate to use for the serial connection. The baud rate is the speed in bits per

second that data is sent over the serial connection. In this case, the speed required

by the board is 115200 bits per second.

©Adafruit Industries Page 67 of 180

Press enter to run the command. It will open in the same window. If no code is

running, the window will be blank. Otherwise, you'll see the output of your code.

Great job! You've connected to the serial console!

Permissions on Linux

If you try to run screen and it doesn't work, then you may be running into an issue

with permissions. Linux keeps track of users and groups and what they are allowed to

do and not do, like access the hardware associated with the serial connection for

running screen . So if you see something like this:

then you may need to grant yourself access. There are generally two ways you can do

this. The first is to just run screen using the sudo command, which temporarily

gives you elevated privileges.

Once you enter your password, you should be in:

The second way is to add yourself to the group associated with the hardware. To

figure out what that group is, use the command ls -l as shown below. The group

name is circled in red.

©Adafruit Industries Page 68 of 180

Then use the command adduser to add yourself to that group. You need elevated

privileges to do this, so you'll need to use sudo . In the example below, the group is a

dm and the user is ackbar.

After you add yourself to the group, you'll need to logout and log back in, or in some

cases, reboot your machine. After you log in again, verify that you have been added

to the group using the command groups . If you are still not in the group, reboot and

check again.

And now you should be able to run screen without using sudo .

And you're in:

The examples above use screen , but you can also use other programs, such as pu

tty or picocom , if you prefer.

©Adafruit Industries Page 69 of 180

Frequently Asked Questions

These are some of the common questions regarding CircuitPython and CircuitPython

microcontrollers.

I have to continue using CircuitPython 6.x or earlier.
Where can I find compatible libraries?

We are no longer building or supporting the CircuitPython 6.x or earlier library

bundles. We highly encourage you to update CircuitPython to the latest

version (https://adafru.it/Em8) and use the current version of the libraries (https://

adafru.it/ENC). However, if for some reason you cannot update, here are the last

available library bundles for older versions:

2.x bundle (https://adafru.it/FJA)

3.x bundle (https://adafru.it/FJB)

4.x bundle (https://adafru.it/QDL)

5.x bundle (https://adafru.it/QDJ)

6.x bundle (https://adafru.it/Xmf)

Is ESP8266 or ESP32 supported in CircuitPython? Why
not?

We dropped ESP8266 support as of 4.x - For more information please read about it

here (https://adafru.it/CiG)!

We do not support ESP32 because it does not have native USB.

We do support ESP32-S2, which has native USB.

How do I connect to the Internet with CircuitPython?

If you'd like to include WiFi in your project, check out this guide (https://adafru.it/

F5X) on using AirLift with CircuitPython. For further project examples, and guides

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to

download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

•

•

•

•

•

©Adafruit Industries Page 70 of 180

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-2.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-3.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20200707/adafruit-circuitpython-bundle-4.x-mpy-20200707.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20210129/adafruit-circuitpython-bundle-5.x-mpy-20210129.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20211213/adafruit-circuitpython-bundle-6.x-mpy-20211213.zip
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-for-esp8266
https://learn.adafruit.com/adafruit-io-basics-airlift

about using AirLift with specific hardware, check out the Adafruit Learn

System (https://adafru.it/VBr).

Is there asyncio support in CircuitPython?

There is preliminary support for asyncio starting with CircuitPython 7.1.0. Read

about using it in the Cooperative Multitasking in CircuitPython (https://adafru.it/

XnA) Guide.

My RGB NeoPixel/DotStar LED is blinking funny colors -
what does it mean?

The status LED can tell you what's going on with your CircuitPython board. Read

more here for what the colors mean! (https://adafru.it/Den)

What is a MemoryError?

Memory allocation errors happen when you're trying to store too much on the

board. The CircuitPython microcontroller boards have a limited amount of memory

available. You can have about 250 lines of code on the M0 Express boards. If you

try to import too many libraries, a combination of large libraries, or run a program

with too many lines of code, your code will fail to run and you will receive a

MemoryError in the serial console.

What do I do when I encounter a MemoryError?

Try resetting your board. Each time you reset the board, it reallocates the memory.

While this is unlikely to resolve your issue, it's a simple step and is worth trying.

Make sure you are using .mpy versions of libraries. All of the CircuitPython libraries

are available in the bundle in a .mpy format which takes up less memory than .py

format. Be sure that you're using the latest library bundle (https://adafru.it/uap) for

your version of CircuitPython.

If that does not resolve your issue, try shortening your code. Shorten comments,

remove extraneous or unneeded code, or any other clean up you can do to

shorten your code. If you're using a lot of functions, you could try moving those

into a separate library, creating a .mpy of that library, and importing it into your

code.

You can turn your entire file into a .mpy and import that into code.py. This means

you will be unable to edit your code live on the board, but it can save you space.

©Adafruit Industries Page 71 of 180

https://learn.adafruit.com/search?q=airlift
https://learn.adafruit.com/search?q=airlift
https://learn.adafruit.com/cooperative-multitasking-in-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#circuitpython-rgb-status-light-2978455-24
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#circuitpython-rgb-status-light-2978455-24
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases

Can the order of my import statements affect memory?

It can because the memory gets fragmented differently depending on allocation

order and the size of objects. Loading .mpy files uses less memory so its

recommended to do that for files you aren't editing.

How can I create my own .mpy files?

You can make your own .mpy versions of files with mpy-cross .

You can download mpy-cross for your operating system from here (https://

adafru.it/QDK). Builds are available for Windows, macOS, x64 Linux, and Raspberry

Pi Linux. Choose the latest mpy-cross whose version matches the version of

CircuitPython you are using.

To make a .mpy file, run ./mpy-cross path/to/yourfile.py to create a

yourfile.mpy in the same directory as the original file.

How do I check how much memory I have free?

Run the following to see the number of bytes available for use:

import gc

gc.mem_free()

Does CircuitPython support interrupts?

No. CircuitPython does not currently support interrupts. We do not have an

estimated time for when they will be included

Does Feather M0 support WINC1500?

No, WINC1500 will not fit into the M0 flash space.

Can AVRs such as ATmega328 or ATmega2560 run
CircuitPython?

No.

©Adafruit Industries Page 72 of 180

https://adafruit-circuit-python.s3.amazonaws.com/index.html?prefix=bin/mpy-cross/

Commonly Used Acronyms

CP or CPy = CircuitPython (https://adafru.it/KJD)

CPC = Circuit Playground Classic (https://adafru.it/ncE)

CPX = Circuit Playground Express (https://adafru.it/wpF)

CPB = Circuit Playground Bluefruit (https://adafru.it/Gpe)

Troubleshooting

From time to time, you will run into issues when working with CircuitPython. Here are

a few things you may encounter and how to resolve them.

Always Run the Latest Version of
CircuitPython and Libraries

As CircuitPython development continues and there are new releases, Adafruit will

stop supporting older releases. You need to update to the latest CircuitPython. (https:

//adafru.it/Em8).

You need to download the CircuitPython Library Bundle that matches your version of

CircuitPython. Please update CircuitPython and then download the latest bundle (http

s://adafru.it/ENC).

As new versions of CircuitPython are released, Adafruit will stop providing the

previous bundles as automatically created downloads on the Adafruit CircuitPython

Library Bundle repo. If you must continue to use an earlier version, you can still

download the appropriate version of mpy-cross from the particular release of

CircuitPython on the CircuitPython repo and create your own compatible .mpy library

files. However, it is best to update to the latest for both CircuitPython and the library

bundle.

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to

download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

©Adafruit Industries Page 73 of 180

https://circuitpython.org
https://www.adafruit.com/product/3000
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/4333
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries

I have to continue using CircuitPython 5.x or earlier.
Where can I find compatible libraries?

Adafruit is no longer building or supporting the CircuitPython 5.x or earlier library

bundles. You are highly encourged to update CircuitPython to the latest version (http

s://adafru.it/Em8) and use the current version of the libraries (https://adafru.it/ENC).

However, if for some reason you cannot update, links to the previous bundles are

available in the FAQ (https://adafru.it/FwY).

Bootloader (boardnameBOOT) Drive Not
Present

You may have a different board.

Only Adafruit Express boards and the SAMD21 non-Express boards ship with the UF2

bootloader (https://adafru.it/zbX)installed. The Feather M0 Basic, Feather M0

Adalogger, and similar boards use a regular Arduino-compatible bootloader, which

does not show a boardnameBOOT drive.

MakeCode

If you are running a MakeCode (https://adafru.it/zbY) program on Circuit Playground

Express, press the reset button just once to get the CPLAYBOOT drive to show up.

Pressing it twice will not work.

MacOS

DriveDx and its accompanything SAT SMART Driver can interfere with seeing the

BOOT drive. See this forum post (https://adafru.it/sTc) for how to fix the problem.

Windows 10

Did you install the Adafruit Windows Drivers package by mistake, or did you upgrade

to Windows 10 with the driver package installed? You don't need to install this

package on Windows 10 for most Adafruit boards. The old version (v1.5) can interfere

with recognizing your device. Go to Settings -> Apps and uninstall all the "Adafruit"

driver programs.

©Adafruit Industries Page 74 of 180

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://learn.adafruit.com/welcome-to-circuitpython/frequently-asked-questions#faq-3105289
file:///home/deploy/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader
file:///home/deploy/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader
file:///home/deploy/makecode/sharing-and-saving?view=all#step-1-bootloader-mode
https://forums.adafruit.com/viewtopic.php?f=58&t=161917&p=799309#p799215

Windows 7 or 8.1

To use a CircuitPython-compatible board with Windows 7 or 8.1, you must install a

driver. Installation instructions are available here (https://adafru.it/VuB).

It is recommended (https://adafru.it/Amd) that you upgrade to Windows 10 if possible;

an upgrade is probably still free for you. Check here (https://adafru.it/Amd).

You should now be done! Test by unplugging and replugging the board. You should

see the CIRCUITPY drive, and when you double-click the reset button (single click on

Circuit Playground Express running MakeCode), you should see the appropriate boar

dnameBOOT drive.

Let us know in the Adafruit support forums (https://adafru.it/jIf) or on the Adafruit

Discord () if this does not work for you!

Windows Explorer Locks Up When
Accessing boardnameBOOT Drive

On Windows, several third-party programs that can cause issues. The symptom is that

you try to access the boardnameBOOT drive, and Windows or Windows Explorer

seems to lock up. These programs are known to cause trouble:

AIDA64: to fix, stop the program. This problem has been reported to AIDA64.

They acquired hardware to test, and released a beta version that fixes the

problem. This may have been incorporated into the latest release. Please let us

know in the forums if you test this.

Hard Disk Sentinel

Kaspersky anti-virus: To fix, you may need to disable Kaspersky completely.

Disabling some aspects of Kaspersky does not always solve the problem. This

problem has been reported to Kaspersky.

ESET NOD32 anti-virus: There have been problems with at least version

9.0.386.0, solved by uninstallation.

The Windows Drivers installer was last updated in November 2020 (v2.5.0.0) .

Windows 7 drivers for CircuitPython boards released since then, including

RP2040 boards, are not yet available. The boards work fine on Windows 10. A

new release of the drivers is in process.

•

•

•

•

©Adafruit Industries Page 75 of 180

https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://forums.adafruit.com
https://adafru.it/discord
https://adafru.it/discord

Copying UF2 to boardnameBOOT Drive
Hangs at 0% Copied

On Windows, a Western DIgital (WD) utility that comes with their external USB drives

can interfere with copying UF2 files to the boardnameBOOT drive. Uninstall that utility

to fix the problem.

CIRCUITPY Drive Does Not Appear

Kaspersky anti-virus can block the appearance of the CIRCUITPY drive. There has not

yet been settings change discovered that prevents this. Complete uninstallation of

Kaspersky fixes the problem.

Norton anti-virus can interfere with CIRCUITPY. A user has reported this problem on

Windows 7. The user turned off both Smart Firewall and Auto Protect, and CIRCUITPY

then appeared.

Device Errors or Problems on Windows

Windows can become confused about USB device installations. This is particularly

true of Windows 7 and 8.1. It is recommended (https://adafru.it/Amd) that you upgrade

to Windows 10 if possible; an upgrade is probably still free for you: see this link (https

://adafru.it/V2a).

If not, try cleaning up your USB devices. Use Uwe Sieber's Device Cleanup Tool (http

s://adafru.it/RWd). Download and unzip the tool. Unplug all the boards and other USB

devices you want to clean up. Run the tool as Administrator. You will see a listing like

this, probably with many more devices. It is listing all the USB devices that are not

currently attached.

©Adafruit Industries Page 76 of 180

https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://www.cnet.com/tech/services-and-software/windows-10-download/
https://www.uwe-sieber.de/misc_tools_e.html

Select all the devices you want to remove, and then press Delete. It is usually safe

just to select everything. Any device that is removed will get a fresh install when you

plug it in. Using the Device Cleanup Tool also discards all the COM port assignments

for the unplugged boards. If you have used many Arduino and CircuitPython boards,

you have probably seen higher and higher COM port numbers used, seemingly

without end. This will fix that problem.

Serial Console in Mu Not Displaying
Anything

There are times when the serial console will accurately not display anything, such as,

when no code is currently running, or when code with no serial output is already

running before you open the console. However, if you find yourself in a situation

where you feel it should be displaying something like an error, consider the following.

Depending on the size of your screen or Mu window, when you open the serial

console, the serial console panel may be very small. This can be a problem. A basic

CircuitPython error takes 10 lines to display!

Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.

code.py output:

Traceback (most recent call last):

 File "code.py", line 7

SyntaxError: invalid syntax

Press any key to enter the REPL. Use CTRL-D to reload.

More complex errors take even more lines!

©Adafruit Industries Page 77 of 180

Therefore, if your serial console panel is five lines tall or less, you may only see blank

lines or blank lines followed by Press any key to enter the REPL. Use CTRL-D

to reload. . If this is the case, you need to either mouse over the top of the panel to

utilise the option to resize the serial panel, or use the scrollbar on the right side to

scroll up and find your message.

This applies to any kind of serial output whether it be error messages or print

statements. So before you start trying to debug your problem on the hardware side,

be sure to check that you haven't simply missed the serial messages due to serial

output panel height.

code.py Restarts Constantly

CircuitPython will restart code.py if you or your computer writes to something on the

CIRCUITPY drive. This feature is called auto-reload, and lets you test a change to your

program immediately.

Some utility programs, such as backup, anti-virus, or disk-checking apps, will write to

the CIRCUITPY as part of their operation. Sometimes they do this very frequently,

causing constant restarts.

Acronis True Image and related Acronis programs on Windows are known to cause

this problem. It is possible to prevent this by disabling the " (https://adafru.it/XDZ)Acr

onis Managed Machine Service Mini" (https://adafru.it/XDZ).

If you cannot stop whatever is causing the writes, you can disable auto-reload by

putting this code in boot.py or code.py:

import supervisor

supervisor.disable_autoreload()

©Adafruit Industries Page 78 of 180

https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder
https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder
https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder

CircuitPython RGB Status Light

Nearly all CircuitPython-capable boards have a single NeoPixel or DotStar RGB LED

on the board that indicates the status of CircuitPython. A few boards designed before

CircuitPython existed, such as the Feather M0 Basic, do not.

Circuit Playground Express and Circuit Playground Bluefruit have multiple RGB LEDs,

but do NOT have a status LED. The LEDs are all green when in the bootloader. In

versions before 7.0.0, they do NOT indicate any status while running CircuitPython.

CircuitPython 7.0.0 and Later

The status LED blinks were changed in CircuitPython 7.0.0 in order to save battery

power and simplify the blinks. These blink patterns will occur on single color LEDs

when the board does not have any RGB LEDs. Speed and blink count also vary for

this reason.

On start up, the LED will blink YELLOW multiple times for 1 second. Pressing reset

during this time will restart the board and then enter safe mode. On Bluetooth

capable boards, after the yellow blinks, there will be a set of faster blue blinks.

Pressing reset during the BLUE blinks will clear Bluetooth information and start the

device in discoverable mode, so it can be used with a BLE code editor.

Once started, CircuitPython will blink a pattern every 5 seconds when no user code is

running to indicate why the code stopped:

1 GREEN blink: Code finished without error.

2 RED blinks: Code ended due to an exception. Check the serial console for

details.

3 YELLOW blinks: CircuitPython is in safe mode. No user code was run. Check

the serial console for safe mode reason.

When in the REPL, CircuitPython will set the status LED to WHITE. You can change the

LED color from the REPL. The status indicator will not persist on non-NeoPixel or

DotStar LEDs.

•

•

•

©Adafruit Industries Page 79 of 180

CircuitPython 6.3.0 and earlier

Here's what the colors and blinking mean:

steady GREEN: code.py (or code.txt, main.py, or main.txt) is running

pulsing GREEN: code.py (etc.) has finished or does not exist

steady YELLOW at start up: (4.0.0-alpha.5 and newer) CircuitPython is waiting for

a reset to indicate that it should start in safe mode

pulsing YELLOW: Circuit Python is in safe mode: it crashed and restarted

steady WHITE: REPL is running

steady BLUE: boot.py is running

Colors with multiple flashes following indicate a Python exception and then indicate

the line number of the error. The color of the first flash indicates the type of error:

GREEN: IndentationError

CYAN: SyntaxError

WHITE: NameError

ORANGE: OSError

PURPLE: ValueError

YELLOW: other error

These are followed by flashes indicating the line number, including place value. WHIT

E flashes are thousands' place, BLUE are hundreds' place, YELLOW are tens' place,

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 80 of 180

and CYAN are one's place. So for example, an error on line 32 would flash YELLOW

three times and then CYAN two times. Zeroes are indicated by an extra-long dark gap.

Serial console showing ValueError:

Incompatible .mpy file

This error occurs when importing a module that is stored as a .mpy binary file that

was generated by a different version of CircuitPython than the one its being loaded

into. In particular, the mpy binary format changed between CircuitPython versions 6.x

and 7.x, 2.x and 3.x, and 1.x and 2.x.

So, for instance, if you upgraded to CircuitPython 7.x from 6.x you’ll need to download

a newer version of the library that triggered the error on import . All libraries are

available in the Adafruit bundle (https://adafru.it/y8E).

CIRCUITPY Drive Issues

You may find that you can no longer save files to your CIRCUITPY drive. You may find

that your CIRCUITPY stops showing up in your file explorer, or shows up as NO_NAM

E. These are indicators that your filesystem has issues. When the CIRCUITPY disk is

not safely ejected before being reset by the button or being disconnected from USB,

it may corrupt the flash drive. It can happen on Windows, Mac or Linux, though it is

more common on Windows.

©Adafruit Industries Page 81 of 180

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest

Be aware, if you have used Arduino to program your board, CircuitPython is no longer

able to provide the USB services. You will need to reload CircuitPython to resolve this

situation.

The easiest first step is to reload CircuitPython. Double-tap reset on the board so you

get a boardnameBOOT drive rather than a CIRCUITPY drive, and copy the latest

version of CircuitPython (.uf2) back to the board. This may restore CIRCUITPY

functionality.

If reloading CircuitPython does not resolve your issue, the next step is to try putting

the board into safe mode.

Safe Mode

Whether you've run into a situation where you can no longer edit your code.py on

your CIRCUITPY drive, your board has gotten into a state where CIRCUITPY is read-

only, or you have turned off the CIRCUITPY drive altogether, safe mode can help.

Safe mode in CircuitPython does not run any user code on startup, and disables auto-

reload. This means a few things. First, safe mode bypasses any code in boot.py

(where you can set CIRCUITPY read-only or turn it off completely). Second, it does not

run the code in code.py. And finally, it does not automatically soft-reload when data is

written to the CIRCUITPY drive.

Therefore, whatever you may have done to put your board in a non-interactive state,

safe mode gives you the opportunity to correct it without losing all of the data on the

CIRCUITPY drive.

Entering Safe Mode in CircuitPython 7.x

To enter safe mode when using CircuitPython 7.x, plug in your board or hit reset

(highlighted in red above). Immediately after the board starts up or resets, it waits

1000ms. On some boards, the onboard status LED will blink yellow during that time. If

you press reset during that 1000ms, the board will start up in safe mode. It can be

difficult to react to the yellow LED, so you may want to think of it simply as a "slow"

double click of the reset button. (Remember, a fast double click of reset enters the

bootloader.)

©Adafruit Industries Page 82 of 180

Entering Safe Mode in CircuitPython 6.x

To enter safe mode when using CircuitPython 6.x, plug in your board or hit reset

(highlighted in red above). Immediately after the board starts up or resets, it waits

700ms. On some boards, the onboard status LED (highlighted in green above) will

turn solid yellow during this time. If you press reset during that 700ms, the board will

start up in safe mode. It can be difficult to react to the yellow LED, so you may want to

think of it simply as a slow double click of the reset button. (Remember, a fast double

click of reset enters the bootloader.)

In Safe Mode

Once you've entered safe mode successfully in CircuitPython 6.x, the LED will pulse

yellow.

If you successfully enter safe mode on CircuitPython 7.x, the LED will intermittently

blink yellow three times.

If you connect to the serial console, you'll find the following message.

Auto-reload is off.

Running in safe mode! Not running saved code.

CircuitPython is in safe mode because you pressed the reset button during boot.

Press again to exit safe mode.

Press any key to enter the REPL. Use CTRL-D to reload.

You can now edit the contents of the CIRCUITPY drive. Remember, your code will not

run until you press the reset button, or unplug and plug in your board, to get out of

safe mode.

At this point, you'll want to remove any user code in code.py and, if present, the boot.

py file from CIRCUITPY. Once removed, tap the reset button, or unplug and plug in

your board, to restart CircuitPython. This will restart the board and may resolve your

drive issues. If resolved, you can begin coding again as usual.

If safe mode does not resolve your issue, the board must be completely erased and

CircuitPython must be reloaded onto the board.

You WILL lose everything on the board when you complete the following steps. If

possible, make a copy of your code before continuing.

©Adafruit Industries Page 83 of 180

To erase CIRCUITPY: storage.erase_filesystem()

CircuitPython includes a built-in function to erase and reformat the filesystem. If you

have a version of CircuitPython older than 2.3.0 on your board, you can update to the

newest version (https://adafru.it/Amd) to do this.

Connect to the CircuitPython REPL (https://adafru.it/Bec) using Mu or a terminal

program.

Type the following into the REPL:

>>> import storage

>>> storage.erase_filesystem()

CIRCUITPY will be erased and reformatted, and your board will restart. That's it!

Erase CIRCUITPY Without Access to the REPL

If you can't access the REPL, or you're running a version of CircuitPython previous to

2.3.0 and you don't want to upgrade, there are options available for some specific

boards.

The options listed below are considered to be the "old way" of erasing your board.

The method shown above using the REPL is highly recommended as the best method

for erasing your board.

For the specific boards listed below:

If the board you are trying to erase is listed below, follow the steps to use the file to

erase your board.

 1. Download the correct erase file:

Circuit Playground Express

https://adafru.it/AdI

Feather M0 Express

1.

2.

If at all possible, it is recommended to use the REPL to erase your CIRCUITPY

drive. The REPL method is explained above.

©Adafruit Industries Page 84 of 180

file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/kattni-connecting-to-the-serial-console
https://cdn-learn.adafruit.com/assets/assets/000/048/745/original/flash_erase_express.ino.circuitplay.uf2?1512152080
https://cdn-learn.adafruit.com/assets/assets/000/048/746/original/flash_erase_express.ino.feather_m0_express.uf2?1512152098

https://adafru.it/AdJ

Feather M4 Express

https://adafru.it/EVK

Metro M0 Express

https://adafru.it/AdK

Metro M4 Express QSPI Eraser

https://adafru.it/EoM

Trellis M4 Express (QSPI)

https://adafru.it/DjD

Grand Central M4 Express (QSPI)

https://adafru.it/DBA

PyPortal M4 Express (QSPI)

https://adafru.it/Eca

Circuit Playground Bluefruit (QSPI)

https://adafru.it/Gnc

Monster M4SK (QSPI)

https://adafru.it/GAN

PyBadge/PyGamer QSPI Eraser.UF2

https://adafru.it/GAO

CLUE_Flash_Erase.UF2

https://adafru.it/Jat

Matrix_Portal_M4_(QSPI).UF2

https://adafru.it/Q5B

 2. Double-click the reset button on the board to bring up the boardnameBOOT

drive.

 3. Drag the erase .uf2 file to the boardnameBOOT drive.

©Adafruit Industries Page 85 of 180

https://cdn-learn.adafruit.com/assets/assets/000/076/217/original/flash_erase.ino.feather_m4.uf2
https://cdn-learn.adafruit.com/assets/assets/000/048/747/original/flash_erase_express.ino.metro_m0.uf2?1512152103
https://cdn-learn.adafruit.com/assets/assets/000/073/820/original/Metro_M4_QSPI_Eraser.UF2?1553805937
https://cdn-learn.adafruit.com/assets/assets/000/067/535/original/Trellis_M4_QSPI_Eraser.UF2?1544719380
https://cdn-learn.adafruit.com/assets/assets/000/069/314/original/GC_M4_QSPI_Erase.UF2?1547404471
https://cdn-learn.adafruit.com/assets/assets/000/072/252/original/PYPORTAL_QSPI_Eraser.UF2?1551738305
https://cdn-learn.adafruit.com/assets/assets/000/082/950/original/CP_Bluefruit_QSPI_Erase.UF2?1572026649
https://cdn-learn.adafruit.com/assets/assets/000/083/330/original/M4SK_QSPI_Eraser.UF2?1572551433
https://cdn-learn.adafruit.com/assets/assets/000/083/331/original/PyBadge_QSPI_Eraser.UF2?1572551613
https://cdn-learn.adafruit.com/assets/assets/000/088/454/original/CLUE_Flash_Erase.UF2?1581873830
https://cdn-learn.adafruit.com/assets/assets/000/098/741/original/Matrix_Portal_M4_%28QSPI%29.UF2?1611076081

 4. The status LED will turn yellow or blue, indicating the erase has started.

 5. After approximately 15 seconds, the status LED will light up green. On the

NeoTrellis M4 this is the first NeoPixel on the grid

 6. Double-click the reset button on the board to bring up the boardnameBOOT d

rive.

 7. Drag the appropriate latest release of CircuitPython (https://adafru.it/Em8) .uf2

file to the boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer

again.

If the LED flashes red during step 5, it means the erase has failed. Repeat the steps

starting with 2.

If you haven't already downloaded the latest release of CircuitPython for your board,

check out the installation page (https://adafru.it/Amd). You'll also need to load your

code and reinstall your libraries!

For SAMD21 non-Express boards that have a UF2
bootloader:

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. Non-Express boards that have a UF2

bootloader include Trinket M0, GEMMA M0, QT Py M0, and the SAMD21-based

Trinkey boards.

If you are trying to erase a SAMD21 non-Express board, follow these steps to erase

your board.

 1. Download the erase file:

SAMD21 non-Express Boards

https://adafru.it/VB-

 2. Double-click the reset button on the board to bring up the boardnameBOOT

drive.

 3. Drag the erase .uf2 file to the boardnameBOOT drive.

 4. The boot LED will start flashing again, and the boardnameBOOT drive will

reappear.

 5. Drag the appropriate latest release CircuitPython (https://adafru.it/Em8) .uf2

file to the boardnameBOOT drive.

©Adafruit Industries Page 86 of 180

https://circuitpython.org/downloads
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
https://cdn-learn.adafruit.com/assets/assets/000/048/748/original/erase_m0.uf2
https://circuitpython.org/downloads

It should reboot automatically and you should see CIRCUITPY in your file explorer

again.

If you haven't already downloaded the latest release of CircuitPython for your board,

check out the installation page (https://adafru.it/Amd) YYou'll also need to load your

code and reinstall your libraries!

For SAMD21 non-Express boards that do not have a UF2
bootloader:

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. Non-Express boards that do not have a

UF2 bootloader include the Feather M0 Basic Proto, Feather Adalogger, or the

Arduino Zero.

If you are trying to erase a non-Express board that does not have a UF2 bootloader, f

ollow these directions to reload CircuitPython using bossac (https://adafru.it/Bed),

which will erase and re-create CIRCUITPY.

Running Out of File Space on SAMD21 Non-
Express Boards

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. This includes boards like the Trinket M0,

GEMMA M0, QT Py M0, and the SAMD21-based Trinkey boards.

The file system on the board is very tiny. (Smaller than an ancient floppy disk.) So, its

likely you'll run out of space but don't panic! There are a number of ways to free up

space.

©Adafruit Industries Page 87 of 180

file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/non-uf2-installation
file:///home/welcome-to-circuitpython/non-uf2-installation
file:///home/welcome-to-circuitpython/non-uf2-installation

Delete something!

The simplest way of freeing up space is to delete files from the drive. Perhaps there

are libraries in the lib folder that you aren't using anymore or test code that isn't in

use. Don't delete the lib folder completely, though, just remove what you don't need.

The board ships with the Windows 7 serial driver too! Feel free to delete that if you

don't need it or have already installed it. It's ~12KiB or so.

Use tabs

One unique feature of Python is that the indentation of code matters. Usually the

recommendation is to indent code with four spaces for every indent. In general, that

is recommended too. However, one trick to storing more human-readable code is to

use a single tab character for indentation. This approach uses 1/4 of the space for

indentation and can be significant when you're counting bytes.

On MacOS?

MacOS loves to generate hidden files. Luckily you can disable some of the extra

hidden files that macOS adds by running a few commands to disable search indexing

and create zero byte placeholders. Follow the steps below to maximize the amount of

space available on macOS.

Prevent & Remove MacOS Hidden Files

First find the volume name for your board. With the board plugged in run this

command in a terminal to list all the volumes:

ls -l /Volumes

Look for a volume with a name like CIRCUITPY (the default for CircuitPython). The full

path to the volume is the /Volumes/CIRCUITPY path.

Now follow the steps from this question (https://adafru.it/u1c) to run these terminal

commands that stop hidden files from being created on the board:

mdutil -i off /Volumes/CIRCUITPY

cd /Volumes/CIRCUITPY

rm -rf .{,_.}{fseventsd,Spotlight-V*,Trashes}

©Adafruit Industries Page 88 of 180

http://apple.stackexchange.com/questions/6707/how-to-stop-os-x-from-writing-spotlight-and-trash-files-to-memory-cards-and-usb/7135#7135

mkdir .fseventsd

touch .fseventsd/no_log .metadata_never_index .Trashes

cd -

Replace /Volumes/CIRCUITPY in the commands above with the full path to your

board's volume if it's different. At this point all the hidden files should be cleared from

the board and some hidden files will be prevented from being created.

Alternatively, with CircuitPython 4.x and above, the special files and folders

mentioned above will be created automatically if you erase and reformat the

filesystem. WARNING: Save your files first! Do this in the REPL:

>>> import storage

>>> storage.erase_filesystem()

However there are still some cases where hidden files will be created by MacOS. In

particular if you copy a file that was downloaded from the internet it will have special

metadata that MacOS stores as a hidden file. Luckily you can run a copy command

from the terminal to copy files without this hidden metadata file. See the steps below.

Copy Files on MacOS Without Creating Hidden Files

Once you've disabled and removed hidden files with the above commands on macOS

you need to be careful to copy files to the board with a special command that

prevents future hidden files from being created. Unfortunately you cannot use drag

and drop copy in Finder because it will still create these hidden extended attribute

files in some cases (for files downloaded from the internet, like Adafruit's modules).

To copy a file or folder use the -X option for the cp command in a terminal. For

example to copy a file_name.mpy file to the board use a command like:

cp -X file_name.mpy /Volumes/CIRCUITPY

(Replace file_name.mpy with the name of the file you want to copy.)

Or to copy a folder and all of the files and folders contained within, use a command

like:

cp -rX folder_to_copy /Volumes/CIRCUITPY

©Adafruit Industries Page 89 of 180

If you are copying to the lib folder, or another folder, make sure it exists before

copying.

if lib does not exist, you'll create a file named lib !

cp -X file_name.mpy /Volumes/CIRCUITPY/lib

This is safer, and will complain if a lib folder does not exist.

cp -X file_name.mpy /Volumes/CIRCUITPY/lib/

Other MacOS Space-Saving Tips

If you'd like to see the amount of space used on the drive and manually delete hidden

files here's how to do so. First, move into the Volumes/ directory with cd /Volumes/ ,

and then list the amount of space used on the CIRCUITPY drive with the df

command.

That's not very much space left! The next step is to show a list of the files currently on

the CIRCUITPY drive, including the hidden files, using the ls command. You cannot

use Finder to do this, you must do it via command line!

There are a few of the hidden files that MacOS loves to generate, all of which begin

with a ._ before the file name. Remove the ._ files using the rm command. You can

remove them all once by running rm CIRCUITPY/._* . The * acts as a wildcard to

apply the command to everything that begins with ._ at the same time.

Finally, you can run df again to see the current space used.

©Adafruit Industries Page 90 of 180

Nice! You have 12Ki more than before! This space can now be used for libraries and

code!

Device Locked Up or Boot Looping

In rare cases, it may happen that something in your code.py or boot.py files causes

the device to get locked up, or even go into a boot loop. A boot loop occurs when the

board reboots repeatedly and never fully loads. These are not caused by your

everyday Python exceptions, typically it's the result of a deeper problem within

CircuitPython. In this situation, it can be difficult to recover your device if CIRCUITPY

is not allowing you to modify the code.py or boot.py files. Safe mode is one recovery

option. When the device boots up in safe mode it will not run the code.py or boot.py

scripts, but will still connect the CIRCUITPY drive so that you can remove or modify

those files as needed.

The method used to manually enter safe mode can be different for different devices.

It is also very similar to the method used for getting into bootloader mode, which is a

different thing. So it can take a few tries to get the timing right. If you end up in

bootloader mode, no problem, you can try again without needing to do anything else.

For most devices:

Press the reset button, and then when the RGB status LED blinks yellow, press the

reset button again. Since your reaction time may not be that fast, try a "slow" double

click, to catch the yellow LED on the second click.

For ESP32-S2 based devices:

Press and release the reset button, then press and release the boot button about 3/4

of a second later.

Refer to the diagrams above for boot sequence details.

©Adafruit Industries Page 91 of 180

Welcome to the Community!

CircuitPython is a programming language that's super simple to get started with and

great for learning. It runs on microcontrollers and works out of the box. You can plug it

in and get started with any text editor. The best part? CircuitPython comes with an

amazing, supportive community.

Everyone is welcome! CircuitPython is Open Source. This means it's available for

anyone to use, edit, copy and improve upon. This also means CircuitPython becomes

better because of you being a part of it. Whether this is your first microcontroller

board or you're a seasoned software engineer, you have something important to offer

the Adafruit CircuitPython community. This page highlights some of the many ways

you can be a part of it!

Adafruit Discord

©Adafruit Industries Page 92 of 180

The Adafruit Discord server is the best place to start. Discord is where the community

comes together to volunteer and provide live support of all kinds. From general

discussion to detailed problem solving, and everything in between, Discord is a digital

maker space with makers from around the world.

There are many different channels so you can choose the one best suited to your

needs. Each channel is shown on Discord as "#channelname". There's the #help-with-

projects channel for assistance with your current project or help coming up with ideas

for your next one. There's the #show-and-tell channel for showing off your newest

creation. Don't be afraid to ask a question in any channel! If you're unsure, #general is

a great place to start. If another channel is more likely to provide you with a better

answer, someone will guide you.

The help with CircuitPython channel is where to go with your CircuitPython questions.

#help-with-circuitpython is there for new users and developers alike so feel free to

ask a question or post a comment! Everyone of any experience level is welcome to

join in on the conversation. Your contributions are important! The #circuitpython-dev

channel is available for development discussions as well.

The easiest way to contribute to the community is to assist others on Discord.

Supporting others doesn't always mean answering questions. Join in celebrating

successes! Celebrate your mistakes! Sometimes just hearing that someone else has

gone through a similar struggle can be enough to keep a maker moving forward.

The Adafruit Discord is the 24x7x365 hackerspace that you can bring your

granddaughter to.

Visit https://adafru.it/discord ()to sign up for Discord. Everyone is looking forward to

meeting you!

©Adafruit Industries Page 93 of 180

https://adafru.it/discord

CircuitPython.org

Beyond the Adafruit Learn System, which you are viewing right now, the best place to

find information about CircuitPython is circuitpython.org (https://adafru.it/KJD).

Everything you need to get started with your new microcontroller and beyond is

available. You can do things like download CircuitPython for your microcontroller (htt

ps://adafru.it/Em8) or download the latest CircuitPython Library bundle (https://

adafru.it/ENC), or check out which single board computers support Blinka (https://

adafru.it/EA8). You can also get to various other CircuitPython related things like

Awesome CircuitPython or the Python for Microcontrollers newsletter. This is all

incredibly useful, but it isn't necessarily community related. So why is it included

here? The Contributing page (https://adafru.it/VD7).

CircuitPython itself is written in C. However, all of the Adafruit CircuitPython libraries

are written in Python. If you're interested in contributing to CircuitPython on the

Python side of things, check out circuitpython.org/contributing (https://adafru.it/VD7).

You'll find information pertaining to every Adafruit CircuitPython library GitHub

repository, giving you the opportunity to join the community by finding a contributing

option that works for you.

Note the date on the page next to Current Status for:

©Adafruit Industries Page 94 of 180

https://circuitpython.org
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/blinka
https://circuitpython.org/contributing
https://circuitpython.org/contributing

If you submit any contributions to the libraries, and do not see them reflected on the

Contributing page, it could be that the job that checks for new updates hasn't yet run

for today. Simply check back tomorrow!

Now, a look at the different options.

Pull Requests

The first tab you'll find is a list of open pull requests.

GitHub pull requests, or PRs, are opened when folks have added something to an

Adafruit CircuitPython library GitHub repo, and are asking for Adafruit to add, or

merge, their changes into the main library code. For PRs to be merged, they must first

be reviewed. Reviewing is a great way to contribute! Take a look at the list of open

pull requests, and pick one that interests you. If you have the hardware, you can test

code changes. If you don't, you can still check the code updates for syntax. In the

case of documentation updates, you can verify the information, or check it for spelling

and grammar. Once you've checked out the update, you can leave a comment letting

us know that you took a look. Once you've done that for a while, and you're more

comfortable with it, you can consider joining the CircuitPythonLibrarians review team.

The more reviewers we have, the more authors we can support. Reviewing is a crucial

part of an open source ecosystem, CircuitPython included.

Open Issues

The second tab you'll find is a list of open issues.

©Adafruit Industries Page 95 of 180

GitHub issues are filed for a number of reasons, including when there is a bug in the

library or example code, or when someone wants to make a feature request. Issues

are a great way to find an opportunity to contribute directly to the libraries by

updating code or documentation. If you're interested in contributing code or

documentation, take a look at the open issues and find one that interests you.

If you're not sure where to start, you can search the issues by label. Labels are

applied to issues to make the goal easier to identify at a first glance, or to indicate the

difficulty level of the issue. Click on the dropdown next to "Sort by issue labels" to see

the list of available labels, and click on one to choose it.

If you're new to everything, new to contributing to open source, or new to

contributing to the CircuitPython project, you can choose "Good first issue". Issues

with that label are well defined, with a finite scope, and are intended to be easy for

someone new to figure out.

If you're looking for something a little more complicated, consider "Bug" or

"Enhancement". The Bug label is applied to issues that pertain to problems or failures

found in the library. The Enhancement label is applied to feature requests.

©Adafruit Industries Page 96 of 180

Don't let the process intimidate you. If you're new to Git and GitHub, there is a guide (

https://adafru.it/Dkh) to walk you through the entire process. As well, there are always

folks available on Discord () to answer questions.

Library Infrastructure Issues

The third tab you'll find is a list of library infrastructure issues.

This section is generated by a script that runs checks on the libraries, and then

reports back where there may be issues. It is made up of a list of subsections each

containing links to the repositories that are experiencing that particular issue. This

page is available mostly for internal use, but you may find some opportunities to

contribute on this page. If there's an issue listed that sounds like something you could

help with, mention it on Discord, or file an issue on GitHub indicating you're working

to resolve that issue. Others can reply either way to let you know what the scope of it

might be, and help you resolve it if necessary.

CircuitPython Localization

The fourth tab you'll find is the CircuitPython Localization tab.

If you speak another language, you can help translate CircuitPython! The translations

apply to informational and error messages that are within the CircuitPython core. It

means that folks who do not speak English have the opportunity to have these

messages shown to them in their own language when using CircuitPython. This is

©Adafruit Industries Page 97 of 180

https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github
https:adafru.it/discord

incredibly important to provide the best experience possible for all users.

CircuitPython uses Weblate to translate, which makes it much simpler to contribute

translations. You will still need to know some CircuitPython-specific practices and a

few basics about coding strings, but as with any CircuitPython contributions, folks are

there to help.

Regardless of your skill level, or how you want to contribute to the CircuitPython

project, there is an opportunity available. The Contributing page (https://adafru.it/VD7)

is an excellent place to start!

Adafruit GitHub

Whether you're just beginning or are life-long programmer who would like to

contribute, there are ways for everyone to be a part of the CircuitPython project. The

CircuitPython core is written in C. The libraries are written in Python. GitHub is the

best source of ways to contribute to the CircuitPython core (https://adafru.it/tB7), and

the CircuitPython libraries (https://adafru.it/VFv). If you need an account, visit https://

github.com/ (https://adafru.it/d6C) and sign up.

If you're new to GitHub or programming in general, there are great opportunities for

you. For the CircuitPython core, head over to the CircuitPython repository on GitHub,

click on "Issues (https://adafru.it/tBb)", and you'll find a list that includes issues labeled

"good first issue (https://adafru.it/Bef)". For the libraries, head over to the Contributing

page Issues list (https://adafru.it/VFv), and use the drop down menu to search for "go

od first issue (https://adafru.it/VFw)". These issues are things that have been identified

as something that someone with any level of experience can help with. These issues

include options like updating documentation, providing feedback, and fixing simple

bugs. If you need help getting started with GitHub, there is an excellent guide on Con

tributing to CircuitPython with Git and GitHub (https://adafru.it/Dkh).

©Adafruit Industries Page 98 of 180

https://circuitpython.org/contributing
https://github.com/adafruit/circuitpython
https://circuitpython.org/contributing/open-issues
https://github.com/
https://github.com/
https://github.com/adafruit/circuitpython/issues
https://github.com/adafruit/circuitpython/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22
https://circuitpython.org/contributing/open-issues
https://circuitpython.org/contributing/open-issues
https://circuitpython.org/contributing/open-issues?label=good-first-issue
https://circuitpython.org/contributing/open-issues?label=good-first-issue
https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github
https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github

Already experienced and looking for a challenge? Checkout the rest of either issues

list and you'll find plenty of ways to contribute. You'll find all sorts of things, from new

driver requests, to library bugs, to core module updates. There's plenty of

opportunities for everyone at any level!

When working with or using CircuitPython or the CircuitPython libraries, you may find

problems. If you find a bug, that's great! The team loves bugs! Posting a detailed issue

to GitHub is an invaluable way to contribute to improving CircuitPython. For

CircuitPython itself, file an issue here (https://adafru.it/tBb). For the libraries, file an

issue on the specific library repository on GitHub. Be sure to include the steps to

replicate the issue as well as any other information you think is relevant. The more

detail, the better!

Testing new software is easy and incredibly helpful. Simply load the newest version of

CircuitPython or a library onto your CircuitPython hardware, and use it. Let us know

about any problems you find by posting a new issue to GitHub. Software testing on

both stable and unstable releases is a very important part of contributing

CircuitPython. The developers can't possibly find all the problems themselves! They

need your help to make CircuitPython even better.

On GitHub, you can submit feature requests, provide feedback, report problems and

much more. If you have questions, remember that Discord and the Forums are both

there for help!

Adafruit Forums

The Adafruit Forums (https://adafru.it/jIf) are the perfect place for support. Adafruit

has wonderful paid support folks to answer any questions you may have. Whether

your hardware is giving you issues or your code doesn't seem to be working, the

forums are always there for you to ask. You need an Adafruit account to post to the

forums. You can use the same account you use to order from Adafruit.

©Adafruit Industries Page 99 of 180

https://github.com/adafruit/circuitpython/issues
https://forums.adafruit.com

While Discord may provide you with quicker responses than the forums, the forums

are a more reliable source of information. If you want to be certain you're getting an

Adafruit-supported answer, the forums are the best place to be.

There are forum categories that cover all kinds of topics, including everything

Adafruit. The Adafruit CircuitPython (https://adafru.it/xXA) category under "Supported

Products & Projects" is the best place to post your CircuitPython questions.

Be sure to include the steps you took to get to where you are. If it involves wiring,

post a picture! If your code is giving you trouble, include your code in your post!

These are great ways to make sure that there's enough information to help you with

your issue.

You might think you're just getting started, but you definitely know something that

someone else doesn't. The great thing about the forums is that you can help others

too! Everyone is welcome and encouraged to provide constructive feedback to any of

the posted questions. This is an excellent way to contribute to the community and

share your knowledge!

Read the Docs

Read the Docs (https://adafru.it/Beg) is a an excellent resource for a more detailed

look at the CircuitPython core and the CircuitPython libraries. This is where you'll find

©Adafruit Industries Page 100 of 180

https://forums.adafruit.com/viewforum.php?f=60
https://circuitpython.readthedocs.io/

things like API documentation and example code. For an in depth look at viewing and

understanding Read the Docs, check out the CircuitPython Documentation (https://

adafru.it/VFx) page!

CircuitPython Essentials

You've been introduced to CircuitPython, and worked through getting everything set

up. What's next? CircuitPython Essentials!

There are a number of core modules built into CircuitPython, which can be used along

side the many CircuitPython libraries available. The following pages demonstrate

some of these modules. Each page presents a different concept including a code

example with an explanation. All of the examples are designed to work with your

microcontroller board.

Time to get started learning the CircuitPython essentials!

Some examples require external components, such as switches or sensors. You'll find

wiring diagrams where applicable to show you how to wire up the necessary

components to work with each example.

The following components are needed to complete all of the examples:

©Adafruit Industries Page 101 of 180

https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-documentation

STEMMA Wired Potentiometer Breakout

Board - 10K ohm Linear

For the easiest way possible to measure

twists, turn to this STEMMA potentiometer

breakout (ha!). This plug-n-play pot comes

with a JST-PH 2mm connector and a

matching

https://www.adafruit.com/product/4493

Adafruit MCP9808 High Accuracy I2C

Temperature Sensor Breakout

The MCP9808 digital temperature sensor

is one of the more accurate/precise we've

ever seen, with a typical accuracy of

±0.25°C over the sensor's -40°C to...

https://www.adafruit.com/product/5027

STEMMA QT / Qwiic JST SH 4-Pin Cable

This 4-wire cable is 50mm / 1.9" long and

fitted with JST SH female 4-pin

connectors on both ends. Compared with

the chunkier JST PH these are 1mm pitch

instead of 2mm, but...

https://www.adafruit.com/product/4399

Blink

In learning any programming language, you often begin with some sort of Hello,

World! program. In CircuitPython, Hello, World! is blinking an LED. Blink is one of the

simplest programs in CircuitPython. Despite its simplicity, it shows you many of the

basic concepts needed for most CircuitPython programs, and provides a solid basis

for more complex projects. Your board has a built-in NeoPixel LED that is great this

example.

©Adafruit Industries Page 102 of 180

https://www.adafruit.com/product/4493
https://www.adafruit.com/product/4493
https://www.adafruit.com/product/4493
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399

A NeoPixel is what Adafruit calls the WS281x family of addressable RGB LEDs. The

built-in status LED on your board is a NeoPixel! It contains three LEDs - a red one, a

green one and a blue one - along side a driver chip in a tiny package controlled by a

single pin. They can be used individually (as in the built-in LED on your board), or

chained together in strips or other creative form factors. NeoPixels do not light up on

their own; they require a microcontroller. So, it's super convenient that the NeoPixel is

built in to your microcontroller board!

Time to get blinky!

NeoPixel Location

The RGB NeoPixel LED (highlighted in

green) is located near the SCK/MI on the

board silk, at the corner of the STEMMA

QT sensor.

Blinking a NeoPixel LED

To use the built-in NeoPixel on your board, you need to first install the NeoPixel

library into the lib folder on your CIRCUITPY drive.

Then you need to update code.py.

Click the Download Project Bundle button below to download the necessary libraries

and the code.py file in a zip file. Extract the contents of the zip file, and copy the entir

e lib folder and the code.py file to your CIRCUITPY drive.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: Unlicense

"""CircuitPython blink example for built-in NeoPixel LED"""

import time

import board

import neopixel

pixel = neopixel.NeoPixel(board.NEOPIXEL, 1)

while True:

 pixel.fill((255, 0, 0))

©Adafruit Industries Page 103 of 180

https://learn.adafruit.com//assets/107806
https://learn.adafruit.com//assets/107806

 time.sleep(0.5)

 pixel.fill((0, 0, 0))

 time.sleep(0.5)

Your CIRCUITPY drive contents should resemble the image below.

You should have in Root Folder / of the CIRCUITPY drive:

code.py

And in the lib folder on your CIRCUITPY drive:

adafruit_pixelbuf.mpy

neopixel.mpy

The built-in NeoPixel LED begins blinking!

It's important to understand what is going on in this program.

First you import three modules: time , board and neopixel . This makes these

modules and libraries available for use in your code. The first two are modules built-in

to CircuitPython, so you don't need to download anything to use those. The neopix

el library is separate, which is why you needed to install it before getting started.

Next, you set up the NeoPixel LED. To interact with hardware in CircuitPython, your

code must let the board know where to look for the hardware and what to do with it.

So, you create a neopixel.NeoPixel() object, provide it the NeoPixel LED pin

using the board module, and tell it the number of LEDs. You save this object to the

variable pixel .

•

•

•

If your NeoPixel does not start blinking, make sure you've copied all the

necessary files and folders to the CIRCUITPY drive!

©Adafruit Industries Page 104 of 180

Finally, you create a while True: loop. This means all the code inside the loop will

repeat indefinitely. Inside the loop, you "fill" the pixel with red using the RGB tuple

(255, 0, 0) . (For more information on how RGB tuples work, see the next section!)

Then, you use time.sleep(0.5) to tell the code to wait half a second before

moving on to the next line. The next fills the pixel with "black", which turns it off. Then

you use another time.sleep(0.5) to wait half a second before starting the loop

over again.

With only a small update, you can control the blink speed. The blink speed is

controlled by the amount of time you tell the code to wait before moving on using ti

me.sleep() . The example uses 0.5 , which is one half of one second. Try increasing

or decreasing these values to see how the blinking changes.

That's all there is to blinking a built-in NeoPixel LED using CircuitPython!

RGB LED Colors

RGB LED colors are set using a combination of red, green, and blue, in the form of an

(R, G, B) tuple. Each member of the tuple is set to a number between 0 and 255 that

determines the amount of each color present. Red, green and blue in different

combinations can create all the colors in the rainbow! So, for example, to set an LED

to red, the tuple would be (255, 0, 0), which has the maximum level of red, and no

green or blue. Green would be (0, 255, 0), etc. For the colors between, you set a

combination, such as cyan which is (0, 255, 255), with equal amounts of green and

blue. If you increase all values to the same level, you get white! If you decrease all the

values to 0, you turn the LED off.

Common colors include:

red: (255, 0, 0)

green: (0, 255, 0)

blue: (0, 0, 255)

cyan: (0, 255, 255)

purple: (255, 0, 255)

yellow: (255, 255, 0)

white: (255, 255, 255)

black (off): (0, 0, 0)

•

•

•

•

•

•

•

•

©Adafruit Industries Page 105 of 180

Digital Input

The CircuitPython digitalio module has many applications. You can easily set up a

digital input such as a button to control the NeoPixel LED. This example builds on the

basic Blink example, but now includes setup for a button switch. Instead of using the

time module to blink the LED, it uses the status of the button switch to control

whether the LED is turned on or off.

NeoPixel and Button

The RGB NeoPixel LED (highlighted

in green) is located near the SCK/MI

on the board silk, at the corner of

the STEMMA QT sensor.

The Boot button (highlighted in

blue) is located next to the Reset

button, at the corner of the USB C

connector.

Controlling the NeoPixel with a Button

To use the built-in NeoPixel on your board, you need to first install the NeoPixel

library into the lib folder on your CIRCUITPY drive.

Then you need to update code.py.

Click the Download Project Bundle button below to download the necessary libraries

and the code.py file in a zip file. Extract the contents of the zip file, and copy the entir

e lib folder and the code.py file to your CIRCUITPY drive.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: Unlicense

"""

CircuitPython Digital Input example - Blinking a built-in NeoPixel LED using a

button switch.

"""

import board

import digitalio

import neopixel

pixel = neopixel.NeoPixel(board.NEOPIXEL, 1)

button = digitalio.DigitalInOut(board.BUTTON)

•

•

©Adafruit Industries Page 106 of 180

https://learn.adafruit.com//assets/107807
https://learn.adafruit.com//assets/107807

button.switch_to_input(pull=digitalio.Pull.UP)

while True:

 if not button.value:

 pixel.fill((255, 0, 0))

 else:

 pixel.fill((0, 0, 0))

Your CIRCUITPY drive contents should resemble the image below.

You should have in Root Folder / of the CIRCUITPY drive:

code.py

And in the lib folder on your CIRCUITPY drive:

adafruit_pixelbuf.mpy

neopixel.mpy

Now, press the button. The NeoPixel lights up! Let go of the button and the NeoPixel

turns off.

•

•

•

©Adafruit Industries Page 107 of 180

First you import two modules, board and digitalio , and one library, neopixel .

This makes these modules available for use in your code.

Next, you set up the NeoPixel. To interact with hardware in CircuitPython, your code

must let the board know where to look for the hardware and what to do with it. So,

you create a neopixel.NeoPixel() object, provide it the NeoPixel LED pin using

the board module, and tell it the number of NeoPixels, 1 . You save this object to the

variable pixel .

Then, you create a digitalio.DigitalInOut() object, provide it the button pin

using the board module, and save it to the variable button . You tell the pin to act

as an INPUT and provide a pull up.

Inside the loop, you check to see if the button is pressed, and if so, turn the NeoPixel

red. Otherwise the NeoPixel is off.

That's all there is to controlling a NeoPixel LED with a button switch!

Analog In

Your microcontroller board has both digital and analog signal capabilities. Some pins

are analog, some are digital, and some are capable of both. Check the Pinouts page

in this guide for details about your board.

Analog signals are different from digital signals in that they can be any voltage and

can vary continuously and smoothly between voltages. An analog signal is like a

dimmer switch on a light, whereas a digital signal is like a simple on/off switch.

Digital signals only can ever have two states, they are either are on (high logic level

voltage like 3.3V) or off (low logic level voltage like 0V / ground).

By contrast, analog signals can be any voltage in-between on and off, such as 1.8V or

0.001V or 2.98V and so on.

If your NeoPixel does light up when you press the button, make sure you've

copied all the necessary files and folders to the CIRCUITPY drive!

©Adafruit Industries Page 108 of 180

Analog signals are continuous values which means they can be an infinite number of

different voltages. Think of analog signals like a floating point or fractional number,

they can smoothly transiting to any in-between value like 1.8V, 1.81V, 1.801V, 1.8001V,

1.80001V and so forth to infinity.

Many devices use analog signals, in particular sensors typically output an analog

signal or voltage that varies based on something being sensed like light, heat,

humidity, etc.

Analog to Digital Converter (ADC)

An analog-to-digital-converter, or ADC, is the key to reading analog signals and

voltages with a microcontroller. An ADC is a device that reads the voltage of an

analog signal and converts it into a digital, or numeric, value. The microcontroller

can’t read analog signals directly, so the analog signal is first converted into a

numeric value by the ADC.

The black line below shows a digital signal over time, and the red line shows the

converted analog signal over the same amount of time.

©Adafruit Industries Page 109 of 180

Once that analog signal has been converted by the ADC, the microcontroller can use

those digital values any way you like!

Potentiometers

A potentiometer is a small variable resistor that you can twist a knob or shaft to

change its resistance. It has three pins. By twisting the knob on the potentiometer you

can change the resistance of the middle pin (called the wiper) to be anywhere within

the range of resistance of the potentiometer.

By wiring the potentiometer to your board in a special way (called a voltage divider)

you can turn the change in resistance into a change in voltage that your board’s

analog to digital converter can read.

To wire up a potentiometer as a voltage divider:

Connect one outside pin to ground

Connect the other outside pin to

voltage in (e.g. 3.3V)

Connect the middle pin to an

analog pin (e.g. A0)

•

•

•

©Adafruit Industries Page 110 of 180

https://learn.adafruit.com//assets/102481
https://learn.adafruit.com//assets/102481

Hardware

In addition to your microcontroller board, you will need the following hardware to

follow along with this example.

Potentiometer

STEMMA Wired Potentiometer Breakout

Board - 10K ohm Linear

For the easiest way possible to measure

twists, turn to this STEMMA potentiometer

breakout (ha!). This plug-n-play pot comes

with a JST-PH 2mm connector and a

matching

https://www.adafruit.com/product/4493

Wire Up the Potentiometer

Connect the potentiometer to your board as follows.

Potentiometer left pin (white wire)

to QT Py ESP32-S2 A0

Potentiometer center pin (red wire)

to QT Py ESP32-S2 3.3V

Potentiometer right pin (black wire)

to QT Py ESP32-S2 GND

Reading Analog Pin Values

CircuitPython makes it easy to read analog pin values. Simply import two modules, set

up the pin, and then print the value inside a loop.

You'll need to connect to the serial console (https://adafru.it/Bec) to see the values

printed out.

•

•

•

©Adafruit Industries Page 111 of 180

https://www.adafruit.com/product/4493
https://www.adafruit.com/product/4493
https://www.adafruit.com/product/4493
https://learn.adafruit.com//assets/107818
https://learn.adafruit.com//assets/107818
https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

Save the following as code.py on your CIRCUITPY drive.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: Unlicense

"""CircuitPython analog pin value example"""

import time

import board

import analogio

analog_pin = analogio.AnalogIn(board.A0)

while True:

 print(analog_pin.value)

 time.sleep(0.1)

Now, rotate the potentiometer to see the values change.

What do these values mean? In CircuitPython ADC values are put into the range of 16-

bit unsigned values. This means the possible values you’ll read from the ADC fall

within the range of 0 to 65535 (or 2^16 - 1). When you twist the potentiometer knob to

be near ground, or as far to the left as possible, you see a value close to zero.

When you twist it to the right, the value gets bigger up to some value that is

dependent on the microcontroller. Many microcontrollers get a value very close to

65535. Some, such as the QT Py ESP32-S2, have a smaller limit of about 51653 or

2.6 volts.

The code is simple. You begin by importing three modules: time , board and analo

gio . All three modules are built into CircuitPython, so you don't need to download

anything to get started.

Then, you set up the analog pin by creating an analogio.AnalogIn() object,

providing it the desired pin using the board module, and saving it to the variable an

alog_pin .

Finally, in the loop, you print out the analog value with analog_pin.value , including

a time.sleep() to slow down the values to a human-readable rate.

©Adafruit Industries Page 112 of 180

Reading Analog Voltage Values

These values don't necessarily equate to anything obvious. You can get an idea of the

rotation of the potentiometer based on where in the range the value falls, but not

without doing some math. Remember, you wired up the potentiometer as a voltage

divider. By adding a simple function to your code, you can get a more human-

readable value from the potentiometer.

You'll need to connect to the serial console (https://adafru.it/Bec) to see the values

printed out.

Save the following as code.py on your CIRCUITPY drive.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: Unlicense

"""

CircuitPython analog voltage value example

"""

import time

import board

import analogio

analog_pin = analogio.AnalogIn(board.A0)

def get_voltage(pin):

 return (pin.value * 2.6) / 51653

while True:

 print(get_voltage(analog_pin))

 time.sleep(0.1)

Now, rotate the potentiometer to see the values change.

Now the values range from around 0 to 2.6! Note that you may not get all the way to

0 or 2.6. This is normal.

The example code begins with the same imports and pin setup.

©Adafruit Industries Page 113 of 180

https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

This time, you include the get_voltage helper. This function requires that you

provide an analog pin. It then maps the raw analog values, 0 to 51653 , to the

voltage values, 0 to 2.6 . It does the math so you don't have to!

Finally, inside the loop, you provide the function with your analog_pin , and print the

resulting values.

That's all there is to reading analog voltage values using CircuitPython!

CPU Temperature

There is a temperature sensor built into the CPU on your microcontroller board. It

reads the internal CPU temperature, which varies depending on how long the board

has been running or how intense your code is.

CircuitPython makes it really simple to read this data from the temperature sensor

built into the microcontroller. Using the built-in microcontroller module, you can

easily read the temperature.

Microcontroller Location

The ESP32-S2 microcontroller

(highlighted in red) is located in the

center of the back of the QT Py.

Reading the Microcontroller Temperature

The data is read using two lines of code. All necessary modules are built into

CircuitPython, so you don't need to download any extra files to get started.

Connect to the serial console (https://adafru.it/Bec), and then update your code.py to

the following and save.

©Adafruit Industries Page 114 of 180

https://learn.adafruit.com//assets/107821
https://learn.adafruit.com//assets/107821
https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: Unlicense

"""CircuitPython CPU temperature example in Celsius"""

import time

import microcontroller

while True:

 print(microcontroller.cpu.temperature)

 time.sleep(0.15)

The CPU temperature in Celsius is printed out to the serial console!

Try putting your finger on the microcontroller to see the temperature change.

The code is simple. First you import two modules: time and microcontroller .

Then, inside the loop, you print the microcontroller CPU temperature, and the time.

sleep() slows down the print enough to be readable. That's it!

You can easily print out the temperature in Fahrenheit by adding a little math to your

code, using this simple formula: Celsius * (9/5) + 32.

Update your code.py to the following, and save.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: Unlicense

"""CircuitPython CPU temperature example in Fahrenheit"""

import time

import microcontroller

while True:

 print(microcontroller.cpu.temperature * (9 / 5) + 32)

 time.sleep(0.15)

©Adafruit Industries Page 115 of 180

The CPU temperature in Fahrenheit is printed out to the serial console!

That's all there is to reading the CPU temperature using CircuitPython!

Storage

CircuitPython-compatible microcontrollers show up as a CIRCUITPY drive when

plugged into your computer, allowing you to edit code directly on the board. Perhaps

you've wondered whether or not you can write data from CircuitPython directly to the

board to act as a data logger. The answer is yes!

The storage module in CircuitPython enables you to write code that allows

CircuitPython to write data to the CIRCUITPY drive. This process requires you to

include a boot.py file on your CIRCUITPY drive, along side your code.py file.

The boot.py file is special - the code within it is executed when CircuitPython starts

up, either from a hard reset or powering up the board. It is not run on soft reset, for

example, if you reload the board from the serial console or the REPL. This is in

contrast to the code within code.py, which is executed after CircuitPython is already

running.

The CIRCUITPY drive is typically writable by your computer; this is what allows you to

edit your code directly on the board. The reason you need a boot.py file is that you

have to set the filesystem to be read-only by your computer to allow it to be writable

by CircuitPython. This is because CircuitPython cannot write to the filesystem at the

same time as your computer. Doing so can lead to filesystem corruption and loss of all

content on the drive, so CircuitPython is designed to only allow one at at time.

The boot.py File

Save the following as boot.py on your CIRCUITPY drive.

Click the Download Project Bundle button, open the resulting zip file, and copy the bo

ot.py file to your CIRCUITPY drive.

You can only have EITHER your computer edit files on the CIRCUITPY drive, OR

have CircuitPython edit files. You cannot have both writing to the CIRCUITPY

drive at the same time. CircuitPython doesn't allow it!

©Adafruit Industries Page 116 of 180

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: Unlicense

"""

CircuitPython Essentials Storage CP Filesystem boot.py file

"""

import time

import board

import digitalio

import storage

import neopixel

pixel = neopixel.NeoPixel(board.NEOPIXEL, 1)

button = digitalio.DigitalInOut(board.BUTTON)

button.switch_to_input(pull=digitalio.Pull.UP)

Turn the NeoPixel blue for one second to indicate when to press the boot button.

pixel.fill((255, 255, 255))

time.sleep(1)

If the button is connected to ground, the filesystem is writable by CircuitPython

storage.remount("/", readonly=button.value)

The storage.remount() command has a readonly keyword argument. This

argument refers to the read/write state of CircuitPython. It does NOT refer to the read

/write state of your computer.

When the button is pressed, it returns False . The readonly argument in boot.py is

set to the value of the button. When the value=True , the CIRCUITPY drive is read-

only to CircuitPython (and writable by your computer). When the value=False , the C

IRCUITPY drive is writable by CircuitPython (and read-only by your computer).

The code.py File

Save the following as code.py on your CIRCUITPY drive.

Click the Download Project Bundle button, open the resulting zip file, and copy the li

b folder and the code.py file to your CIRCUITPY drive.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: Unlicense

"""

CircuitPython Essentials Storage CP Filesystem code.py file

"""

import time

import board

import microcontroller

import neopixel

The filesystem will NOT automatically be set to read-only on creation of this file!

You'll still be able to edit files on CIRCUITPY after saving this boot.py.

©Adafruit Industries Page 117 of 180

pixel = neopixel.NeoPixel(board.NEOPIXEL, 1)

try:

 with open("/temperature.txt", "a") as temp_log:

 while True:

 # The microcontroller temperature in Celsius. Include the

 # math to do the C to F conversion here, if desired.

 temperature = microcontroller.cpu.temperature

 # Write the temperature to the temperature.txt file every 10 seconds.

 temp_log.write('{0:.2f}\n'.format(temperature))

 temp_log.flush()

 # Blink the NeoPixel on every write...

 pixel.fill((255, 0, 0))

 time.sleep(1) # ...for one second.

 pixel.fill((0, 0, 0)) # Then turn it off...

 time.sleep(9) # ...for the other 9 seconds.

except OSError as e: # When the filesystem is NOT writable by CircuitPython...

 delay = 0.5 # ...blink the NeoPixel every half second.

 if e.args[0] == 28: # If the file system is full...

 delay = 0.15 # ...blink the NeoPixel every 0.15 seconds!

 while True:

 pixel.fill((255, 0, 0))

 time.sleep(delay)

 pixel.fill((0, 0, 0))

 time.sleep(delay)

First you import the necessary modules to make them available to your code, and you

set up the LED.

Next you have a try / except block, which is used to handle the three potential

states of the board: read/write, read-only, or filesystem full. The code in the try

block will run if the filesystem is writable by CircuitPython. The code in the except

block will run if the filesystem is read-only to CircuitPython OR if the filesystem is full.

Under the try , you open a temperature.txt log file. If it is the first time, it will create

the file. For all subsequent times, it opens the file and appends data. Inside the loop,

you get the microcontroller temperature value and assign it to a temperature

variable. Then, you write the temperature value to the log file, followed by clearing

the buffer for the next time through the loop. The temperature data is limited to two

decimal points to save space for more data. Finally, you turn the LED on for one

second, and then turn it off for the next nine seconds. Essentially, you blink the LED

for one second every time the temperature is logged to the file which happens every

ten seconds.

Next you except an OSError . An OSError number 30 is raised when trying to

create, open or write to a file on a filesystem that is read-only to CircuitPython. If any

OSError other than 28 is raised (e.g. 30), the delay is set to 0.5 seconds. If the

filesystem fills up, CircuitPython raises OSError number 28. If OSError number 28

is raised, the delay is set to 0.15 seconds. Inside the loop, the LED is turned on for

©Adafruit Industries Page 118 of 180

the duration of the delay , and turned off for the duration of the delay , effectively

blinking the LED at the speed of the delay .

Logging the Temperature

At the moment, the LED on your board should be blinking once every half second.

This indicates that the board is currently read-only to CircuitPython, and writable to

your computer, allowing you to update the files on your CIRCUITPY drive as needed.

The way the code in boot.py works is, it checks to see if the button is pressed when

the board is powered on and boot.py is run. To begin logging the temperature, you

must press the button.

The boot button (highlighted in blue) is

labeled Boot on the silk, and is located at

the corner of the USB connector.

While holding down the button, you need to either hard reset the board by pressing

the reset button, or by unplugging the USB cable and plugging it back in. This will run

the code within boot.py and set your board to writable by CircuitPython, and

therefore, read-only by the computer.

For the QT Py ESP32-S2, it's difficult to get the timing right for when to press the boot

button. So, the boot.py file includes turning the NeoPixel on bright white for one

second. Press the boot button when the NeoPixel is white!

The red blinking will slow down to one second long, every 10 seconds. This indicates

that the board is currently logging the temperature, once every 10 seconds.

As long as the button is pressed, you can plug the board in anywhere you have USB

power, and log the temperature in that location! The temperature is not the ambient

For the QT Py ESP32-S2, the button-press timing is a little different. Press it when

the NeoPixel LED turns white!

©Adafruit Industries Page 119 of 180

https://learn.adafruit.com//assets/107898
https://learn.adafruit.com//assets/107898

temperature; it is the temperature inside the microcontroller, which will typically be

higher than ambient temperature. However, running only this code, once the

microcontroller temperature stabilises, it should at least be consistent, and therefore

usable for tracking changes in ambient temperature.

If the LED starts blinking really quickly, it means the filesystem is full! You'll need to

get your temperature data and delete the temperature log file to begin again.

That's all there is to logging the temperature using CircuitPython!

Recovering a Read-Only Filesystem

In the event that you make your CIRCUITPY drive read-only to your computer, and for

some reason, it doesn't easily switch back to writable, there are a couple of things

you can do to recover the filesystem.

Even when the CIRCUITPY drive is read-only to your computer, you can still access

the serial console and REPL. If you connect to the serial console and enter the REPL,

you can run either of the following two sets of commands at the >>> prompt. You do

not need to run both.

First, you can rename your boot.py file to something other than boot.py.

import os

os.rename("boot.py", "something_else.py")

Alternatively, you can remove the boot.py file altogether.

import os

os.remove("boot.py")

Then, restart the board by either hitting the reset button or unplugging USB and

plugging it back in. CIRCUITPY should show up on your computer as usual, but now it

should be writable by your computer.

©Adafruit Industries Page 120 of 180

I2C

The I2C, or inter-integrated circuit (https://adafru.it/u2a), is a 2-wire protocol for

communicating with simple sensors and devices, which means it uses two

connections, or wires, for transmitting and receiving data. One connection is a clock,

called SCL. The other is the data line, called SDA. Each pair of clock and data pins are

referred to as a bus.

Typically, there is a device that acts as a controller and sends requests to the periphe

ral devices on each bus. In this case, your microcontroller board acts as the controller,

and the sensor breakout acts as the peripheral. Historically, the controller is referred

to as the master, and the peripheral is referred to as the slave, so you may run into

that terminology elsewhere; at this time, Adafruit refers to them as controller and

peripheral (https://adafru.it/TtF).

Multiple I2C devices can be connected to the same clock and data lines. Each I2C

device has an address, and as long as the addresses are different, you can connect

them at the same time. This means you can have many different sensors and devices

all connected to the same two pins.

Both I2C connections require pull-up resistors, and most Adafruit I2C sensors and

breakouts have pull-up resistors built in. If you're using one that does not, you'll need

to add your own 2.2-10kΩ pull-up resistors from SCL and SDA to 3.3V.

I2C and CircuitPython

CircuitPython supports many I2C devices, and makes it super simple to interact with

them. There are libraries available for many I2C devices in the CircuitPython Library

Bundle (https://adafru.it/Tra). (If you don't see the sensor you're looking for, keep

checking back, more are being written all the time!)

©Adafruit Industries Page 121 of 180

https://en.wikipedia.org/wiki/I%C2%B2C
https://adafruit.com/controller-peripheral
https://adafruit.com/controller-peripheral
https://circuitpython.readthedocs.io/projects/bundle/en/latest/#table-of-contents
https://circuitpython.readthedocs.io/projects/bundle/en/latest/#table-of-contents

In this section, you'll learn how to scan the I2C bus for all connected devices. Then

you'll learn how to interact with an I2C device.

Necessary Hardware

You'll need the following additional hardware to complete the examples on this page.

Adafruit MCP9808 High Accuracy I2C

Temperature Sensor Breakout

The MCP9808 digital temperature sensor

is one of the more accurate/precise we've

ever seen, with a typical accuracy of

±0.25°C over the sensor's -40°C to...

https://www.adafruit.com/product/5027

STEMMA QT / Qwiic JST SH 4-Pin Cable

This 4-wire cable is 50mm / 1.9" long and

fitted with JST SH female 4-pin

connectors on both ends. Compared with

the chunkier JST PH these are 1mm pitch

instead of 2mm, but...

https://www.adafruit.com/product/4399

While the examples here will be using the Adafruit MCP9808 (https://adafru.it/Trb), a

high accuracy temperature sensor, the overall process is the same for just about any

I2C sensor or device.

The first thing you'll want to do is get the sensor connected so your board has I2C to

talk to.

Wiring the MCP9808

The MCP9808 comes with a STEMMA QT connector, which makes wiring it up quite

simple and solder-free.

©Adafruit Industries Page 122 of 180

https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/5027

Simply connect the STEMMA QT cable

from the STEMMA QT port on your board

to the STEMMA QT port on the

MCP9808.

Find Your Sensor

The first thing you'll want to do after getting the sensor wired up, is make sure it's

wired correctly. You're going to do an I2C scan to see if the board is detected, and if it

is, print out its I2C address.

Save the following to your CIRCUITPY drive as code.py.

Click the Download Project Bundle button below to download the necessary libraries

and the code.py file in a zip file. Extract the contents of the zip file, find your

CircuitPython version, and copy the matching code.py file to your CIRCUITPY drive.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: Unlicense

"""CircuitPython I2C Device Address Scan"""

import time

import board

To use default I2C bus (most boards)

i2c = board.I2C()

To create I2C bus on specific pins

import busio

i2c = busio.I2C(board.SCL1, board.SDA1) # QT Py RP2040 STEMMA connector

i2c = busio.I2C(board.GP1, board.GP0) # Pi Pico RP2040

while not i2c.try_lock():

 pass

try:

 while True:

 print(

 "I2C addresses found:",

 [hex(device_address) for device_address in i2c.scan()],

)

 time.sleep(2)

finally: # unlock the i2c bus when ctrl-c'ing out of the loop

 i2c.unlock()

©Adafruit Industries Page 123 of 180

https://learn.adafruit.com//assets/107899
https://learn.adafruit.com//assets/107899

If you run this and it seems to hang, try manually unlocking your I2C bus by running

the following two commands from the REPL.

import board

board.I2C().unlock()

First you create the i2c object, using board.I2C() . This convenience routine

creates and saves a busio.I2C object using the default pins board.SCL and boar

d.SDA . If the object has already been created, then the existing object is returned. No

matter how many times you call board.I2C() , it will return the same object. This is

called a singleton.

To be able to scan it, you need to lock the I2C down so the only thing accessing it is

the code. So next you include a loop that waits until I2C is locked and then continues

on to the scan function.

Last, you have the loop that runs the actual scan, i2c_scan() . Because I2C typically

refers to addresses in hex form, the example includes this bit of code that formats the

results into hex format: [hex(device_address) for device_address in

i2c.scan()] .

Open the serial console to see the results! The code prints out an array of addresses.

You've connected the MCP9808 which has a 7-bit I2C address of 0x18. The result for

this sensor is I2C addresses found: ['0x18'] . If no addresses are returned, refer

back to the wiring diagrams to make sure you've wired up your sensor correctly.

I2C Sensor Data

Now you know for certain that your sensor is connected and ready to go. Time to find

out how to get the data from the sensor!

Save the following to your CIRCUITPY drive as code.py.

Click the Download Project Bundle button below to download the necessary libraries

and the code.py file in a zip file. Extract the contents of the zip file, find your

CircuitPython version, and copy the matching entire lib folder and code.py file to your

CIRCUITPY drive.

©Adafruit Industries Page 124 of 180

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: Unlicense

"""CircuitPython I2C MCP9808 Temperature Sensor Example"""

import time

import board

import adafruit_mcp9808

i2c = board.I2C() # uses board.SCL and board.SDA

import busio

i2c = busio.I2C(board.SCL1, board.SDA1) # For QT Py RP2040, QT Py ESP32-S2

mcp9808 = adafruit_mcp9808.MCP9808(i2c)

while True:

 temperature_celsius = mcp9808.temperature

 temperature_fahrenheit = temperature_celsius * 9 / 5 + 32

 print("Temperature: {:.2f} C {:.2f} F ".format(temperature_celsius,

temperature_fahrenheit))

 time.sleep(2)

The QT Py ESP32-S2 STEMMA QT connector uses board.SCL1 and board.SDA1 for

the I2C pins. Comment out the current i2c setup line, and uncomment the two lines

following it to use the STEMMA QT connector on your board.

This code begins the same way as the scan code, except this time, you create your

sensor object using the sensor library. You call it mcp9808 and provide it the i2c

object.

Then you have a simple loop that prints out the temperature reading using the sensor

object you created. Finally, there's a time.sleep(2) , so it only prints once every two

seconds. Connect to the serial console to see the results. Try touching the MCP9808

with your finger to see the values change!

Where's my I2C?

On many microcontrollers, you have the flexibility of using a wide range of pins for

I2C. On some types of microcontrollers, any pin can be used for I2C! Other chips

require using bitbangio, but can also use any pins for I2C. There are further

microcontrollers that may have fixed I2C pins.

For the QT Py ESP32-S2, you'll need to change the I2C setup to the commented

out setup included in the code above.

©Adafruit Industries Page 125 of 180

Given the many different types of microcontroller boards available, it's impossible to

guarantee anything other than the labeled 'SDA' and 'SCL' pins. So, if you want some

other setup, or multiple I2C interfaces, how will you find those pins? Easy! We've

written a handy script.

Save the following to your CIRCUITPY drive as code.py.

Click the Download Project Bundle button below to download the necessary libraries

and the code.py file in a zip file. Extract the contents of the zip file, find your

CircuitPython version, and copy the matching code.py file to your CIRCUITPY drive.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: Unlicense

"""CircuitPython I2C possible pin-pair identifying script"""

import board

import busio

from microcontroller import Pin

def is_hardware_i2c(scl, sda):

 try:

 p = busio.I2C(scl, sda)

 p.deinit()

 return True

 except ValueError:

 return False

 except RuntimeError:

 return True

def get_unique_pins():

 exclude = [

 getattr(board, p)

 for p in [

 # This is not an exhaustive list of unexposed pins. Your results

 # may include other pins that you cannot easily connect to.

 "NEOPIXEL",

 "DOTSTAR_CLOCK",

 "DOTSTAR_DATA",

 "APA102_SCK",

 "APA102_MOSI",

 "LED",

 "SWITCH",

 "BUTTON",

 "ACCELEROMETER_INTERRUPT",

 "VOLTAGE_MONITOR",

 "MICROPHONE_CLOCK",

 "MICROPHONE_DATA",

]

 if p in dir(board)

]

 pins = [

 pin

 for pin in [getattr(board, p) for p in dir(board)]

 if isinstance(pin, Pin) and pin not in exclude

]

 unique = []

 for p in pins:

 if p not in unique:

 unique.append(p)

 return unique

©Adafruit Industries Page 126 of 180

for scl_pin in get_unique_pins():

 for sda_pin in get_unique_pins():

 if scl_pin is sda_pin:

 continue

 if is_hardware_i2c(scl_pin, sda_pin):

 print("SCL pin:", scl_pin, "\t SDA pin:", sda_pin)

Now, connect to the serial console and check out the output! The results print out a

nice handy list of SCL and SDA pin pairs that support I2C.

Capacitive Touch

Your microcontroller board has capacitive touch capabilities on multiple pins. The

CircuitPython touchio module makes it simple to detect when you touch a pin,

enabling you to use it as an input.

This section first covers using the touchio module to read touches on one pin. You'll

learn how to setup the pin in your program, and read the touch status. Then, you'll

learn how to read touches on multiple pins in a single example. Time to get started!

One Capacitive Touch Pin

The first example covered here will show you how to read touches on one pin.

The output for the QT Py ESP32-S2 is extremely long! The screenshot shows only

the beginning. Run the script yourself to see the full output!

This example only runs once, so if you do not see any output when you connect

to the serial console, try CTRL+D to reload.

©Adafruit Industries Page 127 of 180

Pin Location

A2 (highlighted in blue) is the first

pin used for capacitive touch.

Reading Touch on the Pin

Download the following file by clicking the Download Project Bundle button. Drag the

contents of the bundle, the code.py file, to your CIRCUITPY drive.

Then, connect to the serial console (https://adafru.it/Bec).

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: Unlicense

"""

CircuitPython Capacitive Touch Pin Example - Print to the serial console when one

pin is touched.

"""

import time

import board

import touchio

touch = touchio.TouchIn(board.A2)

while True:

 if touch.value:

 print("Pin touched!")

 time.sleep(0.1)

Now touch the pin indicated in the diagram above. You'll see Pin touched! printed

to the serial console!

•

©Adafruit Industries Page 128 of 180

https://learn.adafruit.com//assets/107900
https://learn.adafruit.com//assets/107900
https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

First you import three modules: time , board and touchio . This makes these

modules available for use in your code. All three are built-in to CircuitPython, so you

don't find any library files in the Project Bundle.

Next, you create the touchio.TouchIn() object, and provide it the pin name using

the board module. You save that to the touch variable.

Inside the loop, you check to see if thepin is touched. If so, you print to the serial

console. Finally, you include a time.sleep() to slow it down a bit so the output is

readable.

That's all there is to reading touch on a single pin using touchio in CircuitPython!

Multiple Capacitive Touch Pins

The next example shows you how to read touches on multiple pins in a single

program.

©Adafruit Industries Page 129 of 180

Pin Location

A2 (highlighted in blue) is the first

pin used for capacitive touch.

TX (highlighted in green) is the

second pin used for capacitive

touch.

Reading Touch on the Pins

Download the following file by clicking the Download Project Bundle button. Drag the

contents of the bundle, the code.py file, to your CIRCUITPY drive.

Then, connect to the serial console (https://adafru.it/Bec).

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: Unlicense

"""

CircuitPython Capacitive Two Touch Pin Example - Print to the serial console when a

pin is touched.

"""

import time

import board

import touchio

touch_one = touchio.TouchIn(board.A2)

touch_two = touchio.TouchIn(board.TX)

while True:

 if touch_one.value:

 print("Pin one touched!")

 if touch_two.value:

 print("Pin two touched!")

 time.sleep(0.1)

Touch the pins to see the messages printed to the serial console!

This example builds on the first. The imports remain the same.

The touchio.TouchIn() object is created, but is instead saved to touch_one . A

second touchio.TouchIn() object is also created, the second pin is provided to it

using the board module, and is saved to touch_two .

•

•

©Adafruit Industries Page 130 of 180

https://learn.adafruit.com//assets/107901
https://learn.adafruit.com//assets/107901
https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

Inside the loop, we check to see if pin one and pin two are touched, and if so, print to

the serial console Pin one touched! and Pin two touched! , respectively. The

same time.sleep() is included.

If more touch-capable pins are available on your board, you can easily add them by

expanding on this example!

The Available Touch-Capable Pins

There are five capacitive touch capable pins on the QT Py ESP32-S2.

A2 - CircuitPython board.A2 .

Arduino 9 .

A3 - CircuitPython board.A3 .

Arduino 8 .

SDA - CircuitPython board.SDA .

Arduino 7 .

SCL - CircuitPython board.SCL .

Arduino 6 .

TX - CircuitPython board.TX .

Arduino 5 .

Arduino IDE Setup

The first thing you will need to do is to download the latest release of the Arduino

IDE. You will need to be using version 1.8 or higher for this guide

Arduino IDE Download

https://adafru.it/f1P

The ESP32-S2 Arduino board support package is currently part of the 2.0.0 or later

release. To use the ESP32-S2 with Arduino, you'll need to follow the steps below for

your operating system. You can also check out the Espressif Arduino repository for

the most up to date details on how to install it (https://adafru.it/weF).

After you have downloaded and installed the latest version of Arduino IDE, you will

need to start the IDE and navigate to the Preferences menu. You can access it from

the File menu in Windows or Linux, or the Arduino menu on OS X.

•

•

•

•

•

©Adafruit Industries Page 131 of 180

https://learn.adafruit.com//assets/107902
https://learn.adafruit.com//assets/107902
http://www.arduino.cc/en/Main/Software
https://github.com/espressif/arduino-esp32#using-through-arduino-ide
https://github.com/espressif/arduino-esp32#using-through-arduino-ide

A dialog will pop up just like the one shown below.

We will be adding a URL to the new Additional Boards Manager URLs option. The list

of URLs is comma separated, and you will only have to add each URL once. New

Adafruit boards and updates to existing boards will automatically be picked up by the

Board Manager each time it is opened. The URLs point to index files that the Board

Manager uses to build the list of available & installed boards.

©Adafruit Industries Page 132 of 180

To find the most up to date list of URLs you can add, you can visit the list of third party

board URLs on the Arduino IDE wiki (https://adafru.it/f7U). We will only need to add

one URL to the IDE in this example, but you can add multiple URLS by separating

them with commas. Copy and paste the link below into the Additional Boards

Manager URLs option in the Arduino IDE preferences.

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/

package_esp32_dev_index.json

If you have multiple boards you want to support, say ESP8266 and Adafruit, have

both URLs in the text box separated by a comma (,)

Once done click OK to save the new preference settings.

The next step is to actually install the Board Support Package (BSP). Go to the Tools →

Board → Board Manager submenu. A dialog should come up with various BSPs.

Search for esp32.

Click the Install button and wait for it to finish. Once it is finished, you can close the

dialog.

©Adafruit Industries Page 133 of 180

https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls#list-of-3rd-party-boards-support-urls
https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls#list-of-3rd-party-boards-support-urls

In the Tools → Board submenu you should see ESP32 Arduino and in that dropdown it

should contain the ESP32 boards along with all the latest ESP32-S2 boards.

In the Tools > Boards menu you should see the ESP32 Arduino menu. In the expanded

menu, look for the menu option for the Adafruit QT Py ESP32-S2, and click on it to

choose it.

Arduino NeoPixel Blink

The first and most basic program you can upload to your Arduino is the classic Blink

sketch. This takes something on the board and makes it, well, blink! On and off. It's a

great way to make sure everything is working and you're uploading your sketch to the

right board and right configuration.

When all else fails, you can always come back to Blink!

Now traditionally you would use an onboard LED to make a blink occur. However, this

board does not have an onboard single-color LED, so we will 'mimic' the same blink

sketch but instead of using a digital output pin, we will use NeoPixel support to blink

the onboard RGB LED!

Pre-Flight Check: Get Arduino IDE &
Hardware Set Up

This lesson assumes you have Arduino IDE set up. This is a generalized checklist,

some elements may not apply to your hardware. If you haven't yet, check the previous

steps in the guide to make sure you:

Install the very latest Arduino IDE for Desktop (not all boards are supported by

the Web IDE so we don't recommend it)

Install any board support packages (BSP) required for your hardware. Some

boards are built in defaults on the IDE, but lots are not! You may need to install

plug-in support which is called the BSP.

•

•

©Adafruit Industries Page 134 of 180

Get a Data/Sync USB cable for connecting your hardware. A significant amount

of problems folks have stem from not having a USB cable with data pins. Yes,

these cursed cables roam the land, making your life hard. If you find a USB

cable that doesn't work for data/sync, throw it away immediately! There is no

need to keep it around, cables are very inexpensive these days.

Install any drivers required - If you have a board with a FTDI or CP210x chip, you

may need to get separate drivers. If your board has native USB, it probably

doesn't need anything. After installing, reboot to make sure the driver sinks in.

Connect the board to your computer. If your board has a power LED, make sure

its lit. Is there a power switch? Make sure its turned On!

Start up Arduino IDE and Select Board/Port

OK now you are prepared! Open the Arduino IDE on your computer. Now you have to

tell the IDE what board you are using, and how you want to connect to it.

In the IDE find the Tools menu. You will use this to select the board. If you switch

boards, you must switch the selection! So always double-check before you upload

code in a new session.

•

•

•

The ESP32-S2 QT Py does not require any drivers and does not have a power

LED so you may not see anything glowing when you plug it in, thats ok!

©Adafruit Industries Page 135 of 180

Install NeoPixel Library

Despite their popularity, NeoPixel RGB LEDs are not supported 'out of the box' in

Arduino IDE! You will need to add support by installing the library. Good news it is ver

y easy to do it. Go to the Library Manager here

Search for and install the Adafruit NeoPixel library. It might not be first in the list so

make sure you get the name matched up right!

©Adafruit Industries Page 136 of 180

New NeoPixel Blink Sketch

OK lets make a new blink sketch! From the File menu, select New

Then in the new window, copy and paste this text:

#include <Adafruit_NeoPixel.h>

// How many internal neopixels do we have? some boards have more than one!

#define NUMPIXELS 1

Adafruit_NeoPixel pixels(NUMPIXELS, PIN_NEOPIXEL, NEO_GRB + NEO_KHZ800);

// the setup routine runs once when you press reset:

void setup() {

 Serial.begin(115200);

#if defined(NEOPIXEL_POWER)

 // If this board has a power control pin, we must set it to output and high

 // in order to enable the NeoPixels. We put this in an #if defined so it can

 // be reused for other boards without compilation errors

 pinMode(NEOPIXEL_POWER, OUTPUT);

 digitalWrite(NEOPIXEL_POWER, HIGH);

#endif

 pixels.begin(); // INITIALIZE NeoPixel strip object (REQUIRED)

 pixels.setBrightness(20); // not so bright

}

// the loop routine runs over and over again forever:

void loop() {

 // say hi

 Serial.println("Hello!");

 // set color to red

 pixels.fill(0xFF0000);

 pixels.show();

 delay(500); // wait half a second

 // turn off

 pixels.fill(0x000000);

 pixels.show();

 delay(500); // wait half a second

}

Note that in this example, we are not only blinking the NeoPixel LED but also

printing to the Serial monitor, think of it as a little bonus to test the serial

connection.

©Adafruit Industries Page 137 of 180

One note you'll see is that we reference the LED with the constant PIN_NEOPIXEL

rather than a number. That's because each board could have the built in NeoPixels on

a different pin and this makes the code a little more portable!

Verify (Compile) Sketch

OK now you can click the Verify button to convert the sketch into binary data to be

uploaded to the board.

Note that Verifying a sketch is the same as Compiling a sketch - so we will use the

words interchangeably

During verification/compilation, the computer will do a bunch of work to collect all the

libraries and code and the results will appear in the bottom window of the IDE

If something went wrong with compilation, you will get red warning/error text in the

bottom window letting you know what the error was. It will also highlight the line with

an error

For example, here I had the wrong board selected - and the selected board does not

have a built in NeoPixel pin defined!

On the ESP32-S2 QT Py the NeoPixel is on pin/GPIO #39 and the Power pin is on

GPIO #38 - the power pin MUST be set to an OUTPUT and HIGH before the

internal NeoPixel can be initialized/displayed

©Adafruit Industries Page 138 of 180

Here's another common error, in my haste I forgot to add a ; at the end of a line. The

compiler warns me that it's looking for one - note that the error is actually a few lines

up!

On success you will see something like this white text output and the message Done

compiling. in the message area.

Turning on detailed compilation warnings and output can be very helpful

sometimes - Its in Preferences under "Show Verbose Output During:" and check

the Compilation button. If you ever need to get help from others, be sure to do

this and then provide all the text that is output. It can assist in nailing down what

happened!

©Adafruit Industries Page 139 of 180

Upload Sketch

Once the code is verified/compiling cleanly you can upload it to your board. Click the

Upload button

The IDE will try to compile the sketch again for good measure, then it will try to

connect to the board and upload a the file.

This is actually one of the hardest parts for beginners because it's where a lot of

things can go wrong.

However, lets start with what it looks like on success! Here's what your board upload

process looks like when it goes right:

Often times you will get a warning like this, which is kind of vague:

No device found on COM66 (or whatever port is selected)

An error occurred while uploading the sketch

©Adafruit Industries Page 140 of 180

This could be a few things.

First up, check again that you have the correct board selected! Many electronics

boards have very similar names or look, and often times folks grab a board different

from what they thought.

If you're positive the right board is selected, we recommend the next step is to put

the board into manual bootloading mode.

Native USB and manual bootloading

Historically, microcontroller boards contained two chips: the main micro chip (say,

ATmega328 or ESP8266 or ESP32) and a separate chip for USB interface that would

be used for bootloading (a CH430, FT232, CP210x, etc). With these older designs, the

microcontroller is put into a bootloading state for uploading code by the separate

chip. It allows for easier uploading but is more expensive as two chips are needed,

and also the microcontroller can't act like a keyboard or disk drive.

Modern chips often have 'native' USB - that means that there is no separate chip for

USB interface. It's all in one! Great for cost savings, simplicity of design, reduced size

and more control. However, it means the chip must be self-aware enough to be able

to put itself into bootload/upload mode on its own. That's fine 99% of the time but is

very likely you will at some point get the board into an odd state that makes it too

confused to bootload.

Before continuing we really really suggest turning on Verbose Upload messages, it

will help in this process because you will be able to see what the IDE is trying to do.

It's a checkbox in the Preferences menu.

A lot of beginners have a little freakout the first time this happens, they think the

board is ruined or 'bricked' - it's almost certainly not, it is just crashed and/or

confused. You may need to perform a little trick to get the board back into a

good state, at which point you won't need to manually bootload again.

©Adafruit Industries Page 141 of 180

Enter Manual Bootload Mode

OK now you know it's probably time to try manual bootloading. No problem! Here is

how you do that for this board:

Entering the ROM bootloader is easy. Complete the following steps.

Before you start, make sure your QT Py ESP32-S2 is plugged into USB port to your

computer using a data/sync cable. Charge-only cables will not work!

To enter the bootloader:

Press and hold the Boot button down. Don't let go of it yet!

Press and release the Reset button. You should still have the Boot button

pressed while you do this.

Now you can release the Boot button.

No USB drive will appear when you've entered the ROM bootloader. This is normal!

Once you are in manual bootload mode, go to the Tools menu, and make sure you

have selected the bootloader serial port. It is almost certain that the serial port has

changed now that the bootloader is enabled.

1.

2.

3.

©Adafruit Industries Page 142 of 180

Now you can try uploading again!

This time, you should have success!

After uploading this way, be sure to click the reset button - it sort of makes sure that

the board got a good reset and will come back to life nicely.

It's also a good idea to try to re-upload the sketch again now that you've performed a

manual bootload to get the chip into a good state. It should perform an auto-reset the

second time, so you don't have to manually bootload again

Once you've finished the re-upload, don't forget to press RESET and then select the

old Port again!

Finally, a Blink!

OK it was a journey but now we're here and you can enjoy your blinking LED. Next up,

try to change the delay between blinks and re-upload. It's a good way to make sure

your upload process is smooth and practiced.

Did you remember to select the new Port in the Tools menu since the bootloader

port has changed?

After uploading with Manual Bootloader - don't forget to re-select the old Port

again

©Adafruit Industries Page 143 of 180

I2C Scan Test

'A lot of sensors, displays, and devices can connect over I2C. I2C is a 2-wire 'bus' that

allows multiple devices to all connect on one set of pins so it's very convenient for

wiring!

When using your board, you'll probably want to connect up I2C devices, and it can be

a little tricky the first time. The best way to debug I2C is go through a checklist and

then perform an I2C scan

Common I2C Connectivity Issues

Have you connected four wires (at a minimum) for each I2C device? Power the

device with whatever is the logic level of your microcontroller board (probably

3.3V), then a ground wire, and a SCL clock wire, and and a SDA data wire.

If you're using a STEMMA QT board - check if the power LED is lit. Its usually a

green LED to the left side of the board.

Does the STEMMA QT/I2C port have switchable power or pullups? To reduce

power, some boards have the ability to cut power to I2C devices or the pullup

resistors. Check the documentation if you have to do something special to turn

on the power or pullups.

If you are using a DIY I2C device, do you have pullup resistors? Many boards do

not have pullup resistors built in and they are required! We suggest any common

2.2K to 10K resistors. You'll need two: one each connects from SDA to positive

power, and SCL to positive power. Again, positive power (a.k.a VCC, VDD or V+)

is often 3.3V

Do you have an address collision? You can only have one board per address. So

you cannot, say, connect two AHT20's to one I2C port because they have the

same address and will interfere. Check the sensor or documentation for the

address. Sometimes there are ways to adjust the address.

Does your board have multiple I2C ports? Historically, boards only came with

one. But nowadays you can have two or even three! This can help solve the

"hey but what if I want two devices with the same address" problem: just put one

on each bus.

Are you hot-plugging devices? I2C does not support dynamic re-connection, you

cannot connect and disconnect sensors as you please. They should all be

connected on boot and not change. (Only exception is if you're using a hot-plug

assistant but that'll cost ya (https://adafru.it/XBY))

Are you keeping the total bus length reasonable? I2C was designed for maybe

6" max length. We like to push that with plug-n-play cables but really please

•

•

•

•

•

•

•

•

©Adafruit Industries Page 144 of 180

https://www.adafruit.com/product/5159
https://www.adafruit.com/product/5159

keep them as short as possible! (Only exception is if you're using an active bus

extender (https://adafru.it/XBZ)).

QT Py ESP32-S2 I2C Configurations

The QT Py ESP32-S2 has TWO I2C ports!

Wire is the default port, and is available

on the SDA and SCL pins on the

castellated side pads

Wire1 is the secondary port, and is

available on the STEMMA QT port on the

end of the board

Neither of the I2C ports have pullup

resistors installed. You will need to either

add external pull ups or verify that any

sensors include them!

The STEMMA QT port has another thing to watch for! You need to manually set the

pins for the wire peripheral early in your code. So add this line to your sketch in the

setup() part, it is not optional at this time.

Wire1.setPins(SDA1, SCL1);

Perform an I2C scan!

Install TestBed Library

To scan I2C, the Adafruit TestBed library is used. This library and example just makes

the scan a little easier to run because it takes care of some of the basics. You will

need to add support by installing the library. Good news: it is very easy to do it. Go to

the Arduino Library Manager.

©Adafruit Industries Page 145 of 180

https://www.adafruit.com/product/4756
https://www.adafruit.com/product/4756
https://learn.adafruit.com//assets/107564
https://learn.adafruit.com//assets/107564

Search for TestBed and install the Adafruit TestBed library

Now open up the I2C Scan example

#include <Adafruit_TestBed.h>

extern Adafruit_TestBed TB;

#define DEFAULT_I2C_PORT &Wire

// Some boards have TWO I2C ports, how nifty. We should scan both

#if defined(ARDUINO_ADAFRUIT_KB2040_RP2040) \

 || defined(ARDUINO_ADAFRUIT_QTPY_ESP32S2) \

 || defined(ARDUINO_ADAFRUIT_QTPY_ESP32_PICO)

 #define SECONDARY_I2C_PORT &Wire1

#endif

void setup() {

 Serial.begin(115200);

 // Wait for Serial port to open

 while (!Serial) {

 delay(10);

 }

 delay(500);

 Serial.println("Adafruit I2C Scanner");

#if defined(ARDUINO_ADAFRUIT_QTPY_ESP32S2) || \

 defined(ARDUINO_ADAFRUIT_QTPY_ESP32_PICO)

 // ESP32 is kinda odd in that secondary ports must be manually

 // assigned their pins with setPins()!

 Wire1.setPins(SDA1, SCL1);

©Adafruit Industries Page 146 of 180

#endif

#if defined(ARDUINO_ADAFRUIT_FEATHER_ESP32S2)

 // turn on the I2C power by setting pin

 pinMode(7, OUTPUT);

 digitalWrite(7, LOW);

#endif

}

void loop() {

 Serial.println("");

 Serial.println("");

 Serial.print("Default port ");

 TB.theWire = DEFAULT_I2C_PORT;

 TB.printI2CBusScan();

#if defined(SECONDARY_I2C_PORT)

 Serial.print("Secondary port ");

 TB.theWire = SECONDARY_I2C_PORT;

 TB.printI2CBusScan();

#endif

 delay(3000); // wait 3 seconds

}

Wire up I2C device

While the examples here will be using the Adafruit MCP9808 (https://adafru.it/Trb), a

high accuracy temperature sensor, the overall process is the same for just about any

I2C sensor or device.

The first thing you'll want to do is get the sensor connected so your board has I2C to

talk to.

Adafruit MCP9808 High Accuracy I2C

Temperature Sensor Breakout

The MCP9808 digital temperature sensor

is one of the more accurate/precise we've

ever seen, with a typical accuracy of

±0.25°C over the sensor's -40°C to...

https://www.adafruit.com/product/5027

Wiring the MCP9808

The MCP9808 comes with a STEMMA QT connector, which makes wiring it up quite

simple and solder-free.

©Adafruit Industries Page 147 of 180

https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027

Now upload the scanning sketch to your microcontroller and open the serial port to

see the output. You should see something like this:

WiFi Test

Thanksfully if you have ESP32 sketches, they'll 'just work' with ESP32-S2. You can find

a wide range of examples in the File->Examples->Examples for Adafruit Metro ESP32-

S2 subheading (the name of the board may vary so it could be "Examples for Adafruit

MagTag" etc)

Note we are using the STEMMA QT port here, that means we need to reference

Wire1 for I2C communication and also add Wire1.setPins(SDA1, SCL1) in our code

in setup()

©Adafruit Industries Page 148 of 180

Let's start by scanning the local networks.

Load up the WiFiScan example under Examples->Examples for Adafruit Metro ESP32-

S2->WiFi->WiFiScan

And upload this example to your board. The ESP32-S2 should scan and find WiFi

networks around you.

Don't forget you have to click Reset after uploading through the ROM bootloader.

Then select the new USB Serial port created by the ESP32-S2. It will take a few

seconds for the board to complete the scan.

©Adafruit Industries Page 149 of 180

If you can not scan any networks, check your power supply. You need a solid power

supply in order for the ESP32-S2 to not brown out. A skinny USB cable or drained

battery can cause issues.

WiFi Connection Test

Now that you can scan networks around you, its time to connect to the Internet!

Copy the example below and paste it into the Arduino IDE:

/*

 Web client

 This sketch connects to a website (wifitest.adafruit.com/testwifi/index.html)

 using the WiFi module.

 This example is written for a network using WPA encryption. For

 WEP or WPA, change the Wifi.begin() call accordingly.

 This example is written for a network using WPA encryption. For

 WEP or WPA, change the Wifi.begin() call accordingly.

 created 13 July 2010

 by dlf (Metodo2 srl)

 modified 31 May 2012

 by Tom Igoe

 */

#include <WiFi.h>

// Enter your WiFi SSID and password

char ssid[] = "YOUR_SSID"; // your network SSID (name)

char pass[] = "YOUR_SSID_PASSWORD"; // your network password (use for WPA, or

use as key for WEP)

int keyIndex = 0; // your network key Index number (needed

©Adafruit Industries Page 150 of 180

only for WEP)

int status = WL_IDLE_STATUS;

// if you don't want to use DNS (and reduce your sketch size)

// use the numeric IP instead of the name for the server:

//IPAddress server(74,125,232,128); // numeric IP for Google (no DNS)

char server[] = "wifitest.adafruit.com"; // name address for adafruit test

char path[] = "/testwifi/index.html";

// Initialize the Ethernet client library

// with the IP address and port of the server

// that you want to connect to (port 80 is default for HTTP):

WiFiClient client;

void setup() {

 //Initialize serial and wait for port to open:

 Serial.begin(115200);

 while (!Serial) {

 ; // wait for serial port to connect. Needed for native USB port only

 }

 // attempt to connect to Wifi network:

 Serial.print("Attempting to connect to SSID: ");

 Serial.println(ssid);

 WiFi.begin(ssid, pass);

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

 }

 Serial.println("");

 Serial.println("Connected to WiFi");

 printWifiStatus();

 Serial.println("\nStarting connection to server...");

 // if you get a connection, report back via serial:

 if (client.connect(server, 80)) {

 Serial.println("connected to server");

 // Make a HTTP request:

 client.print("GET "); client.print(path); client.println(" HTTP/1.1");

 client.print("Host: "); client.println(server);

 client.println("Connection: close");

 client.println();

 }

}

void loop() {

 // if there are incoming bytes available

 // from the server, read them and print them:

 while (client.available()) {

 char c = client.read();

 Serial.write(c);

 }

 // if the server's disconnected, stop the client:

 if (!client.connected()) {

 Serial.println();

 Serial.println("disconnecting from server.");

 client.stop();

 // do nothing forevermore:

 while (true) {

 delay(100);

 }

 }

}

©Adafruit Industries Page 151 of 180

void printWifiStatus() {

 // print the SSID of the network you're attached to:

 Serial.print("SSID: ");

 Serial.println(WiFi.SSID());

 // print your board's IP address:

 IPAddress ip = WiFi.localIP();

 Serial.print("IP Address: ");

 Serial.println(ip);

 // print the received signal strength:

 long rssi = WiFi.RSSI();

 Serial.print("signal strength (RSSI):");

 Serial.print(rssi);

 Serial.println(" dBm");

}

NOTE: You must change the SECRET_SSID and SECRET_PASS in the example code

to your WiFi SSID and password before uploading this to your board.

After you've set it correctly, upload and check the serial monitor. You should see the

following. If not, go back, check wiring, power and your SSID/password

©Adafruit Industries Page 152 of 180

Secure Connection Example

Many servers today do not allow non-SSL connectivity. Lucky for you the ESP32-S2

has a great TLS/SSL stack so you can have that all taken care of for you. Here's an

example of a using a secure WiFi connection to connect to the Twitter API.

Copy and paste it into the Arduino IDE:

/*

This example creates a client object that connects and transfers

data using always SSL.

It is compatible with the methods normally related to plain

connections, like client.connect(host, port).

Written by Arturo Guadalupi

last revision November 2015

*/

#include <WiFiClientSecure.h>

// Enter your WiFi SSID and password

char ssid[] = "YOUR_SSID"; // your network SSID (name)

char pass[] = "YOUR_SSID_PASSWORD"; // your network password (use for WPA, or

use as key for WEP)

int keyIndex = 0; // your network key Index number (needed

only for WEP)

int status = WL_IDLE_STATUS;

// if you don't want to use DNS (and reduce your sketch size)

// use the numeric IP instead of the name for the server:

//IPAddress server(74,125,232,128); // numeric IP for Google (no DNS)

#define SERVER "cdn.syndication.twimg.com"

#define PATH "/widgets/followbutton/info.json?screen_names=adafruit"

// Initialize the SSL client library

// with the IP address and port of the server

// that you want to connect to (port 443 is default for HTTPS):

WiFiClientSecure client;

void setup() {

 //Initialize serial and wait for port to open:

 Serial.begin(115200);

 while (!Serial) {

 ; // wait for serial port to connect. Needed for native USB port only

 }

 // attempt to connect to Wifi network:

 Serial.print("Attempting to connect to SSID: ");

 Serial.println(ssid);

 WiFi.begin(ssid, pass);

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

 }

 Serial.println("");

 Serial.println("Connected to WiFi");

 printWifiStatus();

©Adafruit Industries Page 153 of 180

 client.setInsecure(); // don't use a root cert

 Serial.println("\nStarting connection to server...");

 // if you get a connection, report back via serial:

 if (client.connect(SERVER, 443)) {

 Serial.println("connected to server");

 // Make a HTTP request:

 client.println("GET " PATH " HTTP/1.1");

 client.println("Host: " SERVER);

 client.println("Connection: close");

 client.println();

 }

}

uint32_t bytes = 0;

void loop() {

 // if there are incoming bytes available

 // from the server, read them and print them:

 while (client.available()) {

 char c = client.read();

 Serial.write(c);

 bytes++;

 }

 // if the server's disconnected, stop the client:

 if (!client.connected()) {

 Serial.println();

 Serial.println("disconnecting from server.");

 client.stop();

 Serial.print("Read "); Serial.print(bytes); Serial.println(" bytes");

 // do nothing forevermore:

 while (true);

 }

}

void printWifiStatus() {

 // print the SSID of the network you're attached to:

 Serial.print("SSID: ");

 Serial.println(WiFi.SSID());

 // print your board's IP address:

 IPAddress ip = WiFi.localIP();

 Serial.print("IP Address: ");

 Serial.println(ip);

 // print the received signal strength:

 long rssi = WiFi.RSSI();

 Serial.print("signal strength (RSSI):");

 Serial.print(rssi);

 Serial.println(" dBm");

}

As before, update the ssid and password first, then upload the example to your board.

Note we use WiFiClientSecure client instead of WiFiClient client; to

require a SSL connection! This example will connect to a twitter server to download a

JSON snippet that says how many followers adafruit has

©Adafruit Industries Page 154 of 180

JSON Parsing Demo

This example is a little more advanced - many sites will have API's that give you JSON

data. We will build on the previous SSL example to connect to twitter and get that

JSON data chunk

Then we'll use ArduinoJSON (https://adafru.it/Evn) to convert that to a format we can

use and then display that data on the serial port (which can then be re-directed to a

display of some sort)

First up, use the Library manager to install ArduinoJSON (https://adafru.it/Evo).

Then load the example JSONdemo by copying the code below and pasting it into

your Arduino IDE.

/*

This example creates a client object that connects and transfers

data using always SSL, then shows how to parse a JSON document in an HTTP response.

It is compatible with the methods normally related to plain

connections, like client.connect(host, port).

Written by Arturo Guadalupi + Copyright Benoit Blanchon 2014-2019

last revision November 2015

*/

©Adafruit Industries Page 155 of 180

https://arduinojson.org/
https://arduinojson.org/v6/doc/installation/

#include <WiFiClientSecure.h>

#include <ArduinoJson.h>

// uncomment the next line if you have a 128x32 OLED on the I2C pins

//#define USE_OLED

#if defined(USE_OLED)

 #include <Adafruit_SSD1306.h>

 Adafruit_SSD1306 display = Adafruit_SSD1306(128, 32, &Wire);

#endif

// Enter your WiFi SSID and password

char ssid[] = "YOUR_SSID"; // your network SSID (name)

char pass[] = "YOUR_SSID_PASSWORD"; // your network password (use for WPA, or

use as key for WEP)

int keyIndex = 0; // your network key Index number (needed

only for WEP)

int status = WL_IDLE_STATUS;

// if you don't want to use DNS (and reduce your sketch size)

// use the numeric IP instead of the name for the server:

//IPAddress server(74,125,232,128); // numeric IP for Google (no DNS)

#define SERVER "cdn.syndication.twimg.com"

#define PATH "/widgets/followbutton/info.json?screen_names=adafruit"

void setup() {

 //Initialize serial and wait for port to open:

 Serial.begin(115200);

 #if defined(USE_OLED)

 if(!display.begin(SSD1306_SWITCHCAPVCC, 0x3C)) { // Address 0x3C for 128x32

 Serial.println(F("SSD1306 allocation failed"));

 for(;;); // Don't proceed, loop forever

 }

 display.display();

 display.setTextSize(1);

 display.setTextColor(WHITE);

 display.clearDisplay();

 display.setCursor(0,0);

 #else

 // Don't wait for serial if we have an OLED

 while (!Serial) {

 delay(10); // wait for serial port to connect. Needed for native USB port

only

 }

 #endif

 // attempt to connect to Wifi network:

 Serial.print("Attempting to connect to SSID: ");

 Serial.println(ssid);

 #if defined(USE_OLED)

 display.clearDisplay(); display.setCursor(0,0);

 display.print("Connecting to SSID\n"); display.println(ssid);

 display.display();

 #endif

 // Connect to WPA/WPA2 network. Change this line if using open or WEP network:

 WiFi.begin(ssid, pass);

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

 }

 Serial.println("");

 Serial.println("Connected to WiFi");

 #if defined(USE_OLED)

©Adafruit Industries Page 156 of 180

 display.print("...OK!");

 display.display();

 #endif

 printWifiStatus();

}

uint32_t bytes = 0;

void loop() {

 WiFiClientSecure client;

 client.setInsecure(); // don't use a root cert

 Serial.println("\nStarting connection to server...");

 #if defined(USE_OLED)

 display.clearDisplay(); display.setCursor(0,0);

 display.print("Connecting to "); display.print(SERVER);

 display.display();

 #endif

 // if you get a connection, report back via serial:

 if (client.connect(SERVER, 443)) {

 Serial.println("connected to server");

 // Make a HTTP request:

 client.println("GET " PATH " HTTP/1.1");

 client.println("Host: " SERVER);

 client.println("Connection: close");

 client.println();

 }

 // Check HTTP status

 char status[32] = {0};

 client.readBytesUntil('\r', status, sizeof(status));

 if (strcmp(status, "HTTP/1.1 200 OK") != 0) {

 Serial.print(F("Unexpected response: "));

 Serial.println(status);

 #if defined(USE_OLED)

 display.print("Connection failed, code: "); display.println(status);

 display.display();

 #endif

 return;

 }

 // wait until we get a double blank line

 client.find("\r\n\r\n", 4);

 // Allocate the JSON document

 // Use arduinojson.org/v6/assistant to compute the capacity.

 const size_t capacity = JSON_ARRAY_SIZE(1) + JSON_OBJECT_SIZE(8) + 200;

 DynamicJsonDocument doc(capacity);

 // Parse JSON object

 DeserializationError error = deserializeJson(doc, client);

 if (error) {

 Serial.print(F("deserializeJson() failed: "));

 Serial.println(error.c_str());

 return;

 }

 // Extract values

 JsonObject root_0 = doc[0];

 Serial.println(F("Response:"));

 const char* root_0_screen_name = root_0["screen_name"];

 long root_0_followers_count = root_0["followers_count"];

 Serial.print("Twitter username: "); Serial.println(root_0_screen_name);

 Serial.print("Twitter followers: "); Serial.println(root_0_followers_count);

 #if defined(USE_OLED)

©Adafruit Industries Page 157 of 180

 display.clearDisplay(); display.setCursor(0,0);

 display.setTextSize(2);

 display.println(root_0_screen_name);

 display.println(root_0_followers_count);

 display.display();

 display.setTextSize(1);

 #endif

 // Disconnect

 client.stop();

 delay(10000);

}

void printWifiStatus() {

 // print the SSID of the network you're attached to:

 Serial.print("SSID: ");

 Serial.println(WiFi.SSID());

 // print your board's IP address:

 IPAddress ip = WiFi.localIP();

 Serial.print("IP Address: ");

 Serial.println(ip);

 // print the received signal strength:

 long rssi = WiFi.RSSI();

 Serial.print("signal strength (RSSI):");

 Serial.print(rssi);

 Serial.println(" dBm");

}

By default it will connect to to the Twitter banner image API, parse the username and

followers, and display them.

©Adafruit Industries Page 158 of 180

Usage with Adafruit IO

The ESP32-S2 is an affordable, all-in-one, option for connecting your projects to the

internet using our IoT platform, Adafruit IO (https://adafru.it/Eg2).

For more information and guides about Adafruit IO, check out the Adafruit IO

Basics Series. (https://adafru.it/iDX)

Install Libraries

In the Arduino IDE, navigate to Sketch -> Include Library->Manage Libraries...

Enter Adafruit IO Arduino into the search box, and click Install on the Adafruit IO

Arduino library option to install version 4.0.0 or higher.

When asked to install dependencies, click Install all.

•

©Adafruit Industries Page 159 of 180

https://io.adafruit.com/welcome
https://learn.adafruit.com/series/adafruit-io-basics
https://learn.adafruit.com/series/adafruit-io-basics

Adafruit IO Setup

If you do not already have an Adafruit IO account, create one now (https://adafru.it/

fH9). Next, navigate to the Adafruit IO Dashboards page.

We'll create a dashboard to visualize and interact with the data being sent between

your ESP32-S2 board and Adafruit IO.

©Adafruit Industries Page 160 of 180

http://io.adafruit.com/

Click the New Dashboard button.

Name your dashboard My ESP32-

S2.

Your new dashboard should appear

in the list.

Click the link to be brought to your

new dashboard.

We'll want to turn the board's LED on or off from Adafruit IO. To do this, we'll need to

add a toggle button to our dashboard.

•

•

•

•

©Adafruit Industries Page 161 of 180

https://learn.adafruit.com//assets/97031
https://learn.adafruit.com//assets/97031
https://learn.adafruit.com//assets/97032
https://learn.adafruit.com//assets/97032
https://learn.adafruit.com//assets/97033
https://learn.adafruit.com//assets/97033

Click the cog at the top right hand

corner of your dashboard.

In the dashboard settings

dropdown, click Create New Block.

Select the toggle block.

Under My Feeds, enter led as a

feed name. Click Create.

Choose the led feed to connect it to

the toggle block. Click Next step.

•

•

•

•

•

©Adafruit Industries Page 162 of 180

https://learn.adafruit.com//assets/97038
https://learn.adafruit.com//assets/97038
https://learn.adafruit.com//assets/97039
https://learn.adafruit.com//assets/97039
https://learn.adafruit.com//assets/97040
https://learn.adafruit.com//assets/97040
https://learn.adafruit.com//assets/97041
https://learn.adafruit.com//assets/97041

Under Block Settings,

Change Button On Text to 1

Change Button Off Text to 0

Click Create block

Next up, we'll want to display button press data from your board on Adafruit IO. To do

this, we'll add a gauge block to the Adafruit IO dashboard. A gauge is a read only

block type that shows a fixed range of values.

•

•

•

©Adafruit Industries Page 163 of 180

https://learn.adafruit.com//assets/97044
https://learn.adafruit.com//assets/97044

Click the cog at the top right hand

corner of your dashboard.

In the dashboard settings

dropdown, click Create New Block.

Select the gauge block.

Under My Feeds, enter button as a

feed name.

Click Create.

Choose the button feed to connect

it to the toggle block.

Click Next step.

Under block settings,

Change Block Title to Button Value

Change Gauge Min Value to 0, the

button's state when it's off

Change Gauge Max Value to 1, the

button's state when it's on

Click Create block

•

•

•

•

◦

•

◦

•

•

•

•

©Adafruit Industries Page 164 of 180

https://learn.adafruit.com//assets/97046
https://learn.adafruit.com//assets/97046
https://learn.adafruit.com//assets/97047
https://learn.adafruit.com//assets/97047
https://learn.adafruit.com//assets/97048
https://learn.adafruit.com//assets/97048
https://learn.adafruit.com//assets/97049
https://learn.adafruit.com//assets/97049

Your dashboard should look like the following:

Code Usage

For this example, you will need to open the adafruitio_26_led_btn example included

with the Adafruit IO Arduino library. In the Arduino IDE, navigate to File -> Examples ->

Adafruit IO Arduino -> adafruitio_26_led_btn.

Before uploading this code to the ESP32-S2, you'll need to add your network and

Adafruit IO credentials. Click on the config.h tab in the sketch.

Obtain your Adafruit IO Credentials from navigating to io.adafruit.com and clicking My

Key (https://adafru.it/fsU). Copy and paste these credentials next to IO_USERNAME

and IO_KEY .

Enter your network credentials next to WIFI_SSID and WIFI_PASS .

©Adafruit Industries Page 165 of 180

https://io.adafruit.com/
https://io.adafruit.com/

Click the Upload button to upload your sketch to the ESP32-S2. After uploading, pres

s the RESET button on your board to launch the sketch.

Open the Arduino Serial monitor and navigate to the Adafruit IO dashboard you

created. You should see the gauge response to button press and the board's LED

light up in response to the Toggle Switch block.

You should also see the ESP32-S2's LED turning on and off when the LED is toggled:

©Adafruit Industries Page 166 of 180

Factory Reset

The QT Py ships with a simple NeoPixel swirl demo.

It's lovely, but you probably had other plans for the board. As you start working with

your board, you may want to return to the original code to begin again, or you may

find your board gets into a bad state. Either way, this page has you covered.

You're probably used to seeing the QTPYS2BOOT drive when loading CircuitPython

or Arduino. The QTPYS2BOOT drive is part of the UF2 bootloader, and allows you to

drag and drop files, such as CircuitPython. However, on the ESP32-S2 the UF2

bootloader can become damaged.

If you want to check out the code for the factory reset/test its here! (https://adafru.it/

XCo)

Factory Reset Firmware UF2

If you have a bootloader still installed - which means you can double-click to get the

QTPYS2BOOT drive to appear, then you can simply drag this UF2 file over to the BO

OT drive.

To enter bootloader mode, plug in the board into a USB cable with data/sync

capability. Press the reset button once, wait till the RGB LED turns purple, then press

the reset button again. Then drag this file over:

Download factory reset UF2

https://adafru.it/XCn

Your board is now back to its factory-shipped state! You can now begin again with

your plans for your board.

Factory Reset and Bootloader Repair

What if you tried double-tapping the reset button, and you still can't get into the UF2

bootloader? Whether your board shipped without the UF2 bootloader, or something

damaged it, this section has you covered.

©Adafruit Industries Page 167 of 180

https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/main/Factory_Tests/QTPy_ESP32S2_FactoryTest/QTPy_ESP32S2_FactoryTest.ino
https://github.com/adafruit/Adafruit-QT-Py-ESP32-S2-PCB/blob/main/factory-reset/qt-py-esp32-s2-factory-reset.UF2

It turns out, however, the ESP32-S2 comes with a second bootloader: the ROM

bootloader. Thanks to the ROM bootloader, you don't have to worry about damaging

the UF2 bootloader. The ROM bootloader can never be disabled or erased, so its

always there if you need it! You can simply re-load the UF2 bootloader from the ROM

bootloader.

There are two ways to do a factory reset and bootloader repair. The first is using

WebSerial through Chrome, and the second is using esptool via command line. We

highly recommend using WebSerial through Chrome.

The next section walks you through the prerequisite steps needed for both methods.

Download .bin and Enter Bootloader

Step 1. Download the factory-reset-and-bootloader.bin file

Save the following file wherever is convenient for you. You will need to access it from

the WebSerial ESPTool.

Download the combined bootloader

+ factory reset firmware

https://adafru.it/XF3

There is no bootloader protection for the UF2 bootloader. That means it is

possible to erase or damage the UF2 bootloader, especially if you upload an

Arduino sketch to an ESP32-S2 board that doesn't "know" there's a bootloader it

should not overwrite!

Completing a factory reset will erase your board's firmware which is also used for

storing CircuitPython/Arduino/Files! Be sure to back up your data first.

Note that this file is approximately 3MB. This is not because the bootloader is

3MB, it is because the bootloader is near the end of the available flash. Most of

the file is empty but its easier to program if you use a combined file.

©Adafruit Industries Page 168 of 180

https://github.com/adafruit/Adafruit-QT-Py-ESP32-S2-PCB/raw/main/factory-reset/qt-py-esp32-s2-factory-reset-and-bootloader.bin

Step 2. Enter ROM bootloader mode

Entering the ROM bootloader is easy. Complete the following steps.

Before you start, make sure your ESP32-S2 is plugged into USB port to your computer

using a data/sync cable. Charge-only cables will not work!

To enter the bootloader:

Press and hold the BOOT/DFU button down. Don't let go of it yet!

Press and release the Reset button. You should still have the BUTTON_NAME

button pressed while you do this.

Now you can release the BOOT/DFU button.

No USB drive will appear when you've entered the ROM bootloader. This is normal!

Now that you've downloaded the .bin file and entered the bootloader, you're ready to

continue with the factory reset and bootloader repair process. The next two sections

walk you through using WebSerial and esptool .

The WebSerial ESPTool Method

This method uses the WebSerial ESPTool through Chrome. The WebSerial ESPTool

was designed to be a web-capable option for programming ESP32-S2 boards. It

allows you to erase the contents of the microcontroller and program up to four files at

different offsets.

You will have to use the Chrome browser for this to work, Safari and Firefox, etc. are n

ot supported because we need Web Serial and only Chrome is supporting it to the

level needed.

Follow the steps to complete the factory reset.

1.

2.

3.

We highly recommend using WebSerial ESPTool method to perform a factory

reset and bootloader repair. However, if you'd rather use esptool via command

line, you can skip this section.

If you're using Chrome 88 or older, see the Older Versions of Chrome section at

the end of this page for instructions on enabling Web Serial.

©Adafruit Industries Page 169 of 180

Connect

You should have plugged in only the ESP32-S2 that you intend to flash. That way

there's no confusion in picking the proper port when it's time!

In the Chrome browser visit https://

adafruit.github.io/

Adafruit_WebSerial_ESPTool/ (https://

adafru.it/PMB). You should see something

like the image shown.

Press the Connect button in the top right

of the web browser. You will get a pop up

asking you to select the COM or Serial

port.

Remember, you should remove all other

USB devices so only the ESP32-S2 board

is attached, that way there's no confusion

over multiple ports!

The Javascript code will now try to

connect to the ROM bootloader. It may

timeout for a bit until it succeeds. On

success, you will see that it

is Connected and will print out a

unique MAC address identifying the

board.

©Adafruit Industries Page 170 of 180

https://learn.adafruit.com//assets/101563
https://learn.adafruit.com//assets/101563
https://adafruit.github.io/Adafruit_WebSerial_ESPTool/
https://adafruit.github.io/Adafruit_WebSerial_ESPTool/
https://adafruit.github.io/Adafruit_WebSerial_ESPTool/
https://learn.adafruit.com//assets/101568
https://learn.adafruit.com//assets/101568
https://learn.adafruit.com//assets/101570
https://learn.adafruit.com//assets/101570

Once you have successfully connected,

the command toolbar will appear.

Erase the Contents

To erase the contents, click the Erase

button. You will be prompted whether

you want to continue. Click OK to

continue or if you changed your mind,

just click cancel.

You'll see "Erasing flash memory. Please

wait..." This will eventually be followed by

"Finished." and the amount of time it took

to erase.

Do not disconnect! Immediately continue

on to programming the ESP32-S2.

This will erase everything on your board! If you have access, and wish to keep

any code, now is the time to ensure you've backed up everything.

Do not disconnect after erasing! Immediately continue on to the next step!

©Adafruit Industries Page 171 of 180

https://learn.adafruit.com//assets/101572
https://learn.adafruit.com//assets/101572
https://learn.adafruit.com//assets/101573
https://learn.adafruit.com//assets/101573
https://learn.adafruit.com//assets/106947
https://learn.adafruit.com//assets/106947

Program the ESP32-S2

Programming the microcontroller can be done with up to four files at different

locations, but with the board-specific factory-reset.bin file, which you should have

downloaded under Step 1 on this page, you only need to use one file.

Click on the first Choose a file.... (The tool

will only attempt to program buttons with

a file and a unique location.) Then, select

the *-factory-reset.bin file you

downloaded in Step 1 that matches your

board.

Verify that the Offset box next to the file

location you used is (0x) 0.

Once you choose a file, the button text

will change to match your filename. You

can then select the Program button to

begin flashing.

A progress bar will appear and after a

minute or two, you will have written the

firmware.

Once completed, you can skip down to the section titled Reset the Board.

©Adafruit Industries Page 172 of 180

https://learn.adafruit.com//assets/101574
https://learn.adafruit.com//assets/101574
https://learn.adafruit.com//assets/101575
https://learn.adafruit.com//assets/101575
https://learn.adafruit.com//assets/101576
https://learn.adafruit.com//assets/101576

The esptool Method (for advanced users)

Once you have entered ROM bootloader mode, you can then use Espressif's esptool

program (https://adafru.it/E9p) to communicate with the chip! esptool is the 'official'

programming tool and is the most common/complete way to program an ESP chip.

Install ESPTool.py

You will need to use the command line / Terminal to install and run esptool .

You will also need to have pip and Python installed (any version!).

Install the latest version using pip (you may be able to run pip without the 3 depen

ding on your setup):

pip3 install --upgrade esptool

Then, you can run:

esptool.py

Test the Installation

Run esptool.py in a new terminal/command line and verify you get something like

the below:

If you used WebSerial ESPTool, you do not need to complete the steps in this

section!

Make sure you are running esptool v3.0 or higher, which adds ESP32-S2 support.

©Adafruit Industries Page 173 of 180

https://github.com/espressif/esptool
https://github.com/espressif/esptool

Connect

Run the following command, replacing the identifier after --port with the COMxx , /

dev/cu.usbmodemxx or /dev/ttySxx you found above.

esptool.py --port COM88 chip_id

You should get a notice that it connected over that port and found an ESP32-S2.

Installing the Bootloader

Run this command and replace the serial port name with your matching port and the

file you just downloaded

esptool.py --port COM88 write_flash 0x0 tinyuf2_combo.bin

Don't forget to change the --port name to match.

There might be a bit of a 'wait' when programming, where it doesn't seem like it's

working. Give it a minute, it has to erase the old flash code which can cause it to

seem like it's not running.

You'll finally get an output like this:

©Adafruit Industries Page 174 of 180

Once completed, you can continue to the next section.

Reset the board

Now that you've reprogrammed the board, you need to reset it to continue. Click the

reset button to launch the new firmware.

The NeoPixel LED on the QT Py ESP32-S2 will light up in a rainbow swirl.

You've successfully returned your board to a factory reset state!

Older Versions of Chrome

We suggest updating to Chrome 89 or newer, as Web Serial is enabled by default.

If you must continue using an older version of Chrome, follow these steps to enable

Web Serial.

If you receive an error like the one shown

when you visit the WebSerial ESPTool

site, you're likely running an older version

of Chrome.

You must be using Chrome 78 or later to

use Web Serial.

As of chrome 89, Web Serial is already enabled, so this step is only necessary on

older browsers.

©Adafruit Industries Page 175 of 180

https://learn.adafruit.com//assets/106929
https://learn.adafruit.com//assets/106929

To enable Web Serial in Chrome versions

78 through 88:

Visit chrome://flags from within

Chrome.

Find and enable the Experimental

Web Platform features

Restart Chrome

The Flash an Arduino Sketch Method

This section outlines flashing an Arduino sketch onto your ESP32-S2 board, which

automatically installs the UF2 bootloader as well.

Arduino IDE Setup

If you don't already have the Arduino IDE installed, the first thing you will need to do

is to download the latest release of the Arduino IDE. ESP32-S2 requires version 1.8 or

higher. Click the link to download the latest.

Arduino IDE Download

https://adafru.it/Pd5

After you have downloaded and installed the latest version of Arduino IDE, you will

need to start the IDE and navigate to the Preferences menu. You can access it from

the File > Preferences menu in Windows or Linux, or the Arduino > Preferences menu

on OS X.

The Preferences window will open.

In the Additional Boards Manager URLs field, you'll want to add a new URL. The list of

URLs is comma separated, and you will only have to add each URL once. The URLs

point to index files that the Board Manager uses to build the list of available &

installed boards.

Copy the following URL.

•

•

•

©Adafruit Industries Page 176 of 180

https://learn.adafruit.com//assets/101562
https://learn.adafruit.com//assets/101562
https://www.arduino.cc/en/software

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/

package_esp32_dev_index.json

Add the URL to the the Additional Boards Manager URLs field (highlighted in red

below).

Click OK to save and close Preferences.

In the Tools > Boards menu you should see the ESP32 Arduino menu. In the expanded

menu, it should contain the ESP32 boards along with all the latest ESP32-S2 boards.

Now that your IDE is setup, you can continue on to loading the sketch.

Load the Blink Sketch

In the Tools > Boards menu you should see the ESP32 Arduino menu. In the expanded

menu, look for the menu option for the Adafruit QT Py ESP32-S2.

Open the Blink sketch by clicking through File > Examples > 01.Basics > Blink.

©Adafruit Industries Page 177 of 180

Once open, click Upload from the sketch window.

Once successfully uploaded, the little red LED will begin blinking once every second.

At that point, you can now enter the bootloader.

If you change LED_BUILTIN to 13 , the sketch will compile and upload. Be aware

that, once the sketch is loaded, nothing will happen on the board. However, you will

have a bootloader. The updated code would look like this:

void setup() {

 pinMode(13, OUTPUT);

}

void loop() {

 digitalWrite(13, HIGH);

 delay(1000);

 digitalWrite(13, LOW);

 delay(1000);

}

Alternatively, you could load a different sketch. It doesn't matter which sketch you

use.

Downloads

Files:

ESP32-S2 product page with resources (https://adafru.it/OpE)

ESP32-S2 datasheet (https://adafru.it/OpF)

The QT Py ESP32-S2 does not have a little red LED, so the default Blink sketch

will fail.

•

•

©Adafruit Industries Page 178 of 180

https://www.espressif.com/en/products/socs/esp32-s2
https://cdn-learn.adafruit.com/assets/assets/000/096/705/original/esp32-s2_datasheet_en.pdf?1604350607

ESP32-S2 Technical Reference (https://adafru.it/Oqb)

EagleCAD PCB files on GitHub (https://adafru.it/XAr)

3D Models on GitHub (https://adafru.it/XFz)

Fritzing object in the Adafruit Fritzing Library (https://adafru.it/XAs)

PrettyPins PDF on GitHub (https://adafru.it/XAq)

PrettyPins SVG (https://adafru.it/XAt)

Schematic and Fab Print

•

•

•

•

•

•

©Adafruit Industries Page 179 of 180

https://cdn-learn.adafruit.com/assets/assets/000/096/707/original/esp32-s2-wrover_esp32-s2-wrover-i_datasheet_en.pdf?1604350618
https://github.com/adafruit/Adafruit-QT-Py-ESP32-S2-PCB
https://github.com/adafruit/Adafruit_CAD_Parts/tree/main/5325%20QTPy%20ESP32S2
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20QT%20Py%20ESP32-S2.fzpz
https://github.com/adafruit/Adafruit-QT-Py-ESP32-S2-PCB/blob/main/Adafruit%20QT%20Py%20ESP32-S2%20Pinout.pdf
https://cdn-learn.adafruit.com/assets/assets/000/107/494/original/Adafruit_QT_Py_ESP32-S2_Pinout.svg?1640130312

©Adafruit Industries Page 180 of 180

	Adafruit QT Py ESP32-S2
	Table of Contents
	Overview
	Pinouts
	CircuitPython
	Install UF2 Bootloader
	Installing the Mu Editor
	The CIRCUITPY Drive
	Creating and Editing Code
	Exploring Your First CircuitPython Program
	Connecting to the Serial Console
	Interacting with the Serial Console
	The REPL
	CircuitPython Libraries
	CircuitPython Documentation
	Recommended Editors
	Advanced Serial Console on Windows
	Advanced Serial Console on Mac
	Advanced Serial Console on Linux
	Frequently Asked Questions
	Troubleshooting
	Welcome to the Community!
	CircuitPython Essentials
	Blink
	Digital Input
	Analog In
	CPU Temperature
	Storage
	I2C
	Capacitive Touch
	Arduino IDE Setup
	Arduino NeoPixel Blink
	I2C Scan Test
	WiFi Test
	Usage with Adafruit IO
	Factory Reset
	Downloads

	Overview
	Pinouts
	Power
	ESP32-S2 Module
	Logic Pins
	STEMMA QT Connector
	NeoPixel LED
	Buttons
	uFL Antenna Port

	CircuitPython
	CircuitPython Quickstart

	Install UF2 Bootloader
	Installing the Mu Editor
	Download and Install Mu
	Starting Up Mu
	Using Mu

	The CIRCUITPY Drive
	Creating and Editing Code
	Creating Code
	Editing Code
	Your code changes are run as soon as the file is done saving.
	1. Use an editor that writes out the file completely when you save it.
	2. Eject or Sync the Drive After Writing

	Oh No I Did Something Wrong and Now The CIRCUITPY Drive Doesn't Show Up!!!
	Back to Editing Code...

	Naming Your Program File
	Exploring Your First CircuitPython Program
	Imports & Libraries
	Setting Up The LED
	Loop-de-loops
	What Happens When My Code Finishes Running?
	What if I Don't Have the Loop?

	Connecting to the Serial Console
	Are you using Mu?
	Serial Console Issues or Delays on Linux
	Setting Permissions on Linux

	Using Something Else?
	Interacting with the Serial Console
	The REPL
	Entering the REPL
	Interacting with the REPL

	Returning to the Serial Console
	CircuitPython Libraries
	The Adafruit CircuitPython Library Bundle
	Downloading the Adafruit CircuitPython Library Bundle
	The CircuitPython Community Library Bundle
	Downloading the CircuitPython Community Library Bundle
	Understanding the Bundle
	Example Files
	Copying Libraries to Your Board
	Understanding Which Libraries to Install
	Example: ImportError Due to Missing Library
	Library Install on Non-Express Boards
	Updating CircuitPython Libraries and Examples

	CircuitPython Documentation
	CircuitPython Core Documentation
	CircuitPython Library Documentation
	Examples
	API Reference
	Other Links

	Recommended Editors
	Recommended editors
	Recommended only with particular settings or add-ons
	Editors that are NOT recommended

	Advanced Serial Console on Windows
	Windows 7 and 8.1
	What's the COM?
	Install Putty
	Advanced Serial Console on Mac
	What's the Port?
	Connect with screen

	Advanced Serial Console on Linux
	What's the Port?
	Connect with screen
	Permissions on Linux

	Frequently Asked Questions
	I have to continue using CircuitPython 6.x or earlier. Where can I find compatible libraries?
	Is ESP8266 or ESP32 supported in CircuitPython? Why not?
	How do I connect to the Internet with CircuitPython?
	Is there asyncio support in CircuitPython?
	My RGB NeoPixel/DotStar LED is blinking funny colors - what does it mean?
	What is a MemoryError?
	What do I do when I encounter a MemoryError?
	Can the order of my import statements affect memory?
	How can I create my own .mpy files?
	How do I check how much memory I have free?
	Does CircuitPython support interrupts?
	Does Feather M0 support WINC1500?
	Can AVRs such as ATmega328 or ATmega2560 run CircuitPython?
	Commonly Used Acronyms

	Troubleshooting
	Always Run the Latest Version of CircuitPython and Libraries
	I have to continue using CircuitPython 5.x or earlier. Where can I find compatible libraries?

	Bootloader (boardnameBOOT) Drive Not Present
	You may have a different board.
	MakeCode
	MacOS
	Windows 10
	Windows 7 or 8.1

	Windows Explorer Locks Up When Accessing boardnameBOOT Drive
	Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied
	CIRCUITPY Drive Does Not Appear
	Device Errors or Problems on Windows
	Serial Console in Mu Not Displaying Anything
	code.py Restarts Constantly
	CircuitPython RGB Status Light
	CircuitPython 7.0.0 and Later
	CircuitPython 6.3.0 and earlier

	Serial console showing ValueError: Incompatible .mpy file
	CIRCUITPY Drive Issues
	Safe Mode
	Entering Safe Mode in CircuitPython 7.x
	Entering Safe Mode in CircuitPython 6.x
	In Safe Mode

	To erase CIRCUITPY: storage.erase_filesystem()
	Erase CIRCUITPY Without Access to the REPL
	For the specific boards listed below:
	For SAMD21 non-Express boards that have a UF2 bootloader:
	For SAMD21 non-Express boards that do not have a UF2 bootloader:

	Running Out of File Space on SAMD21 Non-Express Boards
	Delete something!
	Use tabs
	On MacOS?
	Prevent & Remove MacOS Hidden Files
	Copy Files on MacOS Without Creating Hidden Files
	Other MacOS Space-Saving Tips

	Device Locked Up or Boot Looping
	Welcome to the Community!
	Adafruit Discord
	CircuitPython.org
	Pull Requests
	Open Issues
	Library Infrastructure Issues
	CircuitPython Localization

	Adafruit GitHub
	Adafruit Forums
	Read the Docs

	CircuitPython Essentials
	Blink
	NeoPixel Location
	Blinking a NeoPixel LED
	RGB LED Colors

	Digital Input
	NeoPixel and Button
	Controlling the NeoPixel with a Button

	Analog In
	Analog to Digital Converter (ADC)
	Potentiometers
	Hardware
	Wire Up the Potentiometer
	Reading Analog Pin Values
	Reading Analog Voltage Values

	CPU Temperature
	Microcontroller Location
	Reading the Microcontroller Temperature

	Storage
	The boot.py File
	The code.py File
	Logging the Temperature
	Recovering a Read-Only Filesystem

	I2C
	I2C and CircuitPython
	Necessary Hardware
	Wiring the MCP9808
	Find Your Sensor
	I2C Sensor Data
	Where's my I2C?

	Capacitive Touch
	One Capacitive Touch Pin
	Pin Location
	Reading Touch on the Pin

	Multiple Capacitive Touch Pins
	Pin Location
	Reading Touch on the Pins
	The Available Touch-Capable Pins

	Arduino IDE Setup
	Arduino NeoPixel Blink
	Pre-Flight Check: Get Arduino IDE & Hardware Set Up
	Start up Arduino IDE and Select Board/Port
	Install NeoPixel Library
	New NeoPixel Blink Sketch
	Verify (Compile) Sketch
	Upload Sketch
	Native USB and manual bootloading
	Enter Manual Bootload Mode

	Finally, a Blink!
	I2C Scan Test
	Common I2C Connectivity Issues
	QT Py ESP32-S2 I2C Configurations
	Perform an I2C scan!
	Install TestBed Library
	Wire up I2C device
	Wiring the MCP9808

	WiFi Test
	WiFi Connection Test
	Secure Connection Example
	JSON Parsing Demo

	Usage with Adafruit IO
	Install Libraries
	Adafruit IO Setup
	Code Usage

	Factory Reset
	Factory Reset Firmware UF2
	Factory Reset and Bootloader Repair
	Download .bin and Enter Bootloader
	Step 1. Download the factory-reset-and-bootloader.bin file
	Step 2. Enter ROM bootloader mode

	The WebSerial ESPTool Method
	Connect
	Erase the Contents
	Program the ESP32-S2

	The esptool Method (for advanced users)
	Install ESPTool.py
	Test the Installation
	Connect
	Installing the Bootloader

	Reset the board
	Older Versions of Chrome
	The Flash an Arduino Sketch Method
	Arduino IDE Setup
	Load the Blink Sketch

	Downloads
	Files:

	Schematic and Fab Print

